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1 Introduction

Recent years have seen the tremendous development in our understanding of AdS4/CFT3

correspondence. Important inflection point is proposal by J. Schwarz [1] that underlying

CFT3 can be written as Chern-Simons matter (CSM) theories without the usual kinetic

term for the gauge fields, especially for higher supersymmetric theories with N ≥ 4. Once

that proposal is realized in specific examples, the understanding of AdS4/CFT3 correspon-

dence has grown by leaps and bounds. After the realization that the Bagger-Lambert-

Gustavsson theory [2–6] can be written as the usual SU(2) × SU(2) Chern-Simons matter

theory [7], there appeared a paper by Gaiotto and Witten [8] where the attempt is made

to write down N = 4 Chern-Simons matter theory with matter hypermultiplets. The at-

tempt was generalized in [9] which includes twisted hypermultiplets as well, thereby writing

down the general classes of N = 4 Chern-Simons matter theories. The special case of such

construction is the famous N = 6 theory, known as ABJM theory [10, 11], describing coin-

cident M2 branes on C4/Zk where (k,−k) is the Chern-Simons level for two gauge groups

of ABJM theory.

Since then, various tests and checks are made for AdS4/CFT3 correspondence with the

most emphasis on ABJM theory. The first check is the matching of the moduli space [10] or

chiral operators. Also the partition function on S3 of ABJM theory is worked out to confirm

the famous N
3
2 behavior of the membrane degrees of freedom [12]. Similar behvior is also

observed for other N = 4 theories in [13]. There is a huge development on the integrability

of the special sectors of AdS4/CFT3 correpondence. See [14] and subsequent reviews.
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One of the most sophisticated test so far comes from the computation and comparison

of the field theory/gravity index. For ABJM theory, such computation was first worked

out for large k limit in [15] and was generalized for arbitrary k in [16] and especially for

k = 1. The computation was generalized to N = 4 theories in [17]. The problem of the

states arising in the gravity index from the twisted sector was resolved by [18] and again

the field theory index perfectly matches with that of the gravity.

The index computation with the lower supersymmetric theories poses several problems.

First of all, given the gravity background of the type AdS4 × SE7 where SE7 denotes a

suitable Sasaki-Einstein 7-manifold, it’s not clear in general what kind of field theory we

have to compare with. There are plethora of examples which lead to the same moduli space

in field theory. One might think that such theories are related to each other via dualities a

la Seiberg. This could be true of some related theories but there are also counterexamples.

In [19], it was shown that two theories, ABJM theory and N = 3 variant of the dual ABJM

model lead to the differnt indices even though they have the identical moduli space C4 with

Chern-Simons level k = 1. Going down to N = 2 theories we have far more theories having

identical chiral rings. On the other hand in [20], it was shown that the partition function

of the theories, which are thought be related by Seiberg-like dualities, is the same. Thus

the situation is far more subtle.

Secondly, if we consider general N = 2 theories, new subtleties arise since the con-

formal dimension and the corresponding R-charge of the fields, related by superconformal

symmetry, can take nonconventional values in IR. Until recently, it’s not clear how to tackle

this problem. In [21], Jafferis proposes that the partition function on S3 for a suitable su-

perconformal field theory as a function of trial R charges is extremized on the actual value

of the R-charges of the underlying fields. Along with this proposal, he writes down field

theory action on S3 with arbitrary R charge of the underlying fields with the symmetry

Osp(2|2). See also [22]. Similar calculation was applied to an index computation in [23].

Certainly it’s worthwhile to apply these proposals in a specific example and to see if this

gives rise to the desired check for a given AdS4/CFT3 dual pair.

With the subtleties mentioned above, the goal of the paper is to work out index for

the gravity/field theory pair with N = 2 or N = 3 SUSY. The first case study is done for

the proposed theory for M2 branes on N010/Zk, which has N = 3 supersymmetry. The

proposed CSM theory is given by ABJM theory with flavors [24–26]. See also [27] for

generalizations. Since ABJM theory has the gauge group U(N) × U(N) one can have m1

flavors for the first factor and m2 flavors for the 2nd factor. In order to have moduli space

N010/Zk we have the relation m1 +m2 = k where (k,−k) are the Chern-Simons level for

the gauge groups. In the Type IIA picture this theory is dual to type IIA string theory

on AdS4 × CP
3 with D6-branes. At k = 1, the ‘single D6-brane’ is geometrized to N010.

