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1 Introduction

In single-inclusive hadron production, an energetic parton i = {g, u, ū, d, . . .} produces an
observed energetic hadron h and accompanying hadrons X. Factorization theorems allow
one to identify perturbative (calculable) and non-perturbative (universal) contributions to
these processes. For example, in e+e− → Xh at a high center-of-mass (c.m.) energy Q it
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has been proven that, to all orders in αs and at leading power of ΛQCD/Q, the cross-section
has the following factorized form (see e.g. ref. [1])

dσ
dz

= σ0

∑
i=g,u,ū,d,...

∫ 1

z

dx
x
Ci

(
Q,

z

x
, µ
)
Dh
i (x, µ) . (1.1)

Here, z = 2Eh/Q is the energy fraction of the hadron h in the c.m. frame, σ0 is the
Born cross section, and µ is the MS renormalization scale. The coefficient functions Ci
incorporate the short-distance partonic process producing the fragmenting parton i: they
are calculable in perturbation theory and independent of the observed hadron h. The
long-distance physics of the hadronization resides in the non-perturbative fragmentation
function Dh

i (x, µ), which is the number density of hadrons of type h in the “decay” products
of the parton i, for a specific value of x [2–5]. The convolution variable x in eq. (1.1) is the
fraction of the energy of the parent parton i carried by the observed hadron h. At leading
order (LO) the hard partonic process is e+e− → qq̄ and x = z. Beyond LO, radiation will
be emitted before the parton i produces h, and thus x ≥ z.

In experimental studies of fragmentation, additional measurements on the hadronic
final state X may be needed. For example, the Belle collaboration studies light-quark
fragmentation by restricting to dijet final-state configurations, which removes B-meson
events from the data sample on the Υ(4S) resonance [6]. This is achieved by imposing a
cut on thrust, which is an event shape variable defined as [7]

T = max t̂

∑
i |t̂·~pi|∑
i |~pi|

, (1.2)

where the sum is over all final-state particles. In terms of τ = 1 − T , a more convenient
quantity to describe dijet events, τ close to 0 corresponds to configurations with two narrow,
pencil-like, back-to-back jets; while the other extreme τ = 1/2 corresponds to a spherically
symmetric event. Since at

√
s = 10.58 GeV the B mesons decay nearly at rest in the c.m., a

thrust cut of τ < 0.2 removes 98% of the B data leaving the thrust distribution dominated
by the fragmentation of light (uds) and charmed quark pairs [6]. This cut on τ constrains
the (squared) invariant masses si of the final-state jets. Indeed, in the dijet limit,

τ =
sa + sb
Q2

+
k

Q
(1.3)

where k is the contribution from soft radiation between jets.
We focus on such restrictions on the hadronic final state, by studying the (spin-

averaged) fragmentation of a light hadron h inside a collimated jet originating from a
light parton i, when the jet invariant mass is constrained. These features cannot be solely
described by Dh

i (x, µ), which only depends on the momentum fraction x: in our case
fragmentation is probed at a more differential level. In ref. [8] a novel “fragmenting jet
function” Ghi (s, z, µ) was introduced which depends both on the fragmentation variable z
and on the invariant mass s of the collinear radiation that forms the jet. The relevant hi-
erarchy of scales is given by mh �

√
s� Ejet, where Ejet is the jet energy. This hierarchy

allows us to employ Soft-Collinear Effective Theory (SCET) [9–12], which is an effective
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field theory of QCD suitable for processes with well-separated energetic jets. Collinear
and soft degrees of freedom describe, respectively, the energetic radiation inside jets and
the soft emissions between them. A different collinear sector is associated with each jet.
The collinear sectors and the soft sector decouple at leading power [12]. This leads to
factorization formulae for inclusive observables at high energies which are characterized by
convolutions of jet functions J(si, µ) (describing the invariant mass distribution of each
jet) with a soft function S encoding the contribution of the soft degrees of freedom, see
e.g. eq. (1.6) below.

The fragmenting jet function Ghi (s, z, µ) has features of the standard fragmentation
function Dh

i (x, µ) and the leading inclusive jet function Ji(s, µ), which is calculable in
perturbation theory. As was shown in ref. [8], the following simple replacement rule holds

Ji(s, µ)→ 1
2(2π)3

Ghi (s, z, µ) dz , (1.4)

which allows us to obtain factorization formulae for semi-inclusive processes with fragmen-
tation within a jet, from the corresponding inclusive ones. The factor 2(2π)3 is related to
the normalization of Ghi and to the phase space factor for the hadron h.

Here we will focus on the relation between Ghi (s, z, µ) and Dh
i (z, µ). At leading order in

Λ2
QCD/s� 1, the fragmenting jet function can be expressed as a convolution between short-

distance coefficients and the standard fragmentation functions at the scale µJ '
√
s [8],

Ghi (s, z, µJ) =
∑

j=g, u, ū, d,...

∫ 1

z

dx
x
Jij
(
s,
z

x
, µJ

)
Dh
j (x, µJ) . (1.5)

The Jij describe the emission of collinear radiation, forming a jet with invariant mass s,
within which the non-perturbative, long-distance fragmentation process takes place.

In this paper we present the one-loop calculation of the matching coefficients Jij , where
the initiating parton i can be either an (anti)quark or a gluon. This completes the picture
detailed in ref. [8] with the information necessary to relate factorization theorems for semi-
inclusive processes, where the jet invariant mass is probed, with the standard Dh

j (x, µ).

In the presentation of our results particular attention will be devoted to show how the
infrared (IR) divergences of the partonic Gi and Di cancel in the matching. Cross-checks of
our results are provided by the known anomalous dimensions of the fragmentation functions
and the (fragmenting) jet functions, as well as by a relationship between Gi(s, z, µ) and
Ji(s, µ), which we work out in section 2.5. As we will see explicitly, the Jij contain double
logarithms, i.e. contributions of the form αns lnm(s/µ2

J) withm ≤ 2n, so that eq. (1.5) should
be evaluated at µJ '

√
s to avoid the breakdown of the standard perturbative expansion.

We will illustrate our results through a numerical analysis of the process e+e− →
Xh where we restrict to the dijet limit by a cut on τ , as in the Belle study of light
quark fragmentation mentioned above. Using eq. (1.4) in the leading-order factorization
theorem for the cross-section where an inclusive measurement of thrust is performed for

– 3 –



J
H
E
P
0
5
(
2
0
1
1
)
0
3
5

Figure 1. Schematic display of the factorization in eq. (1.6) for the fragmentation process e+e− →
dijet + h. The cross denotes the short-distance process e+e− → qq̄ producing the back-to-back
jets. In one of these jets a hadron of type h is observed and its momentum fraction z is measured.
Each event may contribute more than once to the cross-section if the final state contains several of
these hadrons h(z1), . . . , h(zn). The dijet limit restricts the radiation to be either collinear or soft,
drawn respectively in black and red color. At leading power, the collinear radiation is described by
a (fragmenting) jet function, and the two jets only interact through soft radiation, described by the
soft function.

τ � 1 [13–16], we obtain:

d2σ

dτ dz
=
∑
q

σq0
2(2π)3

H(Q2, µ)
∫

dsa dsb dk
[
Ghq (sa, z, µ) Jq̄(sb, µ) + Jq(sa, µ)Ghq̄ (sb, z, µ)

]
× Sτ (k, µ) δ

(
τ − sa + sb

Q2
− k

Q

)[
1 +O(τ)

]
=
∑
q,j

σq0
2(2π)3

H(Q2, µ)
∫

dsa dsb
dx
x

[
Jqj
(
sa,

z

x
, µ
)
Jq̄(sb, µ)+Jq(sa, µ)Jq̄j

(
sb,

z

x
, µ
)]

×Dh
j (x, µ)QSτ

(
Qτ − sa + sb

Q
,µ
)[

1 +O
(
τ,

Λ2
QCD

τQ2

)]
, (1.6)

see figure 1. Here eq. (1.3) is incorporated through the δ-function. The first line receives
power corrections of O(τ) and in the second line we also have O[Λ2

QCD/(τQ
2)] corrections

from using eq. (1.5). We will only consider the contribution from the light quark flavors
q = u, ū, d, d̄, s, s̄. The gluon fragmenting jet function does not appear in eq. (1.6), but the
gluon fragmentation function does contribute because the sum over j includes j = g. The
normalization factor σq0 is the tree-level cross-section for the electroweak process e+e− →
(γ , Z)→ qq̄ given in eq. (C.1), which depends on the quark flavor. Since we assume that it
is not known whether the observed hadron h fragmented from the quark or the antiquark
initiated jet, we have a sum over both possibilities in the factorization theorem.

In eq. (1.6), the hard function H(Q2, µ) encodes virtual effects arising from the pro-
duction of the qq̄ pair at the hard scale µH ' Q, and is given by the square of Wilson
coefficients in the matching of the relevant QCD onto SCET currents. The (real and vir-
tual) collinear radiation of the jet from which the hadron fragments is described by Ghi
or Jij whereas the jet in the opposite hemisphere is represented through an inclusive jet
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function. The characteristic scale of these functions is the jet scale µJ '
√
τQ. Finally, the

soft function Sτ (k, µ) describes the contribution to the hemisphere masses (and therefore
to thrust) due to soft parton emissions. Sτ is defined through the vacuum matrix element
of eikonal Wilson lines and the corresponding soft scale is µS ' τQ.

In the two-jet limit τ � 1, the cross section in eq. (1.6) contains large double logarithms
αns lnm τ (m ≤ 2n), which need to be resummed to make reliable predictions and uncertainty
estimates. In our effective field theory approach this is achieved by evaluating the hard,
(fragmenting) jet and soft functions at their natural scales µH , µJ and µS respectively,
where they contain no large logarithms, and by running them to a common scale µ using
their respective renormalization group equations (RGEs). In eq. (1.6) all functions except
the matching coefficients Jij have already been studied in the literature. Our calculation
therefore provides the missing ingredient necessary to sum these logarithms up to next-
to-next-to-leading-logarithmic (NNLL) accuracy. We will discuss resummation effects in
eq. (1.6) for the case of unpolarized single charged pion production when the soft scale µS
is perturbative.

We stress that our results have a broad range of applicability. For example, eq. (1.4)
can be directly utilized when the hadronic final state is characterized via the event shape
N -jettiness τN [17], since in this case the jets are described by the standard jet functions.
This variable measures how N -jet-like an event is, and can be used to veto unwanted
additional jets by requiring τN ≤ τ cut

N � 1, which is the region of validity of the N -
jettiness factorization theorem. In a more exclusive approach where jet algorithms are
used, jet-algorithm-dependent jet functions arise [18, 19]. However, even for N -jettiness
one may use a jet algorithm to determine the jet energies and directions, since all reasonable
jet algorithms agree on these quantities in the exclusive N -jet regime τN � 1, up to power
corrections of O(τN ) [17].

The paper is organized as follows. In section 2 we set up the theoretical framework,
review the SCET definitions of fragmenting jet functions and standard fragmentation func-
tions, and discuss their relationship and renormalization properties. We also discuss the
relationship between the fragmenting jet function and jet function in detail. Our results
for the matching coefficients Jij are given in section 2.4. In section 3 we present our
calculation of the quark matching coefficients Jqi at one loop, where we show how the
IR divergences cancel in the matching procedure. Section 4 is devoted to the gluon case
at next-to-leading order (NLO). Numerical results for the fragmenting jet functions using
eq. (1.5), as well as, a numerical analysis of pion fragmentation in dijet-like e+e− → Xπ+

with a cut on thrust are contained in section 5. Conclusions and outlook are given in sec-
tion 6. Useful mathematical identities are given in appendix A. An alternative calculation
of Jqi using the optical theorem and a different IR regulator can be found in appendix B.
All the ingredients necessary for our numerical analysis are collected in appendix C.

2 Fragmentation within an identified jet

In this section we start by setting up the theoretical framework of our analysis, and intro-
duce the SCET ingredients relevant for this paper. We give the definitions of quark and
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gluon fragmentation functions in SCET and discuss their renormalization. We then focus on
quark and gluon fragmenting jet functions, discuss their renormalization and their relation-
ship with the standard fragmentation functions. At the end of this section, we consider their
relationship with the jet function, which provides a powerful cross-check on our calculations.

2.1 SCET ingredients

Light quark or gluon fragmentation within an identified jet is governed by three different
scales: the (perturbative) hard scale set by the jet energy EXh, the intermediate (perturba-
tive) jet scale given by the jet invariant mass mXh, and the soft scale of order ∼ m2

Xh/EXh,
with the hierarchy mh � mXh � EXh; here we will always consider the hadron mass mh

to be negligible as in ref. [8]. After integrating out the hard dynamics that initiates the
jet, we are left with collinear and soft modes in the Xh system. Therefore, SCET [9–12]
— which is an effective field theory of QCD that describes physics of collinear and soft
degrees of freedom — is well suited for this analysis.

Since the invariant mass of a jet is much smaller than its energy, the jet constituents
are collimated and conveniently described using light-cone coordinates. To this end we
introduce a light-cone vector nµ whose spatial part is along the jet axis, and another light-
cone vector n̄µ such that n2 = n̄2 = 0 and n · n̄ = 2. Any four-vector pµ can then be
decomposed as pµ = (p+, p−, pµ⊥) with p+ = n ·p, p− = n̄ ·p and pµ⊥, which contains the
components of pµ perpendicular to nµ and n̄µ. The momentum pµ of a particle within the
jet scales collinearly, i.e. pµ = (p+, p−, pµ⊥) ∼ p−(λ2, 1, λ), where λ ∼ mXh/EXh � 1 is the
SCET expansion parameter. For the soft degrees of freedom, the momentum scales like
qµ = (q+, q−, qµ⊥) ∼ p−(λ2, λ2, λ2).

The collinear momentum pµ is separated into a large part and a small residual part

pµ = pµ` + pµr = n̄ · p` n
µ

2
+ pµ`⊥ + pµr , (2.1)

with pµ` = (0, p−` , p`⊥) ∼ p−` (0, 1, λ) and pµr = (p+
r , p

−
r , p

µ
r⊥) ∼ p−` (λ2, λ2, λ2). The SCET

fields for n-collinear quarks and gluons, ξn,p`(y) and An,p`(y) respectively, are labeled by n
and the label momentum p`. Their argument y is conjugate to the small residual momenta.
A derivative acting on these fields picks out the residual momentum dependence, i∂µ ∼
pµr ∼ λ2p−` , while label momentum operators Pn = n̄ · Pn (Pµn⊥) return the sum of the
minus (perpendicular) label components of all n-collinear fields on which they act.

