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1 Introduction

The mechanism of the high temperature superconductors (SC’s) is an unsolved mystery
in physics [1]. High temperature SC’s are layered compounds with copper-oxygen planes
and are doped Mott insulators with strong electronic correlations. The pairing symmetry
is unconventional and there is a strong experimental evidence showing that it is largely
d-wave [2]. It is speculated that the pairing between electrons is mediated via strong
anti-ferromagnetic spin fluctuations in the system. But the problem is difficult due to the
strong-coupling nature of the system. Although significant progress has been made in the
last many years [3, 5], alternative approaches may be valuable to tackle the problem.

An interesting alternative approach is the holographic correspondence between a grav-
itational theory and a quantum field theory, which first emerged under the framework
of AdS/CFT correspondence [9–11]. This method has provided us a useful and compli-
mentary framework to describe strong interacting systems without the sign problem (see
e.g. [12–19]). In the original top-down approach within the AdS/CFT framework, both the
gravity side and the field theory side were precisely know in string theory and gives us much
deeper insight on this correspondence. But later in bottom-up approach we assume that
the correspondence exists among the different pair of theories and try to make predictions
from one side of the correspondence.

Recently, a gravitational model of hairy black holes [20, 21] has been used to model
s-wave high temperature SC’s [22–26]. In those class of models the Abelian symmetry of a
complex scalar field is spontaneously broken (i.e. the Higgs mechanism) below some criti-
cal temperature. The Meissner effect was soon observed by including a magnetic field in
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the background [27, 28]. A similar construction of holographic multiband superconductor
has also been considered recently in [29]. The multiband is coming from the condensa-
tion of a fundamental scalar field multiplet under non-abelian gauge group. The effect of
the superconducting condensate on the holographic fermi surface has further been stud-
ied by calculating fermionic spectral functions [30–32]. Interestingly, the properties of
spectral function appeared to have similar behavior to that found in the angle resolved
photo-emission experiment. Analogously, holographic p-wave superconductors have also
been proposed by coupling a SU(2) Yang-Mills field to the black hole background, where a
vector hair develops in the superconducting phase [33–36]. Properties of fermionic spectral
function has also been studied in p-wave superconducting background [37–39]. Also, there
are attempts to build holographic d-wave SC’s by spontaneously breaking the Abelian
symmetry of a charged spin two field [40–43] and study different properties of the sys-
tems [44–46]. In addition to the bottom up approach mentioned above, there are various
top-down constructions of those condensed matter like systems by considering D-brane
configurations in the AdS black hole background in the string theory framework [47–56].

In this work we will be interested in studying more detailed properties of holographic
d-wave superconductors using the action of [42, 43]. The most challenging problem to
construct the holographic model of d-wave SC’s is that the consistent action for the charged,
massive spin two field in a general curve background is still not known. Although the action
used in [42, 43] has some interesting features, such as having the right degrees of freedom
and being ghost-free, it could be unstable or acausal for general gauge field configurations.
It is argued that these problems may be cured by adding higher dimensional operators [43].

In this work, we will study properties of the holographic d + id SC’s based on the
action of [42, 43]. This is motivated by the observations of spontaneous breaking of time
reversal invariance in, for example, the YBCO high temperature superconductor [57–61].
The time reversal breaking is thought to occur due to a complex combination of the d-wave
condensates: dx2−y2 + idxy. One of the possible interesting consequences of this complex
d-wave condensation is that the system has a Hall conductivity even in the absence of
an external magnetic field [62, 63]. By using the holographic framework, in this note
we are interested in calculating the fermion spectral function, and the normal and Hall
conductivity in the holographic d+ id SC’s.

Our paper is organized as follow: In section 2 we will first introduce our model follow-
ing [43]. We consider the effective action for the charged spin two field in a four dimensional
AdS-Schwarzschild black hole. In order for the system to be ghost free, we will consider
the probe limit. Subsequently in section 3 we will obtain the normalizable background spin
two field configuration which leads to a dual d + id superconducting phase of a strongly
coupled system living on the boundary of AdS. Once we identify our required dual complex
d-wave condensate background, we can study various linear transport properties of the sys-
tem by considering linear order fermionic and gauge field perturbations. In section 4 we
will study the fermionic spectral function and discuss various properties depending upon
various parameters such as the Majorana coupling, mass of the fermion etc. In section 6
we will study the conductivity of the superconducting background. As we have mentioned
earlier, because of spontaneous violation of time reversal symmetry due to the background
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condensation, we found a non-vanishing optical Hall conductivity. In the final section we
will conclude with some remarks and discuss future directions.

