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1 Introduction

The study of critical points of supergravity continues to play an important role in string

model building, both from the cosmological as well as from the holographic point of view.

In the former, De Sitter solutions are a first step towards modelling inflation, while in the

latter the properties of Anti-de Sitter solutions are important for the dual field theory.

Stability is clearly an important aspect in employing such solutions. Whereas su-

persymmetry preserving solutions are naturally stable, this is not at all clear for non-

supersymmetric solutions. Indeed, due to the myriad of scalar fields in generic supergravity

theories, one always faces the danger that at least one of these represents an instability, and

hence renders the solution unstable. This is particularly worrisome for extended supergrav-

ity theories. Indeed, all known dS critical points of both N = 8 and N = 4 supergravity
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in D = 4 are unstable [1–5]. Up to very recently, the same appeared to hold for non-

supersymmetric AdS solutions [6–9]. However, in [10] it was found that the N = 8 SO(8)

gauged supergravity in fact has a non-supersymmetric and nevertheless perturbatively sta-

ble critical point. In view of these developments, it appears interesting to derive general

statements about the metastability of critical points in extended supergravity, and hence

their usefulness in various aspects of string model building. This paper aims to make a

first step towards this goal.

The route that we will take to this end involves a method that was developed in

the context of minimal supergravity. In that context, it was realised that the sGoldstino

offers an interesting window on the stability of non-supersymmetric critical points [11–

13]. As we will review in more detail later, the sGoldstino is a direction in scalar space

that is singled out exactly by supersymmetry breaking, and hence exists for any non-

supersymmetric solution. Restricting the mass matrix of all scalars to this direction, one

can derive necessary conditions for stability. These will generically not be sufficient, as

there can be tachyons in other scalar directions. Indeed,we will argue that the sGoldstino

in a sense is rather far away from the onset of instabilities. Nevertheless, it is the only

direction that one can study separately in a general fashion. Applications in the context

of string model building and/or inflation were considered in [14–16]. We will adapt this

method to extended supergravity theories, and analyse to what extent general constraints

can be derived.

A number of conceptually new features appear when applying this method to extended

supergravity theories. The first was already encountered in N = 2 supergravity [17]: rather

than one, there are N 2 sGoldstini directions. We will argue that these generally split up

in a number of gauge directions and a number of physical directions. Only the latter can

be used to derive stability conditions. Furthermore, the sGoldstini can belong to different

types of multiplets, corresponding to different types of supersymmetry breaking. In the

case of N = 4 we will encounter supersymmetry breaking in the gravity sector and/or in the

matter sector. Finally, one always has non-Abelian gauge groups subject to generalised

Jacobi identities. These features were not present in previously considered cases, and

therefore it is not clear whether they also allow for a sGoldstino analysis. This is what we

will adress in this paper explicitly for N = 4, while we outline the procedure for N = 8.

As an aside, let us first clarify exactly we mean by stability, as this is not directly

obvious in curved space-times. In Minkowski, it corresponds to the requirement of m2 ≥ 0

for all fields, where m2 is the coefficient of the quadratic term in the Lagrangian. From

the field theory point of view, fields with m2 < 0 represent tachyons. Analogously, such

fields correspond to non-unitary irreps of the Poincaré isometry group. However, in curved

space-times these requirements are somewhat different. The most famous example is the

Breitenlohner-Freedman (BF) bound m2 ≥ 3
4V on scalar masses in Anti-de Sitter [18],

where V is the cosmological constant, or the value of the scalar potential in the critical

point. It is related to the AdS radius by V = −3/L2. The generalisation to fields with

other spins and the opposite value of the cosmological constant has been investigated from

both the field theory as well as the group theory point of view (see e.g. [19, 20] and [21–23],

respectively). The results naturally agree and can be expressed in (m2, V )-diagrams such

as figure 1 for gravitini and scalar fields, respectively, that will be relevant for what follows.

– 2 –



J
H
E
P
0
5
(
2
0
1
1
)
1
0
2

V

m2

m
2

=
−

V
/
3

(D
)

NON-UNITARY

-

6

B
B
B
B
B
B
BB

V

m2

m
2

=
3V

/
4
(B

F
)

m
2

=
2
V

/
3

(D
)

NON-UNITARY

-

6

�
�

�
�

�
�

��




















Figure 1. The (m2, V ) diagrams of spin-3/2 and spin-0 fields, respectively. Adapted from [19, 20].

For spin-3/2 gravitini one finds that in De Sitter the bound is m2 ≥ 0. For all non-

negative values the field has four propagating degrees of freedom. In both Minkowski

and Anti-de Sitter, the bound is m2 ≥ −V/3. Above the bound the field again has four

propagating degrees of freedom. Fields that saturate the bound, however, acquire an

additional gauge invariance and only have two propagating degrees of freedom. In terms

of group theory, this corresponds to a discrete unitary irreducible representation (UIR),

while the right part of the diagram corresponds to a continuous family of UIRs.

For spin-0 scalars the bound in De Sitter coincides with that of Minkowski: m2 ≥ 0.

In contrast, for AdS the masses can be negative. There is a discrete UIR giving rise to

m2 = 2
3V , which is sometimes referred to as the conformal case. Note that this is above,

rather than at, the BF bound of 3
4V . In addition, there is a continuous family of UIRs with

squared masses ranging from the BF bound to +∞. This phenomenon only takes place for

scalars: for all fields with non-zero spin, the continuous family always has masses above a

discrete UIR. We will see that both the UIRs at m2 = 3
4V and m2 = 2

3V play a special

role in supergravity.

The outline of this paper is as follows. In section 2, we will review the sGoldstino

approach for N = 1 supergravity. In section 3, we will outline the relevant features of

N = 4 supergravity, and discuss the dictionary between the two theories. Furthermore,

we derive the full mass matrix of this theory. The stability of supersymmetric critical

points is shown in section 4. Subsequently, section 5 addresses non-supersymmetric critical

points. We derive the sGoldstino directions in general and derive the sGoldstini mass in two

separate cases: those of supersymmetry breaking in the gravity and in the matter sector,

respectively. We compare our results against the explicit examples that have appeared in

the literature. Finally, we discuss our results and conclude in section 6. Our conventions

and other useful expressions can be found in appendix A.

2 Minimal supergravity

It will be instructive to first discuss the sGoldstino approach within the framework in

which it was originally developed, which is that of N = 1 supergravity. More details can

be found in [11–13].
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Minimal supergravity in four dimensions allows for the following multiplets: a gravity

multiplet plus a number of vector multiplets and a number of chiral multiplets. The scalars

of the chiral multiplets span a Kähler space with metric gi̄ = ∂i∂̄K, where K is the Kähler

potential. In the general case the possible deformations leading to a scalar potential are

twofold. The first is characterized by a superpotential W, which is holomorphic in the

chiral scalars, and leads to F-terms. The second are gaugings of the U(1) R-symmetry

(i.e. Fayet-Iliopoulos terms [24]) and/or a number of isometries of the Kähler manifold,

and leads to D-terms. The latter is only possible in the presence of vector multiplets.