Interactions between collinear fields cannot change the direction n but change the
momentum labels. It is therefore convenient to use the short-hand notation

ξn(y) =
∑
p` 6=0

ξn,p`(y) , Aµn(y) =
∑
p` 6=0

Aµn,p`(y) . (2.2)

In the sum we explicitly exclude the case pµ` = 0 to avoid double-counting of the soft degrees
of freedom (which are described by separate soft quark and gluon fields). In practice,
when calculating matrix elements, this is implemented using zero-bin subtractions [20] or
alternatively by dividing out matrix elements of Wilson lines [21–23]. We will study the
zero-bin subtractions in detail since they play an important role in our calculation. This
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is most explicitly seen in section 3, where we use a gluon mass and a δ-regulator [24] to
regulate the IR divergences in the one-loop quark fragmenting jet function.

Collinear operators are built out of products of fields and Wilson lines that are invariant
under collinear gauge transformations [10, 11]. The basic building blocks are the collinearly
gauge-invariant quark and gluon fields, defined as

χn(y) = W †n(y) ξn(y) , Bµn⊥(y) =
1
g

[
W †n(y) iDµ

n⊥Wn(y)
]
, (2.3)

where iDµ
n⊥ = Pµn⊥ + gAµn⊥ is the ⊥-collinear covariant derivative. The collinear Wilson

line

Wn(y) =
[ ∑

perms

exp
(
− g

Pn
n̄·An(y)

)]
(2.4)

sums up arbitrary emissions of n-collinear gluons from an n-collinear quark or gluon, which
are O(1) in the power counting.

At leading order in the SCET power expansion, the interactions of soft gluons with
collinear fields exponentiate to form eikonal Wilson lines. The soft gluons can thus be
decoupled via the BPS field redefinition [12]

χ(0)
n,ω(y) = Y †n (y)χn,ω(y) ,

Bµ(0)
n,ω⊥(y) = Y †n (y)Bµn,ω⊥(y)Yn(y) . (2.5)

The collinear fields we consider in this paper are those after this decoupling, and we drop
the superscript (0) for notational convenience. Here Yn(y) is a soft Wilson line in the
fundamental representation

Yn(y) = P̄ exp
[
−ig

∫ ∞
0

dun·Aus(y + un)
]

=
[ ∑

perms

exp
(
− g

in·∂ n·Aus(y)
)]
. (2.6)

The symbol P̄ in eq. (2.6) denotes anti-path ordering of the color generators along the
integration path. On the second line we write the Wilson line in momentum space akin
to eq. (2.4).

2.2 Fragmentation functions

The fragmentation functions Dh
i (x) characterize the factorization theorems that describe

high-energy single-inclusive hadron production processes at leading power [1], where no
properties of the jet are probed, see e.g. eq. (1.1). These functions encode the non-
perturbative information on how the energetic parton i (either a gluon or an (anti)quark
of a certain flavor) produces the observed hadron h which carries a fraction x of the initial
parton’s large light-cone momentum component.

Let kµ and pµh denote the parton and hadron momenta, respectively. In a frame where
~k⊥ = 0, the hadron has p−h ≡ x k− and p+

h = (~p 2
h⊥ + m2

h)/p−h . With the gauge choice
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n̄ · A = 0, the bare unpolarized quark fragmentation function has the following operator
definition in QCD [5]

Dh
q,bare(x)=

1
x

∫
d2p⊥h

∫
dy+ d2y⊥

2(2π)3
e ik
−y+/2

∑
X

1
2Nc

tr
[ n̄/

2
〈0|ψ(y+, 0, y⊥)|Xh〉〈Xh|ψ̄(0)|0〉

]
,

(2.7)

where ψ is the quark field quantized on y− = 0 and the trace is taken over color and Dirac
indices. The factor 1/(2Nc), where Nc = 3 is the number of colors, comes from averaging
over the color and spin of the parent parton. The state |Xh〉 = |Xh(ph)〉 contains a hadron
h with momentum ph, and a sum over the polarizations of h is assumed. Boost invariance
along the non-⊥ direction implies that D can only be a function of x = p−h /k

− and not
p−h or k− individually. According to factorization at leading power, the sum over the
accompanying hadrons X is dominated by jet-like configurations for the |Xh〉 states [1].

In SCET notation, the fragmentation function takes on the following form [8]

Dh
q,bare(x)=

1
x

∫
d2p⊥h

∑
X

1
2Nc

tr
[ n̄/

2
δ(p−Xh,r)δ

2(p⊥Xh,r)
〈
0
∣∣[δω,P δ0,P⊥χn(0)]

∣∣Xh〉〈Xh∣∣χ̄n(0)
∣∣0〉].
(2.8)

Here, χn is the n-collinear quark field in eq. (2.3) that contains a Wilson line, making this
definition (collinearly) gauge invariant. The P and P⊥ operators pick out the O(λ0) and
O(λ) label momentum of the field, while the continuous O(λ2) residual components of the
jet momentum are denoted by pµXh,r. We use the notation pµXh = pµX + pµh.

The QCD definition for the bare gluon fragmentation function, in the n̄ ·A = 0 gauge
and in a frame where p⊥Xh = 0, for d space-time dimensions, reads [5]

Dh
g,bare(x) = − 1

(d− 2)(N2
c − 1)p−h

∫
d2p⊥h

∫
dy+ d2y⊥

2(2π)3
e ik
−y+/2

×
∑
X

n̄µn̄ν〈0|Gaµλ(y+, 0, y⊥)|Xh〉〈Xh|Gλ,aν (0)|0〉 (2.9)

where Gµν =
∑

aG
a
µν T

a is the QCD field-strength tensor and an average over colors and
the (d−2) polarizations of the gluon is performed. The corresponding expression in SCET
is given in gauge invariant form by

Dh
g,bare(x) = − ω

(d− 2)(N2
c − 1)x

∫
d2p⊥h

∑
X

δ(p−Xh,r) δ
2(p⊥Xh,r)

× 〈0∣∣[δω,P δ0,P⊥Bµ,an⊥(0)]
∣∣Xh〉〈Xh∣∣Ban⊥,µ(0)

∣∣0〉 . (2.10)

The operator products in the definitions of Dh
q (x) and Dh

g (x) are singular and require
renormalization. The renormalized fragmentation functions are defined through [5]

Dh
i,bare(x) =

∑
j=g,u,ū,d,...

∫ 1

x

dx′

x′
ZDij

( x
x′
, µ
)
Dh
j (x′, µ) . (2.11)
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Throughout this paper µ denotes the scale of dimensional regularization in the MS scheme.
The renormalization-group equation (RGE) for Dh

i (x, µ) follows from eq. (2.11)

µ
d

dµ
Dh
i (x, µ) =

∑
j

∫ 1

x

dx′

x′
γDij

( x
x′
, µ
)
Dh
j (x′, µ) , (2.12)

with anomalous dimension

γDij (x, µ) = −
∫ 1

x

dx′

x′
(
ZD
)−1

ik

( x
x′
, µ
)
µ

d
dµ
ZDkj(x

′, µ) . (2.13)

Here, the inverse of the renormalization factor (ZD)−1
ik is defined through

∑
k

∫ 1

x

dx′

x′
(
ZD
)−1

ik

( x
x′
, µ
)
ZDkj(x

′, µ) = δij δ(1− x) . (2.14)

In our perturbative calculations we will replace the hadron h by either a quark or a
gluon. The other ingredients of a factorization theorem are not affected by this, e.g. the
hard, jet and soft function in eq. (1.6) are the same in both cases. Since the cross section
is an observable, the µ dependence must cancel between all the factors of a factorization
theorem. From this it follows that the renormalization and anomalous dimension of D are
the same if h is a hadron or a parton.

We will use the variable p for the momentum of the parton that replaces the hadron h.
Denoting the discrete label parts of the momentum pµ by p−` and p`⊥ and the continuous
residual parts by pµr , the partonic fragmentation functions are at tree-level given by

Dq(0)
q (x) =

1
x

∑
p`⊥

∫
d2p⊥r

1
2Nc

tr
[ n̄/

2
δω,p−`

δ0,p⊥`
δ(p−r )δ2(p⊥r )

〈
0
∣∣ξn(0)

∣∣qn(p)
〉〈
qn(p)

∣∣ξ̄n(0)
∣∣0〉]

=
1

2x
δ(ω − p−) tr

[ n̄/
2

∑
s

usn(p)ūsn(p)
]

= δ(1− x) ,

Dg(0)
g (x) = − ω

(d− 2)(N2
c − 1)x

∑
p`⊥

∫
d2p⊥r δω,p−`

δ0,p⊥`
δ(p−r )δ2(p⊥r )

× 〈0∣∣Aµ,an⊥(0)
∣∣gn(p)

〉〈
gn(p)

∣∣Aan⊥,µ(0)
∣∣0〉

= − ω

(d− 2)x
δ(ω − p−)

∑
pol

ε∗n⊥(p)·εn⊥(p) = δ(1− x) . (2.15)

Here we recombined residuals and labels into the continuous p−, via

δω,p−`
δ(p−r ) = δ(ω − p−) . (2.16)

We will use this relation in the rest of the paper. The partonic Dg
q and Dq

g vanish at
tree level. At one-loop their UV divergences lead to the mixing of quark- and gluon
fragmentation functions. The details of this calculation are given in section 3.
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The one-loop renormalization factors ZD(1)
ij (x, µ) can be easily extracted once the one-

loop partonic result is known. Expanding the partonic version of eq. (2.11) to one-loop,

D
j(1)
i,bare(x) =

∑
k

∫ 1

x

dx′

x′

[
Z
D(0)
ik

( x
x′
, µ
)
D
j(1)
k (x′, µ) + Z

D(1)
ik

( x
x′
, µ
)
D
j(0)
k (x′, µ)

]
=
∑
k

∫ 1

x

dx′

x′

[
δik δ

(
1− x

x′

)
D
j(1)
k (x′, µ) + Z

D(1)
ik

( x
x′
, µ
)
δkj δ(1− x′)

]
= D

j(1)
i (x, µ) + Z

D(1)
ij (x, µ) , (2.17)

where the superscripts (0) and (1) denote the tree-level and one-loop expressions, respec-
tively. From eqs. (2.13) and (2.17) the one-loop γDij (x, µ) can then be obtained straightfor-
wardly. At O(αs) the space-like and time-like Altarelli-Parisi evolution kernels are related
to each other via a simple analytic continuation rule [25, 26] based on symmetries of the
relevant diagrams under crossing, and via the so-called Gribov-Lipatov reciprocity relation
which connects space-like and time-like structure functions in their respective physical re-
gions [27, 28]. As a consequence, the γDij (x, µ) coincide with the anomalous dimensions of
the parton distribution functions at one loop (where the roles of incoming and outgoing
partons are interchanged). Therefore,

γDqq(x, µ) =
αs(µ)CF

π
θ(x)Pqq(x) ,

γDqg(x, µ) =
αs(µ)CF

π
θ(x)Pgq(x) ,

γDgg(x, µ) =
αs(µ)
π

θ(x)
[
CAPgg(x) +

1
2
β0 δ(1− x)

]
,

γDgq(x, µ) =
αs(µ)TF

π
θ(x)Pqg(x) , (2.18)

where β0 = (11CA − 4nfTF )/3, is the lowest order coefficient of the QCD β-function. The
splitting functions are [29]

Pqq(x) =
(

1 + x2

1− x
)

+

= (1 + x2)L0(1− x) +
3
2
δ(1− x) ,

Pgq(x) = θ(1− x)
1 + (1− x)2

x
,

Pgg(x) = 2xL0(1− x) + 2 θ(1− x)
[

1− x
x

+ x(1− x)
]
,

Pqg(x) = θ(1− x) [x2 + (1− x)2] , (2.19)

in which we do not include the usual color factors for future convenience. The plus-
distribution

L0(1− x) =
[
θ(1− x)

1− x
]

+

(2.20)

is defined in eq. (A.2). In section 3 we will show how our partonic calculation of Dj(1)
q (x, µ)

also leads to eq. (2.18). The relation γDij (x, µ) = γfji(x, µ) was shown no longer to hold
beyond one loop in dimensional regularization and the MS scheme in ref. [4], see also the
discussion in ref. [30].
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2.3 Fragmenting jet functions

A high-energy single-inclusive hadron production process, where the invariant mass of the
jet initiated by a light parton is measured, is described by a fragmenting jet function. We
consider the case that the hadron mass is negligible (compared to the jet mass) and work
in a frame where the perpendicular momentum of the jet is vanishing. For a fragmenting
quark [8]

Ghq,bare(s, z) =
∫

d4y eik+y−/2

∫
dp+

h

∑
X

1
4Nc

tr
[ n̄/

2
〈
0
∣∣[δω,P δ0,P⊥χn(y)]

∣∣Xh〉〈Xh∣∣χ̄n(0)
∣∣0〉]

=
2(2π)3

p−h

∫
dy−

4π
eik+y−/2

∫
d2p⊥h

∑
X

1
2Nc

tr
[ n̄/

2
δ(p−Xh,r) δ

2(p⊥Xh,r)

× 〈0∣∣[δω,P δ0,P⊥χn(y−)]
∣∣Xh〉〈Xh∣∣χ̄n(0)

∣∣0〉] . (2.21)

In the second equality we performed a translation of the collinear field χn(y), whose ar-
gument is associated with residual momenta, and carried out the integrals in y+ and y⊥.
The integration over y− fixes the partonic jet invariant mass s = k+ω. Analogously, in the
case of a gluon-initiated jet, in d space-time dimensions,

Ghg,bare(s, z) = − 2(2π)3 ω

(d− 2)(N2
c − 1) p−h

∫
dy−

4π
eik+y−/2

∫
d2p⊥h

∑
X

δ(p−Xh,r) δ
2(p⊥Xh,r)

× 〈0∣∣[δω,P δ0,P⊥Bµ,an⊥(y−)]
∣∣Xh〉〈Xh∣∣Ban⊥,µ(0)

∣∣0〉 . (2.22)

Evaluating the partonic fragmenting jet functions at tree-level, we find

Gq(0)
q (s, z) =

2(2π)3

p−
δ(k+) δ(ω − p−)

1
2

tr
[
n̄/

2

∑
spins

un(p)ūn(p)
]

= 2(2π)3δ(s)δ(1− z) ,

Gg(0)
g (s, z) = −2(2π)3 ω

p−
δ(k+) δ(ω − p−)

1
d− 2

∑
pol

ε∗n⊥ ·εn⊥ = 2(2π)3δ(s)δ(1− z) . (2.23)

Here we have used the fact that p+ = 0, due to the on-shell condition p2 = 0 and the choice
of frame, which sets p⊥ = 0.

