
J
H
E
P
0
5
(
2
0
1
1
)
0
9
0

Published for SISSA by Springer

Received: February 17, 2011

Accepted: May 9, 2011

Published: May 19, 2011

Chiral matter wavefunctions in warped

compactifications

Fernando Marchesano,a Paul McGuirkb and Gary Shiub

aInstituto de F́ısica Teórica UAM/CSIC,
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1 Introduction

Although string theory is the leading candidate for a quantum theory of gravity, finding

realistic models in a string framework is a difficult task. Among the challenges faced by such

constructions, as well as by any candidate ultraviolet completion of the Standard Model, is

an explanation of the electroweak hierarchy. A virtue of string models is that they typically

contain extra dimensions, the existence of which potentially allows the hierarchy problem
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to be translated into a question of geometry. For example, if the degrees of freedom in

the visible sector are realized by open strings localized at D-branes and their intersections,

then the hierarchy can in principle result from extra dimensions that are large with respect

to the string length [1–3] (see also [4, 5]). In practice, however, it remains challenging to

find compactifications with stabilized moduli that admit such a low string scale and yet

are phenomenologically viable (see for example [6–8]).

Another related approach to translating the hierarchy problem into a geometrical prob-

lem is warping. In type II string theories and F-theory, D-branes and other extended objects

are necessary for the cancellation of tadpoles and providing the open strings required to pro-

duce realistic models. The gravitational influence of these ingredients results in a spacetime

that is warped in the sense that it cannot be described as a direct product. Additionally,

stabilization of the internal geometry requires the addition of fluxes and the back-reaction

of such fluxes also leads to warping. If the warping is strong, then the gravitational redshift

provides a mechanism for the exponential suppression of the electroweak scale. Although

this method of generating the hierarchy was first introduced from a 5d point of view [9],

one may also implement this scheme in the context of string theory [10–15] (see [16–18] for

reviews). In addition to providing phenomenologically attractive constructs from the point

of view of particle physics, warped geometries have played an important role in string cos-

mology by providing a framework to describe either inflation [19] (for reviews see [20–25])

or late time acceleration [26]. Finally, warped geometries are also key to the understanding

of strongly-coupled gauge theories by way of the gauge/gravity correspondence [27–29].

Due to the many applications of warped compactifications in string theory, it is of

clear value to understand their dynamics. Although in principle such dynamics follow

from worldsheet methods, warped compactification of type II theories necessarily include

Ramond-Ramond fluxes and, except in special cases [30, 31], it is challenging to quan-

tize string theory in such backgrounds. An alternative method to describe the low energy

dynamics is to consider the effective action resulting from a dimensional reduction of the su-

pergravity description of these geometries. However, even when considering only the fields

in the 4d supergravity multiplet, deducing such an action has proven to be a subtle prob-

lem [32–39]. The problem becomes even more involved if one considers compactifications

with a realistic gauge sector, as such sectors are localized on the worldvolumes of D-branes,

the light degrees of freedom of which are also be affected by the presence of warping [40, 41].

An understanding of the warped effective field theory of these open string modes is thus a

crucial ingredient in any detailed phenomenological study of warped compactifications.

In [40], we considered warped type IIB compactifications and studied the wavefunctions

for open strings beginning and ending on the same D7-brane. Such a D7-brane fills the

large, non-compact four dimensions and wraps a 4-cycle of the internal geometry. Since the

low-energy effective action follows from dimensional reduction to 4d, almost any quantity

arises as an overlapping integral of warped wavefunctions, which are in turn computed

by solving a warped Dirac or Laplace equation. From our analysis in [40], we found that

the wavefunctions for the bosonic degrees of freedom remain unmodified by the presence of

warping, while the wavefunctions associated with the fermions are modified in a way that is

consistent with supersymmetry. In particular, the effect of warping on the fermionic degrees

– 2 –



J
H
E
P
0
5
(
2
0
1
1
)
0
9
0

of freedom depends on the chirality of such fermions in the internal D7-brane dimensions.

The behavior of the wavefunctions and 4d effective action can then be deduced by the

8d Dirac-Born-Infeld and Chern-Simons action describing the bosonic degrees of freedom,

together with the 8d action of [42] describing the fermionic degrees of freedom.

In this work, we extend our analysis in [40] by analyzing the wavefunctions for open

strings stretching between intersecting D7-branes in warped compactifications. Such strings

generically give rise to chiral bifundamental fields and are thus of obvious phenomenological

interest. The strategy that can be followed to describe such an intersection is to consider

the non-Abelian generalization of the D7-brane action describing the low-energy dynamics

in the limit where N branes are coincident. The non-trivial intersection can then be

described by a varying background profile for the transverse deformations field Φ of the

non-Abelian D7-brane theory, in such a way that the initial gauge group is broken as

U (N) → U(Na)×U(Nb) by the presence of Φ. Since the energy of a string is proportional

to its length, one expects that the massless strings stretching between the intersecting D7-

branes are localized at the intersection locus. Indeed, in the unwarped case it is known

that the corresponding wavefunctions are exponentially peaked there [43–45].

Although an intersection of D7-branes is sufficient to obtain bifundamental fields, this

does not automatically yield a 4d chiral spectrum. In order to obtain 4d chirality one must

either place the intersection at a singularity or to consider intersections that support a

non-trivial worldvolume flux F . In the latter, more generic case, the Laplace and Dirac

equations are modified by the presence of a non-vanishing vector potential A, requiring that

the wavefunctions at the intersection be modified as well. For instance, if the intersection

is a flat two-torus, one can show that the unwarped wavefunctions are constant in the

unmagnetized case, while they are described by Riemann ϑ-functions as soon as F 6= 0 [46].

For the adjoint fields studied in [40], the warping modification of the open strings

wavefunctions could be simply expressed in terms of the warp factor, as these fields have a

well-defined chirality in the internal D7-brane dimensions. As the massless fields at the in-

tersection do not have a well-defined internal chirality, the warped wavefunctions no longer

take such a simple expression. However, in the weak warping case (i.e., a slowly varying

warp factor), the effect of warping can be treated as a perturbation. The wavefunction

can then be expanded in terms of the massive modes of the unwarped geometry, and the

coefficients characterizing the expansion can be determined using perturbation theory.

Our paper is organized as follows. In section 2, we consider some generalities of

intersecting 7-branes in warped compactifications. Drawing on [47] and [48], we propose

a non-Abelian generalization of the superpotential and D-terms of [49, 50] which allow us

to extend the supersymmetry conditions of [51–53] to intersecting D7-branes in warped

backgrounds. In section 3, we consider the fluctuations about unmagnetized intersections,

as a warm-up for the more involved, magnetized case. The equations of motion for these

fluctuations follow again by considering the F - and D-flatness conditions as well as a

non-Abelian generalization of the fermionic action of [42]. The massive spectrum in the

unwarped case is determined in subsection 3.2 and the expansion of the warped zero mode in

terms of the unwarped spectrum is presented in subsection 3.3 with some simple examples

worked out in subsection 3.4. We then extend our analysis to the magnetized case in
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section 4. These results lead us in section 5, to address some issues regarding the 4d warped

effective field theory for the chiral modes at the intersection. We draw our conclusions in

section 6, while our conventions, some technical details, and a discussion on corrections to

the D-flatness conditions are left for the appendices.

The effective action for bifundamental fields arising from intersecting D-branes have

been considered in many other places in the literature, though the effects of warping, which

is our focus here, has not yet been widely explored. Such modes are often considered via the

worldsheet as reviewed in [17, 54]. Field theory treatments include [44, 45] in the context

of brane recombination and [46] for the purpose of calculating Yukawa couplings. The

intersections of general 7-branes were considered in [55–60] (see also [61]), though again in

the absence of warping. Finally, in addition to the consideration of warped effective actions

referenced above, background fluxes which give rise to warping can have additional influence

on the wavefunctions; such effects were considered in [62, 63] for the open string sector.

2 Intersecting D7s in warped compactifications

Let us consider type IIB superstring on the warped product of R
1,3 ×ω X6, where X6 a

compact six-dimensional manifold. That is, we consider the Einstein frame 10d background

metric

ds210 = e2aηµνdx
µdxν + e−2ads̃26, ds̃26 = g̃mndymdyn, (2.1)

where the warp factor e−4a varies over X6. Such a geometry is supported by the RR 5-form

field strength [10, 15]

F5 =
(

1 + ∗10

)

F ext
5 , F int

5 = ∗̃6de
−4a (2.2)

where dvolR1,3 is the volume element of R
1,3 and ∗10 is the Hodge-∗ built from the warped

metric (2.1) and ∗̃6 is the Hodge-∗ built from g̃. Such 5-form flux is sourced by objects with

finite D3-brane charge such as D3-branes, O3-planes, magnetized 7-branes and 3-form flux

G3. Focusing on supersymmetric warped compactifications requires that G3 is a primitive

(2, 1)-form, g̃ is Kähler and the axio-dilaton τ is a holomorphic function on X6 [64–66], so

that the elliptic fibration over X6 specified by τ is a Calabi-Yau four-fold. The divisors

S ⊂ X6 on which the fiber degenerates correspond to the location of 7-branes with the

corresponding gauge group GS [67–69].

Our primary interest in this paper will be on the intersection of two of these divisors

where the symmetry further enhances. Localized along this matter curve are additional

degrees of freedom that are charged under GS ×GS′ and generalize the well-known bifun-

damental fields appearing in the low energy spectrum of intersecting D7-branes [43, 70].

For a single stack of (p, q) 7-branes, the effective action is given by an SL
(

2,Z
)

rotation of

the usual Dirac-Born-Infeld and Chern-Simons actions, as such branes are simply Dirichlet

branes for (p, q)-strings. An intersection of two (p, q) 7-branes can then be described by

Higgsing this low energy theory, just like the intersection of two D7-branes. Finally, the

intersection of a stack of (p, q) with (p′, q′) 7-branes with (p, q) 6= (p′, q′) can be treated,

following [55], by means of a topologically twisted YM 8d action with an exceptional gauge

group, also Higgsed down to describe the massless modes on a matter curve.
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While the latter strategy allows to describe the fields as the 7-brane intersection in

terms of wavefunctions, it is a priori not obvious how to include the effects of warping in

this topologically twisted 8d action. In this sense, it seems more reliable to consider an

intersection of two D7-branes and make use of the non-Abelian DBI and CS actions, as

well as their fermionic counterpart, in order to derive the warped equations of motion for

bosonic and fermionic degrees of freedom. Such computations (performed in appendix B

and next section, respectively), will however not be our main strategy to derive the warped

equations of motion. Instead, we will take a different approach based on the supersymme-

try conditions for a stack of D7-branes in a general type IIB background, conditions which

we will derive in the remainder of this section.

As we will see, this last approach allows to consider general closed string backgrounds in

a rather simple way. Indeed, while we turn off background 3-form fluxes in our computation,

we allow for a varying dilaton and hence a non-Calabi-Yau geometry for the internal space

X6. This, together with the fact that the BPS equations for a D7-brane and a (p, q) 7-brane

are identical, leads us to believe that our warped equations of motion apply to the more

general (p, q)-(p′, q′) 7-brane intersection that are of main interest in local F-theory GUT

models. It would be interesting to check from first principles if this is indeed the case.

In order to derive the non-Abelian BPS equations, let us first consider a single D7-

brane wrapping a 4-cycle S4 ⊂ X6. The massless open string excitations of this D-brane

consist of a gauge field A living on the 8d worldvolume and its transverse fluctuations of

its embedding Φi = λ−1Xi, where λ = 2πα′. The D7 will be supersymmetric if [51–53]

1. S4 is holomorphically embedded into X6, and

2. the worldvolume field strength F2 = dA satisfies the self-duality condition

∗4 F2 = F2, (2.3)

where ∗4 is the Hodge-∗ on S4 built from the induced metric.

These conditions follow from consideration of an effective potential resulting from the

superpotential and D-term [49, 50].

W =

∫

Σ5

e3α(Im τ)−1/2 P
[

Ψ2 ∧ eB2
]

∧ eλF2 , (2.4a)

D =

∫

S4

e2α P
[

Im Ψ1 ∧ eB2
]

∧ eλF2 , (2.4b)

in which B2 is the NS-NS 2-form, τ is the axio-dilaton, P indicates the pullback to S4, and

Σ5 is a 5-chain whose boundaries are S4 and its deformation. Finally, α is related to the

Einstein frame warp factor a through

α = a+
1

4
log (Im τ) . (2.5)

As it will turn out, the equations of motion will be written naturally in terms of α, and so

for simplicity we will often refer to e−4α as the warp factor. The pure spinors Ψ1 and Ψ2 are
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given in terms of the warped Kähler form J = e−2αJX6 and the (unwarped) fundamental

3-form of X6 by Ψ1 = eiJ and Ψ2 = e−3αΩX6. Demanding F -flatness implies that S4 is

holomorphic and that F2 is (1, 1) while demanding D-flatness to leading order in α′ implies

that F2 is a primitive in S4; together, these two conditions on F2 imply that it is self-dual.

Interestingly, the expressions (2.4) for W and D allow for a simple generalization to the

non-Abelian case, following some observations made in [47].1 To this end, we locally write2

e3α (Im τ)−1/2 Ψ2 ∧ eB2 = dγ. (2.6)

The superpotential and D-term can then be expressed as

W =

∫

S4

P
[

γ
]

∧ eλF2 , D =

∫

S4

P
[

Im η
]

∧ eλF2 , (2.7)

where

η = e2α Ψ1 ∧ eB2 . (2.8)

Now, as observed in appendix A of [47], these expressions take the same form as the

Chern-Simons action for a D-brane

SCS
Dp =

∫

W
P
[

C ∧ eB2
]

∧ eλF2 , (2.9)

where C is the formal sum of R-R potentials and W is the worldvolume of the brane.

Following [48], the non-Abelian generalization of (2.9) is then given by

SCS
Dp =

∫

W
Str

{

P
[

eiλιΦιΦC ∧ eB2
]

∧ eλF2

}

, (2.10)

where, as detailed in appendix B, Str indicates a symmetrized trace and ιΦ stands for the

interior product. The transverse fluctuations are then promoted to adjoint-valued scalars

Φ and the field strength to F2 =
(

d − iA∧
)

A. Finally, the non-Abelian pullback replaces

derivatives with gauge covariant derivatives

P [v]α = vα + λviDαΦi, (2.11)

where Dα = ∂α − i [Aα, ·].
Making use of the fact that the pure spinors Ψ1 and Ψ2 transform under T-duality

in a way that is analogous to C, one can then deduce that the non-Abelian superpotential

and D-term are given by [47]

W =

∫

S4

Str

{

P
[

eiλιΦιΦγ
]

∧ eλF2

}

, (2.12a)

and

D =

∫

S4

S

{

P
[

eiλιΦιΦIm η
]

∧ eλF2

}

, (2.12b)

1We would like to thank L. Martucci for discussions on this point.
2In general, this will be possible whenever (d + H∧)

“

e3α (Im τ )−1/2 Ψ2

”

= 0, which in the language

of [71] is the BPS condition for domain walls. Hence, in the N = 0 vacua of [15] and the DWSB vacua

discussed in [71], this analysis should be reconsidered.
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where in the latter S indicates the symmetrization prescription of [48] without taking the

trace.

In order to extract the F-term and D-term conditions from (2.12) it is useful to con-

sider a neighborhood of the internal space X6 around S4 such that (Im τ)−1/2ΩX6 =

dz1 ∧ dz2 ∧ dz3 with

dzm = dym + τmdym+3, (2.13)

and the warped Kähler form is given by

J = e−2α iα
′

2

3
∑

m=1

(2πRm)2 dzm ∧ dz̄m̄. (2.14)

Moreover, let us consider a local coordinate system such that the complex 4-cycle S4 is

parameterized by (z1, z2), as is usual in the literature of local F-theory models. Then, in

absence of background 3-form fluxes we can take γ = z3dz1 ∧ dz2, so that γ is globally

well-defined on S4 and satisfies ιΦγ = 0. The resulting superpotential takes the form

W = −λ
∫

S4

d4z Str

{

ΦF1̄2̄

}

, (2.15)

where Φ is the complexified transverse fluctuation. Demanding F -flatness in the Φ direction

immediately gives F1̄2̄ = 0 implying

F (0,2) = F (2,0) = 0. (2.16)

Likewise, variation with respect to A gives

Dm̄Φ = 0. (2.17)

Both of these F -flatness conditions are what one would expect from their Abelian coun-

terparts and, while derived in the type IIB framework, they have a simple generalization

to F-theory.

Consider now the D-flatness condition D = 0. First we note that since the D7-brane

is a real codimension 2 object, ι3Φ = 0 and so

eiλιΦιΦ = 1 + iλιΦιΦ. (2.18)

It follows then that the non-Abelian D-term reads

D =

∫

S4

S

{

e2α

(

λP
[

J
]

∧ F2 −
iλ

6
P
[

ιΦιΦJ
3
]

+
iλ3

2
P
[

ιΦιΦJ
]

∧ F2 ∧ F2

)}

(2.19)

with α a modified warp factor defined as in (2.14).

In the next section and in appendix B we will compare the equations of motion that

result from the above F -flatness and D-flatness conditions to those derived from a DBI+CS

action and its fermionic counterpart valid to leading order in α′. For such comparison we

need to truncate D at order λ

D = λ

∫

S4

S

{

e2α

(

P
[

J
]

∧ F2 −
i

6
P
[

ιΦιΦJ
3
]

)}

. (2.20)
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Figure 1. Local view of the intersection of D7-branes described by (2.27).

Then, defining the warped fundamental form on S4 as

J = J |S4= e−2α iα
′

2

2
∑

m=1

(2πRm)2 dzm ∧ dz̄m̄, (2.21)

we have that P [J ] = J + O
(

λ2
)

. Finally, it is also straightforward to show that

1

6
ιΦιΦJ

3 = e−2α iλ

4

(

2πR2
3

) [

Φ, Φ̄
]

J2, (2.22)

and so

D = λ

∫

S4

S

{

e2α
J ∧ F2 +

λ

4

(

2πR2
3

)

J
2
[

Φ, Φ̄
]

}

. (2.23)

The symmetrization in this case is trivial and so the D-flatness condition is

e2αJ ∧ F2 +
λ

4

(

2πR2
3

)

J2
[

Φ, Φ̄
]

= 0, (2.24)

which is the expression we will work with from now on. The effect of higher α′ terms can

be included as discussed in appendix C. Note that the second term in (2.24) is not to be

interpreted as an α′-correction to the primitivity condition but is instead a modification

resulting from taking into account the non-Abelian effects; the factor of λ appears because

in (2.14), we have taken R3 and zn to be dimensionless. When going from (2.23) to (2.24),

we have ignored the non-Abelian nature of the warping α. That is, by the general prescrip-

tion of non-Abelian pull-backs on S4, α and other closed-string fields should be interpreted

as a functional of the non-Abelian field Φ. As we discuss below, for the case of intersecting

D7-branes, treating α as proportional to the identity corresponds to taking the limit of

small intersecting angles, and the case of arbitrary angles amounts to a redefinition of α.

