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1 Introduction

There is evidence to suggest that in higher dimensions there are black holes with exotic

horizon topologies. As a result, the classical black hole uniqueness theorems [1]–[7] do not

extend to more than four dimensions. Five dimensions are also special. Although there is

no uniqueness theorem for a large class of theories the horizon topologies that can occur

are S3, S1 × S2 and T 3 [8]. The first two are the horizon topologies of the BMPV black

hole [9] and black ring [10], respectively. To our knowledge, no black hole solution has been

found with horizon topology T 3.

To probe the horizon topologies in more than five dimensions, one can either assume

that the solutions are static, see e.g. [11–13], or are black hole solutions of the type consid-

ered in [14, 15], or that they preserve a fraction of spacetime supersymmetry. The latter

assumption is natural in the context of string, Kaluza-Klein or supergravity theories. The

analysis is further simplified provided that one considers extreme black holes and focuses

on a suitable geometry near the horizon, the near horizon geometry.1 In this context, it is

natural to ask whether the topology and geometry of the near horizon geometries of super-

symmetric black holes of higher-dimensional supergravity theories can be classified. Some

progress has been made to solve this problem. For example, there is a good understanding

of the near horizon topologies and geometries of heterotic supergravity [16, 17]. This has

been assisted by the solution of the Killing spinor equations (KSEs) of heterotic super-

gravity in all cases [18–20]. In particular, all the conditions on the geometry of heterotic

horizons are known, as well as the corresponding fractions of supersymmetry preserved.

The half supersymmetric horizons have been classified, and the 1/4 supersymmetric ones

lead to pairing of a cohomological and of a non-linear differential system on Kähler sur-

faces. Although there is no classification of the 1/4 supersymmetric horizons, many explicit

solutions of both systems are known, for example on del Pezzo surfaces, and the associated

horizons have exotic topologies.

In this paper we extend the results of the heterotic analysis to type IIB supergrav-

ity [21–23]. In contrast to the heterotic case, somewhat less is known about solutions of IIB

supergravity. In particular, the KSEs have been solved for N = 1 backgrounds in [24, 25].

It has also been shown that if a background preserves more than 28 supersymmetries it is

maximally supersymmetric [26, 27]. Moreover, the backgrounds that preserve 28 and 32 su-

persymmetries have been classified in [28] and [29], respectively. Very little is known about

the properties of solutions in the intermediate cases, however see the conjectures in [30, 31].

Some simplification occurs for those backgrounds that have only 5-form flux [32]. Because

of this, we shall first examine the supersymmetric IIB near horizon geometries with non-

vanishing 5-form flux. The general case which includes IIB near horizon geometries with

other fluxes will be reported elsewhere. The advantage of focusing on near horizon geome-

tries with only 5-form flux is that the analysis is rather economical and leads to insightful

1However, it is not apparent that all near horizon geometries found in such an investigation can be

extended to full black hole solutions. For an extensive discussion on this point, see eg [16] and references

within.
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connections with KT geometry. This in turn allows for the construction of many examples

of near horizon geometries, some of which have exotic topologies.

The focus of our analysis is on IIB near horizon geometries with non-vanishing 5-form

flux that preserve at least 2 supersymmetries.2 An application of the spinorial geometry

technique [33] for solving KSEs to IIB supergravity reveals that there are three classes of

near horizon geometries depending on the choice of Killing spinors. The Killing spinor

of the first class of solutions is constructed from a Spin(7) invariant spinor on the spatial

horizon section S. In this case we shall show that the near horizon geometry is R
1,1×S. In

turn S is a product of closed Riemannian manifolds with special holonomy as given in the

Berger classification, and the 5-form vanishes. The Killing spinors of the other two classes

are constructed from SU(4) invariant spinors on S . These two classes are distinguished

by whether the SU(4) invariant spinors are generic or pure. We shall focus our analysis on

the pure case. The geometry of the horizons in the generic SU(4) case is different and its

exploration requires the development of new techniques which will be reported elsewhere.

The Killing spinor vector bi-linear of the pure SU(4) invariant case, which we identify

with the black hole stationary Killing vector field, is null. Consequently, the metric of the

near horizon geometry can be written as

ds2 = 2du(dr + rh) + ds2(8)(S) , (1.1)

where ds2(8)(S) is the metric of the horizon section. Moreover, the KSEs require that S is

a Hermitian manifold with an SU(4) structure such that

h = θω = θRe χ , (1.2)

where θω and θRe χ are the Lee forms of the Hermitian form ω and the real component of

the (4,0)-form χ, respectively.

The equality of the two Lee forms is significant. This is because it is precisely the

condition for the SU(4) structure on S to admit a compatible Kähler with torsion (KT) ge-

ometry [34]. This condition implies that the manifold is equipped with a metric connection,

∇̂, with skew-symmetric torsion H, such that

∇̂ω = ∇̂χ = 0 . (1.3)

Therefore all the horizon sections with non-vanishing 5-form flux admit a hidden 3-form

torsion. This cannot be immediately identified with either the NS-NS 3-form or R-R

field strengths of IIB supergravity as they have been set to zero. Another advantage of

introducing H is that now the Bianchi identity for the 5-form, which also implies all the

remaining equations of IIB supergravity including field equations, can be written as

d(ω ∧H) = i∂∂̄ω2 = 0 . (1.4)

As we shall demonstrate, expressing the conditions implied by the KSE and field equations

as in (1.3) and (1.4) is instrumental for the construction of many examples of near hori-

zon geometries. Our examples include horizons with sections which are group manifolds,

2This is the minimal amount of supersymmetry that is preserved by a solution when only the 5-form

flux is non-vanishing.
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and toric and SU(2) fibrations over lower dimensional KT manifolds. A particular large

class of examples includes T 2 fibrations over 6-dimensional Kähler-Einstein manifolds. We

also demonstrate that the uplifting of the near horizon geometries of 5-dimensional black

holes [35–37] to IIB solves all the conditions and so provides more examples.

IIB spatial horizon sections are 8-dimensional but the conditions we have found on S
can be easily adapted to 2n dimensions. Strong KT manifolds (SKT) [34] are KT manifolds

which in addition satisfy the second order equation dH = 2i∂∂̄ω = 0. A comparison of (1.4)

with the strong condition for SKT manifolds leads to a generalization of both conditions.

In particular, k-strong Kähler manifolds with torsion (k-SKT) are KT manifolds which

in addition satisfy ∂∂̄ωk = d(ωk−1 ∧ H) = 0. For 2n-dimensional manifolds, the (n-1)-

SKT and (n-2)-SKT structures coincide with the Gauduchon [38] and the Jost and Yau

astheno-Kähler [39] conditions, respectively. The above conditions can also be extended

to 2n-dimensional manifolds with an SU(n) structure compatible with a connection with

skew-symmetric torsion, or equivalently almost Calabi-Yau with torsion (ACYT) and, if

the almost complex structure is integrable, Calabi-Yau with torsion (CYT) manifolds. In

this terminology, the horizon spatial section S is a 2-SCYT manifold. The expression of

k-SKT structure in terms of H allows one to further extend it on other manifolds with

almost KT (AKT), Sp(n), Sp(n) · Sp(1), G2 or Spin(7) structures.

A further generalization of k-SKT geometries is possible following the introduction of

the k-Gauduchon condition ∂∂̄ωk ∧ ωn−k−1 = 0 for Hermitian manifolds in [40]. One can

also define the (k; ℓ)-SKT condition as ∂∂̄ωk ∧ ωℓ = 0 which includes both the k-SKT and

k-Gauduchon structures. Rewriting this as d(ωk−1 ∧ H) ∧ ωℓ = 0 it generalizes to other

manifolds with SU(n), Sp(n) and Sp(n) · Sp(1) structures.

This paper is organized as follows. In section 2, we describe the field and KSEs for near

horizon geometries of IIB supergravity. In section 3, we solve the KSEs for horizons which

preserve at least two supersymmetries. The cases with Spin(7)-invariant and pure SU(4)-

invariant Killing spinors are emphasized. In section 4, we demonstrate that the spatial

horizon sections of solutions with a pure SU(4)-invariant Killing spinor admit a hidden KT

geometry compatible with an SU(4) structure. In section 5, we give several examples of IIB

supersymmetric horizons which are group fibrations over KT manifolds. In section 6, we

present some more examples which arise by uplifting lower-dimensional black hole horizons

to IIB supergravity, and in section 7, we give our conclusions. In appendix A, we explain

our conventions. In appendix B we give the definitions of new geometries associated with

other structure groups which arise as a generalization of the conditions we have found on

the IIB spatial horizon sections. In appendix C, we give the 5-form field strength of the

uplifted lower-dimensional black hole horizon geometries.

2 Fields near the horizon and supersymmetry

2.1 Near horizon limit and field equations

It is well-known that under some analyticity assumptions [41], one can adapt Gaussian

Null co-ordinates near the horizon of an extremal black hole to write the metric as

ds2 = 2e+e− + δije
iej = 2du

(

dr + rh− 1

2
r2∆du

)

+ γIJdy
IdyJ , (2.1)
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where we have introduced the basis

e+ = du, e− = dr + rh− 1

2
r2∆du, ei = eiIdy

I . (2.2)

The horizon is the Killing horizon of the time-like Killing vector field V = ∂
∂u

which is

identified to be in the same class as the stationary Killing vector field of the black hole,

see e.g. [16, 41]. The spatial horizon section S is the co-dimension 2 submanifold defined

by r = u = 0 and it is assumed to be closed, i.e. compact without boundary.