We will first restrict ourselves to the case with a gravity multiplet coupled to a number

of hypermultiplets. In this case the entire theory is characterized by the following combi-

nation of the Kähler and the superpotential: L = eK/2W. The fermionic mass terms due

to it are given by

−LψµΓµνψ
ν − i√

2
Li χ

iΓµψ̄
µ − 1

2
Lij χ

iχj + h.c. , (2.1)

where Li = DiL = ∂iL+ ∂iKL is the U(1)-covariant holomorphic derivative. Higher-order

covariant derivatives, such as Lij, are defined in a similar way and are covariant with respect

to the U(1) R-symmetry and diffeomorphisms of the Kähler manifold. Furthermore, the

scalar potential is given by

V = −3 |L|2 + LiL̄ı̄ . (2.2)

The ensuing mass matrices for the chiral scalars are

DiD̄V = −2 gi̄|L|2 + LikL̄̄
k − Ri̄kl̄ L̄kLl̄ + gi̄ L̄kLk − LiL̄̄ ,

DiDjV = −LijL̄ + L̄kL(ij)k , (2.3)

in terms of L, its covariant derivatives, and Ri̄kl̄ being the Riemann tensor of the Kähler

manifold spanned by the chiral scalars.

The different tensors appearing in these mass matrices play the following roles:

• L - the scale of supersymmetric AdS: it lowers the value of the scalar potential and

gives rise to a mass term of the gravitino. With regards to critical points of the

scalar potential, this term does not break the supersymmetry of the corresponding

AdS solutions.

• Li - the order parameter of supersymmetry breaking: it raises the value of the scalar

potential and gives rise to a term bilinear in the gravitino and the dilatini in the

Lagrangian. In contrast to L, this term does break supersymmetry of the critical

points of the scalar potential. The effect of supersymmetry breaking is to raise the

value of the scalar potential, as can be seen from (2.2).

• Lij - the supersymmetric mass term: it gives rise to the mass term of the dilatini and

the chiral scalars; in other words, of all fields outside the gravity multiplet. It does

not break supersymmetry of the critical points.
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• Lijk - this term only appears in the mass matrix (2.3). It will drop out of what

follows and hence will be irrelevant for the present discussion.

Based on these interpretations, the critical points of the scalar potential divide into two

classes: supersymmetric ones for which Li vanishes, and non-supersymmetric ones for

which it does not.

The stability of the supersymmetric critical points is easiest to discuss. An arbitrary

direction in scalar space, characterized by arbitrary vector vI = (vi, w̄ı̄) with independent

vectors vi and wi, reads in this case

vIm2
IJv

J = −9

4
viv̄i|L|2 +

1

4
(2 viLik − w̄kL)(2 v̄̄L̄̄k̄ −wk̄L̄) + (v ↔ w̄) . (2.4)

The first contribution is negative definite and gives rise to scalar masses exactly at the

Breitenlohner-Freedman bound: m2 = 3
4V . The second contribution is positive definite.

Therefore, and not surprisingly, we find that in this case all scalars are stable due to

supersymmetry. Note that in the absence of the supersymmetric masses Lij, the second

term yields a contribution such that the total mass is m2 = 2
3V . As we have seen in the

introduction and is illustrated in figure 1, this corresponds exactly to the discrete scalar

representation of SO(2, 3). The introduction of Lij serves to lift the degeneracy of masses,

and redistributes these to different values m2 ≥ 3
4V .

The discussion of the stability of the non-supersymmetric critical point is somewhat

less straightforward. Due to the complexity of the mass matrices with Li reinstated, it

is very difficult to make general statements about the stability of all scalars. However,

it is possible to focus on a particular scalar. This possibility arises as the very fact of

breaking supersymmetry singles out a particular direction of the scalar manifold, being

the sGoldstino. The argument is as follows. When breaking supersymmetry, the gravitino

aquires an additional mass term and hence moves away from the line at m2 = −V/3 in

figure 1. While going from the discrete to a continuous irrep, it loses gauge invariance.

The additional degrees of freedom are provided by a particular linear combination of the

dilatini: by a slight abuse of notation, this is called the (would-be) Goldstino. This is

the fermionic counterpart of the Higgs mechanism. The supersymmetric partner of the

Goldstino is referred to as the sGoldstino. It is a particular linear combination of the

scalar fields determined by the order parameter of supersymmetry breaking, which is Li in

N = 1.

The sGoldstino mass is therefore given by the projection of the mass matrix (2.3) with

the particular vector vI = (0,Lı̄), which reads

m2 = +2 |L|2 − Ri̄kl̄ L̄iL̄L̄kLl̄ . (2.5)

A number of points are noteworthy. Firstly, this expression only depends on L, the scale of

supersymmetric AdS, and the sectional curvature of the Kähler manifold in the direction

Li. Perhaps somewhat surprisingly at first sight, the sGoldstino mass does not approach
2
3V in the limit Li → 0. This comes about due to the extremality condition for the scalars,

LijL̄j = 2LiL̄ . (2.6)
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It relates the supersymmetric mass scale to the supersymmetric AdS scale. Therefore it is

inconsistent to have only L and its first derivative non-vanishing. The introduction of Lij

raises the sGoldstino mass to +2|L|2 in the limit when supersymmetry is restored. Other

components of Lij, transverse to L̄j, will affect the masses of the complementary scalars

but not of the sGoldstino. Secondly, the third derivative term Lijk has also dropped out.

One can subsequently analyse in which cases the sGoldstino mass is positive (or above

the BF bound in AdS). This is only a necessary but not sufficient condition: if the sGold-

stino mass is negative (or below the BF bound in AdS) one has proven the instability of

the critical point. If it is not, any of the complementary scalars could still be unstable. In

particular, before the breaking of supersymmetry, the sGoldstino has a mass of +2|L|2 in

the AdS case. It is therefore certainly not close to the BF threshold of instability. Other

scalars might be closer and could therefore be more sensitive to supersymmetry breaking

effects. The problem is that these complementary scalars cannot be addressed in a general

way similar to the sGoldstino.

A possible approach towards the stability of Minkowski or De Sitter critical points

based on (2.5) is to divide N = 1 theories based solely on the sectional curvatures (and

independently of the superpotential). If the sectional curvature in all directions is such

that the sGoldstino mass can never be positive, irrespective of the superpotential and

hence Li, one has proven that all non-supersymmetric points are unstable. Note that

this approach can not rule out non-supersymmetric yet metastable Anti-de Sitter critical

points, as for such cases the positive contribution due to L can always overcome any

negative contributions due to the sectional curvature. This finding seems to resonate with

the non-supersymmetric and stable critical point of N = 8 supergravity [10].

The inclusion of vector multiplets leads to the additional possibility to turn on (positive

definite) D-terms in the scalar potential. In this case, the would-be Goldstino is a linear

combination of spin-1/2 fields of both the chiral and the vector multiplets. However, as

the latter have no scalars as supersymmetric partners, the projection onto the sGoldstino

scalars remains given by Li. Performing this projection on the mass matrix in the presence

of D-terms, one finds a more complicated expression which can be found in [11–13]. For

the present purpose it suffices to say that in such a case stability is easier to attain, as the

D-terms raises the mass, but general statements are harder to derive.

3 Half-maximal supergravity

3.1 Covariant formulation

Half-maximal supergravity in four dimensions allows for the following multiplets: the grav-

ity multiplet, and a number n of vector multiplets. In contrast to the minimal theory, the

scalar manifold is completely determined by supersymmetry and is given by the coset space

SL(2)

SO(2)
× SO(6, n)

SO(6) × SO(n)
, (3.1)

The numerator of this expression is the global symmetry group of the theory. Due to the

fact that the scalar manifold and hence its sectional curvatures are completely fixed for

– 6 –
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N ≥ 3 supergravities, one would expect an analysis based on the analogon of (2.5) to be

very powerful.

