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1 Introduction

Since the early days of bottom-up Galilean holography [1, 2], various techniques have been
developed to embed Schrödinger solutions into string theory and M-theory. The TsT trans-
formation, or Null Melvin Twist, has been used to transform the asymptotics of various
black brane solutions [3–9], and zero temperature solutions have been embedded into con-
sistent truncations of type IIB and eleven-dimensional supergravities that retain massive
vector modes, thereby making contact with the original bottom-up approach [10–17]. More
general solutions, formed directly in D = 10, 11, engineer non-relativistic conformal sym-
metry geometrically, drawing a connection between harmonic modes on internal manifolds
and zero temperature Schrödinger solutions with infinite spectra of z, e.g. [18–25].

For extremal solutions, the construction of [20] is the most general to date. Building on
their own work [19] and followed by [21], the authors’ framework subsumes all previously
found zero temperature embeddings based on null deformations of the near-horizon D3 and
M2-brane solutions, realizing them as members of infinite families of Schrödinger solutions.
The spectrum of z is determined by the spectrum of harmonics on Sasaki-Einstein mani-
folds. The geometric nature of these solutions suggests an extension to other deformations
of AdS vacua with some generality.

Given these developments, the outstanding question is no longer how top-down
Schrödinger solutions can be found, but instead, what the fundamental principle is that
allows us to explain their existence and classify them. In this work, largely inspired
by [18, 20, 22], we attempt to answer the following question: given an AdS×M solu-
tion, can it always be deformed to have Schrödinger symmetry? The answer, we argue,
is yes.

We begin by elucidating and extending the constructions of [18, 20, 22], which stand in
direct correspondence to linearized Kaluza-Klein vectors and gravitons of AdS compactifi-
cation spectra. In fact, we show that this is more than a parallel: to every such excitation,
there exists a nonlinear solution with Schrödinger symmetry that is obtained by “turning
on” the KK mode. The most general solutions involve both vector and spin-2 excitations,
which couple at quadratic order in the full solution.

The obvious puzzle is why linearized solutions can be extended to nonlinear order in
such a simple way. We use perturbation theory around a generic AdS×M vacuum to
show that the nonlinearities are constrained by symmetry to arise only at second order.
Scale invariance consistent with the first-order solutions determines the geometry to be of
Schrödinger form. Putting this all together, for every AdS×M vacuum in string and M-
theory, there are Schrödinger solutions in direct correspondence with vector and graviton
KK modes of the compactification spectra on M, and the most general Schrödinger solu-
tions superpose these modes. As we will show, for gravitons, and vectors which descend
from a mixture of metric and flux components, the correspondence is one-to-one.

In this sense, the existence of Schrödinger solutions is universal, and their construction,
mechanical. We support our arguments by providing three new categories of solutions
explicitly, with three-, four- and seven-dimensional Schrödinger symmetry. This includes
both supersymmetric and non-supersymmetric solutions.

We also provide an argument on the CFT side. The dual version of the quadratic
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truncation of the AdS perturbation theory is that the β-function equations for all deforming
operators truncate at second order in the couplings. When perturbing the theory by a
source for a null vector operator, scale invariance is preserved provided that no marginal
spin-2 operator appears in the OPE of two vector operators. Further parallels can be drawn
by considering the Wilsonian β-functions equations for a tower of spin-2 operators. Their
β-functions equations are again constrained by symmetry to be quadratic in the couplings,
and the non-relativistic fixed point is easily solved in terms of operator dimensions and
constants arising from OPEs between vector operators. This is particularly useful in light of
recent work in setting up the precise holographic dictionary for Schrödinger gauge/gravity
duality, which focused primarily on solutions to massive vector theories [26, 27]. But the
most general embeddings of the type analyzed in this work do not fit into that framework:
there are not only massive vectors but massive gravitons as well, dual to symmetric tensor
operators with nontrivial Wilsonian β-functions.

This perspective has powerful implications for the existence of the Schrödinger back-
grounds beyond the two-derivative approximation, first considered in [28]. In particular,
we recall that conformal dimensions of operators in short multiplets of an AdS supergroup,
which are determined via harmonics of M, are unrenormalized by quantum and stringy
corrections. This implies that any parameter of a Schrödinger solution that derives from
the dimensionless AdS mass of a KK mode can be so protected. This is the case for the
dynamical exponent, z. Furthermore, when we perturb the exact AdS vacua that arise in
the near-horizon limit of M2, D3 and M5 branes, certain infinite families of the resulting
Schrödinger solutions are also exact. These vacua preserve only eight Poincaré supersym-
metries, and constitute a new contribution to the small set of exact solutions of string and
M-theory. We back this claim with an explicit calculation showing that one such class of
Sch5 solutions of type IIB is unrenormalized to O(α′3), inclusive of all correction terms,
known [29] and unknown.

The rest of this paper is organized as follows. Section 2 reviews the Schrödinger
solutions of type IIB obtained by a D3-brane deformation, and generalizes them with the
perturbation theory arguments detailed above, both in the bulk and on the boundary. We
also consider the implications for embedding Schrödinger solutions in consistent truncations
with massive modes. Section 3 posits conditions for nonrenormalization. Section 4 presents
the new Schrödinger constructions, details of which are in the appendices, and section 5
concludes with a discussion.

Note added. Appendix A now presents another infinite family of solutions with seven-
dimensional Schrödinger symmetry obtained through deformation of the extended M5
brane geometry that does not lie in obvious correspondence with massive KK modes found
in the compactification on AdS7 ×M4, as well as a single solution with six-dimensional
Lifshitz symmetry with the same general structure as those Lifshitz solutions of [30, 31].

2 Infinite families of Schrödinger solutions from every AdS

In reviewing the type IIB solutions of [18, 20, 22], we emphasize how their structure
parallels that seen in the harmonic analysis of the Kaluza Klein spectrum on AdS5×SE5.
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We then show that infinite towers of Schrödinger solutions are guaranteed to exist, for any
AdS vacuum, and are governed by the structure of the KK towers of massive vectors and
gravitons. For convenience, we use the notation and supergravity conventions of [20], the
latter of which are found in [32]. (As is probably clear by now, throughout this paper we
use the term “Schrodinger” in reference to Galilean-symmetric spacetimes for any value of
the dynamical exponent.)

2.1 Review and motivation

The type IIB solutions of [20] are1

ds2 = Φ−1/2
(
2dx+dx− + h(dx+)2 + 2Cdx+ + dx2

)
+ Φ1/2ds2(CY3)

F5 = dx+ ∧ dx− ∧ dx1 ∧ dx2 ∧ dΦ−1 + ?CY3dΦ

− dx+ ∧
(
d(Φ−1C) ∧ dx1 ∧ dx2 − ?CY3dC

)
G3 = dx+ ∧W

(2.1)

This solution is a deformed version of D3-branes sitting at the tip of a CY3 cone. Φ and h
are functions; C is a one-form; and W is a complex two-form; all of which are defined on
CY3. The axion-dilaton is set to zero, and x = (x1, x2). The field equations evaluated on
this ansatz reduce to

∇2
CY3

Φ = 0

d ?CY3 dC = 0

dW = d ?CY3 W = 0

∇2
CY3

h = −|W |2CY3

(2.2)

where |W |2CY3
is the real square of W with indices contracted with the CY3 metric. The

first of these equations is the usual harmonic condition on Φ, which we use to zoom into
the near-horizon region by making the substitution Φ = r−4, and writing the CY3 as a
cone over a Sasaki-Einstein space SE5 as

ds2(CY3) = dr2 + r2ds2(SE5). (2.3)

Upon substitution, we can satisfy the remaining three equations by taking

C = rz−2β

W = d(rzσ)

h = r2z−2q

(2.4)

where q, β and σ are a function, real one-form, and complex one-form, respectively, on
SE5. The powers of r follow from insisting upon anisotropic scale invariance under the
transformation

r → r′ = λr , x+ → x+′ =
x+

λz
, x− → x−

′ =
x−

λ2−z , x→ x′ =
x
λ

(2.5)

1Note a minor sign error in [19, 20] of the ?CY3dC term, where we, and they, use the convention

ε+−x1x2y1...y6 = +
√
−g, where the yi are coordinates on CY3.
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and the solution now reads

ds2 = r2zq(dx+)2 + 2rzdx+β + r2
(
2dx+dx− + dx2

)
+
dr2

r2
+ ds2(SE5)

F5 = 4r3dx+ ∧ dx− ∧ dx1 ∧ dx2 ∧ dr + 4V ol5
− d

(
rz+2dx+ ∧ dx1 ∧ dx2 ∧ β

)
+ dx+ ∧

(
rz−1dr ∧ ?5β + (z − 2)rz ?5 dβ

)
G3 = d

(
rzdx+ ∧ σ

)
(2.6)

where V ol5 and ?5 are the invariant volume form and Hodge star operator on SE5, respec-
tively. The Schrödinger symmetry is now manifest, and the field equations reduce to

∆5β = z(z − 2)β , where d ?5 β = 0

∆5σ = z(z + 2)σ , where d ?5 σ = 0

∇2
5q + (2z − 2)(2z + 2)q = −z2|σ|25 − |dσ|25

(2.7)

with −∇2
5 and ∆5 as the Laplace operator on func-

tions and one-forms on SE5, respectively. The
most general solution in which all of these fields are
turned on is subject to the consistency of all equa-
tions.

Having reviewed these solutions, we now make some observations. The structure of
this ansatz, and the form of the reduced field equations, is almost identical to that which
arises in solving for linearized fluctuations on AdS5×SE5. The only difference, which we’ll
return to shortly, is the quadratic nonlinearity appearing in the final equation of (2.2).
Take the σ 6= 0 solutions, for example. We have written the three-form flux as

G3 = dA2 = d
(
rzdx+ ∧ σ

)
(2.8)

in order to emphasize the structure of the complex two-form gauge field A2: it has one leg
along SE5, and one leg along the five noncompact directions that survive the compactifi-
cation. The latter becomes the gauge field in d = 5, to wit, the Schrödinger gauge field of
an effective d = 5 massive vector model,

ASch1 = rzdx+ (2.9)

Furthermore, we found that σ must be a transverse vector harmonic on SE5, and z(z+2) is
identified with its eigenvalue. The spectrum of co-closed one-forms on SE5 has eigenvalues
∆5 ≥ 8, where this bound is saturated when σ is dual to a Killing vector on SE5. This
gives a lower bound2

z ≥ 2 (2.10)

But this is exactly how the tower of KK vectors with a diagonal field equation3 arises
in the harmonic analysis of linearized fluctuations: one expands the internal part of the

2Here and henceforth, we ignore negative z consistent with the field equations.
3Henceforth called “diagonal” vectors.
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complex two-form gauge field in harmonics on SE5, plugs into the linearized field equations
subject to a particular gauge choice, and the equation for the fluctuations A1 becomes the
eigenvalue equation of vector harmonics. The de Donder-Lorenz gauge choice forces these
vector harmonics to be transverse, which is to say, co-closed on SE5: this is just the
condition d ?5 σ = 0 that we have imposed above. The resulting definition of z is simply
that of a five-dimensional massive vector model,

(mL)2 = z(z + 2) (2.11)

where (mL)2 is here the dimensionless AdS mass of the KK vector. Notice that the ansatz
is linear in W , as it is in all of the deformation fields, and the axio-dilaton need not be
turned on because it does not figure into the Kaluza-Klein vector spectrum.