The components of the metric depend on all coordinates apart from u. The near

horizon geometry is defined by first making the coordinate transformation

r → ℓr, u→ ℓ−1u , (2.3)

and then taking the limit ℓ→ 0. The resulting spacetime metric does not change its form,

however in the near-horizon limit ∆, h and γ no longer depend on r. The components of

the spin connection are listed in appendix A.

The self-dual3 5-form field strength F of IIB supergravity also simplifies in the near

horizon limit. Assuming that all components of F are regular functions of r, independent

of u, such that F is well-defined on taking the near-horizon limit, in addition to the duality

condition and the Bianchi identity dF = 0, one finds that

F = rdu ∧ dY + du ∧ dr ∧ Y − ⋆8Y = re+ ∧ (dY − h ∧ Y ) + e+ ∧ e− ∧ Y − ⋆8Y , (2.4)

where Y is a r, u-independent 3-form on S. Writing the 10-dimensional spacetime volume

form in terms of that on S as

dvol(10) = e+ ∧ e− ∧ dvol(8) , (2.5)

one finds that Y satisfies

d ⋆8 Y = 0, dY − h ∧ Y = − ⋆8 (dY − h ∧ Y ) , (2.6)

and ⋆8 is the Hodge dual on S, with the convention that

(⋆8Y )n1n2n3n4n5 =
1

3!
ǫm1m2m3

n1n2n3n4n5Ym1m2m3 . (2.7)

The field equation for the 5-form field strength coincides with the Bianchi identity

which we have already given in (2.6). The remaining field equation is the Einstein equation

of the theory,

RAB =
1

6
FAL1L2L3L4FB

L1L2L3L4 . (2.8)

For the near horizon geometry, this can be decomposed along the light-cone directions and

those of the horizon section S. In particular, from the +− component, one obtains:

1

2
∇̃ihi − ∆ − 1

2
h2 = −2

3
Yℓ1ℓ2ℓ3Y

ℓ1ℓ2ℓ3 , (2.9)

3In our conventions FM1...M5 = 1
5!

ǫN1...N5
M1...M5FN1...N5 , where ǫ0123456789 = 1.
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where ∇̃ denotes the Levi-Civita connection of S. From the ij component one finds

R̃ij + ∇̃(ihj) −
1

2
hihj = −4Yiℓ1ℓ2Yj

ℓ1ℓ2 +
2

3
δijYn1n2n3Y

n1n2n3 , (2.10)

where R̃ denotes the Ricci tensor of S. From the ++ component, one obtains

1

2
∇̃2∆ − 3

2
hi∇̃i∆ − 1

2
∆∇̃ihi + ∆h2 +

1

4
dhijdh

ij

=
1

6
(dY − h ∧ Y )n1n2n3n4(dY − h ∧ Y )n1n2n3n4 , (2.11)

and from the +i component, one gets

1

2
∇̃jdhij − hjdhij − ∇̃i∆ + ∆hi = −4

3
(dY − h ∧ Y )in1n2n3Y

n1n2n3 . (2.12)

2.2 Killing spinor equations

We set the axion and dilaton to be constant, and the 3-forms to vanish. Thus the only

active bosonic fields are the metric and real self-dual 5-form F . In such case, the only

non-trivial KSE is

∇Mǫ+
i

48
FMN1N2N3N4Γ

N1N2N3N4ǫ = 0 , (2.13)

where ∇ is the spin connection associated with the frame (2.2) and ǫ is a spinor in the

positive chirality complex Weyl representation of Spin(9, 1).

To proceed further, we use the projections

ǫ = ǫ+ + ǫ− , Γ±ǫ± = 0 , (2.14)

to decompose the KSE along the light-cone directions and the rest. The KSE along the

light-cone directions can be integrated. In particular on integrating up the − component

of the KSE, one finds

ǫ+ = φ+, ǫ− = φ− + rΓ−

(

1

4
hiΓ

i +
i

12
Yn1n2n3Γ

n1n2n3

)

φ+ , (2.15)

where φ± do not depend on r. A similar analysis of the + component of the KSE gives

that

φ+ = η+ + uΓ+

(

1

4
hiΓ

i − i

12
Yn1n2n3Γ

n1n2n3

)

η−, φ− = η− , (2.16)
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where η± do not depend on u or r. Furthermore, η+, η− must satisfy the following algebraic

conditions
(

− 1

8
h2 − 1

2
∆ +

1

12
Yℓ1ℓ2ℓ3Y

ℓ1ℓ2ℓ3 − 1

8
dhijΓ

ij

+

(

i

48
dYℓ1ℓ2ℓ3ℓ4 −

1

8
Ymℓ1ℓ2Y

m
ℓ3ℓ4

)

Γℓ1ℓ2ℓ3ℓ4

)

η− = 0 , (2.17)

(

1

8
h2 +

1

2
∆ − 1

12
Yℓ1ℓ2ℓ3Y

ℓ1ℓ2ℓ3 − 1

8
dhijΓ

ij

+

(

i

48
dYℓ1ℓ2ℓ3ℓ4 +

1

8
Ymℓ1ℓ2Y

m
ℓ3ℓ4

)

Γℓ1ℓ2ℓ3ℓ4

)

η+ = 0 , (2.18)

(

1

8
h2 +

1

2
∆ − 1

12
Yℓ1ℓ2ℓ3Y

ℓ1ℓ2ℓ3 − 1

8
dhijΓ

ij

+

(

i

48
dYℓ1ℓ2ℓ3ℓ4 +

1

8
Ymℓ1ℓ2Y

m
ℓ3ℓ4

)

Γℓ1ℓ2ℓ3ℓ4

)

×
(

1

4
hjΓ

j − i

12
Yn1n2n3Γ

n1n2n3

)

η− = 0 , (2.19)

((

− 1

8
dhq1q2Γ

q1q2+
i

48
(dY −h ∧ Y )ℓ1ℓ2ℓ3ℓ4Γ

ℓ1ℓ2ℓ3ℓ4

)(

1

4
hjΓ

j +
i

12
Yn1n2n3Γ

n1n2n3

)

+
1

4
(∆hi − ∂i∆)Γi

)

η+ = 0 , (2.20)

and
((

− 1

8
dhq1q2Γ

q1q2 +
i

48
(dY − h ∧ Y )ℓ1ℓ2ℓ3ℓ4Γ

ℓ1ℓ2ℓ3ℓ4

)(

1

4
hjΓ

j+
i

12
Yn1n2n3Γ

n1n2n3

)

+
1

4
(∆hi − ∂i∆)Γi

)(

1

4
hmΓm − i

12
Ym1m2m3Γ

m1m2m3

)

η−=0 . (2.21)

It has been shown in [24, 25] that all supersymmetric IIB backgrounds admit a Killing

vector field constructed as a bilinear of the Killing spinor. The solution of the above alge-

braic conditions as well as that of the remaining component of the KSE along S proceeds

by identifying the Killing vector bilinear with the Killing vector field of the near horizon

geometry V = ∂u. This is justified if one assumes that the black hole spacetime is supersym-

metric. However, this is not necessary. As it has been emphasized in [42], the analysis can

be carried out under the assumption that only the near horizon geometry is supersymmet-

ric and not necessarily the black hole spacetime. However, such a weaker assumption leads

to a more involved analysis in IIB supergravity which is not within the scope of this paper.

3 Solutions with at least two supersymmetries

To proceed, we consider first the solutions with minimal supersymmetry, and we require

that the 1-form Killing spinor bilinear

ZM = 〈B(Cǫ∗)∗,ΓM ǫ〉 = 〈Γ0ǫ,ΓM ǫ〉 , (3.1)

– 7 –
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should be proportional to V , where

V = −1

2
r2∆e+ + e− . (3.2)

First, evaluate Z at r = u = 0, for which ǫ = η+ + η−. Requiring that Z+ = 0 at

r = u = 0 implies that

η− = 0 . (3.3)

Then, using r, u independent Spin(8) gauge transformations of the type considered

in [24, 25], one can, without loss of generality, take

η+ = p+ qe1234 , (3.4)

where p, q are complex functions of S. Furthermore, on computing the component Z−, one

finds that |p|2 + |q|2 must be a (non-zero) constant.

Next, evaluate Zi at r 6= 0. As this component must vanish, one finds

hi = −|p|2 − |q|2
|p|2 + |q|2Yiℓ1ℓ2ω

ℓ1ℓ2 , (3.5)

where in conventions similar to those in [24, 25],

ω = −e1 ∧ e6 − e2 ∧ e7 − e3 ∧ e8 − e4 ∧ e9 , (3.6)

is an almost Hermitian structure on S. Also, noting that

∆ = −2r−2Z+

Z−
, (3.7)

one finds

∆ =
1

6
Yℓ1ℓ2ℓ3Y

ℓ1ℓ2ℓ3 − 1

4
h2

+Yℓn1n2Y
ℓ
n3n4

[

1

8
ω ∧ ω − 1

4

pq̄

|p|2 + |q|2χ− 1

4

p̄q

|p|2 + |q|2 χ̄
]n1n2n3n4

, (3.8)

where, in the conventions of [24, 25]

χ = (e1 + ie6) ∧ (e2 + ie7) ∧ (e3 + ie8) ∧ (e4 + ie9) , (3.9)

is the (4, 0) form on S.

