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1 Introduction

As a phenomenological fact, superconductivity is usually modeled by a Landau-Ginzburg

Lagrangian where a complex scalar field develops a condensation in a superconductive

phase. To have a scalar condensation in the boundary theory, Horowitz and his collabo-

rators [1] introduced a U(1) gauge field and a conformally coupled charged complex scalar

field in the black hole background. That potential corresponding to the conformal mass

is negative, although above the Breitenlohner-Freedman (BF) bound [2] it does not cause

any instability in the theory. To solve the negative mass problem, Basu and his collab-

orators [3] showed that the presence of the vector potential effectively modifies the mass

term of the scalar field as we move along the radial direction r and allows the possibility

of developing hairs for the black hole in some parts of the parameter space. In their model

there was no explicit specification of the Landau-Ginzburg potential for the complex scalar

field. The development of condensations relies on a more subtle mechanism violating the

no hair theorem. Further Wen investigated the holographically dual description of super-

conductors in (2+1)-space time dimensions in the presence of inhomogeneous magnetic

field and observed that there exist type I and type II superconductors [4]. The existence

of holographic super conductors was established in [1, 5]. From the (d dimensional) field

theory point of view, super conductivity is characterized by condensation of a generally

composite charged operator Ô in low temperatures T < Tc. In the gravitationally dual

(d+1 dimensional) description of the system, the transition to the super conductivity is

observed as a classical instability of a black hole in an anti-de Sitter (AdS) space against
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perturbations by a charged scalar field ψ. The instability appears when the black hole has

Hawking temperature T = Tc. For lower temperatures the gravitational dual is a black

hole with a non vanishing profile for the scalar field ψ. The Anti-de Sitter/Conformal Field

Theory (AdS/CFT) correspondence relates the quantum dynamics of the boundary oper-

ator Ô to a simple classical dynamics of the bulk scalar field ψ [6, 7]. Following Hartnoll

et al. works in [1], and also Maeda and Okamura [8], we will find out they studied the per-

turbation of the gravitational system near the critical temperature Tc, and they obtained

the superconductor’s coherence length via AdS/CFT correspondence, and also they added

a small external homogeneous magnetic field to the system, and found a stationary dia-

magnetic current proportional to the square of the order parameter being induced by the

magnetic field. Their results agree with Ginzburg-Landau theory and strongly support the

idea that a superconductor can be described by a charged scalar field on a black hole via

AdS/CFT duality. From a pure classical treatment, there is more efforts to deal with black

holes (BHs) in AdS backgrounds. Black holes in AdS spacetime have been recently studied

in several dimensions. One of the reasons for this intense study is the AdS/CFT conjec-

ture stating that there is a correspondence between string theory in AdS spacetime and a

conformal field theory (CFT) on the boundary of that space. For instance, the M-theory

on AdS4 × S7 is dual to a non-Abelian superconformal field theory in three dimensions,

and type IIB superstring theory on AdS5×S5 seems to be equivalent to a super Yang-Mills

theory in four dimensions [9, 10].

Recently, a power-counting renormalizable, ultra-violet (UV) complete theory of gravity

was proposed by Hořava in [11–14], although presenting an infrared (IR) fixed point, namely

General Relativity (GR), in the UV the theory possesses a fixed point with an anisotropic

Lifshitz scaling between time and space of the form xi → ℓ xi and t → ℓz t; where ℓ, z,

xi and t are the scaling factor, dynamical critical exponent, spatial coordinates and tem-

poral coordinate respectively. According to the Blas et al. arguments [15], it seems that

this model must be modified by some terms to avoid from strong coupling, instabilities,

dynamical inconsistencies and unphysical extra modes. As we know that there are two

explicit families of exact solutions for a spherically symmetric background without pro-

jectability condition in Hořava-Lifshitz (HL) gravity and other solutions are the familiar

GR solutions i.e. AdS4-Schwarzschild solutions. First solution belongs to the [16] known

asymptotically flat Kehagias-Sfetsos (KS) solution and as we have shown that in spite of

the GR BHs, its timelike geodesics is stable [17]. The other non trivial solution was found

by Lu-Mei et al. [18], and recently Tang [19] investigated the general solutions of the HL

theory under both projectability and non projectability conditions. His paper contains all

the former solutions and at the end of it, he presented two new families of exact solutions

— only in a neutral case — which both of them are valid in the corner of the validity of

the IR limit of the HL theory i.e. λ = 1 and these solutions can be interpreted as two new

forms of the BHs for HL gravity.