In contrast to the minimal theory discussed in the previous section, N = 4 does not

allow for the introduction of the analogon of an arbitrary superpotential. Due to extended

supersymmetry, all possible deformations are induced by gaugings, and the corresponding

deformations are determined by constant parameters: the embedding tensor [25]. For

N = 4 these are given by the following SL(2) × SO(6, n) tensors [26]:

fαMNP , ξαM , (3.2)

where α and M are SL(2) and SO(6, n) indices, respectively. The former gauges a subgroup

of SO(6, n), while the latter always induces a gauging of SL(2) as well. We will argue in

the concluding section that the three-form f should be thought of as F-terms, while the

fundamental irrep ξ is the N = 4 equivalent of D-terms and Fayet-Iliopoulos terms.

The introduction of these components has the following consequences for the La-

grangian. Firstly, all derivatives are covariantised with respect to the gauge group induced

by the embedding tensor. Furthermore, fermion bilinear terms of the form (focussing on

the gravitini and omitting the spin-1/2 bilinears)

1

3
g Aij

1 ψ̄µiΓ
µνψνj −

1

3
ig Aij

2 ψ̄µiΓ
µχj − ig Ā2 a

i
j ψ̄µiΓ

µλaj + h.c. (3.3)

have to be included, where the tensors A1,2 are given by

Aij
1 = ǫαβ(Vα)∗ V[kl]

MVN
[ik]VP

[jl] fβ M
NP ,

Aij
2 = ǫαβVα V[kl]

MVN
[ik]VP

[jl] fβ M
NP +

3

2
ǫαβVα VM

[ij] ξβ
M ,

A2 a i
j = ǫαβVα Va

MVN
[ik]VP

[jk] fβ MN
P − 1

4
ǫαβVα δ

j
i Va

M ξβ M . (3.4)

Finally, a scalar potential that is bilinear in the embedding tensor appears. In terms of

SL(2) × SO(6, n) covariant quantities it reads

V =
1

16

{

fαMNP fβ QRS Mαβ

[
1

3
MMQMNRMPS +

(
2

3
ηMQ −MMQ

)

ηNRηPS

]

+

− 9

4
fα MNP fβ QRS ǫ

αβMMNPQRS + 3 ξα
Mξβ

N Mαβ MMN

}

, (3.5)

where our conventions for the scalars are given in appendix A.

An essential role in the present discussion will be played by the quadratic constraints.

These are bilinear conditions on the structure constants (3.2). The full set of quadratic

constraints can be found in [26]. For future purposes we list here the non-trivial ones after

setting ξ to zero. In terms of SL(2) × SO(6, n) covariant quantities they are given by

fα R[MNfβ PQ]
R = 0 , ǫαβfαRMNfβ PQ

R = 0 . (3.6)

These ensure the consistency of the gauging.
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3.2 Formulation in the origin

We now use the following crucial property, in which N = 4 supergravity differs from

N ≤ 2. Instead of retaining covariance with respect to the full symmetry group, we will

use the non-compact generators in order to go to the origin in moduli space. This does

not constitute a loss of generality as the moduli space is homogeneous. The remaining

symmetry group is then the isotropy group

SO(2) × SO(6) × SO(n) .

We will use the indices α, m and a for the different factors, respectively. Moreover, in the

rest of this section, we will set ξ equal to zero. The generalisation to non-zero ξ is discussed

in the conclusions.

The embedding tensor splits up in the following irreps of the reduced symmetry group,

playing the following roles (as should become clear in what follows):

• The scale of supersymmetric AdS is set by

f (+) ≡ 1

2

(

fα mnp +
1

3!
ǫαβǫmnpqrs fβ qrs

)

. (3.7)

Note that this combination corresponds to the imaginary self-dual (ISD) irrep of

SO(2) × SO(6) (similar to that appearing in N = 1 flux compactifications [27]).

This combination shows up in the SU(4) matrix Aij
1 , and hence also gives rise to the

gravitini masses via the SU(4) matrix. In this way, upon turning on f (+), all gravitini

of the theory move from the origin of figure 1 to a point on the m2 = −V/3 line,

corresponding to supersymmetric Minkowski and AdS, respectively.

• The order parameter of supersymmetry breaking in the gravity sector is given by

f (–) ≡ 1

2

(

fα mnp −
1

3!
ǫαβǫmnpqrs fβ qrs

)

. (3.8)

Turning on the anti-imaginary self-dual (AISD) component f (–) implies a non-zero

SU(4) matrix Aij
2 . For that reason, the gravitini acquire an additional mass term by

absorbing the spin-1/2 fields of the gravity multiplet.

• The order parameter of supersymmetry breaking in the matter sector is

f (1) ≡ fαmna . (3.9)

The component f (1) induces a non-zero SU(4) matrix A2 a i
j . In this case, additional

mass terms for the gravitini arise due to the coupling to spin-1/2 fields in the vec-

tor multiplets.

• The supersymmetric mass terms are

f (2) ≡ fα mab (3.10)

This component induces mass terms for the matter sector (both the spin-1/2 fields

and the scalars of the vector multiplets).
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• Finally, we have

f (3) ≡ fαabc . (3.11)

In analogy with Lijk in the N = 1 case, this component only appears in the mass

of the matter scalars multiplied by f (1). Indeed we will see that the sGoldstini mass

can always be written in such a way that it is independent of this component.

In addition to these five tensors, we will denote their bilinear contractions by F -tensors.

Due to the (A)ISD properties of f (+) and f (–), their bilinears will also satisfy a number of

non-trivial properties. More details on our conventions can be found in appendix A.

The scalar potential in the origin reads

V = −1

4
F (+) +

1

12
F (–) +

1

4
F (1) , (3.12)

and hence is completely determined by the scale of SUSY AdS plus SUSY breaking effects,

both from the gravity and the matter sector.

The vanishing of the first derivatives leads to the extremality conditions

F (1)

α, β − 1

2
δαβF

(1) =
2

3
F (+ –)

(α, β) , F (1 2)
m, a = F (+ 1)

m, a − F (– 1)
m, a . (3.13)

The former equation is symmetric and traceless, and follows from the SL(2) scalars, while

the second equation corresponds to the non-compact scalars of SO(6, n). Also note that

both these equations are automatically satisified in the SUSY case with A2 = 0.

Turning to the second derivative of the scalar potential, we find the following results

Vαβ, γδ =(δαγδβδ + δαδδβγ − δαβδγδ)

(

− 1

12
F (+) − 1

12
F (–) +

1

4
F (1)

)

, (3.14)

Vαβ, bn =
1

2
ǫγ(α (F (1 2)

γn, |β)b + F (1 2)

β)n, γb) , (3.15)

Vam, bn =
1

4

(

− δab F
(+)
m, n + δab F

(–)
m, n + δab F

(1)
m, n + δmn F

(2)

a, b − F (1)

an, bm − F (2)

an, bm+

− F (+ 2)

mn, ab + 3F (– 2)

mn, ab + F (1 3)

mn, ab −
1

2
ǫαβǫmnp1p2p3p4 fα ap1p2fβ bp3p4

)

.