In particular, on defining

Ŷℓ1ℓ2ℓ3 =(Y(0,3) + Y(3,0))ℓ1ℓ2ℓ3 −
i

8(|p|2+|q|2)Ymn1n2ω
n1n2

(

pq̄χm
ℓ1ℓ2ℓ3 − p̄qχ̄m

ℓ1ℓ2ℓ3

)

, (3.10)

it is straightforward to show, using (3.5), that (3.8) can be rewritten as

∆ =
2

3
Ŷℓ1ℓ2ℓ3 Ŷ

ℓ1ℓ2ℓ3 , (3.11)

so ∆ ≥ 0, as expected.
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Next, we consider the remaining components of the KSE. These imply that

∇̃iη+ − 1

4
hiη+ − i

12
Yℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3Γiη+ = 0 , (3.12)

and

([

1

4
∇̃jhi −

1

8
hihj +

1

4
Yiq1q2Yj

q1q2

]

Γj +

[

i

12
(∇̃iYℓ1ℓ2ℓ3 − (dY )iℓ1ℓ2ℓ3)

+
i

24

(

(h ∧ Y ) + ⋆8(h ∧ Y )
)

iℓ1ℓ2ℓ3
− 1

144
Yim1m2Ym3m4m5ǫ

m1m2m3m4m5
ℓ1ℓ2ℓ3

−1

4
Ym[ℓ1ℓ2Yℓ3]i

m

]

Γℓ1ℓ2ℓ3

)

η+ = 0 , (3.13)

where ∇̃ denotes the Levi-Civita connection on S. Note that on contracting (3.13) with

Γi, and on making use of (2.18), one obtains (2.9). Furthermore, (3.10) is obtained from

the integrability conditions of the KSE.

Also, on expanding out (3.12), one obtains the conditions:

∂αp+

(

1

2
Ωα,β

β − iYαβ
β − 1

4
hα

)

p = 0 ,

∂αp̄+

(

− 1

2
Ωα,β

β − 1

4
hα

)

p̄− i

3
ǫαλ1λ2λ3Y

λ1λ2λ3 q̄ = 0 ,

∂αq +

(

− 1

2
Ωα,β

β − 1

4
hα

)

q +
i

3
ǫαλ1λ2λ3Y

λ1λ2λ3p = 0 ,

∂αq̄ +

(

1

2
Ωα,β

β + iYαβ
β − 1

4
hα

)

q̄ = 0 , (3.14)

and

Ωα,λ1λ2ǫ
λ1λ2

µ̄1µ̄2 =
4pq̄

|p|2 + |q|2 Ωα,µ̄1µ̄2 ,

iYαµ̄1µ̄2 − iδα[µ̄1
Yµ̄2]β

β =
(|p|2 − |q|2)
2(|p|2 + |q|2)Ωα,µ̄1µ̄2 . (3.15)

So far, we have investigated the general supersymmetric near horizon geometries. From

now on, we shall restrict ourselves to some special cases which depend on the choice of the

functions p and q and of the spinor η+ in (3.4). There are three cases to consider as follows:

• η+ is an Spin(7) invariant spinor, |p|2 = |q|2.

• η+ is a generic SU(4) invariant spinor, p 6= 0 and q 6= 0 and |p|2 − |q|2 6= 0.

• η+ is a pure SU(4) invariant spinor, p = 0 or q = 0.

We shall investigate in detail the geometry of the spatial horizon section in the first

and last cases.
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3.1 Spin(7) invariant Killing spinors

For solutions with |p|2 = |q|2, one can, by an appropriate r, u-independent Spin(8) gauge

transformation, take q = p. The conditions on the fields derived from the KSEs can be

organized in Spin(7) irreducible representations but for the analysis that follows it suffices

to use their local expressions in SU(4) ⊂ Spin(7) representations as stated in the previous

section. Moreover observe that the 3-form null Killing spinor bi-linear [24] which contains

the Hermitian 2-form vanishes in this case.

Note first that (3.15) implies that the (2,1) and (1,2) parts of Y vanish, and (3.5)

implies that h = 0. Also, from (3.14) one finds that p is constant and the (3, 0) and (0, 3)

parts of Y also vanish. It then follows from (3.8) that ∆ = 0 as well. Hence, without loss

of generality we have ǫ = η+ = 1 + e1234 and ∆ = 0, h = 0, F = 0. The spacetime is

R
1,1 × S, where S is a compact Spin(7) holonomy manifold.

3.2 Pure SU(4) invariant Killing spinor

To analyse these solutions, first note that η+ = p 1 is related to η+ = q e1234 by a r, u-

independent Spin(8) gauge transformation, hence without loss of generality, it suffices to

consider η+ = p 1. Furthermore, an appropriately chosen u, r-independent U(4) gauge

transformation can be used to set p to be a real function. As |p|2 is constant, we can

without loss of generality take

η+ = 1 . (3.16)

Then the conditions (3.14) are equivalent to

Yα1α2α3 = 0 , Ωα,β
β − iYαβ

β = 0 , iYαβ
β +

1

2
hα = 0 , (3.17)

so, in particular, the (3, 0) and (0, 3) components of Y vanish. As q = 0 as well, it follows

from (3.11) that

∆ = 0 . (3.18)

Also, (3.15) can be rewritten as

Ωα,λ1λ2 = 0 , iYαµ̄1µ̄2 − iδα[µ̄1
Yµ̄2]β

β =
1

2
Ωα,µ̄1µ̄2 . (3.19)

Note that these conditions are sufficient to imply that
(

1

4
hiΓ

i +
i

12
Yℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3

)

η+ = 0 , (3.20)

so the Killing spinor is

ǫ = η+ = 1 . (3.21)

Furthermore, the algebraic condition (3.13) can be simplified to obtain

(

(dh)ijΓ
j +

i

3
(dY − h ∧ Y )iℓ1ℓ2ℓ3Γ

ℓ1ℓ2ℓ3
)

η+ = 0 . (3.22)
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On contracting (3.22) with Γi, and making use of the anti-self-duality of dY − h ∧ Y , one

finds

(dh)ijΓ
ijη+ = 0 , (3.23)

i.e.

dhαβ = 0, dhα
α = 0 , (3.24)

so dh ∈ su(4). The remaining content of (3.22) can be written as

dhij = −(dY − h ∧ Y )ijmnω
mn . (3.25)

To summarize, the KSE implies that S is a Hermitian manifold with an SU(4) structure

associated with the pair (ω, χ) of a Hermitian form ω and (4,0)-form χ. In addition, the

KSE imposes the geometric condition

θω = θReχ , (3.26)

where

θReχ = −1

4
⋆8

(

Reχ ∧ ⋆8dReχ
)

, (θω)i = −∇kωkjω
j
i , (3.27)

are the Lee forms of Reχ and ω, respectively. This follows on comparing the second equation

in (3.17) with the second equation in (3.19). Observe that (3.26) can also be written as

dθω
Reχ = [dReχ− θω ∧ Reχ] = 0 . (3.28)

We have not included the condition that dθω ∈ su(4) as this follows from the Hermitian

structure on S. We shall produce a proof for this in the next section. Moreover, the

components of the metric and fluxes are given as

∆ = 0, h = θω, Y =
1

4
(dω − θω ∧ ω) . (3.29)

This concludes the analysis of the KSEs.

It remains to investigate the field equations and Bianchi identities. The Bianchi iden-

tity dF = 0 implies that

d ⋆8

(

dω − θω ∧ ω
)

= 0 . (3.30)

The rest of the field equations are also satisfied as a consequence of (3.30) and the conditions

derived from the KSEs.

3.2.1 Solutions with θω = 0

Before examining the pure spinor solutions in greater detail, it is instructive to briefly

consider the special case for which θω = 0. The Bianchi identity (3.30) implies that

ω ∧ d ⋆8 dω = 0 , (3.31)

and on integrating this expression over S, one finds that dω = 0, so from (3.29) it follows

that the 5-form flux vanishes, F = 0, and ∆ = 0, h = 0 so the spacetime is a product

R
1,1 × S, where S is a compact Calabi-Yau 4-fold.
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4 Hidden KT structure of horizon sections

In this section, we examine further the properties of the solutions for which the Killing

spinor is ǫ = 1, concentrating in particular on the structure of the horizon section S.