2 The model

As we have mentioned in the introduction, the model that we are going to present is in
the similar spirit of the holographic dual construction of an s-wave superconductor in an
AdS black hole spacetime. It is well known that the phases of d-wave superconductivity
can be described by a low energy effective theory of charged spin two tensor field in the
framework of Landau-Ginzburg theory. At low temperature, the background solution of
this charged spin two field yields the d-wave order parameter for the high temperature
superconductivity. Analogously one particular construction of a holographic model of d-
wave superconductor has been considered first in [40, 41] by taking a charged symmetric
traceless spin-2 field in an AdS-black hole background. Subsequently, in spite of having
long-standing technical and also conceptual problems, a more refined form of the charge
spin-2 tensor field effective action has been proposed and studied in the context of pure
d-wave superconductor [43]. Our main goal in this report is to study the properties of
the more general d+ id superconducting background in AdS/CFT framework. One of the
theoretical motivations to consider these kinds of systems is to discover some universal low
energy properties of general strongly coupled field theories. Keeping this motivation in
mind, we start by considering the action in the bulk containing the gravity part and the
matter part as

S =
1

2κ2

∫
d4x
√
−g
{(

R+
6
L2

)
+ Lm

}
, (2.1)

where R is the Ricci scalar, the 6/L2 term gives a negative cosmological constant and L

is the AdS radius which will be set to unity in the units that we use. κ2 = 8πGN is the
gravitational coupling. The Lagrangian for the matter fields includes a spin two field and
a spin half fermion field. Both of them are charged under U(1) gauge field and can be
massive. We write

Lm = Lb + Lf . (2.2)

The consistent construction of a charged spin two field theory in curved spacetime
background is a long-standing problem. There have been lot of studies in constructing
consistent interacting higher spin field theories [64–72]. As we have mentioned, the authors
in ref. [43] have proposed a unique Lagrangian for a charged spin-2 field in AdS space with
the motivation in studying its dual field theoretic properties. In this report we will adopt
their construction with the Lagrangian

Lb = −|Dρϕµν |2 + 2|Dµϕ
µν |2 + |Dµϕ|2 −

[
Dµϕ

∗µνDνϕ+ c.c.
]

−m2
(
|ϕµν |2 − |ϕ|2

)
+ 2Rµνρλϕ∗µρϕνλ −Rµνϕ∗µλϕνλ

− 1
d+ 1

R|ϕ|2 − iqFµνϕ∗µλϕνλ −
1
4
FµνF

µν ,

(2.3)

where ϕµν is the spin two field with ϕµν = ϕνµ, ϕ = ϕµµ, Dµ is the covariant derivative
(Dαϕµν = (∂α + iqAα)ϕµν in flat space), d(= 3) is the spatial dimension of the bulk and
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Fµν is the field strength tensor of the gauge field. As it has been discussed in detail in [43],
the above action describes dynamics of the correct number of degrees of freedom only
when the background is Einstein’s manifold. So, the energy density of the higher spin
field configuration should be very small compared to the background energy density. This
essentially means we have to maintain the probe limit of spin-2 and fermion fields in a
specific gravitation background. However, there still exists serious issues in dealing with
the above action. For generic gauge field background, even though it has correct number of
dynamical degrees of freedom, the equation motion loses its hyperbolicity or causality. The
general belief is that these violations can be ameliorated by considering higher derivative
operators in our Lagrangian. This requirement makes it very complicated to construct
a fully consistent Lagrangian for the higher spin field in a curved background. However
as has been argued in [43], we will adopt the effective field theory point of view, where
all these effects could be very small in the limit of very low gauge field strength. This is
essentially the limit in which we will be considering in our subsequent discussions.

In addition to above Lagrangian for the spin-2 field, we also consider the spin 1/2
fermion Lagrangian as

Lf = iΨ (ΓµDµ −mζ) Ψ + η∗ϕ∗µνΨcΓµDνΨ− ηΨΓµDν (ϕµνΨc) . (2.4)

The bulk Gamma matrices Γµ satisfies the Clifford algebra {Γµ,Γν} = 2gµν . The U(1)
gauge symmetry demands that the charges of the fermion and spin two field are related
by 2qζ = q. It is know that η dependent Majorana coupling helps the fermion spectral
function to develop a gap. It has been argued that although there are more terms of the
same dimension as these η terms, only η dependent terms gives rise to an anisotropic gap.
Thus, we have dropped the other terms for simplicity.