There is another field equation to be obeyed, namely the Einstein equation given
in (2.7). Notice that when σ = 0, the equation is simply that of a massive spin-2 excitation
on AdS5×SE5, where q is a scalar harmonic with eigenvalue 4(z2− 1). Its harmonic level
determines the mass of the spin-2 field. One should think of expanding h in SE5 scalar
harmonics as

h =
∑
k

hkµνY
k(SE5) (2.12)

thus identifying the spin-2 field as
h++ = r2z (2.13)

Notice that h++ is a transverse traceless mode because of the null Killing vector of the
Schrödinger metric; this, too, parallels the gauge choice of the compactification.

Evidently, taking σ 6= 0 induces a quadratic correction to this equation; the solution
is given as a linear superposition of scalar harmonics on SE5, as determined by the SE5

dependence of the source term.4 Thus, the σ 6= 0 solutions require not only a vector
perturbation to AdS5 × SE5, but a tower of spin-2 perturbations whose amplitudes are
proportional to the square of the vector harmonic.

A similar explanation holds for the β 6= 0 solutions: these make use of the vectors
that descend from a mixture of the ten-dimensional metric and four-form RR gauge field.5

The five-form ansatz in (2.6) has various β terms which combine to make a self-dual F5.
Focusing on the term of the form

F5 = dA4 ⊃ d
(
rz+2dx+ ∧ dx1 ∧ dx2 ∧ β

)
(2.14)

we see that we have turned on a component of the four-form gauge field with three legs along
the extended directions. Nevertheless, this is precisely the form of the ansatz needed to turn
on the mixed KK vectors: in the linearized KK analysis, these components are algebraically

4There is an exception to this when z = 2, for which the σ-dependence of the spin-2 equation reduces

to a constant. In this case, the most general solution is g++ = qr4, where q = a + bY (SE5)12 for some

constants a, b and Y (SE5)12 the scalar harmonic with eigenvalue 12 (if it exists). The choice b = 0 does

not turn on a spin-2 field because there is no constant scalar harmonic on SE5 other than zero. This is, in

fact, the near-horizon limit of the TsT-transformed extremal D3-brane.
5Henceforth called “mixed” vectors.
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Figure 1. The lower states of the spectrum of Sch5(z) solutions formed from Kaluza-Klein vector
deformations of AdS5 × S5. This is an adaptation of figure 1 in [33] which depicts the vector
mass spectrum, here converted via the massive vector relation (mL)2KK = z(z + 2). The SO(6)
representation of each vector, listed above each point, partly determines the degeneracy of solutions.
At right are the D = 10 origin of fields, where µ lies along the noncompact directions and (a, b, c) lie
on S5. The middle branch of solutions, formed from diagonal vectors descending from the complex
two-form, also requires nonzero Kaluza-Klein gravitons not pictured. The lower branch of mixed
vectors, while present in the spectrum, gives solutions with negative values of z; hence, it appears
dotted and unfilled. For details, see the main text.

eliminated in favor of a component with only one extended index. (See discussion above
equation (2.17) of [33] when SE5 = S5.) These solutions will have z ≥ 4, and the massive
vector relation (2.11) still holds.6

Lastly, the solutions for which only q 6= 0 are, as articulated above, simply the elevation
of a linearized massive graviton excitation to a full solution. Evidently, superpositions of
all of these solutions may also be solutions, subject to the harmonic structure of SE5.

Upon taking SE5 = S5 [33], the above statements become rather transparent: the
eigenvalue spectra of the Laplace operators are integer and stand in the right relation to give
a spectrum of Schrödinger solutions with integer z. A graph of the vector spectrum about
AdS5×S5 then supplies a visual representation of the associated Schrödinger deformations,
provided in figure 1.

These comments apply equally to the M2-brane solutions constructed in [20]. In fact,
there is nothing special about either of these two solutions in this regard, so one should
expect this structure to extend to solutions built around any AdS×M vacuum.

Summarizing, to each KK vector of an AdSd+1 ×M compactification, one can asso-

6In this and other constructions using mixed vectors, there are two such towers. Because the eigenvalue

equation that determines z is quadratic, it is satisfied by two choices of z. The greater choice turns on a

vector in the “upper” branch; the lesser choice, the “lower” branch. Typically, the values of z corresponding

to the lower branch are negative, and we will ignore them for physical reasons.
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ciate a solution with Schd+1 symmetry where the Schrödinger vector is identified with the
linearized KK fluctuation. The dynamical exponent z is given precisely by the relation for
an effective d-dimensional massive vector model,

(mL)2
KK = z(z + d− 2) (2.15)

where the mass is simply the AdS mass of the KK vector: by construction, the same
differential operator of M that gives the spectrum of vector masses is that which gives z.
When the KK vector is diagonal, the metric deformation is induced by a tower of massive
spin-2 fields that together solve an inhomogeneous Laplace equation with a quadratic source
in the vector harmonic. One can also utilize the spin-2 fields alone to obtain a Schrödinger-
symmetric solution, where z is determined by the effective mass of the spin-2 field as

(mL)2
KK = [d+ 2(z − 1)] 2(z − 1) (2.16)

(We will justify this relation for all d later in this section.) Finally, in all of these construc-
tions, the degeneracy of Schrödinger solutions is given by the degeneracy of M harmonics
utilized in the solution.

Analysis of the KK spectrum is based on solving linearized field equations, while the
Schrödinger solutions represent solutions of the fully nonlinear theory. In these terms,
an obvious question is: how does a solution at linearized level become elevated to a full,
nonlinear solution? We now explain how this occurs, first from the point of view of the
bulk field equations, and subsequently from the point of view of the holographically dual
boundary theory.

2.2 In the bulk: AdS perturbation theory

The message of the above remarks is that one should think of the nonlinear solution as
a quadratic extension of a linearized solution around AdS5 × SE5. Thus, our task is to
explain why this perturbation theory truncates at second order, and to generalize this fact.

Still referring to the D3-brane case, our strategy will be to initiate a perturbation
theory around the AdS solution by seeding it with a linearized vector fluctuation, where
the three-form flux has a leg in the x+ direction. The fluctuation has some definite weight
under the symmetry transformations of the background. Going to higher order in the
perturbation theory, the symmetries of this first order solution must be preserved at each
order. Furthermore, the possible terms that can get generated must be covariant with
respect to the symmetries of the background. In general, this perturbation series will not
truncate at finite order; in particular, if one can combine positive powers of the first-order
perturbations to form a singlet under all background symmetries, then one will expect
this singlet to appear in equations at arbitrary order. Simplification occurs if, for any one
symmetry of the background, there are no singlets.

In the case at hand, the Lorentz symmetry of AdS, acting in these coordinates as

x+ → x+′ =
x+

κ
, x− → x−

′ = κx− (2.17)
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strongly constrains the possible terms that can be generated beyond linear order. Because
we seed the perturbation theory with a field with a leg along the null x+ direction, and
with no legs along the x− direction, this field has weight one under the Lorentz boost.
That means that at nth order, the only possible terms that can be generated are of weight
n. But because the lone symmetric tensor field in our theory is the metric, which has two
indices, this perturbation theory will necessarily truncate at quadratic order: there are no
possible terms one can write down which turn on a field with Lorentz weight three.

Demonstrating explicitly with the W 6= 0 solution based on diagonal vectors, we seed
the perturbation via the complex three-form flux, as

ds2 = r2
(
2dx+dx− + dx2

)
+
dr2

r2
+ ds2(SE5)

F5 = 4r3dx+ ∧ dx− ∧ dx ∧ dr + 4V ol5

G3 = δG
(1)
3

(2.18)

with
δG

(1)
3 = dx+ ∧W (2.19)

We assign W weight one under a Lorentz boost. The only term that can be generated
at subsequent orders is the Schrödinger term in the metric,

δg
(2)
AB = g++δA+δB+ (2.20)

This fact ensures that the ∂− Killing vector stays null at all orders. Note that we have
merely used the Lorentz symmetry of AdS, so this same logic applies to null perturbations
of any Lorentz-invariant background by a massive supergravity field. In particular, this
argument makes no use of supersymmetry or scale invariance of the near-horizon limit.
Note also that the resulting Schrödinger solutions will be at zero temperature, and of the
same curvature scale as their AdS counterparts: LSch = LAdS.

This procedure can also be carried out by seeding the perturbation with the mixed KK
vectors (C), or with the massive spin-2 field (h). These first-order choices merely preserve
different symmetries. In the former case, identical arguments to the above truncate the
perturbation theory at second order; in the latter case, since our initial perturbation is of
weight two, the linearized solution is in fact a full solution.

In fact, in this example the truncation of perturbation theory works even better than
one might have expected. Notice that in the final equation in (2.2) it would consistent with
the Lorentz symmetry to have a |dC|2 term appear alongside |W |2, but the coefficient of
this term is apparently zero. This may be a consequence of supersymmetry, and as we will
see, has implications for the robustness of the C 6= 0 solutions against higher derivative
corrections.

To actually obtain the Schrödinger metric, we turn now to the dilatation symmetry.
The full nonlinear solution at hand is not Lorentz invariant, so it is consistent to allow for
anisotropic scale invariance (2.5). This fixes the fields W and g++ to take their canonical
Schrödinger scaling, and enforcement of the Bianchi identity on the three-form flux implies

– 9 –
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its closure. Parameterizing the metric as g++ = r2h gives

W = d(rzσ)

h = r2z−2q
(2.21)

as in (2.4). Both h and W can have functional dependence only on CY3 coordinates
(r,Ω5): specifically, x− is ruled out because of the x± scaling argument, and x is ruled out
to preserve rotational symmetry along the brane.

Using the dilatation invariance, general covariance, and the fact that z = 1 must be an
AdS solution for which we can set W = 0, one can essentially reproduce the reduced field
equations (2.7), including the z-dependence. Focusing on the spin-2 equation, we know
that a two-derivative operator, covariant with respect to the CY3 on which the fields are
defined, must act on h. Scale invariance determines the form of the equation as

∇2
CY3

(rxh) = αrx|W |210 (2.22)

for some constants x, α, and where the square of W is taken with respect to the 10-
dimensional metric. Each side has Lorentz weight two. Substituting from (2.21) gives(

∇2
5 + (2z + x− 2)(2z + x+ 2)

)
q = α

(
z2|σ|25 + |dσ|25

)
(2.23)

We impose one final constraint, which is that when z = 1, AdS is a solution with σ = 0
and q constant. This determines x as

x(x+ 4) = 0 (2.24)

The choice x = 0, α = −1 is evidently made by plugging the ansatz into the Einstein
equation itself. Up to this ambiguity, we have thus determined the relation between z

and the spin-2 mass, which was unknown a priori, in contrast to the spectrum of z in the
well-studied massive vector model.

Thus, it is clear why the field equations (2.7) for the σ = 0 solutions are simply those
of the linearized level, and why the σ 6= 0 solutions have only a quadratic correction to
those equations appearing in the Einstein equation. By using the spacetime symmetries
of the AdS vacuum we have essentially reproduced all aspects of the nonlinear solution
in this perturbative context; we will see in the next section that we can also use the
supersymmetry of an AdS solution to make stronger statements about the existence of its
Schrödinger deformations away from the supergravity approximation.

First, let us explain the existence of these Schrödinger fixed points from the CFT side.