Happily, we find the perfect matching of field theory/gravity index. Furthemore, the index

captures nicely the picture of AdS4 ×CP 3 with D6 branes at general k so that additional

contributions to the index can be ascribed to the string modes between different D6 branes.

In terms of the index computation, N = 3 field theory has less subtleties since we have

firm control of F-terms and D-terms. This case study can be contrasted with the another

case study of N = 2 theory.
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The next case studies concern on specific N = 2 theories. As we mentioned, given an

M-theory background on AdS4 × SE7, there’s no known algorithm to tell you which CSM

theories we have to consider. At this stage, one should rely on trial and errors so that we

will scan through the various theories which give rise to the desired moduli space.

For the case of C(Q111), there are many models suggested to describe M2-branes

probing this background. We find that the best behaved model to be dual to the gravity

on AdS4 × Q111 is the one obtained by adding four fundamental flavors to the N = 6

Chern-Simons theory [28, 29].1 During the comparison of the gauge theory and gravity

indices, we realized that the gravity spectrum on AdS4 × Q111 obtained in [31] has been

cross-checked in a very limited subsector in the literature. Among all the short OSp(2|4)
multiplets listed in [31], we find that the large N field theory index agrees with the gravity

index only after getting rid of a few towers of multiplets (which have not been cross-checked

in the literature, as far as we are aware of). To conclusively check the validity of this model,

one might have to carefully re-examine the results of [31]. One may also recall the model

constructed in [32, 33] for Q111. We only made a preliminary study of the index of this

model, which has as many complications as our next example M32 has. A thorough study

has not been made for the models of [32, 33], but it could be that a study similar to our

section 4 may reveal a similar structure. At least, we have checked that the index for the

latter model disagrees with [31] if we keep all multiplets claimed there.

We also find that in the former model of [28, 29], the trial R-charge does not appear

in the large N low energy spectrum (as far as the index can see).

For the case of M32 models proposed in [34, 35], we find two clearly distinguished

contributions to the index. The first part, coming from a set of saddle points of the

localization calculation, does not depend on the trial R-charge and completely reproduces

the gravity index on AdS4 ×M32. The second part, coming from the remaining saddle

points, does depend on the trial R-charge and does not seem to correspond to any states

on the gravity side. This may suggest that this model could not be correctly describing the

desired gravity dual. However, see section 4 for the possible subtleties of the calculation

and also for the possibility to construct a variant model to cure this discrepancy.

The content of the paper is as follows; After the introduction, in section 2, we work out

the index for field theory/gravity pair for N010/Zk and find perfect matching. In section 3

and 4, we carry out similar computation for Q111 and M32, respectively. In conclusion we

enumerate the various future directions.

As this work is completed, we received the paper by Imamura et al [36], where similar

topic is covered. However the comparison with gravity side is lacking in their paper.

2 The index for M2-branes probing C(N010/Zk)

2.1 Field theory

The field theory dual proposed for M-theory on AdS4 ×N010/Zk is given by the U(N)k ×
U(N)−k Chern-Simons theory coupled to two bifundamental hypermultiplets and m1, m2 =

1S.K. thanks D. Jafferis, I. Klebanov, S. Pufu and B. Safdi for emphasizing the importance of this model,

especially related to their studies on the partition function on S3 [30].
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fields U(N) × U(N) ISU(2)F
U(1)B U(m1) U(m2) j3 ǫ

A1,2 (N, N̄ ) ±1
2 1 1 1 0 1

2

B1,2 (N̄ ,N) ±1
2 −1 1 1 0 1

2

qi (N, 1) 0 1
2 m1 1 0 1

2

q̃i (N̄ , 1) 0 −1
2 m̄1 1 0 1

2

QI (1, N) 0 −1
2 1 m2 0 1

2

Q̃I (1, N̄ ) 0 1
2 1 m̄2 0 1

2

Table 1. Charges of bosonic fields in the CFT dual of N010.

k−m1 fundamental hypermultiplets in the first and second gauge group, respectively. As we

shall review shortly below, the division of k fundamental hypermultiplets into m1 and m2

has to do with the presence of two types of D6-branes wrapping AdS4 ×RP
3 in the gravity

dual [26], with different Z2 valued Wilson lines on the worldvolume. The matter fields

and their gauge and global charges are listed in table 1.2 h0 denotes the Cartan of SU(2)R
symmetry. In the table, U(1)B is the so-called ‘bayron-like’ U(1) charge, named after similar

symmetry of the N =6 theory. This is expected to combine with SU(2)F flavor symmetry

to provide the enhanced SU(3)F at k= 1. Thus, it should not be confused with the real

baryon symmetry, under which M5-branes wrapping topological 5-cycles are charged.