Under the field redefinition

Aµ → Aµ/q, ϕµν → ϕµν/q,

Ψ → Ψ/q, η → qη, (2.5)

Lm can then be written as
Lm → Lm/q2. (2.6)

Thus, as q → ∞ while the Lm remains finite, we can work in the so called probe limit to
ignore the back reaction of the the matter fields Aµ, ϕµν , and Ψ. Also, in the probe limit,
the q dependence of observables can be recovered through the above simple scaling. Thus,
we will work in the probe limit from now on. In this limit, the gravitational field equation
satisfies the Einstein equation

Rµν =
2Λ
d− 1

gµν , (2.7)

where Λ = −3/L2. This yields the AdS Schwarzschild black hole solution with the metric

ds2 =
L2

z2

(
−f(z)dt2 + d~x2

d−1 +
dz2

f(z)

)
, (2.8)
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with

f(z) = 1−
(
z

zh

)d
, (2.9)

where z = zh is the black hole horizon and z = 0 is the boundary. The Hawking temperature
can be expressed as

T =
d

4πzh
. (2.10)

An important point to note is that, the action is invariant under the scaling transformations

(t, x, y, z, T ) → (ct, cx, cy, cz, T/c),

(Aµ, ϕµν ,Γµ,Ψ) →
(
Aµ/c, ϕµν/c

2, cΓµ,Ψ
)
, (2.11)

which determine the conformal dimension of each field. In the following section, we will
consider this black hole background in order to solve the equations of motion for the spin-2
and electromagnetic gauge field in the probe limit.

3 d + id condensate

As we know from the standard AdS/CFT dictionary, the bulk massive spin-2 field corre-
sponds to a spin-2 operator in the boundary field theory with fixed conformal dimension.
The conformal dimension is fixed by the spin-2 mass. This boundary spin-2 dual operator
under boundary Lorentz transformations is to be identified with the d-wave order parame-
ter. Our main interest here is to describe the d-wave SC in the dual boundary field theory.
Now since the spacetime background that we have considered has a translation symmetry in
the boundary direction, the condensation on the x-y plane on the boundary should also have
translational invariance. However rotational symmetry should be spontaneously broken
down to Z(2) with the d-wave like condensate changing its sign under a π/2 rotation on the
x -y plane. To incorporate these features, we use an ansatz for the symmetric traceless ϕµν :

ϕxx = −ϕyy =
1

2z2
ψ1(z),

ϕxy = ϕyx =
1

2z2
ψ2(z), (3.1)

and ϕµν = 0 for µ,ν 6= x, y, and for the gauge field Aµ:

A = Aµ dx
µ ≡ φ(z) dt . (3.2)

Under a θ angle rotation in the x-y plan,(
ϕxx
ϕxy

)
→

(
cos 2θ − sin 2θ
sin 2θ cos 2θ

)(
ϕxx
ϕxy

)
. (3.3)

If ϕxy/ϕxx is real, then we can always rotate the coordinates in the x-y plan such that
ϕxy = 0 and then make ϕxx real by a gauge transformation. Otherwise ϕxx and ϕxy will
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both exist. The equations of motion of the gauge field and the spin two field are

φ′′ +
3− d
z

φ′ − q2

z2f

(
|ψ1|2 + |ψ2|2

)
φ = 0, (3.4a)

ψ′′i +
(
f ′

f
− d− 1

z

)
ψ′i +

(
q2φ2

f2
− m2

z2f

)
ψi = 0, i = 1, 2. (3.4b)

The coupling to the fermion field through δLf/δϕ∗µν is dropped because there is no fermion
condensate.

Near the horizon (δz = z − zh → 0), f(z) ' −dδz/zh, and

φ′′ +
q2

3zhδz

(
|ψ1|2 + |ψ2|2

)
φ ' 0,

ψ′′i +
1
δz
ψ′i +

z2
hq

2φ2

9δz2
ψi ' 0, (3.5a)

which yields

φ ' c1

z2
h

δz,

ψi ' c2,i + c3,i ln δz. (3.6)

The finiteness of ψi at the horizon sets c3,i = 0.
Near the boundary z → 0, f → 0, and

φ′′ − q2

z2

(
|ψ1|2 + |ψ2|2

)
φ ' 0,

ψ′′i −
2
z
ψ′i −

m2

z2
ψi ' 0. (3.7a)

ψi has the asymptotic solution with two terms:

ψi ' c4,iz
∆+ + c5,iz

∆− , ∆± =
3±
√

9 + 4m2

2
. (3.8)

One of the terms can be identified as the source and the other term identified as the
corresponding condensate. In other words, the asymptotic behavior of the spin two field
near the boundary is

ψi(z) = zd−∆
[
ψ

(s)
i +O(z)

]
+ z∆

[
〈Oi〉

2∆− d
+O(z)

]
(3.9)

where ψ(s)
i is the source, 〈Oi〉 is the condensate, and Oi is the field theory operator that ψi

couples to at the boundary. m2 = ∆(∆−d) and ∆ is conformal dimension of 〈Oi〉 (because
the conformal dimension for ψi is zero).