4.1 k-SKT and k-SCYT manifolds

Before we proceed with the detailed analysis of the geometry of the spatial horizon section,

we shall first explore some geometric structures in the context of 2n-dimensional Hermitian

manifolds with Hermitian form ω. Kähler with torsion (KT) manifolds [34] are Hermitian

manifolds equipped with the unique compatible connection4 ∇̂ with skew-symmetric torsion

H, ∇̂ω = 0. Moreover H is expressed in terms of the complex structure and Hermitian

metric as

H = −iIdω = −i(∂ − ∂̄)ω . (4.1)

Clearly hol(∇̂) ⊆ U(n). For strong KT manifolds (SKT), the torsion is in addition closed,

dH = 0. The latter condition can be expressed as

∂∂̄ω = 0 . (4.2)

This condition has been extensively investigated in the context of supersymmet-

ric 2-dimensional sigma models [43–45] and in the context of Hermitian geome-

try [34, 46, 49, 50, 52].

Another second order equation which arises in the context 2n-dimensional Hermitian

manifolds is

∂∂̄ωn−1 = 0 . (4.3)

It has been shown by Gauduchon [38] that within the conformal class of a Hermitian metric,

there is a representative which solves (4.3).

To continue, it is suggestive to define as k-SKT manifolds the Hermitian manifolds

equipped with the compatible connection with skew-symmetric torsion, H, which in addi-

tion satisfies

d(ωk−1 ∧H) =
2i

k
∂∂̄ωk = 0 . (4.4)

Clearly for k = 1 this condition coincides with SKT, while for a 2n-dimensional Hermitian

manifold and for k = n− 1 it coincides with the Gauduchon condition (4.3).

Next let us compare the above conditions for Hermitian manifolds of different

dimension. It is clear that for 4-dimensional Hermitian manifolds the SKT condition

coincides with the Gauduchon condition, and so all 4-dimensional Hermitian manifolds

are SKT. In 6 dimensions, the 2-SKT condition (4.9) coincides with the Gauduchon

condition [38]. Therefore all 6-dimensional Hermitian manifolds are 2-SKT. However, it is

known that the SKT condition is restrictive for 6-dimensional manifolds [47]. It is likely

4In our conventions, we have set ∇̂iY
j = ∇iY

j + 1
2
Hj

ikY k.
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that this is also the case for the SKT and 2-SKT conditions for 8-dimensional Hermitian

manifolds. In this case, the Gauduchon condition coincides with the 3-SKT structure.

Similar observations can be made for Hermitian manifolds in higher dimensions. The

conditions (4.4) provide a set of natural second order equations on Hermitian manifolds

which may deserve further investigation.

Next consider CYT manifolds, i.e. KT manifolds which in addition have hol(∇̂) ⊆
SU(n). Clearly the k-strong condition also generalizes in this case yielding a k-SCYT

structure. It is known that there are restrictions on the existence of such manifolds. As

an example, closed, conformally balanced, ie θω = 2dΦ and Φ is a smooth real function,

SCYT manifolds are Calabi-Yau [49, 50]. It is not known under which conditions similar

theorems hold for k-SKT manifolds, k ≥ 1. It turns out that the spatial horizon sections

S admit a 2-SCYT structure. Moreover we shall provide compact 8-dimensional examples

with this structure. However in all examples, we shall construct manifolds which are not

conformally balanced.

4.2 Hidden torsion

Returning to the geometry of the spatial horizon sections, we have shown that S is a

Hermitian manifold with a SU(4) structure associated with the pair (ω, χ) of fundamental

forms. In addition, the Killing spinor equations impose the geometric constraint given

in (3.26). It turns out that (3.26) is equivalent to requiring that S is a KT manifold with

a compatible SU(4)-structure,5 i.e. a CYT manifold. This has been first observed for 6-

dimensional manifolds with an SU(3)-structure in [48], and later it has been expressed in

the form (3.26) for all 2n-dimensional manifolds with a SU(n)-structure in [18, 19]. This

means that there exists a connection with skew-symmetric torsion H such that

∇̂ω = ∇̂χ = 0 , (4.5)

where H is given in (4.1).

The 3-form H is not immediately identifiable with either the NS-NS or the R-R

3-form field strengths of IIB supergravity as we have set both of them to zero. In addition,

H may not be closed and, for a non-product near horizon geometry, S should not be

balanced, θω 6= 0.

The KSE requires that dθω ∈ su(4). To show that the (2,0) part of dθω vanishes we

can utilize the existence of H and in particular (4.5). For this first observe that the Ricci

form ρ̂ of ∇̂ for any KT manifold can be written [49, 50] as

ρ̂ ≡ −1

4
R̂ij,kℓ ω

kℓ ei ∧ ej = −i∂∂̄ log det g − d(Iθω) , (4.6)

where (Iθω)i = (θω)jI
j
i. To establish the above identity, it is convenient to use complex

coordinates. Since the holonomy6 of ∇̂ is contained in SU(4), ρ̂ = 0. Taking the (2,0) part

5The classes of SU(3)-structures on 6-dimensional manifolds have been investigated in [51].
6It turns out that dθ2,0

ω = 0 for all Hermitian manifolds, i.e. hol(∇̂) ⊆ U(n), but a proof is more involved.
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of the rhs, one finds that dθ2,0
ω = 0. It remains to show that d(θω)ijω

ij = 0. This follows

from the definition of θω and

1

2
ωij(dθω)ij = −ωij∇i

(

∇kωkℓω
ℓ
j

)

= ∇i∇jω
ij + ∇kω

ki∇ℓω
ℓjωij = ∇i∇jω

ij = 0 , (4.7)

where one establishes the last equality by expressing the two derivatives in terms of the

Riemann curvature and by using that the Ricci tensor is symmetric.

Another advantage of introducing the torsionH is that the Bianchi identity for F (3.30)

can now be expressed as

d ⋆8 [dω − θω ∧ ω] = d(ω ∧H) = 0 . (4.8)

Using (4.1) observe that the above equation can be rewritten as

∂∂̄ω2 = 0 . (4.9)

Clearly this is a second order equation on the Hermitian form ω and it coincides with the

2-strong condition on KT manifolds.

To summarize, both the KSEs and field equations require that spatial horizon section

S is a 2-SCYT manifold. To find examples of IIB horizons, it is convenient to utilize the

hidden torsion of S and solve the conditions required for the 2-SCYT structure. These

are two equations, one is the vanishing of the Ricci form ρ̂ = 0 of the connection with

torsion and the other is the 2-strong condition (4.9). There are two sources of examples

of such manifolds. One source is the Nil-manifolds. However this class will not produce

interesting examples as it has been shown that all Nil-manifolds with invariant Hermitian

structure and hol(∇̂) ⊆ SU(4) are balanced [52]. Since in this case h = θω and ∆ = 0, the

near horizon geometry is a product R
1,1 ×S, where S is a compact Calabi-Yau 4-fold, and

the 5-form flux vanishes. In fact as a consequence of the argument given in section 3.2.1,

all balanced, θω = 0, 2-SKT 8-dimensional manifolds are Kähler. The other source of

examples are group fibrations over Hermitian manifolds. We shall demonstrate that this

class produces many examples.

5 KT fibrations

In this section, we present a number of examples of near-horizon geometries corresponding

to the class of solutions for which the Killing spinor is ǫ = 1 by constructing horizon sections

satisfying the conditions described in section 4. As we have shown, the entire near-horizon

solution is completely determined in terms of that of the spatial horizon section S. Thus

we have to find examples of 8-dimensional 2-SCYT manifolds. For this, we shall consider

group fibrations over KT manifolds.

Our primary interest is in 8 dimensions but the construction of fibrations can be made

for any 2n-dimensional KT manifold X2n. To continue suppose that X2n is a fibration of

a group G over a KT 2m-dimensional manifold B2m with metric ds2(2m), complex structure

I and skew-symmetric torsion 3-form H(2m). For G a torus such fibrations have been

extensively investigated in [53–55] and have been further explored in [56, 57]. Here we
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shall extend the construction to general group fibrations. For this, one can define a metric

and a 3-form on X2n as

ds2(2n) = habλ
aλb + ds2(2m) , ds2(2m) = δije

iej ,

H(2n) =
1

3
habλ

a ∧ dλb +
2

3
habλ

a ∧ Fb +H(2m) , (5.1)

where λ is thought of as a principal bundle connection satisfying the structure equations

dλa − 1

2
Ha

bcλ
b ∧ λc = Fa , (5.2)

and where Fa is the curvature of λ. This relation of H(2n) to the Chern-Simons form of

λ has been motivated by the results of [18, 19]. In addition, we take the fibre metric h

to be constant and invariant, i.e. the structure constants of the fibre Lie algebra Habc are

skew-symmetric. Observe that

H(2m) = −iIdω(2m) , (5.3)

where ω(2m) is the Hermitian form of B(2m).

To define a KT structure on X2n, we assume that the fibre G admits a left-invariant

complex structure J such that h is a Hermitian metric with respect to J . Moreover J is

chosen such that the structure constants Habc of the Lie algebra of G are identified with

the components of skew-symmetric torsion associated with the Hermitian structure (h, J)

on G [58]. Using these, one can write an almost Hermitian form on X2n as

ω(2n) =
1

2
Jabλ

a ∧ λb + ω(2m) . (5.4)

Requiring that X2n is a complex manifold, one finds the conditions that

Fa
ijI

i
kI

j
ℓ = Fa

kℓ , (5.5)

ie the curvature of the fibration is (1,1) with respect to the complex structure of the base

space B2m, and

Habc − 3Hef [aJ
e
bJ

f
c] = 0 , (5.6)

ie the structure constants of G are (2,1) and (1,2) with respect to J . Thus provided (5.5)

and (5.6) are satisfied, X2n is a KT manifold with respect to (ds2(2n), ω(2n)) with torsion

given in (5.1).