The R-charge of this theory is SU(2)R, so that its Cartan h0 to be used to define the

BPS sector and index takes the canonical value ±1
2 for all fields.

The superconformal index of this theory can be computed by a procedure similar

to [16]. The index is defined by

Tr
[

(−1)Fxǫ+j3yIF
1 yB

2

]

, (2.1)

where the trace is taken over the space of local gauge invariant operators, and B denotes the

U(1)B charge. One may also insert chemical potentials for the U(m1)×U(m2) flavor sym-

metry, after which one would obtain factors of fundamental/anti-fundamental characters

in the letter index explained below.

The index is given in terms of the so-called letter indices, which are given by

f± =
x1/2

1 + x
(y

1/2
1 +y

−1/2
1 )y±1

2 (from B†
a, ψAa+ or A†

a, ψBa+)

f±1 =
x1/2

1 + x
y
±1/2
2 , f±2 =

x1/2

1 + x
y
∓1/2
2 . (2.2)

The index is given by

I(x, y1, y2) =
∑

{ni},{ñi}
I{ni},{ñi}(x, y1, y2) , (2.3)

2In [24, 36], the definition of U(1)B is different from ours by suitably mixing with diagonal U(1) ⊂

U(N) × U(N) and U(1)2 ⊂ U(m1) × U(m2) flavor symmetries. Our U(1)B is the field theory dual of the

KK momentum along the M-theory circle, which is an integer multiple of k.
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where

I{ni},{ñi}(x, y1, y2)

= xǫ0

∫

1

(symmetry)

[

dαidα̃i

(2π)2

]

eik
PN

i=1(niαi−ñiα̃i)

× exp

[

−
∑

i6=j

∞
∑

p=1

1

p
(xp|ni−nj |e−ip(αi−αj) + xp|ñi−ñj |e−ip(α̃i−α̃j))

]

× exp

[ N
∑

i,j=1

∞
∑

p=1

1

p
(f+(xp, yp

1 , y
p
2)x

p|ni−ñj |eip(α̃j−αi) + f−(xp, yp
1 , y

p
2)x

p|ni−ñj |e−ip(α̃j−αi))

]

× exp

[ N
∑

i=1

∞
∑

p=1

1

p
(m1f

+
1 (xp, yp

1 , y
p
2)x

p|ni|e−ipαi +m1f
−
1 (xp, yp

1 , y
p
2)x

p|ni|eipαi)

+ (m1, α, n, f
±
1 → m2, α̃, ñ, f

±
2 )

]

. (2.4)

Here the summation is over all integral magnetic monopole charges, {ni, ñi}. The zero

point energy ǫ0 is given by

ǫ0 =

N
∑

i,j=1

|ni − ñj| −
∑

i<j

|ni − nj| −
∑

i<j

|ñi − ñj| +
m1

2

N
∑

i=1

|ni| +
m2

2

N
∑

i=1

|ñi|. (2.5)

Symmetry factor in the expression is the dimension of the Weyl group for the gauge group

unbroken by the magnetic flux [16].

In the large N limit, the integral over the holonomies α, α̃ which do not host magnetic

flux can be done by Gaussian approximation, introducing the distribution functions ρ(α) =
∑∞

n=−∞ ρne
−inα and χ(α). After performing the integral, similar to [16], the index takes

the form of

IN=∞(x, y1, y2) = I(0)(x, y1)I
′(x, y1, y2),

where

I(0)(x, y1)

=
∞
∏

n=1

1

1−f+(·n)f−(·n)
× exp

[ ∞
∑

n=1

1

n

(

m2
1 +m2

2 + 2m1m2
xn/2

1+xn (y
n/2
1 +y

−n/2
1 )

)

1 − f+f−(·n)

(

xn/2

1 + xn

)2
]