(3.16)

Using the relations in appendix A, we can turn to physical fields φI = {χ, φ, φ{am}}

Vχ, χ = Vφ, φ = − 1

12
F (+) − 1

12
F (–) +

1

4
F (1) , (3.17)

Vχ, {bn} = σαβ
3 Vαβ, bn , Vφ, {bn} = σαβ

1 Vαβ, bn , (3.18)

V{am}, {bn} = 4Vam, bn , (3.19)

where σ1, σ3 are the standard Pauli matrices. In order to compute the squared mass matrix,

we have to multiply the Hessian matrix by the inverse Kähler metric

[m2]I
J =

∂2V

∂φI∂φK
[K−1]KJ . (3.20)
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The Kähler metric can be read explicitly from the kinetic terms in appendix A and, in our

case, is given by

KIJ =

[
1
21l2 0

0 1l6n

]

. (3.21)

Despite these somewhat complicated expressions, in the following we will derive a

number of non-trivial bounds from the mass matrices. In particular, we will analyse the

following cases. To the best of our knowledge, all known critical points in the literature

either have all three tensors f (+), f (–), f (1) non-vanishing (see e.g. [5]), or only one of these

non-vanishing (see e.g. [3, 4]). The latter case has either full supersymmetry with f (+), or

has fully broken supersymmetry in the gravity sector due to f (–) or the matter sector due

to f (1). We will focus on these three cases in this paper, and leave the analysis with all

three tensors non-vanishing for future work. For this reason, we will not consider partial

supersymmetry breaking, as recently discussed for N = 2 in [28].

4 Supersymmetric critical points

As a consistency check, we will first discuss the stability of supersymmetric critical points.

This analysis will follow its N = 1 counterpart very closely. Setting A2 and hence f (–) and

f (1) equal to zero, the mass matrices are as follows.

[
m2

]

χ
χ =

[
m2

]

φ
φ = −1

6
F (+) ,

[
m2

] {bn}

{am}
= −δab F

(+)
m, n + δmn F

(2)

a, b − F (2)

an, bm − F (+ 2)

mn, ab , (4.1)

while the scalar potential is given by −1
4F

(+).

For the SL(2) case we find that the masses are exactly equal to 2
3V . As was discussed

in the introduction, this value corresponds to the discrete irrep, and does not saturate the

BF bound. Note that for the SL(2) scalars, there are no SUSY mass terms to lift the

degeneracy. This is a consequence of being in the gravity multiplet: in the SUSY case all

fields in this multiplet correspond to discrete irreps.

For the SO(6, n) scalars the mass matrix is somewhat more interesting. Again, in the

absence of SUSY mass terms, the masses are given by m2 = 2
3V . Interestingly, including

f (2) as well, the mass matrix can be rewritten in the following form:

[
m2

] {bn}

{am}
= − 3

16
δabδmn F

(+) +
1

8
Vam, α pqcVbn, α pqc , (4.2)

where

Vam, α pqc = −4δm[pfαa|q]c + δacf
(+)
α mpq . (4.3)

The latter term is clearly positive definite. Therefore the former term in the mass matrix

sets a lower bound for the masses at m2 = 3
4V , which is at (rather than above) the BF

bound. Turning on the SUSY mass terms therefore again serves to break the degeneracy
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between the different SO(6, n) masses, and indeed could lower the mass up to the BF

bound. To saturate rather than satisfy the bound for some scalar field one needs to have a

direction Uam such that it annihilates the additional term; in other words one should have

UamVam, α pqc to be vanishing. Note that this story is completely analogous to the N = 1

case - there one also finds 2
3V for the masses if one only turns on L, but turning on SUSY

mass terms Lij this can change into m2 ≥ 3
4V .

5 Non-supersymmetric critical points

5.1 sGoldstini directions

Now let us turn to non-supersymmetric points. In analogy to the N = 1 case, one can read

off the Goldstini directions from the fermion bilinear terms in (3.3). They are given by

i

6
Aij

2 χj +
i

2
Ā2a

i
j λ

aj , (5.1)

where the spin-1/2 shift matrices in the origin of the coset space read

Aij
2 = ǫαβVα fβ [kl]

[ik][jl] , Ā2 a
i
j = ǫαβ(Vα)∗ fβ a

[ik]
[jk] . (5.2)

The sGoldstini correspond to the supersymmetric scalar partners of the Goldstini. These

amount to

1

6
Aij

2 τ −
1

2
Ā2a

i
k [Gm]kj φ{am} , (5.3)

where the field τ is a complex combination of χ and φ, and we use the ’t Hooft symbols

as given in the appendix A to go from the 6 representation of SU(4) to that of SO(6). In

terms of the latter, the 16 sGoldstini directions are the following:

V ij
τ =

1

48
ǫγηVγ f

(–)
η mnp [Gmnp]

ij − 1

8
ǫγηVγ ξη m [Gm]ij ,

V ij
{am} = −1

8
ǫγη(Vγ)∗ f (1)

η anp [Gmnp − 2δm[nGp]]
ij +

1

8
ǫγη(Vγ)∗ ξη a [Gm]ij . (5.4)

Note that, in the general case, the Goldstini and sGoldstini comprise fields from both

the gravity and the vector multiplets. This corresponds to the new feature of N = 4

supergravity to have supersymmetry breaking in both the gravity and matter sectors, for

f (–) and f (1) non-vanishing, respectively.

The product of the two fundamental SU(4) representations i and j splits up in two

irreps, corresponding to the symmetric and anti-symmetric parts. In terms of ’t Hooft

symbols, these correspond to the G(3) and G(1) terms, respectively. The following inter-

pretations seem to hold for these two irreps:

• The six sGoldstini directions given by the anti-symmetric combination are to be in-

terpreted as gauge transformations. That is, these directions in scalar space have

been gauged away by the introduction of the associated embedding tensor compo-

nents. The associated gauge vectors are those of the gravity multiplet. This can be
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seen in two ways. Firstly, the form of the antisymmetric part of (5.4) coincides with

an explicit gauge transformation on the scalars in the origin. Secondly, it can be

checked that the scalar mass matrix indeed is annihiliated up by these directions:

m2 · V [ij] = 0 , (5.5)

where m2 is the mass matrix corresponding to both gravity and matter scalars. The

explicit proof of this can be found in appendix B.

• The ten scalar directions that are symmetric constitute the physical sGoldstini direc-

tions. These can be used to infer statements about stability from the mass matrices.

Instead of considering the eigenvalues of all ten directions, we will focus on the only

mass condition that is SU(4) invariant. This corresponds to taking the trace over all

sGoldstini:

M2
sG ≡ V̄(ij) ·m2 · V (ij) . (5.6)

We expect the interpretation of the symmetric and anti-symmetric sGoldstini as physical

and gauge directions, respectively, to hold for other supergravity theories as well. In terms

of Young tableaux of the R-symmetry group SU(N ), the sGoldstini transform as

⊗ = ⊕ . (5.7)

The gauge vectors in the gravity multiplet always transform in the latter representation,

allowing for the above interpretation. This is consistent with previously considered cases.

First of all, in N = 1 there is no anti-symmetric representation, and indeed the introduc-

tion of F-terms does not correspond to a gauging. The symmetric representation is one-

dimensional, corresponding to the one physical sGoldstino. In N = 2 the anti-symmetric

representation is one-dimensional. Indeed it was found in [17], in the case of only hyper-

multiplets, that this direction in the scalar manifold corresponds to a gauged isometry, as

in (5.5). Similarly, the no-go theorem for stable De Sitter in that case was derived from

the trace over the three sGoldstini masses in the symmetric representation, corresponding

to (5.6).