Let us now consider the intersection of two stacks of D7-branes. Although our expres-

sions for the superpotential and D-term are in principle defined as an integral over a single

4-cycle S4, we can consider D7-branes wrapping different cycles by giving a non-constant

– 8 –
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field U (Na) U (Nb)

φa adj 1

φb 1 adj

φ− � �

φ+
� �

Table 1. Charges for the fields in (2.26).

vev to the transverse scalar Φ, such that the initial worldvolume gauge theory is Higgsed

as U (N) → U(Na) × U(Nb) by the presence of 〈Φ〉. This vev can be taken to be

〈Φ〉 = ∆ =

(

∆aINa

∆bINb

)

, (2.25)

where ∆a,b are holomorphic functions of z1, z2, so that the F-flatness condition (2.17) is

satisfied at the level of the background. Note that this choice satisfies
[

∆, ∆̄
]

= 0, so

setting F2 = 0 is consistent with supersymmetry. Geometrically, (2.25) describes a stack

of Na D7-branes wrapping the 4-cycle specified by z3 = λ∆a and a stack of Nb D7-branes

wrapping the 4-cycle z3 = λ∆b, thus intersecting at the complex curve Σ = ∆a ∩∆b ⊂ S4.

Given this background for Φ, the spectrum of open string modes arises from fluctua-

tions around it such as

δΦ =

(

φa φ−

φ+ φb

)

. (2.26)

The block diagonal fluctuations φa,b correspond to strings beginning and ending on the

same stack, while the φ∓ fluctuations correspond to strings stretching from one stack to

the other, giving the charges shown in table 1. If ∆a = ∆b has no solution (e.g., if ∆a−∆b

is constant) then all the modes arising from φ∓ are necessarily massive. However, if the

branes do intersect, then φ∓ will (partially) describe the massless bifundamental fields

localized at the intersection. Because the string tension is proportional to its length, for

intersecting D7-branes the massless modes of φ∓ should be localized around the points of

intersection. Therefore, to capture the dynamics of these fields it suffices to approximate

∆a,b by linear functions (see figure 1)

∆ =

(

M
(a)
3 λ−1

INaz
2

M
(b)
3 λ−1

INb
z2

)

. (2.27)

so that the intersection curve is given by z2 = z3 = 0 and the intersection is described by

an SU (2) rotation on the z2-z3 plane, in agreement with the results of [72]. In the following

we will take M
(a)
3 > M

(b)
3 though there are no significant changes if we flip the inequality.

As mentioned above, the non-Abelian D-flatness conditions are derived by essentially

neglecting the dependence of bulk fields on Φ. That is, in general a bulk field Ψ should be

– 9 –
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interpreted as a functional of the adjoint-valued transverse fluctuations [48]

Ψ
[

Φ
]

=

∞
∑

n=0

λnΦi1 · · ·ΦinΨi1...in . (2.28)

While higher powers of Φ contain higher powers of α′, 〈Φ〉 = ∆ contains a factor of λ−1

via (2.27) and so, schematically, at the level of the background we have

Ψ ∼
∞
∑

n=0

(

M
(a,b)
3

)n
Ψn

(

z2, z̄2
)

. (2.29)

Therefore, neglecting higher terms in the expansion (2.28) is reliable in the limit where

M
(a,b)
3 (that is, the intersection angles), are small. Nevertheless, as shown in appendix C,

taking into account the full non-Abelian pull-back (2.28) does not modify the form of the

non-Abelian D-term equation, and all the corrections can be absorbed in a redefinition of

the warping α.

Finally, in order to have a 4d chiral spectrum, the intersection curve must support a

non-vanishing magnetic flux [73–82]. As [∆, ∆̄] = 0 the F -term (2.16) and the truncated

D-term (2.24) conditions require that F2 is self-dual, just as in the Abelian case. Let us for

simplicity choose a magnetic flux that does not further break down the gauge group, such as

〈F2〉 =

2
∑

m=1

πi

Im τm

(

M
(a)
m INa

M
(b)
m INb

)

dzm ∧ dz̄m̄. (2.30)

Imposing self-duality then amounts to satisfying the condition

M
(a,b)
1

V1
+
M

(a,b)
2

V2
= 0, Vm = (2πRm)2 Im τm. (2.31)

3 Unmagnetized intersections

Given the D7-brane supersymmetry conditions derived in the previous section, the equa-

tions of motion for the open string zero modes can be obtained by expanding these BPS

conditions to first order in fluctuations. In the following, we will apply this observation

to analyze the zero modes at the intersection of two unmagnetized stacks of D7-branes.

Notice that such intersection, unless placed at a singularity, will yield a non-chiral 4d spec-

trum upon dimensional reduction. Nevertheless, this simple case already demonstrates the

non-trivial effect that warping has on open strings at D7-brane intersections, and will serve

as a useful warmup for the more general magnetized case.

3.1 Equations of motion

Open strings localized at the intersection correspond to bifundamental fluctuations around

the vev (2.27) and 〈F2〉 = 0. Since this open string background is supersymmetric, the

zero mode fluctuations should also satisfy the BPS conditions (2.16), (2.17), and (2.24).

Let us write these fluctuations as

Am =
√

2πRmam, Φ = ∆ +
2√

2πR3λ
φ, (3.1)
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where ∆ is given in (2.27). We are interested only in the bifundamental fluctuations so we

take

am =

(

0
(

φ+
m

)†
(

φ−m
)†

0

)

, φ =

(

0 φ−3
φ+

3 0

)

, (3.2)

so that we then have

ām =

(

0 φ−m
φ+

m 0

)

, φ̄ =

(

0
(

φ+
3

)†
(

φ−3
)†

0

)

. (3.3)

The labeling of the fluctuations and prefactors are introduced for latter convenience, as

upon dimensional reduction ām̄ and φ correspond to the bosonic d.o.f. of the left-handed

4d chiral multiplets, and am and φ̄ to its CPT conjugates.3

Plugging (3.1) back into the BPS conditions of the previous section and expanding

them up to linear order in fluctuations, we obtain the equations of motion for ām̄ and φ.

In particular, the F-term condition F (0,2) = 0 reads

F1̄2̄ = 2πR1R2

(

0 ∂̂∗1φ
−
2 − ∂̂∗2φ

−
1

∂̂∗1φ
+
2 − ∂̂∗2φ

+
1 0

)

= 0, (3.4)

where we have defined

∂̂m =
1√

2πRm

∂m. (3.5)

The F-term condition Dm̄Φ = 0 gives

Dm̄Φ =
2√

2πR3λ
∂m̄φ− i

√
2πRm

[

ām,∆
]

=
2Rm

R3λ

(

0 ∂̂∗mφ
−
3 + i

2

√
2πR32I

(ab)
3 z2φ−m

∂̂∗mφ
+
3 − i

2

√
2πR3I

(ab)
3 z2φ+

m 0

)

= 0, (3.6)

where we have defined

I
(ab)
3 = M

(a)
3 −M

(b)
3 . (3.7)

Finally, for the D-flatness condition (2.24), we use the fact that

J ∧ F2 = e−2α iα
′

2

{

(

2πR1

)2
F22̄ +

(

2πR2

)2
F11̄

}

d4z (3.8)

so that in terms of fluctuations around 〈F2〉 = 0, (2.24) becomes

0 =
iα′

2

{ 2
∑

m=1

(

0 ∂̂mφ
−
m − ∂̂∗m

(

φ+
m

)†

∂̂mφ
+
m − ∂̂∗m

(

φ−m
)†

0

)

− e−4α i

2

√
2πR3I

(ab)
3

(

0 z̄2̄φ−3 − z2
(

φ+
3

)†

−z̄2̄φ+
3 + z2

(

φ−3
)†

0

)

}

. (3.9)

3Indeed, note also that upon T-duality on the transverse coordinate z3, mapping intersecting D7-branes

to magnetized D9-branes, (Ā1̄, Ā2̄, Φ) is mapped to (Ā1̄, Ā2̄, Ā3̄), from where left-handed chiral fields arise.
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To sum up, the conditions for F and D-flatness on the D7-brane bosonic fluctuations are

0 =
(

D̂±
1

)†
φ∓2 −

(

D̂±
2

)†
φ∓1 , (3.10a)

0 =
(

D̂±
2

)†
φ∓3 −

(

D̂±
3

)†
φ∓2 , (3.10b)

0 =
(

D̂±
3

)†
φ∓1 −

(

D̂±
1

)†
φ∓3 , (3.10c)

0 =D̂∓
1 φ

∓
1 + D̂∓

2 φ
∓
2 + e−4αD̂∓

3 φ
∓
3 , (3.10d)

where we have defined the operators4

D̂∓
1,2 = ∂̂1,2, D̂∓

3 = ∓ i

2

√
2πR3I

(ab)
3 z̄2̄. (3.11)

This notation is motivated by the T-dual picture of magnetized D9-branes, in which the in-

tersection angle between D7-branes becomes a magnetic flux (see [83] for more details). In

the D9-brane picture, D̂∓
m are nothing but the set of normalized covariant derivatives that

appear in the (unwarped) Laplace and Dirac operators after assuming that the wavefunc-

tions do not depend on the (z3, z̄3̄) coordinates and so ∂3 = 0. As we show in appendix B,

the eom resulting from the DBI and CS actions are satisfied whenever eqs.(3.10) are satis-

fied.

In the absence of warping, (3.10) are straightforward to solve. Indeed, the F -term

equations (3.10a)-(3.10c) are solved by taking the ansatz

φ∓m =
(

D̂±
m

)†
f∓ (3.12)

for some arbitrary functions f±. Then for e−4α = 1, the D-term equation (3.10d) becomes

{

D̂∓
1

(

D̂±
1

)†
+ D̂∓

2

(

D̂±
2

)†
+ D̂∓

3

(

D̂±
3

)†
}

f∓ = 0. (3.13)

As (3.13) only depends on the intersection coordinates (z1, z̄1̄) through derivatives, one

expects the zero modes to be independent of them. In particular, if we take the ansatz

f∓ =
1

z2
g∓
(∣

∣z2
∣

∣

2)
, (3.14)

we find the solution to (3.13) to be [43–45]

g∓ = e−κ|z2|2 , κ =
1

2
2πR2R3I

(ab)
3 , (3.15)

giving

φ∓1 = 0, φ∓2 = − κ√
2πR2

σ∓ (xµ) e−κ|z2|2, φ∓3 = ∓ iκ√
2πR2

σ∓ (xµ) e−κ|z2|2 , (3.16)

where we have introduced the function σ∓ that depends on the external coordinates xµ

and carries (suppressed) bifundamental gauge indices. Note that as a consequence of the

4In the magnetized case of section 4, D̂∓
1,2 will be modified to take into account the D7 worldvolume

flux.
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ansatz (3.12) the same function σ∓ appears in both φ∓2 and φ∓3 . We then conclude that

at the intersection there are only two independent complex scalar fields, one transform-

ing under a bifundamental representation of U (Na) × U(Nb) and the other transforming

under the conjugate representation. The other linearly independent solution to (3.13) is

g∓ = exp
(

κ
∣

∣z2
∣

∣

2
)

which is not peaked at the intersection and so is discarded when we

consider normalizable modes. Finally, note that the space transverse to the matter curve

is in general compact, and so one may wonder wether the wavefunctions ought to sat-

isfy some periodicity conditions; however, since we expect the wavefunctions to be highly

peaked around the intersection (as the above Gaussian solutions show) such constraints

can be safely neglected in our analysis.

Let us now consider the case of non-trivial warping. As one would expect from holo-

morphicity of the superpotential, the F -term equations remain unmodified, so one may

again consider the ansatz (3.12). Plugging it into the warped D-term equation gives

{

D̂∓
1

(

D̂±
1

)†
+ D̂∓

2

(

D̂±
2

)†
+ e−4αD̂∓

3

(

D̂±
3

)†
}

f∓ = 0 (3.17)

whose only warping dependence arises from the factor e−4α. As we will now see, the same

kind of equation arises when one considers fermionic wavefunctions in a warped background.

Fermionic equations of motion. A useful check of the equations of motion (3.10) is

to consider the equations for the fermionic degrees of freedom. In the Abelian case, the

fermionic action for a single D7-brane on S4 is [42, 84, 85]

Sf
D7 =

1

2g2
8

∫

W
d8x

√

g̃ θ̄

{

e−a/∂R1,3 + ea/∂S4
+ ea

1

2
/∂S4

a
(

1 + 2Γextra

)

}

θ, (3.18)

where θ is a 10d Majorana-Weyl spinor5 and the 8d Yang-Mills coupling is related to the

D7-brane tension by g−2
8 = τD7λ

2. The warp factor has explicitly been factored out from

the Γ-matrices so that

/∂R1,3 = Γ̃µ∂µ, /∂S4
= Γ̃b∂b, (3.19)

where Γ̃M are unwarped Γ-matrices, µ runs over the external dimensions and b over S4.
6

Note that in writing (3.18), we have assumed that the dilaton is constant. The effect of

the 5-form flux is encoded in Γextra, the chirality matrix on S4 [40]. As elaborated upon in

appendix A, the internal spinors can be written as ηǫ1ǫ2ǫ3 where ǫm = ± and if ǫm = + (−)

then ηǫ1ǫ2ǫ3 is annihilated by Γm (Γm̄). Then

Γextraηǫ1ǫ2ǫ3 = ǫ1ǫ2ηǫ1ǫ2ǫ3. (3.20)

As follows from our previous discussion, in order to describe the non-trivial intersection

we need a non-Abelian generalization of (3.18). For general backgrounds, the fermionic

5Our conventions are spelled out in appendix A. Note that the spinors differ by a multiplicative factor

of λ compared to [42].
6If the 4-cycle S4 has a non-flat metric then, globally, we need to replace ∂b → ∇b, with ∇b the pull-

back of the ambient space covariant derivative, see [40]. However, when analyzing wavefunctions in a local

coordinate system such that (2.21) holds, one may locally work in flat coordinates as in (3.19).
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analogue of the Myers action [48] is not known. However, to leading order in α′, the

non-Abelian version of (3.18) can be obtained by promoting derivatives to gauge-covariant

derivatives and including the Yukawa coupling that appears in the Super Yang-Mills action,

Sf
D7 =

1

2g2
8

∫

W
d8x

√

g̃ tr

{

θ̄

[

e−a /DR1,3 + ea /DS4
+ ea

1

2
/∂S4

a
(

1+2Γextra

)

]

θ− iθ̄e−aΓi

[

Φi, θ
]

}

,

(3.21)

where i, j run over the coordinates that are transverse to the brane. One can explicitly

check [86] that, to leading order in α′, this is the supersymmetrization of the bosonic action.

As was done in considering the BPS equations, in writing (3.21), we have neglected the

non-Abelian nature of the bulk field a and have evaluated it at Φ = 0.

It is useful to define

D̂∓
m = D̂∓

m +
1

2
∂̂ma

(

1 + 2Γextra

)

, (3.22)

where D̂∓
m is defined in the unmagnetized case in (3.11) and we have used the fact that,

since this is defined on S4, ∂3 acting on anything vanishes so that D̂∓
3 = D̂∓

3 . Separating

terms based on internal chirality, the equation of motion resulting from (3.21) to linear

order in fluctuations gives

0 =i/∂R3,1

(

ψ±
0

)†
(

0

σ2ξ
†

)

−
√

2

πα′ e
2a

(

ξ

0

)

(

D̂∓
1 ψ

∓
1 + D̂∓

2 ψ
∓
2 + e−2aD̂∓

3 ψ
∓
3

)

, (3.23a)

0 =i/∂R3,1

(

ψ±
1

)†
(

0

σ2ξ
∗

)

+

√

2

πα′ e
2a

(

ξ

0

)

(

D̂∓
1 ψ

∓
0 +

(

D̂±
2

)†
ψ∓

3 − e−2a
(

D̂±
3

)†
ψ∓

2

)

, (3.23b)

0 =i/∂R3,1

(

ψ±
2

)†
(

0

σ2ξ
∗

)

−
√

2

πα′ e
2a

(

ξ

0

)

(

(

D̂±
1

)†
ψ∓

3 − D̂∓
2 ψ

∓
0 − e−2a

(

D̂±
3

)†
ψ∓

1

)

, (3.23c)

0 =i/∂R3,1

(

ψ±
3

)†
(

0

σ2ξ
∗

)

+

√

2

πα′ e
2a

(

ξ

0

)

(

(

D̂±
1

)†
ψ∓

2 −
(

D̂±
2

)†
ψ∓

1 + e−2aD̂∓
3 ψ

∓
0

)

, (3.23d)

where D̂∓
mψ

∓
n should be understood to mean

D̂∓
mψ

∓
n =

{

(

D̂∓
m + 3

2 ∂̂ma
)

ψ∓
n n = 0, 3

(

D̂∓
m − 1

2 ∂̂ma
)

ψ∓
n n = 1, 2

. (3.24)

Here ψ0 is the 4d gaugino, ψ3 is the modulino, the superpartner of the complexified trans-

verse scalar φ and ψ1 and ψ2 are the Wilsonini, the superpartners of the complexified

Wilson lines φ1 and φ2; the former pair have positive S4-chirality while the latter have

negative chirality. In writing (3.23), we have made use of the fact that the Clifford algebra

following from (2.14) implies that the Γ-matrices have explicit factors of the S4 metric and

the warp factor.

To compare the above result with the eom for bosonic wavefunctions, let us relate

them as in the Abelian case by [40]

ψ∓
0 = e−3a/2φ∓0 , ψ∓

1 = ea/2φ∓1 , ψ∓
2 = ea/2φ∓2 , ψ∓

3 = e−3a/2φ∓3 , (3.25)
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The zero mode equations then become

0 =D̂∓
1 φ

∓
1 + D̂∓

2 φ
∓
2 + e−4aD̂∓

3 φ
∓
3 , (3.26a)

0 =D̂∓
1 φ

∓
0 +

(

D̂±
2

)†
φ∓3 −

(

D̂±
3

)†
φ∓2 , (3.26b)

0 =
(

D̂±
1

)†
φ∓3 − D̂∓

2 φ
∓
0 −

(

D̂±
3

)†
φ∓1 , (3.26c)

0 =
(

D̂±
1

)†
φ∓2 −

(

D̂±
2

)†
φ∓1 + e−4aD̂∓

3 φ
∓
0 , (3.26d)

exactly reproducing (3.10) in the vanishing dilaton case up to the degree of freedom given

by the gaugino-like component ψ∓
0 . Its bosonic partner A∓

µ was not present in our previous

discussion of the BPS D7-brane conditions by simple 4d Poincaré invariance. Since the

gauge group is given by U (Na) × U(Nb), we always expect to be able to consistently set

A∓
µ = 0 at the massless level and so, if our background is supersymmetric, the same should

be true for ψ∓
0 . As we will see, this is the case for all the wavefunctions obtained below,

none of them containing any ψ∓
0 piece.

As mentioned above, (3.26) were derived assuming a constant dilaton background.

The complication in moving to the more general case is that the appearance of the axio-

dilaton in the fermionic action of [42, 84, 85] modify the equations of motion for the

fermionic wavefunctions in a non-trivial way (see, e.g. [40]). However, as (3.26) precisely

reproduce (3.10) in the case of constant dilaton, we expect (3.26) to hold in the case of

varying dilaton as well after the replacement a → α = a + 1
4 log (Im τ). Furthermore, as

mentioned above ψ∓
0 ought to vanish for the warped zero modes in which case (3.26) applies.

While either (3.26) or (3.10) can then be taken to the form (3.17), the latter does not

seem to admit an exact solution for general warp factor. One should then use an approxi-

mation scheme in order to express the warped wavefunctions. The scheme that we develop

below is based on the spectrum of massive modes at the intersection, which we now turn

to analyze.

