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1 Introduction and results

The dynamics of the D-branes of type II superstring theories is well-approximated by the

effective world-volume field theories which consist of the sum of Dirac-Born-Infeld (DBI)

and Chern-Simons (CS) actions. The DBI action which describes the dynamics of the

brane in the presence of the NSNS background fields at order O(α′0) is given by [1, 2]

SDBI = −Tp

∫
dp+1x e−φ

√
− det (Gab +Bab) (1.1)

where Gab and Bab are the pulled back of the bulk fieldsGµν and Bµν onto the world-volume

of D-brane.1 The abelian gauge field can be added to the action as Bab → Bab + 2πα′fab.

The curvature corrections to this action has been found in [3] by requiring the consistency

of the effective action with the O(α′2) terms of the corresponding disk-level scattering

amplitude [4, 5]. The couplings of non-constant dilaton and B-field at the order O(α′2)

have been found in [6] by requiring the consistency of the curvature couplings with the

standard rules of linear T-duality transformations, and by the scattering amplitude.2

The CS part which describes the coupling of D-branes to the RR potential at order

O(α′0) is given by [10, 11]

SCS = Tp

∫

Mp+1

eBC (1.2)

1Our index conversion is that the Greek letters (µ, ν, · · · ) are the indices of the space-time coordinates,

the Latin letters (a, d, c, · · · ) are the world-volume indices and the letters (i, j, k, · · · ) are the normal bundle

indices.
2The couplings of non-constant gauge field strength fab to the DBI and CS actions have been considered

in [7–9].
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whereMp+1 represents the world volume of the Dp-brane, C is the sum over all RR potential

forms, and the multiplication rule is the wedge product. The abelian gauge field can be

added to the action as B → B + 2πα′f . The curvature correction to this action has been

found in [12–14] by requiring that the chiral anomaly on the world volume of intersecting

D-branes (I-brane) cancels with the anomalous variation of the CS action. The curvature

couplings at order O(α′2) in static gauge are

π2α′2Tp

2!2!(p − 3)!

∫
dp+1xǫa0···apC(p−3)

a4···ap−4

[
Ra0a1

abRa2a3ba −Ra0a1

ijRa2a3ji

]
(1.3)

They have been confirmed by the S-matrix calculation in [15–17]. The above couplings

have been extended in [18, 19] to include the B-field at the order O(α′2) by requiring them

to be consistent with the linear T-duality transformations. The new B-field couplings,

however, are not invariant under the B-field gauge transformation. Adding some other

B-field couplings which are themselves invariant under the linear T-duality, one can write

the resulting couplings in a gauge invariant form [19]. The gauge invariant couplings are

π2α′2Tp

2!2!(p − 3)!

∫
dp+1xǫa0···apC(p−3)

a4···ap−4

[
1

2
Ha0a1a,iHa2a3

a,i − 1

2
Ha0a1i,aHa2a3

i,a

]
(1.4)

where commas denote partial differentiation. Unlike the gravity couplings, the B-field

couplings (1.4) are not invariant under the RR gauge transformation so one may expect

that there should be some other couplings as well. Since there are no gravity couplings

for C(p−3) other than those given by (1.3), we are not allowed to have any other T-duality

invariant couplings which include both gravity and B-fields. However, it is consistent to

have couplings which involve only B-fields. In this paper, we will show that the S-matrix

element of one RR and two B-field vertex operators produce the couplings (1.4) as well as

some other T-duality invariant couplings.

The scattering amplitude of one RR potential C(p−3) and two gravitons at order

O(α′2) has no massless open string or closed string pole. It has only contact terms given

by (1.3) [15–17] which are invariant under the RR gauge transformation. On the other

hand, as we will see the scattering amplitude of one RR potential C(p−3) and two B-fields

at order O(α′2) has both open and closed string poles, as well as some contact terms. We

will show that the sum of all these contributions at any order of α′ has the RR gauge sym-

metry. We are interested in this paper in the massless open string poles and the contact

terms of the amplitude which dictate the appropriate couplings on D-branes.

It has been shown in [20] that the CS action should also include couplings which involve

linear NSNS field. These couplings have been found by studying the S-matrix element of

one RR and one NSNS vertex operators at order O(α′2) [4]. These couplings for F (p)

are [20]

π2α′2Tp

2!(p − 1)!

∫
dp+1x ǫa0···ap

(
F

(p)
ia2···ap,aHa0a1

a,i − F
(p)
aa2···ap,iHa0a1

i,a
)

They can be written in terms of the RR potential as

−π2α′2Tp

(p− 1)!

∫
dp+1x ǫa0···ap

[
p−1

3!
C

(p−1)
ia3···ap

Ha0a1a2

,ia
a+

1

2!
C

(p−1)
a2···ap,i(2Ha0a1

a,i
a−Ha0a1

i,a
a)

]
(1.5)
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They are invariant under the linear T-duality transformations. The consistency of these

couplings with the standard nonlinear T-duality [21–27] requires some nonlinear couplings

for C(p−3). However, because of the appearance of the transverse index in the RR poten-

tial, the nonlinear T-duality transformations of the RR field in the absence of D-branes,

i.e.,C̃
(n)
µν···αβ = C

(n+1)
µν···αβy + nC

(n−1)
[µν···αBβ]y + · · · , produces some couplings which break the

B-field gauge symmetry. On the other hand, since the contracted indices i, a in the above

equation are derivative indices, the nonlinear terms are invariant under linear T-duality at

the level of two B-fields [19]. So it is consistent with T-duality to remove the terms which

break the gauge symmetry. Consider then the following part of the nonlinear T-duality

transformation of the RR potential:

C̃
(p−1)
ia3···ap

= C
(p)
ia3···apy + (p− 2)C

(p−2)
i[a3···ap−1

Bap]y + · · ·

C̃
(p−1)
a2···ap,i = C

(p)
a2···apy,i + (p − 1)∂iC

(p−2)
[a2···ap−1

Bap]y + · · · (1.6)

where dots represent higher nonlinear terms. Following [20], one finds that the consistency

of the couplings (1.5) with the above T-duality requires the following couplings for C(p−3):

−π2α′2Tp

∫
dp+1x ǫa0···ap

[
1

3!2!(p − 4)!
(Ba3a4

+ 2πα′fa3a4
)C

(p−3)
ia5···ap

Ha0a1a2

,ia
a (1.7)

+
1

2!2!(p − 3)!
(Ba2a3

+ 2πα′fa2a3
)C

(p−3)
a4···ap,i(2Ha0a1

a,i
a −Ha0a1

i,a
a)

]

where we have also used the replacement B → B + 2πα′f to make the couplings gauge

invariant. The above couplings are invariant under the linear T-duality transformation

at the level of two B-fields. They produce some massless open string poles and contact

terms which can be combined into massless poles written in terms of field strength H. The

massless pole corresponding to the couplings in the first line is reproduced by the disk level

S-matrix element of one RR and two B-fields vertex operators in which the RR potential

carries one transverse index [28]. We will show that the massless poles corresponding to

the couplings in the second line are reproduced by the S-matrix element in which the RR

potential carries only world volume indices.

The S-matrix element still reproduces some other T-duality invariant couplings which

are given by

π2α′2Tp

(p− 3)!

∫
dp+1x ǫa0a1···apC(p−3)

a4···ap

[
1

2!2!
Haa0a1

,abH
ba2a3 +

1

3!
Ha0a1a2

,aiH
iaa3

+
1

2!2!
Ha0a1a,i

aH
a2a3

i +
1

3!
Ha0a1a2

,aH
aba3

,b +
1

3!
Ha0a1a2

,iH
iaa3

,a (1.8)

− 1

3!
Ha0a1a2,a

ab(B
ba3 + 2πα′f ba3) − 1

2!2!
Ha0a1b,a

a(B
a2a3 + 2πα′fa2a3),b

]

Note that the contracted indices i, a, b are derivative indices, hence, the above couplings

are all invariant under the linear T-duality transformation at the level of two B-fields. As

in (1.7), we will see that the terms which include (B+2πα′f) produce massless open string

poles. Our limitation to calculate the triple integrals that appear in the S-matrix element,

– 3 –
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does not allow us to calculate the coefficient of all such terms. However, there is no such

limitation for calculating the contact terms.

An outline of the paper is as follows: In section 2.1 we examine the calculation of the

S-matrix element of one RR and two NSNS vertex operators in superstring theory. We

perform the calculation in full details for the RR potential C(p−3) which has only world

volume indices and expand the amplitude at low energy. In section 2.2, using the couplings

in (1.4), (1.7) and (1.8), we calculate the massless open string poles and the contact terms

for the scattering amplitude of one RR scalar and two B-fields. We show that they are

reproduced exactly by string theory amplitude at order O(α′2).

2 Scattering amplitude

A powerful method for finding the low energy field theory of the string theory is to compare

the scattering amplitudes of the field theory with the corresponding amplitudes in the string

theory expanded at low energy. The disk level scattering amplitude of one RR and two

NSNS vertex operators, at low energy, produces both massless open string and closed

string poles as well as some contact terms. The closed string poles dictate the supergravity

couplings in the bulk and the couplings of one RR and one NSNS states on the brane. On

the other hand, the open string poles and the contact terms dictate the couplings of one

RR and two B-fields on the brane in which we are interested in this paper. We shall show

that the couplings in (1.4), (1.7) and (1.8) are produced by the scattering amplitude at low

energy. In the next section, we calculate the string theory amplitude.

2.1 String theory amplitude

The scattering amplitude of one RR and two NSNS states has been studied in [18, 28]

for a particular class of terms in the amplitude to confirm some part of the couplings

resulting from the consistency of the CS action (1.3) with the linear T-duality, and the

couplings (1.5) with nonlinear T-duality. In this paper, however, we are interested in

finding all couplings that string theory produces for the RR potential C(p−3) which carries

only the world volume indices.

In string theory, the tree level scattering amplitude of one RR and two NSNS states on

the world-volume of a Dp-brane is given by the correlation function of their corresponding

vertex operators on the disk. Since the background charge of the world-sheet with topology

of a disk is Qφ = 2 one has to choose the vertex operators in the appropriate pictures to

produce the compensating charge Qφ = −2. One may choose the RR vertex operator in

(−1/2,−1/2) picture, and one of the NSNS vertex operators in (−1, 0) and the other one

in (0, 0). However, in this picture the symmetry between the two NSNS is not manifest

from the very beginning. After performing the correlators, one has to make more effort to

rewrite the final result in a symmetric form. Alternatively, one can choose the RR vertex

operator in (−1/2,−3/2) picture [29] and the two NSNS vertex operators in (0, 0) picture.