=

∞
∏

n=1

(1 − x2n)2

(1 − xnyn
1 )(1 − xny−n

1 )(1 − xn)2

× exp

[ ∞
∑

n=1

1

n

(

m2
1 +m2

2 + 2m1m2
xn/2

1+xn (y
n/2
1 +y

−n/2
1 )

)

1 − f+f−(·n)

(

xn/2

1 + xn

)2 ]

≡ exp

[ ∞
∑

n=1

1

n
I
(0)
single(x

n, yn
1 )

]

, (2.6)
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with

I
(0)
single(x, y1) =

x

y1 − x
+

xy1

1 − xy1
+

2x

1 − x
− 2x2

1 − x2
(2.7)

+ (m2
1 +m2

2)
x

(1 − xy1)
(

1 − xy−1
1

) + 2m1m2
x3/2(y

1/2
1 + y

−1/2
1 )

(1 + x) (1 − xy1)
(

1 − xy−1
1

) .

This part does not refer to magnetic monopole flux, and thus only contains states which

are U(1)B neutral. The remaining part I ′ is given by

I ′(x, y1, y2) =xǫ0

∫

1

(symmetry)

[dα

2π

][dα̃

2π

]

eik
P

(niαi−ñiα̃i)

× exp

[

M1
∑

i=1

M2
∑

j=1

1

n
fbif

ij (·n) +

M1
∑

i,j=1

1

n
fadj

ij (·n) +

M2
∑

i,j=1

1

n
f̃adj

ij (·n)

]

(2.8)

is an integral over the holonomies associated with nonzero flux, with

fbif
ij = (x|ni−ñj | − x|ni|+|ñj|)(f+ei(α̃j−αi) + f−ei(αi−α̃j)),

fadj
ij = −

[

(1 − δij)x
|ni−nj | − x|ni|+|nj|]e−i(αi−αj),

f̃adj
ij = −

[

(1 − δij)x
|ñi−ñj | − x|ñi|+|ñj|]e−i(α̃i−α̃j). (2.9)

M1 and M2 are number of nonzero fluxes. Like [16], I ′(x, y1, y2) can be factorized and

yields

IN=∞(x, y1, y2) = I(0)(x, y1)I
(+)(x, y1, y2)I

(−)(x, y1, y2). (2.10)

I± can be computed using the formula for I ′ in (2.8) with all monopole charges are posi-

tive/negative. I± can be expanded in positive/negative powers of y2, respectively.

Let us leave some remarks on the structure of the large N index. Firstly, the ‘single

particle index’ I
(0)
single in (2.7) consists of two parts. As will be explained later, the first line

is identical to the single graviton index on AdS4 × CP
3. The second line will be shown

to be the single particle index of the open string degrees of freedom living on m1 and m2

D6-branes with different Z2 Wilson lines, wrapping AdS4 × RP
3 in AdS4 × CP

3. See the

next subsection for more explanations.

Secondly, in the index I± with monopoles, the fundamental degrees of freedom encoded

by the indices f±1 and f±2 totally disappears, and the only trace of their existence is in the

zero point energy ǫ0. The gravity dual interpretation of this phenomena would be the

absence of open string modes between D0-D6 branes of type IIA theory on AdS4 × CP
3.

Also, apart from the last zero point energy factor x
1
2

P

(m1|ni|+m2|ñi|), the integral is exactly

the same as the I+ of N =6 Chern-Simons index at large N . The comparison of I+ for the

N = 6 Chern-Simons theory and gravity on AdS4 × S7 is studied in detail in [16]. So all

analytic and numerical results there could be used in our context to show the agreement

of the index of this section. In the next subsection, we shall prove that the the agreement

of the gauge-gravity large N indices for the N =6 theory directly implies the agreement of

the large N index of our system for k=1.

– 6 –
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j3 ǫ h0 ǫ+j3 (M1,M2)

p ≥ 0 3
2 p+ 5

2 p+ 1 p+ 4 (p, p)

p ≥ 0 1 p+ 2 p+ 1 p+ 3 (p, p)

p ≥ 0 1 p+ 3 p+ 2 p+ 4 (p, p+ 3), (p + 3, p)

p ≥ 0 1
2 p+ 5

2 p+ 2 p+ 3 (p, p+ 3), (p + 3, p)

p ≥ 1 1
2 p+ 1

2 p p+ 1 (p, p)

p ≥ 1 0 p p p (p, p)

· 1
2

3
2 1 2 (0, 0)

· 0 1 1 1 (0, 0)

Table 2. Fields saturating the BPS bound for N010.