A consequence of eq. (1.4) is that the renormalization and RG evolution of these two
functions are the same

Ghi,bare(s, z) =
∫ s

0
ds′ ZiG(s− s′, µ)Ghi (s′, z, µ) , ZiG(s, µ) = ZiJ(s, µ) , (2.24)

where the index i is not summed over. In particular, the renormalization of Ghi does not
affect its z-dependence and does not mix quark and gluon fragmenting jet functions, at
any order in perturbation theory. We will see this explicitly in our one-loop calculation in
sections 3 and 4. The corresponding RGE is given by

µ
d

dµ
Ghi (s, x, µ) =

∫ s

0
ds′ γiG(s− s′, µ)Ghi (s′, x, µ) (2.25)

– 11 –



J
H
E
P
0
5
(
2
0
1
1
)
0
3
5

where

γiG(s, µ) = −
∫ s

0
ds′
(
ZiG
)−1(s− s′, µ) µ

d
dµ
ZiG(s′, µ) , (2.26)

and
(
ZiG
)−1 is defined as∫ s

0
ds′
(
ZiG
)−1(s− s′, µ)ZiG(s′, µ) = δ(s) . (2.27)

The structure of the anomalous dimension of the jet function γiJ(αs) implies

γiG(s, µ) = −2Γicusp(αs)
1
µ2
L0

( s
µ2

)
+ γiG(αs) δ(s) , γiG(αs) = γiJ(αs) , (2.28)

where the plus distribution L0 is defined in eq. (A.2). The cusp anomalous dimension
Γicusp(αs) [31] and the non-cusp part of the anomalous dimension γiG(αs) are collected
in the appendix C, to make the paper self-contained in view of the numerical analysis
in section 5. A cross-check of our partonic one-loop calculation of Gj(1)

i (s, z, µ) will be
provided by the one-loop evolution kernels γiG(s, µ) in eq. (2.28). From the anomalous

dimension we can obtain the one-loop renormalization factor Zi(1)
G through eq. (2.26). This

can be compared with our calculation by using eq. (2.25) expanded to one loop:

Gj(1)
i,bare(s, z) =

∫
ds′
[
Z
i(0)
G (s− s′, µ)Gj(1)

i (s′, z, µ) + Z
i(1)
G (s− s′, µ)Gj(0)

i (s′, z, µ)
]

=
∫

ds′
[
δ(s− s′)Gj(1)

i (s′, z, µ) + Z
i(1)
G (s− s′, µ) δij δ(s′) δ(1− z)

]
= Gj(1)

i (s, z, µ) + Z
i(1)
G (s, µ) δij δ(1− z) . (2.29)

Here we have noted that Gji contributes at tree level only when i = j. Therefore for i 6= j,
Gji are UV finite at one loop.

2.4 Results for matching onto fragmentation functions

By performing operator product expansions of the fragmenting jet functions in eqs. (2.21)
and (2.22) about the y− → 0 limit, we can match onto the low-energy matrix elements in
eqs. (2.8) and (2.10) that correspond to the fragmentation functions. This amounts to the
SCETI onto SCETII matching (illustrated in figure 2) at the intermediate scale provided
by the jet invariant mass µJ '

√
s:

Ghi (s, z, µJ) =
∑

j=g,u,ū,d,...

∫ 1

z

dz′

z′
Jij
(
s,
z

z′
, µJ

)
Dh
j (z′, µJ)

[
1 +O

(Λ2
QCD

s

)]
. (2.30)

The dependence on z and z′ in Jij is only through their ratio, since these coefficients can
only depend on the perturbative variables associated with the partons i and j, and not
on the hadron h. Eq. (2.30) is analogous to the matching of beam functions onto parton
distribution functions performed in refs. [32, 33].
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(k+, ω, 0⊥)

h(z)

s = ω k+

Figure 2. The information encoded in Ghq (s, z, µ) is exemplified here. The incoming quark creates
a jet of invariant mass s, inside which a hadron h with momentum fraction z = p−h /ω is produced.
Initially, the large parton virtualities yield emissions at wider angles. This depends on s and z,
and can be described perturbatively by Jij(s, z, µ). At smaller parton virtualities, the emission
is at smaller angles and essentially only affects z. Here the effect of hadronization also becomes
important, and this is described by the standard fragmentation functions Dh

j (z, µ).

From the tree-level results in eqs. (2.15) and (2.23), we find by using eq. (2.30) that

J (0)
ij (s, z, µJ) = 2(2π)3 δij δ(s) δ(1− z) . (2.31)

This can simply be understood that at tree-level the hadron directly fragments from the
parton i, without emitting radiation that would build up the jet.

The main purpose of this paper is to calculate Jij(s, z, µJ) at one-loop. This completes
the picture detailed in ref. [8] with the information necessary to relate the factorization
theorems for semi-inclusive processes, where the jet invariant mass is probed, to the stan-
dard Dh

i (z, µ) at NLO accuracy. We find that the one-loop matching coefficients J (1)
ij are

given by

J (1)
qq (s, z, µJ)

2(2π)3
=
αs(µJ)CF

2π
θ(z)

{
2
µ2
J

L1

( s

µ2
J

)
δ(1−z)+

1
µ2
J

L0

( s

µ2
J

)
(1+z2)L0(1−z) (2.32)

+ δ(s)
[
(1 + z2)L1(1− z)+Pqq(z) ln z + θ(1− z)(1− z)− π2

6
δ(1− z)

]}
,

J (1)
qg (s, z, µJ)

2(2π)3
=
αs(µJ)CF

2π
θ(z)

{[
1
µ2
J

L0

( s

µ2
J

)
+δ(s) ln (z(1−z))

]
Pgq(z)+δ(s) θ(1−z)z

}
,

J (1)
gg (s, z, µJ)

2(2π)3
=
αs(µJ)CA

2π
θ(z)

{
2
µ2
J

L1

( s

µ2
J

)
δ(1− z) +

1
µ2
J

L0

( s

µ2
J

)
Pgg(z) (2.33)

+ δ(s)
[
L1(1− z)2(1− z + z2)2

z
+ Pgg(z) ln z − π2

6
δ(1− z)

]}
,

J (1)
gq (s, z, µJ)

2(2π)3
=
αs(µJ)TF

2π
θ(z)

{[
1
µ2
J

L0

( s

µ2
J

)
+δ(s) ln[z(1−z)]

]
Pqg(z)

+ 2δ(s)θ(1−z)z(1−z)
}
,

J (1)
gq̄ (s, z, µJ) = J (1)

gq (s, z, µJ) ,
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where the plus distributions Ln are defined in eq. (A.2). Furthermore Jq̄q̄ = Jqq and
Jq̄g = Jqg by charge conjugation invariance in QCD. The coefficients Jqq̄, Jqq′ and Jqq̄′ ,
where q′ denotes a quark of a different flavor than q, only start at two loops.

The J (1)
ij are extracted from our partonic calculations of Gj(1)

i (s, z, µ) and Dj(1)
i (z, µ),

by using eq. (2.30) expanded to one loop,

Gj(1)
i (s, z, µJ)=

∑
k

∫ 1

z

dz′

z′

[
J (0)
ik

(
s,
z

z′
, µJ

)
D
j(1)
k (z′, µJ) + J (1)

ik

(
s,
z

z′
, µJ

)
D
j(0)
k (z′, µJ)

]
=
∑
k

∫ 1

z

dz′

z′

[
2(2π)3δik δ(s) δ

(
1− z

z′

)
D
j(1)
k (z′, µJ) + J (1)

ik

(
s,
z

z′
, µJ

)
δkj δ(1−z′)

]
=2(2π)3 δ(s)Dj(1)

i (z, µJ) + J (1)
ij (s, z, µJ) . (2.34)

Therefore, the NLO matching coefficients can be obtained through subtractions of the
one-loop renormalized partonic fragmenting jet functions and the one-loop fragmentation
functions. The calculation of these two is the subject of sections 3, 4 and appendix B.

2.5 Relationship between Ghi (s, z, µ) and the jet function Ji(s, µ)

In light of the discussion in ref. [8], we re-derive the relationship between the fragmenting
jet function and the jet function, exposing all subtleties. When we sum over all possible
hadrons h ∈ Hi fragmenting from a parton i and belonging to the jet, the fragmenting jet
function can be related to the inclusive jet function Ji(s, µ), which is completely calculable
in perturbation theory. We use the completeness relation∫ 1

0
dz z

∑
h∈Hi

∑
X

|Xh(z)〉〈Xh(z)| =
∑
Xi

|Xi〉〈Xi| = 1 , (2.35)

where {|Xi〉} is a complete set of states in the jet-like kinematic region that we are interested
in. The factor z under the integral is needed to provide the correct symmetry factor for
states with identical particles. This is easily seen from the following example: consider the
case where X consists of n hadrons identical to h, i.e. X = {h(z1) . . . h(zn)}. The sum over
X in eq. (2.35) contains a phase-space integral over the momentum fractions z1, . . . , zn that
is subject to a momentum conserving delta function and has a symmetry factor of 1/n!∫ 1

0
dz z

1
n!

∫ 1

0

n∏
i=1

dzi |z1, . . . zn; z〉〈z1, . . . zn; z| δ
(

1− z −
n∑
i=1

zi

)

=
1

(n+ 1)!

∫ 1

0

n+1∏
i=1

dzi |z1, . . . zn, zn+1〉〈z1, . . . zn, zn+1| δ
(

1−
n+1∑
i=1

zi

)
(n+ 1) zn+1

=
1

(n+ 1)!

∫ 1

0

n+1∏
i=1

dzi |z1, . . . zn, zn+1〉〈z1, . . . zn, zn+1| δ
(

1−
n+1∑
i=1

zi

)
. (2.36)

Since we integrate over z, the hadron h is no longer distinguishable from X and should
therefore be grouped with the rest. In the first equality, we redefined zn+1 = z and divided
and multiplied by n + 1 to get the correct symmetry factor in front. In the final step we
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replaced (n+1)zn+1 →
∑n+1

i=1 zi, which is justified because all particles are identical and all
momentum fractions are integrated over. Using the momentum conserving delta function,∑n+1

i=1 zi = 1, which leads to the result.
Applying eq. (2.35) to the fragmentation function leads to∑

h

∫ 1

0
dxxDh

j (x, µ) = 1 , (2.37)

which is consistent with momentum conservation and with the definition of Dh
i (z, µ) as the

number density of the hadron h in the parton i [5]. Similarly, in the case of the fragmenting
jet function we obtain ∑

h∈Hi

∫ 1

0
dz z Ghi (s, z, µ) = 2(2π)3Ji(s, µ) . (2.38)

Combining this with eq. (2.30), leads to

Ji(s, µ) =
1

2(2π)3

∑
h

∫ 1

0
dz z

∑
j

∫ 1

z

dx
x
Jij
(
s,
z

x
, µ
)
Dh
j (x, µ)

=
1

2(2π)3

∑
j

∫ 1

0
duuJij(s, u, µ) . (2.39)

Here we introduced the variable u = z/x to disentangle the integrations and used eq. (2.37).
This relationship with the jet function does not constrain non-perturbative physics, but
provides a cross-check of our perturbative calculation of Jij , since the quark and gluon jet
functions are known.

3 Quark matching calculation with gluon mass and δ regulator

In this section we present the calculation of the Wilson coefficients Jqj for matching the
quark fragmenting jet function onto fragmentation functions at NLO. These are extracted
using eq. (2.34), for which we need to calculate the partonic fragmentation functions and
fragmenting jet functions at NLO. To regulate UV divergences we employ dimensional
regularization (DR) in d = 4−2ε dimensions and renormalize according to the MS-scheme.
Concerning the choice of the IR regulator, we note that neither an offshellness nor a
fictitious gluon mass takes care of the IR divergences for emissions from the collinear
Wilson line Wn in eq. (2.4). According to ref. [24], these can be regulated as follows:

Wn(x) =
[ ∑

perms

exp
(
− g

n̄·Pn − δ n̄·An(x)
)]
, (3.1)

with δ > 0. In this section we adopt a gluon mass and δ as IR regulators. A non-vanishing
gluon mass violates gauge invariance when the calculation involves a triple gluon vertex,
which is however not the case here.

A naive calculation of the graphs includes the region when ` becomes soft, which
was excluded in eq. (2.2); zero-bin contributions have to be subtracted. In these zero-bin
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Figure 3. Feynman graphs contributing to the partonic fragmentation function and fragmenting
jet function that are non-zero at one-loop in Feynman gauge are shown here. Graphs (b) and (c)
have a mirror image and (d) corresponds to the wave function renormalization. For the partonic
fragmentation function Di

q(z) the minus component ω of the incoming momenta is fixed and the
perpendicular components are zero by the choice of coordinates. For the fragmenting jet function
the plus component k+ is also fixed, determining the invariant mass of the jet.

subtractions we need to apply the δ-regulator prescription as it would have appeared in
the soft Wilson line:

Yn(x) =
[ ∑

perms

exp
(
− g

n·p̂− δ n·Aus(x)
)]
. (3.2)

In this framework DR does not regulate any IR singularity, and this enables us to show in
a clean way how IR divergences get cancelled in the matching between Gq and Dq.

In appendix B we compute the same diagrams with a quark-offshellness regulator,
where the IR divergences from eikonal propagators are regulated by DR. The resulting
Jij turn out to agree with those computed in this section, as expected since these Wilson
coefficients should be insensitive to the choice of IR regulators. After having studied in
detail the IR structure for the case of quark fragmentation here, we perform the gluon
matching calculation using DR for both the UV and IR in section 4.

In our partonic calculation we replace the hadron h in the intermediate state of
eqs. (2.8) and (2.21) by a quark or a gluon and the remainder X by the vacuum or a
gluon or a quark, as required at one-loop order. In this section we evaluate the graphs
by integrating over the phase-space of the parton which replaces X. In appendix B we
compute the diagrams for the fragmenting jet function following an alternative approach
based on the optical theorem.

The Feynman diagrams contributing to Di
q and Giq at one loop are shown in figure 3.

By our choice of coordinates the incoming parton has no perpendicular momentum. Both
in D and in G the ratio of the large components of the momentum of the incoming quark
and the outgoing identified parton is measured. For G, in addition, the virtuality of the
incoming quark is specified through k+. The graphs in figure 3(a) and (b) correspond to a
quark fragmenting into a quark while emitting a gluon, figure 3(c) corresponds to a virtual
correction and figure 3(d) is the contribution from the quark wave-function renormalization.
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Figures 3(b) and (c) have a mirror image which we do not draw separately, they also have
nonvanishing zero-bin contributions. The graphs for a quark fragmenting into a gluon while
emitting a quark are obtained by interchanging the momenta p↔ ` in figure 3(a) and (b).

We work in the Feynman gauge, without any loss of generality since the sum of the
graphs is gauge-invariant. We use QCD Feynman rules to present the calculation here and
have verified that the SCET Feynman rules give the same result, as expected.