In this form the symmetry of the NSNS states is manifest from the beginning. We prefer

to do the calculation in the latter form. We will show that the final result, after using some

identities, are independent of the choice of the picture.
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The scattering amplitude is given by the following correlation function:

A ∼ < V
(−1/2,−3/2)
RR (ε

(n)
1 , p1)V

(0,0)
NSNS(ε2, p2)V

(0,0)
NSNS(ε3, p3) > (2.1)

Using the doubling trick [4], the vertex operators are given by3

V
(−1/2,−3/2)
RR = (P−H1(n)Mp)

AB

∫
d2z1 : e−φ(z1)/2SA(z1)e

ip1·X : e−3φ(z̄1)/2SB(z̄1)e
ip1·D·X :

V
(0,0)
NSNS = (ε2 ·D)µ3µ4

∫
d2z2 : (∂Xµ3 + ip2 ·ψψµ3)eip2·X : (∂Xµ4 + ip2 ·D ·ψψµ4)eip2·D·X :

V
(0,0)
NSNS = (ε3 ·D)µ5µ6

∫
d2z3 : (∂Xµ5 + ip3 ·ψψµ5)eip3·X : (∂Xµ6 + ip3 ·D ·ψψµ6)eip3·D·X :

where the indices A,B, · · · are the Dirac spinor indices and P− = 1
2(1 − γ11) is the chiral

projection operator which makes the calculation of the gamma matrices to be with the full

32 × 32 Dirac matrices of the ten dimensions. The matrix Dµ
ν is diagonal with +1 in the

world volume directions and −1 in the transverse directions, and

H1(n) =
1

n!
ε1µ1···µnγ

µ1 · · · γµn

Mp =
±1

(p+ 1)!
ǫa0···apγ

a0 · · · γap (2.2)

where ǫ is the volume (p+1)-form of the Dp-brane. The polarization of the RR field is given

by ε
(n)
1 and the polarizations of the B-fields are given by ε2, ε3. The on-shell conditions

are

pi ·pi = pµ
i (εi)µ··· = 0, for i = 1, 2, 3 (2.3)

It is useful to write the matrix Dµν and the flat metric ηµν in terms of the two projection

operators Nµν and Vµν , i.e.,

ηµν = Vµν +Nµν

Dµν = Vµν −Nµν (2.4)

The components of vectors projected into each of these subspaces N and V or η and D are

independent objects. If 1 in the chiral projection P− produces couplings for C(n), then the

γ11 produces the couplings for C(10−n). Hence, we consider 1 in the chiral projection and

extend the result to all RR potentials.

Choosing the above integral form of the vertex operators, one has to also divide the

amplitude (2.1) by the volume of SL(2, R) group which is the conformal symmetry of the

upper half z-plane. We will remove this factor after preforming the correlators. Moreover,

the overall factor of the amplitude (2.1) may be fixed by comparing the final result with

field theory.

3Our conversions set α′ = 2 in the string theory calculations.
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Using the standard world-sheet propagators, one can calculate the correlators in (2.1).

The amplitude (2.1) can be written as [28]

A ∼ 1

2
(H1(n)Mp)

AB(ε2 ·D)µ3µ4
(ε3 ·D)µ5µ6

∫
d2z1d

2z2d
2z3 (z1 − z̄1)

−3/4

×(b1 + b2 + · · · + b10)
µ3µ4µ5µ6

AB δp+1(pa
1 + pa

2 + pa
3) + (2 ↔ 3) (2.5)

where

(b1)
µ3µ4µ5µ6

AB =<: SA(z1) : SB(z̄1) :> gµ3µ4µ5µ6

1

(b2)
µ3µ4µ5µ6

AB = 2(ip2)β3
<: SA : SB : ψβ3ψµ3 :> gµ4µ5µ6

2

(b3)
µ3µ4µ5µ6

AB = 2(ip2 ·D)β4
<: SA : SB : ψβ4ψµ4 :> gµ3µ5µ6

3

(b4)
µ3µ4µ5µ6

AB = 2(ip2)β3
(ip2 ·D)β4

<: SA : SB : ψβ3ψµ3 : ψβ4ψµ4 :> gµ5µ6

4 (2.6)

(b5)
µ3µ4µ5µ6

AB = (ip2)β3
(ip3)β5

<: SA : SB : ψβ3ψµ3 : ψβ5ψµ5 :> gµ4µ6

5

(b6)
µ3µ4µ5µ6

AB = 2(ip2)β3
(ip3 ·D)β6

<: SA : SB : ψβ3ψµ3 : ψβ6ψµ6 :> gµ4µ5

6

(b7)
µ3µ4µ5µ6

AB = (ip2 ·D)β4
(ip3 ·D)β6

<: SA : SB : ψβ4ψµ4 : ψβ6ψµ6 :> gµ3µ5

7

(b8)
µ3µ4µ5µ6

AB = 2(ip2)β3
(ip2 ·D)β4

(ip3)β5
<: SA : SB : ψβ3ψµ3 : ψβ4ψµ4 : ψβ5ψµ5 :> gµ6

8

(b9)
µ3µ4µ5µ6

AB = 2(ip2)β3
(ip2 ·D)β4

(ip3 ·D)β6
<: SA : SB : ψβ3ψµ3 : ψβ4ψµ4 : ψβ6ψµ6 :> gµ5

9

(b10)
µ3µ4µ5µ6

AB = (ip2)β3
(ip2 ·D)β4

(ip3)β5
(ip3 ·D)β6

× <: SA : SB : ψβ3ψµ3 : ψβ4ψµ4 : ψβ5ψµ5 : ψβ6ψµ6 :> g10

where g’s are the correlators of X’s which can easily be performed using the standard

world-sheet propagators, and the correlator of ψ can be calculated using the Wick-like

rule [28, 30].

Combining the gamma matrices coming from the Wick-like rule with the gamma ma-

trices in (2.5), one finds the following trace [28]:

T (n, p,m) = (H1(n)Mp)
AB(γα1···αmC−1)ABA[α1···αm] (2.7)

=
1

n!(p + 1)!
ε1ν1···νnǫa0···apA[α1···αm]Tr(γν1 · · · γνnγa0 · · · γapγα1···αm)

where A[α1···αm] is an antisymmetric combination of the momenta and/or the polarizations

of the NSNS states. The trace (2.7) can be evaluated for specific values of n. One can verify

that the amplitude is non-zero only for n = p−3, n = p−1, n = p+1, n = p+3, n = p+5.

We are interested in the case

n = p− 3 (2.8)

The case n = p+5 will be studied in the appendix B. In above case, the trace relation (2.7)

gives non-zero result only for m ≥ 4. One immediately concludes that b1, b2 and b3 in (2.6)

have no contribution to the amplitude. The cases that the RR field carries transverse indices

are studied in [28]. We consider here the case that the RR potential carries only world

volume indices. The gamma matrices in (2.7) corresponding to ε
(p−3)
1 must be contracted

with the gamma matrices corresponding to the world volume form, otherwise they both

– 6 –
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would contract with the gamma matrices corresponding to A[α1···αm] which gives zero result

because of the appearance of repeated world volume indices in A[α1···αm]. In the following

we consider the RR scalar field. The result can easily be extended to the RR n-form by

contracting its indices with the world volume form.

For the RR scalar n = 0, and from the relation (2.8) one gets p = 3. The trace (2.7)

is non-zero only for m = 4. It becomes

T (0, 3, 4) = 32ǫa0···a5A[a0···a3] (2.9)

where 32 is the trace of the 32 × 32 identity matrix. Since all indices of A[a0···a3] are

world volume, one finds b4 has no contribution to the amplitude. The ψ correlators in

b10, b9, b8, b7, b6, b5 have non-zero contributions to the amplitude (2.1). The X correlator

in b10 is

g10 = |z12|2p1·p2|z13|2p1·p3|z23|2p2·p3|z12̄|2p1·D·p2|z13̄|2p1·D·p3|z23̄|2p2·D·p3

×(z11̄)
p1·D·p1(z22̄)

p2·D·p2(z33̄)
p3·D·p3(i)p1·D·p1+p2·D·p2+p3·D·p3 ≡ K (2.10)

where zij = zi − zj and zij̄ = zi − z̄j. We have added the phase factor to make it real. The

above function appears in all other X correlators in (2.6). The ψ correlators in b10 gives

24 × 12 terms which result from different Wick-like contractions. The contractions which

end up with having p2 and p2 ·D or p3 and p3 ·D in A[a0···a3] give zero result.

The X correlators in b8, b9 are [28]

gµ6

8 =
iK

z33̄

(
pµ6

1 z31
z13̄

+
pµ6

2 z32
z23̄

+
(p1 ·D)µ6z31̄

z1̄3̄
+

(p2 ·D)µ6z32̄
z2̄3̄

)

gµ5

9 =
iK

z3̄3

(
pµ5

1 z3̄1

z13
+
pµ5

2 z3̄2

z23
+

(p1 ·D)µ5z3̄1̄
z1̄3

+
(p2 ·D)µ5z3̄2̄

z2̄3

)

The ψ correlators in each of b8, b9 gives 12 terms which result from different Wick-like

contractions.

The X correlators in b5, b6, b7 are

gµ4µ6

5 = −η
µ4µ6K

z2
2̄3̄

− K

z22̄z33̄

(
pµ4

1 z21
z12̄

+
pµ4

3 z23
z32̄

+
(p1 ·D)µ4z21̄

z1̄2̄
+

(p3 ·D)µ4z23̄
z3̄2̄

)

×
(
pµ6

1 z31
z13̄

+
pµ6

2 z32
z23̄

+
(p1 ·D)µ6z31̄

z1̄3̄
+

(p2 ·D)µ6z32̄
z2̄3̄

)

gµ4µ5

6 = −η
µ4µ5K

z2
2̄3

− K

z22̄z3̄3

(
pµ4

1 z21
z12̄

+
pµ4

3 z23
z32̄

+
(p1 ·D)µ4z21̄

z1̄2̄
+

(p3 ·D)µ4z23̄
z3̄2̄

)

×
(
pµ5

1 z3̄1

z13
+
pµ5

2 z3̄2

z23
+

(p1 ·D)µ5z3̄1̄

z1̄3
+

(p2 ·D)µ5z3̄2̄
z2̄3

)

gµ3µ5

7 = −η
µ3µ5K

z2
23

− K

z2̄2z3̄3

(
pµ3

1 z2̄1
z12

+
pµ3

3 z2̄3
z32

+
(p1 ·D)µ3z2̄1̄

z1̄2
+

(p3 ·D)µ3z2̄3̄

z3̄2

)

×
(
pµ5

1 z3̄1

z13
+
pµ5

2 z3̄2

z23
+

(p1 ·D)µ5z3̄1̄

z1̄3

+
(p2 ·D)µ5z3̄2̄

z2̄3

)
(2.11)

The ψ correlators in each of them gives one term. Examining the transformation of the

above X-correlators and the correlators of ψ’s in Wick-like rule, one can easily verify that

