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1 Introduction and summary

Over the last few years several new classes of N = 8 d = 3 superconformal field theories have

been discovered [1–3]. Until then, it had been widely assumed that the only such theories

are infrared limits of N = 8 super-Yang-Mills theories and therefore are infinitely-strongly

coupled. The newly discovered theories are not of this type. Rather they are Chern-

Simons-matter theories which are superconformal already on the classical level. First of

all, there are BLG theories [1, 2] which have gauge group SU(2)×SU(2) [4] and an arbitrary

Chern-Simons coupling. N = 8 supersymmetry in these theories is visible on the classical

level. Then there are N = 8 ABJM theories [3] which have gauge group U(N)×U(N) and

have Chern-Simons coupling k = 1 or k = 2. These theories have N = 6 supersymmetry

on the classical level, and N = 8 supersymmetry arises as a quantum effect. N = 8 ABJM

theories are strongly coupled, but they have a a weakly-coupled AdS-dual description in

the large-N limit [3] and describe the physics of M2-branes.

In this paper we exhibit another class of N = 8 d = 3 superconformal Chern-Simons-

matter theories. The theories themselves are not new: they are a special class of ABJ

theories describing fractional M2-branes [5]. The gauge group of ABJ theories is U(M) ×

U(N) with Chern-Simons couplings k and −k for the two factors. These theories have N =

6 superconformal symmetry on the classical level for all values of M,N, and k. We will show

that for M = N + 1 and k = ±2 they have hidden N = 8 supersymmetry on the quantum

level. The same kind of arguments were used by us in [6] to show that ABJM theories with

gauge group U(N)k × U(N)−k and k = 1, 2 have hidden N = 8 supersymmetry.

At first sight it might seem unlikely that ABJ theories may have N = 8 supersymmetry

for N 6= M . These theories are not parity-invariant on the classical level, while all hitherto
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known N = 8 d = 3 theories are parity-invariant. On the other hand, we know of no reason

why N = 8 supersymmetry should imply parity-invariance. We will see that U(N + 1)2 ×

U(N)−2 theories do have hidden parity-invariance on the quantum level. The definition of

the parity transformation involves a nontrivial duality on one of the gauge group factors.

ABJ theories with M = N + 1 and k = 2 have the same moduli space as U(N)2 ×

U(N)−2 ABJM theories. Nevertheless we show that at least for N = 1 and N = 2 (and

presumably for higher N) these two N = 8 theories are not isomorphic. We do this by

comparing superconformal indices [7] of both theories. The indices are computed using the

localization method of [8].

The existence of two non-isomorphic N = 8 superconformal field theories with the

moduli space (R8/Z2)
N/SN is unsurprising from the point of view of M-theory. Such

theories should describe N M2-branes on an orbifold R
8/Z2, and it is well-known that there

are exactly two such orbifolds differing by G-flux taking values in H4(RP
7, Z) = Z2 [9].

The interpretation of Bagger-Lambert-Gustavsson theories in terms of M2-branes is

unclear in general. However, for low values of k it has been proposed that BLG theories

describe systems of two M2-branes on R
8 or R

8/Z2 [10–12]. Such systems of M2-branes are

also described by ABJM and ABJ theories [3, 5]. Thus we may reinterpret these proposals

in field-theoretic terms as isomorphisms between certain BLG theories and ABJM or ABJ

theories. We test these proposals by computing the superconformal indices of BLG theories

and comparing them with those of ABJM and ABJ theories. Based on this comparison,

we propose that the following N = 8 theories are isomorphic on the quantum level:

• U(2)1 × U(2)−1 ABJM theory and (SU(2)1 × SU(2)−1)/Z2 BLG theory

• U(2)2 × U(2)−2 ABJM theory and SU(2)2 × SU(2)−2 BLG theory

• U(3)2 × U(2)−2 ABJ theory and (SU(2)4 × SU(2)−4)/Z2 BLG theory

The first two of these isomorphisms have been discussed in [12].

We provide further evidence for the first of these dualities by showing that on the

quantum level (SU(2)1 × SU(2)−1)/Z2 BLG theory has a free sector realized by monopole

operators with minimal GNO charge. This sector has N = 8 supersymmetry and can

be thought of as a free N = 4 hypermultiplet plus a free N = 4 twisted hypermultiplet.

Thus this BLG theory has not one but two copies of N = 8 supersymmetry algebra, one

acting on the free sector and one acting on the remainder. This quantum doubling of the

N = 8 supercurrent multiplet is required by duality, because U(2)1 × U(2)−1 theory also

has such a doubling on the quantum level, as well as a free sector [6]. All these peculiar

properties stem from the fact that the theory of N M2-branes in flat space must have a free

N = 8 sector describing the center-of-mass motion. In the “traditional” approach to the

theory of N M2-branes via the U(N) N = 8 super-Yang-Mills theory, this decomposition

is apparent on the classical level (one can decompose all fields into trace and traceless parts

which then do not interact, with the trace part being free). In the ABJM description of

the same system this decomposition arises only on the quantum level [6]. For N = 2 we

also have a BLG description of the same system, and the existence of a free sector is again

a quantum effect.
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Superconformal index provides a simple tool for distinguishing N = 8 theories which

have the same moduli space. We can apply this method to other BLG theories which do

not have an obvious interpretation in terms of M2-branes. For example, as noted in [12],

SU(2)k ×SU(2)−k and (SU(2)2k ×SU(2)−2k)/Z2 BLG theories have the same moduli space

for all k and one may wonder if they are in fact isomorphic. We compare the indices of

these theories for k = 1, 2 and show that they are different. We also find that for k = 1

both BLG theories have an extra copy of the N = 8 supercurrent multiplet realized by

monopole operators. This indicates that each of these theories decomposes as a product

two N = 8 SCFTs which do not interact with each other. For higher k there is only one

copy of the N = 8 supercurrent multiplet.