3.1 Quark fragmentation function at NLO

We start with graph (a) figure 3,

D
q(a)
q,bare =

(eγEµ2

4π

)ε 1
2Nc x

∫
dd−2p⊥

∫
dd`

(2π)d−1
θ(`0)δ(`2 −m2)δ(ω − `− − p−)δd−2(`⊥ + p⊥)

× tr
[ n̄/

2
i(/̀+ p/)
(`+ p)2

ig γµT a
∑
s,pol

usn(p)εµ(`)ε∗ν(`)ūsn(p) ig γνT a
i(/̀+ p/)
(`+ p)2

]
=
αs(µ)CF

2π
(1− ε)2Γ(ε)

(eγEµ2

m2

)ε
θ(x)θ(1− x)

1− x
xε

=
αs(µ)CF

2π
θ(x)θ(1− x) (1− x)

(1
ε
− 2 + ln

µ2

xm2

)
+O(ε) . (3.3)

In the final step we expand in ε to extract the UV divergences.
Moving on to figure 3(b),

D
q(b)
q,bare = 2

(eγEµ2

4π

)ε 1
2Nc x

∫
dd−2p⊥

∫
dd`

(2π)d−1
θ(`0)δ(`2 −m2)δ(ω−`−−p−)δd−2(`⊥ + p⊥)

× tr
[
n̄/

2
i(/̀+ p/)
(`+ p)2

ig γµT a
∑
s,pol

usn(p)εµ(`)ε∗ν(`)ūsn(p)
g T an̄ν

`− + δ

]

=
αs(µ)CF

π
Γ(ε)

(eγEµ2

m2

)ε
θ(x)θ(1− x)

x1−ε

1− x+ δ/ω
(3.4)

δ→0=
αs(µ)CF

π
θ(x)θ(1− x)

(1
ε

+ ln
µ2

xm2

)[
xL0(1− x)− δ(1− x) ln

δ

ω

]
+O(ε) ,

where we include a factor of 2 for the mirror graph. At the end we take the limit δ → 0 to
isolate the IR divergences. There we use

lim
δ→0

θ(1− x)
1− x+ δ/ω

= lim
δ→0

θ(1− x̃− δ/ω)
1− x̃ = L0(1− x)− δ(1− x) ln

δ

ω
, (3.5)

which follows from the definition of L0 in eq. (A.2), with x̃ = x− δ/ω.
We need to subtract the zero-bin contribution, which comes from the region where the

gluon becomes soft, `µ ∼ λ2p− [20]. Expanding eq. (3.4) accordingly, and including the
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appropriate δ-regulator for the soft Wilson line that appears here,

D
q(b)0
q,bare = 2

(eγEµ2

4π

)ε 1
2Nc x

∫
dd−2p⊥

∫
dd`

(2π)d−1
θ(`0)δ(`2 −m2)δ(ω − p−)δd−2(p⊥)

× tr
[ n̄/

2
n/

2
i

`+ + p+ + δ
ig γµT a

∑
s,pol

usn(p)εµ(`)ε∗ν(`)ūsn(p)
g T an̄ν

`− + δ

]
=
αs(µ)CF

π
Γ(ε)(eγEµ2)ε δ(1− x)

∫ ∞
0

d`−
1

(`− + δ)(`−δ +m2)ε
(3.6)

=
αs(µ)CF

π
Γ(ε)(eγEµ2)ε δ(1− x)

[
Γ(ε)Γ(1−ε)
(δ2 −m2)ε

+
m2−2ε

δ2(ε− 1) 2F1(1, 1; 2− ε;m2/δ2)
]

Note that p+ = 0 from the on-shell condition p2 = 0 and pµ⊥ = 0. After expanding in ε and
separating the IR divergences by taking m2 → 0, followed by δ → 0, we get

D
q(b)0
q,bare

m2, δ→0
=

αs(µ)CF
π

δ(1− x)
[

1
ε2
− 2
ε

ln
δ

µ
+ 2 ln2 δ

µ
+
π2

4

]
+O(ε) . (3.7)

This result depends on the order of the limits m2 → 0, δ → 0, but the sum of the diagrams
does not. In eq. (3.7), m2 is absent because it does not regulate anything for this diagram
and can simply be set to zero.

For figure 3(c) we find

D
q(c)
q,bare = 2

(eγEµ2

4π

)ε 1
2Nc x

∫
dd−2p⊥

∫
dd`

(2π)d
δ(ω − p−)δd−2(p⊥)

× tr
[
n̄/

2

∑
s

usn(p)ūsn(p) ig γµT a
i(p/− /̀)

(p− `)2 + i0
g T an̄µ
`− + δ

] −i
`2 −m2 + i0

=
(eγEµ2

4π

)ε
4i g2CF δ(1−x)

∫
dd`

(2π)d
ω − `−

(`−+δ)[`−`++`2⊥−m2+i0][(`−−ω)`++`2⊥+i0]

= −αs(µ)CF
π

Γ(ε)
(eγEµ2

m2

)ε
δ(1− x)

∫ ω

0
d`−

(ω − `−)1−ε

ω1−ε(`− + δ)

δ→0=
αs(µ)CF

π
δ(1− x)

(1
ε

+ ln
µ2

m2

)[
1 + ln

δ

ω
+ ε
(

1− π2

6

)]
+O(ε) . (3.8)

After integrating the delta functions, we perform the `+ integral by contours. The poles
are located at

`+ =
m2 − `2⊥ − i0

`−
, `+ =

−`2⊥ − i0
`− − ω , (3.9)

which are on opposite sides of the real axis for 0 < `− < ω. We pick up the first pole and
perform the standard `⊥-integral, yielding the second last line in eq. (3.8). In the last step
we perform the remaining `− integral, expand in ε and take the limit δ → 0 to isolate the
IR divergences.
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The corresponding zero-bin contribution is obtained by expanding in the region `µ ∼
λ2p−,

D
q(c)0
q,bare = 2

(eγEµ2

4π

)ε 1
2Nc x

∫
dd−2p⊥

∫
dd`

(2π)d
δ(ω − p−)δd−2(p⊥)

× tr
[
n̄/

2

∑
s

usn(p)ūsn(p) ig γµT a
n/

2
−i

`+ + δ − i0
g T an̄µ
`− + δ

] −i
`2 −m2 + i0

= −
(eγEµ2

4π

)ε
4i g2CF δ(1− x)

∫
dd`

(2π)d
1

(`− + δ)(`+ + δ − i0)(`−`+ + `2⊥ −m2 + i0)

=
(eγEµ2

4π

)ε g2CF
π

δ(1− x)
∫ ∞

0
d`−

1
`− + δ

∫
dd−2`⊥
(2π)d−2

1
`2⊥ −m2 − δ`−

= −Dq(b)0
q,bare . (3.10)

The opposite sign of the i0 prescription in `+ + δ − i0 comes from dividing out −p− < 0.
This time the `+ poles are at

`+ =
m2 − `2⊥ − i0

`−
, `+ = −δ + i0 , (3.11)

which are on opposite sides of the real axis for `− > 0. Picking up the second pole bring
us to the third line, which is equal to minus the second line of eq. (3.6). Thus the zero
bins from the real and virtual Wilson line emission cancel each other, which is no surprise
because D is insensitive to the scale associated to the soft radiation accompanying the final
parton. This will no longer be true for the fragmenting jet functions.

Using on-shell wave-function renormalization for the massless quark,

(1− Zψ)ip/+O(ε) =
(eγEµ2

4π

)ε ∫ dd`
(2π)d

ig γµT a
i(/̀+ p/)
(`+ p)2

ig γµT a
−i

`2 −m2

= ip/
αs(µ)CF

2π
1− ε
2− ε Γ(ε)

(eεγEµ2

m2

)ε
(3.12)

from which we derive

Zψ = 1 +
αs(µ)CF

2π

(
− 1

2ε
+

1
4
− 1

2
ln
µ2

m2

)
. (3.13)

The contribution to D from wave-function renormalization is therefore given by

D
q(d)
q,bare = (Zψ − 1)δ(1− x) . (3.14)

We will now calculate the diagrams for Dg
q , where the momentum fraction of the gluon

is measured. We can obtain these from the corresponding expressions for the quark case
in eqs. (3.3) and (3.4) by taking x → 1 − x. To see how this comes about, we explicitly
include the on-shell condition for p and the definition of x in eq. (3.3) and eq. (3.4) as
follows: ∫

dd−2p⊥ =
∫

ddp δ(p2)θ(p0) δ
(
x− p−

ω

)
. (3.15)
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As a consequence, the quark and the gluon in figure 3(a) and (b) are on completely equal
footing, except that the momentum fraction of the quark was measured. Measuring the
momentum fraction of the gluon therefore amounts to x→ 1− x.

For the first diagram we obtain

D
g(a)
q,bare(x) = D

q(a)
q,bare(1− x)

=
αs(µ)CF

2π
(1− ε)2Γ(ε)

(eγEµ2

m2

)ε
θ(x)θ(1− x)

x

(1− x)ε

=
αs(µ)CF

2π
θ(x)θ(1− x)x

(1
ε
− 2 + ln

µ2

(1− x)m2

)
+O(ε) . (3.16)

For the second graph we find

D
g(b)
q,bare(x) = D

q(b)
q,bare(1− x)

=
αs(µ)CF

π
Γ(ε)

(eγEµ2

m2

)ε
θ(x)θ(1− x)

(1− x)1−ε

x+ δ/ω

δ→0=
αs(µ)CF

π
θ(x)θ(1− x)

(
1
ε

+ ln
µ2

(1−x)m2

)[
(1− x)L0(x)− δ(x) ln

δ

ω

]
+O(ε)

=
αs(µ)CF

π
θ(x)θ(1− x)

(1
ε

+ ln
µ2

(1− x)m2

)1− x
x

+O(ε) , (3.17)

where in the last step we dropped both the plus prescription and the δ(x) terms since
x > 0. The zero bin only contributes at x = 0 and therefore does not need to be taken into
account.

Adding up our results yields

D
q(1)
q,bare = D

q(a)
q,bare +

(
D
q(b)
q,bare −Dq(b)0

q,bare

)
+
(
D
q(c)
q,bare −Dq(c)0

q,bare

)
+D

q(d)
q,bare

=
αs(µ)CF

2π
θ(x)

[(1
ε

+ ln
µ2

m2
− lnx

)
Pqq(x)−

(π2

3
− 9

4

)
δ(1−x)− 2θ(1−x)(1− x)

]
,

D
g(1)
q,bare = D

g(a)
q,bare +D

g(b)
q,bare

=
αs(µ)CF

2π
θ(x)

[(1
ε

+ ln
µ2

m2
− ln(1− x)

)
Pgq(x)− 2θ(1− x)x

]
, (3.18)

where the splitting functions Piq are given in eq. (2.19). Note that 1/ε-poles multiplying
IR regulators cancel in the sum of the diagrams, as must be the case. In eq. (3.18) δ is
absent since it regulates those IR divergences which cancel between the real and virtual
emission diagrams for the fragmentation function.

3.2 Quark fragmenting jet function at NLO

Compared to the Dj
i case, the partonic fragmenting jet function calculation involves an

additional δ[ω(k+− `+−p+)], where p+ = ~p 2
⊥/p

− = −p2
⊥/p

−. It would seem that this fixes
all the momentum components in real radiation graphs 3(a) and 3(b), however, as we will
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see, this is not true for the zero-bin diagram associated with (b). Starting with figure 3(a),

Gq(a)
q,bare

2(2π)3
=
(eγEµ2

4π

)ε 1
2Nc z

∫
dd−2p⊥

∫
dd`

(2π)d−1
θ(`0)δ(`2 −m2)δ(ω − `− − p−)δd−2(`⊥ + p⊥)

×δ[ω(k+−`+−p+)] tr
[
n̄/

2
i(/̀+p/)
(`+p)2

ig γµT a
∑
s,pol

usn(p)εµ(`)ε∗ν(`)ūsn(p) ig γνT a
i(/̀+p/)
(`+p)2

]

= −
(eγEµ2

4π

)ε g2CF (1− ε)
2π

θ(z)θ(1− z) z(1− z)2

×
∫

dd−2`⊥
(2π)d−2

`2⊥
(`2⊥ − z m2)2

δ

[
`2⊥ − z(1− z)

( m2

1− z − s
)]

=
αs(µ)CF

2π
1− ε

Γ(1− ε)(eγEµ2)ε θ(z)θ(1− z) z−ε(1− z)1−ε θ
(
s− m2

1− z
)(s− m2

1−z )1−ε

s2

m2→0=
αs(µ)CF

2π
θ(z)θ(1− z) (1− z)

[
1
µ2
L0

( s
µ2

)
+ δ(s)

(
ln

(1− z)µ2

m2
− 1
)]

+O(ε) .

(3.19)

Here we rewrote

δ

[
ω
(
k+ +

`2⊥ −m2

ω − p− +
`2⊥
p−

)]
= z(1− z)δ

[
`2⊥ − z(1− z)

( m2

1− z − s
)]
. (3.20)

Since all the dependence on `⊥ is in terms of `2⊥, we used spherical coordinates to perform
the `⊥-integral ∫

dd−2`⊥
(2π)d−2

=
∫ ∞

0
d(−`2⊥)

(−`2⊥)−ε

(4π)1−εΓ(1− ε) , (3.21)

which in combination with eq. (3.20) demands that s−m2/(1− z) > 0 for a non-vanishing
contribution; hence the factor of θ(s−m2/(1− z)) in the second to last line of eq. (3.19).
The graph is UV finite, so the expansion in ε is trivial. In the final step we take the limit
m2 → 0 to separate the IR divergences using eqs. (A.2) and (A.4).

The calculation of figure 3(b) combines steps from the corresponding fragmentation
function graph and the previous diagram,

Gq(b)q,bare

2(2π)3
=2
(eγEµ2

4π

)ε 1
2Nc z

∫
dd−2p⊥

∫
dd`

(2π)d−1
θ(`0)δ(`2−m2)δ(ω − `−−p−)δd−2(`⊥+p⊥)

× δ[ω(k+ − `+ − p+)] tr
[
n̄/

2
i(/̀+ p/)
(`+ p)2

ig γµT a
∑
s,pol

usn(p)εµ(`)ε∗ν(`)ūsn(p)
g T an̄ν

`− + δ

]

=
αs(µ)CF

π

1
Γ(1− ε)(eγEµ2)εθ(z)θ(1− z) z

1−ε(1− z)−ε
1− z + δ/ω

θ
(
s− m2

1− z
) (s− m2

1−z )−ε

s

m2, δ→0
=

αs(µ)CF
π

θ(z)θ(1− z) z
{

1
µ2
L0

( s
µ2

)[
L0(1− z)− ln

δ

ω
δ(1− z)

]
(3.22)

+δ(s)
[
L1(1−z) + ln

µ2

m2
L0(1−z)−

(1
2

ln2 δ

ω
+ln

µ2

m2
ln
δ

ω
+
π2

6

)
δ(1−z)

]}
+O(ε) .
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We take the limit m2 → 0 followed by δ → 0. Since the gluon mass occurs in the com-
bination m2/(1 − z), different order of limits give different results for individual graphs,
but the sum of all graphs is independent of the order of limits. We separately studied the
cases z < 1 and s > 0, and determined the coefficient of the remaining δ(s)δ(1 − z) term
by integration.

