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Abstract: Scalar field theories with derivative interactions are known to possess solitonic

excitations, but such solitons are generally unsatisfactory because the effective theory fails

precisely where nonlinearities responsible for the solitons are important. A new class of

theories possessing (internal) galilean invariance can in principle bypass this difficulty.

Here, we show that these galileon theories do not possess stable solitonic solutions. As

a by-product, we show that no stable solitons exist for a different class of derivatively

coupled theories, describing for instance the infrared dynamics of superfluids, fluids, solids

and some k-essence models.
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A famous theorem by Derrick states that in a theory of scalar fields with potential

interactions only, there cannot be stable soliton solutions in more than one spatial dimen-

sion [1]. By ‘soliton’ it is usually meant a static non-trivial solution of the field equations

with finite total energy, and in the present letter we stick to that definition. It is also un-

derstood that there is no external source sustaining the field profile — the solution should

be sustained by non-linearities in the fields. Briefly speaking, Derrick’s proof proceeds

by contradiction: suppose a solitonic solution φ0(~x) exists, then consider deformations

φλ(~x) = φ0(λ~x) labeled by a dilation parameter λ, and show that in more than one spatial

dimension no (stable) stationary point of energy exists with respect to λ for a scalar with

purely potential interactions.

What about interactions that are not purely of the potential form? After all, deriva-

tive interactions are generically expected in any low-energy effective theory, and beyond

the two-derivative level one indeed introduces new powers of λ into Derrick’s argument,

thus in principle allowing for more stationary points. The problem, however, is that such

interactions are always non-renormalizable. Therefore, either field gradients are so mild

that they are negligible, or if they become important, the derivative expansion is expected

to break down. In such a regime the effective theory is not enough to ascertain the existence

of solitons, and one needs a UV completion (which comes with new or different degrees of

freedom — thus in a sense redefining the problem we set out to solve). For example, this

is the case for skyrmions in the chiral Lagrangian [2] — to evade Derrick’s theorem one

needs to rely on terms beyond the two-derivative level, and there is no reason why further

terms in the derivative expansion should be negligible.

There is, however, a class of derivatively coupled theories where these conclusions do

not necessarily apply. Consider the theory of a Goldstone boson π invariant under constant

shifts of π and its first derivatives

π(x) → π + c + bµxµ . (1)

Such a symmetry has been dubbed ‘galilean invariance’, and π the ‘galileon’ [3]. Galilean

invariance forces the equations of motion to involve at least two derivatives acting on

each field. Absence of ghosts in a non-linear regime demands that there be at most two

derivatives on each field. Therefore, in order to have a galilean invariant dynamics that

we can trust — at least classically — even when non-linearities are important, we need

precisely two derivatives per π in the field equations. This requirement corresponds to

having Lagrangian terms of the form

Ln ∼ ∂π ∂π (∂2π)n−2 (2)

with suitable Lorentz contractions (and dimensionful coefficients). Such combinations have

been thoroughly classified: in d+1 spacetime dimensions there are d+1, corresponding to

n = 2, . . . , d + 2 [3]. The n = 2 term is just the usual kinetic term (∂π)2. That with n = 3

is (∂π)2�π, and so on. It is worth mentioning that the galileon describes the sub-horizon

dynamics of the scalar sector of the DGP [4] model (n = 3), and of more generic theories

that modify general relativity in the IR [3, 5, 6].
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Of course classical consistency (e.g. absence of ghosts) of non-linear solutions is only

a necessary condition for these to be inside the effective theory. One also needs quantum

effects to be small. Here we are rescued by galilean invariance, thanks to which the Ln’s

above do not get renormalized upon loop corrections, and terms with fewer derivatives per

field are not generated quantum-mechanically [5]. Indeed the structure of divergences in

the one-loop effective action (in 3 + 1 dimensions) is schematically [6]

Γ1−loop
∼

∑

m

[

Λ4 + Λ2∂2 + ∂4 log ∂2/Λ2
]

(

∂∂π

Λ3

)m

, (3)

where Λ is the mass-scale suppressing the galilean interactions (2). For simplicity, we cut off

the UV divergences at Λ. The sum runs over external legs. Now, αcl ≡ ∂∂π/Λ3 is a measure

of classical non-linearities. For instance the n-th order galilean interaction Ln is roughly

αn−2
cl times the kinetic energy for π. On the other hand the quantity suppressing quantum

effects is really αq ≡ ∂2/Λ2, in the sense that, factoring out two powers of π, we have

Γ1−loop
∼

∑

m′

[

αq + α2
q + α3

q log αq

]

∂π∂π

(

∂∂π

Λ3

)m′

. (4)

Even for non-linearities of order one, ∂∂π/Λ3 ∼ 1, this is suppressed w.r.t. to the tree-level

interactions (2) by explicit powers of αq.
1 This means that for classical solutions with large

non-linearities, quantum effects are small as long as gradients are mild ∂ ≪ Λ

These facts make it consistent (if not necessarily ‘natural’) to postulate that the regime

of large classical non-linearities is within the effective theory. The handful of galilean-

invariant terms described above represent a consistent truncation of the theory in which

we can self-consistently study non-linear classical solutions [6]. It thus makes sense to ask

whether there can be soliton solutions for the galileon.