From the absence of these fundamental degrees of freedom, the integrand in I± is

invariant under the common shift of the holonomies α, α̃, implying that it acquires contri-

bution only from monopoles satisfying

∑

ni =
∑

ñi . (2.11)

This decoupling of the diagonal U(1) in U(N)×U(N) was an exact property in the N =6

Chern-Simons-matter theory, while here it is true only in the large N limit.

2.2 Gravity

The complete Kaluza-Klein spectrum on AdS4 × N010 was obtained in [37]. To calculate

the index, it suffices to consider the fields in the short multiplets.3 There exists a tower

of short or massless graviton multiplets of OSp(3|4) × SU(3) with M1 = M2 = p, J0 = p

and p≥0, where the lowest multiplet with p=0 is the massless multiplet. M1,M2 denote

the two parameters of the SU(3) representation as used in [37], and J0 denotes the SU(2)R
Casimir of the primary. There also exists a tower of short gravitino multiplets, with M1 =p,

M2 = p+3, J0 = p+1 and p ≥ 0, all being massive. As these multiplets are in complex

representations of SU(3) with M1 6=M2, the corresponding 4 dimensional field is complex.

Therefore, when calculating the index below, we should include the contribution from the

conjugate modes withM1 =p+3, M2 =p. Also, a tower of short or massless vector multiplets

comes with M1 =M2 = p, J0 = p and p ≥ 1, where the multiplet with p = 1 is massless

and corresponds to the gauge fields for the SU(3) isometry. Finally, there appears another

massless vector multiplet with M1 =M2 =0, J0 =1 which corresponds to the baryonic U(1)

symmetry, under which the M5-brane wrapped on a 5-cycle in N010 is charged. From these

multiplets, the fields (or representations of the conformal group) which satisfy the BPS

relation ǫ=h0+j3 are listed in table 2.

3By ‘fields’ we mean fields in AdS4. This is obtained by decomposing OSp(3|4) representations into the

representations of the conformal group, where each conformal representation comes from a 4 dimensional

field.

– 7 –
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Identifying SU(3) Cartans with the SU(2)F Cartan and U(1)B from theory theory

as [25]

h1 = diag

(

1

2
,−1

2
, 0

)

, h2 = diag

(

1

6
,
1

6
,−1

3

)

, (2.12)

the single particle index from gravity is given by

Isp(x, y1, y2) =
1

1 − x2

[ ∞
∑

l=0

(xl+3 − xl+4)χ
(l,l)
SU(3)(y1, y2)

+

∞
∑

l=0

(xl+4 − xl+3)
(

χ
(l,l+3)
SU(3) (y1, y2) + χ

(l+3,l)
SU(3) (y1, y2)

)

+

∞
∑

l=1

(xl − xl+1)χ
(l,l)
SU(3)(y1, y2) + (x− x2)

]

,

=
1

1 + x

[

x+

∞
∑

l=0

xl+3
(

χ
(l,l)
SU(3)(y1, y2) − χ

(l,l+3)
SU(3) (y1, y2) − χ

(l+3,l)
SU(3) (y1, y2)

)

+

∞
∑

l=1

xlχ
(l,l)
SU(3)(y1, y2)

]

. (2.13)

The SU(3) character χM1,M2

SU(3)
(y1, y2) for an irreducible representation is given by

χ
(M1,M2)
SU(3) (y1, y2) ≡ tr(M1,M2)y

h1
1 yh2

2 =
(numerator)

(denominator)
,

(numerator) = y
− 1

2
(M1+M2)

1 y
− 1

6
(2M1+M2)

2

[

y
1
2
(M1+1)

1 − y
1
2
(M1+3)+M2

1 − y
1
2
(M1+1)

2

+ y
(M1+M2+2)
1 y

1
2
(M1+1)

2 + y
1
2
(M2+1)

1 y
1
2
(M1+M2+2)

2

− y
1
2
(2M1+M2+3)

1 y
1
2
(M1+M2+2)

2

]

,

(denominator) = (y1 − 1)
[

y
1
2
2 + y1y

1
2
2 − y

1
2
1 (y2 + 1)

]

. (2.14)

From this single particle index, the full index over the gravity states is given by

I(x, y1, y2) = exp

[ ∞
∑

n=1

1

n
Isp(x

n, yn
1 , y

n
2 )

]

. (2.15)

Below, we compare the field theory and gravity indices when k=1. The case with k 6=1 is

studied in the next subsection, with D6-brane contributions taken into account.