The conditions (5.5) and (5.6) can be solved as follows. First (5.6) is automatically

satisfied because J is chosen such that Habc is the skew-symmetric torsion of the Hermitian

structure (h, J) of G. The condition (5.5) can be solved by taking the fibration to be

holomorphic. Therefore, X2n is a holomorphic fibration over a Hermitian manifold B2m,

with fibre G which also admits an invariant Hermitian structure with skew-symmetric

torsion constructed from the structure constants of G.

Next for X2n to have a CYT structure, it is required that the connection with skew-

symmetric torsion has holonomy contained SU(n), hol(∇̂) ⊆ SU(n). Since by construction
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∇̂ preserves both the metric ds2(2n) and ω(2n), clearly the holonomy of ∇̂ is contained in

U(n). It remains to further restrict the holonomy to SU(n). For this, we set the Ricci form

of the connection with skew-symmetric torsion to zero, ρ̂(2n) = 0. This in turn gives the

conditions

(ρ̂(2m))kℓ +
1

2
habFa

kℓFb
ijω

ij

(2m)
= 0 ,

2Fa
ikFb

jℓδ
kℓωij

(2m) +Hab
cFc

ijω
ij
(2m) = 0 ,

∇̂k(Fa
ijω

ij
(2m)) = 0 , (5.7)

where ρ̂(2m) is the Ricci form of the connection with torsion of B2m. It is clear that

Fa
ijω

ij
(2m) = ka , (5.8)

is constant. Using this and that F is a (1,1)-form, the above conditions can be simplified

somewhat to

(ρ̂(2m))kℓ +
1

2
habk

bFa
kℓ = 0 ,

Hab
ck

c = 0 . (5.9)

It is clear from the last condition above that if k 6= 0, the direction along k in the Lie

algebra of G commutes with all other generators of G. Thus up to a discrete identification,

G = U(1) ×G′. Finally, one can compute the Lee form to find that

(θω(2n)
)i = (θω(2m)

)i ,

(θω(2n)
)a =

1

2
Hb1b2cJ

b1b2Jc
a +

1

2
kcJ

c
a . (5.10)

Observe that the first term in the second equation of (5.10) is the Lee form associated

with the Hermitian structure (h, J) of G. This completes the general analysis on group

fibrations and KT structures.

Next take S = X8. Since S is a CYT manifold both the fibre group and the base

manifold B2m are restricted. First the fibre groups are restricted to be KT manifolds,

and with skew-symmetric torsion obtained from the structure constants of the associated

Lie algebra. It turns out that all even-dimensional compact Lie groups satisfy all these

conditions. We have tabulated all such groups up to dimension 8 in table 1. These are

relevant for the construction of horizons.

The only restriction on the fibre group arises whenever the fibre twists over the base

space with a connection λ such that k in (5.8) does not vanish. As we have mentioned in

such a case G is a product U(1) ×G′ up to a discrete identification. To find new horizon

geometries, it remains to solve for (5.9) and (5.8), and in addition verify the 2-strong

condition d(ω(8) ∧H(8)) = 0. We shall do this explicitly in some special cases below.
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dimG G

2 T 2

4 T 4, S1 × SU(2)

6 T 6, T 3 × SU(2), SU(2) × SU(2)

8 T 8, T 5 × SU(2), T 2 × SU(2) × SU(2), SU(3)

Table 1. The first column gives the rank of the fibre which is the dimension of the group. The

second column gives the available compact Lie groups up to discrete identifications.

5.1 Group manifold horizon sections

Let us suppose that the horizon section is a group manifold. The T 8 case is trivial. Next

consider the case T 5 × SU(2) and take

ds2(8) =

5
∑

r=1

(τ r)2 + (σ1)2 + (σ2)2 + (σ3)2 ,

ω(8) = −σ3 ∧ τ1 − σ1 ∧ σ2 +
1

2

5
∑

r,s=2

Jrsτ
r ∧ τ s , (5.11)

where

dτ r = 0 , dσ3 = σ1 ∧ σ2 , (5.12)

and cyclically in 1, 2 and 3, and Jrs a constant complex structure in the denoted 4 directions.

In this case ∇̂ is a parallelizable connection and so the holonomy is {1}. Moreover

H(8) = σ1 ∧ σ2 ∧ σ3 , θω = τ1 , (5.13)

and the 2-strong condition can be easily verified.

Next consider T 2 × SU(2) × SU(2). One can take

ds2(8) =
2

∑

r=1

(τ r)2 + (σ1)2 + (σ2)2 + (σ3)2 + (ρ1)2 + (ρ2)2 + (ρ3)2 ,

ω(8) = −σ3 ∧ ρ3 − σ1 ∧ σ2 − ρ1 ∧ ρ2 − τ1 ∧ τ2 (5.14)

where

dτ r = 0 , dσ3 = σ1 ∧ σ2 , dρ3 = ρ1 ∧ ρ2 , (5.15)

and cyclically in 1, 2 and 3. In such case ∇̂ is again parallelizable and

H(8) = σ1 ∧ σ2 ∧ σ3 + ρ1 ∧ ρ2 ∧ ρ3 , θω(8)
= −σ3 + ρ3 . (5.16)

A short calculation reveals that the 2-strong condition is also satisfied.

It remains to examine SU(3). For this consider the Hermitian structure associated with

the bi-invariant metric of SU(3) and the complex structure given in [58]. The associated

connection with skew-symmetric torsion is the left-invariant parallelizable connection and

so hol(∇̂) = {1}. But the condition (1.4) is not satisfied.
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5.2 Fibrations over Riemann surfaces

Suppose that B2 is a Riemann surface. Equations (5.8) and (5.9) imply that the curvature

of B2 is non-negative. Thus B2 is either T 2 or S2. Let us focus on the S2 case. The

fibre group is 6-dimensional and from table 1 there are 3 different cases to consider. First

suppose that G = T 6. In such case one can write

ds2(8) = habλ
aλb + ds2(S2)

ω(8) =
1

2
Jabλ

a ∧ λb + ω(2)(S
2) . (5.17)

Moreover (5.8) implies that

Fa
ij =

1

2
ka(ω(2))ij , (5.18)

where k is constant. In turn the first condition implies that

Rij,kℓ =
|k|2
4

(ω(2))ij(ω(2))kℓ , (5.19)

as H(2) = 0. A straightforward computation reveals that

H(8) = habλ
a ∧ Fb , θω(8)

=
1

2
kbJbaλ

a . (5.20)

Moreover one can easily verify that d(ω(8) ∧H(8)) = 0. Thus any rank 6 toroidal fibration

over S2 with curvatures proportional to the Kähler form of S2 solves all the conditions.

All such manifolds are 2-SCYT.

Next take G = T 3 × SU(2). Again equations (5.8) and (5.9) imply that B is either T 2

or S2. We shall focus on the latter case. The second condition in (5.9) and (5.8) imply

that the fibration curvature along the SU(2) directions vanishes. Thus there is no twisting

of SU(2) over the Riemann surface. As a result, we take only the T 3 part of the fibre to

twist. Thus we have

ds2(8) = habλ
aλb + (λ3)2 + ds2(S3) + ds2(S2) , a, b = 1, 2 ,

ω(8) =
1

2
Jabλ

a ∧ λb − σ3 ∧ λ3 − σ1 ∧ σ2 + ω(2)(S
2) (5.21)

where

ds2(S3) = (σ1)2 + (σ2)2 + (σ3)2 . (5.22)

As in the previous case (5.8) implies (5.18) but now k lies along the 3 toroidal directions.

Moreover

H(8) = habλ
a ∧ Fb + λ3 ∧ F3 + σ1 ∧ σ2 ∧ σ3 , θω(8)

=
1

2
kbJbaλ

a + λ3 +
1

2
k3σ3. (5.23)

It remains to verify the 2-strong condition d(ω(8) ∧ H(8)) = 0. This is satisfied provided

that

F1 = F2 = 0 , (5.24)
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and so k1 = k2 = 0. Thus the horizon section is T 2 × S3 × S3, with one of the 3-spheres

possibly squashed.

The last case is for G = SU(2) × SU(2). There are no solutions in this case as one

cannot satisfy all conditions in (5.9).

5.3 Fibrations over Kähler-Einstein manifolds

5.3.1 Six-dimensional base space

First we shall examine horizon sections which are T 2-fibrations over 6-dimensional KT

manifolds. At the end we shall consider the horizon sections which are fibrations over

4-dimensional KT manifolds. To simplify the problem further we shall take B6 to be a

Kähler-Einstein manifold. The Ricci form of such manifolds is proportional to the Kähler

form. Thus the Kähler form, up to an overall scale, represents the first Chern class of the

canonical line bundle. Using the Kähler-Einstein condition of B6, the metric, torsion and

Hermitian form of the horizon section can be written as

ds2(8) = (λ0)2 + (λ1)2 + ds2(B) ,

H(8) = λ0 ∧ F0 + λ1 ∧ F1 ,

ω(8) = −λ0 ∧ λ1 + ω(6)(B) , dω(6)(B) = 0 . (5.25)

Moreover, we choose the curvature of λ0 as

F0 =
k

6
ω(6)(B) , (5.26)

setting k0 = k, k1 = 0. Observe that this forces the Ricci form of B6 to be positive.7 In

what follows, we shall specify F1, which is (1,1) and traceless on B6, and solve the 2-strong

condition d(ω ∧H) = 0 for a variety of base manifolds B6.