2.3 On the boundary: conformal perturbation theory

Given the AdS/CFT correspondence, and its generalizations, it is instructive to give a ver-
sion of our arguments that applies to the boundary theory. As we will see, this corresponds
to a simple exercise in conformal perturbation theory. The response of a CFT to a null
vector perturbation was studied (along with other aspects of holography for Schrödinger
spacetimes) in [26, 27], and we briefly compare our conclusions at the end of this section.
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Writing the CFT coordinates as (x±,x), where x± are lightcone coordinates, the gen-
erators corresponding to dilatations and Lorentz boosts in x± act as

D : x+ → x+′ =
x+

λ
, x− → x−

′ =
x−

λ
, x→ x′ =

x
λ

L : x+ → x+′ =
x+

κ
, x− → x−

′ = κx− , x→ x′ = x
(2.25)

Now consider an operator O−, whose dilatation weight is ∆, and whose behavior under
Lorentz transformation is as indicated by its index structure. Under a combined dilatation
and Lorentz transformation it transforms as

O−(x+, x−,x)→ O−(x+′, x−
′
,x′) = κ−1λ∆O−(x+, x−,x) (2.26)

Adding this operator to the Lagrangian obviously breaks Lorentz invariance, and it also
breaks scale invariance if ∆ 6= d. However, if we write ∆ in the form

∆ = d+ z − 1 (2.27)

we see that under the non-relativistic dilatation generator, Dz, defined as

Dz = D + (z − 1)L (2.28)

and which acts as

Dz : x+ → x+′ =
x+

λz
, x− → x−

′ =
x−

λ2−z , x→ x′ =
x
λ

(2.29)

the operator O− acquires weight ∆z = d under Dz, and so
∫
dx+dx−dd−2xO− is scale

invariant, as noted in [26, 27].
Similarly, a spin-2 operatorO−− will be marginal under Dz provided that its relativistic

conformal dimension is ∆ = d+ 2(z − 1).
Perturbing the action as

S → S + g+

∫
dx+dx−dd−2x O− + g++

∫
dx+dx−dd−2x O−− (2.30)

thus preserves, to first order in the couplings (g+, g++), scale invariance generated by Dz.
In parallel to our discussion on the gravity side, we can consider the couplings (g+, g++)

as “seeds”, and study the renormalization group beyond first order to see whether scale
invariance survives. We proceed using conformal perturbation theory (see [34], section
15.8). Inside the path integral we expand e−S as a power series in the couplings. Ultraviolet
divergences can occur when two or more operator insertions coincide in position space, and
we regulate these by cutting out a small ball of radius Λ−1 around each operator, and
adding counterterms to remove the divergences. A breakdown of scale invariance is then
signalled by the appearance of log Λ terms, since their removal introduces a scale µ.

At second order in perturbation theory a log divergence can occur when two operators
collide and produce a factor of

∫
dx+dx−dd−2x
x+x−|x|d−2 . In particular, this will happen when the

OPE of two vector operators behaves as

O−(x+, x−,x)O−(0, 0,0) ∼ C

x+x−|x|d−2
O−−(0, 0,0) + · · · (2.31)
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where O−− is a marginal (with respect to Dz) spin-2 operator. In order to renormalize
the theory we need to add to the action the operator O−− with a coefficient that depends
logarithmically on scale. The resulting theory thus breaks scale invariance at second order
in g+ unless C = 0, with a nonzero β-function β++ ∼ C(g+)2.

This behavior corresponds to what we see on the gravity side. Consider an AdS vacuum
whose field content includes a massive vector and a massive spin-2 field, whose masses are
such that each admits a linearized solution preserving invariance under scale transformation
with exponent z. In particular, consider the system of equations (2.2), where we assume
that the appropriate CY3 harmonics exist. Now seed a solution with the massive vector
W . According to the last equation in (2.2) this will source h at quadratic order in W . By
assumption, at linear order h admits a solution h ∼ r2z−2, in order to be compatible with
the non-relativistic scale invariance. However, at quadratic order in W we will have to
shift the power law of h in order to solve the field equations. Expanding in W , this gives
rise to a term h ∼ |W |2r2z−2 ln r, whose presence is the bulk analog of the logarithmically
running coupling in the CFT. Scale invariance survives only if the source for the marginal
h mode vanishes, which is the bulk analog of the CFT condition C = 0.

In the CFT, checking scale invariance at orders g+g++ and g2
++ means looking for

marginal spin-3 and spin-4 operators appearing in the OPEs O−O−− and O−−O−−.
Nonzero OPE coefficients lead to nonzero β-functions for the spin-3 and spin-4 couplings.
Going beyond second order in perturbation theory, we will similarly need to check for the
appearance of operators of ever higher spin in OPEs. How do we deal with this? Here the
key point is that in the supergravity limit the bulk theory contains no fields of spin larger
than two. Such modes would correspond to stringy excitations, which we can think of as
having been integrated out, yielding α′ corrections in the supergravity action. Similarly,
in order for the CFT to have a dual supergravity description it is necessary that all higher
spin operators should acquire scaling dimensions that are parametrically large in the large
(λ,N) limit. So for the CFTs dual to bulk theories with a good supergravity descrip-
tion, there will not exist any marginal operators beyond spin-2. Therefore, the full set of
renormalization group equations governing the flows seeded by (g+, g++) consists of the
equations β+ = 0, β++ ∼ C(g+)2. Existence of the fixed point thus boils down to checking
the single condition C = 0. As noted above, this matches the behavior seen in the bulk.

The vanishing of C will follow from symmetry in some theories. Namely, if the theory
has a global symmetry group under which the marginal spin-1 and spin-2 operators trans-
form, C will vanish unless the product of two spin-1 representations contains the spin-2
representation. For example, in the case of N = 4 SYM, operators will transform in rep-
resentations of the SU(4) R-symmetry. The same considerations apply on the gravity side,
where for example in (2.7) the source terms appearing on the right hand side are subject
to the rules governing products of harmonics. It was proven in [20] that the source for the
marginal mode vanishes for all values of z when SE5 = S5, and furthermore, for z = 2 for
generic SE5.

In the bulk, solving the last equation in (2.2) will involve turning on a tower of massive
spin-2 two modes with amplitudes proportional to the square of the vector field. We can
make a parallel observation on the CFT side. Let us consider a tower of generically non-
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marginal spin-2 operators O(n)
−−. In order to talk about the flow of their couplings g(n)

++,
let us now work in terms of the Wilsonian renormalization group, where we keep track of
all couplings, not just the marginal and relevant ones. Lorentz invariance now constrains
their β-functions to be of the form

β
(n)
++ =

(
∆z[O(n)

−−]− d
)
g

(n)
++ + C(n)(g+)2 (2.32)

where ∆z[O(n)
−−] are the operator dimensions at the Lorentz invariant fixed point. We are

including only the effect of couplings with purely +-type indices, since all other couplings
can be consistently set to zero by Lorentz invariance. Along with the fact that the equation
β+ = 0 is uncorrected by the presence of g(n)

++, which again follows from Lorentz invariance,
we find the fixed point by taking

g
(n)
++ = − C(n)

∆z[O(n)
−−]− d

(g+)2 (2.33)

We can now see the parallel with the gravity side. According to (2.7), scale invariant
solutions are found by solving an inhomogeneous Laplace equation for q, with the source
given by the square of the vector field. The solution can be decomposed into the harmonics
for the massive spin-2 fields. The solution will then contain a tower of massive spin-
2 fields with amplitudes proportional to the square of the vector, which is what we have
in (2.33). To make this connection precise we would like a better understanding of the bulk
interpretation of the Wilsonian couplings; see [35, 36] for recent work in this direction.

Finally, let us remark on references [26, 27], which argued that couplings for vector
operators O− are exactly marginal with respect to non-relativistic scale transformations.
The arguments in [26, 27] were based on showing that the 2-point function for O− is
uncorrected by the addition of O− to the Lagrangian. This establishes that β+ = 0;
however one also needs to verify that β-functions for other couplings vanish as well. As
we discussed above, this corresponds to checking that no marginal spin-2 operators appear
in the OPE of the vector operators, and this has a direct correspondence with the field
equations in the bulk.

2.4 A corollary: consistent truncations with massive KK modes

Before moving on, we can apply our conclusion to the construction of consistent trunca-
tions of string/M-theory. By now, there is a large amount of technology for constructing
consistent truncations with massive modes, e.g. [10–17, 37], and it was in this manner that
the first string/M-theory embeddings of Schrödinger solutions were found in [10]. We have
shown here that one can always elevate the linearized vector and spin-2 fluctuations around
AdS to part of a full, nonlinear Schrödinger solution; but if one can elevate some of these
fields to the nonlinear level on the level of the action itself, then it is clear that Schrödinger
solutions to such theories always exist.

Therefore, a corollary to our argument is that anytime there exists a consistent trun-
cation of an AdS×M KK spectrum that includes massive vector and/or spin-2 fields, the
truncated theory admits the associated Schrödinger solutions.
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When can this be done? Although some recent work [11, 14] has argued for the
possibility of including massive spin-2 fields in truncations to maximally supersymmetric
supergravities, old lore [38] and new evidence [39] point to the contrary. If it is indeed
true that no spin-2 fields can be so included — supersymetrically or otherwise — then the
Schrödinger solutions built on diagonal vectors that also turn on a tower of spin-2 fields
cannot be found as solutions of consistent truncations. In type IIB solutions, this excludes
all but those that can be attained by a TsT transformation.

On the other hand, the solutions built from mixed vectors have no associated spin-2
fields. In principle, all of these solutions are ripe for embedding; in practice, all massive
truncations to date have only included vector harmonics that sit at the base of their
respective KK towers.

It was conjectured in [13] that a necessary condition for the consistency of the inclusion
of a massive KK mode is that the field sits at the bottom of its tower, based on consideration
of structure groups of compactification manifolds. If we take this to be true as well, then
the possibilities for embedding Schrödinger solutions into string/M-theory by fitting them
into consistent truncations are severely limited; for example, no more of the D3-deformed
Schrödinger solutions can find such an embedding.7

The flipside of this would be the implication that anytime a massive vector is included
in a consistent truncation, it can be used to construct a Schrödinger solution. This would
provide a trivial prescription for identifying non-relativistic vacua, and at least gives a
rule of thumb. We give an example later on of a supersymmetric truncation to a d = 4,
N = 2 gauged supergravity arising from wrapped M5 branes that includes a massive vector
multiplet [40], and show that, indeed, two Schrödinger solutions exist in correspondence to
the theory’s two AdS4 vacua.

3 Quantum/string corrections

We turn now to the study of corrections to Schrödinger solutions due to quantum and string
effects, which hinges on analyzing corrected KK spectra of AdS vacua. In what follows,
there is no distinction made between α′ corrections and GN corrections, as both enter on
equal footing as higher derivative terms. For convenience we refer to these collectively as
α′ corrections.

To begin, we can quickly establish that there will always exist Schrödinger solutions at
every order in a higher derivative expansion. Since the worst that can happen to a super-
gravity AdS solution upon inclusion of α′ corrections is that its radius gets renormalized,
if one assumes that the curvature does not become so large as to invalidate the gravity
description, then there will always exist Schrödinger solutions made by utilizing the KK
spectrum around the new, corrected vacuum in the usual way. This is a generalization of a
statement made in [28]. Using the dual arguments on the CFT side made in the previous
section, the lone effect of heavy operators is to rescale terms in the β-function equations,
so the non-relativistic fixed point will always exist for finite parameters {∆z[O(n)

−−], C(n)} .

7Later, we will present new solutions with Sch7 symmetry based on M5 branes; according to these

criteria, only one of them could be a solution to a consistent truncation on AdS7 × S4.
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Compared to the two-derivative supergravity Schrödinger solutions, the corrected
vacua will generically have parametric renormalization of z (when the vector mass spec-
trum is corrected) and LSch (when LAdS is rescaled), and a different metric structure (on
account of new mixing between linearized fluctuations).

What is required of the AdS background for these corrections to vanish? As one
might expect, the answer is supersymmetry. And as we show momentarily, certain families
of Schrödinger solutions built from perturbations of the maximally supersymmetry AdS
spacetimes are exact.