– 7 –
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the amplitude (2.5) is invariant under the SL(2, R) transformation. So one can map the

results to disk with unit radius. That is, one can use the following replacement [28]:

zij̄ → −(1 − ziz̄j)

zij → zij

zīj̄ → −zīj̄
zīj → (1 − z̄izj)

Obviously the result is still SL(2, R) invariant. To fix this symmetry, we then set [15]

z1 = 0, and z2 = z̄2 = r2 (2.12)

Under this fixing the measure in (2.5) changes as

d2z1d
2z2d

2z3 → r2dr2 r3dr3 dθ, 0 < r2, r3 < 1, 0 < θ < 2π (2.13)

where we have chosen the polar coordinate z3 = r3e
iθ, and K changes as

K̃= r2
2p1·p2 r3

2p1·p3(1 − r2
2)p2·D·p2(1 − r3

2)p3·D·p3

×|r2 − r3e
iθ|2p2·p3|1 − r2r3e

iθ|2p2·D·p3 (2.14)

The first terms in (2.11) produce structures in which the polarization tensors contract

with each other. Let us consider these terms. They appear in the amplitude as

A5(ε2 ·εT3 ) ∼ −4ǫa0···a3
pa0

2 p
a1

3 (ε2 ·εT3 )a2a3

∫
d2z1d

2z2d
2z3

K

z2
2̄3̄
z21z21̄z31z31̄

A6(ε2 ·D ·ε3) ∼ −8ǫa0···a3
pa0

2 p
a1

3 (ε2 ·D ·ε3)a2a3

∫
d2z1d

2z2d
2z3

K

z2
2̄3
z21z21̄z3̄1z3̄1̄

A7(ε
T
2 ·ε3) ∼ −4ǫa0···a3

pa0

2 p
a1

3 (εT2 ·ε3)a2a3

∫
d2z1d

2z2d
2z3

K

z2
23z2̄1z2̄1̄z3̄1z3̄1̄

(2.15)

where we have written the sub-amplitudes corresponding to bi in (2.5) as Ai. The above

sub-amplitudes are zero when one polarization is symmetric and the other one is antisym-

metric.

There are other sub-amplitudes which have also terms in which the polarization tensor

contract with each other. The amplitudes (2.15) have second order poles, e.g.,1/(z2̄3̄)
2 in

A5. They indicates that there is a tachyon propagating in the amplitude. This undesirable

feather appears when one uses the vertex operator in 0-picture [31]. However, the whole

amplitude (2.5) has no tachyon which means all the tachyons in the sub-amplitudes must be

canceled among them. So one may keep the second order poles in the sub-amplitudes and

the tachyons would be canceled finally using the properties of the functions that appear in

the final amplitude, e.g.,in the four point function one has (p2·p3−1)Γ(p2·p3−1) = Γ(p2·p3)

where Γ(p2 ·p3 − 1) has tachyon pole whereas Γ(p2 ·p3) has massless pole.

Alternatively, one can show that the second order poles appear in the whole amplitude

as derivative of first order poles. Then using by part integration, one can write them in
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terms of first order poles. In this case, one needs to use a by part integration to remove

the tachyon. Mapping the above amplitudes to unit disk and fixing the SL(2, R) symmetry

as (2.12), one can write (2.15), after a by part integration, as

A5(ε2 ·εT3 ) ∼ −4ǫa0···a3
pa0

2 p
a1

3 (ε2 ·εT3 )a2a3

∫
dr2dr3dθ

∂ eK
∂iθ

r3(r2 − r3e−iθ)

A6(ε2 ·D ·ε3) ∼ 8ǫa0···a3
pa0

2 p
a1

3 (ε2 ·D ·ε3)a2a3

∫
dr2dr3dθ

∂ eK
∂iθ

r3(r2 − r3eiθ)

A7(ε
T
2 ·ε3) ∼ 4ǫa0···a3

pa0

2 p
a1

3 (εT2 ·ε3)a2a3

∫
dr2dr3dθ

∂ eK
∂iθ

r3(r2 − r3eiθ)
(2.16)

where

∂K̃

∂iθ
= r2r3(e

iθ − e−iθ)

(
p2 ·p3

|r2 − r3eiθ|2
+

p2 ·D ·p3

|1 − r2r3eiθ|2
)
K̃ (2.17)

Note that the sub-amplitudes (2.15) have two momenta whereas the sub-amplitudes (2.16)

have four momenta, as all the other structures in the amplitude (2.5).

Since there is no conservation of momentum in the transverse directions in (2.5), the

terms in which pi
1 contracts with each of the polarizations, i.e.,p1·N ·ε3, p1·N ·ε2, as well as

p2·N ·ε3, p3·N ·ε2 are independent structures. For the other terms we use the conservation

of momentum along the brane, i.e.,

(p1 + p2 + p3)·Vµ = 0 (2.18)

to write pa
1 in terms of pa

2 and pa
3.

When one tensor is symmetric and the other one is antisymmetric the result is zero.

The result for two symmetric tensors is

A ∼ ǫa0a1a2a3
pa0

2 p
a1

3

[
p2 ·N ·p3(ε2 ·N ·ε3)a2a3 + p2 ·V ·p3(ε2 ·V ·ε3)a2a3

−p3 ·N ·εa2

2 p2 ·N ·εa3

3 − p3 ·V ·εa2

2 p2 ·V ·εa3

3

]
J (2.19)

where J is

J = −4

∫ 1

0
dr2

∫ 1

0
dr3 r2r3

∫ 2π

0
dθ

sin2(θ)K̃

|1 − r2r3eiθ|2|r2 − r3e−iθ|2

This is the result that has been found in [15]. It is shown in [15] that the above integral

has only contact term at low energy, i.e.,

J = −π
3

3
+ · · · (2.20)

where dots represent terms with two and more momenta which correspond to the amplitude

at order O(α′3) in which we are not interested. It has been shown in [15] that the above

contact terms reproduce the gravity couplings in (1.3).
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The indices of the graviton polarization tensors in the second line of (2.19) are con-

tracted with the world volume form or with the momentum. This indicates that these

terms are invariant under linear T-duality when the Killing coordinate is an index of the

RR potential [19]. When the Killing coordinate is an index of the graviton polarization

tensor, T-duality relates them to the higher RR form [19] in which we are not interested

in this paper. On the other hand, one of the indices of the graviton polarization tensors

in the first line of (2.19) are contracted with each other. This indicates that the terms in

the first line are not invariant under T-duality [19]. Hence, there must be antisymmetric

tensor couplings as well to make them invariant.

However, the amplitude for two antisymmetric tensors has much more terms than those

that are needed to make the gravity couplings to be invariant under linear T-duality. The

result is

A∼ 1

2
ǫa0a1a2a3

εa2a3

3

(
pa0

2 p
a1

3 p3 ·V ·ε2 ·V ·p2J1 −
1

2
pa0

2 p
a1

3 p3 ·V ·ε2 ·N ·p1I3 (2.21)

+pa0

2 p
a1

3 p2 ·V ·ε2 ·N ·p3J2 − pa0

2 p
a1

3 p3 ·V ·ε2 ·N ·p3J0 +
1

2
pa0

2 p
a1

3 p3 ·N ·ε2 ·N ·p1I2

−2pa0

2 p3 ·V ·p3 p2 ·V ·εa1

2 J3 +
1

2
pa0

2 p3 ·V ·p3 p3 ·V ·εa1

2 J4 +
1

2
pa0

3 p2 ·V ·p2 p3 ·V ·εa1

2 J1

+pa0

2 p3 ·V ·p3 p1 ·N ·εa1

2 I4 −
1

2
pa0

2 p3 ·V ·p3 p3 ·N ·εa1

2 J12 −
1

2
pa0

3 p2 ·V ·p2 p3 ·N ·εa1

2 J2

+
1

2
pa0

3 p2 ·V ·p3 p1 ·N ·εa1

2 I3 −
1

2
pa0

3 p2 ·N ·p3 p1 ·N ·εa1

2 I2 − pa0

3 p2 ·V ·p3 p2 ·V ·εa1

2 J1

+pa0

3 p2 ·N ·p3 p2 ·V ·εa1

2 J2 −
1

2
pa0

2 p2 ·V ·p3 p3 ·V ·εa1

2 J6 −
1

2
pa0

3 p2 ·V ·p3 p3 ·V ·εa1

2 J6

−pa0

2 p2 ·N ·p3 p3 ·V ·εa1

2 J7 − pa0

3 p2 ·N ·p3 p3 ·V ·εa1

2 J8 − pa0

2 p2 ·V ·p3 p3 ·N ·εa1

2 J9

−pa0

3 p2 ·V ·p3 p3 ·N ·εa1

2 J10 −
1

2
pa0

2 p2 ·N ·p3 p3 ·N ·εa1

2 J6 −
1

2
pa0

3 p2 ·N ·p3 p3 ·N ·εa1

2 J6

+
1

8
(p2 ·V ·p3)

2 εa0a1

2 J6 +
1

8
(p2 ·N ·p3)

2 εa0a1

2 J6 +
1

4
p2 ·N ·p3 p2 ·V ·p3 ε

a0a1

2 J11

+
1

4
p2 ·V ·p2 p3 ·V ·p3 ε

a0a1

2 J3

)

+
1

2
ǫa0a1a2a3

pa0

2 p
a1

3

(
− p1 ·N ·εa2

2 p2 ·V ·εa3

3 I3 − p1 ·N ·εa2

2 p1 ·N ·εa3

3 I1

+p1 ·N ·εa2

2 p2 ·N ·εa3

3 I2 + 2p3 ·V ·εa2

2 p2 ·N ·εa3

3 J5 + 4p1 ·N ·εa2

2 p3 ·V ·εa3

3 I4

−2p2 ·V ·εa2

2 p2 ·N ·εa3

3 J2 + 2p2 ·V ·εa2

2 p2 ·V ·εa3

3 J1 − 4p2 ·V ·εa2

2 p3 ·V ·εa3

3 J3

+p2 ·N ·p3(ε2 ·V ·ε3)a2a3J − p2 ·V ·p3(ε2 ·N ·ε3)a2a3J
)

+ (2 ↔ 3)

The indices of the polarization tensors in all terms except the terms in the last line are

contracted with the world volume form or with the momentum. Hence they all are invari-

ant under linear T-duality. The terms in the last line combines with the terms in the first

line of (2.19) to make a T-dual combination [18, 19]. However, the above amplitude has

more couplings than those have been found in [18, 19] by requiring the consistency of the

graviton couplings in the Chern-Simons action with linear T-duality. The new couplings
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which are invariant under linear T-duality can be found by studying the integrals that

appear in the amplitude.