The zero bin corresponding to eq. (3.22) is given by

Gq(b)0q,bare

2(2π)3
= 2
(eγEµ2

4π

)ε 1
2Nc z

∫
dd−2p⊥

∫
dd`

(2π)d−1
θ(`0)δ(`2 −m2)δ(ω − p−)δd−2(p⊥)

× δ[ω(k+−`+−p+)] tr
[
n̄/

2
n/

2
i

`++p++δ
ig γµT a

∑
s,pol

usn(p)εµ(`)ε∗ν(`)ūsn(p)
g T an̄ν

`− + δ

]

=
αs(µ)CF

π
Γ(ε)eεγE δ(1− z) θ(s)

s+ δ ω

( µ2

m2 + s δ/ω

)ε
m2→0=

αs(µ)CF
π

Γ(ε)eεγE δ(1− z) θ(s)(s/µ
2)−ε

s+ δ ω

( δ
ω

)−ε
δ→0=

αs(µ)CF
π

δ(1− z)
{

1
ε

[
1
µ2
L0

( s
µ2

)
− δ(s) ln

δ ω

µ2

]
− 1
µ2
L1

( s
µ2

)
− ln

δ

ω

1
µ2
L0

( s
µ2

)
+ δ(s)

[
1
2

ln2 δ ω

µ2
+ ln

δ ω

µ2
ln
δ

ω
+
π2

6

]}
+O(ε) . (3.23)

Since all divergences are regulated by δ, we can simply set m2 = 0, which is consistent
with the order of limits used previously. In taking δ → 0 we used

lim
δ→0

θ(s)
s+ δω

= lim
δ→0

θ(s̃− δω)
s̃

=
1
µ2
L0

( s
µ2

)
− δ(s) ln

δ ω

µ2
, (3.24)

lim
δ→0

θ(s) ln(s/µ2)
s+ δω

= lim
δ→0

θ(s̃− δω) ln[θ(s̃− δω)/µ2]
s̃

=
1
µ2
L1

( s
µ2

)
− δ(s)

(1
2

ln2 δ ω

µ2
+
π2

6

)
,

which follows from eqs. (A.2) and (A.4), where s̃ = s+ δω.

The virtual emission graph and the wave-function renormalization contribution are
unaffected by the restriction on the real radiation given by the δ-function involving k+:

Gq(r)q,bare(s, z) = 2(2π)3δ(s)Dq(r)
q,bare(z) , with (r) = (c), (c)0, (d) . (3.25)

As for the fragmentation function, expressions for the diagrams where the momentum
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fraction of the gluon instead of the quark is measured can be readily obtained by z → 1−z,

Gg(a)
q,bare(z)

2(2π)3
=
Gq(a)
q,bare(1− z)

2(2π)3

=
αs(µ)CF

2π
1− ε

Γ(1− ε)(eγEµ2)ε θ(z)θ(1− z) z1−ε(1− z)−ε θ
(
s− m2

z

)(
s− m2

z

)1−ε
s2

m2→0=
αs(µ)CF

2π
θ(z)θ(1− z) z

[
1
µ2
L0

( s
µ2

)
+ δ(s)

(
ln
zµ2

m2
− 1
)]

+O(ε) ,

Gg(b)q,bare(z)

2(2π)3
=
Gq(b)q,bare(1− z)

2(2π)3

=
αs(µ)CF

π

1
Γ(1− ε)(eγEµ2)εθ(z)θ(1− z) z

−ε(1− z)1−ε

z + δ/ω
θ

(
s− m2

z

)(
s− m2

z

)−ε
s

m2→0=
αs(µ)CF

π
θ(z)θ(1−z) 1−z

z

[
1
µ2
L0

( s
µ2

)
+ δ(s) ln

zµ2

m2

]
+O(ε) . (3.26)

Adding up all the diagrams,

Gq(1)
q,bare = Gq(a)

q,bare +
(
Gq(b)q,bare − Gq(b)0q,bare

)
+
(
Gq(c)q,bare − Gq(c)0q,bare

)
+ Gq(d)

q,bare

= 2(2π)3 αs(µ)CF
2π

{
2
ε2
δ(s)δ(1− z) +

2
ε

[
− 1
µ2
L0

( s
µ2

)
+

3
4
δ(s)

]
δ(1− z)

+
2
µ2
L1

( s
µ2

)
δ(1− z) +

1
µ2
L0

( s
µ2

)
(1 + z2)L0(1− z) + δ(s)

[
Pqq(z) ln

µ2

m2

+ (1 + z2)L1(1− z)− θ(1− z)(1− z)−
(π2

2
− 9

4

)
δ(1− z)

]}
,

Gg(1)
q,bare = Gg(a)

q,bare + Gg(b)q,bare (3.27)

= 2(2π)3 αs(µ)CF
2π

θ(z)
{[

1
µ2
L0

( s
µ2

)
+ δ(s) ln

zµ2

m2

]
Pgq(z)− δ(s) θ(1− z)z

}
.

All 1/ε-poles here are of UV origin. The δ-regulator disappears from the final result. This
is expected, since the fragmentation function in eq. (3.18) contains no dependence on the
δ-regulator either, and the IR divergences have to cancel in the matching between Gi andDi.

3.3 Renormalization and matching

According to eq. (2.17) the relevant countertems are

ZDqq(x, µ) = δ(1− x) +
αs(µ)CF

2π
1
ε
θ(x)Pqq(x) ,

ZDqg(x, µ) =
αs(µ)CF

2π
1
ε
θ(x)Pgq(x) , (3.28)
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which lead to the same anomalous dimensions as in eq. (2.18). The renormalized one-loop
quark fragmentation functions are given by

Dq(1)
q (x, µ)=

αs(µ)CF
2π

θ(x)
[(

ln
µ2

m2
− lnx

)
Pqq(x)−

(π2

3
− 9

4

)
δ(1−x)− 2θ(1−x)(1−x)

]
,

Dg(1)
q (x, µ) =

αs(µ)CF
2π

θ(x)
[(

ln
µ2

m2
− ln(1− x)

)
Pgq(x)− 2θ(1− x)x

]
. (3.29)

Our one-loop result in eq. (3.27) agrees with the fact that the µ-dependence of Gi(s, z, µ)
is the same as in the jet function Ji(s, µ), at any order in αs. In particular, from eq. (2.29)
we find

ZqG(s, µ) = δ(s) +
αs(µ)CF

π

{
1
ε2
δ(s) +

1
ε

[
− 1
µ2
L0

( s
µ2

)
+

3
4
δ(s)

]}
, (3.30)

which yields the known one-loop anomalous dimension for Jq in eq. (C.8). Furthermore, Ggq
is UV finite and therefore the renormalization does not mix quark and gluon fragmenting
jet functions. Moreover, the UV divergences in eq. (3.27) are multiplied by δ(1−z) implying
that the renormalization does not affect the z-dependence.

For the renormalized one-loop quark fragmenting jet function we obtain

Gq(1)
q (s, z, µ)

2(2π)3
=
αs(µ)CF

2π
θ(z)

{
2
µ2
L1

( s
µ2

)
δ(1− z) +

1
µ2
L0

( s
µ2

)
(1 + z2)L0(1− z)

+δ(s)
[
Pqq(z) ln

µ2

m2
+(1+z2)L1(1−z)−θ(1−z)(1−z)−

(π2

2
− 9

4

)
δ(1−z)

]}
,

Gg(1)
q (s, z, µ)

2(2π)3
=
αs(µ)CF

2π
θ(z)

{[
1
µ2
L0

( s
µ2

)
+ δ(s) ln

zµ2

m2

]
Pgq(z)− δ(s) θ(1−z)z

}
. (3.31)

Inserting our results from eqs. (3.29) and (3.31) into eq. (2.34), we produce the match-
ing coefficients in eq. (2.32). The IR divergences cancel in the matching, as they should.

A final cross-check on our calculation is provided by the relationship in eq. (2.39) to
O(αs). We correctly find that∫ 1

0
dz z

[J (1)
qq (s, z, µ)
2(2π)3

+
J (1)
qg (s, z, µ)
2(2π)3

]
=
αs(µ)CF

2π

[
2
µ2
L1

( s
µ2

)
− 3

2µ2
L0

( s
µ2

)
+
(7

2
−π

2

2

)
δ(s)

]
= J (1)

q (s, µ) . (3.32)

where J (1)
q (s, µ) is the one-loop piece of the renormalized quark jet function in eq. (C.4).

4 Gluon matching calculation in pure dimensional regularization

In this section we calculate the matching coefficients Jgj , using dimensional regularization
for both UV and IR divergences. Since we cannot distinguish UV and IR divergences, we
will not be able to check that Di

g and Gig have the anomalous dimensions in eqs. (2.18)
and (2.28) and that the IR divergences cancel in the matching eq. (2.34). We have verified
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Figure 4. Feynman graphs contributing to the gluon fragmentation function and the gluon frag-
menting jet function at one-loop. We have not shown virtual diagrams here as they are scaleless
and therefore trivially vanish in DR. Graphs (a) through (c) correspond to Ggg and graph (d) to

Gq(q̄)g . Graphs (b) has a mirror image.

both of these statements for the quark case in section 3, where we used dimensional regu-
larization for the UV and a gluon mass plus a δ-regulator for the IR. Here, for simplicity,
we will assume the anomalous dimensions in eqs. (2.18) and (2.28) and verify that the IR
divergences cancel in the matching. An equivalent procedure would be to assume that the
IR divergences cancel in the matching and verify that we obtain the expected anomalous
dimension for Ghg . An additional check on the UV-finite part of our calculation will come
from the relation with the jet function in eq. (2.39).

The partonic graphs for the gluon fragmentation function and gluon fragmenting jet
function are shown in figure 4. In pure dimensional regularization all integrals for the
bare fragmentation function are scaleless, therefore they vanish. Inserting the known one-
loop anomalous dimensions from eq. (2.18) into eq. (2.17), we find that the renormalized
fragmentation functions up to one-loop are given by

Dg
g(x, µ) = δ(1− x)− 1

ε

αs(µ)
2π

θ(x)
[
CAPgg(x) +

1
2
β0δ(1− x)

]
,

Dq
g(x, µ) = −1

ε

αs(µ)TF
2π

θ(x)Pqg(x) , (4.1)

where the 1/ε-poles are IR divergences.
For the fragmenting jet function the real emission graphs can give a non-zero contribu-

tion, because the measurement of k+ now provides the Lorentz invariant quantity s = ωk+

as a scale in the calculation. The virtual graphs are still scaleless because k+ = p+ = 0.
It is easiest to calculate using the sum over physical polarizations. Then the real emis-
sion graphs only contribute to physical degrees of freedom in the final state. The physical
polarization sum in light-cone coordinates reads

∑
pol

ε∗µ(p)εν(p) = −g⊥µν +
n̄µp

⊥
ν

n̄·p +
p⊥µ n̄ν

n̄·p −
n̄µn̄νp

2
⊥

(n̄·p)2
, (4.2)
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which gives a vanishing contribution for diagrams 4(b) and 4(c) on contracting Lorentz
indices with the 2-gluon vertex from the operator insertion; only graph 4(a) contributes to
Ggg . For figure 4(a) we find

Gg(a)
g,bare

2(2π)3
=
(eγEµ2

4π

)ε −θ(z)
(d−2)(N2

c −1)z

∫
dd−2p⊥

∫
dd`

(2π)d−1
θ(`0)δ(`2)δ(ω−p−−`−)δd−2(p⊥+`⊥)

× δ(k+−`+−p+)gfabc
[
gµν⊥ (`+ 2p)ρ + gνρ(`− p)µ⊥ + gρµ⊥ (−2`− p)ν]∑

pol

ε∗ρ(`)ερ′(`)

×
∑
pol

ε∗ν(p)εν′(p) gfabc
[
δν

′

⊥µ(−`− 2p)ρ
′
+gν

′ρ′
(−`+ p)⊥µ+δρ

′

⊥µ(2`+ p)ν
′][ −i

(`+p)2

]2

=
(eγEµ2

4π

)ε
2g2CA

θ(z)
zs2

∫
dd`

(2π)d−1
θ(`0)δ(`2)δ(ω − p− − `−)δ(k+ − `+ − p+)

×− `2⊥
z(1− z)

[ 2z
1−z+

2(1−z)
z

+2z(1−z)
]

=
αs(µ)CA

2π
(eγEµ2)ε

Γ(1− ε)
θ(z)θ(1− z)
zε(1− z)ε

θ(s)
s1+ε

[ 2z
1−z+

2(1−z)
z

+2z(1−z)
]

=
αs(µ)CA

2π
θ(z)

{[
2
ε2
δ(s)− 2

ε

1
µ2
L0

( s
µ2

)]
δ(1−z)− 1

ε
δ(s)Pgg(z) +

2
µ2
L1

( s
µ2

)
δ(1−z)

+
1
µ2
L0

( s
µ2

)
Pgg(z) + δ(s)

[
L1(1− z)2(1−z+z2)2

z
+Pgg(z) ln z− π

2

6
δ(1−z)

]}
, (4.3)

where s = (` + p)2 = ωk+ and z = p−/ω as always. In the first line we already used
p⊥ + `⊥ = 0 to simplify the Feynman rules for the Bµa⊥ operator. In the first step we work
out the rather tedious contractions of Lorentz indices, using eq. (4.2) and set `− = (1−z)ω
owing to δ(ω − p− − `−). In the second step we perform the straightforward δ-function
integrals that are much alike quark fragmenting jet function calculation. In the final step
we expand in ε, dropping O(ε) terms.