The outline for this section is as follows. In 3.1, we utilize supersymmetry in presenting
the conditions for nonrenormalization, and the aforementioned exact solutions. In 3.2,
we explicitly show how one class of exact solutions with Sch5 symmetry, obtained by
deformation of AdS5 × S5, remains a solution to O(α′3) despite its reduced isometry and
supersymmetry. This is done by direct calculation with the conjectured metric and five-
form flux correction terms at this order in the type IIB supergravity action.

3.1 Uncorrected Schrödinger solutions from short multiplets

In the presence of supersymmetry, there will typically be some degree of nonrenormalization
of the AdS background and its KK spectrum. In cases for which the AdS background itself
is robust against renormalization to some order in a derivative expansion, Schrödinger
solutions built from perturbations of this background are similarly robust, as LAdS = LSch.

The most useful fact for our purposes is basic: if a supergravity mode lies in a shortened
multiplet of the corresponding AdS supergroup, then the exponent appearing in a power
law profile for such a mode cannot get renormalized at any order in higher derivative
corrections. This can be understood intuitively as follows. The action of the dilatation
operator directly relates the exponent to the scaling dimension of the dual boundary CFT
operator; but operators in short multiplets have protected scaling dimensions. Since z

appears as such an exponent, it will hence not be renormalized. Shortened multiplets occur,
for instance, for all supergravity modes in maximally symmetric spacetimes because a long
multiplet necessarily has fields with spins greater than two. Such shortened multiplets
are actually ubiquitous in KK spectra, as many supergroups without maximal symmetry
possess some number of short multiplets.

This immediately implies that if an AdS supergroup admits shortened multiplets, the
Schrödinger solutions built from the massive fields in those multiplets will receive some
level of protection from renormalization to all orders. Specifically, any property of the
solution that depends only on the mass of such a field will be unrenormalized. Of course,
this is the case for the dynamical exponent z which is determined by either a vector or
spin-2 equation; see (2.7). Therefore, we conclude that if the KK field that determines z
sits in a short multiplet, z will remain uncorrected to all orders in an α′ expansion.

The reason that all solutions are not fully protected is that the perturbation theory
around AdS truncates at quadratic, not linear, order. Those solutions formed from a
diagonal vector (σ 6= 0) obey a spin-2 field equation corrected by a quadratic term. Thus,
even if the spin-2 field h is in a short multiplet, the solution will receive a correction.
On the other hand, the solutions without a diagonal vector receive no renormalization at
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all, because all properties of the solution are derived from field equations which remain
uncorrected in the full solution.

We summarize these results as follows:
Suppose we have an AdS×M solution which remains unrenormalized to nth order in α′

or lP . This implies that LSch will follow suit. We now ask what other renormalization can
occur. Suppose the KK spectrum contains both spin-1 and spin-2 fields in short multiplets,
and we turn these fields on in our perturbation theory. The following nonrenormalization
theorems will hold:

• No diagonal vector: The reduced field equations are simply those of the linearized
fluctuations. So the full solution, modulo LSch, remains unrenormalized to all orders
in higher derivative corrections.

• Diagonal vector: This requires a tower of nonzero spin-2 fields as well, which
collectively solve a Laplace equation with a quadratic source. This solution will have
z unrenormalized, but the M-dependence of g++ will be corrected at higher orders.
(Again, LSch is unchanged to nth order only.)

All of these arguments can be straightforwardly made on the CFT side, in accordance
with the discussion in subsection 2.3.

Note that the mixed vector and spin-2 solutions are supersymmetric, generically pre-
serving one half of the Poincaré supersymmetries of the AdS background [18, 19]. The
diagonal vector solutions can be made supersymmetric, but need not be [20–22].

3.1.1 Exact solutions

When the AdS spacetime around which we perturb is maximally supersymmetric, LAdS =
LSch receives no rescaling to all orders in higher-derivative corrections [41], and all super-
gravity fields belong to short multiplets. Such spacetimes are the near-horizon geometries
of the conformal branes in type IIB string theory and M-theory. Therefore, the towers of
Schrödinger solutions based only on mixed vector and spin-2 perturbations of the maximally
supersymmetric AdS4/5/7×S7/5/4 vacua are exact. These solutions preserve eight Poincaré
supercharges [20], and are of course not maximally isometric. As such, we add them to the
short list of exact solutions with less than maximal supersymmetry and isometry, including
the non-supersymmetric plane wave spacetimes studied in [42] and the 1/4 BPS AdS2×S2

vacuum of N = 2, d = 4 supergravity without matter multiplets [41].
On the CFT side, this says that there exist Galilean-invariant vacua for arbitrary ’t

Hooft coupling and number of colors. In N = 4 SYM, the (2, 0) theory on M5 branes and
the CFT on M2 branes, the conformal phase can be broken to a Galilean-symmetric phase
with z fixed as a function of λ or N .

When the spheres are replaced by manifolds with less isometry, the resulting AdS
vacua will have partial or no supersymmetry. Still, it is known in some cases that LAdS

is norenormalized to a certain order in the derivative expansion. For example, using the
conjectured O(α′3) correction terms of type IIB involving the metric and five-form only [29,
43], it has been shown that the AdS5×SE5 vacuum is unrenormalized to this order. Thus,
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the solutions with Sch5 symmetry built by perturbing this background with massive fields
in short multiplets, while keeping σ = 0, are unrenormalized to this order too. The same
goes for the AdS3 × S3 × M4 geometry of the strongly coupled D1-D5 system, and its
associated Sch3 solutions which we present in section 4.

Indeed, the SU(2, 2|1) supergroup of the AdS5 × SE5 vacuum is one of many that
contains short multiplets. The shortening conditions for SU(2, 2|N ), with N = 1, 2, 4, are
summarized in [44]. The most well-studied example of a geometry dual to an N = 1 SCFT,
AdS5×T 1,1, has both spin-2 and spin-1 fields in semi-long multiplets [45], dual to boundary
operators of protected, rational conformal dimension. So solutions based on these fields
are unrenormalized to at least O(α′3).

Other AdS vacua whose KK spectra contain states in short multiplets include: AdS3×
S3 solutions of various d = 6 supergravities, the multiplet structure of which was given
in [46]; AdS4×SE7 solutions, the supergravity states of which fall into unitary irreducible
representations of OSp(2|4) (e.g. [47, 48]); and orbifolded AdS vacua.

3.2 At O(α′3), explicit nonrenormalization of Sch5

We focus on type IIB Sch5 solutions because, relatively speaking, we know a lot about type
IIB correction terms. We possess an explicit form for the terms involving only the metric
and five-form up to O(α′3) relative to the supergravity action; we know that the supersym-
metry of AdS5 × SE5 vacua renders their length scales fixed to this order; and we know
that when SE5 = S5, the solution is maximally symmetric, maximally supersymmetric,
and hence unrenormalized to all orders, inclusive of corrections from all type IIB fields.

The full set of metric and five-form corrections at O(α′3) was presented in [29], building
on the conjecture of [43]. There exists a scheme, obtained by appropriate definition of the
metric, in which the metric dependence can be written in terms of only the Weyl tensor,
CABCD. All appearance of the five-form flux is via the following two-derivative tensor [49],

TABCDEF = i∇AFBCDEF +
1
16

(FABCMNF
MN

DEF − 3FABFMNF
MN

DEC ) (3.1)

where [A,B,C] and [D,E, F ] should be independently antisymmetrized, and the two sets
symmetrized under interchange. Schematically, the corrections to the Lagrangian take
the form

C4 , C3T , C2T 2 , CT 3 , T 4 (3.2)

along with their complex conjugates, all entering at O(α′3); the full set of contractions is
determined in [29]. The terms enter the Einstein frame action as [29, 43]

S(3) ∼ α′3
∫
d10x
√
−gf (0,0)(τ, τ̄)(C4 + . . .) (3.3)

where

f (0,0)(τ, τ̄) =
∑

(m,n)6=(0,0)

τ
3/2
2

|m+ nτ |3/2
(3.4)
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is a modular form [50] written in terms of the axio-dilaton τ = τ1 + iτ2 = χ + ie−φ, and
the well-known C4 term [51] is

C4 = CABCDCEBCFC
GHE

A CFGHD +
1
2
CABCDCEFCDC

GHE
A CFGHB (3.5)

Beyond this order in α′, the structure of the corrections is not known.8

For the AdS5 × S5 background, in which LAdS5 = LS5 , superspace arguments have
been used to prove that the solution is exact [41] . This is clearly satisfied at O(α′3), as
one can show that C = T = 0 on this solution. The uncorrected KK spectrum of energies
is also evidently unrenormalized at this order: the corrections are quartic in C and T , so
variation will never give a term linear in only one of these tensors.

Using this apparatus, we now consider corrections to the Sch5 solutions obtained by
deformations of AdS5 × S5. We will explicitly demonstrate what we argued for earlier:
that the metric and five-form solutions (σ = 0) are unrenormalized, but that those with
three-form flux (σ 6= 0) can receive a renormalization of the S5 part of g++. We consider
these in turn, keeping β = 0 for simplicity.

Before we begin, let us give away the punchline. It may seem like something of a
mystery that these Sch5 geometries, despite their greatly reduced supersymmetry and
isometry, are as robust against these same corrections as the maximally supersymmetric
and isometric AdS5 × S5. As with many other aspects of Schrödinger holography, the null
Killing vector is the key.

3.2.1 Sch5 solutions from AdS5 × S5: σ = 0

This solution has metric and five-form flux only, so the only terms that can contribute
to renormalization are the terms given above, plus terms linear in the axio-dilaton and
complex three-form flux which can turn on a decoupled field. We delay treatment of these
latter terms temporarily, as we turn to the O(α′3) metric and five-form terms.

Our strategy will be to look for terms which contribute to C and T — each of which
vanishes in AdS5 — and show that there are not enough terms to give nonzero contractions
when plugged into the correction terms from (3.2).

The Sch5 metric
ds2 = r2zq(dx+)2 + ds2(AdS5 × S5) (3.6)

corrects the vanishing AdS5×S5 Weyl tensor only by terms which have two lower + indices
and no - indices. Specificially, nonvanishing components are

C+r+θi
; C+θi+θj

; C+r+r ; C+x+x (3.7)

where {θi} parameterize S5. There are no lower - indices. Already, this implies that
variation of the C4 term will vanish on-shell, because the + indices have nothing to contract
with: g++ = 0.9

8It has not been proven that this is the full set of correction terms, though there is a great amount of

evidence in favor.
9Note that this same phenomenon for the Sch3 × S3 solution from the D1-D5 system, to be presented

in the next section, implies that the C4 term does not renormalize that solution either [52].
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The correction terms are quadratic in C and T , so variation of these terms with respect
to either F5 or the metric will leave behind terms at least cubic in C and T . Because
g++ = 0, this implies that if T has no components with lower - indices, all variation of the
correction terms will vanish: the lower + indices of either tensor will not have any upper
+ indices to contract with, and the quartic order guarantees enough index contractions to
force such a contraction. So, we examine the structure of T , given in (3.1).

Recall that T = 0 in AdS5 × S5. We can uncover the structure of this term in the
Schrödinger vacuum without actually plugging in for the flux — which is the same in both
Schrödinger and AdS backgrounds, namely the sum of volume forms — by asking what
new components of the Christoffel connection and contravariant metric are introduced by
the deformation.