Recently the works were done about the Holographic Superconductors for a new topo-

logical BH in HL gravity describing a topological black hole solution whose horizon has an

arbitrary constant scalar curvature [20–25, 27]. They found that it is more applicable for

the scalar hair forming, when the parameter of the detailed balance (ǫ) becomes larger,
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and it is harder when the mass of the scalar field is larger. Also they calculated the ratio of

the gap frequency in the conductivity with respect to the critical temperature. Briefly they

investigated the effects of the mass of the scalar field and the parameter of the detailed

balance on the scalar condensation, the electrical conductivity, and the ratio of the gap

frequency in the conductivity at the critical temperature.

There are many interesting features for critical phenomena and superconductivity when we

are working on higher orders corrections, specially when we are interesting in the Gauss-

Bonnet corrections [26]. The same phenomenology has been discussed by Wang in series of

works [21–25]. These phenomena and its physical consequences are very similar with our

analysis in the HL theory and we can generalize their results to our higher order theory in

the non relativistic regime.

In this work we have discussed a type of solutions which has been reported in [18].

In section 2 we have presented spherically symmetric black holes’ solutions in Hořava-

Lifshitz gravity with the action without the condition of the detailed balance. In section 3

we have explored the scalar condensation in the Hořava-Lifshitz black hole by analytical

approaches. In section 4 the matching solutions and the critical temperature have been

found. In section 5 we have computed the conductivity of our model and shown the

behavior of the real part of the conductivity as a function of frequency per tempereture.

We have summarized and discussed our conclusions in the last section.

2 Solutions of the Hořava-Lifshitz gravity

Since in the HL theory, the dynamical quantities are the shift Ni(t, x), lapse N(t, x) and

metric hij; therefore in the ADM formalism [28]:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) (2.1)

If we restricted ourselves to the static metrics hij , there is two possibility for the time

dependency of the two remaining functions. In many cases as in Lu-Mei-Pope [18], we can

relax the shift function by a formal going to the Schwarzschild gauge and rewriting the

static solution with spherical symmetry in GR. Thus for solutions in the usual Schwarzschild

gauge the only function is the lapse. According to the terminology of the Hořava theory,

a projectable solution is a solution with a time dependent lapse and a non projectable one

is a vise versa. Many authors consider the non projectable version as an exact solution.

Another problem returns to the choice of the potential term. The first choice is due to

the violat detailed balance principle [29, 30], but in the original work of the Hořava in

the context of the cosmology this principle implies a negative cosmological constant in

contrary with the observational evidences. The other problem is avoiding from the ghost

excitations [15], restricting one to accept a value of the λ ≤ 1
3 or λ > 1. Instability

and strong coupling impose another difficulties for it. Far from all of these problems

we rewrite an explicit spherical symmetric solution for HL theory following Lu-Mei-Pope

work [18].
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2.1 New static neutral BH solution

Following the ADM formalism, the action of this HL gravity with a soft violation of the

detailed balance condition is given by:

S =

∫

M
dtd3x

√
gN(LK − LV ) (2.2)

LK =
2

κ2
OK =

2

κ2
(KijK

ij − λK2)

LV = α6CijC
ij−α5ǫ

ij
l Rim∇jR

ml+α4

[

RijR
ij− 4λ−1

4(3λ−1)
R2

]

+α2(R−3ΛW ) +
Ωκ2µ2

8(3λ−1)R

Kij =
1

2N
( ˙gij −∇iNj −∇jNi)

The αi are the coupling parameters [18], and Cij is the Cotton tensor [13]. With the metric

ansatz as in [18]:

ds2 = −N(r)2dt2 +
1

f(r)
(dr +N rdt)2 + r2dΩ2 (2.3)

The following solution in the UV region has been found [18]:

N r = 0 (2.4)