Depending on the size of m2, there could be different scenarios:
(a) If m2 > 0, ∆− < 0, we need to set c5,i = 0 (the sourceless condition) to keep ψi

finite at the boundary. Thus, φ has the asymptotic solution

φ ' µ+ ρz +O(z2), (3.10)
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where the physical meaning of µ is the chemical potential while ρ is the corresponding
charge density. We can always use the scaling of eq. (2.11) to set µ = 1. In this case
ψ2(z)/ψ1(z) is a z independent constant. Because the combination c4,2ψ1− c4,1ψ2 vanishes
near the boundary. It continues to vanish for all z by the equations of motion.

(b) If 0 > m2 > −9/4, ∆± > 0, one can either chose the z∆+ or z∆− term to be the
condensate. If we choose the z∆+ term to be the condensate for ψ1, and choose the z∆−

term to be the condensate for ψ2, then eq. (3.10) is still true. But then ψ2(z)/ψ1(z) is no
longer a constant.

(c) If m2 = 0, ∆− = 0, if we choose the z∆+ term to be the source, then eq. (3.10) is
no longer true. Hence, the physical meaning in this case is unclear. The other choice of
the source goes back to case (a).

In case (b), the two condensates have different dimensions at the boundary. This might
imply competition between the two order parameters in the system. However, the scaling
dimension of any primary operator of a conformal field theory has a unitarity bound [73–
75]. As has been argued in [43], this unitarity bound constrains mass of a spin-2 field as
m2 ≥ 0. Thus, in this report, we will just focus on case (a), where

ψ1(z) = iQ1ψ(z), ψ2(z) = Q2ψ(z),

|Q1|2 + |Q2|2 = 1, ψ(z) = ψ∗(z). (3.11)

We have solved the equations of motion for the spin-2 field ψ and gauge field φ using
standard shooting algorithm by demanding µ = 1 and the normalizability of ψ near the
asymptotic boundary. We found the critical temperature Tc = d

4πzhc
for a fixed chemical

potential and charge, below which non-trivial bulk profile for the spin-2 field component
exists. According to AdS/CFT correspondence, the d-wave condensation 〈O〉 in the dual
boundary field theory is identified with the coefficient of the normalizable solution of ψ.

In figure 1 we show the condensate field (〈O〉 =
√
|〈O1〉|2 + |〈O2〉|2) disappears above

the critical temperature Tc. Once we know the background condensation, it would be
interesting to see the fermionic response function which essentially captures the properties
of the background condensation. On the other hand, the electromagnetic perturbation is
essential to study the conductivity of this background. In what follows we will first study
the fermionic spectral function and discussed about the gap structure of the underlying
strongly coupled system depending upon the type of fermionic coupling with a background
we choose. Using the scaling relations in eqs. (2.5) and (2.11), one can show that the
combination 〈qO〉1/∆µ/ρ is independent of q and µ.

4 Fermion spectral function

The equation of motion for the bulk fermion field looks like

0 =
(
ΓµDµ −mζ

)
Ψ + 2iηϕµνΓµDνΨc + iηϕµΓµΨc, (4.1)

where ϕµ = Dνϕνµ and the covariant derivative on the spinor field is

DµΨ =
(
∂µ +

1
4
ωµ,λσΓλσ − iqζAµ

)
Ψ (4.2)
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Figure 1. 〈qO〉1/∆µ/ρ vs. T/Tc is shown. The combination in the y-axis is independent of q
and µ.

with ω the spin connection, Γµν ≡ Γ[µΓν], and with the vielbein indices underlined. We
have chosen the bulk Gamma matrices Γµ representation

Γt =

(
−iσ2 0

0 iσ2

)
,Γz =

(
σ3 0
0 σ3

)
,

Γx =

(
σ1 0
0 σ1

)
,Γy =

(
0 −iσ2

iσ2 0

) (4.3)

It is convenient to rescale ζ = (−g · gzz)1/4Ψ which removes the spin connection com-
pletely, and to work in the momentum space with the Fourier components:

ζ = e−iωt+i
~k·~x ζ(ω,~k)(z) + eiωt−i

~k·~x ζ(−ω,−~k)(z). (4.4)

We then decompose the four-component spinor to two two-component spinors: ζ = (ζ1, ζ2),
such that eq. (4.1) can be rewritten as

D(1)ζ
(ω,kx)
1 + 2η(gxx)3/2kx

[
ϕxx−yyσ1ζ

(−ω,−kx)∗
1 − iϕxyσ2ζ

(−ω,−kx)∗
2

]
= 0

D(2)ζ
(ω,kx)
2 + 2η(gxx)3/2kx

[
ϕxx−yyσ1ζ

(−ω,−kx)∗
2 + iϕxyσ2ζ

(−ω,−kx)∗
1

]
= 0

(4.5)

where
D(α) =

√
gzzσ3∂z −mζ + (−1)α(ω + qζAt)

√
−gttσ2 + ikx

√
gxxσ1. (4.6)

Without losing generality, we set ky = 0 while the condensate can have arbitrary orienta-
tions.