The new components of the connection are

Γr++ = −qzr2z+1 , Γ−+r = qr2z−3(z − 1) ,

Γ−+θi
=

1
2
r2z−2 ∂q

∂θi
, Γθi

++ = −1
2
r2z ∂q

∂θi

(3.8)

This implies that the flux remains covariantly constant in the Schrödinger background,

∇AFBCDEF = 0 (3.9)

This relies on the fact that the flux is merely the sum of the two volume forms, just as
in AdS5 × S5, and the fact that none of the new Christoffel components has an identical
upper and lower index.

Now we examine the terms quadratic in F5. Because the components of F5 are the
same as in AdS5, the only changes will come from new contravariant components of the
metric, of which there is one: g−− 6= 0. This implies the existence of a single new nonzero
term. Consider the contraction

FABC−GF
−G

DEF = FABC−GF
G

DEF+ g+− + FABC−GF
G

DEF− g−− (3.10)

The second term is the new term; the first term merely contributes to the condition T = 0
in the unperturbed AdS background. Looking at the new term, we see that G 6= +,
otherwise it vanishes. So one index within each triplet [A,B,C] and [D,E, F ] must be the
+ index. Hence, the new term takes the schematic form

T+BC+EF ∼ F+BC−GF
G

+EF− g−− (3.11)

where B,C,E, F 6= −. More specifically, the only nonvanishing terms are

T+xy+xy , T+rx+rx , T+ry+ry (3.12)

because F+−rxy 6= 0 is the only nonvanishing flux component with legs along +.
To summarize, the only nonvanishing components of T and C have no lower - indices,

and hence any variation of the correction terms will vanish on-shell.
This is a perhaps surprising result. To further drive the point home, we point out an

argument in [29] that any solution with all fields trivial except for the metric and five-form

– 19 –



J
H
E
P
0
5
(
2
0
1
1
)
0
4
5

that is more than 1/4 BPS is uncorrected at O(α′3) by the entire set of terms above. Here,
we have shown the same for these 1/4 BPS solutions.

We now turn to possible terms linear in the axio-dilaton and three-form flux, which
would act as sources for these fields. Symmetry under G3 → −G3 rules out terms linear
in G3. Terms linear in the axio-dilaton would, at this order, be multiplied against a
scalar, eight-derivative object constructed from the Weyl tensor and five-form field strength.
Further, any such scalars must vanish when evaluated on the AdS background, since this
is a solution by assumption. Schematically, this would allow terms such as

(φ, χ)CABCD
(
(F5)6

)ABCD
, (φ, χ)∇ACBCDE

(
(F5)5

)ABCDE
. . . (3.13)

However, by examining the index structure and using the null Killing vector, one can check
that all such scalar terms vanish. We conclude that the axio-dilaton is not sourced at this
order.

3.2.2 Sch5 solutions from AdS5 × S5: σ 6= 0

Now we turn on three-form flux. This does not affect the metric and five-form correction
analysis above. So if this solution is to be renormalized, it must come from the three-form
terms. In the absence of knowledge of the actual form of the terms, the null constraint is
not strong enough to rule this out.

Let us at least present the challenge. First, F5 is not constrained to appear via the T
tensor in these terms. This introduces a tensor component with a lower - index, F+−rxy,
as well as one without any + or - indices at all, Fθ1...θ5 . The metric still must appear via
the Weyl tensor, still as in (3.7), so the full set of nonzero components is

C+A+B , F+−rxy , Fθ1...θ5 , G+rθi
, G+θiθj

(3.14)

Additionally, G3 is not covariantly constant, so we can have ∇G3 appear in the correction
terms.

Suppose we wish to ask what terms can contribute to the stress tensor. The following
term is explicitly nonvanishing on this background, and could arise at O(α′3):

(G2F 6)++ ∼ G+BCG+DEF
BCFGHFDEFGHF

4

∼ G+θiθj
G+θkθl

F θiθjθmθnθpF θkθl
θmθnθp

F 4
(3.15)

where F 4 includes all possible contractions. Another term is

(G2F 6)++ ∼ F+ABCDF
BCD

+E GAGHGEGHF
4

∼ F+−rxyF
rxy

+− G−GHG−GHF
4

(3.16)

The correct properties under symmetry are manifest for both of these terms.
Therefore, the null Killing vector does not imply an absence of renormalization of the

g++ component of these Sch5 solutions. It is quite possible, if not likely, that the true
three-form correction terms involve a tensor structure, analogous to T for the five-form
and metric terms, that renders the corrections to the Sch5 backgrounds zero.
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4 New Schrödinger solutions

We put our theory into practice by presenting new Schrödinger solutions. Two of these
are based on the compactification spectra of well-studied brane setups: the maximally
supersymmetric M5 brane in flat space, and the half-supersymmetric D1-D5 system of type
IIB with the D5 brane wrapped on T 4 or K3. The third construction presents evidence for
our earlier suggestion that all consistent truncations of string/M-theory that retain massive
modes admit Schrödinger solutions. In this instance, we build a pair of Sch4 solutions dual
to nonrelativistic phases of a 2+1 CFT living on M5 branes wrapped on special-Lagrangian
3-cycles of a Calabi-Yau.

The M5 construction includes two infinite families of solutions exact to all orders in
lP . The D1-D5 construction includes three families that are exact up to the order at which
LAdS3 is rescaled.10

4.1 Sch7 from M5 branes

The KK spectrum around AdS7 ×M4 [53, 54] contains two towers of mixed vectors, no
massive diagonal vectors, and massive gravitons as always. This spacetime has LAdS7 =
2LM4 ≡ 2. For M4 = S4, the upper branch of vectors has masses m2 = (l+3)(l+5) (where
integer l ≥ 0 henceforth), implying a (positive) z spectrum of z = 6 + 2l, in accordance
with (2.15). The massive gravitons have spectrum m2 = (l + 1)(l + 4), which implies a
(positive) z spectrum of z = 2 + l, in accordance with (2.16).

If one replaces S4 with an M4 which has nonzero second Betti number b2, there will
be an additional set of Yang-Mills gauge fields in d = 7. These Betti vectors carry topolog-
ical charge, descending directly from the three-form gauge field and appearing as a single
harmonic level of diagonal vectors. Their masslessness gives an isolated Sch7 solution with
z = −4 and degeneracy b2; the possibility z = 0 is ruled out, as the Schrödinger vector in
this case would be pure gauge.

We will realize each one of these solutions in D = 11, again starting from the full
M5-brane metric and then moving into the near-horizon. The most general solution11 is

ds2 = Φ−1/3(2dx+dx− + h(dx+)2 + 2dx+C + dx2) + Φ2/3ds2(X5)

G = ?11(dx+ ∧ dx− ∧ dx ∧ dΦ−1) + dx+ ∧ V − ?11(dx+ ∧ dx ∧ d(Φ−1C))
(4.1)

This ansatz preserves rotational invariance. C is a one-form, V is a three-form, and h is
a function, all defined on the space X5. The Maxwell and Einstein equations, and the

10It is known that at O(α′3), LAdS3 is unrenormalized.
11Conventions for D = 11 supergravity are as in [55].

– 21 –



J
H
E
P
0
5
(
2
0
1
1
)
0
4
5

Bianchi identity, imply

d ?X5 Φ = 0

d ?X5 dC = 0

d ?X5

(
V

Φ

)
= 0

dV = 0

∇2
X5
h = − 1

Φ
|V |2X5

(4.2)

where |V |2X5
= 1

3!VabcV
abc with indices raised by the metric on X5. Notice the extra factors

of Φ in the V terms relative to the D3 brane case (cf. equations (2.2)).
Set V = 0 for now. Zooming into the near-horizon region and writing X5 as a cone

over M4,
ds2(X5) = dr2 + r2ds2(M4) (4.3)

we make the scale-invariant assignments

Φ = r−3

C = r
z−2
2 β

h = rz−1q

(4.4)

where q and β are a function and one-form, respectively, on M4. When V = 0, this is a
solution so long as the reduced field equations

∆4β =
z(z − 2)

4
β where d ?4 β = 0

∇2
4q + (z − 1)(z + 2)q = 0

(4.5)

are satisfied, with −∇2
4 and ∆4 as the Laplace operator of M4 acting on functions and

transverse one-forms, respectively. For a spherical base space M4 = S4,

∆4β = (l + 2)(l + 3)β , ∇2
4q + l(l + 3)q = 0 (4.6)

and we obtain the anticipated spectra of z outlined earlier. Notice that these two solutions
can be consistently superposed, because there exist simultaneous eigenfunctions of ∆4 and
−∇2

4 for all z.
Because all KK fields sit in short multiplets of the superalgebra OSp(8|4) [54], these

solutions are exact. By inspection of the structure of this solution, we expect it to preserve
eight Poincaré supersymmetries, in analogy with the M2 and D3 brane solutions of [20].

Turning to V 6= 0, the discussion at the start of this subsection implies the existence
of a single solution with z = −4 corresponding to deformation by the b2 topological vector
fields. Indeed, one can show that the following configuration solves the field equations,

V = d(r−2τ) (4.7)
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where τ is a harmonic two-form on M4, dτ = d ?M4 τ = 0. So M4 must have b2 6= 0,
and scale invariance of G implies z = −4 as predicted, since V must scale as rz/2. The
associated Einstein equation is

∇2
4q + 10q = −4|τ |24 (4.8)

Perhaps unexpectedly, this is but one of an infinite family of diagonal solutions, despite
the absence of diagonal vectors in the spectrum of KK fields on AdS7 ×M4. We present
the general construction in appendix A, along with a Lif6(z = 2) solution obtained in a
similar manner.

4.2 Sch3 from D1-D5 and F1-NS5 branes

These solutions come from deformations of AdS3 × S3 × M4, with M4 = T 4,K3. The
KK spectra [56] around these two solutions are identical in everything but multiplicities of
fields, on account of the different number of tensor multiplets in the chiral and non-chiral
d = 6 supergravities. They are somewhat more involved than the examples presented so
far because of the prior reduction on M4, combined with the self-duality properties of the
tensor fields. As a result, we relegate a full treatment to an appendix and merely present
the solutions here.

Once again, we expect these solutions to have the same supersymmetric structure
as their D3 and M2-brane counterparts: the mixed solutions should preserve half of the
Poincaré supersymmetry of the D1-D5 background, and the diagonal solutions can, but
need not, be supersymmetric. We have not confirmed this explicitly, however.

The KK reduction on S3 is done at the level of the d = 6 supergravity, which contains
five self-dual and nT anti-self-dual tensor fields that descend from the complex three-form
and five-form fluxes, where nT is the number of antisymmetric tensor multiplets.12

4.2.1 Diagonal vectors

There are two towers of diagonal vectors, each with mass (mL)2 = (l + 2)2, implying a z
spectrum of z2 = (l + 2)2, where l ∈ Z. One tower descends from the four self-dual tensor
fields that do not source the D1-D5 background, and the other from the nT anti-self-dual
tensor fields.

The ansatz is

ds2 = r2zq(dx+)2 + 2r2dx+dx− +
dr2

r2
+ ds2(S3) + ds2(M4)

iG3 = 2(1 + ?6)dΩ3 + δF3 − iδH3

F5 = δF5

(4.9)

where q is a function defined on S3, dΩ3 is the invariant volume form on S3, and ?6 is the
Hodge star operator on the spacetime transverse to the M4. We have set LAdS3 = LS3 = 1.
When q = δH3 = δF3 = δF5 = 0, this is the D1-D5 solution.