In the N = 4 case at hand, the trace over sGoldstini masses corresponds to the

following projection of the full mass matrix. In the case of sGoldstini in the gravity sector

(f (1) = 0), one should consider the SL(2) scalar mass

M2
sG = V(ij)

τ̄
[
m2

]

τ̄
τ V (ij)

τ =
1

48
F (–)

(

− 1

6
F (+) − 1

6
F (–) +

1

2
F (1)

)

. (5.8)

In the case of matter sGoldstini (f (–) = 0), the relevant combination is

M2
sG = V

{am}
(ij) [m2]

{bn}
{am} V

(ij)
{bn} = Pam, bnVam, bn , (5.9)

where we have used the projection P based on the symmetric sGoldstini directions:

Pam, bn ≡ 4V(ij) {am}V
(ij)
{bn}

=
1

4
[2δαβ(δmnF

(1)

a, b − 2F (1)

an, bm) + ǫαβǫmnq1q2q3q4 fα aq1q2fβ bq3q4] . (5.10)
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Finally, in the general case with both f (–) and f (1), one should add the above two expressions

and include the crossterm

V τ̄
(ij)

[
m2

]

τ̄
{am} V

(ij)
{am} + V

{am}
(ij)

[
m2

]

{am}
τ V (ij)

τ . (5.11)

In the next subsections we will calculate (5.8) and (5.9) explicitly. The general case,

including (5.11), will be beyond the scope of this paper.

In addition to the projection P based on the symmetric sGoldstino directions, it will

also prove useful to define the similar expression for the anti-symmetric sGoldstini:

Qam, bn ≡ 4V[ij] {am}V
[ij]
{bn} = F (1)

am, bn . (5.12)

As the antisymmetric sGoldstini directions correspond to gauge directions, this projection

annihilates the mass matrix:

Vam, bnQam, bn = 0 . (5.13)

Nevertheless, the projection Q will be instrumental in the interpretation of the sGold-

stino mass.

5.2 SUSY breaking in the gravity sector

First consider the case of supersymmetry breaking due to f (–), i.e. in the gravity sector. In

this case the sGoldstino mass is given by (5.8). Upon properly normalising with respect

to the length of the sGoldstino directions we obtain a new quantity m2
sG. In units of the

scalar potential, it reads

m2
sG

V
=

2F (+) + 2F (–)

3F (+) − F (–)
. (5.14)

Note that turning on f (–) lowers the masses, while it raises the scalar potential - therefore

it is clear that there will be some point where the masses become unstable. This happens

at F (–) = 1
11F

(+). Note that this transition occurs before the scalar potential becomes zero.

Therefore the sGoldstino mass rules out metastable Minkowski or De Sitter solutions with

supersymmetry breaking in the gravity sector.

As in the case of supersymmetric vacua, whenever we consider just f (+), f (–), f (2) and

f (3), we can write the SO(6, n) mass matrix in the following way

[m2]
{bn}

{am} = −1

8
δab

(
3 f (+)

α mpq − f (–)
αmpq

) (
3 f (+)

α npq − f (–)
αnpq

)
+

1

8
Vam, α pqcVbn, α pqc (5.15)

with

Vam, α pqc ≡ −4 δm[p fα a|q]c + δac f
(+)
α mpq − 3 δac f

(–)
α mpq (5.16)

Note that this is again given by a negative and a positive definite term. With only f (–), all

scalar masses are equal and positive: m2 = 1
6F

(–). However, including f (2) this degeneracy

is lifted and the masses are subject to the lower bound m2 ≥ − 1
48F

(–). Therefore one

cannot make definite statements on the SO(6, 6) scalars in the general case.
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5.3 SUSY breaking in the matter sector

Now let us address the other limiting case, i.e. supersymmetry breaking in the matter

sector. In particular, we will set both f (+) and f (–) equal to zero, and focus on the roles

of f (1), f (2), f (3). Interestingly, we will see that not all lessons from N = 1 carry over to

this case.

In this case supersymmetry breaking proceeds completely via the matter sector, i.e. the

vector multiplets. Calculating the sGoldstino mass (5.9) in this case amounts to

M2
sG =

1

16

[

+ 2 (F (1)

a, b)
2 + 12 (F (1)

m, n)2 − 12 (F (1)

am, bn)2 − 4 (F (1)
mn, pq)

2

+ 6F (1)

a, bF
(2)

a, b + 4F (1)

am, bnF
(2)

am, bn + 4F (1 3)

mn, abF
(1)

am, bn

]

. (5.17)

The question is how to interpret this combination, and in particular to find out whether

it is positive or negative. Following both the N = 1 and N = 2 discussion, we will try to

write this in terms of a sectional curvature.

The Riemann tensor of the SO(6, n) scalar coset is given by

Ram, bn, cp, dq = −1

2
δmnδpq (δacδbd − δadδbc) −

1

2
δabδcd (δmpδnq − δmqδnp) . (5.18)

The natural sectional curvatures in this case are constructed with either the symmetric

or the anti-symmetric sGoldstino directions, or both. The corresponding projections are

provided by P or Q. This naturally leads to the following three possibilities:

Ram, bn, cp, dq Pam, cp Pbn, dq = − 1

2
(F (1))2 +

3

2
(F (1)

m, n)2 − (F (1)

a, b)
2+

− 2 (F (1)

am, bn)2 + F (1)

am, bnF
(1)

an, bm − 1

2
(F (1)

mn, pq)
2 ,

Ram, bn, cp, dq Pam, cp Qbn, dq = − 1

4
(F (1))2 +

1

2
(F (1)

m, n)2 − 1

2
(F (1)

a, b)
2 − (F (1)

am, bn)2 ,

Ram, bn, cp, dq Qam, cp Qbn, dq = − 1

2
(F (1)

m, n)2 − 1

2
(F (1)

a, b)
2 + F (1)

am, bnF
(1)

an, bm . (5.19)

It follows from the geometric properties of the manifold that all sectional curvatures are

negative, see e.g. [29].

Furthermore we can use the quadratic constraints (3.6), to which the embedding tensor

components are subjected, to try to eliminate the tensors f (2) and f (3) from (5.17). Indeed

this works for a number of terms appearing in the sGoldstino mass. In particular, we have

been able to derive the following relevant quartic relations from (3.6):

(F (1)
mn, pq)

2 = 2 (F (1)
m, n)2 + (F (1 2)

mn, ap)
2 + 2F (1)

am, bnF
(1 3)

mn, ab ,

(F (1)

am, bn)2 = (F (1)
m, n)2 + F (1)

am, bnF
(2)

am, bn ,

2F (1)

am, bnF
(1)

an, bm = (F (1)

a, b)
2 ,

2F (1)

am, bnF
(2)

an, bm = F (1)

a, bF
(2)

a, b ,

0 = (−F (1)

am, bn + F (1)

an, bm + F (2)

am, bn − F (2)

an, bm − F (1 3)

mn, ab)F
(1)

am, bn , (5.20)
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which will be useful in what follows. We have been unable to construct more relations of

this form that can be used to massage (5.17) into a more managable form.

Using both these quartic relations and the scalar field equations (3.13), the total sGold-

stini mass can be written in terms of a single sectional curvature modulo terms proportional

to F (1)F (2) only in the case of RQ Q:

M2
sG =

1

2
RQ Q +

1

2
F (1)

a, bF
(2)

a, b −
1

2
F (1)

am, bnF
(2)

am, bn − 1

4
F (1)

αa, βbF
(2)

αa, βb . (5.21)

The sectional curvature of the coset manifold is negative. Therefore, in the absence f (2),

or rather tensors F (1) and F (2) that can be contracted in non-trivial ways, the sGoldstino

mass is always negative. The remaining three terms can be positive, however.