This work was supported in part by the DOE grant DE-FG02-92ER40701.

2 The moduli space

Consider the family of N = 6 Chern-Simons-matter theories constructed by Aharony,

Bergman and Jafferis [5]. The gauge group of such a theory is U(M) × U(N), with

Chern-Simons couplings k and −k. If we regard it as an N = 2 d = 3 theory, then

the matter consists of two chiral multiplets Aa, a = 1, 2 in the representation (M, N̄ )

and two chiral multiplets Bȧ, ȧ = 1, 2 in the representation (M̄,N). The theory has a

quartic superpotential

W =
2π

k
ǫabǫȧḃTrAaBȧAbBḃ

which preserves SU(2)×SU(2) symmetry as well as U(1)R R-symmetry. The chiral fields Aa

and Bȧ transform as (2,1)1 and (1,2)1 respectively. It was shown in [5] that the Lagrangian

of such a theory has Spin(6) symmetry which contains Spin(4) = SU(2)×SU(2) and U(1)R
as subgroups. This implies that the action has N = 6 superconformal symmetry, and the

supercharges transform as a 6 of Spin(6) R-symmetry.

We wish to explore the possibility that on the quantum level some of these theories

have N = 8 supersymmetry. A necessary condition for this is that at a generic point in

the moduli space of vacua the theory has N = 8 supersymmetry. The moduli space can be

parameterized by the expectation values of the fields Aa and Bȧ. Let us assume M ≥ N

for definiteness. The superpotential is such that the expectation values can be brought to

the diagonal form [5]:

〈Aa
i
j〉 = ajaδ

i
j , 〈Bȧ

j
i 〉 = bj

ȧδ
i
j i = 1, . . . ,M, j = 1, . . . , N.

Thus the classical moduli space is parameterized by 2N complex numbers aja and 2N

complex numbers bj
ȧ which together parameterize C

4N . Unbroken gauge symmetry includes

a U(M − N) factor which acts trivially on the moduli, as well as a discrete subgroup of

U(N). The low-energy effective action for the U(M − N) gauge field is the Chern-Simons

action at level k′ = k− sign(k)(M −N). Thus along the moduli space the theory factorizes

into a free theory describing the moduli and the topological U(M − N) Chern-Simons

theory at level k′. Note that for M −N > |k| the sign of k′ is different from that of k. This

has been interpreted in [5] as a signal that for M−N > |k| supersymmetry is spontaneously
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broken on the quantum level, and that the classical moduli space is lifted. Therefore from

now on we will assume M − N ≤ |k|.

The putative N = 8 supersymmetry algebra must act trivially on the topological

sector, so we need to analyze for which M,N, and k the free theory of the moduli has

N = 8 supersymmetry. This theory is a supersymmetric sigma-model whose target space

is the quotient of C
N by the discrete subgroup of U(N) which preserves the diagonal form of

the matrices Aa and Bb. This discrete subgroup is a semi-direct product of the permutation

group SN and the Z
N
k subgroup of the maximal torus of U(N) [5]. Thus the target space

is (C4/Zk)
N/SN . The action of Zk on C

4 is given by

zi 7→ ηzi, i = 1, . . . , 4, ηk = 1.

Here z1,2 are identified with aia, a = 1, 2, while z3,4 are identified with bj
ȧ, ȧ = 1, 2.

Free N = 2 sigma-model with target C
4 ≃ R

8 has N = 8 supersymmetry and Spin(8)

R-symmetry. Supercharges transform as 8c of Spin(8), while the moduli parameterizing

R
8 transform as 8v. The above Zk action on 8v factors through the Spin(8) action on the

same space, and for |k| > 2 its commutant with Zk is U(4). Zk itself can be identified

with the Zk subgroup of the U(1) subgroup of U(4) consisting of scalar matrices. Under

the U(4) subgroup 8c decomposes as 60 + 12 + 1−2, and therefore for |k| > 2 only 60 is

Zk-invariant. Thus for |k| > 2 the moduli theory has only N = 6 supersymmetry.

For |k| = 1, 2 the Zk subgroup acts trivially on 8c, and therefore these two cases are

the only ones for which the theory of moduli has N = 8 supersymmetry. In view of the

above, for |k| = 1 we may assume that M − N ≤ 1 while for |k| = 2 we may assume

M − N ≤ 2.

For N = M and |k| = 1, 2 it has been argued in [3] that the full theory has N = 8

supersymmetry on the quantum level. The hidden symmetry currents are realized by

monopole operators. This proposal has been proved using controlled deformation to weak

coupling [6]; for other approaches see [13–15].

It remains to consider the case 0 < M − N ≤ |k| for |k| = 1, 2. Some of these theories

are dual to the N = 8 ABJM theories with N = M and k = 1, 2. Indeed, it has been

argued in [5] that for M − N ≤ |k| the theory with gauge group U(M)k × U(N)−k is dual

to the theory with gauge group U(2N − M + |k|)−k × U(N)k. We will call it the ABJ

duality.1 It maps M −N to |k|− (M −N) and k to −k. Hence the ABJ theory with gauge

group U(N + 1)1 ×U(N)−1 is dual to the ABJ theory with gauge group U(N)−1 ×U(N)1.

Similarly, the ABJ theory with gauge group U(N +2)2×U(N)−2 is dual to the ABJ theory

with gauge group U(N)−2 × U(N)2.

The only remaining case is the ABJ theory with gauge group U(N +1)2×U(N)−2 and

its parity-reversal. Each theory in this family is self-dual under the ABJ duality combined

with parity. Put differently, the combination of naive parity and ABJ duality is a symmetry

for all N , i.e. while these theories are not parity-invariant on the classical level, they have

1Alternatively, the ABJ duality follows from the N = 3 version of the Giveon-Kutasov duality applied

to the U(M) factor [16]. One can also verify that the S
3 partition functions of the dual ABJ theories

agree [16].
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hidden parity on the quantum level. In the remainder of this paper we will argue that this

family of theories in fact has hidden N = 8 supersymmetry and is not isomorphic to any

other known family of N = 8 d = 3 SCFTs. We will also present evidence that certain

BLG theories with k = 1, 2 are isomorphic to N = 8 ABJ and ABJM theories for N = 1, 2.