For the field theory side at k=1, one either sets (m1,m2) = (1, 0) or (m1,m2) = (0, 1)

to study the field theory dual of N010 (rather than other tri-Sasakian spaces). In the ‘D6-

brane’ picture (although one needs the full M-theory at k=1), these two cases correspond

to having different Z2 valued Wilson lines on the worldvolume of D6-brane. Geometrically

uplifting D6-branes to N010, this should lift to some kind of Z2 valued holonomy of the

3-form potential of M-theory. As such holonomy does not affect the spectrum of gravity

fields, the two field theories would give identical large N spectrum that we consider in this

– 8 –



J
H
E
P
0
5
(
2
0
1
1
)
0
2
7

section. This was what we encountered for the field theory in the previous subsection. We

thus consider the case (m1,m2) = (1, 0) for definiteness.

As the field theory index is factorized as I(0)I+I− where the three factors are neutral

or positively/negatively charged in h2 U(1)B charge, we can make the same decomposition

of Isp(x, y1, y2) on the gravity side and compare the three factors separately. The single

particle index in the neutral sector is given by

I(0)
sp (x, y1) =

1

2πi

∮

dy2

y2
Isp(x, y1, y

2
2)

=
x

y1 − x
+

xy1

1 − xy1
+

2x

1 − x
− 2x2

1 − x2
+

xy1

(y1 − x) (1 − xy1)
. (2.16)

The sum of first four terms is the same as the single particle index on AdS4×CP
3. The last

term may be interpreted as a contribution from single ‘D6-brane’ wrapping RP
3 ⊂ CP

3, as

explained in more detail in the next subsection. The neutral sector ‘single particle index’

I
(0)
single of (2.7) from field theory completely agrees with I

(0)
sp of (2.16) as one inserts m1 =1,

m2 =0. This shows the agreement in the neutral sector.

To study the sector with positive h2, one generally has to rely on numerical analysis

like [16], as we do not know how to calculate holonomy integral (2.8) analytically. As we

mentioned in the previous subsection, the field theory I+ is almost identical for our N =3

theory and the N =6 theory so that all results (analytic or numerical) known for the latter

case can be borrowed to study the former.

For instance, in the simplest sector with minimal positive value h2 = 1
2 which was

treated analytically in [16], the corresponding gravity index in this sector comes from one

particle states with h2 = 1
2 ,

I(1/2)
sp (x, y1) =

∮

d
√
y2

2πi
√
y2
y
−1/2
2 Isp(x, y1, y2)

= −x (1 + y1)
(

−x2 + y1 − x2y1 + 2x3y1 − x2y2
1

)

(−1 + x)(1 + x) (x− y1)
√
y1 (−1 + xy1)

, (2.17)

which is the O(y
1/2
2 ) contribution to I+(x, y1, y2). The corresponding field theory index

comes with nonzero fluxes n1 = ñ1 = 1 and all other fluxes being zero. Here one obtains

from (2.8)

I+
(1)(1) =x

k/2

∫ 2π

0

dαdα̃

(2π)2
eik(α−α̃) exp

[ ∞
∑

n=1

1

n

(

(1−x2n)
(

f+(·n)ein(α̃−α)+f−(·n)ein(α−α̃)
)

+2x2n
)

]

= xk/2

∮

dz

2πiz
z−k

(

1 − x3/2

z
√

y1

)(

1− x3/2z√
y1

)(

1− x3/2√y1

z

)

(

1 − x3/2z
√
y1

)

(1−x2)2
(

1−
√

x
z
√

y1

)(

1−
√

xz√
y1

)(

1−
√

x
√

y1

z

)

(

1−√
xz

√
y1

)

. (2.18)

As emphasized, this is the same as the large N N = 6 index apart from the extra factor

xk/2. At k=1, the contour integral can be performed to yield

I+
(1)(1)

∣

∣

∣

k=1
= −x (1 + y1)

(

−x2 + y1 − x2y1 + 2x3y1 − x2y2
1

)

(−1 + x)(1 + x) (x− y1)
√
y1 (−1 + xy1)

, (2.19)

in perfect agreement with (2.17).
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Pushing this sort of analysis further, we assume the agreement between the

gauge/gravity N = 6 indices at large N (shown in [16] up to three monopoles in vari-

ous sectors) and show that this directly implies the agreement of the large N indices here.