First take B6 = CP 2 × S2. Write

ω(6) = ωCP 2 + ωS2 (5.27)

where ωCP 2 and ωS2 are the Fubini-Study Kähler forms on CP 2 and S2, respectively. Also

set

F1 = pωCP 2 + q ωS2 . (5.28)

Clearly F1 is (1,1). Enforcing that F1 is traceless, one finds that

2p+ q = 0 . (5.29)

Moreover the 2-strong condition d(ω(8) ∧H(8)) = 0 implies that

k2

12
+ 2pq + p2 = 0 . (5.30)

7Our conventions are chosen so that the Ricci form ρ of a Kähler-Einstein manifold with Hermitian form

ω is positive if ρ = −cω, for constant c > 0.
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Thus we find that the system has a solution provided that

p = ±k
6
, q = ∓k

3
. (5.31)

To give more examples, observe that the same calculation can be carried out provided

that CP 2 is replaced by any 4-dimensional Kähler-Einstein manifold X4 with positive Ricci

form. Such manifolds include S2 ×S2 and the del Pezzo surfaces which arise from blowing

up CP 2 on more than two generic points, for the latter see [59].

5.3.2 Four-dimensional base space

One can also consider horizons which are fibrations over a 4-dimensional Kähler manifold

B4. Start first with torus fibrations. In this case,

ds2(8) = (λ0)2 + (λ1)2 + (λ2)2 + (λ3)2 + ds2(4) ,

H(8) = λ0 ∧ F0 + λ1 ∧ F1 + λ2 ∧ F2 + λ3 ∧ F3 ,

ω(8) = −λ0 ∧ λ1 − λ2 ∧ λ3 + ω(4) , (5.32)

and k0 = k, k1 = k2 = k3 = 0. The condition (4.8) implies that

F2 ∧ F2 + F3 ∧ F3 = 0 , F0 ∧ F0 + F1 ∧ F1 = 0 , (5.33)

and we remark that k2 = k3 = 0 implies that F2, F3 are traceless (1,1) forms on B4, so

the first condition in (5.33) implies that

F2 = F3 = 0 . (5.34)

There is a solution for B4 = S2 × S2 and

F0 =
p

2
ω1

S2 +
q

2
ω2

S2 , k = p+ q ,

F1 =
ℓ

2
(ω1

S2 − ω2
S2) , ℓ2 = pq . (5.35)

Therefore S is a product of T 2 with a 6-dimensional manifold.

One can also find solutions with fibre U(1) × SU(2). In this case, one can show that

F0 ∧ F0 = 0 . (5.36)

and the rest of the curvatures F along su(2) must vanish. The condition (5.36) is rather

restrictive since it implies that the self-intersection of the canonical class must vanish.

This can never be satisfied by a Kähler-Einstein 4-manifold. However for Ricci flat Kähler

manifolds one can take F0 = 0. In such case, the solutions are products. As a result one

finds that up to discrete identifications the horizon sections are either S1 × S3 × K3 or

S1 × S3 × T 4.
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6 Uplifted near-horizon geometries

Another class of solutions can be constructed as lifts to IIB supergravity of near-horizon

geometries in minimal N = 2, D = 5 supergravity derived in [35]. We shall adopt the

notation used in [32] where we distinguish the near-horizon data for the lower dimensional

supergravity from those of the higher dimensional theory by adding a subscript indicating

the dimension of the associated space as appropriate. In particular, the near horizon

geometry and 1-form gauge potential flux in five dimensions are

ds2(5) = −r2∆2
(3)du

2 + 2dudr + 2rh(3)du+ ds2(S3) ,

A(5) =

√
3

2
r∆(3)du+ a , (6.1)

where h(3), a and ∆(3) depend only on the coordinates of the 3-dimensional spatial horizon

section S3 and in addition

da = −
√

3

2
⋆3 (h(3) + 2ℓ−1Z1) . (6.2)

Moreover, we have equipped S3 with a basis of 1-forms (Z1, Z2, Z3) such that dvol(S3) =

Z1 ∧ Z2 ∧ Z3, ℓ is a nonzero constant and ⋆3 denotes the Hodge dual operation on S3.

The basis elements Zi satisfy

∇̃IZ
i
J = −

∆(3)

2
(⋆3Z

i)IJ + (γ(3))IJ(h(3).Z
i + 3ℓ−1δi1) − Zi

I(h(3))J

−3ℓ−1Zi
IZ

1
J + 2

√
3ℓ−1ǫ1ijaIZ

j
J , (6.3)

where γ(3) denotes the metric on S3, ∇̃ is the Levi-Civita connection on S3, and h(3)

satisfies

⋆3 dh(3) − d∆(3) − ∆(3)h(3) = 6ℓ−1∆(3)Z
1 . (6.4)

The 2-form field strength of the 5-dimensional solution is

F(5) =

√
3

2
(−∆(3)du ∧ dr − rdu ∧ d∆(3) − ⋆3h(3)) −

√
3ℓ−1 ⋆3 Z

1 . (6.5)

After some manipulation, one finds that the uplifted metric and 5-form flux can be written

as8

ds2(10) = 2dudr + 2rdu (h(3) + ∆(3)w) + w2 + ds2(S3) + ds2(CP 2) ,

F(10) = Θ + ⋆Θ , (6.6)

where Θ has been given in (C.2) and the 10-dimensional volume form with respect to which

the Hodge duality operation is taken is

dvol(10) = −1

2
e+ ∧ e− ∧ Z1 ∧ Z2 ∧ Z3 ∧w ∧ ωCP 2 ∧ ωCP 2 . (6.7)

8Note that the null basis element e
+ used in the near-horizon geometries described here is not the same

as the e
+ used in [32], although e

− = dr + rh is the same. If we denote by e
′+ the basis element in [32],

then e
′+ = e

+ − 1
2r2∆2

(3)

e
− + ℓ

2r∆(3)
(dχ2 + 4√

3ℓ
a + 2

3
Q).
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The internal manifold is CP 2 with the Fubini-Study metric

ds2(CP 2) = ℓ2
(

dα2 + cos2 αdβ2 + sin2 α cos2 α(dχ1 + (cos2 β − sin2 β)dφ)2

+4cos2 α sin2 β cos2 βdφ2

)

, (6.8)

which is Kähler-Einstein, and

w =
ℓ

2

(

dχ2 +
4√
3ℓ
a+

2

3
Q

)

. (6.9)

In addition,

Q = 3cos2 α(sin2 β − cos2 β)dφ+
3

2
(sin2 α− cos2 α)dχ1 , (6.10)

is the potential for the Ricci form of this metric and the Kähler form ωCP 2 is given by

ωCP 2 =
1

6
ℓ2dQ . (6.11)

It follows that the metric of spatial cross-sections of the 10-dimensional horizon geometry

and the 3-form Y which determines F(10) are

ds2(S8) = w2 + ds2(S3) + ds2(CP 2) ,

Y = −ℓ−1Z1 ∧ Z2 ∧ Z3 − 1

4
(h(3) + 2ℓ−1Z1 + ∆(3)w) ∧ ωCP 2 , (6.12)

with

∆(8) = 0, h(8) = h(3) + ∆(3)w . (6.13)

Note that although ∆(8) = 0, there exist near-horizon solutions with ∆(3) 6= 0 (and in fact

with d∆(3) 6= 0 as well).

It turns out that the Hermitian form on the spatial horizon section is

ω(8) = Z1 ∧ w − Z2 ∧ Z3 + ωCP 2 . (6.14)

From this, it is straightforward to compute the torsion 3-form associated with the black

hole uplift solutions, and one finds that

H(8) =
2

ℓ

(

ωCP 2 +
ℓ

2
⋆3

(

h(3) +
4

ℓ
Z1

))

∧ w − ∆(3)Z
1 ∧ Z2 ∧ Z3 . (6.15)

After a short computation using previous conditions like (6.2) and (6.11), one can verify

the 2-strong condition d(ω(8) ∧ H(8)) = 0. Observe that the above construction can be

easily generalized by replacing CP 2 with another 4-dimensional Kähler Einstein manifold.