The integral J is the one which appears also in the graviton amplitude, and the inte-

grals I1, · · · ,I4 in (2.21) are those which appear also in the scattering amplitude considered

in [28] in which the RR potential carries both transverse and world volume indices. These

integrals are

I1 = −
∫ 1

0
dr2

∫ 1

0
dr3

1

r2r3

∫ 2π

0
dθK̃

I2 = 2

∫ 1

0
dr2

∫ 1

0
dr3

(1 − r22)

r2

∫ 2π

0
dθ

[r3(1 + r22) − r2(1 + r23) cos(θ)]K̃

|1 − r2r3eiθ|2|r2 − r3e−iθ|2

I4 = −
∫ 1

0
dr2

∫ 1

0
dr3

(1 + r23)

r2r3(1 − r23)

∫ 2π

0
dθK̃

and I3(p1, p2, p3) = I2(p1, p3, p2). The other integrals are

J0 =

∫ 1

0
dr2

∫ 1

0
dr3

1

r2r3

∫ 2π

0
dθ

[(1 − r22r
2
3)(r

2
2 − r23) − 4r22r

2
3 sin2(θ)]K̃

|1 − r2r3eiθ|2|r2 − r3e−iθ|2

J1 = 2

∫ 1

0
dr2

∫ 1

0
dr3

(1 + r22)(1 − r23)

r3(1 − r22)

∫ 2π

0
dθ

[r2(1 + r23) − r3(1 + r22) cos(θ)]K̃

|1 − r2r3eiθ|2|r2 − r3e−iθ|2

J2 = 2

∫ 1

0
dr2

∫ 1

0
dr3

(1 + r22)

r2

∫ 2π

0
dθ

[r3(1 + r22) − r2(1 + r23) cos(θ)]K̃

|1 − r2r3eiθ|2|r2 − r3e−iθ|2

J3 = −
∫ 1

0
dr2

∫ 1

0
dr3

(1 + r23)(1 + r22)

r2r3(1 − r23)(1 − r22)

∫ 2π

0
dθK̃

J5 =

∫ 1

0
dr2

∫ 1

0
dr3

(1 − r22r
2
3)(r

2
2 − r23)

r2r3

∫ 2π

0
dθ

K̃

|1 − r2r3eiθ|2|r2 − r3e−iθ|2

J6 = −2

∫ 1

0
dr2

∫ 1

0
dr3(1 − r22)(1 − r23)

∫ 2π

0
dθ

cos(θ)K̃

|1 − r2r3eiθ|2|r2 − r3e−iθ|2

J7 = −
∫ 1

0
dr2

∫ 1

0
dr3

r2
r3

∫ 2π

0
dθ

[(1 − r23)
2 + 4r23 sin2(θ)]K̃

|1 − r2r3eiθ|2|r2 − r3e−iθ|2

J9 = −
∫ 1

0
dr2

∫ 1

0
dr3

(1 − r22)
2r3

r2

∫ 2π

0
dθ

K̃

|1 − r2r3eiθ|2|r2 − r3e−iθ|2

J11 = −
∫ 1

0
dr2

∫ 1

0
dr3

1

r2r3

∫ 2π

0
dθ

[(1 + r22r
2
3)(r

2
2 + r23) − 4r22r

2
3 + 4r22r

2
3 sin2(θ)]K̃

|1 − r2r3eiθ|2|r2 − r3e−iθ|2

and

J4(p1, p2, p3) = J1(p1, p3, p2) ; J12(p1, p2, p3) = J2(p1, p3, p2)

J8(p1, p2, p3) = J7(p1, p3, p2) ; J10(p1, p2, p3) = J9(p1, p3, p2) (2.22)

It is shown in [28] that the integrals I1, · · · ,I4 have no contact terms. However, as we will

see later some of the integrals J0, · · · ,J11 have contact terms.

The amplitude (2.21) should satisfy the Ward identities associated with the RR field

and with the B-fields. If one could perform the integrals explicitly, then one would be
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able to check these identities explicitly. Alternatively, by demanding the amplitude (2.21)

to satisfy these Ward identities, one would be able to find some relations between the

integrals. Checking these relations explicitly would confirm the amplitude satisfies the

Ward identities. We use the latter method in this paper.

The relations between the integrals may be used to write the amplitude (2.21) either

in terms of RR field strength, F , or in terms of field strength of the B-field, H. Since

the relations between the integrals involve only Mandelstam variables p2 ·V ·p2, p3 ·V ·p3,

· · · , we expect the terms in the amplitude (2.21) which have no Mandelstam variables can

easily be written in terms of H. For example, the first term in (2.21) can be written as

Ha1a2a3

3 Ha0ab
2 p2ap3b/3. This term includes the first term in (2.21) and some extra terms

which are proportional to the Mandelstam variables. The contribution of all such terms

should be canceled in the amplitude after using the relation between the integrals. We will

see that in this way one is able to write the amplitude in terms of H.

Before finding the relations between the integrals, we reduce the number of integrals

involved in the amplitude (2.21). One observes that the integrals J0, J7, J8, J11 include

sin(θ)2. This part of the integrals is exactly J . Separating this part, one can rewrite the

amplitude in the following form:

A∼ 1

2
ǫa0a1a2a3

[
εa2a3

3

(
− pa0

2 p
a1

3 p3 ·V ·ε2 ·N ·p3 − pa0

2 p2 ·N ·p3 p3 ·V ·εa1

2

−pa0

3 p2 ·N ·p3 p3 ·V ·εa1

2 +
1

4
p2 ·N ·p3 p2 ·V ·p3 ε

a0a1

2

)

+pa0

2 p
a1

3

(
p2 ·N ·p3(ε2 ·V ·ε3)a2a3 − p2 ·V ·p3(ε2 ·N ·ε3)a2a3

)]
J

+
1

2
ǫa0a1a2a3

εa2a3

3

[
pa0

2 p
a1

3 p3 ·V ·ε2 ·V ·p2J1 −
1

2
pa0

2 p
a1

3 p3 ·V ·ε2 ·N ·p1I3 (2.23)

+pa0

2 p
a1

3 p2 ·V ·ε2 ·N ·p3J2 − pa0

2 p
a1

3 p3 ·V ·ε2 ·N ·p3J5 +
1

2
pa0

2 p
a1

3 p3 ·N ·ε2 ·N ·p1I2

−2pa0

2 p3 ·V ·p3 p2 ·V ·εa1

2 J3 +
1

2
pa0

2 p3 ·V ·p3 p3 ·V ·εa1

2 J4 +
1

2
pa0

3 p2 ·V ·p2 p3 ·V ·εa1

2 J1

+pa0

2 p3 ·V ·p3 p1 ·N ·εa1

2 I4 −
1

2
pa0

2 p3 ·V ·p3 p3 ·N ·εa1

2 J12 −
1

2
pa0

3 p2 ·V ·p2 p3 ·N ·εa1

2 J2

+
1

2
pa0

3 p2 ·V ·p3 p1 ·N ·εa1

2 I3 −
1

2
pa0

3 p2 ·N ·p3 p1 ·N ·εa1

2 I2 − pa0

3 p2 ·V ·p3 p2 ·V ·εa1

2 J1

+pa0

3 p2 ·N ·p3 p2 ·V ·εa1

2 J2 +
1

4
pa0

2 p2 ·p3 p3 ·D ·εa1

2 J5 −
1

4
pa0

3 p2 ·p3 p3 ·D ·εa1

2 J5

+
1

4
pa0

2 p2 ·p3 p3 ·εa1

2 J13 +
1

4
pa0

3 p2 ·p3 p3 ·εa1

2 J13 −
1

4
pa0

2 p2 ·D ·p3 p3 ·D ·εa1

2 J14

−1

4
pa0

3 p2 ·D ·p3 p3 ·D ·εa1

2 J14 −
1

4
pa0

2 p2 ·D ·p3 p3 ·εa1

2 J5 +
1

4
pa0

3 p2 ·D ·p3 p3 ·εa1

2 J5

− 1

16
(p2 ·p3)

2 εa0a1

2 J13 +
1

16
(p2 ·D ·p3)

2 εa0a1

2 J14 +
1

4
p2 ·V ·p2 p3 ·V ·p3 ε

a0a1

2 J3

]

+
1

2
ǫa0a1a2a3

pa0

2 p
a1

3

[
− p1 ·N ·εa2

2 p2 ·V ·εa3

3 I3 − p1 ·N ·εa2

2 p1 ·N ·εa3

3 I1

+p1 ·N ·εa2

2 p2 ·N ·εa3

3 I2 + 2p3 ·V ·εa2

2 p2 ·N ·εa3

3 J5 + 4p1 ·N ·εa2

2 p3 ·V ·εa3

3 I4

−2p2 ·V ·εa2

2 p2 ·N ·εa3

3 J2 + 2p2 ·V ·εa2

2 p2 ·V ·εa3

3 J1 − 4p2 ·V ·εa2

2 p3 ·V ·εa3

3 J3

]
+ (2 ↔ 3)
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where

J15(p1, p2, p3) = J5(p1, p3, p2) = −J5(p1, p2, p3)

and

J13 =

∫ 1

0
dr2

∫ 1

0
dr3

1

r2r3

∫ 2π

0
dθ

[(1 + r22r
2
3)(r

2
2 + r23) − 4r22r

2
3 + 2r2r3(1 − r22)(1 − r23) cos(θ)]K̃

|1 − r2r3eiθ|2|r2 − r3e−iθ|2

J14 =

∫ 1

0
dr2

∫ 1

0
dr3

1

r2r3

∫ 2π

0
dθ

[(1 + r22r
2
3)(r

2
2 + r23) − 4r22r

2
3 − 2r2r3(1 − r22)(1 − r23) cos(θ)]K̃

|1 − r2r3eiθ|2|r2 − r3e−iθ|2

Instead of integrals J0, J6, J7, J9, J11 which appear in (2.21), the amplitude (2.23) has

the integrals J13, J14. As we will see, these integrals are easier to perform explicitly.