3.2 Unwarped massive spectrum

For generic warp factors, the equations (3.26) do not seem to admit a simple analytic solu-

tion. However, given a complete set of functions that satisfy the same boundary conditions

as the warped zero mode, we can always expand the latter in terms of this set. In this sense,

solving the equations of motion amounts to solving for the coefficients of this expansion.

In our case one may realize this expansion as follows. Let us first write the warped

zero mode as a vector

φ∓m = σ∓ (xµ)χ∓
m (xa) , X∓ =

(

χ∓
0 , χ

∓
1 , χ

∓
2 , χ

∓
3

)T
, (3.27)

where σ∓ again carry suppressed gauge indices while χ∓
m do not. Then (3.26) takes the

form σ∓D̂∓X∓ = 0, where

D̂∓ =











0 e4αD̂∓
1 e4αD̂∓

2 D̂∓
3

−D̂∓
1 0

(

D̂±
3

)∗ −
(

D̂±
2

)∗

−D̂∓
2 −

(

D̂±
3

)∗
0

(

D̂±
1

)∗

−D̂∓
3 e4α

(

D̂±
2

)∗ −e4α
(

D̂±
1

)∗
0











. (3.28)
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Denoting the complete set of functions as
{

Φ∓
λ

}

, we take the expansion

X∓ =
∑

λ

c∓λ Φ∓
λ , (3.29)

where c∓λ are the coefficients for which we wish to solve.

In general, a complete set of wavefunctions with the same boundary conditions is given

by the full tower of massive modes within the same open string sector, which in our case

are the tower of strings stretched between the two intersecting D7-branes. We may thus

take as a set those wavefunctions that correspond to the unwarped massive modes at the

intersection, and then expand the warped zero mode in this basis. Such a spectrum of

unwarped massive modes can be deduced from (3.23), which in the absence of warping

gives the following equation of motion

iD̂∓
0 Φ∓

λ =

√

πα′

2
mλΦ

±∗
λ , (3.30)

where D̂∓
0 is the unwarped version of (3.28). Acting on (3.30) with its conjugate gives

(

D̂±
0

)∗
D̂∓

0 Φ∓
λ =

πα′

2

∣

∣mλ

∣

∣

2
Φ∓

λ , (3.31)

and so we obtain an eigenvalue equation for the unwarped massive modes at the intersec-

tion. Moreover, in our local description the bifundamental fields at the intersection can be

treated as living on Σ×C where Σ is the matter curve, and C has coordinate z2. We then

impose that the massive modes are well-defined on Σ and vanish as
∣

∣z2
∣

∣

2 → ∞. With these

boundary conditions, we can further impose that the massive modes are orthonormal with

respect to the inner product

〈

Φ,Ψ
〉

= Im τ2

∫

Σ×C

d4z
√

g̃Φ∗ ·Ψ, (3.32)

with · the ordinary dot product for vectors. The prefactor is introduced for later conve-

nience.

In order to find the general solution to (3.31) our strategy will be to map the eigenvalue

problem to that of the quantum simple harmonic oscillator (QSHO) and then make use of

basic techniques of quantum mechanics to find the spectrum. This implies using the non-

trivial commutation relations between the covariant derivatives, which in the unmagnetized

case amount to
[(

D̂±
2

)∗
, D̂∓

3

]

= ∓ iR3I
(ab)
3

2R2
=: ∓iM̂3. (3.33)

Using this, we find
(

D±
0

)∗
D∓

0 = −△∓ ± B, (3.34)

where

△∓ =
3
∑

m=1

(

D̂±
m

)∗
D̂∓

m, B =











0 0 0 0

0 0 0 0

0 0 0 iM̂3

0 0 −iM̂3 0











. (3.35)
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Since the two pieces in (3.34) commute, they can be simultaneously diagonalized. B clearly

has a non-trivial nullspace spanned by (1, 0, 0, 0)T and (0, 1, 0, 0)T. In addition, there are

two non-trivial eigenvalues, −M̂3 and +M̂3 with respective eigenvectors

1√
2

(0, 0, 1, i)T ,
1√
2

(0, 0, i, 1)T . (3.36)

The diagonalization of B is then effected by the rotation

J =











1 0 0 0

0 1 0 0

0 0 1/
√

2 i/
√

2

0 0 i/
√

2 1/
√

2











, (3.37)

so that we have7

J−1
(

D̂±
0

)∗
D̂∓

0 J = −△∓ ± diag
(

0, 0,−M̂3, M̂3

)

. (3.38)

To make use of QSHO techniques, we begin with a ground state. This is given by the

unwarped zero mode (3.16), though it is useful to confirm this in this language. In the

rotated basis, the unwarped zero mode satisfies D̂′∓
0 Φ′∓

0 = 0 where Φ′∓
0 = J−1Φ∓

0 is the

unwarped zero mode in the rotated basis and

D̂′∓
0 = JD̂∓

0 J =











0 D̂′∓
1 D̂′∓

2 D̂′∓
3

−D̂′∓
1 0

(

D̂′±
3

)∗ −
(

D̂′±
2

)∗

−D̂′∓
2 −

(

D̂′±
3

)∗
0

(

D̂′±
1

)∗

−D̂′∓
3

(

D̂′±
2

)∗ −
(

D̂′±
1

)∗
0











, (3.39)

with

D̂′∓
1 =D̂∓

1 = ∂̂1, (3.40a)

D̂′∓
2 =

1√
2

(

D̂∓
2 + iD̂∓

3

)

=
1√

2
√

2πR2

(

∂2 ± κz̄2̄
)

, (3.40b)

D̂′∓
3 =

1√
2

(

D̂∓
3 + iD̂∓

2

)

=
i√

2
√

2πR2

(

∂2 ∓ κz̄2̄
)

. (3.40c)

with κ defined as in (3.15). To look for a zero mode, we can now try the various eigenvectors

of B. We first consider something in the null space of B and try to solve

D̂′∓
0











ϕ∓

0

0

0











=











0

−D̂′∓
1

−D̂′∓
2

−D̂′∓
3











ϕ∓ = 0. (3.41)

For this to be a zero mode, we then need D̂′∓
3 ϕ∓ = D̂′∓

2 ϕ∓ = 0, which together have only

the trivial solution ϕ∓ = 0. A similar statement applies for (0, ϕ∓, 0, 0)T
. On the other

7
Φ

∓ transforms as Φ
∓
→ J

−1
Φ

∓, so to have
`

D̂
±
m

´∗
Φ

∓ transform as Φ
±∗, we must have D̂

∓
m → JD̂

∓
mJ.

Note than when J is not symmetric, which occurs when, for example, warping is included, the transformation

is D̂
∓
m → J

T
D̂

∓
mJ.

– 17 –



J
H
E
P
0
5
(
2
0
1
1
)
0
9
0

hand, the −M̂3 eigenvector (0, 0, ϕ∓, 0)T
will be a zero mode of D̂′∓

0 if ϕ∓ is in the kernel

of
(

D̂′±
1

)∗
,
(

D̂′±
3

)∗
, and D̂′∓

2 . This implies that ϕ∓ is independent of z̄1̄ (and hence, by

periodicity, independent of z1 as well) and satisfies

(

∂2 ± κz̄2̄
)

ϕ∓ =
(

∂∗2 ± κz2
)

ϕ∓ = 0. (3.42)

These in turn imply

ϕ∓ ∼ e∓κ|z2|2 . (3.43)

Requiring that the wavefunction goes to zero as
∣

∣z2
∣

∣→ ∞ implies that the +-sector has no

non-trivial solutions. However, in the −-sector, there is a non-trivial zero mode given by

Φ′−
0 =

(

0, 0, ϕ0, 0
)T
, ϕ0 ∼ e−κ|z2|2 . (3.44)

Similarly, there is a non-trivial zero mode in the +-sector in the +M̂3 eigenspace of B given

by

Φ′+
0 =

(

0, 0, 0, ϕ0

)T
. (3.45)

Requiring that these modes are normalized according to (3.32) gives

ϕ0 =

√

2κ

πV1V2
e−κ|z2|2 . (3.46)

Finally, after rotating back, these zero modes agree with (3.16).

In order to find the higher modes of
(

D̂±)∗D̂∓, we need to find the spectrum of △∓.

To do this, we re-express the problem of finding this spectrum of modes in the language of

a QSHO. The rotated derivatives D̂′∓
m satisfy the commutation relations

[(

D̂′±
2

)∗
, D̂′∓

2

]

= ±M̂3,
[(

D̂′±
3

)∗
, D̂′∓

3

]

= ∓M̂3, (3.47)

with other commutators vanishing, while △∓ can be expressed as

△∓ =

3
∑

m=1

△′∓
m , △′∓

m =
1

2

{

(

D̂′±
m

)∗
, D̂′∓

m

}

. (3.48)

We then have the commutation relations

[

△′∓
2 , D̂

′∓
2

]

= ± M̂3D̂
′∓
2 ,

[

△′∓
2 ,
(

D̂′±
2

)∗]
= ∓ M̂3

(

D̂′±
2

)∗
, (3.49a)

[

△′∓
3 , D̂

′∓
3

]

= ∓ M̂3D̂
′∓
3 ,

[

△′∓
3 ,
(

D̂′±
3

)∗]
= ± M̂3

(

D̂′±
3

)∗
. (3.49b)

Which give four independent QHSO algebras, using the rotated covariant derivatives as

ladder operators and △′∓
m=2,3 as Hamiltonians. The ground state wavefunction ϕ0 satisfies

△′∓
1 ϕ0 = 0, △′∓

2 ϕ0 = △′∓
3 ϕ0 = −1

2
M̂3ϕ0. (3.50)

from which △∓ϕ0 = −M3ϕ0 and so (3.44), (3.45) are zero modes of (3.38). We can then

build up the higher modes with raising operators acting on ϕ0, just as is done for the QSHO.
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Considering the −-sector, since the ground state ϕ0 is annihilated by D̂′−
2 and

(

D̂′+
3

)∗
,

we have the lowering operators

iD̂′−
2 , i

(

D̂′+
3

)∗
, (3.51)

whose adjoints with respect to the inner product

〈

φ,ψ
〉

= Im τ2

∫

Σ×C

d4z
√

g̃ φ∗ψ, (3.52)

are, respectively,

i
(

D̂′+
2

)∗
, iD̂′−

3 , (3.53)

and will act as raising operators. The algebra generated by iD̂′−
2 and i

(

D̂′+
2

)∗
is independent

from the algebra generated by i
(

D̂′+
3

)∗
and iD̂′−

3 . The higher eigenfunctions of △∓ result

from acting on the zero modes with the raising operators

ϕ−
mnlp = N−

lp

[

i
(

D̂′+
2

)∗]l(
iD̂′−

3

)p
ϕ−

mn00, (3.54)

where

ϕ−
mn00 = hmn

(

z1, z̄1̄
)

ϕ0, (3.55)

and where hmn are Fourier modes that are discussed below. The proportionality constant

is chosen so that ϕ−
mn00 is normalized with respect to (3.52). Using the QSHO algebras, it

is easy to verify that these modes satisfy

△ϕ−
00lp = −M̂3

(

l + p+ 1
)

ϕ−
00lp. (3.56)

From this it follows that after the eigenfunctions ϕ−
mn00 are normalized, ϕ−

mnlp are normal-

ized by taking

N−
lp =

1
√

M̂3
l+p
l!p!

. (3.57)

The massive eigenmodes will additionally have a non-trivial dependence on Σ. For

instance, in the case Σ = T
2, because 〈F2〉 = 0 all fields need to be periodic in T

2, and so

the higher modes involve the Fourier modes

hmn = e2πi Im[(m−τ̄1n)z1]/Im τ1 . (3.58)

The normalized eigenfunctions of △− are then

ϕ−
mnlp =

√

2κ

M̂p+l
3 V1V2 p! l!

hmn

[

i
(

D̂′+
2

)∗]l(
iD̂′−

3

)p
e−κ|z2|2 , (3.59)

with

△−ϕ−
mnlp = −

(

2π3 |m− τ1n|2
V1Im τ1

+ M̂3

(

l + p+ 1
)

)

ϕ−
mnlp. (3.60)

From this and (3.34), we find the following spectrum for the −-sector

∣

∣m−
0;mnlp

∣

∣

2
=

2

πα′

(

m̂2
mn + M̂3

(

l + p+ 1
)

)

Φ′−
0;mnlp =

(

ϕ−
mnlp, 0, 0, 0

)T
, (3.61a)

∣

∣m−
1;mnlp

∣

∣

2
=

2

πα′

(

m̂2
mn + M̂3

(

l + p+ 1
)

)

Φ′−
1;mnlp =

(

0, ϕ−
mnlp, 0, 0

)T
, (3.61b)

– 19 –



J
H
E
P
0
5
(
2
0
1
1
)
0
9
0

∣

∣m−
2;mnlp

∣

∣

2
=

2

πα′

(

m̂2
mn + M̂3

(

l + p
)

)

Φ′−
2;mnlp =

(

0, 0, ϕ−
mnlp, 0

)T
, (3.61c)

∣

∣m−
3;mnlp

∣

∣

2
=

2

πα′

(

m̂2
mn + M̂3

(

l + p+ 2
)

)

Φ′−
3;mnlp =

(

0, 0, 0, ϕ−
mnlp

)T
, (3.61d)

where

m̂2
mn =

2π3 |m− τ1n|2
V1 Im τ1

. (3.62)

Using the QSHO algebra, one can see that this is an orthonormal basis with respect

to (3.32), that can be expressed in terms of Hermite functions (see appendix F for more

details).

For the +-sector, the lowering operators are

i
(

D̂′−
2

)∗
, iD̂′+

3 , (3.63)

while the raising operators are

iD̂′+
2 , i

(

D̂′−
3

)∗
. (3.64)

An analogous calculation for the +-sector yields

∣

∣m+
0;mnlp

∣

∣

2
=

2

πα′

(

m̂2
mn + M̂3

(

l + p+ 1
)

)

Φ′+
0;mnlp =

(

ϕ+
mnlp, 0, 0, 0

)T
, (3.65a)

∣

∣m+
1;mnlp

∣

∣

2
=

2

πα′

(

m̂2
mn + M̂3

(

l + p+ 1
)

)

Φ′+
1;mnlp =

(

0, ϕ+
mnlp, 0, 0

)T
, (3.65b)

∣

∣m+
2;mnlp

∣

∣

2
=

2

πα′

(

m̂2
mn + M̂3

(

l + p+ 2
)

)

Φ′+
2;mnlp =

(

0, 0, ϕ+
mnlp, 0

)T
, (3.65c)

∣

∣m+
3;mnlp

∣

∣

2
=

2

πα′

(

m̂2
mn + M̂3

(

l + p
)

)

Φ′+
3;mnlp =

(

0, 0, 0, ϕ+
mnlp

)T
, (3.65d)

where ϕ+
mnlp = (ϕ−

mnlp)
∗, is as in (3.59) after replacing (D̂′+

2 )∗ → D̂′+
2 and D̂′−

3 → (D̂′−
3 )∗.

3.3 Mode expansion of the warped zero mode

For general warping, it is not always possible to solve for the coefficients c∓λ appearing

in (3.29). However, in cases of weak warping, we can treat the deviation of the warp factor

from constant as a perturbation to the unwarped system. That is, after a rescaling of

coordinates, we can write the warp factor as

e−4α = 1 + ǫβ, (3.66)

where β is an O (1) function. If the warping is weak in the sense that ∂mα≪ 1, then ǫ≪ 1

and so we can use ǫ as an expansion coefficient. Indeed, in terms of ǫ, the operator (3.28)

can be written

D̂∓ =
∑

n

ǫnD̂∓
(n), D̂∓

(n 6=0) =
(

−β
)n

K∓, (3.67)
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where as before D̂∓
(0) ≡ D∓

0 is given by setting α = 0 in (3.28), and K∓ is given by

K∓ =











0 D̂∓
1 D̂∓

2 0

0 0 0 0

0 0 0 0

0
(

D̂±
2

)∗ −
(

D̂±
1

)∗
0











. (3.68)

Similarly, the zero mode can be written as

X∓ =
∑

n

ǫnX∓
(n). (3.69)

As ǫ→ 0, the warped zero mode should approach the unwarped zero mode so we take the

zeroth order term in the expansion X∓
(0) to be the unwarped zero mode Φ∓

0 . For n 6= 0, we

expand in terms of the unwarped massive modes,

X∓
(n)

=
∑

λ

c
(n)∓
λ Φ∓

λ . (3.70)

The O (ǫn) contribution to the warped zero mode equation D̂∓X∓ = 0 is

0 =

n
∑

m=0

D̂∓
(m)X

∓
(n−m). (3.71)

For n = 0, this is satisfied with the choice X∓
(0) = Φ∓

0 . For n > 0, we can re-express this

contribution as

D̂∓
0 X∓

(n) = −
n
∑

m=1

D̂∓
(m)X

∓
(n−m). (3.72)

Acting on both sides with
(

D̂±
0

)∗
and using the orthonormality of (3.61) and (3.65), we find

c
(n)∓
λ = − 2

πα′ |mλ|2
n
∑

m=1

(

−1
)m〈

Φ∓
λ ,
(

D̂±
0

)∗
βmK∓X∓

(n−m)

〉

, (3.73)

the same expression also holding in the rotated basis.

Note that as is familiar from perturbation theory in quantum mechanics, the coeffi-

cients c
(n)∓
0 are not determined by this procedure. We will fix it by demanding that, to all

orders in ǫ,
〈

X∓,Φ∓
(0)

〉

= 1, fixing c
(n)∓
0 = 0 for all n > 0.

We can write a particularly simple expression for the first order correction. From (3.73),

c
(1)
λ =

2

πα′ |mλ|2
〈

Φ∓
λ ,
(

D̂±
0

)∗
βK∓Φ∓

0

〉

. (3.74)

Consider the −-sector where the zero mode in the unrotated basis is written

Φ−
0 =

1√
2











0

0

1

i











ϕ0. (3.75)
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From this,

βK−Φ−
0 =

1√
2
β











D̂−
2

0

0

−
(

D̂+
1

)∗











ϕ0. (3.76)

Since ϕ0 is independent of z1, the lowest component vanishes. In the rotated basis we then

get

J−1
(

D̂+
0

)∗
βK−Φ−

0 =
i

2











0
(

D̂′+
1

)∗
(

D̂′+
2

)∗
(

D̂′+
3

)∗











βD̂′−
3 ϕ0, (3.77)

where we have used the fact that that D̂′−
2 annihilates ϕ0. In the +-sector, the zero mode is

Φ+
0 =

1√
2











0

0

i

1











ϕ0, (3.78)

and an analogous calculation gives

J−1
(

D̂−
0

)∗
βK+Φ+

0 = − i

2











0
(

D̂′−
1

)∗
(

D̂′−
2

)∗
(

D̂′−
3

)∗











βD̂′+
2 ϕ0. (3.79)

In both cases, the vector boson component (i.e. the top entry) is not excited by the warp-

ing. Similarly, if the warp factor is independent of z1 (and by periodicity independent of

z̄1 as well) then the the second entry, corresponding to the Wilson line along the matter

curve, is not excited.