δ =
2λ±

√
6λ− 2

λ− 1
γ = δ − 1

f(r) ≡ f = 1 − ΛW

2
r2 − αrδ (2.5)

N(r) ≡ N = βr−γ
√

f (2.6)

where α, β are constants. This solution is asymptotically AdS4 and thus it is useful in the

AdS/CFT correspondence scenario for the Holographic superconductivity. The Hawking

temperature is given by the usual Gibbons-Hawking calculus [31], therefore the Unruh

temperature can be written in the form [32]:

T =
N ′√f

2π

∣

∣

∣

∣

r=rH

=
β

4π
h−γf ′(h) = − β

4π
(ΛWh+ αδhδ−1) (2.7)

in order to satisfy the positivity of the temperature, we must require β < 0 when both ΛW

and α are positive simultaneously.

3 Field equations for scalar condensation scenario

Following the work of Hartnoll et al. [1], the general framework to the holographic super-

conductors, in the limit where the scalar field does not back-react on the geometry the

solution for the background geometry is that of the dyonic black hole [34]. In this paper,

the charge density of the background [1, 18, 33] is neutral, so both the electric and mag-

netic charge of the dyonic black hole have been set to zero. The Maxwell-scalar sector is

decoupled from the gravity sector, therefore the minimal ingredients we need to describe a
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holographic superconductor are conserved energy momentum T µν , Global U(1) symmetry,

conserved current Jµ and finally charged operator Ô condensing at low temperature (µ, ν

runs over t, x, y). The most basic entries in the AdS/CFT dictionary [6, 7] tell us that

there is a mapping between field theory operators and fields in the bulk. In particular, T µν

will be dual to the bulk metric gab, the current Jµ will be dual to a Maxwell field in the

bulk Aa, and the dual of charged scalar field ψ is Ô (here a, b runs over t, r, θ, φ). We can

now study the Maxwell-scalar theory in the black hole background with Lagrangian:

L = −1

4
F 2 − |∂ψ − iAψ|2 + 2

ψ̄ψ

L2
(3.1)

The only dimensional parameter in the Lagrangian is L related to the AdS radius, and the

full set of equations of motion for the fields ψ and Aµ are:

1√−g∂µ

(√−ggµν(∂νψ − iAνψ)
)

+
2

L2
ψ − igµνAµ(∂νψ − iAνψ) = 0 (3.2)

1√−g∂ν(
√−ggνλgµσFλσ) − gµν

(

i(ψ̄∂νψ − ∂νψ̄ψ) + 2Aν ψ̄ψ
)

= 0 (3.3)

respectively, and we can have the same equation for ψ̄ by complex conjugating of equa-

tion (3.2). We take the ansatz:

ψ = ψ(r) , At = φ(r) , Aa = 0 , a = r, θ, φ (3.4)

It is then suitable to take the phase of ψ to be constant. All other fields are set to be zero.

Under this ansatz, the equations of motion simplify to:

rγ−2(r2−γfψ′)′ +
2

L2
ψ +N−2φ2ψ = 0 (3.5)

rγ−2(r2+γφ′)′ − 2φψ2r2γf−1 = 0 (3.6)

where a prime denotes the derivative with respect to r, and we have to notify that if γ = 0,

these equations will reduce to the ones in [1, 33, 35]. We define a mass parameter as:

m2L2 = −2

The field equations (3.5), (3.6) can be written as the next set:

ψ′′ +

(

2 − γ

r
+
f ′

f

)

ψ′ +

(

r2γ

β2f2
φ2 − m2

f

)

ψ = 0 (3.7)

φ′′ + (2 + γ)r2γ−1φ′ − 2φψ2r2γf−1 = 0 (3.8)

If β = 1, γ = 0 we recover again the results of [1, 33, 36]. We must note an important

fact about the limiting process to achieve the Lu et al. solution given in [36]. The limiting

process γ → 0 is valid for both different values of the λ = 1, 3 > 1. The Lu et al. solution

recovers both of these values, although we observe from the form of the lapse function that

these values lead to the same metric functions.
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Examining these fields equations at the horizon and assuming that the scalar field

must be regular on the horizon, we can observe that we have the next set of the auxiliary

boundary conditions:

ψ′
rH

=
m2

f ′h
ψrH

(3.9)

φrH
= 0 (3.10)

in which rH is the horizon radius of the black hole, i.e. the largest root of f(r) = 0.