We now find the relations between the integrals. The amplitude (2.23) must satisfy

the Ward identity corresponding to polarizations ε2 and ε3. Imposing these conditions, one

finds some relations between the integrals. The Ward identity for ε2 gives the following

relations:

− 2p1 ·N ·p2I1 + 2p2 ·V ·p2I7 + p2 ·N ·p3I3 − p2 ·V ·p3I2 = 0 (2.24)

−2I2p1 ·N ·p2 + (J13 − J14)p2 ·N ·p3 + 2J2p2 ·V ·p2

+(−4J + J13 + J14 − 2J5)p2 ·V ·p3 = 0

2I3p1 ·N ·p2 − 2J1p2 ·V ·p2 + (J13 − J14)p2 ·V ·p3

+(J13 + J14 + 2J5)p2 ·N ·p3 = 0

−2I4p1 ·N ·p2 + J12p2 ·N ·p3 + 2J3p2 ·V ·p2 − J4p2 ·V ·p3 = 0

(−J13 + J14)
(
(p2 ·N ·p3)

2 + (p2 ·V ·p3)
2
)

+ 2p1 ·N ·p2 (I2p2 ·N ·p3 − I3p2 ·V ·p3)

+2p2 ·V ·p2(p2 ·V ·p3J1 − p2 ·N ·p3J2) − 2(−2J + J13 + J14)p2 ·V ·p3 p2 ·N ·p3 = 0

where I7(p1, p2, p3) = I4(p1, p3, p2). The relation in the first line has been appeared in the

amplitude considered in [28]. From the (2 ↔ 3) part of the amplitude (2.23), one finds the

following relations:

− 2p1 ·N ·p3I1 + 2p3 ·V ·p3I4 + p2 ·N ·p3I2 − p2 ·V ·p3I3 = 0 (2.25)

−2I3p1 ·N ·p3 + (J13 − J14)p2 ·N ·p3 + 2J16p3 ·V ·p3

+(−4J + J13 + J14 + 2J5)p2 ·V ·p3 = 0

2I2p1 ·N ·p3 − 2J4p3 ·V ·p3 + (J13 − J14)p2 ·V ·p3

+(J13 + J14 − 2J5)p2 ·N ·p3 = 0

−2I7p1 ·N ·p3 + J2p2 ·N ·p3 + 2J3p3 ·V ·p3 − J1p2 ·V ·p3 = 0

(−J13 + J14)
(
(p2 ·N ·p3)

2 + (p2 ·V ·p3)
2
)

+ 2p1 ·N ·p3 (I3p2 ·N ·p3 − I2p2 ·V ·p3)

+2p3 ·V ·p3(p2 ·V ·p3J4 − p2 ·N ·p3J12) − 2(−2J + J13 + J14)p2 ·V ·p3 p2 ·N ·p3 = 0

The relation in the first line has been also appeared in the amplitude considered in [28].

If the explicit form of the integrals were known, then one could verify the above relations
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explicitly. We will verify the above relations for a special case in which the integrals can

be calculated explicitly.

An indirect check of the above relations is that using them one can write the amplitude

in terms of RR field strength which can then be checked with the S-matrix element in

(−1/2,−1/2)-picture in which the RR vertex operator is in terms of field strength F .

Using the above relations, one can write (2.23) as

A ∼ 1

2
pa0

2 p
a1

3

[(
p2 ·N ·p3(ε2 ·V ·ε3)a2a3 − p2 ·V ·p3(ε2 ·N ·ε3)a2a3 − εa2a3

3 p3 ·V ·ε2 ·N ·p3

)
J

+εa2a3

3

(
p3 ·V ·ε2 ·V ·p2J1 −

1

2
p3 ·V ·ε2 ·N ·p1I3 + p2 ·V ·ε2 ·N ·p3J2 − p3 ·V ·ε2 ·N ·p3J5

+
1

2
p3 ·N ·ε2 ·N ·p1I2

)
− p1 ·N ·εa2

2 p2 ·V ·εa3

3 I3 − p1 ·N ·εa2

2 p1 ·N ·εa3

3 I1

+p1 ·N ·εa2

2 p2 ·N ·εa3

3 I2 + 2p3 ·V ·εa2

2 p2 ·N ·εa3

3 J5 + 4p1 ·N ·εa2

2 p3 ·V ·εa3

3 I4

−2p2 ·V ·εa2

2 p2 ·N ·εa3

3 J2 + 2p2 ·V ·εa2

2 p2 ·V ·εa3

3 J1 − 4p2 ·V ·εa2

2 p3 ·V ·εa3

3 J3

]
ǫa0a1a2a3

+
1

2
pa0

1

[
1

4
p3 ·V ·εa2

2 ε
a1a3

3 (2p2 ·V ·p2J1 + 2p3 ·V ·p3J4 − 4p2 ·N ·p3J )

+
1

4
p3 ·N ·εa2

2 ε
a1a3

3

(
2(J13 − J14)p2 ·N ·p3 + (−4J + J13 + J14)p2 ·V ·p3

)

−2p2 ·V ·εa2

2 ε
a1a3

3 p3 ·V ·p3J3 + p1 ·N ·εa2

2 ε
a1a3

3 p3 ·V ·p3I4

]
ǫa0a1a2a3

+
1

2
(p1)i

[
1

2
p3 ·V ·εa2

2 ε
a1a3

3 (pi
2p

a0

2 I3 + pi
3p

a0

3 I2) +
1

2
p3 ·N ·εa2

2 ε
a1a3

3 (pi
3p

a0

2 I3 + pi
2p

a0

3 I2)

−2pi
3p

a0

3 p2 ·V ·εa2

2 ε
a1a3

3 I7 + pi
3p

a0

3 p1 ·N ·εa2

2 ε
a1a3

3 I1

]
ǫa0a1a2a3

+ (2 ↔ 3)

+2εa0a1

2 εa2a3

3 (p1)i

[
pi
2p3 ·V ·p3I4 +

1

2
pi
3p2 ·V ·p3I2 −

1

2
pi
3p2 ·N ·p3I3

]
ǫa0a1a2a3

(2.26)

As we mentioned before, the result for the scattering amplitude can easily be extended to

the arbitrary RR potential by replacing ǫa0a1a2a3
with ǫa0···apε

a4···ap

1 /(p−4)! where ε
a4···ap

1 is

the RR polarization tensor. The couplings in the last three lines above are consistent with

the couplings found in [28] for the RR potential with one transverse index. They can be

combined to be written in terms of RR field strength Fia4...ap . This part of amplitude has

been checked explicitly in [28] by the evaluation of the S-matrix element in (−1/2,−1/2)-

picture. The other couplings can easily be written in terms of Fa0a4···ap . We confirmed

them by evaluating the S-matrix element in (−1/2,−1/2)-picture.

Having written the amplitude in terms of the RR field strength, one observes that the

amplitude at each order of α′ enjoys the RR gauge symmetry, as expected. In particular,

this symmetry appear in the amplitude at order O(α′2) which, as we will see, includes

contact terms, massless open and closed string poles.

We now try to write the amplitude (2.23) in terms of H. As we mentioned before,

strategy for doing this step if to look at the amplitude (2.21) and find terms which are not

proportional to the Mandelstam variables and write them in terms of H and some extra

– 14 –
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terms which are proportional to the Mandelstam variables. Then using the relations (2.24)

and (2.25), one should simplify the terms which are proportional to the Mandelstam vari-

ables. The remaining terms which are proportional to the Mandelstam variables, should

then be either zero or be written in terms of H. Doing this, one finds the following result:

A∼
[
(p2)aH

aa0a1

2 (p3)bH
ba2a3

3 J3−
1

2
(p2)a(p2)bH

aa0a1

2 Hba2a3

3 J1+
1

2
(p2)a(p2)iH

aa0a1

2 H ia2a3

3 J2

−(p1)i(p2)aH
aa0a1

2 H ia2a3

3 I7−
1

2
(p2)iH

aa0a1

2 (p3)aH
ia2a3

3 J5−
1

4
(p1)i(p2)jH

ia0a1

2 Hja2a3

3 I2

+
1

4
(p1)i(p1)jH

ia0a1

2 Hja2a3

3 I1+
1

4
(p1)i(p2)aH

ia0a1

2 Haa2a3

3 I3−
1

3
(p2)aH

a0a1a2

2 (p3)bH
aba3

3 J4

−1

6
(p1)i(p2)aH

a0a1a2

2 H iaa3

3 I2+
1

3
(p2)iH

a0a1a2

2 (p3)aH
iaa3

3 J12

+
1

6
(p1)i(p2)jH

a0a1a2

2 H ija3

3 I3−
1

3
(p2)i(p2)aH

a0a1a2

2 H iaa3

3 (−J5 + J ) (2.27)

+
1

4
(p2 ·N ·p3)H

aa0a1

2 Haa2a3

3 J − 1

4
(p2 ·V ·p3)H

ia0a1

2 H ia2a3

3 J
]
1

2
ǫa0a1a2a3

+
[
2 ↔ 3

]

The terms in the last line are the only terms which are proportional to the Mandelstam

variables. This is our final result for the string theory scattering amplitude. We will fix

the normalization of the amplitude in section 2.2 by comparing the above amplitude at

low energy with the corresponding field theory. The contracted indices in the terms in the

last line are not momentum indices, so they are not invariant under the linear T-duality.

They combine with the corresponding terms in the gravity amplitude (2.19) to produce a

T-dual amplitude. All other terms are invariant under the linear T-duality. Hence, the

combination of (2.27) and (2.19) is invariant under the linear T-duality when the Killing

coordinate is an index of the RR potential. In other cases, one should add the amplitude

for higher RR potential in which we are not interested in this paper.

Note that the above amplitude is not in terms of RR field strength. Hence, the ampli-

tude can be written either in terms of H or in terms of the RR field strength. This indicates

that the field theory couplings which are invariant under the B-field gauge transformations,

are not invariant under the RR gauge transformation. However, as we mentioned before,

the combination of the field theory couplings and the massless open and closed string poles

at each order of α′ is invariant under the RR gauge transformation.

2.1.1 Low energy limit

To find the low energy limit of the string theory amplitude (2.27), we are now trying

to evaluate the integrals. It is hard to evaluate the integrals for the general case, so we

concentrate on the special kinematic setup [28, 32]. Examining the Feynman diagrams

involved, one can easily verify that the amplitude considered in this paper has no massless

pole in the p2·p3-channel. Moreover, there is no closed or open string channel corresponding

to the Mandelstam variable p2 ·D ·p3, hence, we restrict the Mandelstam variables to

p2 ·D ·p3 = 0, and p2 ·p3 = 0 (2.28)

Even though the amplitude has no massless pole in p2 ·p3-channel, the integrals which

appear with the coefficient p2 ·p3 in the amplitude may have massless pole in p2 ·p3, so one
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can not set to zero the terms which are proportional to p2·p3. The integrals I2, I4, J1, J2,

J3, J5 and J14 which appear in the amplitude (2.23) have no pole in p2·p3. The reason for

this is that if one uses the constraint (2.28) the result of integrals would be finite. However,

the the result of integral J13 under the constraint (2.28) is infinite, hence, it has massless

pole in p2 ·p3.