Explicit examples of 5-dimensional near horizon geometries have been found by explic-

itly solving for h(3), a,∆(3) and the Z’s. All known examples have 3-dimensional horizon

sections S3 which admit two commuting rotational isometries, which are also symmetries

of the full solution. There are three cases of particular interest to consider.
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6.1 Cohomogeneity-2 BPS black holes in D = 5

The near-horizon geometry of the cohomogenity-2 BPS black holes of Chong et al. [36] has

near-horizon data [37]

ds2S3 =
ℓ2ΓdΓ2

4P (Γ)
+

(

C2Γ − ∆2
0

Γ2

)(

dx1 +
∆0(α0 − Γ)

C2Γ3 − ∆2
0

dx2

)2

+
4ΓP (Γ)

ℓ2(C2Γ3 − ∆2
0)

(dx2)2 , (6.16)

where

P (Γ) = Γ3 − C2ℓ2

4
(Γ − α0)

2 − ∆2
0

C2
(6.17)

with C, ∆0 and α0 constant with ∆0 > 0. Furthermore,

∆(3) =
∆0

Γ2
(6.18)

and

h(3) = Γ−1

((

C2Γ − ∆2
0

Γ2

)(

dx1 +
∆0(α0 − Γ)

C2Γ3 − ∆2
0

dx2

)

− dΓ

)

(6.19)

and

Z1 =
ℓ(α0 − Γ)C2

2Γ
dx1 +

2∆0

ℓC2Γ
dx2 +

ℓ

2Γ
dΓ (6.20)

and

da = −
√

3

2
Γ−2

(

− ∆0dx
1 + α0dx

2) ∧ dΓ . (6.21)

From this information, the whole geometric structure associated with the 8-dimensional

horizon section S can be reconstructed. Note that the Ricci scalar of the metric (6.16) is

not constant, and h does not correspond to an isometry of S.

6.2 Cohomogeneity-1 BPS black holes in D = 5

These were the first examples of supersymmetric, asymptotically AdS5 black holes, with

regular horizons. The near horizon data is as follows; ∆(3) is a positive constant, and

h(3) = −3

ℓ
Z1 (6.22)

where one can choose that basis Zi for S3 satisfying

dZ1 = −∆(3)Z
2 ∧ Z3

dZ2 = ∆(3)(1 − 3ℓ−2∆−2
(3))Z

1 ∧ Z3

dZ3 = −∆(3)(1 − 3ℓ−2∆−2
(3))Z

1 ∧ Z2 (6.23)

with

a = −
√

3

2
ℓ−1∆−1

(3)Z
1 (6.24)

and it is clear that in this case, S3 is a squashed 3-sphere, and h(8) is a Killing vector on S8.
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6.3 AdS5 × S5

It is straightforward to write AdS5 × S5 as an uplifted solution. The near-horizon data is

as follows: ∆(3) = 0, a = 0, h(3) = −2
ℓ
Z1, where the basis Zi satisfies

dZ1 = 0

dZ2 = ℓ−1Z1 ∧ Z2

dZ3 = ℓ−1Z1 ∧ Z3 . (6.25)

Hence, one can introduce local co-ordinates x, y, z such that

Z1 = dz, Z2 = e
z
ℓ dx, Z3 = e

z
ℓ dy (6.26)

and so the spacetime metric is

ds2(10) = ds2(AdS5) + ds2(S5) (6.27)

where

ds2(AdS5) = 2dudr − 4r

ℓ
dudz + dz2 + e

2z
ℓ (dx2 + dy2),

ds2(S5) = w2 + ds2(CP 2) , (6.28)

and ds2(CP 2) and w are given by (6.8) and (6.9). The 8-dimensional horizon section is

S8 = H3 × S5, where H3 is hyperbolic 3-space.

7 Conclusions

We have solved the KSEs of IIB near horizon geometries with only 5-form flux preserving at

least 2 supersymmetries. We demonstrated that there are three cases to consider depending

on the choice of Killing spinor which lead to different geometries on the spatial horizon

sections. We have examined in detail two of these three cases. If the Killing spinor is

constructed from a Spin(7) invariant spinor on the spatial horizon section S, then the near

horizon geometry is a product R
1,1 × S, where S is an 8-dimensional holonomy Spin(7)

manifold. For the other case we investigated, the Killing spinor is constructed from a

SU(4)-invariant pure spinor of S. In this case S is a Hermitian manifold with a SU(4)

structure. The most striking property of S is that it admits a hidden Kähler with torsion

structure compatible with the SU(4) structure, i.e. a Calabi-Yau with torsion structure.

The presence of this torsion H is not apparent as both the R-R and NS-NS 3-form field

strengths have been set to zero. Moreover, the rotation of the horizon is given by the Lee

form of the Hermitian form ω. All the remaining equations, including field equations, are

also satisfied provided that d(ω ∧H) = ∂∂̄ω2 = 0. It is therefore clear that the torsion H

completely characterizes the near horizon geometry.

We have utilized the existence of Kähler with torsion structure on the spatial hori-

zon sections to provide many examples of near horizon geometries mostly constructed

from group fibrations over Kähler with torsion manifolds of lower dimension. We also
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demonstrated that lifted lower-dimensional near horizon geometries to IIB satisfy all the

conditions we have found. Thus there is a large class of examples.

The condition d(ω ∧H) = 0 on Kähler with torsion manifolds admits various general-

izations which we have explained, like for example d(ωk−1∧H) = 0. We have also compared

d(ω ∧H) = 0 with the strong condition dH = ∂∂̄ω = 0 on Kähler manifolds with torsion,

which arises in the context of heterotic horizons. The expression for the above condition

in terms of the torsion allows for a generalization to other manifolds with structure group

different from SU(n) which however is compatible with a connection with skew-symmetric

torsion. We gave a list of several possibilities. It would be of interest to construct examples

of manifolds satisfying such conditions.

All the examples of horizons we have constructed so far admit more symmetries than

those one a priori expects to be present in the problem. A general solution to the problem

will require the solution of two second order differential equations ρ̂ = 0 and ∂∂̄ω2 = 0 on

an 8-dimensional complex manifold. The first involving the Ricci form, ρ̂, of the connection

with skew torsion will enforce the condition that the associated connection has (reduced)

holonomy contained in SU(4), and the second will enforce the remaining equations of IIB

supergravity including field equations. These equations can be contrasted with the two

equations that arise in the context of heterotic horizons ρ̂ = 0 and ∂∂̄ω = 0 as well as the

two equations that arise in the context of Calabi-Yau manifolds ρ = 0 and dω = 0, where

now ρ is the Ricci form of the Levi-Civita connection. Therefore all these manifolds can

be viewed as a generalization of Calabi-Yau manifolds.

There is one remaining class of IIB horizons which we have not investigated in this

paper. This is associated with a generic SU(4) invariant spinor on S. If solutions exist

in this case, the spatial horizon sections are almost complex manifolds but the almost

complex structure is not integrable. Moreover, although the spatial horizon sections have

an SU(4) structure, this structure is not compatible with a connection with skew-symmetric

torsion. Therefore, the geometry of the horizons in this case is different from that we have

encountered so far in the pure spinor case. We shall examine this case separately in another

publication.

Acknowledgments

We thank Anna Fino for correspondence and valuable discussions on nil-manifolds. GP

thanks the Gravitational Physics Max-Planck Institute at Potsdam for hospitality where

part of this work was done. UG is supported by the Knut and Alice Wallenberg Foundation.

JG is supported by the EPSRC grant, EP/F069774/1. GP is partially supported by the

EPSRC grant EP/F069774/1 and the STFC rolling grant ST/G000/395/1.

– 25 –



J
H
E
P
0
5
(
2
0
1
1
)
0
5
0

A Conventions

We have used extensively in our calculations that the non-vanishing components of the

spin connection associated with the basis (2.2) are

Ω−,+i = −1

2
hi , Ω+,+− = −r∆, Ω+,+i = r2

(

1

2
∆hi −

1

2
∂i∆

)

,

Ω+,−i = −1

2
hi, Ω+,ij = −1

2
rdhij , Ωi,+− =

1

2
hi, Ωi,+j = −1

2
rdhij ,

Ωi,jk = Ω̃i,jk (A.1)

where Ω̃ denotes the spin-connection of the 8-manifold S with basis ei.

In the analysis of the KSE, we have split the spinors ξ into positive and negative parts

as

ξ = ξ+ + ξ−, Γ±ξ± = 0 . (A.2)

Note that if ξ is an even spinor, then

Γℓ1ℓ2ℓ3ℓ4ξ± = ± 1

4!
ǫℓ1ℓ2ℓ3ℓ4

q1q2q3q4Γq1q2q3q4ξ± ,

Γℓ1ℓ2ℓ3ℓ4ℓ5ξ± = ± 1

3!
ǫℓ1ℓ2ℓ3ℓ4ℓ5

q1q2q3Γq1q2q3ξ± ,

Γℓ1ℓ2ℓ3ℓ4ℓ5ℓ6ξ± = ∓1

2
ǫℓ1ℓ2ℓ3ℓ4ℓ5ℓ6

q1q2Γq1q2ξ± ,

Γℓ1ℓ2ℓ3ℓ4ℓ5ℓ6ℓ7ξ± = ∓ǫℓ1ℓ2ℓ3ℓ4ℓ5ℓ6ℓ7
qΓqξ± ,

Γℓ1ℓ2ℓ3ℓ4ℓ5ℓ6ℓ7ℓ8ξ± = ±ǫℓ1ℓ2ℓ3ℓ4ℓ5ℓ6ℓ7ℓ8ξ± , (A.3)

whereas if ξ is an odd spinor then

Γℓ1ℓ2ℓ3ℓ4ξ± = ∓ 1

4!
ǫℓ1ℓ2ℓ3ℓ4

q1q2q3q4Γq1q2q3q4ξ± ,

Γℓ1ℓ2ℓ3ℓ4ℓ5ξ± = ∓ 1

3!
ǫℓ1ℓ2ℓ3ℓ4ℓ5

q1q2q3Γq1q2q3ξ± ,

Γℓ1ℓ2ℓ3ℓ4ℓ5ℓ6ξ± = ±1

2
ǫℓ1ℓ2ℓ3ℓ4ℓ5ℓ6

q1q2Γq1q2ξ± ,

Γℓ1ℓ2ℓ3ℓ4ℓ5ℓ6ℓ7ξ± = ±ǫℓ1ℓ2ℓ3ℓ4ℓ5ℓ6ℓ7
qΓqξ± ,

Γℓ1ℓ2ℓ3ℓ4ℓ5ℓ6ℓ7ℓ8ξ± = ∓ǫℓ1ℓ2ℓ3ℓ4ℓ5ℓ6ℓ7ℓ8ξ± . (A.4)