3.4 Examples

In this subsection we illustrate the massive-mode expansion by considering specific simple

examples. A complementary analysis is also given in appendix D where we consider exact

solutions for a few cases including those where there is no weak-warping limit.

Constant warp factor. Let us first consider the case of constant warping β = 1. For

simplicity of presentation, we will focus on the −-sector. The first order corrections to the

wavefunctions come from (3.74). In the rotated basis,

(

D̂′+
0

)∗
βK′−Φ′−

0 =
i

2











0
(

D̂′+
1

)∗
(

D̂′+
2

)∗
(

D̂′+
3

)∗











D̂′−
3 ϕ0. (3.80)
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Since ϕ0 is independent of z̄1, we have
(

D̂′+
1

)∗
D̂′−

3 ϕ0 = 0. Making use of (3.59), we

have
(

D̂′+
2

)∗
D̂′−

3 ϕ0 = −M̂3ϕ
−
0011. Finally, (3.50) and the QHSO algebra (3.47) give

(

D̂′+
3

)∗
D̂′−

3 ϕ0 = −M̂3ϕ0. Thus, in terms of the modes (3.61), we have

(

D̂′+
0

)∗
βK′−Φ′−

0 = − iM̂3

2
Φ′−

2;0011 −
iM̂3

2
Φ′−

3;0000. (3.81)

Each of these modes has a mass

∣

∣mλ

∣

∣

2
=

2

πα′ 2M̂3, (3.82)

so in the rotated basis the first order correction to the zero mode is

X′−
(1) = − i

4
Φ′−

2;0011 −
i

4
Φ′−

3;0000 = − i

4

(

0, 0, ϕ−
0011 , ϕ0

)T
. (3.83)

Now, using (3.59), we get

ϕ−
0011 = i

(

1 − 2κ
∣

∣z2
∣

∣

2)
ϕ0. (3.84)

Then the −-sector warped zero mode in the unrotated basis up through O (ǫ) is

χ−
2 =

{

1 +
ǫ

2

(

1 − κ
∣

∣z2
∣

∣

2)
}

ϕ0√
2
, χ−

3 =

{

1 − ǫ

2
κ
∣

∣z2
∣

∣

2
}

iϕ0√
2
. (3.85a)

Since the warping is constant, it can be absorbed into a redefinition of the coordinates

and so there is a simple analytic solution. The solution to (3.17) for constant warping is

f− =
N
z2
e−κw|z2|2 , (3.86)

where κw = κe−2α. Then using (3.12), we get

χ−
2 = − N√

2πR2

κwe
−κw|z2|2 , χ−

3 = − iN√
2πR2

κe−κw|z2|2. (3.87)

In order to compare this exact answer to the answer resulting from the massive-mode

expansion, the two solutions need to normalized in the same way.8 From (3.83), we have

that (3.85) is normalized to unity up to terms quadratic in ǫ. For the exact solution (3.87),

we find
∥

∥X−∥
∥

2
=

N 2κV1V2

2π2R2
2

cosh 2α =
N 2κV1V2

2π2R2
2

(

1 + O
(

ǫ2
))

, (3.88)

so that we take

N = −
√

2πR1√
κ

√

2κ

πV1V2
. (3.89)

Then using the fact that

e−κw|z2|2 = e−κ|z2|2 (1 − ǫ

2
κ
∣

∣z2
∣

∣

2
+ O

(

ǫ2
)

)

, (3.90)

we find that to leading order in ǫ, (3.87) agrees with (3.85).

8Here we use the unwarped norm for the purpose of comparison. Of course, when calculating more

physical data like Kähler metrics, the warp factor will generally appear in the measure of the integral.
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Constant warping along the matter curve. A less trivial case is when the warp

factor is non-constant but does not depend on the position along the matter curve Σ,

e−4α = 1 + ǫβ
(

z2, z̄2
)

, (3.91)

where we have neglected the dependence of α on z3 (see appendix C for a discussion on

this approximation). Since we are treating the space transverse to the matter curve as

non-compact, we can neglect requirements of periodicity of the warp factor. We will also

suppose for simplicity that the background is arranged such that β depends on z2 and z̄2

only through the modulus
∣

∣z2
∣

∣

2
. The requirement that the warping is weak then implies

that β must admit a Taylor expansion in
∣

∣z2
∣

∣

2
. Let us first consider a warp factor of the form

β = L−2
∣

∣z2
∣

∣

2
. (3.92)

and later generalize our computation to a general polynomial on
∣

∣z2
∣

∣

2
.

Considering again the −-sector, for the O (ǫ) corrections we have

(

D̂′+
0

)∗
βK′−Φ′−

0 =
i

2L2











0
(

D̂′+
1

)∗
(

D̂′+
2

)∗
(

D̂′+
3

)∗











∣

∣z2
∣

∣

2
D̂′−

3 ϕ0. (3.93)

To calculate the coefficients of the massive-mode expansion, we could use (3.74) and ex-

plicitly calculate the overlap integral, using the fact that the massive modes are related

to the standard Hermite functions as discussed in appendix F. Alternatively, we can ex-

press the warp factor in terms of the raising and lowering operators acting on the −-sector.

From (3.40), we have

z2 = −
√

2
√

2πR2

2κ

{

(

D̂′+
2

)∗ − i
(

D̂′+
3

)∗
}

, z̄2 =

√
2
√

2πR2

2κ

{

D̂′−
2 + iD̂′−

3

}

. (3.94)

As a consistency check, one can easily confirm that these operators commute. In terms of

these, the warp factor (3.92) can be written as

β = L−2z2z̄2 = −2
(

2πR2
2

)

4κ2L2

{

△′−
2 + △′−

3 + i
((

D̂′+
2

)∗
D̂′−

3 −
(

D̂′+
3

)∗
D̂′−

2

)

}

. (3.95)

Then using the fact that in the unmagnetized case κ = 2πR2
2M̂3,

βϕ−
mnlp =

i

2κL2

(

√

(l + 1) (p+ 1)ϕ−
00,l+1,p+1−i (l + p+ 1)ϕ−

00lp−
√

lpϕ−
00,l−1,p−1

)

. (3.96)

Following a procedure similar to the constant warping case, we find that the first order

correction to the warped zero mode is

X′−
(1) =

1

8κL2

(

Φ′−
2;0022 + Φ′−

3;0011 − 2iΦ′−
2;0011 − 2iΦ′−

3;0000

)

. (3.97)

– 24 –



J
H
E
P
0
5
(
2
0
1
1
)
0
9
0

Using (3.84) and

ϕ−
0022 = −

(

1 − 4κ
∣

∣z2
∣

∣

2
+ 2κ2

∣

∣z2
∣

∣

4)
ϕ0, (3.98)

we get in the unrotated basis

χ−
2 =

{

1 +
ǫ

4κL2

(

1 + κ
∣

∣z2
∣

∣

2 − κ2
∣

∣z2
∣

∣

2)
}

ϕ0, (3.99a)

χ−
3 =

{

1 − ǫ

4κL2
κ
∣

∣z2
∣

∣

2(
1 + κ

∣

∣z2
∣

∣

2)
}

iϕ0√
2
. (3.99b)

Remarkably, this case also possesses an exact solution given in terms of an Airy func-

tion. Taking (3.12), the solution to the D-term equation (3.17) is

f− =
N
z2

Ai
(

a+ b
∣

∣z2
∣

∣

2)
, a =

κ2/3L1/3

ǫ2/3
, b =

κ2/3ǫ1/3

L2/3
. (3.100)

After normalizing and performing an expansion in ǫ, the exact solution agrees with the

result from the perturbative analysis.

Let us now generalize the last two examples by considering

β = L−2r
∣

∣z2
∣

∣

2r
, (3.101)

where r is a positive integer.9 One can show that when at least one of l or p is zero, then

βϕ−
nmlp =

(

1

2κL2

)r r
∑

s=0

is
(

r

s

)

√

(l + s)!

l!

(p+ s)!

p!

(l + p+ r)!

(l + p+ s)!
ϕ−

nm,l+s,p+s, (3.102)

with an analogous expression holding for the +-sector. The general form is more involved

when both l and p are non-vanishing. However, for the first-order corrections resulting

from (3.77) and (3.79), at least one of these oscillators is unexcited and the other is excited

to only the first level and the expression becomes relatively simple

D̂′+
0 βK

′−Φ′
0 = − i

2

(r + 1)!M̂3

(2κL2)r

r
∑

s=0

is
(

r

s

){

Φ′−
2;00,s+1,s+1 + Φ′−

3;00ss

}

. (3.103)

Making use of (3.74) gives the first order correction to the wavefunction

X′−
(1) =

i

4

(r + 1)!

(2κL2)r

r
∑

s=0

is
(

r

s

)

1

s+ 1

{

Φ′−
2;00,s+1,s+1 + Φ′−

3;00ss

}

, (3.104)

and so the higher the power r, the more massive KK modes are excited.

Finally, let us consider a general expansion of the form

β =
∑

r

βrL
−2r
∣

∣z2
∣

∣

2r
, (3.105)

9The case of negative powers is not easily addressable in this formalism. Since z2 and z̄2̄ are expressed

in terms of creation and annihilation operators, one would like to do the same for the inverse operators 1/z2

and 1/z̄2̄. However, since the annihilation operator is not invertible, this cannot be done in a straightforward

way. Some exact solutions with inverse powers are given in appendix D.
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for which application of (3.104) gives

X′−
(1) =

i

4

∑

s

Cs

{

Φ′−
2;00,s+1,s+1 + Φ′−

3;00ss

}

, Cs =
is

s+ 1

∞
∑

r=s

(

r

s

)

(r + 1)!βr

(2κL2)r
. (3.106)

For example, for an exponential warp factor

β = e−|z2|2L−2
, βr =

(−1)r

r!
. (3.107)

Then,

Cs =
is

(s+ 1)!

∞
∑

r=s

(−1)r

(2κL2)r
(r + 1)!

(r − s)!
=

(−i)s
(

2κL2
)2

(1 + 2κL2)2+s . (3.108)

A related example is

β = cos
(

L−2
∣

∣z2
∣

∣

2)
. (3.109)

Then,

Cs =
is

(s+ 1)!

∑

k=ps/2q

(−1)k

(2κL2)2k

(2k + 1)!

(2k − s)!

=
is (−1)ps/2q

(

2κL2
)2

(

1 + (2κL2)2
)1+s/2

{

cos
[(

2 + s
)

arccot
(

2κL2
)]

s even

sin
[(

2 + s
)

arccot
(

2κL2
)]

s odd
, (3.110)

where p q denotes the ceiling function. Note that the solution (3.83) for the constant

warp factor example suggests that the s = 0 modes can be eliminated by a rescaling of

the coordinates. Indeed from (3.110), it is easy to see that by redefining R2 such that

2κL2 = 1, Cs=0 can be made to vanish.

Variable warping along the matter curve. Finally, we consider the case where the

warp factor varies non-trivially along the matter curve, which we again consider to be a two-

torus Σ = T
2. As is the case for the wavefunctions, the warp factor must be well-defined

over the compact space and thus must admit an expansion in the Fourier modes (3.58)

β =
∑

mn

β̃mn

(

z2, z̄2̄
)

hmn. (3.111)

For simplicity of presentation, we consider the case where the β̃mn are constants; allowing

the β̃mn to depend on z2 and z̄2 would not introduce any significant complication beyond

that encountered in the last example. Again, since we are interested in the warp factor

only on the worldvolume, the z3 and z̄3̄ dependence can be suppressed.

For the first order corrections to the warped zero mode, we need to calculate

i

2

∑

mn

β̃mn











0
(

D̂′+
1

)∗
(

D̂′+
2

)∗
(

D̂′+
3

)∗











hmnD̂
′−
3 ϕ0. (3.112)
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Carrying over from the constant warping case, we have

(

D̂′+
2

)∗
hmnD̂

′−
3 ϕ0 = −M̂3ϕ

−
mn11,

(

D̂′+
3

)∗
hmnD̂

′−
3 ϕ0 = −M̂3ϕ

−
mn00. (3.113)

Defining

tmn = − π (m− τ1n)√
2πR1Im τ1

(3.114)

we also have
(

D̂′+
1

)∗
hmnD̂

′−
3 ϕ0 = −i tmnM̂

1/2
3 ϕ−

mn01. (3.115)

The first order correction is then

X′−
(1) = − i

2

∑

mn

β̃mnM̂
1/2
3

m̂2
mn + 2M̂3

{

M̂
1/2
3 Φ−

2;mn11 + M̂
1/2
3 Φ−

3;mn00 + itmnΦ
−
1;mn01

}

. (3.116)

Again, the higher the Fourier mode βmn, the higher open string massive modes that is

involved in the warped zero mode. Note also that since the warp factor is no longer

independent of z1 and z̄1, the warped zero mode now includes the Wilson line along the

matter curve.

4 Magnetized intersections

We now turn our attention towards the case of non-trivial magnetic flux. Unlike the unmag-

netized case where the −-sector zero mode was accompanied by a +-sector zero mode, the

presence of a magnetic flux 〈F2〉 selects one of the two sectors, inducing 4d chirality. This

non-trivial flux, however, also causes the equations of motion to become more involved.

Analogously to the previous section, we consider fluctuations about the self-dual, quan-

tized flux background (2.30) and the non-trivial intersection (2.27). To produce the mag-

netic flux (2.30), we take the background connection to be

〈

A
〉

= A =
2
∑

m=1

π

2iIm τm

(

M
(a)
m INa

M
(b)
m INb

)

(

z̄m̄dzm − zmdz̄m̄
)

. (4.1)

As in the unmagnetized case, the equations of motion for the zero modes fluctua-

tions (3.1) can be inferred from the F -flatness and D-flatness conditions discussed in Sec 2

or by considering the fermionic action (3.21). From the latter, we again find (3.23) but

now the covariant derivatives include contributions from the magnetic flux,

D̂∓
m=1,2 = ∂̂1,2 ∓

√
2πI

(ab)
m

4RmIm τm
z̄m, D̂∓

3 = ∓ i

2

√
2πR3I

(ab)
3 , (4.2)

where

I(ab)
m = M (a)

m −M (b)
m . (4.3)

Similarly, taking the ansatz (3.25) again gives (3.26) with the same modification of the

covariant derivatives. As in the unmagnetized case, the warped zero mode equation cannot

in general be solved in a simple analytic way and we will consider an expansion in terms

of the unwarped massive modes.
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4.1 Unwarped chiral spectrum

The unwarped chiral spectrum again follows from (3.30). A crucial difference between

the unmagnetized and the magnetized case is the richer algebra satisfied by the covariant

derivatives in the latter. We define

[(

D̂±
n

)∗
, D̂∓

m

]

= ∓2iF̂n̄m,
[

D̂∓
n , D̂

∓
m

]

= ∓2iF̂nm,
[(

D̂±
n

)∗
,
(

D̂±
m

)∗]
= ∓2iF̂n̄m̄. (4.4)

Then the non-vanishing components of F̂ are

F̂11̄ = −F̂22̄ =
iI

(ab)
1

4R2
1Im τ1

, F̂23̄ =
R3I

(ab)
3

4R2
, (4.5)

where we have made use of the self-duality condition on F2. As a result of this richer

algebra, when writing (3.31), we again have (3.34) but now with

△∓ =
1

2

3
∑

m=1

{

(

D̂±
m

)∗
, D̂∓

m

}

, B = −2i











σ+++ F̂3̄2̄ F̂1̄3̄ F̂2̄1̄

F̂23 σ+−− F̂21̄ F̂31̄

F̂31 F̂12̄ σ−+− F̂32̄

F̂12 F̂13̄ F̂23̄ σ−−+











, (4.6)

where

σǫ1ǫ2ǫ3 =
1

2

(

ǫ1F̂11̄ + ǫ2F̂22̄ + ǫ3F̂23̄

)

. (4.7)

In our case,

B =











0 0 0 0

0 M̂1 0 0

0 0 −M̂1 iM̂3

0 0 −iM̂3 0











, M̂1 =
I
(ab)
1

2R2
1Im τ1

, M̂3 =
R3I

(ab)
3

2R2
. (4.8)

Just as in the unmagnetized case, to find the massive-mode expansion, we will look for

simultaneous eigenvectors of B and △∓. A non-vanishing magnetic flux increases the rank

of B so that the nullspace is now only dimension 1, spanned by (1, 0, 0, 0)T while the non-

trivial spectrum includes an eigenvalue M̂1 with eigenvector (0, 1, 0, 0)T. The magnetic flux

also breaks the degeneracy of the remaining spectrum. Defining

ρ± =
M̂1

2
±

√

√

√

√

(

M̂1

2

)2

+ M̂2
3 , (4.9)

the other non-trivial eigenvalues are −ρ+ and −ρ− with respective eigenvectors

(

0, 0, c,−is
)T
,
(

0, 0,−is, c
)T
, (4.10)

where we have introduced the angle δ defined by the relations

c := cos δ =
M̂3

√

(ρ−)2 + M̂2
3

, s := sin δ =
ρ−

√

(ρ−)2 + M̂2
3

. (4.11)
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In the unmagnetized case, δ = −π/4. We note here the useful relation ρ+ρ− = −M̂2
3 . With

the magnetic flux, B is now diagonalized by

J =











1 0 0 0

0 1 0 0

0 0 c −is
0 0 −is c











, (4.12)

giving

J−1
(

D̂±
0

)∗
D̂∓

0 J = −△∓ ± diag
(

0, M̂1,−ρ+,−ρ−
)

. (4.13)

The zero modes in the rotated basis are again in the kernel of (3.39) except due to the

magnetic flux, the rotated covariant derivatives are now

D̂′∓
1 =D̂∓

1 , (4.14)

D̂′∓
2 =cD̂∓

2 − isD̂∓
3 =

c√
2πR2

(

∂2 ± κz̄2̄
)

, (4.15)

D̂′∓
3 =cD̂∓

2 − isD̂∓
2 =

−is√
2πR2

(

∂2 ∓ κz̄2̄
)

, (4.16)

where the width defined in (3.15) is modified by the magnetic flux

κ = 2πR2
2

√

√

√

√

(

M̂1

2

)2

+ M̂2
3 . (4.17)

We now look for a zero mode among the eigenvectors of B. As in the unmagnetized case,

a mode with 0 or M̂1 B-eigenvalue has no non-trivial zero modes. On the other hand, a

−ρ+ eigenvector (0, 0, ϕ∓, 0)T will be a zero mode if

D̂′∓
2 ϕ∓ =

(

D̂′±
3

)∗
ϕ∓ =

(

D̂′±
1

)∗
ϕ∓ = 0. (4.18)

This is satisfied for

ϕ∓ = e∓πR2
1M̂1|z1|2ζ

(

z1
)

e∓κ|z2|2 , (4.19)

where ζ is a holomorphic function of z1 that will be determined momentarily. As in the

unmagnetized case, demanding that the wavefunction is normalizable locally selects the

solution that vanishes as
∣

∣z2
∣

∣→ ∞, and so only the solution for the −-sector survives.

In the unmagnetized case, the wavefunctions are required to be periodic along Σ = T
2.