Using the Maple, one can easily preform the θ-integral in the integrals I1, I2, I4, J1,

J2, J3, J5 which appear in the amplitude (2.27), for the constraint (2.28). The result is

I1 = −2π

∫ 1

0
dr3

∫ 1

0
dr2

K̃ ′

r2r3

I2 = 4π

∫ 1

0
dr3

∫ r3

0
dr2

K̃ ′

r2r3

I4 = −2π

∫ 1

0
dr2

∫ 1

0
dr3

(1 + r23)K̃
′

r2r3(1 − r23)
(2.29)

J1 = 4π

∫ 1

0
dr2

∫ r2

0
dr3

(1 + r22)K̃
′

r2r3(1 − r22)

J2 = 4π

∫ 1

0
dr3

∫ r3

0
dr2

(1 + r22)K̃
′

r2r3(1 − r22)

J3 = −2π

∫ 1

0
dr2

∫ 1

0
dr3

(1 + r23)(1 + r22)K̃
′

r2r3(1 − r23)(1 − r22)

J5 = 2π

∫ 1

0
dr2

∫ r2

0
dr3

(1 + r23)K̃
′

r2r3(1 − r23)
− (2 ↔ 3)

where K̃ ′ is the value of K̃ in the constraint (2.28), i.e.,

K̃ ′ = r2
2p1·p2 r3

2p1·p3(1 − r2
2)p2·D·p2(1 − r3

2)p3·D·p3 (2.30)

Using the definition of beta function

∫ 1

0
dxxα−1(1 − x)β−1 = B(α, β) (2.31)

The radial integral in I1, I4 and J3 becomes

I1 = −π
2
B(s, 1 + p)B(t, 1 + q)

I4 = −π
2

(2t+ q)

q
B(s, 1 + p)B(t, 1 + q) (2.32)

J3 = −π
2

(2s+ p)

p

(2t+ q)

q
B(s, 1 + p)B(t, 1 + q)

where we have used the following definitions for the Mandelstam variables:

s = p1 ·p2 ; t = p1 ·p3

p = p2 ·D ·p2 ; q = p3 ·D ·p3 (2.33)
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The radial integrals in I2, J1, J2 and J5 have the following structure:

I =

∫ 1

0
dx

∫ x

0
dy xayb(1 − x)c(1 − y)d (2.34)

which has the solution (see the appendix in [28])

I =
B(1 + c, 2 + a+ b)

1 + b
3F2

[
2 + a+ b, 1 + b, −d
3 + a+ b+ c, 2 + b

; 1

]
(2.35)

Using this formula, one finds

I2 = π
B(s+ t, 1 + q)

s
3F2

[
s, s+ t, −p

1 + s, 1 + s+ t+ q
; 1

]

J1 =
π

t

(
B(s+ t, p)3F2

[
t, s+ t, −q

1 + t, s+ t+ p
; 1

]

+B(1 + s+ t, p)3F2

[
t, 1 + s+ t, −q

1 + t, 1 + s+ t+ p
; 1

])

J2 = π

(
B(s+ t, 1 + q)

s
3F2

[
s, s+ t, 1 − p

1 + s, 1 + s+ t+ q
; 1

]

+
B(1 + s+ t, 1 + q)

1 + s
3F2

[
1 + s, 1 + s+ t, 1 − p

2 + s, 2 + s+ t+ q
; 1

])

J5 = π

(
B(s+ t, 1 + p)

t
3F2

[
t, s+ t, 1 − q

1 + t, 1 + s+ t+ p
; 1

]

+
B(1 + s+ t, 1 + p)

1 + t
3F2

[
1 + t, 1 + s+ t, 1 − q

2 + t, 2 + s+ t+ p
; 1

])
− (2 ↔ 3)

The evaluation of the integrals J13 and J14 is presented in the appendix A.

Having found the explicit form of the integrals for the constraint kinematic setup (2.28),

we now verify the relations between the integrals in (2.24). Since none of the integrals have

simple pole at p2 ·p3 or p2 ·D ·p3, except J13 which has only simple massless pole at p2 ·p3

(see appendix A), the relations (2.24) simplify to

− 2p1 ·N ·p2I1 + 2p2 ·V ·p2I7 = 0 (2.36)

−2I2p1 ·N ·p2 + J13p2 ·p3 + 2J2p2 ·V ·p2 = 0

2I3p1 ·N ·p2 − 2J1p2 ·V ·p2 + J13p2 ·p3 = 0

−2I4p1 ·N ·p2 + 2J3p2 ·V ·p2 = 0

Note that J13(p2 ·p3)
2 is zero whereas J13p2 ·p3 is nonzero. Using the equation (2.32), one

can easily verify the first and last relations. The subtraction of the second and the third

relations give

−2p1 ·N ·p2(I2 + I3) + 2p2 ·V ·p2(J1 + J2) = 0

Using the integral representations in (2.29), one observes that I2+I3 = −2I1 and J1+J2 =

−2I7. Hence the above relation reduces to the first relation in (2.36).
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To study the low energy limit of the amplitude (2.27), we expand I1, I2,I4,J1,J2,J3

and J5 at the low energy. The expansion of beta function is standard and for expanding

the hypergeometric function we use the package [33]. The result is

I1 = −π
2

(
1

s(s+ t)
+

1

t(s+ t)
− π2

6

(q
s

+
p

t

)
+ · · ·

)

I2 = π

(
1

s(s+ t)
− π2

6

q

s
+ · · ·

)
(2.37)

I4 = −π
2

(
(2t+ q)

q

)(
1

st
− π2

6

[
p

t
+
q

s

]
+ · · ·

)

J1 = π

(
1

t(s+ t)
+

2

pt
− π2

6

[
2 +

(2s + p)

t
+

2q

p

]
+ · · ·

)

J2 = π

(
1

s(s+ t)
+
π2

6

[
2 − q

s

]
+ · · ·

)

J3 = −π
2

(
(2s + p)

p

(2t+ q)

q

)(
1

st
− π2

6

[
p

t
+
q

s

]
+ · · ·

)

J5 = π

(
1

t(s+ t)
− 1

s(s+ t)
+
π2

6

[
q

s
− p

t

]
+ · · ·

)

From these expansions and the expansion (2.20) for J , one finds the following contact

terms at order O(α′2):

Acontact ∼ π3

6

[
1

2
(p2)a(p2)bH

aa0a1

2 Hba2a3

3 +
1

2
(p2)a(p2)iH

aa0a1

2 H ia2a3

3

+
1

3
(p2)aH

a0a1a2

2 (p3)bH
aba3

3 +
1

3
(p2)iH

a0a1a2

2 (p3)aH
iaa3

3

−1

4
(p2)iH

aa0a1

2 (p3)iH
aa2a3

3 +
1

4
(p2)aH

ia0a1

2 (p3)aH
ia2a3

3

+
1

3
(p2)i(p2)aH

a0a1a2

2 H iaa3

3

]
ǫa0a1a2a3

+
[
2 ↔ 3

]
(2.38)

Even though we have found the expansion (2.37) for the constraint (2.28), the constants of

the integrals which produce the above contact terms, are independent of p2·p3 or φ2·D·p3.

Hence, the above result is valid for the general case.

The amplitude has also the following massless open string poles at order O(α′2):

Apole ∼ π3

12

[
2(p2)aH

aa0a1

2 (p3)bH
ba2a3

3

(
q + 2t

p

)
− (p1)i(p2)aH

aa0a1

2 H ia2a3

3

q

p
(2.39)

+
2

3
(p2)bH

aba3

2 (p3)aH
a0a1a2

3

q

p
+ (p2)a(p2)bH

aa0a1

2 Hba2a3

3

q

p

]
ǫa0a1a2a3

+
[
2 ↔ 3

]

Since the expansion (2.37) for the integrals are valid for the constraint (2.28), there might

be some other massless open string poles which are proportional to p2 ·V ·p3 or p2 ·N ·p3.

The amplitude (2.27) has also some massless closed string poles at order O(α′2) which

are in terms of H. However, they are not invariant under the RR gauge transformations.
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Dp-brane

A

B(2)

B(2)

C(p−3)

Figure 1. Feynman diagram for massless open string poles.

Recall that the RR gauge transformation of (n− 2)-form potential in supergravity is can-

celed with the gauge transformation of n-form. So one does not expect to have Ward

identity corresponding to a RR potential in the massless closed string poles. We have seen

that the string amplitude (2.27) can be written in terms of RR field strength, i.e., (2.26).

So this amplitude at order O(α′2) which is equal to the sum of the above massless closed

string amplitude, massless open string amplitude (2.39) and the contact terms (2.38), is

invariant under the RR gauge transformation. We are not interested in the massless closed

string poles, as they do not produce any new D-brane couplings.

2.2 Field theory amplitude

Having found the contact terms and the massless open string poles of string amplitude at

order O(α′2), we now reproduce them by appropriate couplings in field theory. The field

theory couplings are those that we have already presented in section 1. To simplify the

calculation we consider the RR scalar. In the next subsection we show that the field theory

produces the the massless open string poles (2.39).

2.2.1 Open string pole

In field theory, the open string channel of the scattering amplitude of one RR potential (p−
3)-form and two B-fields is given by the Feynman diagram in figure 1. The corresponding

Feynman amplitude is given by:

Af
1 = Va(ε3, A)Gab(A)Vb(A, ε2, ε

(p−3)
1 ) + (2 ↔ 3) (2.40)

where Aa is the gauge field on the Dp-brane. The gauge field propagator and the vertex

Va(ε3, A) can be read from the DBI action (1.1), i.e.,

Va(ε3, A) = (2πα′)T3(p3 ·V ·ε3)a

Gab(A) =

( −i
T3(2πα′)2

)
ηab

p3 ·V ·p3
(2.41)

The couplings in section 1 produce the vertex Vb(A, ε2, ε
(p−3)
1 ). We begin by considering

the couplings in the second line of (1.7) for RR scalar. The vertex corresponding to the

first term is given by

Vb(A, ε2) = −2(πα′)3T3ǫa0a1a2b(p1 + p2)
a2(p2)a

[
Ha0a1a

2 p1 ·N ·p2

]
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The amplitude (2.40) then becomes

Af
1 = i(πα′)2T3

(p3 ·V ·ε3)a3pa2

3

p3 ·V ·p3
ǫa0···a3

(p2)a
[
Ha0a1a

2 p1 ·N ·p2

]
+ (2 ↔ 3)

This amplitude is of order O(α′2) which has six momentum in the numerator and two

momentum in the denominator. The couplings in the second line of (1.7) have also the

following contact term:

Af
2 = i

(
(πα′)2T3

2

)
εa2a3

3 ǫa0···a3
(p2)a

[
Ha0a1a

2 p1 ·N ·p2

]
+ (2 ↔ 3) (2.42)

Using the following identity:

ǫa0···a3
(p3 ·V ·H3)

a2a3 = ǫa0···a3
(2p3 ·V ·εa2

3 p
a3

3 + p3 ·V ·p3ε
a2a3

3 )

one can rewrite the sum of Af
1 and Af

2 as

Af = i

(
(πα′)2T3

2

)
1

p3 ·V ·p3
ǫa0···a3

(p2)a(p3)b
[
Ha0a1a

2 Hba2a3

3 p1 ·N ·p2

]
+ (2 ↔ 3) (2.43)

Using the constraint (2.28), one writes p1·N·p2 = s+p/2. Hence, the above result is exactly

the first term in the open string amplitude (2.39) provided that one fix the normalization

of the string amplitude (2.27) to be

N =
3iα′2Tp

π
(2.44)

Now consider the second term in the second line of (1.7). It produces the following

vertex and contact term:

Vb(A, ε2) = (πα′)3T3ǫa0a1a2b(p1 + p2)
a2(p1)i

[
Ha0a1i

2 p2 ·V ·p2

]

Af
2 = −i

(
(πα′)2T3

4

)
εa2a3

3 ǫa0···a3
(p1)i

[
Ha0a1i

2 p2 ·V ·p2

]
+ (2 ↔ 3)

Doing the same steps as before, one finds

Af = −i
(

(πα′)2T3

4

)
1

p3 ·V ·p3
ǫa0···a3

(p1)i(p3)a
[
Ha0a1i

2 Haa2a3

3 p2 ·V ·p2

]
+ (2 ↔ 3) (2.45)

This is exactly the second term in the open string amplitude (2.39).