B New geometries with torsion

As we have seen the second order equation (4.4) on KT manifolds can be expressed in terms

of the skew-symmetric torsionH. Because of this it can be extended to other manifolds with

a G-structure compatible with a connection with skew-symmetric torsion. We have already

investigated the cases with U(n) and SU(n) structures. Here, we shall explore similar

conditions on manifolds with almost KT, Sp(n), Sp(n) · Sp(1), G2 and Spin(7) structure.
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B.1 k-SAKT manifolds

Almost KT manifolds (AKT) are almost hermitian manifolds compatible with a connection

with skew-symmetric torsion H. This have arisen in the context of supersymmetric 2-

dimensional sigma models in [60, 61]. In this case, the expression for H in terms of the

almost Hermitian and almost complex structure has been given in [62, 63]. As in the KT

case, we can define as k-SAKT manifolds those spaces for which the AKT structure satisfies

the second order equation

d(ωk−1 ∧H) = 0 , (B.1)

where ω is the almost Hermitian form. Unlike the k-SKT condition, the above restriction

cannot be easily expressed in terms of a ∂∂̄ operator. Nevertheless, it is identical to the

k-SKT condition when it is expressed in terms of H.

As has been mentioned in the introduction, one can also define the (k; ℓ)-SAKT con-

dition as

d(ωk−1 ∧H) ∧ ωℓ = 0 . (B.2)

Clearly this generalizes the k-SAKT structure for ℓ ≥ 1.

B.2 (k1, k2, k3)-SHKT and k-SQKT manifolds

It is clear that the condition (4.4) can easily be extended in the context of HKT mani-

folds [34], that is hyper-complex manifolds equipped with a compatible connection with

skew-symmetric torsion. The expression of the condition (4.4) in terms of H naturally leads

to an extension of the strong HKT condition (SHKT) to a (k1, k2, k3)-SHKT structure as

d(ωk1−1
I ∧ ωk2−1

J ∧ ωk3−1
K ∧H) = 0 , (B.3)

where I, J and K is a hyper-complex structure and ωI , ωJ and ωK , are the associated

Hermitian forms respectively. When two of the three k1, k2 and k3 integers vanish, the above

condition coincides with that in (4.4). Similarly, one can define the (k1, k2, k3; ℓ1, ℓ2, ℓ3)-

SHKT structure as

d(ωk1−1
I ∧ ωk2−1

J ∧ ωk3−1
K ∧H) ∧ ωℓ1

I ∧ ωℓ2
J ∧ ωℓ3

K = 0 . (B.4)

A similar condition can also be written for QKT manifolds, i.e. manifolds with a

Sp(n) · Sp(1) structure compatible with a connection with skew-symmetric torsion, [64].

In particular, one can define as k-SQKT manifolds the QKT manifolds which in addition

satisfy

d(ψk−1 ∧H) = 0 , (B.5)

where

ψ = ωI ∧ ωI + ωJ ∧ ωJ + ωK ∧ ωK . (B.6)

A (k; ℓ)-SQKT condition can also be defined as

d(ψk−1 ∧H) ∧ ψℓ = 0 . (B.7)
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B.3 G2 and Spin(7)

The above conditions can also be extended to manifolds with Spin(7) and G2 structures.

It is known that all 8-dimensional manifolds with a Spin(7) structure admit a compatible

connection with skew-symmetric torsion [65]. The torsion H of this connection may not

be closed. So one natural second order equation on the Spin(7) structure is to impose the

closure of H, dH = 0, which is the analogue of the strong condition for SKT manifolds.

Alternatively, one can impose

d(φ ∧H) = 0 , (B.8)

where φ is the fundamental self-dual 4-form of the Spin(7) structure.

A 7-dimensional manifold with a G2 structure admits a compatible connection with

skew-symmetric torsion provided a certain geometric condition is satisfied [62, 63]. Again,

one can either impose as a second order equation the strong condition, dH = 0, or alter-

natively

d(ϕ ∧H) = 0 , (B.9)

where ϕ is the fundamental 3-form of the G2 structure. Observe that in both the

Spin(7) and G2 cases, the conditions (B.8) and (B.9) impose a single restriction on the

corresponding structures. Both these conditions can be rewritten as ∗d∗θφ = 0 and
∗d∗θϕ = 0, where θφ and θϕ are the Lee forms of φ and ϕ, respectively. So these are

Gauduchon type of conditions.

C Uplifted horizons

The self-dual 5-form of the lifted 5-dimensional black hole solutions is

F(10) = Θ + ⋆10Θ (C.1)

where

Θ = −1

ℓ
e+ ∧ e− ∧ Z1 ∧ Z2 ∧ Z3 + r∆(3)e

+ ∧ Z1 ∧ Z2 ∧ Z3 ∧w

+ωCP 2 ∧
(

1

4
∆(3)Z

1 ∧ Z2 ∧ Z3 − 1

4
e+ ∧ e− ∧

(

h(3) +
2

ℓ
Z1

)

+
1

4
re+ ∧ ⋆3(−d∆(3) + ∆(3)h(3)) +

1

4
re+ ∧ w ∧

(

h(3) +
2

ℓ
Z1

))

⋆10Θ =
ℓ

2
w ∧

(

− 1

4
ωCP 2 ∧ ωCP 2 − 1

8
ℓ∆(3)e

+ ∧ e− ∧ ωCP 2

−1

8
ℓ ⋆3

(

h(3) +
2

ℓ
Z1

)

∧ ωCP 2 +
1

8
ℓre+ ∧ (−d∆(3) + ∆(3)h(3)) ∧ ωCP 2

)

+
1

4
r∆(3)e

+ ∧ ωCP 2 ∧ ωCP 2 − 1

4
re+ ∧ ⋆3

(

h(3) +
2

ℓ
Z1

)

∧ ωCP 2 . (C.2)

This together with the metric in (6.6) describes the full 10-dimensional solution.
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[61] G.W. Delius, M. Roček, A. Sevrin and P. van Nieuwenhuizen, Supersymmetric σ-models

With Nonvanishing Nijenhuis Tensor And Their Operator Product Expansion,

Nucl. Phys. B 324 (1989) 523 [SPIRES].

[62] T. Friedrich and S. Ivanov, Parallel spinors and connections with skew-symmetric torsion in

string theory, Asian J. Math. 6 (2002) 303 [math/0102142].

[63] T. Friedrich and S. Ivanov, Killing spinor equations in dimension 7 and geometry of

integrable G2-manifolds, math/0112201.

[64] P.S. Howe, A. Opfermann and G. Papadopoulos, Twistor spaces for QKT manifolds,

Commun. Math. Phys. 197 (1998) 713 [hep-th/9710072] [SPIRES].

[65] S. Ivanov, Connection with torsion, parallel spinors and geometry of Spin(7) manifolds,

math/0111216.

– 32 –

http://dx.doi.org/10.1016/0550-3213(89)90478-1
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B324,523
http://arxiv.org/abs/math/0102142
http://arxiv.org/abs/math/0112201
http://dx.doi.org/10.1007/s002200050469
http://arxiv.org/abs/hep-th/9710072
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9710072
http://arxiv.org/abs/math/0111216

	Introduction
	Fields near the horizon and supersymmetry
	Near horizon limit and field equations
	Killing spinor equations 

	Solutions with at least two supersymmetries
	Spin(7) invariant Killing spinors
	Pure SU(4) invariant Killing spinor
	Solutions with theta(omega)=0


	Hidden KT structure of horizon sections
	k-SKT and k-SCYT manifolds
	Hidden torsion

	KT fibrations
	Group manifold horizon sections
	Fibrations over Riemann surfaces
	Fibrations over Kähler-Einstein manifolds
	Six-dimensional base space
	Four-dimensional base space


	Uplifted near-horizon geometries
	Cohomogeneity-2 BPS black holes in D=5
	Cohomogeneity-1 BPS black holes in D=5
	AdS(5) x S*5

	Conclusions
	Conventions
	New geometries with torsion
	k-SAKT manifolds
	k(1), k(2), k(3)-SHKT and k-SQKT manifolds
	G(2) and Spin(7)

	Uplifted horizons