3 Monopole operators and hidden N = 8 supersymmetry

In this section we will show that the ABJ theory with gauge group U(N + 1)2 × U(N)−2

has hidden N = 8 supersymmetry. We will follow the method of [6] to which the reader

is referred for details. The main step is to demonstrate the presence of protected scalars

with scaling dimension ∆ = 1 which live in the representation 10−1 of the manifest sym-

metry group Spin(6) × U(1)T . Here U(1)T is the topological symmetry of the ABJ theory

whose current

Jµ = −
k

16π
ǫµνρ

(

TrFνρ + TrF̃νρ

)

.

is conserved off-shell. Once the existence of these scalars is established, acting on them

with two manifest supercharges produces conserved currents with ∆ = 2 transforming in

the representation 6−1 of Spin(6) × U(1)T . Since conserved currents in any field theory

form a Lie algebra, these currents together with their Hermitian-conjugate currents, Spin(6)

currents and the U(1)T current must combine into an adjoint of some Lie algebra containing

Spin(6)×U(1)T Lie algebra as a subalgebra. The unique possibility for such a Lie algebra

is Spin(8), which implies that the theory has N = 8 supersymmetry.

The existence of ∆ = 1 scalars transforming in 10−1 is established using a controlled

deformation of the theory compactified on S2 to weak coupling. This deformation preserves

Spin(4)×U(1)R subgroup of Spin(6) as well as U(1)T . Decomposing 10−1 with respect to

this subgroup, we find that it contains BPS scalars in (3,1)1,−1 of Spin(4)×U(1)R ×U(1)T
and anti-BPS scalars in (1,3)−1,−1. Such BPS scalars cannot disappear as one changes the

coupling (see appendix A for a detailed argument), so it is sufficient to demonstrate the

presence of BPS scalars at extremely weak coupling. Note that the scaling dimension ∆ of

an operator is now reinterpreted as the energy of a state on S2.

The BPS scalars we are looking for have nonzero U(1)T charge and therefore are

monopole operators [17]. At weak coupling monopole operators in ABJ theories are la-

beled by GNO “charges” (m1, . . . ,mM ) and (m̃1, . . . , m̃N ). GNO charges label spherically

symmetric magnetic fields on S2 and are defined up to the action of the Weyl group of

U(M)×U(N) [18]. They do not correspond to conserved currents and can be defined only

at weak coupling. Their sum however is related to the U(1)T charge:

QT = −
k

4

(

∑

mi +
∑

m̃i

)

.

Equations of motion of the ABJ theory imply that
∑

mi =
∑

m̃i, so QT is integral for

even k but may be half-integral for odd k. We are interested in the case QT = −1, k = 2,

which implies
∑

mi =
∑

m̃i = 1.
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Consider a bare BPS monopole, i.e. the vacuum state, with GNO charges m1 = m̃1 =

1 and all other GNO charges vanishing. This state has ∆ = 0 but because of Chern-

Simons terms it is not gauge-invariant (does not satisfy the Gauss law constraint). One

can construct a gauge-invariant state by acting on the bare BPS monopole with two creation

operators corresponding to the fields Ā11̃
a , a = 1, 2. These states are completely analogous

to the BPS scalars for the U(N)2×U(N)−2 ABJM theory constructed in [6] (see eq. (13) in

that paper). The resulting multiplet of states transforms as (3,1)1,−1 of Spin(4)×U(1)R ×

U(1)T . It also has ∆ = 1 and zero spin, since the creation operators for the field Ā with

lowest energy have ∆ = 1/2 and zero spin.

Similarly, by starting from an anti-BPS bare monopole with the same GNO charges

and acting on it with two creation operators belonging to the fields B11̃
a we obtain anti-BPS

scalars which transform in (1,3)−1,−1. One can also check that no other GNO charges give

rise to BPS scalars with ∆ = 1. In view of the above discussion this implies that the

U(N + 1)2 × U(N)−2 ABJ theory has hidden N = 8 supersymmetry.

4 Superconformal index and comparison with other N = 8 theories

One may question if U(N + 1)2 × U(N)−2 ABJ theories are genuinely distinct from other

known N = 8 d = 3 theories. The moduli space of such a theory is (C4/Z2)
N/SN , which

is exactly the same as the moduli space of the U(N)2 × U(N)−2 ABJ theory. They differ

in that along the moduli space the former theory has an extra topological sector described

by U(1) Chern-Simons theory at level 1. The latter theory is not quite trivial [19], but it

is very close to being trivial; for example, it does not admit any nontrivial local or loop

observables. In any case, one could conjecture that even at the origin of the moduli space

the two N = 8 d = 3 theories differ only by this decoupled topological sector. Some

evidence in support of this conjecture is that BPS scalars in the two theories are in 1-1

correspondence, as we have seen in the previous section.

Fortunately, in the last few years there has been substantial progress in understanding

superconformal d = 3 gauge theories which allows us to compute many quantities exactly.

One such quantity is the partition function on S3 [20]; another one is the superconformal

index on S2 × S1 [7, 8]. The superconformal index receives contribution from BPS scalars

as well as from other protected states with nonzero spin. In what follows we will compute

the index for several low values of N and verify that it is different for the two families

of N = 8 theories. The perturbative contribution to the superconformal index for ABJM

theories has been computed in [21]; the contributions of sectors with a nontrivial GNO

charge has been determined in [8]. We will follow the approach of [8].