Next consider the first two terms in the last line of (1.8). They produce the following

vertex and contact term:

Vb(A, ε2) = −(πα′)3T3

3
p2 ·V ·p2H

a0a1a2

2

[
ǫa0a1a2b(p1 + p2)·V ·p2 − ǫa0a1a2a3

(p1 + p2)
a3(p2)b

]

Af
2 = i

(
(πα′)2T3

6

)
p2 ·V ·p2H

a0a1a2

2 ǫa0···a3
p2 ·V ·εa3

3 + (2 ↔ 3)

In this case, one finds

Af = −i
(

(πα′)2T3

6

)
1

p3 ·V ·p3
ǫa0···a3

(p3)a(p2)b
[
Ha0a1a2

2 Haba3

3 p2 ·V ·p2

]
+ (2 ↔ 3) (2.46)

which is exactly the first term in the second line of (2.39).
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Finally consider the last two terms in the last line of (1.8). They produce the following

vertex and contact term:

Vb(A, ε2) = −(πα′)3T3p2 ·V ·p2H
a0a1a
2 (p1 + p2)a(p1 + p2)

a2ǫa0a1a2b

Af
2 = i

(
(πα′)2T3

4

)
p2 ·V ·p2H

a0a1a
2 εa2a3

3 (p3)aǫa0···a3
+ (2 ↔ 3)

In this case, one finds

Af = i

(
(πα′)2T3

4

)
1

p3 ·V ·p3
ǫa0···a3

(p3)a(p3)b
[
Ha0a1a

2 Hba2a3

3 p2 ·V ·p2

]
+ (2 ↔ 3) (2.47)

which is exactly the last term in the second line of (2.39).

The above calculation indicates that the couplings which include (B+ 2πα′f) appears

as massless open string pole. Since the massless open string ampliude (2.39) does not

includes terms which are proportional to p2·V ·p3 or p2·N ·p3, the above calculation can not

fix the coefficient of all higher derivative couplings which contain (B+2πα′f). For example

the higher derivative coupling C ∧∂a∂bf ∧∂a∂bf can be read from the S-matrix element of

one RR and two gauge field vertex operators [5, 35]. One may extend it to C ∧ ∂a∂b(B +

2πα′f) ∧ ∂a∂b(B + 2πα′f). This coupling produces massless open string pole which is

proportional to p2·V ·p3. Hence, our calculation can not fix the presence of such couplings.

The couplings corresponding to the massless open string poles can also be extracted

from the low energy limit of the S-matrix element of one RR, one B-field and one open string

gauge field vertex operators. In that case, after fixing the SL(2, R) symmetry, one would

find a double integral which can be evaluated explicitly for the general kinematic setup [36].

2.2.2 Contact terms

Using the normalization (2.44), one finds the Lagrangian corresponding to the contact

terms in (2.38) to be

L =
(πα′)2T3

2
C(0)

[
1

2
Haa0a1,abHba2a3 +

1

2
Haa0a1,aiH ia2a3 +

1

3
Ha0a1a2,iaH iaa3

+
1

3
Ha0a1a2,aHaba3,b +

1

3
Ha0a1a2,iH iaa3,a

−1

4
Haa0a1,iHaa2a3,i +

1

4
H ia0a1,aH ia2a3,a

]
ǫa0a1a2a3

(2.48)

The terms in the last line are exactly the couplings (1.4). All other terms are those appear

in the first two lines of (1.8). Unlike the open string poles, there are no other couplings at

order O(α2).

The couplings in the last line above have been found in [6] by requiring the the Chern-

Simons couplings (1.3) to be invariant under linear T-duality, and by requiring the new

couplings to be invariant under B-field gauge transformation. These couplings, however,

are not invariant under linear T-duality if one of the indices of B-field which is contracted

with the volume form is the Killing coordinate. In that case one should add new couplings

involving higher RR potential to make a complete T-dual multiplet [6]. The new couplings,
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however, are neither covariant nor invariant under the B-field gauge transformation. So

one needs to add some other T-dual multiplets [6]. Having found the new couplings in the

first two lines above, one should do the same steps for these couplings as well, to find all

nonzero couplings of Dp-branes at order O(α′2).

Extending the calculation of the S-matrix element in this paper to the case that n =

p− 1, n = p+ 1, n = p+ 3 and n = p+ 5, one would be able to find all nonzero couplings.

We have performed the calculation for n = p+5 case and found that the S-matrix element

is zero for two gravitons, and has only closed string poles for two B-fields. We present this

result in the appendix B.
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A Evaluating J13 and J14

In this appendix we calculate the integrals J13 and J14. These integrals do not appear

in the amplitude (2.27), however, they are needed to verifies the relations between the

integrals that have been found in (2.24) and (2.25).

The integral J14 has no pole in p2·p3. To take the θ-integral in J14, we first write it as

J14 = J ′
14 + J ′′

14

where

J ′
14 =

∫ 1

0
dr2

∫ 1

0
dr3

(r22 − r23)
2

r2r3(1 − r22)(1 − r23)

∫ 2π

0
dθ

K̃

(r22 + r23 − 2r2r3 cos(θ))

J ′′
14 =

∫ 1

0
dr2

∫ 1

0
dr3

(1 + r22r
2
3 − 2r22)(1 + r22r

2
3 − 2r23)

r2r3(1 − r22)(1 − r23)

∫ 2π

0
dθ

K̃

(1 + r22r
2
3 − 2r2r3 cos(θ))

The θ-integrals then become

J ′
14 = 2π

∫ 1

0
dr2

∫ r2

0
dr3

(r22 − r23)K̃
′

r2r3(1 − r22)(1 − r23)
+ (2 ↔ 3)

J ′′
14 = −π

∫ 1

0
dr2

∫ 1

0
dr3

K̃ ′

r2r3

(
(r22r

2
3 − 1)

(1 − r22)(1 − r23)
+

4

(1 − r23)
+

4

(r22r
2
3 − 1)

)
+ (2 ↔ 3)

Writing r22 − r23 = (r22 − 1)+ (1− r23) and using the formula (2.35) the radial integral in J ′
14

becomes

J ′
14 =

π

2t

(
B(s+ t, p)3F2

[
t, s+ t, −q

1 + t, s+ t+ p
; 1

]

−B(s+ t, 1 + p)3F2

[
t, s+ t, 1 − q

1 + t, 1 + s+ t+ p
; 1

])
+ (2 ↔ 3)
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The radial integral in the first two terms in J ′′
14 gives a multiple of two beta functions. To

take the radial integral in the last term we use the following identity:

1

1 − r22r
2
3

= 2F1

[
1, 1

1
; r22r

2
3

]
(A.1)

Then using the integral representation of the generalized hypergeometric function pFq [34]:
∫ 1

0
dxxa(1 − x)bpFq

[
a1, · · · , ap

b1, · · · , bq
; λx

]
=

p+1Fq+1

[
1 + a, a1, · · · , ap

2 + a+ b, b1, · · · , bq
; λ

]
B(1 + a, 1 + b) (A.2)

one can write the radial integral in terms of the the hypergeometric function 4F3. The

result is

J ′′
14 =

π

4

(
B(s, p)B(t, q) −B(1 + s, p)B(1 + t, q) − 4B(s, 1 + p)B(t, q)

+4B(t, 1 + q)B(s, 1 + p)3F2

[
t, s, 1

1 + t+ q, 1 + s+ p
; 1

])
+ (2 ↔ 3) (A.3)

where we have also used the identity:

4F3

[
a, b, c, 1

d, e, 1
; 1

]
= 3F2

[
a, b, c

d, e
; 1

]
(A.4)

The integral J13, however, has simple pole 1/(p2 ·p3). To see this we write it as

J13 = J ′
13 + J ′′

13

where

J ′
13 = −

∫ 1

0
dr2

∫ 1

0
dr3

(1 − r22r
2
3)

2

r2r3(1 − r22)(1 − r23)

∫ 2π

0
dθ

K̃

(1 + r22r
2
3 − 2r2r3 cos(θ))

J ′′
13 =

∫ 1

0
dr2

∫ 1

0
dr3

(r22 + r23 − 2)(2r22r
2
3 − r22 − r23)

r2r3(1 − r22)(1 − r23)

∫ 2π

0
dθ

K̃

(r22 + r23 − 2r2r3 cos(θ))

The θ-integral in J ′
13 gives

J ′
13 = −π

∫ 1

0
dr2

∫ 1

0
dr3

(1 − r22r
2
3)K̃

′

r2r3(1 − r22)(1 − r23)
+ (2 ↔ 3)

and the radial integrals give

J ′
13 = −π

4

(
B(s, p)B(t, q) −B(1 + s, p)B(1 + t, q)

)
+ (2 ↔ 3) (A.5)

The θ-integral in J ′′
13 gives

J ′′
13 = 2π

∫ 1

0
dr2

∫ r2

0
dr3

[(r22 − r23) + 2(r23 − 1)][2r22(r23 − 1) + (r22 − r23)]K̃
′

r2r3(1 − r22)(1 − r23)(r
2
2 − r23)

+ (2 ↔ 3)

= 2π

∫ 1

0
dr2

∫ r2

0
dr3

(
2r2

r3(1 − r22)
− 1

r2r3(1 − r22)
− 1

r2r3(1 − r23)

+
4r2

r3(r22 − r23)

)
+ (2 ↔ 3) (A.6)
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The terms in the second line have no p2 ·p3 pole. Their radial integrals can be evaluated

using the formula (2.35), i.e.,

J ′′
13 =

(
B(p, 1 + s+ t)

t
3F2

[
1 + s+ t, t, −q

1 + s+ t+ p, 1 + t
; 1

]
−B(p, s+ t)

2t
3F2

[
s+ t, t, −q

s+ t+ p, 1 + t
; 1

]

− B(1 + p, s+ t)

2t
3F2

[
s+ t, t, 1 − q

1 + s+ t+ p, 1 + t
; 1

])
π + (2 ↔ 3) + J (A.7)

The term in the last line of (A.6) which we have called it J , however, is infinite when

r2 = r3 which means it has massless pole at p2 ·p3. So this part of J ′′
13 must be calculated

for p2 ·p3 6= 0.