There is a final subtlety we need to address. As we have seen, in order to have small

quantum effects we need mild gradients, ∂ ≪ Λ. However, if the only scale appearing

in the Lagrangian is Λ itself, and we introduce no external sources, it is clear that if a

soliton exists it will have a size of order Λ−1 and gradients of order Λ. Nevertheless,

we can consider the situation where different galilean interactions, say L3 and L4, are

weighed by parametrically different scales, say Λ3 ≪ Λ4. If the soliton is sustained by a

balance between these interactions, its size will be a see-saw combination of the two scales

Λ−1
3 and Λ−1

4 , and potentially parametrically bigger than either. On the other hand all

our estimates above for Γ1−loop apply upon replacing Λ with the lower between the two

scales, Λ3. In this example it is thus possible that there are classical soliton solutions that

are within the effective theory. Notice that the ‘unnatural’ tuning Λ3 ≪ Λ4 is in fact

1Strictly speaking, calculable (and measurable) quantum effects are only those associated with log-

divergences — the last term in brackets. Power-divergences are instead completely regularization dependent,

and indeed in dimensional regularization they do not even show up. However here we also want to stress

that our galilean Lagrangian does not even suffer from fine-tuning problems, which are associated with

power divergences.
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technically natural, in that, as we mentioned, galilean interactions are not renormalized

upon quantum corrections.2

Let us now return to our main goal of discovering solitons, or lack thereof, in these

theories. Suppose a solitonic solution π0(~x) exists. Small perturbations ϕ around it lead

to energy fluctuations of this form:

δE = 1
2

∫

ddxZij(~x) ∂iϕ∂jϕ , (5)

where Zij is a matrix built out of second derivatives of the background solution π0 [3, 6],

Zij = c2 δij + c3

(

δij
∇

2π0 − ∂i∂jπ0

)

+ . . . , (6)

where the cn’s are the coefficients of the terms (2) in the galileon action. This is highly

non-trivial. In principle, given the structure of a generic galilean term (2), one expects

contributions to the quadratic action for small fluctuations of three different forms:

∂π0∂π0(∂
2π0)

n−4 ∂2ϕ∂2ϕ (7)

∂π0(∂
2π0)

n−3 ∂2ϕ∂ϕ (8)

(∂2π0)
n−2 ∂ϕ∂ϕ, (9)

with suitable index contractions. Only the third structure is of the form we like, eq. (5).

However the second structure can always be rewritten as the third by integration by parts,

since the ∂2ϕ∂ϕ piece is a total derivative:

∂µ∂νϕ∂αϕ = ∂(µ

(

∂ν)ϕ∂αϕ
)

−
1
2∂α

(

∂µϕ∂νϕ
)

. (10)

As for the first structure, it cannot arise because the equations of motion are second

order. Indeed for a non-trivial Lagrangian term Aµναβ ∂µ∂νϕ∂α∂βϕ, there is an associated

four-derivative contribution to the ϕ e.o.m. 2Aµναβ ∂µ∂ν∂α∂βϕ, which vanishes only if the

tensor A does. Since the e.o.m. for the full galileon field are of second order by construction,

a term of the form (7) cannot appear in the quadratic action for fluctuations.

The quadratic structure in eq. (5) takes on significance in light of another fact, namely

the existence of zero modes, i.e. small perturbations with δE = 0. The simplest example

is the translational mode, a perturbation of the form:

ϕǫ = ~ǫ · ∇π0 , (11)

where ~ǫ is some infinitesimal vector. In other words, spatially displacing a soliton does not

change its energy.

Now, recall the quadratic structure for δE: for the soliton to be stable (or marginally

so), it is crucial that Zij(~x) be a positive semi-definite matrix everywhere in space. At large

distances from the ‘core’ of our soliton, where π0 becomes very small, Zij is dominated by

2It is worth mentioning that a ‘standard’ UV-completion — i.e. a relativistic UV completion obeying the

standard analyticity properties of S-matrix theory, like renormalizable Lorentz-invariant QFTs and weakly

coupled string theories — does not appear to exist for galilean theories [7, 8].
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the zeroth order term, which is positive definite for c2 > 0 (eq. (6)). But the existence

of a zero-energy perturbation then implies that in some other region Zij must develop a

negative eigenvalue: since the integrand in eq. (5) is strictly positive at large ~x, somewhere

else it should become negative for the integral to yield zero.