Bagger and Lambert [1] and Gustavsson [2] constructed another infinite family of N =

8 d = 3 superconformal Chern-Simons-matter theories with gauge group SU(2) × SU(2)

and matter in the bifundamental representation. More precisely, as emphasized in [3, 12],

there are two versions of BLG theories which have gauge groups SU(2)k × SU(2)−k or

(SU(2)k × SU(2)−k)/Z2 where k is an arbitrary natural number. The moduli space is

(C4 × C
4)/D2k and (C4 × C

4)/Dk respectively, where Dk is the dihedral group of order

2k [10–12]. For large enough k the moduli space is different from the moduli space of ABJ

– 6 –



J
H
E
P
0
5
(
2
0
1
1
)
0
7
4

theories and so BLG theories cannot be isomorphic to any of them. However, for low values

of k there are some coincidences between moduli spaces which suggest that perhaps some

of BLG theories are isomorphic to ABJ theories.

One such case is k = 1 and G = (SU(2)×SU(2))/Z2. The moduli space is (C4×C
4)/Z2

where Z2 exchanges the two C
4 factors. It is natural to conjecture that this theory is

isomorphic to U(2)1×U(2)−1 ABJM theory. A derivation of this equivalence was proposed

in [12]. Another special case is k = 2 and G = SU(2)×SU(2). In that case the moduli space

is isomorphic to (C4/Z2×C
4/Z2)/Z2, where the first two Z2 factors reflect the coordinates

on the two copies of C
4, while the third one exchanges them [10–12]. This is the same

moduli space as that of U(2)2 ×U(2)−2 ABJM theory and U(3)2 ×U(2)−2 ABJ theory. It

was conjectured in [12] that this BLG theory is isomorphic to the U(2)2 × U(2)−2 ABJM

theory. Finally, one can take k = 4 and G = (SU(2)× SU(2))/Z2. The moduli space is the

same as in the previous case, so one could conjecture that this BLG theory is isomorphic

to either the U(2)2 × U(2)−2 ABJM theory or the U(3)2 × U(2)−2 ABJ theory.

Below we will first of all compute the superconformal index for the U(N)2 × U(N)−2

ABJM theories and U(N +1)2×U(N)−2 ABJ theories for N = 1, 2 and verify that although

these theories have the same moduli space, they have different superconformal indices and

therefore are not isomorphic. We will also compute the index for the special BLG theories

with low values of k discussed above and test the proposed dualities with the ABJM and

ABJ theories. We will see that certain BLG theories have an additional copy of the N = 8

supercurrent multiplet which is realized by monopole operators. In some cases this is

predicted by dualities.

4.1 N = 8 ABJM vs. N = 8 ABJ theories

The superconformal index for a supersymmetric gauge theory on S2 × R is defined as

I(x, zi) = Tr

[

(−1)F xE+j3
∏

i

zFi

i

]

(4.1)

where F is the fermion number, E is the energy, j3 is the third component of spin and Fi

are flavor symmetry charges. The index receives contributions only from states satisfying

{Q,Q†} = E − r− j3 = 0, where Q is one of the 32 supercharges and r is a U(1) R-charge.

For details the reader is referred to [7, 8].

The localization method [8] enables one to express the index in a simple form2

I(x, zi) =
∑

{ni}

∫

[da]{ni}x
E0(ni)eS0

CS
(ni,ai) exp

( ∞
∑

m=1

f(xm, zm
i ,mai)

)

(4.2)

where the sum is over GNO charges, the integral whose measure depends on GNO charges

is over a maximal torus of the gauge group, E0(ni) is the energy of a bare monopole with

GNO charges {ni}, S0
CS(ni) is effectively the weight of the bare monopole with respect

2The formula is written for the case of zero anomalous dimensions of all fields which is true for all

theories with at least N = 3 supersymmetry.
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to the gauge group and the function f depends on the content of vector multiplets and

hypermultiplets. For details see [8].

We computed the indices for the U(2)2 × U(1)−2 and U(1)2 × U(1)−2 theories up

to the sixth order in x and found the following pattern. In each topological sector the

indices agree at the leading order in x as a consequence of the identical spectra of BPS

scalars of the lowest dimension. However, next-to-leading terms are different which signals

nonequivalence of these theories. We summarize our results in tables 1 and 2 in appendix B.

It is possible to single out contributions from different topological sectors by treating

topological U(1)T symmetry as a flavor symmetry and introducing a new variable z into

the index. The result is a double expansion in x and z with powers of z multiplying contri-

butions of the appropriate topological charge . Alternatively, one can restrict summation

over all GNO charges to those giving the desired topological charge. We used the second

type of calculation.

We also compared the indices for the ABJ theory U(3)2×U(2)−2 and the ABJM theory

U(2)2 ×U(2)−2 up to the fourth order in x. The contributions from different GNO sectors

are summarized in tables 3 and 4 in appendix B. Note that we count the contributions

from the topological sectors T ≥ 1 twice because there is an identical contribution from

the sectors with opposite topological charges. Starting at order x3 the indices disagree,

which means that these two N = 8 theories, despite having the same moduli space, are

not equivalent.

4.2 Comparison with BLG theories

There are two BLG theories which have the same moduli space as U(2)2 × U(2)−2 ABJM

and U(3)2×U(2)−2 ABJ theories. They have gauge groups SU(2)2×SU(2)−2 and (SU(2)4×

SU(2)−4)/Z2. It is natural to conjecture that these four theories are pairwise isomorphic.

Indeed, the moduli space is (C4/Z2 ×C
4/Z2)/Z2 in all four cases, suggesting that all these

theories describe two M2-branes on an R
8/Z2 orbifold. It is well-known that there are

two distinct R
8/Z2 orbifolds in M-theory [9], which means that there should be only two

nonisomorphic N = 8 theories with this moduli space.

Comparison of the indices of the U(2)2 × U(2)−2 ABJM theory and the SU(2)2 ×

SU(2)−2 BLG theory (see table 5) reveals their agreement up to the fourth order in x.