However, the non-trivial magnetic flux results from a potential that is not periodic along

Σ, but is instead periodic only up to a gauge transformation

A
(

z1 + 1
)

=A
(

z1
)

+
π

Im τ1

(

M
(a)
1

M
(b)
1

)

Im dz1, (4.20a)

A
(

z1 + τ1
)

=A
(

z1
)

+
π

Im τ1

(

M
(a)
1

M
(b)
1

)

Im
(

τ̄1dz
1
)

. (4.20b)
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For a field ω∓ in the ∓-sector, this implies the quasi-periodicity conditions

ω∓(z1 + 1
)

=e
± iπ

Im τ1
I
(ab)
1 Im z1

ω∓(z1
)

, (4.21a)

ω∓(z1 + τ1
)

=e
± iπ

Im τ1
I
(ab)
1 Im(τ̄1z1)ω∓(z1

)

. (4.21b)

With this condition, there are
∣

∣

∣
I
(ab)
1

∣

∣

∣
independent solutions given in terms of ϑ-functions

with characteristics [46]

ϕj,−
0 = N j,−e−κ|z2|eπiI

(ab)
1 z1Im z1/Im τ1ϑ

[

j/I
(ab)
1

0

]

(

I
(ab)
1 z1, I

(ab)
1 τ1

)

, (4.22)

where j = 0, . . . ,
∣

∣

∣
I
(ab)
1

∣

∣

∣
− 1 and

ϑ

[

a

b

]

(

ν, τ
)

=
∑

l∈Z

eπi(a+l)2τe2πi(a+l)(ν+b). (4.23)

From (4.23) and using the fact that τ1 has a positive definite imaginary part and that we

have already established that this is only valid for the −-sector, we see that this converges

only if I
(ab)
1 > 0. That is, when I

(ab)
1 > 0, we have the (rotated) zero modes

Φ
′j,−
0 =

(

0, 0, ϕj,−
0 , 0

)T
, (4.24)

the functions ϕj,−
0 satisfying

(

D̂′+
1

)∗
ϕj,−

0 = D̂′−
2 ϕj,−

0 =
(

D̂′+
3

)∗
ϕj,−

0 = 0. (4.25)

Similar arguments show that if I
(ab)
1 < 0, there are zero modes in the +-sector of the

form

Φ
′+,j
0 =

(

0, 0, 0, ϕj,+
0

)T
, (4.26)

where

ϕj,+
0 = N j,+e−κ|z2|e−πiI

(ab)
1 z1Im z1/Im τ1ϑ

[

−j/I(ab)
1

0

]

(

−I(ab)
1 z1,−I(ab)

1 τ1
)

, (4.27)

and that they satisfy

(

D̂′−
1

)∗
ϕj,+

0 =
(

D̂′+
2

)∗
ϕj,+

0 = D̂′−
3 ϕj,+

0 = 0. (4.28)

Note that if I
(ab)
1 6= 0, then the zero modes consist of only +-sector modes or −-sector

modes and so the spectrum is chiral. Finally, the normalization constants are [46]

N j,∓ =





2κ

√

±2I
(ab)
1 Im τ1

πV1V2





1/2

. (4.29)
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To find the massive modes of this configuration, we again map the problem to a QSHO

problem. Again, due to the non-vanishing flux, we have a richer algebra

[(

D̂′±
1

)∗
, D̂∓

1

]

= ∓M̂1,
[(

D̂′±
2

)∗
, D̂∓

2

]

= ±ρ+,
[(

D̂′±
3

)∗
, D̂∓

3

]

= ±ρ−. (4.30)

Writing △∓ as in (3.48), we also have

[

△′∓
1 , D̂

′∓
1

]

= ∓ M̂1D̂
′∓
1 ,

[

△′∓
1 ,
(

D̂′±
1

)∗]
= ± M̂1

(

D̂′±
1

)∗
, (4.31a)

[

△′∓
2 , D̂

′∓
2

]

= ± ρ+D̂′∓
2 ,

[

△′∓
2 ,
(

D̂′±
2

)∗]
= ∓ ρ+

(

D̂′±
2

)∗
, (4.31b)

[

△′∓
3 , D̂

′∓
3

]

= ± ρ−D̂′∓
3 ,

[

△′∓
3 ,
(

D̂′±
3

)∗]
= ∓ ρ−

(

D̂′±
3

)∗
. (4.31c)

The zero modes then satisfy

△′∓
1 ϕ

j,∓
0 = ∓1

2
M̂1ϕ

j,∓
0 , △′∓

2 ϕ
j,∓
0 = −1

2
ρ+ϕj,∓

0 , △′∓
3 ϕ

j,∓
0 = −1

2
ρ−ϕj,∓

0 , (4.32)

giving

△∓ϕj,∓
0 = ∓ρ±ϕj,∓

0 . (4.33)

In the unmagnetized case, the problem of finding the massive modes was reduced to

the problem of a 2D quantum simple harmonic oscillator; the massive excitations along the

matter curve did not have this algebra available. However, when the index is non-vanishing,

all of the higher modes can be found using algebraic techniques. Indeed, focusing in the

−-sector we now have three lowering operators

i
(

D̂′+
1

)∗
, iD̂′−

2 , i
(

D̂′+
3

)∗
, (4.34)

and three raising operators

iD̂′−
1 , i

(

D̂′+
2

)∗
, iD̂′−

3 . (4.35)

Using these, we build the normalized eigenstates of △−.

ϕj,−
nlp =

√

1

n!l!p!M̂n
1 (ρ+)l (−ρ−)p

(

iD̂′−
1

)n[
i
(

D̂′+
2

)∗]l(
iD̂′−

3

)p
ϕj,−

0 . (4.36)

Similarly, in the +-sector we have the lowering operators

i
(

D̂′−
1

)∗
, i

(

D̂′−
2

)∗
, iD̂′+

3 , (4.37)

and the raising operators

iD̂′+
1 , iD̂′+

2 , i
(

D̂′−
3

)∗
. (4.38)

Then the eigenstates of △+ are,

ϕj,+
nlp =

√

1

n!l!p!
(

−M̂1

)n
(ρ+)l (−ρ−)p

(

iD̂′+
1

)n(
iD̂′+

2

)l[
i
(

D̂′−
3

)∗]p
ϕj,+

0 . (4.39)

The eigenvalues are

△′∓
1 ϕ

j,∓
nlp = ∓

(

1

2
+ n

)

M̂1, △′∓
2 ϕ

j,∓
nlp = −

(

1

2
+ l

)

ρ+, △′∓
3 ϕ

j,∓
nlp =

(

1

2
+ p

)

ρ−, (4.40)
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so

△∓ϕj,∓
nlp = −

(

±nM̂1 + lρ+ − pρ− ± ρ±
)

ϕj,∓
nlp. (4.41)

The higher modes also get a mass from the magnetic fluxes in B. The −-sector

spectrum, which is valid for M̂1 > 0, is

∣

∣m−
0;nlp

∣

∣

2
=

2

πα′

(

nM̂1 + (l + 1) ρ+ − p ρ−
)

Φ
′j,−
0;nlp =

(

ϕj,−
nlp, 0, 0, 0

)T
, (4.42a)

∣

∣m−
1;nlp

∣

∣

2
=

2

πα′

(

(

n+ 1
)

M̂1 + (l + 1) ρ+ − p ρ−
)

Φ
′j,−
1;nlp =

(

0, ϕj,−
nlp , 0, 0

)T
, (4.42b)

∣

∣m−
2;nlp

∣

∣

2
=

2

πα′

(

nM̂1 + lρ+ − p ρ−
)

Φ
′j,−
2;nlp =

(

0, 0, ϕj,−
nlp , 0

)T
, (4.42c)

∣

∣m−
3;nlp

∣

∣

2
=

2

πα′

(

nM̂1 + (l + 1) ρ+ − (p+ 1) ρ−
)

Φ
′j,−
3;nlp =

(

0, 0, 0, ϕj,−
nlp

)T
. (4.42d)

In the + sector, which is valid when the M̂1 < 0, we have

∣

∣m+
0;nlp

∣

∣

2
=

2

πα′

(

−nM̂1 + lρ+ −
(

p+ 1
)

ρ−
)

Φ
′j,+
0;nlp =

(

ϕj,+
nlp, 0, 0, 0

)T
, (4.43a)

∣

∣m+
1;nlp

∣

∣

2
=

2

πα′

(

−
(

n+ 1
)

M̂1 + lρ+ −
(

p+ 1
)

ρ−
)

Φ
′j,+
1;nlp =

(

0, ϕj,+
nlp , 0, 0

)T
, (4.43b)

∣

∣m+
2;nlp

∣

∣

2
=

2

πα′

(

nM̂1 +
(

l + 1
)

ρ+ −
(

p+ 1
)

ρ−
)

Φ
′j,+
2;nlp =

(

0, 0, ϕj,+
nlp , 0

)T
, (4.43c)

∣

∣m+
3;nlp

∣

∣

2
=

2

πα′

(

nM̂1 + lρ+ − p ρ−
)

Φ
′j,+
3;nlp =

(

0, 0, 0, ϕj,+
nlp

)T
. (4.43d)

We note that in each sector, there are
∣

∣

∣I
(ab)
1

∣

∣

∣ towers of massive modes, labeled by j,

that are independent in the sense that the raising and lowering operators do not move from

one tower to another. Using that the zero modes are orthogonal, it is straightforward to

show that the massive modes are orthonormal in that

〈

Φ
j,∓
λ ,Φj′,∓

λ′

〉

= δjj′δλλ′ . (4.44)

Finally, because of the identity ρ−ρ+ = −M̂2
3 , the z2 dependence of the unmagnetized

wavefunction ϕ∓
mnll is identical to that of the magnetized wavefunction ϕj,∓

nll up to the

modification of the width (4.17). The analogous statement for ϕj,∓
nlp and ϕj,∓

mnlp for l 6= p

does not hold.

The connection between these modes and the Hermite functions are briefly discussed

in appendix F.

4.2 Warped chiral wavefunctions

We consider again the warped zero modes satisfying D̂′∓X′j,∓ = 0. As discussed in the

previous subsection, in the unwarped case the magnetic flux gives rise to family replication

so that j runs from 0 to
(∣

∣

∣
I
(ab)
1

∣

∣

∣
− 1
)

. Although this multiplicity should not be effected by
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the warping, there is in general no obvious relationship between the family index j appear-

ing in the warped case and index appearing in the unwarped case. However, if we again

consider the special case of weak warping (3.66) then we can write a warped zero mode as

Xj,∓ =
∑

n

ǫnXj,∓
(n) , (4.45)

and relate the warped and unwarped family indices by taking X
j,∓
(0) = Φ

j,∓
0 . In general

however, the perturbations to this zero mode will involve modes from different families. It

is straightforward to confirm that the unwarped massive modes satisfy the same boundary

conditions as the warped zero mode, that is, they vanish as
∣

∣z2
∣

∣ → ∞ and satisfy the

quasi-periodicity conditions (4.21). We can then take the expansion

X
j,∓
(n) =

∑

λ,k

c
(n)jk,∓
λ Φ

k,∓
λ . (4.46)

Following the steps that lead up to (3.73), we find

c
(n)jk,∓
λ = − 2

πα′ |mλ|2
n
∑

m=1

(

−1
)m〈

Φ
k,∓
λ ,

(

D̂±
0

)∗
βmK∓X

j∓
(n−m)

〉

, (4.47)

where K∓ takes the same form as (3.68) using now (4.14). As in the unmagnetized

case, we take c
(n)jj,∓
0 = 0 for n > 0. Note that the method also does not determine the

coefficients c
(n)jk,∓
0 for k 6= j as is typical from degenerate perturbation theory. However,

because the number of zero modes is a topological number, it will not be modified by

inclusion of warping effects10 and we can find linear combinations of the warped zero

modes that additionally satisfy c
(n)jk,∓
0 = 0. With this choice, we now revisit the examples

of section 3.4 to explore how warping will effect chiral matter wavefunctions. The exact

solutions presented in appendix D apply in the magnetized case as well.

Constant warping. The case of constant warping again provides a toy example to

demonstrate the perturbative expansion on massive modes. Focusing once more on the

−-sector, from (4.47), we have

c
(1)jk,−
λ =

2

πα′
∣

∣mλ

∣

∣

2

〈

Φ
k,−
λ ,

(

D̂+
0

)∗
βK−Φ

j,−
0

〉

. (4.48)

The right-hand side involves

(

D̂+
0

)∗
βK−Φ

j,−
0 = −isc











0
(

D̂′+
1

)∗
(

D̂′+
2

)∗
(

D̂′+
3

)∗











βD̂′−
3 ϕj,−

0 = isc











0

0

M3ϕ
j,−
011

−ρ−ϕj,−
0











, (4.49)

10More precisely, it is the net chirality of the zero modes that is related to the instanton number, and

in principle in the presence of warping there could be additional vector-like zero modes. However, at least

in the weak-warping limit we view it as reasonable to assume that the number of massless modes does not

become modified.
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where for the second equality we have taken β = 1. From (4.42), we find

X
′j,−
(1) = − iM̂3

κ̂2

{

M̂3Φ
′j,−
2;011 − ρ−Φ

′j,−
3;000

}

, (4.50)

where

κ̂ =
2κ

2πR2
2

= ρ+ − ρ−. (4.51)

As expected, the warping does not cause the vector boson or matter curve Wilson line

components to be mixed into the zero mode. Furthermore, since the warping is constant,

the warping does not cause the families to intermix; the jth zero mode is perturbed only

by the addition of other members of the jth tower of massive modes.

In the unrotated basis, the solution can be written through O (ǫ) as

χj,−
2 =

{

c+
ǫM̂3

κ̂2

[

(

cM̂3 + sρ−
)

− 2cM̂3κ
∣

∣z2
∣

∣

2
]}

ϕj,−
0 , χj,−

3 =−i
{

s− 2ǫsM̂2
3

κ̂2
κ
∣

∣z2
∣

∣

2
}

ϕj,−
0 .

(4.52)

As in the unmagnetized case, the constant warping can be absorbed into a redefini-

tion of R3 and hence the equations of motion admit an exact solution. Taking χ∓
0 = 0

and (3.12) where the covariant derivatives are now (4.2), we again find from the D-term

equation (3.17). The exact
∣

∣

∣I
(ab)
1

∣

∣

∣ solutions are f j,∓ = 1
z2ϕ

j,∓
w where

ϕj,∓
w = N j,∓

w e−κw|z2|e±πI
(ab)
1 z1Im z1/Im τ1ϑ

[

±j/I(ab)
1

0

]

(

±I(ab)
1 z1,±I(ab)

1 τ1
)

, (4.53)

and the warped inverse width is

κw = 2πR2
2

√

√

√

√

(

M̂1

2

)2

+ e−4αM̂2
3 . (4.54)

Then,

χj,∓
2 = −

√
2πR2

(

κw

2πR2
2

+
1

2
M̂1

)

ϕj,∓
w , χj,∓

3 = −i
√

2πR2M̂3ϕ
j,∓
w . (4.55)

After normalizing and then expanding in a power series in ǫ, we find a result that agrees

with the perturbative analysis (4.52).

Constant warping along the matter curve. We can consider again an example where

the warp factor varies along X6 but is constant along the matter curve

β = L−2
∣

∣z2
∣

∣

2
. (4.56)

The inclusion of z3 dependence can be handled as in appendix C. As in the magnetized

case, this warp factor can be expressed in terms of the ladder operators. Indeed,

z2 = −
√

2πR2

2κ

{

1

c

(

D̂′+
2

)∗
+
i

s

(

D̂′+
3

)∗
}

, z̄2̄ =

√
2πR2

2κ

{

1

c
D̂′−

2 − i

s
D̂′−

3

}

, (4.57)
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giving

β = − 2πR2
2

4κ2L2

{

1

c2
(

D̂′+
2

)∗(
D̂′−

2

)

+
1

s2
(

D̂′+
3

)∗
D̂′−

3 +
i

sc

[

(

D̂′+
3

)∗
D̂′−

2 −
(

D̂′+
2

)∗
D̂′−

3

]}

. (4.58)

Then,

βϕj,−
nlp = − i

(

2πR2
2

)

M̂3

4κ2L2sc

{

√

(l + 1) (p+ 1)ϕj,−
n,l+1,p+1 − i (l + p+ 1)ϕj,−

nlp −
√

lpϕj,−
n,l−1,p−1

}

.

(4.59)

The resulting first order correction is

X
′j,−
(1) =

M̂3
(

2πR2
2

)

κ̂3L2

{

M̂3Φ
′j,−
2;022 − 2iM̂3Φ

′j,−
2;011 − ρ−Φ

′j,−
3;011 + 2iρ−Φ

′j,−
3;000

}

. (4.60)

In the unrotated basis and through O (ǫ), this gives

χj,∓
3 =

{

c+
ǫM̂3

2πR2
2κ̂

3L2

[

(

cM̂3 + sρ−
)

+ 2sρ−κ
∣

∣z2
∣

∣

2 − 2cM̂3κ
2
∣

∣z2
∣

∣

4
]}

ϕj,∓
0 , (4.61a)

χj,∓
4 = − i

{

s− ǫM̂3

2πR2
2κ̂

3L2

[

2cρ−κ
∣

∣z2
∣

∣

2
+ 2sM̂3κ

2
∣

∣z2
∣

∣

4
]}

ϕj,∓
0 . (4.61b)

As in the previous case, the vector boson and matter-curve Wilson line components are

not excited when warping is introduced and the warping does not mix different families.

This warp factor also admits a relatively simple exact solution following from

f j,∓ =
N j,∓

w

z2
Ai
(

a+ b
∣

∣z2
∣

∣

2)
e±πiI

(ab)
1 z1Im z1/Im τ1ϑ

[

±j/I(ab)
1

0

]

(

±I(ab)
1 z1,±I(ab)

1 τ1
)

, (4.62)

where, as in the unmagnetized case, a = κ2/3L1/3ǫ−2/3 and b = κ2/3ǫ1/3L−2/3. When

correctly normalized, the ǫ expansion agrees with (4.61).

Considering general positive powers

β = L−2r
∣

∣z2
∣

∣

2r
, (4.63)

we have, as in the unmagnetized case (3.102)

βϕj,−
nlp =

(

1

2κL2

)r r
∑

s=0

is
(

r

s

)

√

(l + s)!

l!

(p+ s)!

p!

(l + p+ r)!

(l + p+ s)!
ϕj,−

n,l+s,p+s, (4.64)

where again we use the magnetized width given in (4.17). From this we find the first order

correction

X
′j,−
(1) =

iM̂3

κ̂2
(r + 1)!

(

2πR2
2

κ̂L2

)r r
∑

s=0

is
(

r

s

)

1

s+ 1

{

M̂3Φ
′j,−
2;0,s+1,s+1 − ρ−Φ

′j,−
3;0ss

}

. (4.65)

Finally, for a polynomial warp factor (3.105), we similarly have

X
′j,−
(1) =

iM̂3

κ̂2

∑

s

Cs

{

M̂3Φ
′j,−
2;0,s+1,s+1 − ρ−Φ

′j,−
2;0ss

}

, (4.66)

with the coefficients Cs are again given by (3.106) after the definition of κ given by (4.17).
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Variable warping along the matter curve. Since the warp factor is neutral under

the residual gauge group, even in the presence of magnetic flux it is periodic on the matter

curve Σ. We then reconsider a warp factor of the form (3.111) with constant β̃nm. The

first order corrections to the −-sector wavefunctions follow from

− isc
∑

mn

β̃mn











0
(

D̂′+
1

)∗
(

D̂′+
2

)∗
(

D̂′+
3

)∗











hmnD̂
′−
3 ϕj,−

0 . (4.67)

Unlike the previous warp factors, which depended only on z2 and z̄2, this warp factor

cannot be expressed in terms of only the raising and lowering operators acting on the −-

sector. That is, in the −-sector, the only ladder operators involving z1 and z̄1̄ are i
(

D̂′+
1

)∗

and iD̂′−
1 . Neither z1 nor z̄1̄ can be written in terms of these operators without using their

conjugates which do not act naturally on −-sector. This was also true in the unmagnetized

case, but there we had the simple fact that

hm′n′ϕ∓
mnlp = ϕ∓

m+m′,n+n′,lp. (4.68)

However, with magnetic flux, the fact that the warp factor is periodic while the wavefunc-

tion is quasi-periodic makes this relationship a little more involved.