Firstly, in the positive flux sector, the N =6 index I+
ABJM (x, y1, y2, y3) is related to our I+

by

I+(x, y1, y2) = I+
ABJM (x, y1, y2 =1, y3 =y2x) . (2.20)

y1, y2 are chemical potentials of SU(2) × SU(2) ⊂ SO(6) global symmetry of the latter

system in the notation of [16]. As only the former SU(2) is the symmetry in our case, we

set y2 = 1. Also, as the charge conjugate to y3 in the latter case is just given by 1
2

∑

i ni

from positive fluxes, the replacement y3 → y2x yields the desired extra factor x
1
2

P

ni of

zero point energy. Now the agreement between N =6 large N gauge/gravity indices (which

we accept) means I+
ABJM = exp

[
∑∞

n=1
1
nI

+
sp(·n)S7

]

, while we would like to show

I+ = exp

[ ∞
∑

n=1

1

n
I+
sp(·n)N010

]

. (2.21)

Here, (I+
sp)S7 and (I+

sp)N010 denote single particle gravity indices in appropriate back-

grounds. Thus, from (2.20), it suffices for us to show

I+
sp(x, y1, y2)N010 = I+

sp(x, y1, y2→1, y3→y2x)S7 . (2.22)

Using computer, one can explicitly show to all order that

I+
sp(x, y1, y2)N010 =

∞
∑

m=1

I(m/2)
sp (x, y1)N010y

m/2
2

=

∞
∑

m=1

(

[Resy2→x
√

y1
+Resy2→x/

√
y1

]
Isp(x, y1, y

2
2)N010ym

2

y2

)

y
m/2
2 ,

=
∞
∑

m=1

(

(x2y1y2)
m/2(x− y1 − x3y1 + x2y2

1)

(1 − y1)(1 − x2)(1 − xy1)
+ (y1 → y−1

1 )

)

. (2.23)

and

I(+)
sp (x, y1, 1, y3)S7 =

∞
∑

m=1

I(m/2)
sp (x, y1, 1)S7y

m/2
3

=
∞
∑

m=1

(

[Resy3→
√

xy1
+Res

y2→
√

x/y1
]
Isp(x, y1, 1, y

2
3)S7ym

3

y3

)

y
m/2
3 ,

=

∞
∑

m=1

(

(xy1y3)
m/2(x− y1 − x3y1 + x2y2

1)

(1 − y1)(1 − x2)(1 − xy1)
+ (y1 → y−1

1 )

)

. (2.24)

The apparent y1 → 1 singularity in each term cancels with a pair term with y1 → y−1
1

replacement. From these, (2.22) is obvious, which proves the agreement between the

gauge/gravity indices for N010.
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2.3 D6-branes

When k 6=1, N010/Zk is singular so that there appear contributions beyond the supergravity

approximation, coming from light degrees of freedom localized on the fixed points of Zk.

Similar analysis was done for N =4 M2-brane models in [17, 18].

In our case, one can use the type IIA D6-brane picture of the field theory model

when k ≫ 1.4 In this picture, one starts from the N = 6 Chern-Simions-matter theory

for M2-branes and add fundamental flavors by adding D6-branes wrapping AdS4 × RP
3 ⊂

AdS4×CP
3 [24–26]. The type IIA index from gravity can then be computed by adding the

single particle index from the bulk modes in AdS4 × CP
3 and the modes on the D6-brane

worldvolumes. As π1(RP
3) = Z2, there appears two types of D6-branes with different values

of discrete Wilson line on the worldvolume [26]. As mentioned in the previous subsection,

the single particle index on AdS4 × CP
3 is given by [15]

ICP
3

sp (x, y1) =
x

y1 − x
+

xy1

1 − xy1
+

2x

1 − x
− 2x2

1 − x2
(2.25)

where y1 is the chemical potential for the Cartan of SU(2)F ⊂ SU(4) unbroken by the

D6-branes.