The θ-integral in this part has to be evaluated for p2 ·p3 6= 0. So we have to calculate

the following integral:

J =

∫ 1

0
dx

∫ 1

0
dy xsyt−1(1 − x)p(1 − y)q

∫ 2π

0
dθ(x+ y − 2

√
xy cos(θ))−1+p2·p3

where we have chosen x = r22, y = r23. To take θ-integral we use the following formula [34]:

∫ 2π

0
dθ

cos(nθ)

(1 + a2 − 2a cos(θ))b
= 2πan Γ(b+ n)

n!Γ(b)
2F1

[
b, n+ b

n+ 1
; a2

]
(A.8)

where |a| < 1. One finds

J = 2π

∫ 1

0
dx

∫ x

0
dy x−1+s+p2·p3yt−1(1 − x)p(1 − y)q2F1

[
1 − p2 ·p3, 1 − p2 ·p3

1
; y/x

]

+2π

∫ 1

0
dy

∫ y

0
dxxsy−2+t+p2·p3(1 − x)p(1 − y)q2F1

[
1 − p2 ·p3, 1 − p2 ·p3

1
; x/y

]

changing the variable in the first line as y = xu and in the second line as x = yu, one finds

J = 2π

∫ 1

0
dx

∫ 1

0
dux−1+p2·p3+s+tut−1(1 − x)p(1 − xu)q2F1

[
1 − p2 ·p3, 1 − p2 ·p3

1
; u

]

+2π

∫ 1

0
dy

∫ 1

0
duusy−1+s+t+p2·p3(1 − yu)p(1 − y)q2F1

[
1 − p2 ·p3, 1 − p2 ·p3

1
; u

]

These integrals have no massless pole in the open string p- or q-channel. So for ease of

calculation we set p = q = 0. Then using the integral representation of the generalized

hypergeometric function (A.2) one finds

J = 2π




3F2

[
t, 1−p2·p3, 1−p2·p3

1+t, 1 ; 1

]

t(p2 ·p3 + s+ t)
+

3F2

[
1+s, 1−p2·p3, 1−p2·p3

2+s, 1 ; 1

]

(1 + s)(p2 ·p3 + s+ t)


 (A.9)

Having found the explicit form of J13 and J14, one can use the package [33] to expand
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them. The result is The low energy expansion of J13 and J14 are

J14 =
π

2

(
1

st
− π2

6

[
q

s
+
p

t

]
+ · · ·

)

J13 =
π

2

(
− 3

st
+
π2

6

[
− 4 +

3p

t
+

3q

s

]
+ · · ·

)
+ J

Note that these expansion for J14 and J13 − J are valid for the constraint (2.28). The

expansion for J is:

J = 2π

(
1

p2 ·p3(s+ t+ p2 ·p3)
+

1

t(s+ t+ p2 ·p3)
− π2

6
+ · · ·

)
(A.10)

which is valid for p = q = 0 but p2 ·p3 6= 0.

We now check the relation (2.36). Using (2.37), one finds the following expansion:

2I3p1 ·N ·p2 − 2J1p2 ·V ·p2 = −2π

(
1

(s + t)
+ · · ·

)

for the case that p2 ·p3 = p = q = 0. Then the third relation in (2.36) gives

J13p2 ·p3 = 2π

(
1

(s+ t)
+ · · ·

)

which is consistent with the expansion (A.10).

B S-matrix element for n = p + 5 case

In this appendix we consider the scattering amplitude (2.5) for the case n = p + 5. Since

the RR potential is totally antisymmetric, it must have at least four transverse indices.

We consider the case that the RR potential carries four transverse indices and p+ 1 world

volume indices. This is similar to the case n = p − 3 and the RR potential with only

world volumes indices which we studied in section 2.1. The cases that the RR potential

carries more transverse indices is similar to the case n = p − 3 and the RR potential with

transverse and world volumes indices which we studied in [28].

Using the same steps as in section 2.1, one finds the scattering amplitude is zero for

two graviton vertex operators. We find this result by explicit calculation in (−3/2,−1/2)-

picture. One can find this result in (−1/2,−1/2)-picture without explicit calculation,

and by taking into account the fact that the RR field strength in the vertex operators is

totally antisymmetric.
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The explicit calculation in (−3/2,−1/2)-picture, as we have done in section 2.1, gives

the following result for two B-fields:

A∼ 1

4(p + 1)!
ǫa0···apε1a0···apijklε3

kl

(
pi
2p

j
3p3 ·V ·ε2 ·N ·p1I2 − pi

2p
j
3p3 ·N ·ε2 ·N ·p1I3

−pi
2p2 ·V ·p3p3 ·V ·ε2jJ6 − pi

2p3 ·V ·p3p3 ·V ·ε2jJ4 + pi
3p2 ·V ·p2p3 ·V ·ε2jJ2

−2pi
3p2 ·V ·p3p3 ·V ·ε2jJ8 − 2pi

2p2 ·N ·p3p3 ·V ·ε2jJ9 − pi
3p2 ·N ·p3p3 ·V ·ε2jJ6

−2pi
2p3 ·V ·p3p1 ·N ·ε2jI4 − pi

3p2 ·V ·p3p1 ·N ·ε2jI2 − 2pi
2p2 ·V ·p3p3 ·N ·ε2jJ7

+pi
2p3 ·V ·p3p3 ·N ·ε2jJ12 − pi

3p2 ·V ·p2p3 ·N ·ε2jJ1 − pi
3p2 ·V ·p3p3 ·N ·ε2jJ6

+pi
3p2 ·N ·p3p1 ·N ·ε2jI3 − pi

2p2 ·N ·p3p3 ·N ·ε2jJ6 − 2pi
3p2 ·N ·p3p3 ·N ·ε2jJ10

+
1

2
p2 ·V ·p2p3 ·V ·p3ε2

ijJ3 +
1

4
(p2 ·V ·p3)

2ε2
ijJ6 +

1

2
p2 ·V ·p3p2 ·N ·p3ε2

ijJ11

+
1

4
(p2 ·N ·p3)

2ε2
ijJ6

)

+
1

2(p+ 1)!
ǫa0···apε1a0···apijklp

i
2p

j
3

(
− p1 ·N ·ε2kp1 ·N ·ε3lI1 + p1 ·N ·ε2kp2 ·N ·ε3lI2

−p1 ·N ·ε2kp2 ·V ·ε3lI3

)
+ (2 ↔ 3) (B.1)

The integrals are those appear in (2.21).

We have argued before that the sum of amplitudes (2.19) and (2.21) is invariant under

linear T-duality when the world volume Killing coordinate is an index of the RR potential.

However, it is not invariant under linear T-duality if one of the indices of B-field/graviton

polarization tensor which is contracted with the volume form, is the Killing coordinate. In

that case one should add new amplitude involving higher RR potential to make a complete

T-dual amplitude [6]. In this way one would find new amplitude for RR potentials C(p−1),

C(p+1), C(p+3) and Cp+5. The Cp+5 part is exactly the terms in the seventh and eighth line

above. All other terms involving pi
2 or pi

3 are not remnant of the amplitude (2.21) under

T-duality. The string theory produce them for other consistencies.

The amplitude in terms of H is

A∼ 1

8(p+ 1)!
ǫa0···apε1a0···apijkl

(
2

3
Hklj

3 Hami
2 (p3)a(p1)mI2 −

2

3
Hklj

3 Hnmi
2 (p3)n(p1)mI3

−Hnlj
3 Hmki

2 (p1)n(p1)mI1+Hnlj
3 Hmki

2 (p2)n(p1)mI2−Halj
3 Hmki

2 (p2)a(p1)mI3

)
+(2 ↔ 3)

Since the integrals I1, I2 and I3 have no constant and no massless open string poles (2.37),

the above amplitude does not produce any coupling for C(p+5).
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[33] T. Huber and D. Mâıtre, HypExp, a Mathematica package for expanding hypergeometric

functions around integer-valued parameters, Comput. Phys. Commun. 175 (2006) 122

[hep-ph/0507094] [SPIRES].

[34] I.S. Gradshteyn and I.M. Ryzhik, Table of Integrals, Series and Products, Academic Press,

San Diego U.S.A. (1994).

[35] M.R. Garousi and R.C. Myers, World-volume interactions on D-branes,

Nucl. Phys. B 542 (1999) 73 [hep-th/9809100] [SPIRES].

[36] A. Fotopoulos, On (α′)2 corrections to the D-brane action for non-geodesic world-volume

embeddings, JHEP 09 (2001) 005 [hep-th/0104146] [SPIRES].

– 28 –

http://dx.doi.org/10.1016/0550-3213(95)00367-2
http://arxiv.org/abs/hep-th/9504081
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9504081
http://dx.doi.org/10.1016/0550-3213(96)00171-X
http://arxiv.org/abs/hep-th/9601150
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9601150
http://dx.doi.org/10.1016/S0550-3213(99)00684-7
http://arxiv.org/abs/hep-th/9907152
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9907152
http://dx.doi.org/10.1007/JHEP02(2011)008
http://arxiv.org/abs/1012.2747
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1012.2747
http://dx.doi.org/10.1016/S0550-3213(98)00296-X
http://arxiv.org/abs/hep-th/9802088
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9802088
http://dx.doi.org/10.1016/S0550-3213(01)00403-5
http://arxiv.org/abs/hep-th/0107172
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0107172
http://dx.doi.org/10.1016/0550-3213(88)90549-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B299,559
http://dx.doi.org/10.1016/j.physletb.2010.12.042
http://arxiv.org/abs/1010.4950
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1010.4950
http://dx.doi.org/10.1016/j.cpc.2006.01.007
http://arxiv.org/abs/hep-ph/0507094
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-PH/0507094
http://dx.doi.org/10.1016/S0550-3213(98)00792-5
http://arxiv.org/abs/hep-th/9809100
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9809100
http://dx.doi.org/10.1088/1126-6708/2001/09/005
http://arxiv.org/abs/hep-th/0104146
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0104146

	Introduction and results
	Scattering amplitude 
	String theory amplitude
	Low energy limit

	Field theory amplitude
	Open string pole
	Contact terms


	Evaluating J(13) and J(14)
	S-matrix element for n=p+5 case