12When M4 = T 4, K3, one has nT = 5, 21, respectively.
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Because the d = 6 tensor fields descend from both G3 and F5, we simply need to
turn on the components of G3 and F5 that give rise to tensor fields with the right d = 6
self-duality property. This means that we can turn on anti-self dual parts of F3, H3 and F5,
but only self-dual parts of H3 and F5. This also implies that without doing any extra work,
the F1-NS5 system obtained from the D1-D5 system by S-duality can also be engineered to
give Schrödinger solutions in exactly the same way: from the six-dimensional perspective,
S-duality merely shuffles the background flux to a different one of the five self-dual tensor
fields.

Without further ado, the solutions are:

• Anti-self-dual RR two-form charge:

δF3 = (1− ?6)dx+ ∧ d(rzσ) (4.10)

• NS-NS two-form charge:

δH3 = (1± ?6)dx+ ∧ d(rzσ) (4.11)

• RR four-form charge:

δF5 =
1 + ?10√

2

[
(1± ?6)dx+ ∧ d(rzσ) ∧ α

]
(4.12)

σ is a one-form on S3, α is a harmonic two-form on M4 of norm |α|2 = 1 and definite
M4 self-duality property, and the reduced field equations are

∆3σ = z2σ where d ?3 σ = 0

∇2
3q + 4z(z − 1)q = −2

(
z2|σ|23 + |dσ|23

) (4.13)

with −∇2
3 and ∆3 as the Laplace operator of S3 acting on functions and transverse one-

forms, respectively. Note that the source terms in the Einstein equation are of the same
form as those in the D3-brane case, given in (2.7). For future reference, let us denote this
quantity

Λ(σ) ≡ z2|σ|2M + |dσ|2M (4.14)

On S3, ∆3σ = (l + 2)2σ, where l ∈ Z, so taking the positive branch gives

z = l + 2 (4.15)

as expected.
Note that a z = 2 solution was constructed in [5] as a TsT-transformed D1-D5 system,

by utilizing the Reeb Killing vector of S3, and studied more recently in [9]. (For the
construction of another z = 2 solution in a somewhat different setting, see also [57].) That
solution has nonzero H3 charge, both self-dual and anti-self-dual. This is consistent with
our result, as the lowest eigenvalue of ∆3 is obtained for σ Killing; in fact, we see that it is
actually redundant, because it turns on two different KK vectors with the same mass. The
way this TsT solution fits into the ladder of solutions is qualitatively identical to the TsT
D3 brane solution: in particular, z = 2 is the lone value which can give a direct product
metric Sch3×S3×M4 because Λ(σ) is not constant otherwise. (See the appendix for more
discussion on this point.)
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4.2.2 Spin-2 fields

It is clear from the diagonal vector solutions that if we turn the vector off, we will get a
Sch3 solution from a spin-2 field alone, where z is now determined by the scalar Laplacian
on S3 as

4z(z − 1) = l(l + 2) (4.16)

Note the agreement with (2.16). Starting at the first nonzero harmonic l = 1, we have
solutions with

z =
3
2
, 2 ,

5
2
, . . . (4.17)

4.2.3 Mixed vectors

There are three towers of mixed vectors, each with different mass spectra. Here, we con-
struct Sch3 solutions from two of them. One has m2 = l2, leading to a z spectrum of
z2 = l2. The other has m2 = (l + 4)2, leading to a z spectrum of z2 = (l + 4)2.

The solution is

ds2 = 2(r2dx+dx− + rzdx+β) +
dr2

r2
+ ds2(S3) + ds2(M4)

iG3 = 2(1 + ?6)dΩ3 + (1 + ?6)dx+ ∧ d(rzβ)− r2

2
(1 + ?6)dx+ ∧ d(rz−2β)

(4.18)

where β is a one-form on S3 and obeys the eigenvalue equation

∆3β = (z − 2)2β where d ?3 β = 0 (4.19)

This gives z = −l, l + 4, consistent with our expectation. As with other mixed vector
constructions, each branch of the eigenvalue equation accesses one branch of vectors. The
final term in the flux appears anomalous compared to other mixed vector solutions; as
detailed in the appendix, this is a peculiarity of the dimensionality of these solutions.

4.3 Sch4 from wrapped M5 branes

Finally, we construct two Sch4 × H3/Γ × S4 solutions of D = 11 supergravity. This is
based on a consistent (bosonic) truncation to an N = 2, d = 4 gauged supergravity with
one vector multiplet and two hypermultiplets, as performed in [40]. The M5 branes are
wrapped on special-Lagrangian 3-cycles of CY3, giving a d = 3,N = 2 CFT at low energies;
the supersymmetry is preserved by virtue of the choice of cycle. With the consistent
truncation in hand, two AdS4 duals can be found directly within the d = 4 supergravity.
Here, we show that these d = 3 CFTs also have non-relativistic phases by finding the dual
Schrödinger geometries.

Most details of the truncation are unnecessary for our purposes; we refer the reader
to [40], and use their notation in what follows.

The reduction is done first from D = 11 supergravity on S4 to maximal seven-
dimensional gauged supergravity, and then further on a three-manifold of constant cur-
vature, Σ3 = S3,R3, H3 or their quotients. One can parameterize the choice of Σ3 by the
sign of the curvature, l = ±1, 0, where S3 is taken to have l = 1. The theory contains the
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following field content: the metric; two three-forms hα3 , where α = 1, 2; one two-form B2;
two one-forms A1, C1; and nine scalars comprised of φ, λ, β, θα, χα and a symmetric matrix
Tαβ, which parameterizes a coset SL(2,R)/SO(2). In addition to the parameter l which
appears in the d = 4 field equations, there is a gauge parameter g with mass dimension
one that comes from the d = 7 gauged supergravity potential.

We will not need most of these fields to construct the Sch4 ×H3/Γ× S4 solutions.
There are two known AdS4 vacua of this theory, and the masses of the fields in each

vacuum were calculated in [40]. Only the first is supersymmetric, and is given as

eφ = 2−1/20 , eλ = 21/10 , l = −1 , (gL)2 =
√

2 (4.20)

with all other fields turned off. The vector fluctuations around this background can be
diagonalized to give vectors with masses (mL)2 = 0, 4, with C1 as the massive vector. One
can show that there is a Schrödinger solution, with

z(z + 1) = 4 ⇒ z = −1
2

+
√

17
2
≈ 1.56 (4.21)

in which the AdS fields and parameters above are unchanged, and we turn on the form-fields
in the following manner:

C1 = rzdx+

B2 = − 1√
2g

?4 dC1

F2 = dA1 = −3
g
dC1

(4.22)

with x+ a lightcone coordinate of AdS4, and z as in (4.21). Hence, the full Sch4×H3/Γ×S4

metric reads

ds2 = −r2z(dx+)2 + r2(2dx+dx− + dx2) +
√

2
g2

dr2

r2
+ ds2(H3/Γ× S4) (4.23)

The massive vector sits in a long vector multiplet of OSp(2|4), and so this solution will be
subject to quantum corrections.

The second, non-supersymmetric AdS4 solution is given as

eφ = 6−1/4101/5 , eλ = 101/10 , l = −1 , (gL)2 =
5
√

2
3
√

3
(4.24)

with all other fields turned off. The vector fluctuations around this background can be
diagonalized to give vectors with masses (mL)2 = 0, 28

5 ; again, C1 is the massive vector.
One can show that there is a solution, with

z(z + 1) =
28
5

⇒ z = −1
2

+
3
10

√
65 ≈ 1.92 (4.25)
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in which the AdS fields and parameters above are unchanged, and we turn on the form-fields
in the following manner:

C1 = rzdx+

B2 = −
√

6
14g

?4 dC1

F2 = dA1 = −27
7g
dC1

(4.26)

where dx+ is again lightcone coordinate of AdS4, and now z is as in (4.25).
A useful way to see that these solutions exist is to consider the d = 4 field equations, and

show that they can be truncated to those of a massive vector theory with the appropriate
mass and cosmological constant, provided that the vector is null. The definitions of the
parameters (L, g, l,m2) used in these solutions fall out of this procedure. For a brief
exposition of this, see appendix C.

The considerations in earlier sections tell us that these are but two of an infinite
tower of Schrödinger deformations of these AdS4 solutions. The others are implicit in the
compactification spectrum. We were able to embed this one in a consistent truncation
because, presumably, the massive vector C1 sits at the bottom of a tower of vectors on
H3/Γ. This is supported by the fact that our solutions contain direct product metrics.

5 Discussion

Understanding Schrödinger solutions as Kaluza-Klein deformations of AdS has revealed
some larger truths. We saw that they are universal, existing in infinite number for any AdS
vacuum, by virtue of the maximal isometry of AdS; they can be robust against quantum
and string corrections, by virtue of possible supersymmetry of AdS; and in some cases,
they are exact. In essence, we have shown that the AdS/CFT correspondence is not only
suggestive of a generalization to non-relativistic, Galilean gauge-gravity duality, but rather,
the latter is truly contained within the former.

We expect these ideas to lend themselves to applications to condensed matter systems.
Just as the universality of AdS leads to general thermodynamic results for holographi-
cally dual gauge theories (e.g. the KSS bound), one might expect that the universality
of Schrödinger spacetimes implies similar statements about non-relativistic fixed points.
Some work has already been done to show that the KSS bound is saturated for certain
values of z (e.g. [3, 4] studied z = 2); the spirit of the present work suggests a universal
extension of some kind.

Our analysis relies on the Lorentz and scaling symmetries of AdS, which precludes an
extension of the perturbation theory method to finite temperature. On the other hand, any
asymptotically AdS spacetime will, at infinity, possess the symmetries and KK spectrum
required for the existence of Schrödinger deformations. It would be interesting to further
investigate, in this KK framework, the extent to which asymptotically AdS black hole
solutions can be universally deformed.
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An aspect of this work that may lend itself to the study of RG flows with Schrödinger
endpoints is the discovery of the role of relevant operators in generating Schrödinger back-
grounds. We showed in section 2 that the generic Sch(z) solutions in string and M-theory
involve a tower of spin-2 fields which are non-marginal with respect to non-relativistic
dilatations Dz in the AdS vacuum. Some of these fields are relevant: any spin-2 field
which has relativistic scaling weight ∆ = d + 2(z′ − 1) under D is relevant with respect
to Dz when z′ < z. In fact, in circumstances where the field theory possesses non-Abelian
internal symmetries they may all be relevant.13 Supposing that one wants to construct
an interpolation between a UV CFT and its IR Schrödinger phase of the same effective
spacetime dimension, one may be able to utilize one of these relevant operators to stabilize
an IR Schrödinger geometry.

Continuing with the topic of RG flows, it would be interesting to look for one that
connects the Sch4 ×H3/Γ× S4 solution at low energies to an AdS7 × S4 solution at high
energies, in the spirit of [58]. The picture in the bulk is of an M5 brane, extended at
asymptotic infinity, wrapping itself around H3/Γ and turning on flux at small radii, dual
to a nontrivial RG flow across dimension in which the scale invariance of the theory becomes
anisotropic in the infrared. An example of this sort of behavior was recently found in [59]
(though with Sch3 symmetry and hence without Galilean boosts). It may also be that
the Sch4 solution built from a deformation of the supersymmetric AdS4 solution preserves
some of the eight supersymmetries, in which case one would be motivated to look for an
analytic RG flow, generalizing the work of [58] to the non-relativistic regime.
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A More non-relativistic solutions from M5 branes

A.1 Diagonal Sch7 solutions

Here, we present a family of Sch7 solutions which do not appear to lie in correspondence
with any KK fields on AdS7 ×M4.