The spectral function is defined by the imaginary part of the trace of the retarded
green’s function

A(ω,k) ≡ Im[Tr(GR)]. (4.7)
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To compute A(ω,k), we follow the method developed in [76–78] and applied in [31] which
leads to the simple “flow equation”:

√
gzz∂z(iG)

= 2mζ(iG) +
[
−ikx

√
gxxA+ i(ωB + qζAtC)

√
−gtt + 2kxη(gxx)3/2D

]
− (iG)

[
ikx
√
gxxA+ i(ωB + qζAtC)

√
−gtt + 2kxη(gxx)3/2E

]
(iG),

(4.8)

where

A =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , B =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ,

C =


−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

 , D =


0 0 ϕxx −ϕxy
0 0 ϕxy ϕxx
ϕ∗xx −ϕ∗xy 0 0
ϕ∗xy ϕ∗xx 0 0

 ,

(4.9)

and E = D†. The initial condition which satisfies the ingoing wave boundary condition at
the horizon of an AdS black hole would be

GR = z2mζ G|z→0 . (4.10)

Using the scaling relations in eqs. (2.5) and (2.11), one can show that the spectral
function A(ω/qµ,k/qµ) is independent of q and µ, provided η/q is also q independent.

4.1 Fermi Arc

As mentioned above, when ϕxy/ϕxx is real, we can always rotate the coordinate in the x-y
plan such that ϕxy = 0 and make ϕxx real by a gauge transformation. The corresponding
fermion spectral function A(ω = 0,k/qµ) for ϕxy = 0, η = 0.15q, m = 0, mζ = 0, and
T = 0.66Tc is shown in figure 2.

This case was first studied in ref. [42]. It was found that the spectral function at
ω = 0 does not vanish in the nodal direction but vanishes (up to some small values at
small k = |k|) in other directions. This suggests that the system is gapped except in the
nodal direction for T < T1. At higher T , the ungapped directions (the so called “fermi
arc”) increase and eventually the system becomes ungapped above T2 (with T2 < Tc).
This is reflected in the growing angular size of fermi arc with non-zero spectral function at
T1 < T < T2. In this region, a typical spectral function A(ω/qµ, k/qµ) for various angles
θ with respect to the x-axis, is shown in figure 3. Up to the small structure at low k, one
can see the gap-like structure at 0◦ and 30◦ and the vanishing of the gap at 45◦. At 0◦, the
spectral width is significantly smaller than the gap, suggesting it is a fermi liquid. One can
also identify the fermi momentum at k/qµ ' 0.3. In this model, the angular dependence
of the fermi momentum is not built in. It would be interesting to generalize this model to
incorporate this feature in the future.
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Figure 2. The appearance of the fermi arcs in the fermion spectral density A(ω = 0, kx/qµ, ky/qµ)
for normal d-wave superconductor (ϕxy = 0) with m = 0, mζ = 0, η = 0.15q and T = 0.66Tc.
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(b) θ = 30◦
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(c) θ = 45◦

Figure 3. The spectral function A(ω/qµ, k/qµ) shown for various angles θ with respect to the x
-axis for m2 = 2, T = 0.66Tc and η = 0.15q.

At this point we want to note the appearance of another inner fermi arc in the fermionic
spectra function for a higher value of spin two field mass. This is also clearly visible in
figure 3. As we decrease the mass of the background spin two field, this inner fermi surface
disappears but outer fermi arc still exist. It is interesting to study this in more details and
possibly ascribe any physical significance to this. Apparently the existence of two fermi
surfaces suggest that in the boundary field theory, we may have two different characteristic
fermionic degrees of freedom.

4.2 Dirac mass dependence

While it is interesting to see the fermi arcs in this holographic model, however, experimen-
tally, the fermi arcs in high temperature SC’s happen at T1 = Tc < T < T2, i.e. fermi arcs
happen in the pseudo gap phase but not in the SC phase [80–82].