Thus we conjecture that the two theories are equivalent.

This conjecture can be checked further by comparing contributions to the indices

from individual topological sectors on the ABJM side and sectors parametrized by the

corresponding U(1) charge on the BLG side. Recall that the topological charge QT on

the ABJM side is a charge of a U(1) subgroup of the Spin(8) R-symmetry group. The

commutant of this subgroup is Spin(6) R-symmetry visible already on the classical level.

Furthermore, the supercharge used in the deformation and the definition of the index is

charged under a U(1) subgroup of this Spin(6). On the BLG side, the whole Spin(8) R-

symmetry is visible on the classical level. Recall that one can think of the BLG theory

as a N = 2 field theory with gauge group SU(2) × SU(2) and four chiral multiplets in

the bifundamental representation. In this description, there is a manifest SU(4) = Spin(6)

symmetry under which the four chiral superfields transform as 4. The commutant of this

– 8 –
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Spin(6) symmetry is U(1)R symmetry with respect to which all four chiral superfields have

charge 1/2 and the supercharge has charge 1. The topological charge QT on the ABJM

side corresponds to the charge of a U(1) subgroup of Spin(6) which we denote as U(1)t.
3

Thus we should compare the ABJM index in a particular topological sector with the BLG

index in a sector with a particular U(1)t charge. The four chiral fields of the BLG theory

decompose as 4 = 21 + 2′
−1 under U(1)t × Spin(4). To keep track of U(1)t charges we

introduce a new variable z in accordance with (4.1). To the fourth order in x only the

(|0 〉|0 〉, |1 〉|1 〉, |2 〉|2 〉) GNO charges contribute. The two-variable index is

IBLG,k=2(x, z) = 1 + 4x + 21x2 + 32x3 + 53x4 + z2(3x + 16x2 + 36x3 + 48x4)

+ z4(11x2 + 36x3 + 54x4) + z6(22x3 + 64x4) + 45x4z8

+ z−2(3x + 16x2 + 36x3 + 48x4) + z−4(11x2 + 36x3 + 54x4)

+ z−6(22x3 + 64x4) + 45x4z−8 + O(x5). (4.3)

This is in a complete agreement with the index for the U(2)2 × U(2)−2 ABJM theory.

Similarly, we can compute the two-variable index for the (SU(2)4 × SU(2)−4)/Z2 BLG

theory. The difference compared to the SU(2) × SU(2) case is that the GNO charges are

allowed to be half-integral, but their difference is required to be integral. The contributions

of individual GNO charges are summarized in table 6. We see that the total index agrees

with that of the U(3)2 × U(2)−2 ABJ theory at least up to the fourth order in x. The

two-variable index for this BLG theory is given by

I ′
BLG(x, z) = 1 + 4x + 21x2 + 36x3 + 39x4 + z2(3x + 16x2 + 39x3 + 40x4)

+ z4(11x2 + 36x3 + 56x4) + z6(22x3 + 64x4) + 45z8x4

+ z−2(3x + 16x2 + 39x3 + 40x4) + z−4(11x2 + 36x3 + 56x4)

+ z−6(22x3 + 64x4) + 45z−8x4 + O(x5) (4.4)

and agrees with the two-variable index of the U(3)2 × U(2)−2 ABJ theory.

Lambert and Papageorgakis [12] argued that the (SU(2)1 × SU(2)−1)/Z2 BLG theory

is isomorphic to the U(2)1 × U(2)−1 ABJM theory. We can test this proposal in the same

way by comparing the two-variable superconformal indices of the two theories. We find

that they agree up to at least the fourth order in x. The contributions from different GNO

charges are written down in tables 7 and 8. They happen to match in each GNO sector

separately. For a fixed topological charge on the ABJM side and the corresponding value

of the U(1)t charge on the BLG side which manifests itself in the index as a power of

z, the contribution to the index comes from a sum over different GNO charges, and the

two sums happen to coincide term by term. For example, in the topological sector T = 1

on the ABJM side the contribution from the GNO charge |n, 1 − n 〉|n, 1 − n 〉 equals the

contribution from the GNO charge |n − 1/2 〉|n − 1/2 〉 with the first power of z on the

BLG side.

3We now adopt the notation T ≡
P

i
mi for the topological charge and normalize the U(1)t charge of

fundamental scalars of the BLG theories to ±1 for notational convenience. The U(1)R charges are not

shown in what follows.
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The index makes apparent a peculiar feature of these two theories: they have twice

the number of BPS scalars needed to enhance supersymmetry from N = 6 to N = 8.

The first set of scalars has vanishing GNO charge. The corresponding contribution to the

index is ∆I = 4x + 3xz2 + 3xz−2. It represents the decomposition 10 = 40 + 32 + 3−2

under U(1)t×Spin(4) ⊂ Spin(6). The corresponding operators are gauge-invariant bilinear

combinations of four chiral superfields present in the BLG model. The second set of

ten BPS scalars comes from the GNO charge |1 〉|1 〉 and makes an identical contribution

to the index. Ten BPS states are obtained by acting with ten scalar bilinears on the

bare monopole to form gauge-invariant states Q(iQj)|1 〉|1 〉. Here Qi is an off-diagonal

component of the ith complex scalar, i = 1, . . . , 4. Among these ten states there are

representations (3,1)1,−1 + (1,3)1,1 of Spin(4) × U(1)R × U(1)t with the normalization of

the U(1)t charge as on page 4. Together with their Hermitian-conjugates, these BPS scalars

lead to supersymmetry enhancement as in [6].