Finally, we calculate the mixing graph in figure 4(d)

Gq(d)
g,bare

2(2π)3
=
(eγEµ2

4π

)ε −θ(z)
(2−2ε)(N2

c −1)z

∫
dd−2p⊥

∫
dd`

(2π)d−1
θ(`0)δ(`2)δ(ω−p−−`−)δd−2(p⊥+`⊥)

× δ(k+−`+−p+)
∑
s,s′

ūsn(p) igγµ⊥T
a vs

′
n (`) v̄s

′
n (`) igγ⊥µ u

s
n(p)

[ −i
(`+ p)2

]2

=
αs(µ)TF

2π
(eγEµ2)ε

Γ(2− ε)
θ(z)θ(1− z)
zε(1− z)ε [(1− ε)− 2z(1− z)] θ(s)

s1+ε

=
αs(µ)TF

2π
θ(z)

{[
− 1
ε
δ(s) +

1
µ2
L0

( s
µ2

)
+ δ(s) ln[z(1− z)]

]
Pqg(z)

+ 2δ(s)θ(1− z)z(1− z)
}
, (4.4)

which we notice is invariant under the transformation z → 1− z. This is expected because
the diagram is symmetric under the exchange of quark and anti-quark lines. Therefore

Gq(d)
g,bare = G q̄(d)

g,bare . (4.5)
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Using the known anomalous dimension of the gluon jet function from eq. (2.28), we
obtain the renormalized one-loop fragmenting jet function with the aid of eq. (2.29),

Gg(1)
g (s, z, µ)

2(2π)3
=
αs(µ)CA

2π
θ(z)

{
− 1
ε
δ(s)

[
Pgg(z) +

β0

2CA
δ(1− z)

]
+

2
µ2
L1

( s
µ2

)
δ(1− z)

+
1
µ2
L0

( s
µ2

)
Pgg(z)+δ(s)

[
L1(1−z)2(1−z+z2)2

z
+Pgg(z) ln z−π

2

6
δ(1−z)

]}
,

Gq(1)
g (s, z, µ)

2(2π)3
=
G q̄(1)
g (s, z, µ)

2(2π)3
=
αs(µ)TF

2π
θ(z)

{[
− 1
ε
δ(s)+

1
µ2
L0

( s
µ2

)
+δ(s) ln[z(1−z)]

]
× Pqg(z) + 2δ(s)θ(1− z)z(1− z)

}
. (4.6)

Here the 1/ε-poles are of IR origin. By subtracting the one-loop fragmentation functions
of eq. (4.1), we arrive at the matching coefficients given in eq. (2.33). Note that the IR
divergences again cancel, as they should.

As a final check, we verified that these results satisfy the relationship in eq. (2.39) with
the jet function,∫ 1

0
dz z

[J (1)
gg (s, z, µ)
2(2π)3

+ nf
J (1)
gq (s, z, µ)
2(2π)3

+ nf
J (1)
gq̄ (s, z, µ)
2(2π)3

]
= J (1)

g (s, µ) . (4.7)

Here, we included the factor nf to account for the number of light quark and antiquark
flavors. The J (1)

g (s, µ) denotes the one-loop terms of the renormalized gluon jet function
in eq. (C.4).

5 Numerical analysis

Here we present plots of quark and gluon fragmenting jet functions for π+-production
(section 5.1), and a numerical study up to NNLL accuracy of single π+-fragmentation in
e+e− collisions where a cut on thrust is imposed (section 5.2).

As input we use the HKNS fragmentation functions [34]. For simplicity we will always
utilize Dπ+

i (z) at NLO, even though our formal counting (cf. table 1 on page 30) would im-
ply the use of LO fragmentation functions at LO, LL and NLL. Consistently with ref. [34],
we set αs(mZ) = 0.125, used two-loop running, and matched αs continuously across the b-
and c-quark thresholds at mb = 4.3 GeV and mc = 1.43 GeV. In our analysis we will not in-
clude the effects of the uncertainties associated with the fragmentation functions or αs(mZ).

5.1 Fragmenting jet functions up to NLO

In this section, we will show plots for the fragmenting jet functions, using eq. (1.5) and our
results for Jij . We will study the (dimensionless) integral of the fragmenting jet functions
over the jet invariant mass up to scut

G̃hi (scut, z, µ) =
1

2(2π)3

∫ scut

0
dsGhi (s, z, µ) (5.1)
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Figure 5. Fragmenting jet functions for the π+-fragmentation from a u-quark (top row) and a
d-quark (bottom row). Shown are the LO and NLO results with the corresponding perturbative
uncertainties, as explained in the text. The left panels display z G̃π+

i (scut, z, µ) for scut = (3 GeV)2

as function of z, at the jet scale µ ' √scut. The right panels show the same curves relative to
the LO.

for scales µ '
√
scut, where there are no large logarithms involving the variable s. Our plots

show the effects of constraining the invariant mass of the jet both on the normalization
and on the shape of the z-dependence. In figure 5 we show the π+-fragmenting jet function
G̃π+

i (scut, z, µ) for a representative fixed value of scut = (3 GeV)2 as a function of z. This
choice of cut is motivated by the next section, where we consider e+e− collisions at Q =
10.6 GeV. The top row in figure 5 corresponds to fragmentation from a u-quark, and the
bottom row to fragmentation from a d-quark. The ū- and d̄-quark results are identical to
those for the d- and u-quark, as a consequence of the fit ansatz in the extraction of the
HKNS fragmentation functions. The left panel shows z G̃π+

i (scut, z, µ) and the right panel
displays the corrections relative to the LO result G̃π+(LO)

i (scut, z, µ) = Dπ+

i (z, µ) θ(scut).
To obtain the fragmenting jet function at a scale different from the jet scale, one can use
the RGE in eq. (2.25), which does not affect the z-dependence.

The plots are cut off at z = 0.2, because our factorization formula is not valid for too
small values of z. For 1−z � 1, eq. (5.1) contains large logarithms of 1−z [see eq. (2.32)],
which should be summed. We avoid this issue by cutting off the relative plots at z = 0.8.
As is clear from the absolute plots, z G̃π+

i (scut, z, µ) is very small in this region anyways.
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Figure 6. Same as figure 5 but for d-quark (top row) and gluon (bottom row) initiated fragmen-
tation of π+ with µ ' √scut = 10 GeV.

To estimate the uncertainty from higher-order corrections, we vary µ between
√
s/2 and

2
√
s, which is shown by the uncertainty bands. At LO the scale variation is simply that of

the fragmentation function, whose maximum and minimum are obtained at µ =
√
s/2, 2

√
s

with central value at µ =
√
s. At NLO, the maximum and minimum for the µ variation

do not occur at these values, due to the double logarithms in the Jij . We therefore sample
over

√
s/2 ≤ µ ≤ 2

√
s to determine the uncertainty band, and take the central value to be

the average of the maximum and minimum variation.

As can be seen in figure 5, for the u-quark the uncertainty at NLO is less than at
LO and the uncertainty bands overlap, so perturbation theory is well-behaved. For the
d-quark the uncertainty bands overlap as well, but they become rather large for z & 0.7,
both for the LO and NLO result. For these values of z, Dπ+

d (z, µ = 1 GeV) is tiny [34] and
its increase is due to the running up to µ '

√
scut, which leads to these large uncertainties.

For larger scales this effect decreases: in the top row of figure 6 we show the d-quark
fragmenting jet function for µ '

√
scut = 10 GeV, where the uncertainties are smaller and

decrease from LO to NLO. The gluon fragmenting jet function exhibits the same feature,
which is why we again choose µ '

√
scut = 10 GeV for the plots in the bottom row of

figure 6. This scale choice is also relevant for hadron colliders, where one would expect to
see gluon-initiated jets of higher invariant mass.
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matching γx Γcusp β

LO 0-loop - - 1-loop
NLO 1-loop - - 2-loop
LL 0-loop - 1-loop 2-loop
NLL 0-loop 1-loop 2-loop 2-loop
NNLL 1-loop 2-loop 3-loop 3-loop

Table 1. Order counting in fixed-order and resummed perturbation theory.

5.2 Fragmentation at e+e− collisions, with a cut on thrust

We will now show results for e+e− → Xπ+ in the dijet limit, where the fragmentation vari-
able z is measured. We remind the reader that in our choice of frame the jet’s perpendicular
momentum vanishes.

Including the RGE evolution kernels in eq. (1.6), the resummed cross section is

d2σ

dτ dz
= H(Q2, µH)UH(Q2, µH , µ)

∑
q={u,ū,d,d̄,s,s̄}

σq0
2(2π)3

∫
dsa dsb

×
∫

ds′a Ghq (sa − s′a, z, µJ)U qG(s′a, µJ , µ)
∫

ds′b Jq̄(sb − s′b, µJ)U qJ(s′b, µJ , µ)

×
∫

dk QSτ
(
Qτ − sa + sb

Q
− k, µS

)
US(k, µS , µ) , (5.2)

where we sum over light quark flavors. This formula only describes the singular contribution
to the cross section, which goes like ∼ (lnk τ)/τ for small τ . The nonsingular contribution is
suppressed by O(τ) relative to the singular one and we therefore neglect it in our numerical
analysis of the dijet limit τ � 1. The double logarithms of τ are summed by evaluating
the hard, (fragmenting) jet, and soft function at their natural scales (µH ' Q, µJ '

√
τQ,

µS ' τQ, respectively) and then evolving them to an arbitrary common scale µ. In terms
of the Fourier conjugate variable of τ , denoted by y, the cross section takes the following
form

ln
dσ
dy
∼ ln y(αs ln y)k + (αs ln y)k + αs(αs ln y)k + . . . , (5.3)

where the k runs over the positive integers. The terms on the right-hand side correspond
to the LL, NLL and NNLL series. For 1 − z � 1 we cannot trust the convergence due to
the large double logarithms of 1− z, as discussed in the previous section.

To calculate the cross section in eq. (5.2) at a specific order, we need the input sum-
marized in table 1, where “matching” refers to the fixed-order contribution, γx to the
non-cusp anomalous dimension, Γcusp to the cusp anomalous dimension and β to the QCD
β-function. The evolution factors and the one-loop hard, jet and soft function are all known
and collected in appendix C. Our one-loop calculation of the matching coefficients Jij is the
remaining ingredient necessary to sum the logarithms of τ to NNLL order. The convolu-
tions of plus distributions are carried out using the identities from appendix B of ref. [35].

We will now address our choice of scale for the central value of the cross section, as
well as the scale variations used to estimate the perturbative uncertainties. We start by
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observing that the hard function for e+e− → dijet is the square of a time-like form factor
and contains large π2-terms for µH = Q from ln2(−iQ/µH). To improve convergence we
resum these π2-terms by taking µH = −iQ [36–39].

Following ref. [40], we observe that there are three distinct kinematic regions where
the resummation of the logarithms of τ must be handled differently:

1) µH ' −iQ , µJ '
√

ΛQCDQ , µS = ΛQCD ,

2) µH ' −iQ , µJ '
√
τQ , µS ' τQ ,

3) iµH = µJ = µS ' Q .

Here we shall focus on region 2). However, our choice of scales and the scale uncertainties
are affected because we get close to the regimes 1) and 3). In region 1) τ is small and the
soft scale becomes of order ΛQCD. The factorization theorem in eq. (5.2) remains valid, but
non-perturbative corrections to the soft function must be taken into account, which can be
done using the methods of refs. [35, 41]. On the other hand, for large τ the resummation
becomes irrelevant (except for the π2 resummation) and nonsingular corrections should be
taken into account. As was observed in ref. [40], there is an important cancellation between
the singular and nonsingular cross section in eq. (5.2) in the limit τ → 0.5, which requires
the scales to merge in region 3).

Our choice of scales should smoothly connect these regions, which we achieve using
profile functions. This approach has been previously used to analyze the B → Xsγ spec-
trum [35], thrust in e+e− → jets [40] and Higgs production through gluon fusion with a
jet veto [42]. Here we use the same profile functions as in eqs. (2.52) and (2.53) of ref. [42],
and estimate the perturbative uncertainty by taking the envelope of the three independent
variations of profile parameters in eq. (2.55) thereof (with the replacement mH → Q). Our
central curve corresponds to the following choice of profile parameters:

µ = Q , eB = eS = 0 , µ0 = 2 GeV , τ1 =
2 GeV
Q

, τ2 = 0.25 , τ3 = 0.5 . (5.4)

We will show here plots for the cumulant of the cross section in eq. (5.2)

dσ
dz

(τ cut) =
∫ τcut

0
dτ

d2σ

dτ dz
, (5.5)

where the dijet limit is imposed by requiring τ ≤ τ cut � 1. We only consider the contri-
bution from the light quark flavors (uds). A strong cut on thrust almost entirely removes
the b-quark events [6]. The c-quark contribution to π+ fragmentation is small and there-
fore neglected.

In figure 7, we show the cross section for e+e− → Xπ+ in eq. (5.5) for the Belle c.m.
energy Q = 10.6 GeV and a representative value of z = 0.6 as a function of τ cut. We
checked that our numerical results are not sensitive to small variations of the scale Q. The
left panel shows the result at LL, NLL and NNLL order in resummed perturbation theory.
The uncertainties at LL and NLL are rather large, so only at NNLL we obtain a useful
prediction. Furthermore the LL band is smaller than the NLL one and does not overlap
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Figure 7. The cross section for e+e− → Xπ+, for Q = 10.6 GeV and z = 0.6, as function of the
cut on thrust τ cut. The left panel shows the resummed results at LL, NLL and NNLL order. The
right panel shows the LO and singular NLO compared to the NNLL. In the right panel we switch
off the π2 resummation for the NNLL to show how it merges with the singular NLO. The bands
correspond to the perturbative uncertainties as explained above eq. (5.4).

Figure 8. The cross section for e+e− → Xπ+, for Q = 10.6 GeV with a cut on thrust of τ ≤
τ cut = 0.2, as a function of the momentum fraction z. In the left panel zdσ/dz(τ cut) is plotted at
LL, NLL and NNLL. The right panel shows the same curves and bands as a percentage relative to
the NNLL. The bands correspond to the perturbative uncertainties, see text above eq. (5.4).

the NNLL, which indicates that the LL is not reliable. The NLL and NNLL results are
compatible within their uncertainties.

In the right panel of figure 7, the LO and singular NLO cross sections are plotted
together with the NNLL without π2-resummation. The singular NLO is obtained from
eq. (5.2) by setting µH = µJ = µS = µ. The remaining nonsingular terms that are present
in the full NLO are suppressed by O(τ) relative to the singular one. We take µ = Q for
the central curve and vary µ between Q/2 and 2Q to estimate the uncertainties of the LO
and NLO results which do not turn out to be compatible. For large τ the resummation is
unimportant (except for the π2 resummation, which we switched off in this plot) and so the
NNLL merges with the singular NLO. However, below τ ∼ 0.2 the NNLL and singular NLO
start to differ and below τ ∼ 0.1 this difference is no longer captured by the uncertainty
bands, implying that resummation is necessary.