Let us for instance consider the bottom component of (4.67). We have that

− iscβ̃mn

(

D̂′+
3

)∗
hmnD̂

′−
3 ϕj,−

0 = −iscρ−β̃mnhmnϕ
j,−
0 . (4.69)

Since hmn is periodic, hmnϕ
j,−
0 is quasi-periodic and so admits an expansion in terms of

the ϕk,−
q00 . Unlike the cases where the warp factor did not vary over the matter curve, we

expect that the warping will mix different families and so take an expansion

hmnϕ
j,−
0 =

∑

q,k

Bkj,−
mnqϕ

k,−
q00 . (4.70)

We show in appendix E that if n = k − j mod I
(ab)
1 , then

Bkj,−
mnq =

(

itmn

)q

M̂ q
1 q!

e∓m̂2
mnV1/4π2I

(ab)
1 e∓πim(k+j)/2I

(ab)
1 , (4.71)

while otherwise Bkj,−
mnq vanishes. Here tmn and m̂2

mn are defined in (3.114) and (3.62).

Similar expansions apply for the other entries and we have the O (ǫ) correction

X
′j,−
(1) = −isc

∑

qmn,k

Bkj,−
qmn

qM̂1 + κ̂

{
√

−lM̂1ρ−Φ
′k,−
1;(q−1);10 + M̂3Φ

′k,−
2;q11 − ρ−Φ

′k,−
3;q00

}

. (4.72)

Although the vector boson component remains unexcited, in contrast to the previous cases,

the warped zero mode now receives a contribution from the Wilson line along the matter

curve. Additionally, the warping causes the warped zero mode for one family to involve

the unwarped zero modes of other families.
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5 Warped effective field theory

A direct application of computing open string wavefunctions is to determine 4d effective

action describing the low-energy dynamics of the corresponding fields. This can be done

by way of a standard dimensional reduction of the fermionic (3.21) and bosonic (B.1)

actions from the worldvolume W to R
1,3. The purpose of this section is to perform such

dimensional reduction in terms of the warped wavefunctions for matter fields at D7-brane

intersections. However, unlike in the adjoint case analyzed in [40], the wavefunctions for

bifundamental matter depend on the detailed form of the warp factor and the intersection,

and so they will differ from one intersecting D7-brane model to another. We will therefore

limit ourselves to describe some general features on the warped effective field theory, leaving

a more detailed case-by-case study for future work.

5.1 Warped non-chiral matter metrics

Let us first consider the unwarped case without any magnetic flux. The zero mode is a

mixture of transverse fluctuations and one of the Wilson lines. The 4d kinetic terms for

the open string fields follows from the DBI action (B.1b). In particular, after restoring the

axio-dilaton we have

SDBI
D7 ∋ Skin = − 1

g2
8

∫

W
d8x

√

g̃
(

Im τ
)−1

tr

{

1

2
ηµνgabFµaFνb +

1

2
ηµνgijDµΦiDνΦ

j

}

= − 2

λg2
8

∫

W
d8x

√

g̃
(

Im τ
)−1

tr

{

∂µa2∂
µā2̄ + ∂µφ∂

µφ̄

}

, (5.1)

where in the second line we have used the parametrization (3.1) and have truncated to

quadratic order in fluctuations.

We can move to the 4d Einstein frame by the Weyl transformation

ηµν → V0

V ηµν , (5.2)

where V is the volume of the internal space X6 with fiducial value V0. Such a Weyl

transformation gives a canonical Einstein-Hilbert action with 4d gravitational constant

κ4 = κ10V−1/2
0 where the 10d gravitational constant is given by 2κ2

10 = 8π3λ4g2
s . The 4d

kinetic term for the bifundamental matter in this frame is then

Skin
4D = −

∫

R1,3

d4x tr

{

K−
σσ̄∂µσ

−(∂µσ−
)†

+ K+
σσ̄∂µσ

+
(

∂µσ+
)†
}

, (5.3)

where the Kähler metric is

K∓
σσ̄ =

2λgs
κ2

4V

∫

S4

d4y
√

g̃
(

Im τ
)−1(

X∓)∗ · X∓

=
2N 2λgs
κ2

4V

∫

S4

d4y
√

g̃
(

Im τ
)−1

e−2κ|z2|2 , (5.4)

in which N is a normalization constant following from (3.16). Note that although this is

an integral over S4, due to the exponential localization the integral is sensitive only to field
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values near z2 = 0. Indeed, if we take the α′ → 0 limit while keeping the physical volumes

α′Vm constant, then the norm-squared of the internal wavefunction becomes a δ-function,

2κIm τ2
πV2

e−2κ|z2|2 → δ2
(

z2, z̄2
)

√

g̃T2
2

, (5.5)

where the δ-function has been normalized according to
∫

d2z2 δ2
(

z2, z̄2
)

= 1. (5.6)

The Kähler metric for bifundamental matter localized on intersecting D-branes has

previously been calculated via dimensional reduction and worldsheet methods [87–93]. For

the moment, instead of two stacks of intersecting branes specified by (2.27) consider a pair

of D7-branes filling Σ and intersecting at angles πθ2,3 in the z2,3 plane. Then from [90],

the metric for the bifundamental matter is

K̆σσ̄ =
V1/2

1

κ2
4V1/2Im τ

2
∏

m=1

(

Im τm
)−θm

√

Γ (θm)

Γ (1 − θm)
, (5.7)

where Γ is the usual Γ-function and we have suppressed numerical coefficients. To compare

our result to (5.7), we first perform a coordinate redefinition so that the geometry of (2.27)

is similar to the geometry used to derive (5.7). To do so, first specialize to the case where

τ2 = τ3 = i, and then define a new complex structure by

u1 = z1, u2 = y5 + iy6, u3 = y8 + iy9. (5.8)

The two stacks of branes then intersect at the small angle 2 arctan
R3I

(ab)
3

2R2
∼ M̂3 in each

of the u2 and u3 planes. Note that the product V2V3 takes the same value in either set of

coordinates. Then (5.7) gives

K̆σσ̄ ∼ 1

κ2
4V

1/2
2 V1/2

3 M̂3Im τ
. (5.9)

On the other hand, (5.4) gives

Kσσ̄ ∼ 1

κ2
4V2V3M̂3Im τ

(5.10)

where we have used the fact that κ ∝ M̂3V2/Im τ2. Evidently, in order for (5.4) to agree

with (5.7), we must perform a field redefinition σ → V1/4
2 V1/4

3 σ. Since in our analysis we

have treated the closed string background as fixed, such a field redefinition does not change

the behavior of the wavefunctions.

In the warped case, the metrics appearing in (5.1) are replaced with the warped metrics

and the volume with the warped volume

Vw =

∫

X6

d6x
√

g̃e−4α, (5.11)
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giving

K∓
σσ̄ =

2λgs
κ2

4Vw

∫

S4

d4y
√

g̃
(

Im τ
)−1(

X∓)∗ ·
(

e#αX∓), (5.12)

where we have defined

e#α = diag
(

e−4α, 1, 1, e−4α
)

, (5.13)

and used the fact that the gauge boson component vanishes. We can then consider the

weak warping approximation (3.66). Using the fact that the integral over S4 is proportional

to the inner product and using the normalization condition
〈

X∓,Φ∓
0

〉

=
〈

X∓
(0),Φ

∓
0

〉

, we

get that first-order correction to the warped Kähler metric is

K∓
σσ̄(1) =

2λgsǫ

κ2
4V

∫

S4

d4y
√

g̃
(

Im τ
)−1(

χ∓
3(0)

)∗
β
(

χ∓
3(0)

)

− δV
V K∓

σσ̄(0), (5.14)

where χ∓
m(0) and K∓

σσ̄(0) are the unwarped wavefunction and Kähler metric (5.4) and δV :=

Vw − V ∼ ǫ. Note that if we now take (5.5), then through O (ǫ)

K∓
σσ̄ ∼ (V1 + V1,w)

κ2
4VwM̂3Im τ

, (5.15)

where

V1,w =

∫

Σ
d2y
√

g̃e−4α, (5.16)

is the warped volume of the matter curve. The fact that it is the average of the unwarped

volume and warped volume of the matter curve that appears is a result of the fact that

the bifundamental zero modes are mixtures of the deformation modulus and a Wilson line;

in the zero angle case, the kinetic term for the former involves the warped volume of the

4-cycle while for the latter it is the unwarped volume that appears [40].

Although (5.14) already takes into account some non-trivial warping modifications, it

uses only the unwarped zero modes. The O (ǫ) corrections to the warped zero mode provide

corrections to the Kähler metric at O
(

ǫ2
)

,

K∓
σσ̄(2) = (5.17)

=
2λgsǫ

2

κ2
4

∫

S4

d4y
√

g̃
(

Im τ
)−1
{

(

χ∓
3(1)

)∗
βχ∓

3(0)+
(

χ∓
3(0)

)∗
βχ∓

3(1)+
(

X∓
(1)

)∗ · X∓
(1)

}

− δV
V K∓

σσ̄(1).

5.2 Warped chiral matter metrics

Let us again first consider the unwarped (chiral) case. There are
∣

∣

∣I
(ab)
1

∣

∣

∣ zero modes and,

when I
(ab)
1 > 0, we write the −-sector zero mode as

X− =
(

0, 0, c,−is
)T
∑

j

σj,−(xµ
)

ϕj,−
0

(

xa
)

, (5.18)

where ϕj,−
0 is given in (4.22). A similar expansion applies for the +-sector. Since ϕj,∓

0 is

orthogonal to ϕj′,∓
0 for j 6= j′, we find in the 4d Einstein frame

Skin
4d = −

∫

R1,3

d4x tr

{

∑

j

K∓
jj̄
∂µσ

j,∓(∂µσj,∓)†
}

, (5.19)
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where the Kähler metric is

K∓
jj̄

=
2λgs
κ2

4V

∫

S4

d4y
√

g̃
(

Im τ
)−1(

ϕj,∓
0

)∗
ϕj,∓

0 . (5.20)

Although both the +- and −-sectors are included in (5.19), as discussed in section 4 only

one sector is present for I
(ab)
1 6= 0. From (4.29) we get

K∓
jk̄

= δjk̄
2λgsN 2

κ2
4V3

π

2κ Im τ2

√

±2I
(ab)
1 Im τ1

. (5.21)

This result cannot be directly compared to the kinetic terms appearing in [87, 89, 90]

since there the assumption was that in the T-dual D9-picture, where the intersection

is turned into magnetic flux, Fmn̄ = 0 if m 6= n, a relationship which is not satisfied

by the angle (2.27) and flux (2.30) (see (4.5)). However, the analysis was reconsidered

for a more general magnetic flux and angles in [93]. The angular dependence is again

recovered by (5.7) but replacing the angles θi with the eigenvalues of B. In terms of these

eigenvalues, (5.21) behaves as

K∓
jk̄

∼ 1

(ρ+ − ρ−)
√

M̂1

. (5.22)

On the other hand the analysis of [93] suggests

K̆∓
jk̄

∼ 1

M̂3

√

M̂1

. (5.23)

Although the angular dependence agrees in the case where M̂1 can be neglected in

comparison to M̂3, the fields again need to be redefined as was done in the unmagnetized

case in order to agree with (5.23).

As discussed in section 4.2, when the warp factor varies non-trivially along the matter

curve, the warping will generally mix together different families. Although this mixing

occurred at the first order correction and so occurs at second order in the kinetic terms,

there is another mixing that occurs at first order. We have,

K∓
jk̄

=
2λgs
κ2

4Vw

∫

S4

d4y
√

g̃
(

Im τ
)−1(

Xk,∓)∗ ·
(

e#αXj,∓), (5.24)

where Xj,∓ is now the warped zero mode. The first order correction to the Kähler metric

is then

K∓
jk̄(1)

=
2λgsǫ

κ2
4V

∫

S4

d4y
√

g̃
(

Im τ
)−1(

χk,∓
3(0)

)∗
βχj,∓

3(0) −
δV
V K∓

jk̄(0)
. (5.25)

The warp factor β will generally admit a Fourier transformation (3.111). As shown in

appendix E, the Fourier mode hmn will connect different families ϕj,∓
0 and ϕk,∓

0 if k − j =

n mod I
(ab)
1 . Thus for generic warping Kjk̄ is not simultaneously diagonalizable with

its unwarped counterpart. Therefore in the construction of phenomenologically viable

compactifications, one must carefully take into account the effects of warping; a model
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that is free of dangerous flavor-changing neutral currents in the unwarped case may not

automatically be so once warping is taken into account.

The problem of diagonalization becomes even more complex once we move to higher

order in perturbation theory. The second order correction is

K∓
jk̄(2)

= (5.26)

= −δVV K∓
jk̄(1)

+
2λgsǫ

2

κ2
4V

∫

S4

d4y
√

g̃
(

Im τ
)−1
{

(

χk,∓
3(0)

)∗
βχj,∓

3(1)+
(

χk,∓
3(1)

)∗
βχj,∓

3(0)+
(

X
k,∓
(1)

)∗ · Xj,∓
(1)

}

.

5.3 D-terms

An interesting way of interpreting the warped chiral wavefunctions obtained in the previous

sections is by considering how they affect the D-term at the level of the 4d effective field

theory. As discussed in subsection 3.1, one obtains such D-term by plugging the chiral

wavefunctions into (2.20). For weak warping one may write (2.23) schematically as

Dα = D0 + ǫDβ = D0 + ǫλ2

∫

S4

β[Φ, Φ̄] (5.27)

where we have used (3.66). Here D0 stands for the D-term with trivial warp factor, while

Dβ is an extra contribution arising from the non-trivial piece of the warping β.

From the viewpoint of the unwarped spectrum, Dβ is a perturbation of theD-term that

spoils its usual structure. Indeed, if we plug in the full tower of massive, unwarped modes

φ∓m =
∑

λ

σ∓λ
(

xµ
)

χ∓
m

(

ya
)

(5.28)

into D0, we obtain the following expression at quadratic order in fluctuations

D = − λ2

2π2Im τ2

∑

j,j′,λ,λ′

{

〈

X
j,−
λ ,Xj′,−

λ′

〉

(

σj,−
λ σj′,−†

λ′ 0

0 −σj′,−†
λ′ σj,−

λ

)

−
〈

X
j,+
λ ,Xj′,+

λ′

〉

(

σj,+†
λ σj′,+

λ′ 0

0 −σj′,+
λ′ σj,+†

λ

)

}

= − λ2

2π2Im τ2

∑

j,λ

(

σj,−
λ σj,−†

λ − σj,+†
λ σj,+

λ 0

0 σj,+
λ σj,+†

λ − σj,−†
λ σj,−

λ

)

, (5.29)

where in the second equality we have used the orthogonality property of the unwarped

zero modes and canonically normalized our fields.

For a non-vanishing ǫ, the operator Dβ will spoil this diagonal structure and, at this

quadratic order in fluctuations, induce a mixing between unwarped massive modes with

different index λ. In order to recover the diagonal structure (5.29) of the unwarped case,

one needs to consider a new set of modes, which are a particular linear combination of the

unwarped modes χ±
m. Such new set of modes are nothing but the linear combination of

unwarped zero modes described in sections 3.2 and 4.2, which add up to build the warped

zero and massive modes in terms of the unwarped ones.
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Indeed, notice that the warped D-term (5.27) at quadratic order in fluctuations can

be written as

D = − λ2

2π2Im τ2

∑

j,j′,λ,λ′

{

〈

X
j,−
λ , e#αX

j′,−
λ′

〉

(

σj,−
λ σj′,−†

λ′ 0

0 −σj′,−†
λ′ σj,−

λ

)

−
〈

X
j,+
λ , e#αX

j′,+
λ′

〉

(

σj,+†
λ σj′,+

λ′ 0

0 −σj′,+
λ′ σj,+†

λ

)

}

, (5.30)

where e#α is defined in (5.13). Since the equations of motion for the warped massive modes

are

iD̂∓
wΦ∓

λ =

√

πα′

2
mλe

#αΦ±∗
λ , (5.31)

where

D∓
w =











0 D̂∓
1 D̂∓

2 e−4αD̂∓
3

−D̂∓
1 0

(

D̂±
3

)∗ −
(

D̂±
2

)∗

−D̂∓
2 −

(

D̂±
3

)∗
0

(

D̂±
1

)∗

−e−4αD̂∓
3

(

D̂±
2

)∗ −
(

D̂±
1

)∗
0











(5.32)

and this can be expressed as a Sturm-Liouville problem

(

D̂±
w

)†[
e−#αD̂∓

wΦ∓
λ

]

=
πα′

2

∣

∣mλ

∣

∣

2
e#αΦ∓

λ , (5.33)

this guarantees that the modes are orthogonal for different values of λ for the scalar product

in (5.30). We can then choose an orthogonal basis for the family index j and thus we get

D = − λ2

2π2Im τ2

∑

j,λ

{

〈

X
j,−
λ , e#αX

j,−
λ

〉

(

σj,−
λ σj,−†

λ 0

0 −σj,−†
λ σj,−

λ

)

−
〈

X
j,+
λ , e#αX

j,+
λ

〉

(

σj,+†
λ σj,+

λ 0

0 −σj,+
λ σj,+†

λ

)

}

. (5.34)

Note that the inner product appearing in (5.34) is proportional to the Kähler metric ap-

pearing in the previous subsection and so, after canonically normalizing, this gives the

usual D-term expression in 4-dimensions.

Hence, we find that the effect of (weak) warping can be considered as a small perturba-

tion of the D-term in the 4d effective field-theory. That is, if φ∓m were expanded in terms of

the unwarped massive modes, then (5.30) would not simplify to (5.34) as the modes would

no longer be orthogonal. In particular, the unwarped zero mode no longer has a canonical

D-term as
〈

X̃
j,−
0 , e#αX̃

j,−
λ6=0

〉

6= 0, where X̃λ here stand for the unwarped massive modes.

This warping-induced mixing between the unwarped zero and massive modes provides a

4d effective description of the expansion warped modes in terms of the unwarped ones.

6 Conclusions and outlook

In this paper we have analyzed the wavefunctions for the chiral bifundamental degrees

of freedom resulting from the open strings stretching between intersecting D7-branes in a
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warped compactification. While for arbitrary warp factors the equations of motion do not

seem to admit simple analytic solutions, we propose a method for solving the wavefunctions

systematically in the case of weak warping. Expanding the warped zero mode in terms

of the massive modes of the unwarped case, we can solve for the expansion coefficients

order by order in perturbation theory, a procedure which we have illustrated with a few

simple examples. This analysis was performed both with and without magnetic flux; the

latter case naturally gives rise to a chiral spectrum.11 Such wavefunctions are necessary for

the derivation of a warped effective action for chiral fermions via dimensional reduction.