3.1 Solving the general equations in the asymptotic region

In the vicinity of the black hole, eqs. (3.7), (3.8) can be solved by making a change of

variable, r → rH , and setting the radius of AdS4 to be L = 1 [36]. In [36] also the case

m2 = 0 was discussed both via numerical and semi analytical methods. In this manuscript

we limited ourselves only to this special case m2 = 0. We can easily guess their behavior in

the large r limit. In order to find the asymptotic behavior of the field we must determine

when in the IR region λ > 1, the exponent δ is positive or negative. There are two

different kinds of the exponent δ which we denote them by δ+, δ−. We mention here that

for a sufficient large value of the λ the value of the exponent δ− remains below 2. Thus for

all values of the λ > 1, we have the next limiting values:

lim
λ→1+

(δ+) = +∞ (3.11)

lim
λ→1+

(δ−) =
1

2
(3.12)

1

2
< δ− < 2 (3.13)

2 < δ+ < ∞ (3.14)

1 < γ+ < ∞ (3.15)

−1

2
< γ− < 1 (3.16)

3.2 Approximation techniques

According to the method discussed in [39], we must find the approximate solutions near the

horizon; then generalize it to the asymptotic AdS region and smoothly match the solutions

at an intermediate point. By introducing a new radial-like coordinate as:

ξ =
rH
r

(3.17)

we can rewrite the equations (3.7), (3.8) in terms of the new coordinate ξ:1

ψ̈ +

(

γ

ξ
+
ḟ

f

)

ψ̇ +

(

r2γ+4
H ξ−2γ−4

β2f2
φ2

)

ψ = 0 (3.18)

φ̈+

(

2

ξ
− r2γ

H (2 + γ)ξ−1−2γ

)

φ̇− 2ψ2r2γ+2
H ξ−2γ−4f−1φ = 0 (3.19)

1We limited ourselves to a massless case m2 = 0.
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where a dot now denotes d
dξ and we observe that for the interval out of the horizon this

coordinate smoothly covers all points of the strip:

rH < r <∞ , 0 < ξ < 1 (3.20)

The boundary conditions (3.9) and (3.10) in the massless limit with the regularity at the

horizon ξ = 1 become:

φ(1) = 0 , ψ̇(1) = 0 (3.21)

With this change of the variables the equations (3.7) and (3.8) convert to the next sets (3.9)

and (3.10), which must be solve near horizon i.e. ξ = 1 with auxiliary boundary condi-

tions (3.21). Our main goal is to find the coefficients and powers in (3.18), (3.19) and also

matching these two solutions in an intermediate point.

3.3 Solutions near the horizon: ξ = 1

We can expand ψ(r) and φ(r) in a Taylor series near the horizon as:

φ(ξ) = φ(1) − φ̇(1)(1 − ξ) +
1

2
φ̈(1)(1 − ξ)2 + . . . (3.22)

ψ(ξ) = ψ(1) − ψ̇(1)(1 − ξ) +
1

2
ψ̈(1)(1 − ξ)2 + . . . (3.23)

According to the equation (3.21) for a massless scalar field, we have ψ̇(1) = 0 and φ(1) = 0,

and without loss of generality we take φ̇(1) < 0, ψ(1) > 0 to have φ(1) and ψ(1) positive.

Expanding (3.19) near ξ = 1 gives:

φ̈(1) =

(

2ψ(1)2

ḟ(1)
r2γ+2
H + r2γ

H (2 + γ) − 2

)

φ̇(1) (3.24)

Thus we get the approximate solution:

φ(ξ) = φ̇(1)

(

− (1 − ξ) +
1

2
(1 − ξ)2

(

2ψ(1)2r2γ+2
H

ḟ(1)
+ r2γ

H (2 + γ) − 2

))

(3.25)

Similarly from (3.18), the second order coefficients of ψ can be calculated as:

ψ̈(1) = −r
2γ+4
H

2β2
ψ(1)