Two features of this sGoldstino mass are surprising from an N = 1 and N = 2 point

of view [11–13, 17]. Firstly, for N = 1 and N = 2 the relevant sectional curvatures are

instead RP P and RP Q, respectively. Moreover, we find an explicit appearence of the

tensor f (2), associated with supersymmetric mass terms for the vector multiplets1. In both

the N = 1 and N = 2 cases the corresponding tensor could always be eliminated, at the

cost of introducing the supersymmetric AdS scale. In contrast, in N = 4 we have not

been able to do so. It cannot be excluded that we have missed a relevant quartic relation

in (5.20) which would allow one to write the sGoldstino mass purely in terms of the order

parameter of supersymmetry breaking. However, we do not deem this very likely in view

of the following arguments.

The components of f (2) that are picked out by the symmetric sGoldstino directions

are not the same components as those constrained by the field equations; these are the

two contractions

F (1 2)
mn, ap [Gmnp]ij , F (12)

m, a [Gm]ij , (5.22)

respectively. This distinction is not present for the cases that have been considered with

lower number of supersymmetry, for which these two expressions coincided. In the latter

case one can always use the field equation to relate terms like the first in (5.22) to the scale

of supersymmetric AdS. The fact that this is not possible for a generic N = 4 configuration

can be seen as an explanation for the appearance of the supersymmetric mass term in the

sGoldstino mass.

A second point is the presence of the N = 4 quadratic constraints. Importantly, these

are not necessarily (bi-)linear in the order parameters of supersymmetry breaking, in this

case f (1); for example, there are relations of the schematic form (f (1))2 = (f (2))2. These do

not necessarily hold in the supersymmetric limit, i.e. sending f (1) to zero (in contrast to

the field equations, which are automatically satisfied in this limit). This has the important

implication that for N = 4 one cannot continuously deform a non-supersymmetric critical

point with f (1) 6= 0 to a supersymmetric critical point with f (1) = 0. If there would be

such a limit, one can argue that the sGoldstini masses must be independent of f (2), as the

same holds for the Goldstini masses and these must coincide in the supersymmetric limit.

1We have checked explicitly that the Goldstini masses are independent of f (2) and indeed vanish.
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In contrast, the absence of such a limit allows the sGoldstini masses to depend on f (2), as

indeed we find.

Finally, note that in this case the SL(2) scalars have a positive mass, given by 1
2F

(+).

However, in this case the SL(2)×SO(6, n) crossterms in (3.18) do not necessarily vanish, and

hence the mass eigenstates will in general be a mixture of the SL(2) and SO(6, n) scalars.

5.4 Comparison to literature

A comparison to the work of [3, 4] is in order at this point. In this work, all semi-

simple gauge groups leading to critical points were derived for the special case of six vector

multiplets, i.e. n = 6. As mentioned before, all De Sitter solutions discussed in that work

have only f (–) or f (1), but not both. They subsequently calculated the scalar mass matrices.

In all cases there were no crossterms between the SL(2) and the SO(6, 6) scalars, i.e. (3.18)

vanishes. Furthermore, either the gravity or the matter scalars contain at least one tachyon.

We have checked that indeed the gaugings with f (–) have an SL(2) instability, while those

with f (1) are unstable due to SO(6, 6) directions. This confirms that the sGoldstini point in

approximately the right direction, i.e. are related to the unstable directions in the models

of [3, 4]. However, the sGoldstini are not necessarily mass eigenvalues, and hence are not

necessarily identical to the tachyonic directions. Indeed we have seen in a number of cases

that the lowest mass satisfies but does not saturate the upper bound set by the sGoldstino

mass. In such cases the sGoldstini overlap with the tachyon to a large extent but do not

coincide with it (i.e. their normalised inner product is close to but not equal to one).

The N = 4 gaugings considered in [5] are more general in that they have all three ten-

sors f (+), f (–) and f (1). Furthermore, the mixed second derivatives (3.18) no longer vanishes.

In order to derive general results for such gaugings one would have to go beyond the present

analysis and include the contributions (5.11) due to mixed supersymmetry breaking.

6 Discussion and conclusions

Projecting onto the sGoldstino directions, we have derived an upper bound for the lowest

scalar mass of non-supersymmetric critical points of N = 4 gauged supergravity in a

number of cases. The clearest is that of supersymmetry breaking in the gravity sector:

the SL(2) scalars in that case always are unstable for Minkowski and De Sitter solutions.

The expression in the other case that we have considered, supersymmetry breaking in the

matter sector with structure constants f (1), f (2) and f (3), involves a sectional curvature in

the SO(6, n) directions. In contrast to the N = 1 and N = 2 cases, in this case one cannot

prove an instability in full generality due to the explicit appearance of the supersymmetric

mass terms parametrised by f (2). Instead of a failure to derive a no-go theorem, one could

also take this as a hint in order to look for metastable De Sitter solutions. To achieve this,

one would have to construct a gauging for which the contribution due to f (2) is positive

and outweighs the negative contribution due to the sectional curvature term. It would be

interesting to investigate what this implies for the gauge group.

It is clear that the current results only represent a first step towards a full characterisa-

tion of the mass of the N = 4 sGoldstino scalars. A further extension would address mixed
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N = 1 N = 4 N = 8 SUSY . . .

A1 ψ̄ψ L f (+) 36 . . . AdS

A2 ψ̄λ Li f (–), f (1) 420 . . . breaking

A3 λ̄λ Lij f (–), f (1), f (2) 420 . . .mass

Table 1. A comparison of the role of the different tensors in N = 1, 4, 8. Only tensors related to

F-term scalar potentials are included.

supersymmetry breaking, and include all five irreducible tensors of fαMNP . This would be

the analogon of F-term supersymmetry breaking in N = 1, with the additional complica-

tions of supersymmetry breaking in two sectors and the quadratic constraints associated

with non-Abelian gaugings taken into account. No general results exist for other theories

wich such features. Owing to the stringent restrictions due to N = 4, this could be the

simplest context in which all these complications could be taken into account. However,

due to the involved expressions and the possibility to rewrite quantities using quartic rela-

tions one would probably have to resort to an automated algorithm to be able to address

this case. We summarise the role of the different tensors in table 1.

A further step would be include the two irreducible tensors from ξαM as well, which

we would like to argue is analogous to D-term supersymmetry breaking. The reasons for

this interpretation are manifold and include:

• The components giving rise to F- and D-terms are separate irreps of the isometries

of the Kähler manifold, like (3.2).

• The F- and D-term contributions to the scalar potential are indefinite and positive

definite, respectively, like (3.5).

• F-terms give rise to physical sGoldstini, while D-terms also break supersymmetry

and only lead to gauge sGoldstini, like (5.4).

However, the N = 1 result in the case with F- and D-terms is strongly model-dependent.

Hence it might not expect to be able to derive a general result in a scenario including ξ.

In particular, as the D-terms contribute to the stability rather than the instability of the

sGoldstino scalar, it would appear hard to derive no-go results for ξ. Of course, again one

can turn this argument around and use the general expressions to look for gaugings that

give rise to stable De Sitter critical points. Achieving a positive mass for the sGoldstino

directions could be a fruitful guideline when looking for fully stable configurations.

Finally, this story does not stop at N = 4: it is natural to wonder to what extent this

method could be used to make definite statements about the case of maximal supergravity.