With the goal of eliminating the fermi arc in the SC phase in mind, we study the dirac
mass (mζ) effect to the spectral function. We found that while mζ tends to increase the
gap, it also makes the nodal points not gapless any more.

In figure 4, it is shown that the fermi surface shrinks and height of the peak is reduced
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Figure 4. The dirac mass dependence of the spectral function A(ω = 0,k/qµ). The fermi momen-
tum decreases when mζ is reduced. m2 = 0, T = 0.66Tc and η = 0.05q.

when we turn on mζ . If mζ is sufficiently large, the spectral function will be gapped in all
directions.

5 d + id superconductors

As mentioned above, if ϕxy/ϕxx is not real, then we cannot rotate the coordinates such
that ϕxy = 0, such that both ϕxx and ϕxy will exist. A particular interesting case is
ϕxy/ϕxx = ±i, whose ratio is unchanged under the rotation in eq. (3.3). This means the
difference between ϕxx and ϕxy in all directions is just a common phase which can be
gauged away without physical consequences. This implies the fermion spectral function
will be the same in all directions.

In figure 5, we plot A(ω = 0,k) for different

γ ≡ iϕxy
ϕxx

. (5.1)

As expected, the γ = 0 case is just a π/4 rotation of the γ → ∞ case. Both of them are
purely d-wave SC’s. In the d+id SC with γ = 1, the spectral function looks like a s-wave SC.

6 Conductivity

In this section we will calculate the conductivity by turning on an electromagnetic pertur-
bation as previously discussed. According to the standard AdS/CFT dictionary, the gauge
field perturbation in the bulk will lead to a boundary current. The boundary value of the
perturbed gauge field becomes a source for this boundary current.

The conductivity tensor σij can be defined as

Ji = σijEj , (6.1)

where Ei and Ji are the external electric field and the induced current, respectively, in the
i-direction (i = x, y). In linear response theory, σij is a current-current correlator which
can be schematically denoted as σij ∼ 〈Ω |[Ji, Jj ]|Ω〉, where the matrix element denotes an
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Figure 5. A(ω = 0,k/qµ) for d + id superconductors. For γ = ∞ and γ = 0, the spectral
functions reduce to the d-wave case. For, γ = 1, the spectral function is isotropic and is s-wave like.
m2 = 0, T = 0.66Tc, η = 0.05q, mζ = 0

ensemble average. Under a π/2 rotation along the z-axis (R), R−1JiR = εijJj , where εij is
an anti-symmetric tensor, and assuming the ensemble average is governed by properties of
the ground state which is in general a d+id condensation, we have R |Ω〉 = − |Ω〉. Then,
σij ∼

〈
Ω
∣∣RR−1 [Ji, Jj ]RR−1

∣∣Ω〉 =
〈
Ω
∣∣R−1 [Ji, Jj ]R

∣∣Ω〉 = 〈Ω |[εikJk, εjlJl]|Ω〉. This im-
plies σxx = σyy and σxy = −σyx.

Under a parity (Px) transformation with respect to the x-axis, the condensates trans-
form as

Px

(
〈O1〉 〈O2〉
〈O2〉 −〈O1〉

)
→

(
〈O1〉 −〈O2〉
−〈O2〉 −〈O1〉

)
. (6.2)

If 〈O2〉 = 0, as the case which is always achievable in a d-wave SC, then Px |Ω〉 = ± |Ω〉.
Thus, σij ∼

〈
Ω
∣∣PxP−1

x [Ji, Jj ]PxP−1
x

∣∣Ω〉 =
〈
Ω
∣∣P−1
x [Ji, Jj ]Px

∣∣Ω〉 ∼ (−1)δiy+δjyσij . This
yields σxy = σyx = 0. In the case of d+ id, however, |Ω〉 is not an eigenstate of Px. Then,
in general σxy = −σyx 6= 0. A similar argument using time reversal symmetry yields the
same conclusion. So unlike the normal holographic d-wave SC, in addition to standard σxx,
the d+ id SC could have a non-vanishing Hall conductivity σxy component.

In order to make our analysis simple, using the above symmetry we can diagonalize
our conductivity tensor such that eq. (6.1) becomes

J± = σ∓E±, (6.3)
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where
J± = Jx ± iJy ; E± = Ex ± iEy ; σ± = σxx ± iσxy. (6.4)

As we have mentioned before, in order to calculate the conductivity, we need to consider
the linearized perturbations in the bulk black hole background [79]. A consistent set of
gauge field and spin-2 field perturbations are

δA(t, z) = e−iωt(ax(z)dx+ ay(z)dy),

δϕµν(t, z) = e−iωt


0 0 ξtx(z) ξty(z)
0 0 ξrx(z) ξry(z)

ξtx(z) ξrx(z) 0 0
ξty(z) ξry(z) 0 0

 , (6.5)

where ω is the frequency of the perturbation. Similarly, we can define the perturbation
for the complex conjugate field δϕ∗µν also. In the above perturbation ansatz we have
only considered zero momentum modes. We only limit ourself to consider the case where
γ = iϕxy/ϕxx = Q2/Q1 is real.