(

φ̇(1)

ḟ(1)

)2

(3.26)

where we used Hopital rule at the second term, therefore an approximate solution near the

horizon is:

ψ(ξ) = ψ(1)

(

1 − r2γ+4
H

4β2

(

φ̇(1)

ḟ(1)

)2)

(1 − ξ)2 (3.27)

– 7 –
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3.4 Solutions in the asymptotic AdS region

In the asymptotic AdS region ξ = 0, the solutions are:

ψ = D+ξ
λ+ +D−ξ

λ− (3.28)

φ = µ− qξ (3.29)

where µ is the chemical potential and q is the charge density on the boundary.2 At the

boundary of a (2+1)-dimensional field theory, µ is of mass dimension one and q = ρ/rH
is of mass dimension two. From the boundary behaviors, we can read off the expectation

value of operator Ô dual to the field. From [1, 33, 39], we know that both of these falloffs

are normalizable, and in order to keep the theory stable, we should impose the following

equations [1]:

D+ = 0 , < Ô− > =
√

2D− (3.30)

D− = 0 , < Ô+ > =
√

2D+ (3.31)

where the factor
√

2 is a convenient normalization [1]. The index i in Di represents the

scaling dimension λO of its dual operator < Ôi >, i.e. λOi
= i. Note that these are

not entirely free parameters, as there is a scaling degree of freedom in the equations of

motion. As in [1], we impose that ρ is fixed and determines the scale of this system.

Both of these falloffs for ψ are normalizable, so we can impose the condition either D−
or D+ vanish. We take D− = 0, for simplicity. Now we must find the solutions of the

equations (3.18) and (3.19) with the boundary conditions mentioned above. Since the

dimension of temperature T is of mass dimension one, the ratio T 2/ρ is dimensionless.

Therefore increasing ρ while T is fixed is equivalent to decrease T while ρ is fixed. We

must show that when ρ > ρc, the operator condensate will appear; this means when T < Tc,

there will be an operator condensation, that is to say the superconducting phase occurs.

We limited ourselves only to the case δ+ > 2, γ+ > 1. Remembering for a general second

order differential equation, we can write (3.18) in the following self-adjoint form:

Ψ̈ + P (x)Ψ̇ +Q(x)Ψ = 0 (3.32)

The change of the variable Ψ(x) = e−1/2
R

P (x)dxΞ(x) converts it to the next Schrodinger

like equation:

Ξ̈(x) + (−1/2Ṗ − 1/4P 2 +Q)Ξ(x) = 0 (3.33)

From (3.18) we have:

P =
γ

ξ
+
ḟ

f
, Q =

h2γ+4ξ−2γ−4

β2f2
φ2 , Ψ =

Ξ(x)√
fξγ/2

(3.34)

In AdS asymptotic region with the metric function f ∼ −αξ−δ, the field equation (3.33) is

converted to the:

ξ2Ξ̈(ξ) + ηΞ(ξ) = 0 , η = 1/4
(

1 − (γ − δ − 1)2
)

= −3

4
(3.35)

2Our compendium follows what mentioned in the Gregory et al. work [39].
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This is a standard Euler-Cauchy equation which has the following exact solution:

Ξ(ξ) = Ξ+ξ
m+ + Ξ−ξ

m− , m± =
3

2
,−1

2
(3.36)

ψ(ξ) = D+ξ
2 +D− (3.37)

φ(ξ) = µ− ρξ (3.38)

The new set of coefficients D± are some functions of the Ξ±, α, . . ..