The existence of two copies of the N = 8 supersymmetry algebra for the U(2)1×U(2)−1

ABJM theory was noted in [6]. It was shown there that the extra copy arises because

the theory has a free sector with N = 8 supersymmetry realized by monopole opera-

tors. The same is true about the (SU(2)1 × SU(2)−1)/Z2 BLG theory, giving further

support for the duality. The sector with the GNO charge |1/2 〉|1/2 〉 contains four gauge-

invariant BPS scalars Qi|1/2 〉|1/2 〉 with energy ∆ = 1/2 whose contribution to the index

is ∆I ′ = 2x1/2z+2x−1/2z. This expression corresponds to the decomposition 4 = 21+2′
−1

under U(1)t × Spin(4) ⊂ Spin(6). By virtue of state-operator correspondence these states

correspond to four free fields with conformal dimension ∆ = 1/2. Their bilinear combina-

tions give rise to ten BPS scalars with GNO charge |1 〉|1 〉 discussed above. This is in a

complete agreement with the structure of the U(2)1×U(2)−1 ABJM theory explored in [6].

We can also use superconformal index to test whether certain BLG theories with

identical moduli spaces are isomorphic on the quantum level. It has been noted in [12]

that the moduli spaces of SU(2)k × SU(2)−k and (SU(2)2k × SU(2)−2k)/Z2 BLG theories

are the same (they are both given by (C4 × C
4)/D2k. We have seen above that for k = 2

these two theories are not isomorphic. We also computed the index for k = 1 and found

that the indices disagree already at the second order in x (tables 9 and 10), so the theories

are not equivalent. Examining BPS scalars, we find that neither of these theories has a

free sector, but they both have two copies of the N = 8 supercurrent multiplet. One copy

is visible on the classical level, while the BPS scalars of the other copy carry GNO charges,

so it is intrinsically quantum-mechanical in origin. The presence of the second copy of

N = 8 superalgebra indicates that on the quantum level both of these theories decompose

into two N = 8 SCFTs which do not interact with each other. This phenomenon does not

occur for higher k.

A Protected BPS scalars

Our method of detecting hidden supersymmetry is based on deforming the theory to weak

coupling and analyzing the spectrum of BPS scalars. In this appendix we provide a suf-

ficient condition for BPS scalars to be protected as one deforms the coupling from weak
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to strong. In general, a local operator (or the corresponding state in the radial quantiza-

tion) which lives in a short representation of the superconformal algebra can pair up with

another short multiplet to form a long multiplet; quantum number of a long multiplet can

change continuously as one deforms the coupling. We would like to show that this cannot

happen for the cases of interest to us.

The kind of short multiplet we are interested in has a BPS scalar among its primaries.

In the radial quantization such a state has energy ∆ equal to its U(1)R charge r. To form a

long multiplet there must be a short multiplet containing a spinor with energy ∆′ = ∆±1/2

and R-charge r = r′ ± 1. The option with ∆′ = ∆ + 1/2 and r′ = r + 1 is ruled out by

unitarity constraints [7]. These constraints also specify the short multiplet with the spinor.

This is a so-called “regular short multiplet” [7] with a scalar ∆′′ = ∆− 1, r′′ = r− 2 as the

superconformal primary state satisfying ∆′′ = r′′ + 1. The zero-norm state is also a scalar,

appears on the second level and has the quantum numbers of a BPS scalar ∆ = r. The

spinor itself is on the first level.

We conclude that a necessary condition for a BPS scalar with quantum numbers ∆ = r

to pair up into a long multiplet and flow away is the existence of a ”regular short multiplet”

with quantum numbers ∆′′ = ∆ − 1 and r′′ = r − 2.

In the particular case of a U(N + 1)k ×U(N)−k ABJ theory and ∆ = 1 such “regular

short multiplets” do not exist because ∆′′ = 0 and all physical states have ∆ ≥ 1.

B Superconformal indices for N = 8 ABJM, ABJ and BLG theories

GNO charges Index contribution

T = 0 1 + 4x + 2x2 + 15x4 − 16x5 + 11x6

|0, 0 〉|0 〉 1 + 4x + 2x2 + 15x4 − 16x5 + 2x6

|1,−1 〉|0 〉 9x6

T = 1 3x + x2 − 4x3 + 20x4 − 32x5 + 24x6

|1, 0 〉|1 〉 3x + x2 − 4x3 + 20x4 − 32x5 + 24x6

T = 2 5x2 + 4x3 − 5x4 + 4x5 − 4x6

|2, 0 〉|2 〉 5x2 + 4x3 − 5x4 + 4x5 − 4x6

T = 3 7x3 + 4x4 + x6

|3, 0 〉|3 〉 7x3 + 4x4 + x6

T = 4 9x4 + 4x5

|4, 0 〉|4 〉 9x4 + 4x5

T = 5 11x5 + 4x6

|5, 0 〉|5 〉 11x5 + 4x6

T = 6 13x6

|6, 0 〉|6 〉 13x6

total 1 + 10x + 14x2 + 14x3 + 71x4 − 42x5 + 39x6

Table 1. U(2)2 × U(1)
−2. T stands for the topological charge.
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Topological charge Index contribution

T = 0 1 + 4x + x2 + 4x3 + 7x4 − 12x5 + 26x6

T = 1 3x + 4x2 + 8x4 − 4x5 + 8x6

T = 2 5x2 + 4x3 = 8x5 − 4x6

T = 3 7x3 + 4x4 + 8x6

T = 4 9x4 + 4x5

T = 5 11x5 + 4x6

T = 6 13x6

total 1 + 10x + 19x2 + 26x3 + 49x4 + 26x5 + 92x6

Table 2. U(1)2 × U(1)
−2.