In figure 8 we show results for the cross section for Q = 10.6 GeV and τ cut = 0.2, as
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Figure 9. The cross section for e+e− → Xπ+, for Q = 10.6 GeV with a cut on thrust of τ ≤
τ cut = 0.2, as a function of the momentum fraction z. Here we compare the NNLL result with the
corresponding LO and singular NLO. The inset shows the same curves and bands as a percentage
relative to the LO. The bands correspond to the perturbative uncertainties.

function of z. We plot the LL, NLL and NNLL results times z and the right panel shows
the same results relative to the NNLL (our best result). As in figure 7, the LL prediction
is not reliable (it does not overlap with the NNLL) but the NLL is. Finally, in figure 9
we compared LO and singular NLO to our NNLL result. This illustrates the effect of the
thrust cut on the dependence on the measured fragmentation variable z. As in figure 7 the
difference between the LO and singular NLO is not captured by their uncertainties.

From the right panel of figure 7, one would expect resummation to be only marginally
important for τ cut = 0.2. The difference between the singular NLO and NNLL in figure 9
is mainly due to the π2 resummation, which is an overall factor. If one switches off the π2

resummation, there is still a difference between the singular NLO and the NNLL, but for
most of the plotted range this is within the uncertainties.

We also study the impact of our results on the determination of the fragmentation
function parameters. For simplicity we only consider the contribution from the u-quark
here. The HKNS parametrization is given by [34]

Dπ+

u (z, µ = 1 GeV) =
Mπ+

u

B(απ+

u + 2, βπ+

u + 1)
zα

π+
u (1− z)βπ

+
u , (5.6)

where Mπ+

u determines the normalization of Dπ+

u , απ
+

u and βπ
+

u describe its shape, and
B is the Euler beta function. With Mπ+

u = 0.401 ± 0.052, απ
+

u = −0.963 ± 0.177 and
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βπ
+

u = 1.370± 0.144 we reproduce our NNLL result that we will treat as “data”. We then
fit for the three parameters to these “data” using the LO formula for the cross section,
dσuLO/dz = σu0 D

π+

u (z, µ = Q). We find that απ
+

u and βπ
+

u change by ∼ 30% and Mπ+

u

changes by ∼ 70%. This clearly shows that if we use the LO result, rather than NNLL (or
NLO), to extract the fragmentation function parameters in the presence of a cut on thrust,
they may differ significantly from their true values.

6 Conclusions

In this paper we have calculated the matching coefficients Jij(s, z/z′, µ) at one-loop, which
are an important ingredient for factorization theorems that describe spin-averaged frag-
mentation of a light hadron h fragmenting from a light quark or a gluon i within a jet with
constrained invariant mass. These matching coefficients contain the short-distance physics
relating the fragmenting jet functions Ghi (s, z, µ) — that depend both on the fragmentation
variable z and on the invariant mass s of the jet — to the standard fragmentation functions
Dh
j (z′, µ) via a convolution in z′. We have presented our calculation for Jij in great de-

tail, using various IR regulators for the partonic Gji and Dj
i , exposing the structure of the

zero-bin subtractions. A powerful cross-check on our results is provided by the relationship
between Jij and the leading jet function, which we have derived here in detail.

We have applied our results to study fragmentation of a π+ in e+e− collisions, where
we restrict to the dijet limit by a cut on thrust. Our calculation of Jij enables us to resum
the logarithms of τ cut = 1 − T cut up to NNLL accuracy in the cross-section dσ/dz(τ cut).
We analyzed this cross section for τ cut . 0.3 and c.m. energy equal to 10.6 GeV, as in
the study of light quark fragmentation in B-factories on the Υ(4S) resonance [6]. Here
the convergence of resummed perturbation theory is better than that of fixed-order per-
turbation theory, and the perturbative uncertainties become reasonably small at NNLL
accuracy. The NNLL cross section deviates from that at NLO for τ . 0.2, and below
τ . 0.1 resumming the logarithms of τ is necessary for a reliable prediction. Consistent
with this observation, we have also shown that using cross sections at LO instead of NNLL
(or NLO) could have a sizeable impact on the extracted numerical values of the model
parameters for Dh

i from fits to experimental data for e+e− → dijet + h.

We leave for future work the inclusion of nonsingular terms in the thrust distribution,
and the effects of the uncertainties associated with the fragmentation functions and αs(mZ).
This would provide a reliable theoretical framework to constrain fragmentation functions
from B-factory data where cuts on thrust are applied. However, the results presented have
a more general applicability, and can be used to study fragmentation taking place inside
any well separated jet.

Note added. While we were completing this work, a paper [43] appeared which contains
a calculation of the quark matching coefficient Jqq to one loop. We agree with this result.
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A Plus distributions and identities

The standard plus distribution for some function g(x) can be defined as[
θ(x)g(x)

]
+

= lim
β→0

d
dx
[
θ(x− β)G(x)

]
with G(x) =

∫ x

1
dx′ g(x′) , (A.1)

satisfying the boundary condition
∫ 1

0 dx [θ(x)g(x)]+ = 0. Two special cases we need are

Ln(x) ≡
[
θ(x) lnn x

x

]
+

= lim
β→0

[
θ(x− β) lnn x

x
+ δ(x− β)

lnn+1β

n+ 1

]
,

Lη(x) ≡
[
θ(x)
x1−η

]
+

= lim
β→0

[
θ(x− β)
x1−η + δ(x− β)

xη − 1
η

]
. (A.2)

In our calculations we will need the identity

θ(x)
x1+ε

= −1
ε
δ(x) + L0(x)− εL1(x) +O(ε2) , (A.3)

and the two limits

lim
β→0

[
θ(x− β) ln(x− β)

x
+ δ(x− β)

1
2

ln2 β

]
= L1(x)− π2

6
δ(x) ,

lim
β→0

θ(x− β)β
x2

= δ(x) . (A.4)

Away from x = 0 these identities are straightforward, while the behavior at x = 0 is
obtained by taking the integral of both sides. General relations for the rescaling and
convolutions of Ln(x) and Lη(x) can be found in appendix B of ref. [35].

B Quark matching calculation with offshellness IR regulator

Here we present the one-loop calculation of Dq
q(x, µ), Dg

q (x, µ), Gqq (s, z, µ) and Ggq (s, z, µ)
where the IR divergences are regulated through a small quark offshellness p2 > 0. The
real emission graphs for the fragmenting jet function are calculated using the Lehmann-
Symanzik-Zimmermann (LSZ) reduction formulae combined with the optical theorem. We
use dimensional regularization with d = 4 − 2ε for the UV divergences and renormalize
according to the MS scheme. The diagrams are computed in the Feynman gauge without
any loss of generality since their sum is gauge-invariant, and we use the SCET Feynman
rules. The zero-bin graphs vanish in this calculation.
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B.1 Quark fragmentation function

For the virtual emission diagrams, the state |Xh〉 in eq. (2.8) gets replaced by an off-shell
quark. In the real graphs contributing to Dq

q , X is an on-shell gluon, and in Dg
q it is an

off-shell quark. At the end of the calculation we expand in ε and neglect terms of O(ε).
Starting with Dq

q , the real emission graph in figure 3a is given by

D
q(a)
q,bare(x) =

(eγEµ2

4π

)ε 1
2Nc x

∫
dd−2p⊥

∫
dd`

(2π)d−1
θ(`0)δ(`2) δ(ω − `− − p−) δd−2(`⊥ + p⊥)

× tr
[
n̄/

2
i
n/

2
n̄·(`+ p)

(`+ p)2 + i0
igT a

(
nµ +

p/⊥γ
µ
⊥

n̄·p
) n̄/

2

∑
s,pol

usn(p)εµ(`) ε∗ν(`) ūsn(p)

× igT a
(
nν +

γν⊥p/⊥
n̄·p

) n̄/
2

i
n/

2
n̄·(`+ p)

(`+ p)2 + i0

]
=
αs(µ)CF

2π
θ(x) θ(1− x) (1− x)

[
1
ε

+ ln
µ2

p2
− 2− ln(1− x)

]
, (B.1)

with the momentum fraction x = p−/ω. The contribution from the diagram in figure 3b
plus its complex conjugate, “mirror” graph, is

D
q(b)
q,bare(x) =

(eγEµ2

4π

)ε 1
2Nc x

∫
dd−2p⊥

∫
dd`

(2π)d−1
θ(`0)δ(`2) δ(ω − `− − p−) δd−2(`⊥ + p⊥)

×tr
[
n̄/

2
i
n/

2
n̄·(`+ p)

(`+ p)2 + i0
igT a

(
nµ +

p/⊥γ
µ
⊥

n̄·p
) n̄/

2

∑
s,pol

usn(p)εµ(`) ε∗ν(`)ūsn(p)
gT an̄ν

n̄·`
]

+ c.c.

=
αs(µ)CF

2π
θ(x)θ(1− x) 2x

{
− 1
ε2
δ(1− x) +

1
ε

[
L0(1− x)− δ(1− x) ln

µ2

p2

]
− L1(1− x) + L0(x) ln

µ2

p2
− δ(1− x)

(1
2

ln
µ2

p2
+
π2

12

)}
. (B.2)

For the virtual graphs in figure 3c and figure 3d and their mirror ones we find:

D
q(c)
q,bare(x) =

(eγEµ2

4π

)ε 1
2Nc x

∫
dd−2p⊥

∫
dd`

(2π)d
δ(ω − p−) δd−2(p⊥) tr

[
n̄/

2

∑
s

usn(p) ūsn(p)

× igT a
(
nµ +

γµ⊥(p/⊥ − /̀⊥)
n̄·(p− `)

)
n̄/

2
−i

`2 + i0
gT an̄µ
n̄·` i

n/

2
n̄·(p− `)

(p− `)2 + i0

]
+ c.c.

=
αs(µ)CF

2π
δ(1− x) 2

[
1
ε2

+
1
ε

(
1 + ln

µ2

p2

)
+

1
2

ln2 µ
2

p2
+ ln

µ2

p2
+ 2− 7

12
π2

]
,

D
q(d)
q,bare(x) = (Z1/2

q − 1) δ(1− x) + c.c. =
αs(µ)CF

4π
δ(1− x)

(
− 1
ε
− ln

µ2

p2
− 1
)
, (B.3)

using the one-loop on-shell wave function renormalization with an offshellness IR regulator.
As we noted in section 3.1, the zero bin does not contribute, because the fragmentation
function is insensitive to the soft region. Adding up all these graphs, we obtain the same
renormalization factor ZDqq(x, µ) as in eq. (3.28). For the renormalized quark fragmentation
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function we find

Dq(1)
q (x, µ) =

αs(µ)CF
2π

θ(x) θ(1− x)
[
Pqq(x) ln

µ2

p2
− 2xL1(1− x) +

(7
2
− 4π2

3

)
δ(1− x)

− (1− x)(2 + ln(1− x))
]
. (B.4)

The one-loop Dg
q is given by the real emission graphs in figure 3a and b, with the role

of the quark and gluon interchanged. Therefore, from the results above,

D
g(a)
q,bare(x)=

x

1−x×D
q(a)
q,bare(x)=

αs(µ)CF
2π

θ(x) θ(1−x)x
[

1
ε

+ ln
µ2

p2
− 2− ln(1−x)

]
, (B.5)

D
g(b)
q,bare(x)=

(1−x
x

)2×Dq(b)
q,bare(x)=

αs(µ)CF
2π

θ(x) θ(1− x)
2(1−x)

x

[
1
ε

+ ln
µ2

p2
− ln(1−x)

]
.

This leads to ZDqg(x, µ) as in eq. (3.28) and

Dg(1)
q (x, µ) =

αs(µ)CF
2π

θ(x) θ(1− x)
[
Pgq(x)

(
ln
µ2

p2
− ln(1− x)

)
− 2x

]
. (B.6)

B.2 Quark fragmenting jet function via the optical theorem

We now move on to the computation of the one-loop real emission graphs corresponding
to Gqq (s, z, µ) and Ggq (s, z, µ). We use the LSZ reduction together with the optical theorem,
along the lines of the calculations in the so-called cut vertex formalism in refs. [44, 45].
This procedure leads to the same result as directly integrating over the parton phase space,
which has been employed everywhere else in this paper.

Applying the LSZ formalism to the collinear matrix elements in the definition of Gqq
yields

Gqq (s, z) =
∫

d4y eik+y−/2

∫
d2p⊥

1
4Ncπp−

tr
∑
X

[
n̄/

2
〈
0
∣∣[δω,P δ0,P⊥χn(y)]

∣∣Xq(p`, pr)〉
× 〈Xq(p`, pr)∣∣χ̄n(0)

∣∣0〉] (B.7)

= − R−1
q

4Ncπp−

∫
d2p⊥

∫
d4y

∫
d4x

∫
d4x′ eik+y−/2 eipr·(x′−x)

×
∑
X

tr
[
n̄/

2

〈
0
∣∣∣T̄{ξ̄amp

n,p`
(x) [δω,P δ0,P⊥χn(y)]

}∣∣∣X〉〈X∣∣∣T{ξamp
n,p`

(x′) χ̄n(0)
}∣∣∣0〉] ,

where we distinguished label and residual momenta in the collinear quark states and fields.
The superscript “amp” indicates that the lines corresponding to the collinear quark fields
ξamp
n and ξ̄amp

n should be amputated and replaced by the associated spinors. Rq is the
residue of the quark two-point function. In our calculations Rq = 1 because we chose to
absorb the finite terms of the self-energy diagram into the wave function renormalization
[see eq. (B.3)]. Following the optical theorem, we obtain

Gqq (s, z) = 2 Im
−i

4Ncπp−

∫
d2p⊥

∫
d4y

∫
d4x

∫
d4x′ eik+y−/2 eipr·(x′−x)

× tr
[
n̄/

2

〈
0
∣∣∣T{[δω,P δ0,P⊥χn(y)] ξ̄amp

n,p`
(x) ξamp

n,p`
(x′) χ̄n(0)

}∣∣∣0〉] . (B.8)
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Applying eq. (B.8) to the contribution to the fragmenting jet function coming from fig-
ure 3a, leads to

Gq(a)
q,bare(s, z)

2(2π)3
= 2 Im

(eγEµ2

4π

)ε −i
2Nc x

∫
dd−2p⊥

∫
dd`

(2π)d
δ(ω − `− − p−) δd−2(`⊥ + p⊥)

× δ(k+ − l+ − p+) tr
[
n̄/

2
i
n/

2
n̄·(`+ p)

(`+ p)2 + i0
igT a

(
nµ +

p/⊥γ
µ
⊥

n̄·p
) n̄/

2
(B.9)

×
∑
s

usn(p)
−igµν
`2 + i0

ūsn(p) igT a
(
nν +

γν⊥p/⊥
n̄·p

) n̄/
2

i
n/

2
n̄·(`+ p)