Indeed, built on our results we take some first steps in this direction, extending our earlier

work [40] for the adjoint matter fields. Our results can for instance be applied to the semi-

realistic MSSM-like models of [94, 95], where the MSSM sector arises from intersecting

D7-branes, as well as other type IIB models based on intersecting D7-branes.

In [40], we were able to infer the warping corrections to the full Kähler potential

involving the adjoint open string matter fields and the associated closed string degrees of

freedom, using the warped kinetic terms for the adjoint matter [40] and the related terms

for the closed string modes [36] and comparing with the unwarped results in [96, 97]. This

approach reproduced the warping modifications to the effective action found in [37, 38]. It

would be interesting to perform a similar analysis here, though even in the unwarped case,

the Kähler potential for chiral matter is only known through quadratic order.

To illustrate our approach with explicit expressions, we have worked within a local

framework and oftentimes considered the D7-branes intersection locus Σ to be a two-torus.

A natural extension of our analysis would be to consider a more general matter curve, as well

as a more global description of the warped modes. In the Abelian case, the transverse scalar

Φ is globally described by a section in the normal bundle and so admits an expansion [96]

Φ = ΦA
(

xµ
)

sA

(

ya
)

+ Φ̄Ā
(

xµ
)

s̄Ā

(

ya
)

, (6.1)

in which {sA} is a basis of the cohomology group H
(2,0)

∂̄
(S4). As in our framework, in the

non-Abelian case Φ is promoted to an adjoint-valued field and the condition of ∂̄-closure

replaced with ∂̄A-closure [56], and a non-trivial intersection is also captured by giving a vev

analogous to (2.27). All these similarities suggest that our explicit expressions of warped

zero modes in terms of unwarped modes should hold for general intersecting D7-branes in

Calabi-Yau compactifications, even when the matter curve is not a two-torus. A further

generalization would be to consider not just the intersection of D7-branes, but the intersec-

tion of two general 7-branes described by more generic singularities of the F-theory fiber.

Although in [55], an effective six-dimensional action for such a matter curve was presented,

the action did not include the effects of warping. While, as discussed in section 2, such

a general intersection cannot be simply described as Higgsing the DBI action, we have

argued that the corrections that we found for the D-term equations of motion are still valid

in the varying dilaton case, and could in principle also hold for general F-theory setups.

Finally, as in many models the warping is sourced by bulk fluxes, it would be useful to

explore the influence of these fluxes on the open string wavefunctions, following [62, 63].

11In the absence of worldvolume flux, chiral fermions can still be obtained if the 7-branes are placed at

a singularity. See [40] for some examples of this kind.
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As an application of the techniques presented here, it would be useful to revisit the

problem of calculating the SUSY-breaking soft terms in flux compactifications. Although

such soft terms were obtained from worldsheet techniques in some previous works [90, 91],

in order to take into account non-trivial RR backgrounds, one would have to resort to a

dimensional reduction analysis as in [98, 99]. Such an analysis, which requires knowledge

of the bi-fundamental wavefunctions, would allow for an extension of the holographic

description of gauge mediation [99, 100] to include an explicit realization of visible sector

matter fields. Finally, the wavefunctions of the chiral bifundamental matter so obtained

may also find applications in other strong coupling extensions of the Standard Model,

such as technicolor like theories.
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A Fermion conventions

We make use of a Weyl basis for the γ-matrices on R
1,3

γµ =

(

0 σ̄µ

σµ 0

)

, (A.1)

where σµ = (I2,σ) and σ̄µ = (−I2,σ). The 4d chirality operator is then

γ(4) = iγ0γ1γ2γ3 =

(

I2 0

0 −I2

)

. (A.2)

We also take the SO (6) γ-matrices

γ̃1 =σ1 ⊗ I2 ⊗ I2, γ̃4 =σ2 ⊗ I2 ⊗ I2,

γ̃2 =σ3 ⊗ σ1 ⊗ I2, γ̃5 =σ3 ⊗ σ2 ⊗ I2, (A.3)

γ̃3 =σ3 ⊗ σ3 ⊗ σ1, γ̃6 =σ3 ⊗ σ3 ⊗ σ2,
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and have the associated chirality operator

γ(6) = −iγ̃1γ̃2γ̃3γ̃4γ̃5γ̃6 = σ3 ⊗ σ3 ⊗ σ3. (A.4)

In terms of these, we define the SO (1, 9) Γ-matrices

Γµ = γµ ⊗ I8, Γm = γ(4) ⊗ γ̃m−3. (A.5)

The associated chirality operator and Majorana matrix are then

Γ(10) =Γ0 · · ·Γ10 = γ(4) ⊗ γ̃(6), (A.6)

B =Γ2Γ7Γ8Γ9 =

(

0 −σ2

σ2 0

)

⊗ σ2 ⊗ iσ1 ⊗ σ2. (A.7)

The Fermionic field θ appearing in (3.18) and elsewhere is a 32-component 10d spinor

satisfying the Majorana and Weyl conditions θ = B∗θ∗ and θ = −Γ(10)θ. We thus consider

spinors of the form

θ0 =ψ0

(

ξ+
0

)

⊗ η−−− − i
(

ψ0

)∗
(

0

σ2ξ
∗
+

)

⊗ η+++, (A.8a)

θ1 =ψ1

(

ξ+
0

)

⊗ η−++ + i
(

ψ1

)∗
(

0

σ2ξ
∗
+

)

⊗ η+−−, (A.8b)

θ2 =ψ2

(

ξ+
0

)

⊗ η+−+ − i
(

ψ2

)∗
(

0

σ2ξ
∗
+

)

⊗ η−+−, (A.8c)

θ3 =ψ3

(

ξ+
0

)

⊗ η++− + i
(

ψ3

)∗
(

0

σ2ξ
∗
+

)

⊗ η++−. (A.8d)

Here,

ηǫ1ǫ2ǫ3 = ηǫ1 ⊗ ηǫ2 ⊗ ηǫ3, η+ =

(

1

0

)

, η− =

(

0

1

)

. (A.9)

Note that σ3ηǫ = ǫηǫ. Defining the complex coordinates as

zm = ym + iym+3, (A.10)

we have

γ̃1 =σ+ ⊗ I2 ⊗ I2, γ̃1̄ =σ− ⊗ I2 ⊗ I2,

γ̃2 =σ3 ⊗ σ+ ⊗ I2, γ̃2̄ =σ3 ⊗ σ− ⊗ I2, (A.11)

γ̃3 =σ3 ⊗ σ3 ⊗ σ+, γ̃2̄ =σ3 ⊗ σ3 ⊗ σ−,

with

σ+ :=

(

0 2

0 0

)

, σ− :=

(

0 0

2 0

)

. (A.12)

which satisfy

σ±η± = 0, σ±η∓ = 2η±. (A.13)
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B Equations of motion from the Myers action

In this appendix we check that the equations of motion for the warped zero mode that

were deduced by imposing the BPS conditions (3.10) imply those that follow from the DBI

and CS actions. In the 10d Einstein frame, the non-Abelian generalization of this action,

which is appropriate for describing multiple D7-branes, is [48]

SD7 =SDBI
D7 + SCS

D7 , (B.1a)

SDBI
D7 = − τD7

∫

W
d8xStr

{

(Im τ)−1
√

detMαβ detQi
j

}

, (B.1b)

SCS
D7 =τD7

∫

W
Str

{

P

[

eiλιΦιΦC ∧ eB2

]

eλF2

}

, (B.1c)

where τ is the axio-dilaton, C is the formal sum of all of the RR-potentials, B2 is the NS-NS

2-form potential, and F2 =
(

d − iA∧
)

A is the worldvolume field strength and λ = 2πα′.

In terms of the deformation moduli Φi = λ−1Xi, the tensor Q is given by

Qi
j = δi

j − iλ
[

Φi,Φk
](

Im τ)−1/2Ekj , (B.2)

where the NS-NS rank 2 tensor is the sum of the metric and the NS-NS 2-form potential

EMN = gMN +
(

Im τ
)1/2

BMN , (B.3)

with i, j transverse to the brane. In terms of these

Mαβ = P
[

Eαβ +
(

Im τ
)−1/2

Eαi

(

Q−1 − δ
)ij
Ejβ

]

+ λ
(

Im τ
)1/2

Fαβ , (B.4)

where the transverse indices are raised and lowered with E−1 and E. ιΦ denotes the interior

product which acts on a 1-form ω as

ιΦω = Φiωi. (B.5)

Note that since generally the Φi are non-commuting, ι2Φ does not identically vanish. On

the worldvolume, the closed-string fields are to be interpreted as a non-Abelian Taylor

expansion,

Ψ =

∞
∑

n=0

λn

n!
Φi1 · · ·Φin

[

∂i1 · · · ∂inΨ
]

Xi=0
, (B.6)

and pullbacks involve the covariant derivative

P
[

vα

]

= vα + λ
(

DαΦi
)

vi. (B.7)

Str indicates that the trace is to be taken only after symmetrization over Fαβ , DαΦi,
[

Φi,Φj
]

, and the individual Φi appearing in non-Abelian Taylor expansions of closed

string fields. Finally, the D7-brane tension is τ−1
D7 = 8π3λ4g−1

s .

Let us for simplicity now consider a warped compactification (2.1) such that the warp-

ing is supported by (2.2) and all other closed strings are trivial (in particular we choose
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the dilaton to take a constant value). The bosonic part of the Super Yang-Mills action is

recovered after expanding to leading non-trivial order in λ. Using the identity

det
(

1 + δM1 + δ2M2

)

= 1 + δtrM1 + δ2M2 +
δ2

2
(trM1)

2 − δ2

2
tr
(

M2
1

)

+ O
(

δ3
)

, (B.8)

we get

SDBI
D7 = − 1

g2
8

∫

W
d8x

√
gtr

{

1

λ2
+

1

4
gαβgγδFαγFβδ +

1

2
gαβgijDαΦiDβΦj

− 1

4
gijgkl

[

Φi,Φk
][

Φj,Φl
]

}

, (B.9)

where g2
8 = λ2τD7. Here we have taken gαβ to be the standard pull-back of the metric on

S4, ignoring non-Abelian effects. As argued in the main text, this approximation is justified

in the limit of small intersection angles, and can be handled beyond this approximation as

discussed in appendix C. Note that then the metric carries no additional factors of Φi and

every object in the trace is already symmetrized in the sense described above.

For the CS action, only C4 is present in C. Since the integral picks out 8-forms and

the interior derivative decreases the rank of the form on which it acts, we have

SCS
D7 =

1

2g2
8

∫

W
tr

{

C4 ∧ F2 ∧ F2

}

, (B.10)

where again C4 is taken to be the standard pull-back on S4. Note that in the case of a

varying axio-dilaton, one would have to include contributions from C8, the magnetic dual

of the axion.

The equations of motion that lead to a stationary action are

0 =
1√−gDγ

(√−ggαβgγδFδβ

)

+ igαβgij

[

Φi,DβΦj
]

+
1

2 · 4!√−g ǫ
αβγδǫηζθDβ

(

CǫηζθFγδ

)

,

(B.11a)

0 =
1√−gDα

[√−ggαβgijDβΦj
]

+ gijgkl

[

Φk,
[

Φj,Φl
]]

. (B.11b)

Specializing now to the case of local flat coordinates, so that the warped Kähler form is

given by (2.14), the equations of motion read

0 =ηρσDρFσµ + e4a 2

α′

2
∑

m=1

1

(2πRm)2
(

Dm̄Fmµ +DmFm̄µ

)

+
iα′

2
(2πR3)

2 ([Φ,DµΦ̄
]

+
[

Φ̄,DµΦ
])

, (B.12a)

0 =ηµνDµFν1 + e4a 2

α′

{

1

(2πR1)
2D1F1̄1 +

1

(2πR2)
2

(

D2F2̄1 +D2̄F21

)

}

+ e4a 2

α′

{

4∂1a

(

1

(2πR1)
2F1̄1 +

1

(2πR2)
2F2̄2

)

+ 8∂2a
1

(2πR2)
2F21

}

+
iα′

2

(

2πR3

)2([
Φ,D1Φ̄

]

+
[

Φ̄,D1Φ
])

, (B.12b)
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0 =ηµνDµFν2 + e4a 2

α′

{

1

(2πR2)
2D2F2̄2 +

1

(2πR1)
2

(

D1F1̄2 +D1̄F12

)

}

+ e4a 2

α′

{

4∂2a

(

1

(2πR1)
2F1̄1 +

1

(2πR2)
2F2̄2

)

+ 8∂1a
1

(2πR2)
2F12

}

+
iα′

2

(

2πR3

)2([
Φ,D2Φ̄

]

+
[

Φ̄,D2Φ
])

, (B.12c)

0 =ηµνDµDνΦ + e4a 2

α′

2
∑

m=1

1

(2πRm)2

{

Dm,Dm̄

}

Φ +
α′

2
(2πR3)

2 [Φ,
[

Φ, Φ̄
]]

. (B.12d)

In general, this set of coupled second order differential equations is difficult to solve.

However, we can show that when the F -flatness and D-flatness conditions are satisfied,

the equations of motion are satisfied as well. Indeed, as we are interested in zero modes

we set the first term in each of (B.12) to zero. Furthermore, our interest is only on

the bifundamental fields and so after writing the fluctuations as in (2.26), we set the

block-diagonal entries to zero. Since the non-trivial angle (2.27) and magnetic flux (2.30)

Higgs the gauge group down, we do not expect a massless bifundamental vector boson

and set A∓
µ = 0. Choosing again the background gauge field to take the form (4.1) and

parameterizing the fluctuations as (3.1), from (B.12a), we get

0 =∂µ

{

D̂∓
1 φ

∓
1 + D̂∓

2 φ
∓
2 + e−4aD̂∓

3 φ
∓
3

}

− ∂µ

{

(

D̂±
1

)†(
φ±1
)†

+
(

D̂±
2

)†(
φ±2
)†

+ e−4a
(

D̂±
3

)†(
φ±3
)†
}

, (B.13)

where the covariant derivatives are defined in (4.2). Clearly (B.13) is satisfied in either the

unmagnetized or magnetized case whenever the D-term (3.9) is satisfied.

For the remaining equations, we first impose the F -term conditions. Namely we take

F to be purely (1, 1), impose the self-duality constraint (2.31) and demand that Φ is holo-

morphic in the sense that Dm̄Φ = 0. Then the remaining equations can be cast in the form

0 =D̂±
m

{

D̂∓
1 φ

∓
1 + D̂∓

2 φ
∓
2 + e−4aD̂∓

3 φ
∓
3

}

−
(

D̂∓
m

)†
{

(

D̂±
1

)†(
φ±1
)†

+
(

D̂±
2

)†(
φ±2
)†

+ e−4a
(

D̂±
3

)†(
φ±3
)†
}

, (B.14)

where m = 1, 2, 3 for (B.12b), (B.12c), and (B.12d) respectively. Thus, when the F -flatness

and D-flatness conditions are satisfied so are the equations of motion (B.12) for the zero

mode.

Note that for simplicity, in this section we have only considered the constant dilaton

case as was the case when we considered the equations of motion (3.26) following from the

fermionic part of the action. However, we expect that even in the case of a holomorphically

varying axio-dilaton, the D-flatness and F -flatness conditions will continue to imply the

equations of motion following from the bosonic action.
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C Large angle corrections

While holomorphy forbids the existence of α′-corrections to the superpotential, the D-

terms enjoy no such protection. As a consequence, the D-flatness conditions presented in

section 2, and hence the equations of motion, receive corrections when these effects are

taken into account. In the T-dual picture of magnetized D9-branes the corrections are

negligible in the limit of diluted worldvolume fluxes, and here we find that the corrections

are suppressed by small angles between the D7-branes.

The absence of corrections to the superpotential is expected on general grounds but

we can see it directly from (2.12a) as well. The only appearance of α′ is with the interior

derivatives and the worldvolume field strength F2. However, since we can choose γ =

z3dz1 ∧dz2 as in the main text, ιΦγ = 0 and so eiλιΦιΦγ = γ is a 2-form. Then the integral

is saturated by a single power of F2 and no further factors of α′ follow from eλF2 . Finally,

since γ has no legs transverse to S4, the pullback is trivial and no α′ corrections follow

from DαΦi terms. That is, (2.15) is exact to all orders in α′.

The D-term, however, is not protected from α′-corrections as is immediate from (2.19)

D =

∫

S4

S

{

e2α

(

λP
[

J
]

∧ F2 −
iλ

6
P
[

ιΦιΦJ
3
]

+
iλ3

2
P
[

ιΦιΦJ
]

∧ F2 ∧ F2

)}

, (C.1)

where the warped Kähler form is (2.14) and λ = 2πα′. Consider the first term of (C.1). In

the analysis of the main text, we dropped the derivative terms in the pull-back which are

higher order in α′. Incorporating them we find

e2αP
[

J
]

∧ F2 =

iα′

2

{[

(

2πR1

)2
+ λ2

(

2πR2
3

)

D1Φ̄D̄1̄Φ

]

F22̄ +

[

(

2πR2

)2
+ λ2

(

2πR2
3

)

D2Φ̄D̄2̄Φ

]

F11̄

}

d4z.

(C.2)

Note that in the D9-picture, these additional terms are F 3 corrections. In writing this

expression, we have imposed the F -term condition D̄m̄Φ = 0. These α′ corrections are

suppressed by the small angle between the branes. Indeed, taking (2.27), we have

S

{

e2αP
[

J
]

∧ F2

}

=
iα′

2

{

(2πR1)
2 F22̄ + (2πR2)

2

[

1 +
1

3

(

R3M

R2

)2]

F11̄

}

d4z, (C.3)

where for simplicity of presentation we have taken the special case

M
(a)
3 = −M (b)

3 = M. (C.4)

The factor of 1
3 comes from the symmetrization procedure which we discuss further below.

The ratio R3M/R2 is the tangent of half the angle between the intersecting D7-branes

and when it is small, as was assumed throughout the analysis, it can be neglected. This

suggests that the correction is a result of the fact that the two stacks are not wrapping

S4, but are actually wrapping different 4-cycles. At small angles, this correction can be

neglected as long as local questions are considered.
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Considering now the second term in (C.1), the interior derivative acting on J3 removes

the legs transverse to S4 and so the pullback is trivial. However, unlike the first and third

terms of (C.1), the warp factor does not cancel and further α′ arise from the non-Abelian

Taylor expansion discussed below.

The final term in (C.1) is already explicitly an α′-correction to the D-flatness condition

and in fact no other powers of α′ appear other than those appearing explicitly in (C.1).

Again the interior derivatives on J strip the legs from J so the pullback is trivial. Addi-

tionally, the leading warp factor e2α cancels the factor appearing in J so that there are no

corrections from the non-Abelian Taylor expansion.

Note that all three α′-corrected terms appearing in (C.1) contain additional open-string

fields Φ. Thus, while at leading order in α′ applying the symmetrization procedure of [48]

to the D-term was trivial, at sub-leading order the symmetrization must be taken into

account. Finally we note that much of the simplification of the α′-corrections was a result

of the fact of that the Kähler form (2.14) only depended on the transverse coordinates

through the warp factor. For more general compactifications, this will not be the case and

further α′-corrections will result.