GNO charges Index contribution

T = 0 1 + 4x + 21x2 + 36x3 + 39x4

|0, 0, 0 〉|0, 0 〉 1 + 4x + 12x2 + 12x3 + 5x4

|1, 0,−1 〉|1,−1 〉 9x2 + 24x3 + 10x4

|2, 0,−2 〉|2,−2 〉 25x4

|1, 0,−1 〉|0, 0 〉 −x4

T = 1 3x + 16x2 + 39x3 + 40x4

|1, 0, 0 〉|1, 0 〉 3x + 16x2 + 24x3 + 8x4

|2, 0,−1 〉|2,−1 〉 15x3 + 32x4

T = 2 11x2 + 36x3 + 56x4

|1, 1, 0 〉|1, 1 〉 6x2 + 12x3 + 9x4

|2, 0, 0 〉|2, 0 〉 5x2 + 24x3 + 26x4

|3, 0,−1 〉|3,−1 〉 21x4

T = 3 22x3 + 64x4

|2, 1, 0 〉|2, 1 〉 15x3 + 32x4

|3, 0, 0 〉|3, 0 〉 7x3 + 32x2

T = 4 45x4

|2, 2, 0 〉|2, 2 〉 15x4

|3, 1, 0 〉|3, 1 〉 21x4

|4, 0, 0 〉|4, 0 〉 9x4

total 1 + 10x + 75x2 + 230x3 + 445x4

Table 3. U(3)2 × U(2)
−2. T stands for the topological charge.
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GNO charges Index contribution

T = 0 1 + 4x + 21x2 + 32x3 + 53x4

|0, 0 〉|0, 0 〉 1 + 4x + 12x2 + 8x3 + 12x4

|1,−1 〉|1,−1 〉 9x2 + 24x3 + 16x4

|2,−2 〉|2,−2 〉 25x4

T = 1 3x + 16x2 + 36x3 + 48x4

|1, 0 〉|1, 0 〉 3x + 16x2 + 21x3 + 16x4

|2,−1 〉|2,−1 〉 15x3 + 32x4

T = 2 11x2 + 36x3 + 54x4

|1, 1 〉|1, 1 〉 6x2 + 12x3 + 12x4

|2, 0 〉|2, 0 〉 5x2 + 24x3 + 21x4

|3,−1 〉|3,−1 〉 21x4

T = 3 22x3 + 64x4

|2, 1 〉|2, 1 〉 15x3 + 32x4

|3, 0 〉|3, 0 〉 7x3 + 32x4

T = 4 45x4

|2, 2 〉|2, 2 〉 15x4

|3, 1 〉|3, 1 〉 21x4

|4, 0 〉|4, 0 〉 9x4

total 1 + 10x + 75x2 + 220x3 + 475x4

Table 4. U(2)2 × U(2)
−2. T stands for the topological charge.

GNO charges Index contribution

|0 〉|0 〉 1 + 10x + 40x2 + 76x3 + 114x4

|1 〉|1 〉 35x2 + 144x3 + 196x4

|2 〉|2 〉 165x4

total 1 + 10x + 75x2 + 220x3 + 475x4

Table 5. SU(2)2 × SU(2)
−2.

GNO charges Index contribution

|0 〉|0 〉 1 + 4x + 12x2 + 8x3 + 12x4

+z2(3x + 8x2 + 12x3 + 8x4) + z−2(3x + 8x2 + 12x3 + 8x4)

+z4(6x2 + 12x3 + 12x4) + z−4(6x2 + 12x3 + 12x4)

+z6(10x3 + 16x4) + z−6(10x3 + 16x4) + 15z8x4 + 15z−8x4

|1/2 〉|1/2 〉 9x2 + 28x3 + 2x4

+z2(8x2 + 27x3 + 8x4) + z−2(8x2 + 27x3 + 8x4)

+z4(5x2 + 24x3 + 23x4) + z−4(5x2 + 24x3 + 23x4)

+z6(12x3 + 32x4) + z−6(12x3 + 32x4) + 21z8x4 + 21z−8x4

|1 〉|1 〉 25x4 + 24z2x4 + 24z−2x4 + 24z4x4 + 24z−4x4

+16z6x4 + 16z−6x4 + 9z8x4 + 9z−8x4

Table 6. (SU(2)4 × SU(2)
−4)/Z2.
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GNO charges Index contribution

|0 〉|0 〉 1 + 4x + 12x2 + 8x3 + 12x4

+z2(3x + 8x2 + 12x3 + 8x4) + z−2(3x + 8x2 + 12x3 + 8x4)

+z4(6x2 + 12x3 + 12x4) + z−4(6x2 + 12x3 + 12x4)

+z6(10x3 + 16x4) + z−6(10x3 + 16x4) + 15z4x4 + 15z−8x4

|1/2 〉|1/2 〉 2z(x
1

2 + 6x
3

2 + 10x
5

2 + 7x
7

2 ) + 2z−1(x
1

2 + 6x
3

2 + 10x
5

2 + 7x
7

2 )

+2z3(3x
3

2 + 10x
5

2 + 9x
7

2 ) + 2z−3(3x
3

2 + 10x
5

2 + 9x
7

2 )

+2z5(6x
5

2 + 14x
7

2 ) + 2z−5(6x
5

2 + 14x
7

2 )

|1 〉|0 〉 −x4

|0 〉|1 〉 −x4

|1 〉|1 〉 4x + 16x2 + 16x3 + 33x4

+z2(3x + 16x2 + 19x3 + 24x4) + z−2(3x + 16x2 + 19x3 + 24x4)

+z4(8x2 + 24x3 + 16x4) + z−4(8x2 + 24x3 + 16x4)

+z6(15x3 + 32x4) + z−6(15x3 + 32x4) + 24z8x4 + 24z−8x4

|3/2 〉|3/2 〉 2z(3x
3

2 + 10x
5

2 + 8x
7

2 ) + 2z−1(3x
3

2 + 10x
5

2 + 8x
7

2 )

+2z3(2x
3

2 + 10x
5

2 + 10x
7

2 ) + 2z−3(2x
3

2 + 10x
5

2 + 10x
7

2 )

+2z5(5x
5

2 + 14x
7

2 ) + 2z−5(5x
5

2 + 14x
7

2 ) + 18z7x
7

2 + 18z−7x
7

2

|2 〉|2 〉 9x2 + 24x3 + 16x4

+z2(8x2 + 24x3 + 16x4) + z−2(8x2 + 24x3 + 16x4)