(`+ p)2 + i0

]
= 2Im

αs(µ)CF
(2π)2

(eγEµ2)ε(1− ε)Γ(ε)θ(z)θ(1−z)z−ε(1−z)1−ε (p
2/z − s− i0)1−ε

(s+ i0)2

where s > p2 > 0. Expanding in ε and evaluating the imaginary part yields

Gq(a)
q,bare(s, z)

2(2π)3
=
αs(µ)CF

2π
θ(z)θ(1− z)(1− z) (s− p2/z)θ(s− p2/z)

s2

p2→0
=

αs(µ)CF
2π

θ(z)θ(1− z)(1− z)
[

1
µ2
L0

( s
µ2

)
+ δ(s)

(
ln
zµ2

p2
− 1
)]
. (B.10)

In the last step we made use of eqs. (A.2) and (A.4) as p2 → 0 to isolate the IR divergences.
For figure 3b plus its mirror graph we find:

Gq(b)q,bare(s, z)

2(2π)3
=2Im

(eγEµ2

4π

)ε −i
2Nc x

∫
dd−2p⊥

∫
dd`

(2π)d
δ(ω − `− − p−)

× δd−2(`⊥ + p⊥)δ(k+ − l+ − p+)

×tr
[
n̄/

2
i
n/

2
n̄·(`+ p)

(`+p)2+i0
igT a

(
nµ+

p/⊥γ
µ
⊥

n̄·p
) n̄/

2

∑
s

usn(p)
−igµν
`2+i0

ūsn(p)
gT an̄ν

n̄·`
]
+c.c.

p2→0
=

αs(µ)CF
2π

θ(z)θ(1− z)
{
− 2
ε
δ(1− z)

[
1
µ2
L0

( s
µ2

)
+ δ(s) ln

µ2

p2

]
+

2
µ2
L1

( s
µ2

)
δ(1− z) +

1
µ2
L0

( s
µ2

)
2zL0(1− z) + δ(s)

[
ln
zµ2

p2
2zL0(1− z)

− ln2 µ
2

p2
δ(1− z)− π2

3
δ(1− z)

]}
, (B.11)

again using eqs. (A.2) and (A.4) to take the p2 → 0 limit.
The contribution of the virtual diagrams can be derived directly from the previous

calculation of the partonic fragmentation function since

Gq(r)q,bare(s, z)

2(2π)3
= δ(s)Dq(r)

q,bare(z) , with r = c, d . (B.12)

The zero bin vanishes for this choice of IR regulator (1/εUV−1/εIR = 0) but still contributes
to the fragmenting jet function turning the IR divergences into UV divergences.
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Furthermore, as for Dg
q at one loop, we obtain:

Gg(a)
q,bare(s, z)

2(2π)3
=

z

1−z×
Gq(a)
q,bare(s, z)

2(2π)3
=
αs(µ)CF

2π
θ(z)θ(1−z)z

[
1
µ2
L0

( s
µ2

)
+ δ(s)

(
ln
zµ2

p2
−1
)]

Gg(b)q,bare(s, z)

2(2π)3
=
(1− z

z

)2×G
q(b)
q,bare(s, z)

2(2π)3

=
αs(µ)CF

2π
θ(z)θ(1− z) 2(1− z)

z

[
1
µ2
L0

( s
µ2

)
+ δ(s) ln

zµ2

p2

]
. (B.13)

The UV divergences only occur in Gqq,bare, as was already pointed out in eq. (2.24), and
we find that the corresponding renormalization factor ZqG coincides with the one derived in
eq. (3.30). The renormalized partonic fragmenting jet functions are then given by

Gq(1)
q (s, z, µ)

2(2π)3
=
αs(µ)CF

2π
θ(z)

{
2
µ2
L1

( s
µ2

)
δ(1− z) +

1
µ2
L0

( s
µ2

)
(1 + z2)L0(1− z)

+ δ(s)
[
Pqq(z) ln

zµ2

p2
+
(7

2
− 3π2

2

)
δ(1− z)− θ(1− z)(1− z)

]}
Gg(1)
q (s, z, µ)

2(2π)3
=
αs(µ)CF

2π
θ(z)

{[
1
µ2
L0

( s
µ2

)
+ δ(s) ln

zµ2

p2

]
Pgq(z)− δ(s)θ(1− z)z

}
.

(B.14)

By applying eq. (2.34), we find that the matching coefficients J (1)
qq (s, z, µ) and J (1)

qg (s, z, µ)
obtained from this calculation agree with the ones given in eq. (2.32). This had to be the
case since the Jij are insensitive to the choice of IR regulators.

C Perturbative results

C.1 Fixed-order results

The Born cross section σq0 in eq. (1.6) is given by (see e.g. appendix A of ref. [40])

σq0 =
4πα2

emNc

3Q2

[
Q2
q +

(v2
q + a2

q)(v
2
e + a2

e)− 2Qqvqve(1−m2
Z/Q

2)
(1−m2

Z/Q
2)2 + Γ2

Z/m
2
Z

]
, (C.1)

where q denotes the (anti)quark flavor, Qq is the quark charge in units of |e|, vq,e and aq,e
are the vector and axial couplings of the (anti)quark q and the electron to the Z as e.g. in
eq. (A3) of ref. [40]. Here mZ and ΓZ denote the mass and the width of the Z boson.

The hard function for thrust, at leading order in the electroweak interactions, is the
square of the Wilson coefficient in the matching of the quark current from QCD onto SCET,

H(Q2, µH) =
∣∣C(Q2, µH)

∣∣2 . (C.2)

The SCET matching was computed at one-loop in refs. [46, 47], yielding

C(Q2, µH) = 1 +
αs(µH)CF

4π

[
− ln2

(−Q2 − i0
µ2
H

)
+ 3 ln

(−Q2 − i0
µ2
H

)
− 8 +

π2

6

]
. (C.3)
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The one-loop quark jet function [48] and one-loop gluon jet function [49, 50] are

Jq(s, µ) = δ(s) +
αs(µ)CF

2π

[
2
µ2
L1

( s
µ2

)
− 3

2µ2
L0

( s
µ2

)
−
(π2

2
− 7

2

)
δ(s)

]
, (C.4)

Jg(s, µ) = δ(s) +
αs(µ)

2π

{2CA
µ2
L1

( s
µ2

)
− β0

2µ2
L0

( s
µ2

)
+
[(2

3
− π2

2

)
CA +

5
6
β0

]
δ(s)

}
.

The one-loop perturbative soft function for thrust can be obtained from refs. [16, 51]:

Sτ (k, µS) = δ(k) +
αs(µS)CF

2π

[
− 8
µS
L1

( k
µS

)
+
π2

6
δ(k)

]
. (C.5)

The one-loop Wilson coefficients Jij(s, z, µ), for matching the fragmenting jet functions
onto fragmentation functions in eq. (2.30), are given in eq. (2.32) for i = q and eq. (2.33)
for i = g.

C.2 Renormalization group evolution

The RGE and anomalous dimension for the hard Wilson coefficient in eq. (C.3) are [46, 47]

µ
d

dµ
C(Q2, µ) = γH(Q2, µ)C(Q2, µ) , γH(Q2, µ) = Γqcusp[αs(µ)] ln

−Q2 − i0
µ2

+ γqH [αs(µ)] .

(C.6)
The coefficients of the αs-expansion of Γqcusp(αs) and γqH(αs) are given below in eqs. (C.15)
and (C.17). By solving the RGE in eq. (C.6) we obtain the evolution of the hard function:

H(Q2, µ) = H(Q2, µ0)UH(Q2, µ0, µ) , UH(Q2, µ0, µ) =
∣∣∣eKH(µ0,µ)

(−Q2 − i0
µ2

0

)ηH(µ0,µ)∣∣∣2 ,
KH(µ0, µ) = −2Kq

Γ(µ0, µ) +KγqH
(µ0, µ) , ηH(µ0, µ) = ηqΓ(µ0, µ) , (C.7)

where Kq
Γ(µ0, µ), ηqΓ(µ0, µ) and Kγ are given below in eq. (C.12).

The jet function RGE and anomalous dimension are

µ
d

dµ
Ji(s, µ) =

∫ s

0
ds′ γiJ(s− s′, µ) Ji(s′, µ) ,

γiJ(s, µ) = −2Γicusp[αs(µ)]
1
µ2
L0

( s
µ2

)
+ γiJ [αs(µ)] δ(s) , (C.8)

where the index i = {q, g} is not summed over. Its solution is given by [35, 51–53]

Ji(s, µ) =
∫ s

0
ds′ U iJ(s− s′, µ0, µ) Ji(s′, µ0) ,

U iJ(s, µ0, µ) =
eK

i
J−γE η

i
J

Γ(1 + ηiJ)

[
ηiJ
µ2

0

LηiJ
( s
µ2

0

)
+ δ(s)

]
,

Ki
J(µ0, µ) = 4Ki

Γ(µ0, µ) +KγiJ
(µ0, µ) , ηiJ(µ0, µ) = −2ηiΓ(µ0, µ) . (C.9)

According to eqs. (2.25) and (2.28), we obtain the RGE of the fragmenting jet function as
well as its solution by simply replacing Ji(s, µ)→ Ghi (s, z, µ) in the expressions above.
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The RGE of the thrust soft function is given by

µ
d

dµ
Sτ (k, µ) =

∫ k

0
dk′ γS(k − k′, µ)Sτ (k′, µ) , (C.10)

γS(k, µ) = 4Γqcusp[αs(µ)]
1
µ
L0

(k
µ

)
+ γS [αs(µ)] δ(k) ,

whose solution is completely analogous to eq. (C.9):

Sτ (k, µ) =
∫ k

0
dk′ US(k − k′, µ0, µ)Sτ (k′, µ0) ,

US(k, µ0, µ) =
eKS−γE ηS

Γ(1 + ηS)

[
ηS
µ0
LηS

( k
µ0

)
+ δ(k)

]
,

KS(µ0, µ) = −4Kq
Γ(µ0, µ) +KγS (µ0, µ) , ηS(µ0, µ) = 4ηqΓ(µ0, µ) . (C.11)

The functions Ki
Γ(µ0, µ), ηiΓ(µ0, µ), Kγ(µ0, µ) in the above RGE solutions are defined

as

Ki
Γ(µ0, µ) =

∫ αs(µ)

αs(µ0)

dαs
β(αs)

Γicusp(αs)
∫ αs

αs(µ0)

dα′s
β(α′s)

, ηiΓ(µ0, µ) =
∫ αs(µ)

αs(µ0)

dαs
β(αs)

Γicusp(αs) ,

Kγ(µ0, µ) =
∫ αs(µ)

αs(µ0)

dαs
β(αs)

γ(αs) . (C.12)

Expanding the β-function and the anomalous dimensions in powers of αs,

β(αs) = −2αs
∞∑
n=0

βn

(αs
4π

)n+1
, Γicusp(αs) =

∞∑
n=0

Γin
(αs

4π

)n+1
, γ(αs) =

∞∑
n=0

γn

(αs
4π

)n+1
,

(C.13)

their explicit expressions at NNLL are

KΓ(µ0, µ) = − Γ0

4β2
0

{
4π

αs(µ0)

(
1− 1

r
− ln r

)
+
(

Γ1

Γ0
− β1

β0

)
(1− r + ln r) +

β1

2β0
ln2 r

+
αs(µ0)

4π

[(
β2

1

β2
0

− β2

β0

)(1− r2

2
+ ln r

)
+
(
β1Γ1

β0Γ0
− β2

1

β2
0

)
(1− r + r ln r)

−
(

Γ2

Γ0
− β1Γ1

β0Γ0

)
(1− r)2

2

]}
,

ηΓ(µ0, µ) = − Γ0

2β0

[
ln r +

αs(µ0)
4π

(
Γ1

Γ0
− β1

β0

)
(r − 1)

+
α2
s(µ0)
16π2

(
Γ2

Γ0
− β1Γ1

β0Γ0
+
β2

1

β2
0

− β2

β0

)
r2 − 1

2

]
,

Kγ(µ0, µ) = − γ0

2β0

[
ln r +

αs(µ0)
4π

(
γ1

γ0
− β1

β0

)
(r − 1)

]
. (C.14)

Here r = αs(µ)/αs(µ0) and we have suppressed the superscript i on Ki
Γ, ηiΓ and Γin. Note

that the expressions in eq. (C.14) cannot be used across quark thresholds, where nf changes.
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Up to three loops, the coefficients of the β-function [54, 55] and cusp anomalous di-
mension [31, 56] in MS are

β0 =
11
3
CA − 4

3
TF nf ,

β1 =
34
3
C2
A −

(20
3
CA + 4CF

)
TF nf ,

β2 =
2857
54

C3
A +

(
C2
F −

205
18

CFCA − 1415
54

C2
A

)
2TF nf +

(11
9
CF +

79
54
CA

)
4T 2

F n
2
f ,

Γq0 = 4CF ,

Γq1 = 4CF

[(67
9
− π2

3

)
CA − 20

9
TF nf

]
,

Γq2 = 4CF

[(245
6
− 134π2

27
+

11π4

45
+

22ζ3

3

)
C2
A +

(
−418

27
+

40π2

27
− 56ζ3

3

)
CA TF nf

+
(
−55

3
+ 16ζ3

)
CF TF nf − 16

27
T 2
F n

2
f

]
, (C.15)

Γgn =
CA
CF

Γqn (known to hold for n ≤ 2). (C.16)

The MS anomalous dimension for the hard function can be obtained [57, 58] from the IR
divergences of the on-shell massless quark form factor, which is known to three loops [59].
At the order we are working we only need the two-loop result,

γqH 0 = −6CF ,

γqH 1 = −CF
[(82

9
− 52ζ3

)
CA + (3− 4π2 + 48ζ3)CF +

(65
9

+ π2
)
β0

]
. (C.17)

The anomalous dimension of the fragmenting jet function Gi and jet function Ji are equal,
so in particular γiG(αs) = γiJ(αs). These anomalous dimensions were extracted for the
quark jet function in ref. [58] from ref. [56], and for the gluon jet function in ref. [50] from
ref. [60], at three loop order. We only need the quark and gluon jet function anomalous
dimension up to two loops, which are given by

γqG 0 = 6CF ,

γqG 1 = CF

[(146
9
− 80ζ3

)
CA + (3− 4π2 + 48ζ3)CF +

(121
9

+
2π2

3

)
β0

]
,

γgG 0 = 2β0 ,

γgG 1 =
(182

9
− 32ζ3

)
C2
A +

(94
9
− 2π2

3

)
CA β0 + 2β1 . (C.18)

The consistency of the RGE for the factorization theorem in eq. (5.2) implies that γS(αs) =
−2γH(αs)− 2γqG(αs), fixing the non-cusp anomalous dimension of the soft function.
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