The existence of negative eigenvalues for Zij in some region means that suitably chosen

localized perturbations can be found that lower the energy of the solution — it is enough

to pick very short wavelength wave-packets with momentum along the negative eigenvalue

direction [6]. Such an instability, which is associated with negative gradient energy for

certain fluctuations, is much worse than an instability associated with a negative mass term.

This is because the former also plagues very short-wavelength fluctuations, down to the UV

cutoff of the theory. The decay rate is thus extremely fast, dominated by the shortest scales

in the theory, and cannot be reliably computed within the effective theory. Conversely, a

standard tachyon-like instability, like Jeans’s or that associated with the negative mode

of a true-vacuum bubble, is dominated by modes with momenta of order of the tachyonic

mass scale, which can be parametrically smaller than the UV cutoff. As a consequence a

tachyon-like instability can be slow, and its evolution can be consistently studied inside

the effective theory, along with its interesting phenomenological consequences.3

In conclusion, there is no consistent soliton solution in the galileon theory, in any

number of spacetime dimensions. Notice that our proof of instability crucially relies on the

purely kinetic structure of the quadratic energy for small fluctuations, eq. (5). So, it does

not apply to other theories that are known to possess soliton solutions, like e.g. a scalar

theory with a potential in 1+1 dimensions. There, the soliton has zero-energy translational

modes, yet the vanishing of their energy is accomplished by having a localized negative mass

term for small fluctuations. As a consequence, if one tries to construct negative-energy

fluctuations by localizing them where the mass term is negative, one in fact enhances the

positive-definite kinetic energy — which dominates over the mass term for large gradients

— thus ending up with positive overall energy. Indeed one can show that for ‘kinks’ in 1+1

dimensions the energy spectrum of small fluctuations in bounded by zero from below [9].

While we have focused purely on the galilean interaction, the addition of a mass term,

while violating the galilean symmetry, does not spoil the non-renormalization properties

of the galileon Lagrangian, though this does not remain true for higher order terms in

the potential. Therefore, if we want the structure of the Lagrangian to be technically

natural, the only potential we can add is a mass term. This means that for the potential

to yield a negative contribution to the fluctuations’ quadratic energy, this mass term has

to be negative definite. This will not improve the soliton stability (and will impair that of

the vacuum).

3Having a flat direction — a trajectory in field space along which E remains constant — is not by itself

necessarily a sign of instability. In the case of a flat direction in a multi-field potential, there is a continuum

of different configuration all with the same energy, but to go from one to the other, one should change the

boundary conditions at infinity. Instead, local excitations have positive-definite energy coming from the

field gradients. So, in that case, the flat direction does not correspond to localized perturbations of the

solution, and consequently each point along the flat direction corresponds to a stable solution. However

in our case the situation is very different. The translation zero-modes, eq. (11), are local perturbations

because π0 is localized.
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As an interesting aside, it is worth pointing out that were the galileon soliton to exist,

it would have zero total energy. To see this, consider the galileon action which takes the

form S =
∫

dd+1x
∑

n cnLn (eq. (2)). The total energy of a static configuration is4

E = −

∫

ddx
∑

n

cnLn ≡
∑

n

En , (12)

and the soliton solution π0(~x) we are looking for should be a local minimum of this. Now

we apply a minor generalization of Derrick’s argument. Consider the field configuration

obtained by rescaling the ~x-dependence of π0 as well as its overall normalization

πλ,ω(~x) ≡ ω π0(λ~x). (13)

A necessary condition for π0 to be a solution is that

∂λE(λ, ω)
∣

∣

(1,1)
= 0 , ∂ωE(λ, ω)

∣

∣

(1,1)
= 0 , (14)

where E(λ, ω) is the energy of πλ,ω. Now, the n-th order galilean invariant term (2) involves

n fields and 2n − 2 derivatives. We thus have

En(λ, ω) = λ2n−2−dωnE(0)
n =

1

λd+2
(λ2ω)nE(0)

n , (15)

where E
(0)
n is the n-th order term in the energy of π0. Each En and therefore their sum

obeys

λ∂λE = −(d + 2)E + 2ω∂ωE . (16)

We thus see that if a stationary point of E exists, it must have E = 0. This is not

impossible a priori in our theory. Due to the peculiar higher-derivative structure of the

action, the galileon can violate the null energy condition without obvious pathologies in

the low-energy effective theory [8]. This in principle allows for localized non-trivial field

configurations with vanishing — even negative — total energy.