In the N = 8 case one has 64 complex sGoldstino directions. In terms of the R-symmetry

group SU(8), these split up in a 36 of symmetric directions, and a 28 of anti-symmetric

directions. As explained earlier, the latter representation coincides with the gauge vectors,

and hence are likely to again correspond to gauge directions. Therefore the symmetric

sGoldstini are the physical ones, and should be used to derive lower bounds. Furthermore,

in the N = 8 case there is only the gravity multiplet. Hence one looses the complications
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due to f (1), f (2) and f (3). The only tensors correspond to the decomposition of the 912 of

E7(7) under the R-symmetry group SU(8) [25]. This gives rise to a complex 36, setting the

supersymmetric AdS scale, and a complex 420, being the order parameter of supersym-

metry breaking, as summarised in table 1. Therefore the most general case corresponds

to the scenario of supersymmetry breaking in the gravity sector, which was very easy to

analyse for the N = 4 case. Of course, the complication one faces at the N = 8 side

is that the scalars in the gravity sector span an E7(7) coset, instead of SL(2). Finally,

the possibility to add D-terms is absent in this case (as is the overall U(1) factor in the

R-symmetry group). Therefore one might hope to be able to derive a fully general no-go

theorem for stable and non-supersymmetric Minkowski and/or De Sitter solutions in this

case. Note that such a result is not possible for Anti-de Sitter; firstly this seems to be the

direction that the interpretation of (2.5) is heading to, and secondly because of the explicit

counterexample of [10].

In addition to metastable supersymmetry breaking in supergravity, the sGoldstino ap-

proach can also be used in globally supersymmetric theories. This was pioneered in [30]

for N = 1 and N = 2. In fact, the present results can be used for the N = 4 globally

supersymmetric case after a limiting procedure [31, 32], in which one eliminates the gravity

multiplet and hence the local nature of supersymmetry. Due to the absence of this mul-

tiplet, the tensors f (+) and f (–) drop out in such a limit and the most general analysis is

that of section 5.3. It would be interesting to pursue this is more detail, and see whether

N = 4 gauge theories have non-supersymmetric and stable vacua.
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A Conventions

A.1 Notation

Our use of indices is as follows:

SO(6, n) : M,N,P, . . . ,

SO(6) : m,n, p, . . . ,

SO(n) : a, b, c, . . . ,

SL(2) : α, β, γ, . . . . (A.1)

Furthermore, we use the following invariant tensors. The SO(6, n) metric is ηMN =

(−1, . . . ,−1,+1, . . . ,+1). The metrics for the SO(6) and SO(n) parts are both plus one,
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and hence we do not distinguish between upper and lower indices. The SO(6) invariant

Levi-Civita symbol is ǫmnpqrs with ǫ123456 = +1. In contrast, SL(2) indices are raised and

lowered with the invariant Levi-Civita tensor ǫαβ with ǫ12 = ǫ12 = +1.

A.2 F -tensors

We define a tensor F (i) (F (i j)) taking a suitable contraction of two equal (different) irre-

ducible representations f (i) inside the structure constants. A comma divides the indices

which sit on the first f from those which sit on the second one, e.g.

F (1)
m, n = fαmpc fα npc , F (1 2)

m, a = fα mpc fαapc . (A.2)

All indices which are not explicitly given are summed over, where the contractions are

performed with δ’s. An important point to notice is that this way of writing is unique.

Due to the fact that f (+) is imaginary self-dual, the tensors F (+) has some special

features. In particular we have that

F (+)

α, β =
1

2
δαβ F

(+) , F (+)
m, n =

1

6
δmn F

(+) . (A.3)

The same properties are shared by the tensor F (–). Furthermore, the cross terms satisfy

F (+ –) = 0 , F (+ –)

[α, β] = 0 , F (+ –)

[m, n] = 0 . (A.4)

A.3 Relation between SU(4) and SO(6)

For every pair of anti-symmetric SU(4) indices [ij], we define

φij =
1

2

6∑

m=1

φm [Gm]ij , φij = −1

2

6∑

m=1

φm [Gm]ij , (A.5)

where the G’s are the ’t Hooft symbols

[G1]ij =








0 i 0 0

−i 0 0 0

0 0 0 −i
0 0 i 0







, [G2]ij =








0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0







,

[G3]ij =








0 0 0 i

0 0 −i 0

0 i 0 0

−i 0 0 0







, [G4]ij =








0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0







,

[G5]ij =








0 0 −1 0

0 0 0 1

1 0 0 0

0 −1 0 0







, [G6]ij =








0 0 0 −1

0 0 −1 0

0 1 0 0

1 0 0 0







.

For every m = 1, . . . , 6 we have

[Gm]ij = −1

2
ǫijkl [Gm]kl = −([Gm]ij)

∗ . (A.6)
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Furthermore, they satisfy the following relations

[Gm]ik [Gn]kj + [Gn]ik [Gm]kj = 2 δj
i δmn ,

[Gm]ik1 [Gn]k1k2 [Gp]k2k3 [Gq]
k3k4 [Gr]k4k5 [Gs]

k5j = −i δj
i ǫmnpqrs . (A.7)

Using these symbols we can construct the Gamma matrices for the eight-dimensional spino-

rial representation of SO(6):

Γm =

[

0 [Gm]ij
[Gm]ij 0

]

. (A.8)

Thanks to the properties of the ’t Hooft symbols these gamma matrices satisfy the standard

Clifford algebra Γ(mΓn) = δmn1l8×8 with metric (+ . . . +).

A.4 SL(2)/SO(2) coset space

Coset representative in triangular gauge. The standard way of parametrizing the

SL(2)/SO(2) scalar coset is using the triangular gauge. In such a gauge we can write down

the coset representative as

V ≡ exp

{

χ

[

0 1

0 0

]}

exp

{

φ

[

−1/2 0

0 1/2

]}

, (A.9)

and this gives the following expression for the vielbein

V =

[

e−φ/2 χeφ/2

0 eφ/2

]

. (A.10)

The metric on the scalar manifold is given by

M = V VT =
1

e−φ

[

e−2φ + χ2 χ

χ 1

]

, (A.11)

and the kinetic Lagrangian is

e−1Lkin sl(2)[χ, φ] = −1

2
tr

{
V−1∂µV P V−1∂µV

}

= −1

4
(e2φ∂µχ∂

µχ+ ∂µφ∂
µφ) . (A.12)

In terms of the field τ = χ+ ie−φ we could write the metric in the following way

M =
1

ℑ{τ}

[

|τ |2 ℜ{τ}
ℜ{τ} 1

]

. (A.13)

and the kinetic Lagrangian is given by

e−1Lkin sl(2)[τ ] = − ∂µτ∂
µτ̄

4ℑ2{τ} . (A.14)
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Coset representative in unitary gauge. Instead of working in triangular gauge in

deriving the scalar masses and the other interesting quantities we have chosen a different

gauge. We take the following generators for SL(2):

[tαβ]γ
η = δη

(α β)γǫ , (A.15)

and consider the following expression for the vielbein

V = exp
{

φαβ [tαβ ]
}

= exp

{

φ11

[

0 0

1 0

]

+ φ22

[

0 −1

0 0

]

+ (φ12 + φ21)

[

−1/2 0

0 1/2

]}

= exp

{
1

2
(φ11 + φ22)

[

0 −1

1 0

]

+
1

2
(φ11 − φ22)

[

0 1

1 0

]

+
1

2
(φ12 + φ21)

[

−1 0

0 1

]}

= exp

{

Θ

[

0 −1

1 0

]

︸ ︷︷ ︸

compact part

+ Ξ

[

0 1

1 0

]

+ Φ

[

−1 0

0 1

]

︸ ︷︷ ︸

non-compact part

}

. (A.16)

Here we have defined

Θ =
1

2
(φ11 + φ22) , Ξ =

1

2
(φ11 − φ22) , Φ =

1

2
(φ12 + φ21) . (A.17)

We now discard the compact part and consider just the non-compact one:

V = exp

{

Ξ

[

0 1

1 0

]

+ Φ

[

−1 0

0 1

]}

=






cosh ∆ − Φ

∆
sinh∆

Ξ

∆
sinh ∆

Ξ

∆
sinh∆ cosh ∆ +

Φ

∆
sinh ∆




 , (A.18)

where ∆ =
√

Ξ2 + Φ2. Starting from the expression of the vielbein we can derive the metric

as in (A.11).