+z4(5x2 + 24x3 + 21x4) + z−4(5x2 + 24x3 + 21x4)

+z6(12x3 + 32x4) + z−6(12x3 + 32x4) + 21z8x4 + 21z−8x4

|5/2 〉|5/2 〉 2z(6x
5

2 + 14x
7

2 ) + 2z−1(6x
5

2 + 14x
7

2 )

+2z3(5x
5

2 + 14x
7

2 ) + 2z−3(5x
5

2 + 14x
7

2 )

+2z5(3x
5

2 + 14x
7

2 ) + 2z−5(3x
5

2 + 14x
7

2 ) + 14z7x
7

2 + 14z−7x
7

2

|3 〉|3 〉 16x3 + 32x4 + z2(15x3 + 32x4) + z−2(15x3 + 32x4)

+z4(12x3 + 32x4) + z−4(12x3 + 32x4) + z6(7x3 + 32x4) + z−6(7x3 + 32x4)

+16z8x4 + 16z−4x4

|7/2 〉|7/2 〉 x
7

2 (20z + 20z−1 + 18z3 + 18z−3 + 14z5 + 14z−5 + 8z7 + 8z−7)

|4 〉|4 〉 x4(25 + 24z2 + 24z−2 + 21z4 + 21z−4 + 16z6 + 16z−6 + 9z8 + 9z−8)

Table 7. (SU(2)1 × SU(2)
−1)/Z2.

– 14 –



J
H
E
P
0
5
(
2
0
1
1
)
0
7
4

GNO charges Index contribution GNO charges Index contribution

T = 0 T = 5

|0, 0 〉|0, 0 〉 1 + 4x + 12x2 + 8x3 + 12x4 |3, 2 〉|3, 2 〉 2(6x
5

2 + 14x
7

2 )

|1,−1 〉|1,−1 〉 4x + 16x2 + 16x3 + 33x4 |4, 1 〉|4, 1 〉 2(5x
5

2 + 14x
7

2 )

|1,−1 〉|0, 0 〉 −x4 |5, 0 〉|5, 0 〉 2(3x
5

2 + 14x
7

/
2)

|0, 0 〉|1,−1 〉 −x4 |6,−1 〉|6,−1 〉 14x
7

2

|2,−2 〉|2,−2 〉 9x2 + 24x3 + 16x4

|3,−3 〉|3,−3 〉 16x3 + 32x4

|4,−4 〉|4,−4 〉 25x4

T = 1 T = 6

|1, 0 〉|1, 0 〉 2(x
1

2 + 6x
3

2 + 10x
5

2 + 7x
7

2 ) |3, 3 〉|3, 3 〉 10x3 + 16x4

|2,−1 〉|2,−1 〉 2(3x
3

2 + 10x
5

2 + 8x
7

2 ) |4, 2 〉|4, 2 〉 15x3 + 32x4

|3,−2 〉|3,−2 〉 2(6x
5

2 + 14x
7

2 ) |5, 1 〉|5, 1 〉 12x3 + 32x4

|4,−3 〉|4,−3 〉 20x
7

2 |6, 0 〉|6, 0 〉 7x3 + 32x4

|7,−1 〉|7,−1 〉 16x4

T = 2 T = 7

|1, 1 〉|1, 1 〉 3x + 8x2 + 12x3 + 8x4 |4, 3 〉|4, 3 〉 20x
7

2

|2, 0 〉|2, 0 〉 3x + 16x2 + 19x3 + 24x4 |5, 2 〉|5, 2 〉 18x
7

2

|3,−1 〉|3,−1 〉 8x2 + 24x3 + 16x4 |6, 1 〉|6, 1 〉 14x
7

2

|4,−2 〉|4,−2 〉 15x3 + 32x4 |7, 0 〉|7, 0 〉 8x
7

2

|5,−3 〉|5,−3 〉 24x4

T = 3 T = 8

|2, 1 〉|2, 1 〉 2(3x
3

2 + 10x
5

2 + 9x
7

2 ) |4, 4 〉|4, 4 〉 15x4

|3, 0 〉|3, 0 〉 2(2x
3

2 + 10x
5

2 + 10x
7

2 ) |5, 3 〉|5, 3 〉 24x4

|4,−1 〉|4,−1 〉 2(5x
5

2 + 14x
7

2 ) |6, 2 〉|6, 2 〉 21x4

|5,−2 〉|5,−2 〉 18x
7

2 |7, 1 〉|7, 1 〉 16x4

|8, 0 〉|8, 0 〉 9x4

T = 4

|2, 2 〉|2, 2 〉 6x2 + 12x3 + 12x4

|3, 1 〉|3, 1 〉 8x2 + 24x3 + 16x4

|4, 0 〉|4, 0 〉 5x2 + 24x3 + 21x4

|5,−1 〉|5,−1 〉 12x3 + 32x4

|6,−2 〉|6,−2 〉 21x4

Table 8. U(2)1 × U(2)
−1. T stands for the topological charge.

GNO charges Index contribution

|0 〉|0 〉 1 + 4x + 12x2 + z2(3x + 8x2) + z−2(3x + 8x2)

|1 〉|1 〉 4x + 16x2 + z2(3x + 16x2) + z−2(3x + 16x2)

|2 〉|2 〉 9x2 + 8z2x2 + 8z−2x2

Table 9. SU(2)1 × SU(2)
−1.

GNO charges Index contribution

|0 〉|0 〉 1 + 4x + 12x2 + z2(3x + 8x2) + z−2(3x + 8x2)

|1/2 〉|1/2 〉 4x + 17x2 + z2(3x + 16x2) + z−2(3x + 16x2)

|1 〉|1 〉 9x2 + 8z2x2 + 8z−2x2

Table 10. (SU(2)2 × SU(2)
−2)/Z2.
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