Incidentally, eq. (15) implies that there is another set of zero modes, namely defor-

mations described by eq. (13) but restricted to λ2ω = 1. Such a deformation changes the

overall energy by 1/λd+2, but since the soliton (if it exists) has vanishing E, so does its de-

formation. In infinitesimal form (λ = 1+ǫ), the deformation is ϕǫ = −2ǫ π0+ǫ ~x·~∇π0. Thus

our proof of the instability of the galileon soliton could have made use of this zero-mode

instead of the translational zero-mode.

Let us close with a discussion of another class of derivatively coupled theories for which

essentially the same arguments apply,

S =

∫

dd+1xP
(

(∂φ)2
)

, (17)

4The fact that for static configurations the Hamiltonian density is minus the Lagrangian density may

seem nontrivial here, due to the higher-derivative nature of the action. In fact the T00 one gets by deriving

the action w.r.t. the metric is not −L. On the other hand the T00 derived à la Noether is always −L

for static fields. The difference between the two is a total spatial derivative, which integrates to zero for

localized configurations.
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where P is an arbitrary function. Such an effective theory describes for instance the low-

energy dynamics of a superfluid [10], or, with more than one field, of ordinary fluids and

solids [11] (our arguments also apply for multifield generalizations of (17)). It also describes

more exotic systems, like the ghost condensate [12], special cases of k-essence [13], and

simpler ones like a Goldstone boson non-linearly realizing a U(1) symmetry, φ → φ + c.

Assuming there exists a soliton solution, one can see that λω = 1 is the flat direction in this

case, on top of the translations ones of course. Provided there are spatial regions where

small fluctuations carry a positive energy, as they should far away from the supposed

soliton, there should also be regions where suitably chosen localized perturbations can

destabilize the soliton. Indeed it is obvious that the perturbations’ quadratic energy is still

of the form (5), of course now with a different Zij.

Notice that most of the systems mentioned above as examples for eq. (17) sponta-

neously break Lorentz invariance. So the physical question in this case is whether there are

soliton solutions in the broken phase. Yet our proof never makes use of Lorentz invariance,

so it applies unaltered in the broken phase. Perhaps more relevant is the worry for spon-

taneous breaking of time translations; a superfluid, the ghost condensate, and k-essence

all break time translations, thus making the definition of energy in the broken phase more

subtle than usual. However there is a linear combination of time translations and shift

symmetry (φ → φ + c) that is unbroken. The corresponding Noether charge is a perfectly

good energy for excitations in the broken phase [12], which our soliton solution should

minimize, and which, apart from having a different ‘tensor’ structure, has the same scaling

properties as the original energy, thus lending itself to our proof. It should be emphasized

however that the ghost condensate is degenerate at the lowest derivative level, so that the

excitations’ gradient energy is in fact dominated by higher-derivative terms, of the form

(∇2π)2, while the interactions are those given by eq. (17) and therefore have one derivative

per field. This mismatch impairs the simple kinetic structure of the quadratic fluctuation

Lagrangian (5). Therefore our proof does not hold for the ghost condensate.

Finally let us comment on the quantum properties of a theory like eq. (17), or of

its multi-field generalizations describing fluids and solids. Consider the structure of diver-

gences in the one-loop effective action. Assuming for simplicity that P is a generic function

where all powers of (∂φ)2 are weighed by the same scale Λ, we have

Γ1−loop
∼

∑

m

[

Λ4 + Λ2∂2 + ∂4 log Λ2/∂2
]

(

(∂φ)2

Λ4

)m

, (18)

where we cut off the UV divergences at Λ. The quartic divergence renormalizes by order

one terms already present in P ((∂φ)2). The other contributions — the quadratic divergence

and the logarithmic one — involve more derivatives per field. That is, apart from a trivial

renormalization of the tree-level Lagrangian, here too quantum effects are negligible even

for solutions where (∂φ)2 has large overall variations, as long as derivatives of (∂φ)2 are

everywhere small. The same is true at all loops as well. We even have experimental

evidence that this is correct for certain systems — we can easily compress a fluid to a

fraction of its original volume (∆(∂φ)2 ∼ Λ4) without exiting the effective theory, provided

we do so slowly enough (∂ ≪ Λ). Like for the galileon, if Λ is really the only scale in
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the theory, our hypothetical soliton would have a size of order Λ−1, and quantum effects

would be large. We can bypass this problem by having very different scales in the theory

and a see-saw mechanism, as discussed above. But this requires a tuning, which here is

not technically natural because, unlike for the galileon, the tree-level Lagrangian does get

renormalized. Our argument shows that, even allowing for such a tuning, there cannot be

stable solitons in these systems.5

Acknowledgments

The authors would like to thank S. Dubovsky, R. Rattazzi and especially E. Weinberg for

very useful discussions and comments. LH thanks NYU and IAS for hospitality. This work

is supported in part by the DOE (DE-FG02-92-ER40699) and NASA ATP (09-ATP09-

0049). KH acknowledges support by funds provided by the University of Pennsylvania.