Starting from the near-horizon ansatz

ds2 = r(2dx+dx− + h(dx+)2 + dx2) +
dr2

r2
+ ds2(M4)

G = ?11(3r2dx+ ∧ dx− ∧ dx ∧ dr) + dx+ ∧ V
(A.1)

13One example is the set of solutions obtained by diagonal vector deformations of AdS5 × S5, in which

the global SU(4)R symmetry leads to a restricted set of lower harmonics appearing in the solution [20, 22].

– 28 –



J
H
E
P
0
5
(
2
0
1
1
)
0
4
5

the field equations are

d ?X5

(
V r3

)
= 0

dV = 0

∇2
X5
h = −r3|V |2X5

(A.2)

where as usual, X5 is the cone over M4. Scale invariance implies that V scales as rz/2.
Following the strategy of the cases in which we do expect such diagonal solutions, we

make the ansatz
V = d(rz/2τ) (A.3)

where τ is a two-form on M4. The Maxwell equation can then be solved as

∆4τ =
(z

2

)(z
2

+ 2
)
τ , where d ?4 τ = 0 (A.4)

where ∆4 is the Laplace operator of M4 acting here on transverse two-forms. The flux now
includes the term

G ⊃ d(rz/2dx+ ∧ τ) ≡ d(ASch ∧ τ) (A.5)

which takes the usual form. The Einstein equation, upon writing h = rz−1q(M4) in accor-
dance with scale-invariance, is

∇2
4q + (z − 1)(z + 2)q = −

[(z
2

)2
|τ |24 + |dτ |24

]
(A.6)

Note that the case z = −4 corresponds to the case of harmonic τ , and so we recover
our earlier result as one of many.

The existence of a solution is contingent on solution of the two equations (A.4)
and (A.6). For any M4, the Maxwell equation can always be solved to give a spectrum of
z unbounded from above. Let us take this to define z. So the only way these solutions
do not exist is if, for some such z, the scalar Laplacian of the Einstein equation admits a
homogeneous solution and the quadratic source term includes this mode; this follows our
earlier discussion in subsection 2.3.

But it is clear that there is at least some M4 for which there are solutions. Indeed,
this is true of the most straightforward choice M4 = S4, because its scalar and two-form
spectra are not aligned so as to allow homogeneous spin-2 solutions for any z. On S4, the
spectra of functions and transverse two-forms are (e.g. [60])

∇2
S4q = −l(l + 3)q , ∆S4τ = (l + 2)(l + 3)τ (A.7)

where l is a non-negative integer. Immediately we see that z will not be rational; indeed,
the solution is

z = −2 + 4
√

(l + 2)(l + 3) + 1 (A.8)

where we took the positive branch. This gives irrational scalar eigenvalues, as

(z − 1)(z + 2) = 4
√

(l + 2)(l + 3) + 1
(

4
√

(l + 2)(l + 3) + 1− 3
)

(A.9)

– 29 –



J
H
E
P
0
5
(
2
0
1
1
)
0
4
5

So these are solutions on S4, and the solution of the Einstein equation for q will be some
linear combination of scalar harmonics.

These solutions are evidently quadratic completions of linearized vector solutions, and
are presumably “hiding” somewhere in the spectrum of KK fields on AdS7 ×M4. It is
perhaps instructive to plug z into the effective massive vector relation (mL)2 = z(z + 4),
which gives integer masses

m2 = 3 + 4(l + 2)(l + 3) (A.10)

A.2 A Lif6(z = 2) solution

We present this solution as a dimensional reduction of a Sch7(z = 0) solution in the manner
first studied by [30, 31], analogous to the Lif4 and Lif3 solutions from D3 and M2 branes.
All of these, including the present solution, have dynamical exponent z = 2.

Working once more from the ansatz (A.1), we substitute h = r−1q, i.e. z = 0, to give

ds2 = q(dx+)2 + r(2dx+dx− + dx2) +
dr2

r2
+ ds2(M4)

G = ?11(3r2dx+ ∧ dx− ∧ dx ∧ dr) + dx+ ∧ V
(A.11)

The field equations are

dx+ ∧ d ?X5

(
V r3

)
= 0

dx+ ∧ dV = 0

r−6(∇2
4q − 2q) = −|V |2X5

(A.12)

where we have retained the differentials dx+ because x+ no longer scales, and so the various
fields can have x+ dependence consistent with the field equations and scale invariance.

Consider the gauge field equations first. If we restrict V to live on M4 and allow
functional dependence on x+ (as in the D3 and M2 brane cases), this will not lead to a
solution: V is required by the field equations to be proportional to a harmonic three-form
on M4, which does not exist assuming that M4 has at least one continuous isometry.

Instead, we write a more general ansatz for V consistent with symmetry:

V = A(x+)ω +B(x+)
dr

r
∧ τ (A.13)

where ω and τ are a three-form and two-form on M4, respectively. Plugging this into the
gauge field equations gives

dx+ ∧ dV = dx+ ∧ (Adω −Bdr
r
∧ dτ) = 0

dx+ ∧ d ?X5 (r3V ) = dx+ ∧ (Ardr ∧ d ?4 ω + 2Brdr ∧ ?4τ +Br2d ?4 τ) = 0
(A.14)

Note that we require A,B 6= 0. The solution to these equations is

∆4τ = 0

dω = 0

dx+ ∧ d ?4 ω = dx+ ∧
(
−2

B(x+)
A(x+)

?4 τ

) (A.15)
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So M4 must have b2 6= 0, reminiscent of the fact that analogous solutions for the M2
brane [31] require SE7 to support harmonic 3-forms.

The Einstein equation for this solution then reads

∇2
4q − 2q = −

[
A2|ω|24 +B2|τ |24

]
(A.16)

Expanding |ω|24 and |τ |24 in M4 harmonics, the solution for q is a linear combination of such
harmonics with x+-dependent coefficients,

q =
∑
n

Ci1i2...in(x+)Y i1i2...in(M4) (A.17)

To summarize, the solution is

ds2 = q(dx+)2 + r(2dx+dx− + dx2) +
dr2

r2
+ ds2(M4)

G = ?11(3r2dx+ ∧ dx− ∧ dx ∧ dr) + dx+ ∧ V
(A.18)

with fields q and V obeying

V = A(x+)ω +B(x+)
dr

r
∧ τ , where

∆4τ = 0 , dω = 0 , dx+ ∧ d ?4 ω = dx+ ∧
(
−2B
A

?4 τ

) (A.19)

and
∇2

4q − 2q = −
[
A2(x+)|ω|24 +B2(x+)|τ |24

]
(A.20)

Following [30, 31], we can write the metric as a circle fibration over a Lif6(z = 2)
solution as follows:

ds2 = q

(
dx+ +

r

q
dx−

)2

− r2

q
(dx−)2 + r(2dx+dx− + dx2) +

dr2

r2
+ ds2(M4) (A.21)

Identifying x− with the time coordinate and x+ with a compact angle, and restricting to
q ≥ 0, this solution has Lif6(z = 2) symmetry, with the electric U(1) gauge field given by
A = r

qdx
− = r

qdt. The fact that z = 2 is clear upon noting that time scales with twice the
power of space under dilatations.

B Details of Sch3 solutions from D1-D5

B.1 AdS3 × S3 ×M4 compactification spectrum

The compactification of the AdS3 × S3 ×K3 solution down to three dimensions was done
in [56]. The authors begin from the chiral d = 6,N = (2, 0) theory and reduce on the
sphere. The matter content of this theory is comprised of the graviton supermultiplet —
which contains five self-dual two-form tensor fields — coupled to 21 tensor multiplets, each
of which contains a single anti-self-dual tensor field. These tensor fields, upon reduction
on S3, produce the d = 3 vectors we will use, and descend from the type IIB complex
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three-form and five-form fluxes. The nonchiral N = (2, 2) theory which one gets from
replacing K3 by T 4 has an equal number (five) of self-dual and anti-self-dual tensor fields;
but since the reduction of bosonic fields on S3 actually is independent of the number of
matter multiplets nT , we need not specify which d = 6 supergravity we work with.

The reduction on S3 gives rise to five KK towers of vectors: three of these contain
mixing between the two-forms and the metric, but two are diagonal. We will refer the
reader to [56] for details, and just present the results which we need.

Of the five self-dual two-forms in the d = 6 theory, one of these descends from the
RR two-form C2. In the D1-D5 background, C2 has components turned on that gives a
self-dual field strength in six dimensions, as

F3 = dC2 = 2(1 + ?6)dΩ3 (B.1)

so we can isolate one of the five self-dual two-forms as sourcing the AdS3×S3 geometry.14

We borrow the following notation from [56]:

• B5
µν is the two-form that sources the D1-D5 background, that is, the self-dual de-

scendant of C2.

• Bi
µν , where i = 1 . . . 4, denotes the remainder of the self-dual two-forms.

• Br
µν , where r = 1 . . . nT , denotes the anti-self-dual two-forms

Upon perturbing around this background, there are vector components denoted
b5µa, b

i
µa, brµa, respectively, where a = 1, 2, 3 denotes an S3 coordinate. There are also vectors

from components of the metric perturbations with one leg along S3, which are denoted Kµ,
and of course spin-2 components from the metric with both legs along AdS3.

With this in hand, we delineate the KK tower structure. The three mixed vector
towers involve mixing between Kµ and b5µa, that is, between the metric and the vector
perturbations of the source field. One diagonal vector tower, biµa, comes from the remaining
four self-dual tensor fields; the other, brµa, comes from all of the anti-self-dual tensor fields.
There is, of course, also a spin-2 tower of fields.

The only information about these towers which we need to determine the masses
is their conformal weights. States of the D = 1 + 1 CFT dual to AdS3 are classified
by left- and right-moving conformal weights, denoted (h, h), dual to charges under the
SL(2,R)L × SL(2,R)R global symmetry of AdS3. The relation between these weights and
the bulk mass of a p-form field is

(mL)2 = (h+ h̄− p)(h+ h̄+ p− 2) (B.2)

The three mixed vector towers have conformal weights

(h, h) =
(
l + x± 1

2
,
l + x∓ 1

2

)
(B.3)

14S-duality rotations in D = 10 rotate the source terms between the RR and NS-NS sectors.
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where x = 1, 3, 5, and integer l ≥ 0. This gives rise to masses,15 and hence values of z,

(mL)2 = z2 = (l + x− 1)2 (B.4)

Both diagonal vector towers have

(h, h) =
(
l + 3± 1

2
,
l + 3∓ 1

2

)
(B.5)

again with integer l ≥ 0, and hence

(mL)2 = z2 = (l + 2)2 (B.6)

Lastly, the spin-2 fields have

(h, h) =
(
l + 2± 1

2
,
l + 2∓ 1

2

)
(B.7)

again with integer l ≥ 0.16 The spin-2 mass is defined as

(mL)2 = (h+ h̄)(h+ h̄− 2) (B.8)

so we expect a spectrum
(mL)2 = (2z − 2)2z = l(l + 2) (B.9)

All of these KK states are organized into representations of the global symmetries of
the d = 6 theory, so nT determines, in part, the multiplicity of states at a given level. This
enters into our Schrödinger constructions as determining the degeneracy of solutions.

We now have a guide to the construction of the D = 10 solutions. In particular,
we cannot turn on self-dual vector components of C2 without turning on components of
the metric with one leg along the sphere. But we can turn on an anti-self-dual vector
component of C2 by itself, as well as both self-dual and anti-self-dual vector components
of B2 and A4, as these comprise all diagonal vectors biµa, brµa. Furthermore, when we take
the one-form on S3 to be Killing, we expect to reproduce the TsT-transformed D1-D5
system [5], in analogy with the D3-brane construction. We already have evidence for this,
because the lowest rung of the diagonal solutions has z = 2.

Let us now provide complementary material to the solutions in the main text.