The origin of coset space. In this paper we use some notation directly taken from [26].

A complex vielbein is defined

Vα ≡
[

V↑

V↓

]

, (A.19)

and the metric on the SL(2)/SO(2) sector of the scalar manifold is given by

Mαβ = ℜ{Vα(Vβ)∗} . (A.20)

At the origin of the moduli space, the metric reduces to Mαβ = δαβ . As the form of the

metric is independent on the gauge choice, we can use it to determine the values of the

scalars at the origin. In particular we have

χ = φ = 0 , τ = i , Φ = Ξ = 0 , Vα =

[

−i
1

]

, (A.21)
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while, at linear order in the origin, we have the following relations

χ = φ11 − φ22 , φ = φ12 + φ21 . (A.22)

A.5 SO(6, n)/SO(6) × SO(n) scalar coset

Here again we follow the conventions of [26]. The generators are given by

[tTU ]M
N = δN

[T U ]Mη . (A.23)

The vielbein is given by

V ≡ exp
{
φTU [tTU ]

}
, (A.24)

where the summation within the exponential must be taken only on the non compact

generators (which are associated to the physical degrees of freedom).

From the vielbein we build up the kinetic terms using [26]

e−1Lkin so(6,n) = +
1

16
(∂µMMN )(∂µMMN ) . (A.25)

At lowest order these can be written as

e−1Lkin so(6,n) = −1

2

∑

{am}

∂µφ
{am}∂µφ{am} , (A.26)

where φ{am} = 1
2(φam − φma). Furthermore, in the scalar potential we have used the

definition

MM1···M6 = VM1
m1 · · · VM6

m6ǫm1···m6 . (A.27)

B Anti-symmetric sGoldstini as gauge directions

In this section we prove (5.5) in the general case. Starting from (3.18), (3.19) and (5.4),

clearly the proof reduces to two statements

σαβ
3 Vαβ, bnfγbnq = σαβ

1 Vαβ, bnfγbnq = 0 , (B.1)

Vam, bnfγ bnq = 0 . (B.2)

The q index is paired up with a ’t Hooft symbol [Gq]
ij which tells us we are considering all

six anti-symmetric sGoldstino directions to annihilate the squared mass matrix.

Let’s start from (B.1). The σ1 and the σ3 calculations are completely similar thus we

can consider just

σ3
αβVαβ, bnfγ bnq =

1

2
σ3

αβǫηα (F (1 2)

ηn, βb + F (1 2)

βn, ηb) fγ bnq

=
i

2
σ3

αβσ
2
ηα (F (1 2)

ηn, βb + F (1 2)

βn, ηb) fγ bnq

= −1

2
σ1

ηβ 2fη np1c1fβ bp1c1fγ bnq .

– 22 –



J
H
E
P
0
5
(
2
0
1
1
)
1
0
2

Using the quadratic constraints and the anti-symmetry of f , we can trade the last two

factors for

2fβ bp1c1fγ bnq = 2fβ p2p1c1fγ p2nq − fβ bp1nfγ bc1q + fβ p2p1nfγ p2c1q .

The first two terms in the sum give zero because of the different symmetry properties of

σ1 and f . The last term is of the form

−1

2
σ1

ηβ fη np1c1fβ p2p1nfγ p2c1q .

Here we need again the quadratic constraints and the anti-symmetry properties of f to get

−1

2
σ1

ηβ fη np1p3fβ p2p1nfγ p2p3q .

Again this term gives zero because of the different symmetry properties of σ1 and f . Thus

we have proven (5.5) for the off diagonal terms of the squared mass matrix.

Let’s now turn to (B.2). The expression we obtain has terms which do contain ǫ tensors

explicitly and other ones which do not. We start manipulating the former ones

−1

2
ǫαβǫmnp1p2p3p4fαap1p2fβ bp3p4fγ bnq .

Using the quadratic constraints (3.6) and the anti-symmetry of the ǫ tensor we have

fβ bp3p4fγ bnq = fβ rp3p4fγ rnq. After some manipulations, exploiting the symmetry prop-

erties of f (±), this terms can be written as

−fαap1p2(f
(+)
α rp1p2

− f (–)
α rp1p2

)fγ mqr − 2 fα ap1p2(f
(+)
α mp1p3

− f (–)
α mp1p3

)fγ qp3p2 . (B.3)

We now consider the remaining terms. They are given by

− F (+)
m, n fγ anq + F (–)

m, n fγ anq + F (1)
m, n fγ anq + F (2)

a, b fγ bmq − F (1)

an, bm fγ bnq − F (2)

an, bm fγ bnq

− F (+ 2)

mn, ab fγ bnq + 3F (– 2)

mn, ab fγ bnq + F (1 3)

mn, ab fγ bnq . (B.4)

Making heavy use of the quadratic constraints it’s possible to manipulate the third and

fourth term in the first line into

F (1)
m, n fγ anq = − F (1 2)

m, b fγ aqb + F (1)

an, bm fγ bnq

− F (1 2)
mp1, ap2

fγp1p2q + F (1 2)
mc1, ac2 fγ c1c2q + F (1 3)

mn, ab fγ bnq ,

F (2)

a, b fγ bmq = + fαap1p2(f
(+)
α rp1p2

− f (–)
α rp1p2

)fγ mqr + F (2)

an, bm fγ bnq

− F (+ 2)

mn, ab fγ bnq − F (– 2)

mn ab fγ bnq + F (1 2)
mp1, ap2

fγp1p2q − F (1 2)
mc1, ac2 fγ c1c2q .

Substituting these relations in (B.4) and including also the term proportional to the ǫ

tensor (B.3), we obtain

− F (+)
m, n fγ anq + F (–)

m, n fγ anq − 2F (+ 2)

mn, ab fγ bnq + 2F (– 2)

mn, ab fγ bnq

+ 2 fα ap1p2(f
(+)
α mp1p3

− f (–)
αmp1p3

)fγ qp2p3 − F (1 2)

m, b fγ aqb .
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Now we use the stationarity condition (3.13) and the quadratic constraints to manipulate

the last term in the sum

−F (1 2)

m, b fγ aqb = −(f (+)
αp1p2m − f (–)

α p1p2m) fα p1p2b fγ aqb

= −(f (+)
αp1p2m − f (–)

α p1p2m) (2fα ap2bfγ p1qb − 2fα ap2p3fγ p1qp3 + fα p1p2p3fγ aqp3) .

Substituting back and using (A.4) we get the desired zero.
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