4 Matching and phase transition

Now we will match the solutions (3.25), (3.27), and (3.37), (3.38) at ξm. Allowing ξm to

be arbitrary does not change qualitative features of the analytic approximation, and more

importantly, it does not give a big difference in numerical values; therefore for simplicity in

demonstrating our argument we will take ξm = 1/2. In order to connect our two asymptotic

solutions smoothly, we require continuity in our fields and their first derivatives at the

crossing point ξm = 1/2, therefore following four conditions should be satisfied:3

D− +
D+

4
= a

(

1 − b2r2H
256π2T 2

)

(4.1)

D+ =
ab2r2H
64π2T 2

(4.2)

µ− ρ

2
= −b

(

− 3

4
+

1

8

(

− a2βrγ+3
H

2πT
+ r2γ

H (2 + γ)

))

(4.3)

ρ = b

(

2 − 1

2

(

− a2βrγ+3
H

2πT
+ r2γ

H (2 + γ)

))

(4.4)

after setting D− = 0, we obtain from equations (4.1) and (4.2):

D+ = 2a =
ab2r2H
64π2T 2

(4.5)

b =
8
√

2πT

rH
(4.6)

b = b̃T (4.7)

where
(

b̃ := 8
√

2π
rH

)

and also from equations (4.3) and (4.4) we have:

a2 =
16πT

bβhγ+3

[

µ− ρ

2
− 3

4
b

(

1 − h2γ(2 + γ)

6

)]

(4.8)

a2 =
4πT

bβhγ+3

[

ρ− 2b

(

1 − h2γ(2 + γ)

4

)]

(4.9)

where (h := rH) and then we conclude that:

b = 4µ− 3ρ (4.10)

3We have set ψ(1) = a and −φ̇(1) = b, (a, b > 0) for clarity, ḟ(1) = −

4πT
β
hγ+1.
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Figure 1. A plot of the critical temperature as a function of ρ and γ varying in the range of

−0.5 < γ < 1.
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Figure 2. A plot of the Tc as a function of ρ (γ = 0). In this plot γ = 0 as we change ρ between 0

and 10. As we see there is linear dependency with respect to parameter ρ.

and we can define the critical point, TC as:

TC =
ρ

2b̃
(

1 − h2γ(2+γ)
4

) (4.11)

Figure 1 shows the the dependence of Tc as a function of ρ and γ. As we see when

ρ = 0 for different values of γ the value of Tc is equal to zero, and in the case γ = 0 there is

a linear dependency of Tc with respect to the varying parameter ρ. This is also mentioned

in the figure 2. As we see in the figure 2 when ρ = 0 the magnitude of Tc is equal to zero

and when ρ goes higher the Tc also goes higher with linear dependency. In the figure 3 we
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Figure 3. A plot of the Tc as a function of γ (ρ = 10). This plot shows how by varying γ the

values of Tc change when ρ is fixed (for this case ρ = 10).

show the dependency of Tc with respect to γ in the range of −0.5 < γ < 1, when ρ is fixed

(for example in that case ρ = 10). With increasing of γ, the values of Tc also increase but

not linearity.

Noting that in order to remain the temperature TC positive, we must have hγ < 2√
2+γ

,

and according to the equation (2.7) we can conclude that
(

3
8 < h < 2√

3

)

, and it could be

reasonable to choose h = 1. Near the critical temperature the AdS/CFT dictionary gives

the relation below:

< Ô+ >=
√

2D+ = 2
√

2a = 4

√

2πρ

b̃βhγ+3

(

1 − T

TC

)1/2

(4.12)

We observe that < Ô+ > is zero at T = TC , the critical point, and condensation

occurs for T < TC . The continuity of the transition can be checked by computing the free

energy [1]. We also see a behavior < Ô+ >∝ (TC − T )1/2 which is a typical mean field

theory result for a second order phase transition [39].

Figure 4 shows 〈Ô+〉 as a function of temperature normalizing by Tc for a variety of

values of ρ and β. Each line in the plot forms the characteristic curve of 〈Ô+〉 condensing

at some critical temperature. For simplicity we chose five values of ρ and β to display the

features of the system and showing how varying β and ρ effect the height of 〈Ô+〉. In this

figure according to the equation (2.7), in order to have positive Unruh temperature we

must require ΛW < 0.

As we see in figure 4 increasing β reduces the value of 〈Ô+〉. We also see that the

condensation appears when T = Tc.

Figure 5 shows that the effect of increasing ρ is to increase the height of these graphs

(〈Ô+〉), in similar way mentioned in figure 4, the condensation happens at T = Tc.
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ρ  =1, β  =1

ρ  =1, β  =1.5
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ρ  =1, β  =2.5

ρ  =1, β  =3
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Figure 4. The plot of the condensation as a function of T

Tc

for a selection of values of ρ and β. In

this plot the value of ρ is fixed (in this case is equal to one) and the value of β from top to down

is equal to 1, 1.5, 2, 2.5, 3. As we see the height of 〈Ô+〉 is decreasing as the values of β increase,

and the condensation occurs when T < Tc.