With this perturbation ansatz we would like to obtain the linear order perturbation
equations. Apparently as one can observe from [43] that when the background has only
d-wave condensation, the equation of motion for two independent gauge field perturbations
ax and ay are not mixed each other. From this one can arrive at the conclusion that there
is no Hall current in the dual superfluid phase. But in a d + id SC, ax and ay couple
which leads to Hall conductivity. The equation of motion in this general background is
complicated to solve. But two decoupled set of equations emerge if we perform the following
field redefinition:

am = ax + iay, ap = ax − iay,
ξmt = ξty − iξtx, ξpt = ξty + iξtx,

ξmz = ξzy − iξzx, ξpz = ξzy + iξzx,

ξ∗mt = ξ∗ty − iξ∗tx, ξ∗pt = ξ∗ty + iξ∗tx,

ξ∗mz = ξ∗zy − iξ∗zx, ξ∗pz = ξ∗zy + iξ∗zx. (6.6)

Under this field redefinition one set of decoupled equations of motion become

a′′m +
f ′

f
a′m+

ω2

f2
am+

qψ

2f2
[(Q2 −Q1)ξ∗mt−(Q2 +Q1)ξmt]−i

qψ

2

[
(Q2−Q1)ξ∗

′
mz

− (Q2 +Q1)ξ′mz
]

+ i
q

2f
(ψ′f − f ′ψ) [(Q2 −Q1)ξ∗mz − (Q2 +Q1)ξmz] = 0,

ξ′′mt +
2
z
ξ′mt −

2f + L2m2

z2f
ξmt +

L2qψ

4z2f
(Q2 +Q1)(ω + 2qφ)am

+
i

2
[
(2(ω + qφ)ξ′mz + qφ′ξmz

]
= 0,

ξmz
[
z2(ω + qφ)2 −m2L2f

]
+ i

L2qf

4
(Q1 +Q2)(ψa′m + 2ψ′am)

−iz2(ω + qφ)ξ′mt − i
z

2
(4ω + 4qφ+ qzφ′)ξmt = 0,
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ξ∗
′′
mt +

2
z
ξ∗
′
mt −

2f + L2m2

z2f
ξ∗mt +

L2qψ

4z2f
(Q2 −Q1)(−ω + 2qφ)am

− i
2

[
(2(−ω + qφ)ξ∗

′
mz + qφ′ξ∗mz

]
= 0,

ξ∗mz
[
z2(−ω + qφ)2 −m2L2f

]
− iL

2qf

4
(Q2 −Q1)(ψa′m + 2ψ′am)

+ iz2(−ω + qφ)ξ∗
′
mt + i

z

2
(−4ω + 4qφ+ qzφ′)ξ∗mt = 0, (6.7)

As we can see from the above set of equations, two equations for ξmz and ξ∗mz are algebraic
in nature so we can use the third and the fifth equations to substitute ξmz and ξ∗mz in other
equations. Therefore, we have only three coupled fields equations for am, ξmt and ξ∗mt to be
solved. Similarly we have another set of equations for ap, ξpt, ξ∗pt, ξpz and ξ∗pz components.
These equations can be obtained simply by replacing m→ p and Q1 → −Q1 in the above.

Now we will solve the above set of equations numerically by integrating them from
the horizon to the boundary of the bulk AdS black hole spacetime. There exists a well
defined procedure to calculate the retarded Greens function of the dual boundary field
theory [77, 79]. At the horizon, the ingoing wave boundary condition of all the fields are
imposed to ensure causality:

am = f−i
ω
3 a0 + · · ·

ξmt = f−i
ω
3 ξmt0 + · · · ; ξ∗mt = f−i

ω
3 ξ∗mt0 + · · ·

ξmz = f−i
ω
3
−1 ξmz0 + · · · ; ξ∗mz = f−i

ω
3
−1 ξ∗mz0 + · · · (6.8)

Where a0, ξmt0 and ξ∗mt0 are some arbitrary complex constants yet to be determined. Since
the system in eq. (6.7) is linear and homogeneous, we can set a0 = 1 because this only
affects the overall normalization of ξmt0 and ξ∗mt0. It has no effect on conductivity. So by
demanding ξmt and ξ∗mt to be normalizable near the boundary as was done in ref. [43], ξmt0
and ξ∗mt0 are uniquely fixed. Therefore we can solve for the conductivity. This can all be
done without the shooting method. Because the system is linear and homogeneous, the
problem is reduced to taking the correct linear combination of three independent solutions
to eliminate the non-normalizable terms of ξmt and ξ∗mt. Once this is done, we can use the
standard AdS/CFT technique to extract the retarded Greens function from the solution
of the electromagnetic perturbation am.