B.2 Diagonal vectors

B.2.1 Anti-self-dual RR two-form charge

In this case, the Maxwell and Bianchi equations reduce to17

dG = G ∧G = G ∧ ?10G = d ?10 G = 0 (B.10)
15This is actually a bit subtle. The x = 1 vector branch resides in the spin-2 supermultiplet. The choice

l = 0 vectors are part of a non-propagating supergravity multiplet. They can be gauged away in the three-

dimensional theory, but in formulating our solutions in D = 10, we will not see this difference manifest. We

treat this solution with caution.
16We have included the spin-2 field at l = 0 which is part of the aforementioned nonpropagating multiplet,

so we should beware to discount the resulting Sch3 solution.
17In the remainder of the appendix, we refer to the complex three-form G3 ≡ G.
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It is easy to show that

?10 (iG) = [2(1 + ?6)dΩ3 − (1− ?6)dx+ ∧ d(rzβ)] ∧ dV ol4 (B.11)

where dV ol4 is the invariant volume form of M4, so a ?10 is essentially equivalent to a ?6.
Then G ∧G = G ∧ ?10G = 0 by inspection: since the new component and its Hodge dual
both have one leg along dx+ and at least one legs along S3, their wedge product with the
background components and with each other will vanish.

The equations dG = d ?10 G = 0 will give us an eigenvalue equation for the one-form
β. The anti-self-duality of δF3 is required for the Einstein equations in the (+a) directions
to be trivially satisfied.

This class of solutions includes the TsT-transformed D1-D5 system, in which q is con-
stant, z = 2, and σ = η, the Reeb Killing vector on S3. From the Einstein equation (4.13),
this requires

Λ(η)|z=2 = 4|η|2 + |dη|2 = Constant (B.12)

This was explicitly shown to be true for the TsT-transformed D3-brane in [22], where η
lived on S5 instead and was hence SO(6)-valued. In fact, this statement is true for any
Killing vector of SO(N).

To summarize, the TsT-transformed brane solutions occupy a tidy niche in these con-
structions: they correspond to turning on the NS-NS two-form with the leg along the
compact space given by the Reeb vector of that space. The resulting metrics are direct
products.

B.2.2 NS-NS two-form charge

This solution is nearly the same as the previous one.

B.2.3 RR four-form charge

We note that the self-duality (?4α = α) or anti-self-duality (?4α = −α) of α with respect
to the Euclidean metric on M4 translates into a concordant statement about the d = 6
tensor fields’ self-duality property. We calculate

?10 ((1± ?6)dx+ ∧ d(rzβ) ∧ α) = (?6 ± 1)(dx+ ∧ d(rzβ) ∧ ?4α (B.13)

so that

F5 =
(1± ?6)√

2
dx+ ∧ d(rzβ) ∧ α+

(?6 ± 1)√
2

dx+ ∧ d(rzβ) ∧ ?4α (B.14)

If ?4α = α, then we must choose the upper sign — corresponding to self-duality in d = 6
— otherwise F5 = 0. If ?4α = −α, then we must choose the lower sign — corresponding
to anti-self-duality in d = 6 — otherwise F5 = 0. The expression for F5 becomes

F5 =
√

2(1± ?6)dx+ ∧ d(rzβ) ∧ α (B.15)

and the origin of the d = 6 tensor fields is clear, as is their multiplicity: the number of
cycles which α can wrap gives the degeneracy of such fields.
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The Maxwell equations and Bianchi identities are

G ∧ ?10G = dG = 0

dF5 =
i

2
G ∧G∗

d ?10 G = − i
6
G ∧ F5

(B.16)

Because we haven’t added any G-flux, we have, from the D1-D5 solution,

G ∧G∗ = G ∧ ?10G = d ?10 G = dG = 0 (B.17)

so we must show that
G ∧ F5 = dF5 = 0 (B.18)

The first of these is trivial, based on a previous argument. Imposing dF5 = 0 gives us
the eigenvalue equation.

B.3 Mixed vectors

For this subsection, we will ‘zoom out’ from the near-horizon limit of the D1-D5 system
and consider the metric of the branes sitting in flat space: that is, we perturb a metric of
the form

ds2 = Φ−1(2dx+dx−) + Φ ds2(R4) + ds2(M4) (B.19)

where the D5 brane wraps M4 with line element ds2(M4), and the D1 and D5 intersection
along the x± directions sits transverse to R4. This is as we did for the M5 brane. It should
be clear that all of the results of the previous subsection for the diagonal vectors could
have been found by starting from this metric, and taking Φ = r−2 to be harmonic on R4

as dictated by the Maxwell equations. We find it instructive to work in this context here,
as it will give us a better guide to what goes wrong when we make our initial ansatz.

Informed by the D3 and M5 examples of mixed vector solutions, one might make an
ansatz of the form

ds2 = Φ−1(2dx+(dx− + C)) + Φ ds2(R4) + ds2(M4)

iG = −(1 + ?6)dx+ ∧ dx− ∧ dΦ−1 + (1 + ?6)(dx+ ∧ d(Φ−1C))
(B.20)

We work in the orthonormal frame

e1 = dx+

e2 = 2Φ−1(dx− + C)

ea =
√

Φdxa , a = 3 . . . 6

ei · ei = ds2(M4)

(B.21)

so the metric is given as
ds2 = e1e2 + ea · ea + ei · ei (B.22)

The flux ansatz is then

iG = (1 + ?6)(
1

2Φ
e1 ∧ e2 ∧ dΦ +

1
Φ
e1 ∧ dC) (B.23)
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Both the Bianchi and Maxwell equations give

d ?R4 dΦ + d

(
e1 ∧ ?R4dC

Φ

)
= 0 (B.24)

If we wish to assign the usual Φ = r−2 so as to see the AdS3 region, the second term must
vanish. But this is not the equation we want; specifically, the factor of Φ precludes the
usual progression toward an eigenvalue of co-closed one-forms on S3. More to the point,
the Einstein equations demand dC = 0.

If, however, we add a factor of 1/2 to the flux ansatz in the orthonormal frame as

iG = (1 + ?6)(
1

2Φ
e1 ∧ e2 ∧ dΦ +

1
2Φ

e1 ∧ dC) (B.25)

then this problem is remedied: the new reduced Maxwell and Bianchi equation is

d ?R4 dΦ +
1
2

[
d

(
e1 ∧ ?R4dC

Φ

)
+ d

(
e1 ∧ dC

Φ

)]
= 0 (B.26)

If we demand that the last two terms vanish as a pair, we are led to the condition

?R4 dC = −dC ⇒ d ?R4 dC = 0 (B.27)

That is, dC must be anti-self-dual on R4. The Einstein equations demand nothing more.
Making the usual substitutions

Φ = r−2

C = rz−2β
(B.28)

we are led to the eigenvalue equation

∆3β = (z − 2)2β , where d ?3 β = 0 (B.29)

This gives us Schrödinger solutions for two mixed vector branches, with z = −l, l + 4.

C Details of Sch4 solutions from wrapped M5

The field equations of the d = 4 theory are rather long; we refer the reader to [40], specif-
ically equations (A.11)−(A.24). In the field variables given earlier, one begins by making
the following assignments:

β = θα = χα = hα3 = 0

Tαβ = δαβ

λ, φ = constant

B2 = γ ? dC1

F2 6= 0

(C.1)
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where γ is constant. We also impose the null conditions C1∧?C1 = B2∧?B2 = F2∧?F2 = 0,
as we are looking for a solution to the field equations in which F2 is also a function of the
field strength B2 ∼ dC1.

One finds that l = −1 is required for consistency, and that there are exactly two real
choices for the values of the pair (φ, λ), namely those given as part of the AdS solutions
above. Plugging through the equations, one finds that F2 is proportional to B2 and all
other Lagrangian parameters (L, g,m2) are defined as in the above solutions, subject to
the extra conditions

d ? C1 = dC1 ∧ dC1 = ?dC1 ∧ ?dC1 = 0 (C.2)

These amount to a gauge choice and a vanishing of instanton terms, respectively; the
Schrödinger gauge field satisfies all constraints. So, for the non-supersymmetric choice
eφ = 6−1/4101/5, eλ = 101/10 for instance, one ends up with an action

L =
∫
d4x
√
−g

(
R+

9
√

6g2

5

)
− 1

2

∫
dC1 ∧ ? dC1 −

21
√

6
25

g2

∫
C1 ∧ ?C1 (C.3)

and the Schrödinger solution is implicit.
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[58] J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds
and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [SPIRES].

[59] E. D’Hoker and P. Kraus, Magnetic Field Induced Quantum Criticality via new
Asymptotically AdS5 Solutions, Class. Quant. Grav. 27 (2010) 215022 [arXiv:1006.2573]
[SPIRES].

[60] E. Elizalde, M. Lygren and D.V. Vassilevich, Antisymmetric tensor fields on spheres:
functional determinants and non-local counterterms, J. Math. Phys. 37 (1996) 3105
[hep-th/9602113] [SPIRES].

– 40 –

http://dx.doi.org/10.1016/0550-3213(86)90429-3
http://dx.doi.org/10.1016/0550-3213(86)90429-3
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B277,1
http://dx.doi.org/10.1016/S0550-3213(98)00514-8
http://arxiv.org/abs/hep-th/9805156
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9805156
http://dx.doi.org/10.1088/0264-9381/2/1/003
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=CQGRD,2,1
http://dx.doi.org/10.1016/0550-3213(85)90129-4
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=NUPHA,B255,63
http://dx.doi.org/10.1088/1126-6708/2003/04/039
http://arxiv.org/abs/hep-th/0212008
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0212008
http://dx.doi.org/10.1016/S0550-3213(98)00555-0
http://arxiv.org/abs/hep-th/9804166
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9804166
http://dx.doi.org/10.1088/1751-8113/44/11/115401
http://dx.doi.org/10.1088/1751-8113/44/11/115401
http://arxiv.org/abs/1011.1771
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1011.1771
http://dx.doi.org/10.1142/S0217751X01003937
http://arxiv.org/abs/hep-th/0007018
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/0007018
http://dx.doi.org/10.1088/0264-9381/27/21/215022
http://arxiv.org/abs/1006.2573
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=1006.2573
http://dx.doi.org/10.1063/1.531558
http://arxiv.org/abs/hep-th/9602113
http://www-spires.slac.stanford.edu/spires/find/hep/www?eprint=HEP-TH/9602113

	Introduction
	Infinite families of Schrödinger solutions from every AdS
	Review and motivation
	In the bulk: AdS perturbation theory
	On the boundary: conformal perturbation theory
	A corollary: consistent truncations with massive KK modes

	Quantum/string corrections
	Uncorrected Schrödinger solutions from short multiplets
	Exact solutions

	At O(alpha'**3), explicit nonrenormalization of Sch(5)
	Sch(5) solutions from AdS(5) x S**5: sigma=0
	Sch(5) solutions from AdS(5) x S**5: sigma not-equal 0


	New Schrödinger solutions
	Sch(7) from M5 branes
	Sch(3) from D1-D5 and F1-NS5 branes
	Diagonal vectors
	Spin-2 fields
	Mixed vectors

	Sch(4) from wrapped M5 branes

	Discussion
	More non-relativistic solutions from M5 branes
	Diagonal Sch(7) solutions
	A Lif(6) (z=2) solution

	Details of Sch(3) solutions from D1-D5
	AdS(3) x S**3 x M(4) compactification spectrum
	Diagonal vectors
	Anti-self-dual RR two-form charge
	NS-NS two-form charge
	RR four-form charge

	Mixed vectors

	Details of Sch(4) solutions from wrapped M5