ρ  =1, β  =1

ρ  =1.5, β  =1

ρ  =2, β  =1

ρ  =2.5, β  =1

ρ  =3, β  =1

0 0.2 0.4 0.6 0.8 1
T/Tc

0

1

2

3
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5
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<O
+

 >

0

1

2

3

4

5

6
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+
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Figure 5. The plot of the condensation as a function of T

Tc

for a selection of values of ρ and β. In

this plot the value of β is fixed (in this case is equal to one) and the value of ρ from down to top

is equal to 1, 1.5, 2, 2.5, 3. As we see the height of 〈Ô+〉 is increasing as the values of β increase,

and the condensation occurs when T < Tc.

– 12 –



J
H
E
P
0
5
(
2
0
1
1
)
1
1
8

5 Conductivity

In order to compute the electric conductivity in dual CFT, we must solve the Maxwell

equation for the fluctuations of the vector potential Ax(r, t), located in the bulk. We

assume that the time dependence of the field is e−iωt and then the field equation of this

component reads as:

A
′′

+

(

f
′

f
− (γ + 1)

r

)

A
′

+

[

r2γω2

f2β2
− 2ψ2

f

]

A = 0 (5.1)

which is what mentioned in the papers [39–41] in the special case κ = 0 and α = L2

4

where from the metric ansatz we have concluded that eν = βr−γ . The causal behavior

is obtained with imposing an ingoing wave boundary condition at the horizon [44]. The

desired asymptotic behavior of the Maxwell field at large distance is:

Ax = A(0)
x +

A
(1)
x

r
(5.2)

According to the AdS/CFT dictionary, the dual source and expectation value for the

current are given by:

Ax = A(0)
x , < Jx >= A(1)

x (5.3)

Now using Ohm’s law we can obtain the conductivity as:

σ(ω) =
−iA(1)

x

ωA
(0)
x

(5.4)

Thus we must solve (5.1) numerically and obtain the imaginary part of the conductivity

σ(ω) for a set of parameters ΛW = −2, β = −1, δ = −1. There is a delta function at ω = 0

which appears as T < TC , and from the Kramers-Kronig relation we can see that the real

part of the conductivity contains a delta function and the imaginary part has a simple pole

at ω = 0. Thus the superfluid density is of the delta function [1]

Re(σ(ω)) ∼ πδ(ω) (5.5)

The figure 6 shows the behavior of the real part of the conductivity as a function of

frequency per temperature for different values of the HL parameter α.

We can solve (5.1) for operator O− for the former set of the parameters. The result

graph has been shown in the figure 7.

6 Conclusion

In the present work, we have built a holographic model for a non-relativistic system showing

superconductivity. We have used a black hole background which comes from the Hořava-

Lifshitz gravity, and we have studied analytically, holographic superconductors in this new

kind of the asymptotic AdS solutions. We also have analytically solved the system in

the probe limits, near horizon and asymptotic region. We have found that there is also
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Figure 6. The real part of conductivity Re(σ(ω)) as a function of the frequency ω

T
for O+ operator.

0 50 100 150 200
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ω

T

ReHΣL

Figure 7. The real part of conductivity Re(σ(ω)) as a function of the frequency ω

T
for O

−
operator.

a critical temperature like the relativistic case, below which a charged condensation field

appears by a second order phase transition, and also we have found out below a critical

temperature TC the condensation field appears and obtains finite value. We can conclude

that as the condensation field becomes heavier, the transition happens more observable.

Also the conductivity has been computed and the variation of the critical temperature and

conductivity with respect to the parameters of the metric function have been shown. We

numerically obtain the conductivity as a function of the frequency for a wide range of the

parameters. We show that the Gauss-Bonnet theory in five dimension and Hořava-Lifshitz

theory in critical exponent z = 3 and in four dimension share some similar features.
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