References

[1] G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J.

Math. Phys. 5 (1964) 1252 [SPIRES].

[2] T.H.R. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556

[SPIRES].

[3] A. Nicolis, R. Rattazzi and E. Trincherini, The galileon as a local modification of gravity,

Phys. Rev. D 79 (2009) 064036 [arXiv:0811.2197] [SPIRES].

[4] G.R. Dvali, G. Gabadadze and M. Porrati, 4D gravity on a brane in 5D Minkowski space,

Phys. Lett. B 485 (2000) 208 [hep-th/0005016] [SPIRES].

[5] M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model,

JHEP 09 (2003) 029 [hep-th/0303116] [SPIRES].

[6] A. Nicolis and R. Rattazzi, Classical and quantum consistency of the DGP model,

JHEP 06 (2004) 059 [hep-th/0404159] [SPIRES].

[7] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity

and an IR obstruction to UV completion, JHEP 10 (2006) 014 [hep-th/0602178] [SPIRES].

[8] A. Nicolis, R. Rattazzi and E. Trincherini, Energy’s and amplitudes’ positivity,

JHEP 05 (2010) 095 [arXiv:0912.4258] [SPIRES].

[9] S.R. Coleman, Classical lumps and their quantum descendents, Subnucl. Ser. 13 (1977) 297

[SPIRES].

[10] D.T. Son, Low-energy quantum effective action for relativistic superfluids, hep-ph/0204199

[SPIRES].

[11] S. Dubovsky, T. Gregoire, A. Nicolis and R. Rattazzi, Null energy condition and

superluminal propagation, JHEP 03 (2006) 025 [hep-th/0512260] [SPIRES].

[12] N. Arkani-Hamed, H.-C. Cheng, M.A. Luty and S. Mukohyama, Ghost condensation and a

consistent infrared modification of gravity, JHEP 05 (2004) 074 [hep-th/0312099] [SPIRES].

[13] C. Armendariz-Picon, V.F. Mukhanov and P.J. Steinhardt, A dynamical solution to the

problem of a small cosmological constant and late-time cosmic acceleration,

Phys. Rev. Lett. 85 (2000) 4438 [astro-ph/0004134] [SPIRES].

5Localized, stationary vortices in a fluid do not conform to our definition of solitons: for them the

velocity field is indeed time-indpendent — yet it involves a time derivative of the canonical variables φI

appearing in the Lagrangian. That is, for a vortex the φI ’s have a non-trivial time-dependence [11].

– 8 –

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=JMAPA,5,1252
http://dx.doi.org/10.1016/0029-5582(62)90775-7
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,31,556
http://dx.doi.org/10.1103/PhysRevD.79.064036
http://arxiv.org/abs/0811.2197
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0811.2197
http://dx.doi.org/10.1016/S0370-2693(00)00669-9
http://arxiv.org/abs/hep-th/0005016
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0005016
http://dx.doi.org/10.1088/1126-6708/2003/09/029
http://arxiv.org/abs/hep-th/0303116
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0303116
http://dx.doi.org/10.1088/1126-6708/2004/06/059
http://arxiv.org/abs/hep-th/0404159
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0404159
http://dx.doi.org/10.1088/1126-6708/2006/10/014
http://arxiv.org/abs/hep-th/0602178
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0602178
http://dx.doi.org/10.1007/JHEP05(2010)095
http://arxiv.org/abs/0912.4258
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=0912.4258
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=SUSEE,13,297
http://arxiv.org/abs/hep-ph/0204199
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0204199
http://dx.doi.org/10.1088/1126-6708/2006/03/025
http://arxiv.org/abs/hep-th/0512260
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0512260
http://dx.doi.org/10.1088/1126-6708/2004/05/074
http://arxiv.org/abs/hep-th/0312099
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0312099
http://dx.doi.org/10.1103/PhysRevLett.85.4438
http://arxiv.org/abs/astro-ph/0004134
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=ASTRO-PH/0004134