Among the α′ corrections are the higher order terms in the non-Abelian Taylor

expansion. From the point of view of the D7-branes, e−4α should be interpreted in terms

of a non-Abelian Taylor expansion (2.28). In particular, in the bulk the warp factor can

be locally written as

e−4α =
∑

nm

cnm

(

z3
)n(

z̄3̄
)m̄
, (C.5)

where cnm are functions of z1, z2, and their conjugates. Then on the worldvolume,

e−4α =
∑

nm

cnmλ
n+mΦnΦ̄m. (C.6)

In the main text, we considered the small angle limit where M
(a,b)
3 are small so that

this sum can be truncated after the zeroth order term. However, taking into account these

higher order terms does not change the essential procedure. The warp factor appearing in

the D-flatness condition (3.10d) comes from the second term in (C.1)

λ2

4

(

2πR2
3

)

∫

S4

S

{

e−4αJ̃2
[

Φ, Φ̄
]

}

, (C.7)

where J̃ is the unwarped version of (2.21). Thus, to take into account the higher order

terms in (C.6), we need to consider

∑

nm

cnmλ
n+mS

{

ΦnΦ̄m
[

Φ, Φ̄
]

}

. (C.8)

Expanding to linear order in fluctuations gives

2√
2πR3λ

∑

n,m

cnmλ
n+mS

{

∆m∆̄n
([

∆, φ̄
]

+
[

φ, ∆̄
])

}

. (C.9)
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Writing

∆ =
z2

λ
N, N =

(

M
(a)
3 INa

M
(b)
3 INb

,

)

, F =
2√

2πR3λ

[

∆, φ̄
]

, (C.10)

we have that (C.9) can be written as

∑

nm

cnm

(

z3
)n(

z̄3
)m

S

{

Nn+m
(

F − F̄
)

}

. (C.11)

The symmetrization procedure of [48] requires that we symmetrize over each factor of N

and F . For example,

S

{

N4F

}

=
4!

5!

{

N4F +N3FN +N2FN2 +NFN3 + FN4

}

. (C.12)

The factor of 5! accounts for each of the different ways to permute each of the 5 objects

(F and 4 copies of N) and 4! counts the number of ways that in each term in (C.12) the

Ns can be arranged. Defining

T =

(

INa 0

0 −INb

)

, (C.13)

we can write

N =
1

2

(

K
(ab)
3 + I

(ab)
3 T

)

, (C.14)

where

K
(ab)
3 = M

(a)
3 +M

(b)
3 , (C.15)

and I
(ab)
3 is again as in (3.7). One can easily show that when only the bifundamental modes

are considered,

S
{

T aF
}

=

{

0 a = 2ℓ+ 1,
1

a+1F a = 2ℓ
, ℓ ∈ Z. (C.16)

Thus, (C.11) takes the form

e−4β̂ 2√
2πR3λ

([

∆, φ̄
]

+
[

φ, ∆̄
])

, (C.17)

where

e−4β̂ =
∑

nm

cnm

(

z2
)n(

z̄2̄
)m

2n+m

{

(

K
(ab)
3

)n+m
+

1

n+m+ 1

(

I
(ab)
3

)n+m
δn+m,2ℓ+ (C.18)

+
1

m+1

(

K
(ab)
3

)n(
I
(ab)
3

)m
δm,2ℓ+

1

n+1

(

I
(ab)
3

)n(
K

(ab)
3

)m
δn,2ℓ

}

.

The z3 dependence of the warp factor can then be taken into account by using the methods

of section 3 and 4 but with the substitution e−4α → e−4β̂.

This expression simplifies considerably in the special case (C.4). Indeed, thenK
(ab)
3 = 0

and (C.18) becomes

e−4β̂ =
∑

n+m=2k

cnmM
2k

2k + 1

(

z2
)n (

z̄2̄
)m
. (C.19)
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The corrections considered here should arise when we move away from the small angle

approximation. That is, truncating (C.18) and (C.19) amounts to neglecting some of the

z3 and z̄3̄ dependence of the warp factor in the equations of motion. When the angle is

small, the branes are at approximately constant z3 and this expansion is justified, but

when the angle is large, the z3 dependence could become important. However, what

apparently appears as the expansion parameter in (C.19) is not quite the angle which should

be determined using the physical distances dwm = (2πRm) dzm and so is approximately

2R3M/R2 when it is small. Instead, what explicitly appears as the expansion parameter

in (C.19) is M without the accompanying radii. Since we could change the physical angles

by changing Rm but leaving M fixed, there must be some hidden dependence appearing

on the radii in (C.19) as otherwise these corrections would not depend on the physical

distances between the branes. Indeed, this apparent confusion is simply an artifact of

using the coordinates zm throughout and the radii reappear if we use physical distances.

The warp factor should be more naturally expressed in terms of these physical scales and

so one expects that cnm ∼ Rn+m
3 . Then when (C.19) is expressed in terms of wm, we find

e−4β̂ =
∑

n+m=2k

c̃nm

2k + 1

(

R3M

R2

)2k
(

w2
)n(

w̄2̄
)m
, c̃nm = cnm/R

n+m
3 , (C.20)

which makes manifest that the expansion truly is a small angle expansion. For comparison,

note that the exact solution (3.16) is expressed in terms of the physical lengths as e−q|w2|2

where q ∼ R3M/R2 is proportional to the angle.

As a simple example, we consider a modification of (3.92)

e−4α = 1 + ǫℓ−2
(

R2
2

∣

∣z2
∣

∣

2
+R2

3

∣

∣z3
∣

∣

2)
= 1 + ǫL2





∣

∣z2
∣

∣

2
+

(

R3

∣

∣z3
∣

∣

R2

)2


 . (C.21)

for which c00 = 1 + ǫL−2
∣

∣z2
∣

∣

2
and c11 = ǫ (LR3/R2)

−2. For the simple case (C.4) we get

e−4β̂ = 1 + ǫL−2

[

1 +
1

3

(

R3M

R2

)2
]

∣

∣z2
∣

∣

2
. (C.22)

The solutions (3.97) and (4.60) still hold with the replacement

L−2 → L−2

[

1 +
1

3

(

R3M

R2

)2
]

. (C.23)

Note that if we are to take into account this correction, we must also take into account

the corrections to the first term of (C.1), while the third term has an additional α′ sup-

pression and so can still be neglected. This modifies the D-term equation (3.10d) by the

replacement D̂∓
1 → (1 + t)D∓

1 where t = 1
3 (R3M/R2)

2. This amounts to correcting the

same factor of D̂∓
1 appearing in the first row of (3.28). For the first order corrections to the

warped zero mode, this can be accounted for by simply mapping Φ∓
1;mnlp →

(

1+ t
)

Φ∓
1;mnlp

with an analogous statement in the magnetized case.
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D Exact solutions for toy warp factors

Although in general the equations of motion (3.10) and (3.26) for the warped zero mode

cannot be solved exactly, in special cases a simple analytic solution does exist. In this

appendix we briefly present some of these solutions. Setting φ∓0 = 0 and taking the

ansatz (3.12) gives the second order equation (3.17). Taking the ansatz ψ∓ = κz2f∓ where

κ is the magnetized width (4.17), we consider the special case where the warp factor is a

function of only w =
∣

∣z2
∣

∣

2
. Then, ψ∓, which is proportional to φ∓3 , will also depend on z2

and z̄2̄ only through w. Further, taking f∓ to be in the kernel of
(

D̂±
1

)†
, ψ∓ satisfies

∂2ψ∓

∂w2
− κ2e−4αψ∓ = 0. (D.1)

In what follows, we will focus only on the w dependence of ψ∓; ψ∓ will be independent of

z1 and z̄1 in the unmagnetized case and will depend on these coordinates through theta

functions as detailed in section 4. Additionally, we will suppress family indices and the ∓
superscript in this appendix.

As one would expect and was already demonstrated in the weak-warping limit, the

wavefunctions remain highly localized along the intersection of the D7-branes in the pres-

ence of warping. However, for certain special warp factors, the solutions to the equations

of motion diverge along the matter curve and the field theory treatment breaks down.

We first consider warp factors of the form

e−4α = 1 + L−2nwn. (D.2)

Such warp factors were considered in the main text, but here do not make the assumption of

weak warping. A simple analytic solution is not available for general n. However, for n = 1

the solution is given in Airy functions as in (3.100). Similarly, for n = 2, the solution satis-

fying the boundary condition ψ → 0 as w → ∞ is, up to an overall normalization constant

ψ = Dν

(

√
2κw

L

)

, ν = −1

2

(

L2κ− 1
)

, (D.3)

where Dν is a parabolic cylinder function. The function is peaked at w = 0 and is

normalizable in both the warped (
∫

d4ze−4α) and unwarped (
∫

d4z) sense.

Another special case is the n = −2. Although the n ≥ 0 case was easily addressable

for weak warping using the massive mode analysis and ladder operators, because the an-

nihilation operator is not invertible, negative n is not as easily handled. However, in this

case there is an exact solution given as a modified Bessel function of the second kind

ψ =
√
wKν

(

κw
)

, ν =
1

2

√

1 + L4κ2. (D.4)

The solution is again peaked at w = 0 and diverges such that the function is not normal-

izable in either the warped or unwarped sense.

Finally, we can consider the class of warp factors

e−4α = L−2nwn. (D.5)
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Such warp factors do not have a weak-warping limit. For n > 0, it is convenient to define

a new variable

x =
( κ

Ln

)2/(n+2)
w, (D.6)

the equation of motion becomes

ψ′′ − xnψ = 0, (D.7)

and so the solution is given in terms of modified Bessel functions of the second kind

ψ =
√
xKν

(

2νx1/2ν
)

, ν =
1

n+ 2
. (D.8)

The solutions are peaked at w = 0 and are normalizable.

For the case n = −2, the solution that vanishes at large w is given by

ψ = w(1−
√

1+4L4κ2)/2, (D.9)

which, while again localized at the intersection, diverges for small w and is not normalizable.

E Overlap of Fourier modes and theta functions

In this appendix, we consider again the expansion (4.70). Using the orthonormality of the

massive modes, we have

Bkj,−
mnq =

〈

ϕk,−
q00 , hmnϕ

j,−
0

〉

=
1

√

M̂ q
1 q!

〈(

iD̂′−
1

)q
ϕk,−

0 , hmnϕ
j,∓
0

〉

=
1

√

M̂ q
1 q!

〈

ϕk,−
0 ,

[

i
(

D̂′+
1

)∗]q(
hmnϕ

j,−
0

)〉

. (E.1)

Now since i
(

D̂′+
1

)∗
is a −-sector lowering operator, we have

(

D̂′+
1

)∗(
hmnϕ

j,−
0

)

=
(

∂̂∗1hmn

)

ϕj,−
0 = tmnhmnϕ

j,−
0 , (E.2)

where tmn is defined in (3.114). Thus,

Bkj,−
mnq =

(

itmn

)q

√

M̂ q
1 q!

〈

ϕk,−
0 , hmnϕ

j,−
0

〉

. (E.3)

A similar expression holds in the +-sector.

In this case, the inner product can be calculated explicitly. In fact, since the integrals

over z1 and z2 factor, we have

〈

ϕj,∓
0lp ,hmnϕ

j′,∓
0l′p′

〉

=δll′δpp′

√

±2I
(ab)
1

Im τ1

∑

r r′

exp

{

±πiI(ab)
1

[( ±j
I
(ab)
1

+r

)2

τ1−
( ±j′

I
(ab)
1

+r′
)2

τ̄1

]}

×
∫ Im τ1

0
d
[

Im z1
]

exp

{

∓2πI
(ab)
1

(

Im z1
)2

Im τ1
∓ 2πI

(ab)
1

(

±j + j′

I
(ab)
1

+ r + r′
)

Im z1
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+ 2πi
(m− nRe τ1)

Im (τ1)
Im z1

}

×
∫ 1

0
d
[

Re z1
]

exp

{

±2πiI
(ab)
1

[

±j − j′

I
(ab)
1

+ r − r′
]

Re z1 + 2πinRe z1

}

. (E.4)

Writing n = k ± sI
(ab)
1 , where k <

∣

∣

∣
I
(ab)
1

∣

∣

∣
, the integral over the real part of z1 vanishes

unless s = r − r′ and k = j − j′. The latter condition is the statement that n = j − j′

mod ± I
(ab)
1 . Defining the symbol

δa
bc =

{

1 b = c mod a,

0 b 6= c mod a,
, (E.5)

we get

〈

ϕj,∓
0lp ,hmnϕ

j′,∓
0l′p′

〉

=δll′δpp′δ
I
(ab)
1

n,j−j′

√

±2I
(ab)
1

Im τ1

∑

r

exp

{

±πiI(ab)
1

[( ±j
I
(ab)
1

+r

)2

τ1−
(± (j − k)

I
(ab)
1

+r−s
)2

τ̄1

]}

×
∫ Im τ1

0
d
[

Im z1
]

exp

{

∓2πI
(ab)
1

(

Im z1
)2

Im τ1
− 2πI

(ab)
1

(±
(

2j − k
)

I
(ab)
1

+ 2r − s

)

Im z1

+ 2πi
m− nRe τ1

Im τ1
Im z1

}

. (E.6)

Completing the square gives

〈

ϕj,∓
0lp , hmnϕ

j′,∓
0l′p′

〉

=δll′δpp′δ
I
(ab)
1

n,j−j′

√

±2I
(ab)
1 Im τ1

∑

r

exp

{

∓πIm (τ1)n
2/2I

(ab)
1

}

×
∫ 1

0
dξ exp

{

∓2πI
(ab)
1 Im τ1

(

ξ ± j − n/2

I
(ab)
1

+ r

)2
}

exp

{

2πimξ

}

× exp

{

−2πin Re τ1

(

ξ ± j − n/2

I
(ab)
1

+ r

)

}

, (E.7)

where ξ = Im z1/Im τ1. If we make the substitution ξ → ξ + r, then sum over r turns this

into an integral of ξ over all R. The rest follows straightforwardly,

〈

ϕj,∓
0lp , hmnϕ

j′,∓
0l′p′

〉

= δll′δpp′δ
I
(ab)
1

n,j−j′e
∓m̂2

mnV1/4π2I
(ab)
1 e∓2πim(j+j′)/2I

(ab)
1 , (E.8)

giving

Bkj,∓
mnq = δ

I
(ab)
1

n,k−j

(

itmn

)q

√

M̂ q
1 q!

e∓m̂2
mnV1/4π2I

(ab)
1 e∓2πim(k+j)/2I

(ab)
1 . (E.9)

Note that the higher Fourier modes have an exponentially suppressed overlap.
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F Massive modes and Hermite functions

The △∓ eigenstates ϕ∓
00lp in the unmagnetized case (3.59) and ϕj,∓

0lp in the magnetized

case (4.39) and (4.36) are defined the same way that the excited mode of a quantum

harmonic oscillator are, and thus should be expressible in terms of Hermite functions.

The Hermite functions are defined by

H̃n (u) =

√

1

2nn!
√
π

(

d

du
− u

)n

e−u2/2, (F.1)

and are normalized such that
∫ ∞

−∞
du H̃n (u) H̃n′ (u) = δnn′ . (F.2)

Defining

u =
√

2κRe z2, v =
√

2κ Im z2, (F.3)

the ladder operators can be written

D̂′∓
2 =

c√
2πR2

√

κ

2

{(

∂

∂u
± u

)

− i

(

∂

∂v
± v

)}

, (F.4)

D̂′∓
3 =

−is√
2πR2

√

κ

2

{(

∂

∂u
∓ u

)

− i

(

∂

∂v
∓ v

)}

. (F.5)

Then, in the magnetized case

ϕj,∓
nlp =

(

∓1
)l
ip2−(l+p)





2κ

√

2I
(ab)
1 Im τ1

V1V2





1/2

Ωj,∓
n

(

z1, z̄1̄
)

×
l
∑

r=0

p
∑

s=0

(

∓i
)r−s

(

l

r

)(

p

s

)

√

(r + s)! (l + p− s− r)!

l!p!
H̃r+s (u) H̃l+p−r−s (v) , (F.6)

where

Ωj,∓
n =

√

√

√

√

1

n!
(

±M̂1

)n e
±πiI

(ab)
1 z1Im z1/Im τ1ϑ

[

±j/I(ab)
1

0

]

(

±I(ab)
1 z1,±I(ab)

1 τ1
)

. (F.7)

The same relations apply in the unmagnetized case except that Ωj,∓
n is replaced with

the appropriate Fourier modes.
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[83] L. Aparicio, A. Font, L.E. Ibáñez and F. Marchesano, Flux and instanton effects in local

F-theory models and hierarchical fermion masses, arXiv:1104.2609 [SPIRES].

– 60 –

http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(EPS-HEP 2009)390
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=POSCI,EPS-HEP2009,390
http://dx.doi.org/10.1103/PhysRevD.63.026001
http://arxiv.org/abs/hep-th/0009211
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0009211
http://arxiv.org/abs/hep-th/0010010
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0010010
http://dx.doi.org/10.1103/PhysRevD.65.126005
http://arxiv.org/abs/hep-th/0106014
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0106014
http://dx.doi.org/10.1016/0550-3213(96)00172-1
http://arxiv.org/abs/hep-th/9602022
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9602022
http://dx.doi.org/10.1016/0550-3213(96)00242-8
http://arxiv.org/abs/hep-th/9602114
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9602114
http://dx.doi.org/10.1016/0550-3213(96)00369-0
http://arxiv.org/abs/hep-th/9603161
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9603161
http://dx.doi.org/10.1016/S0550-3213(96)90131-5
http://arxiv.org/abs/hep-th/9605200
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9605200
http://dx.doi.org/10.1088/1126-6708/2008/11/021
http://arxiv.org/abs/0807.4540
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0807.4540
http://dx.doi.org/10.1016/S0550-3213(96)00452-X
http://arxiv.org/abs/hep-th/9606139
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9606139
http://dx.doi.org/10.1016/0550-3213(81)90343-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B193,502
http://dx.doi.org/10.1016/0550-3213(82)90267-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B209,461
http://dx.doi.org/10.1016/0550-3213(83)90247-X
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B214,491
http://dx.doi.org/10.1016/0550-3213(83)90607-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B222,20
http://dx.doi.org/10.1103/PhysRevLett.52.2016
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,52,2016
http://dx.doi.org/10.1103/PhysRevLett.53.867
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PRLTA,53,867
http://www-spires.slac.stanford.edu/spires/find/hep/www?r=PRINT-83-1056
http://dx.doi.org/10.1016/0370-2693(84)90422-2
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B149,351
http://dx.doi.org/10.1016/0550-3213(85)90387-6
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B256,109
http://dx.doi.org/10.1016/0370-2693(85)90025-5
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHLTA,B164,31
http://arxiv.org/abs/1104.2609
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1104.2609


J
H
E
P
0
5
(
2
0
1
1
)
0
9
0

[84] D. Marolf, L. Martucci and P.J. Silva, Fermions, T-duality and effective actions for

D-branes in bosonic backgrounds, JHEP 04 (2003) 051 [hep-th/0303209] [SPIRES].

[85] D. Marolf, L. Martucci and P.J. Silva, Actions and fermionic symmetries for D-branes in

bosonic backgrounds, JHEP 07 (2003) 019 [hep-th/0306066] [SPIRES].

[86] B. Wynants, Supersymmetric actions for multiple D-branes on D-brane backgrounds,

master’s thesis, Katholieke Universiteit Leuven, Leuven Belgium (2006).
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