Near the boundary, am has the asymptotic behavior

am(z) = a0
m + a1

mz + · · · , (6.9)

where a0
m corresponds to an applied electric field in the boundary theory and a1

m corre-
sponds to the induced current. The standard definition of the Greens function [77, 79] is

σ+ = σxx + iσxy = lim
z→0

−ia1
m

ωa0
m

. (6.10)

Then the standard conductivity tensor component would simply be

σxx =
1
2

(σ+ + σ−), σxy =
−i
2

(σ+ − σ−). (6.11)
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Figure 6. The real part of the normal conductivity Re[σxx] vs. T/Tc for holographic d-wave
superconductors (γ = 0) with m2 = 4. There are δ(ω) type supercurrent contributions in these
curves that cannot be seen clearly. The hall conductivity σxy vanishes.
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Figure 9. Re[σxy] and Im[σxy] for various γ at m2 = 4 and T/Tc = 0.44. Tc is independent of γ.
σxy = 0 when γ = 0.

In the d-wave case with ϕxy = γ = 0, σxy = 0, and we have reproduced the σxx
result of refs. [42, 43] in figure 6. For γ 6= 0, we have only shown the 0 ≤ γ ≤ 1 result in
figures 7–9 because γ → 1/γ under a π/2 rotation and then

σij (γ) = σij (1/γ) . (6.12)

In each case, the real part of σxx, Re(σxx), has a delta function type contribution δ(ω) from
the super current if the system is in the superconducting phase. Also, Re(σxx) is always
non-negative. Below some frequency ωs, Re(σxx) could have several peaks, suggesting
there are several spin one resonance states with masses set by the scale qµ. Above ωs,
Re(σxx) reaches its asymptotic value which is one. Numerically, ωs ∼ qµ. Unlike the
s-wave SC’s, the fermi surfaces are not gapped everywhere for the d-wave or d + id SC’s.
These conducting electrons can respond to an electricity field of any frequency. Thus, there
should be no gap in the conductivity. Our result also has this feature.

For Re(σxy), there is no δ(ω) contribution and it does not have a definite sign. At the
peaks of Re(σxx), Re(σxy) vanishes (see figures 7 and 8). (But Re( σxy) vanishes does not
imply a peak at Re(σxx).) This is because suppose one of the diagonalized conductivity
σ+ is much bigger than the other in size, then according to eq. (6.11), Re(σxy) is nothing
but Im(σxx). So it relates to Re(σxx) as described above.

In figures 8 and 9, the σxy for various T and γ is shown. It is interesting that within
a small frequency window, the Hall conductivity Re(σxy) could be very sensitive to the
external electric field frequency with the Hall conductivity changes dramatically from a
large negative value to a large positive value. Thus, it could be a good electromagnetic
wave frequency sensor. About the γ dependence, there is a nearly universal Re(σxx) in
figure 7 when ω/qµ ' 0.18. Also, the shape of σxy in figure 9 is insensitive to γ. Those are
curious features of this type of superconductors.

7 Conclusion

We studied a holographic model of d + id superconductors based on the action proposed
by Benini, Herzog, and Yarom [42]. The model contains a charged spin two field in an AdS
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black hole spacetime. Working in the probe limit, the normalizable solution of the spin two
field in the bulk gives rise to a d+ id superconducting order parameter at the boundary of
the AdS.

We have calculated the fermion spectral function in this superconducting background
and confirmed the existence of fermi arcs for non-vanishing Majorana couplings. Depending
on the relative strength γ of the d and id condensations, we found that the position and the
size of the fermi arcs are changing. Specifically when we take γ = 1, the spectral functions
become isotropic and are s-wave like. We also studied fermion mass effect. By changing
the fermion mass, we saw the fermi momentum is changing. We have also calculated the
conductivity for these holographic d + id superconductors where time reversal symmetry
has been broken spontaneously. A non-vanishing Hall conductivity has been obtained even
without an external magnetic field.

As we know in a real high temperature superconductor, the fermi arc has been observed
in a pseudo gap phase before the superconducting phase transition. So far in the existing
holographic models of d-wave superconductor the fermi arc appears in the superconducting
phase. This is an interesting open problem to construct such a holographic model.
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