The open string degrees of freedom on D6-branes are described by a 7 dimensional

supersymmetric Yang-Mills theory on AdS4 × RP
3. The quadratic part of this action on

AdS4×S3 was obtained in [18], which in our case can be derived from the DBI action with

Wess-Zumino term, as studied in [26]. Let m1 and m2 be the number of D6-branes which

support two possible Z2 valued Wilson lines. These numbers are identified with the number

of two fundamental hypermultiplets in the field theory. The fields in a vector multiplet are:

7 dimensional gauge field Aµ, three real scalars φi (i=1, 2, 3), gauginos λ. The symmetry

of this worldvolume theory is: U(m1)×U(m2) gauge symmetry, SO(4) ≡ SU(2)1 × SU(2)2
isometry on S3 or RP

3, SO(3) ∼ SU(2)3 symmetry transverse to the D6-branes.5 Viewing

the four bi-fundamental scalars A1, B
†
1 ,A2, B

†
2 as spanning the C

4 space (at least for N=1),

the embedding condition for RP
3 in CP

3 should be specifying C
2 = R

4 ⊂ C
4 embedding

by taking one combination of the two hypermultiplets to zero, as the D6-brane embedding

should be compatible with SU(2)R R-symmetry. Therefore, one of the two hypermultiplets

span transverse directions, acted by SU(2)3, while another one is acted by SU(2)1×SU(2)2.

SU(2)1,2,3 are symmetries of the low energy theory on D6-branes, and some of them are

broken in the whole theory. In particular, the diagonal combination of SU(1)1 and SU(2)3
is to be identified with our SU(2)R symmetry, while SU(2)2 is our SU(2)F symmetry.

The Kaluza-Klein spectrum of the 7 dimensional modes on RP
3 or S3 are summarized

in table 3, following [18]. For S3, the number s is half an integer. For RP
3, s is an integer by

the Z2 projection when the open strings connect D6-branes with same Wilson line. There

are m2
1 +m2

2 such vector multiplets. On the other hand, s is half an odd integer when the

open strings connect D6-branes of different Wilson lines, as there are half-integral shifts of

the spectrum due to their coupling to nonzero Wilson lines [26]. The modes saturating the

4This D6-brane picture turns out to be appropriate for studying the index even for small k (including

k=1), presumably due to simplifications coming from supersymmetry.
5In [18], the SU(2) symmetries are named SU(2)1,2,3 = SU(2)′R, SU(2)′F , SU(2)R, respectively.
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fields SU(2)j SU(2)3 SU(2)1 SU(2)2 ǫ

φi 0 1 s s s+ 2

Aµ 0 0 s+ 1 s s+ 1

1 0 s s s+ 2

0 0 s− 1 s s+ 3

λ 1
2

1
2 s+ 1

2 s s+ 3
2

1
2

1
2 s− 1

2 s s+ 3
2

Table 3. Spectrum of 7 dimensional vector supermultiplets on AdS4 × S3 or RP
3.

BPS bound come from the second and fifth lines of table 3. The single particle index (or

to be more precise, the mode index) from the open strings is

ID6
sp =

m2
1 +m2

2

1 − x2

∞
∑

s=0

χSU(2)F
s (y1)

[

xs+1 − xs+2
]

+
2m1m2

1 − x2

∞
∑

s= 1
2

χSU(2)F
s (y1)

[

xs+1 − xs+2
]

=
(m2

1 +m2
2)x

(1 − xy1)(1 − xy−1
1 )

+
2m1m2x

3/2(y
1/2
1 + y

−1/2
1 )

(1 − xy1)(1 − xy−1
1 )

, (2.26)

where χ
SU(2)F
s (y1) =

y
(s+1)/2
1 −y

−(s+1)/2
1

y
1/2
1 −y

−1/2
1

. From this, one finds that ICP
3

sp +ID6
sp perfectly agrees

with I
(0)
single in (2.7). In particular, extending the above result to k=1, we confirm that the

U(1)B neutral part (2.16) of the index on N010 is the gravity index on AdS4 × CP
3 with

one D6-brane.

3 The index for M2-branes probing C(Q111)

3.1 Gravity

The gravity spectrum on AdS4 × Q111 has been analyzed in [31]. The index will acquire

contribution only from the short multiplets. In [31], 15 infinite towers of short multiplets

(1 tower of short graviton, 9 towers of short gravitino, 4 towers of short vector multiplets

and 1 tower of hypermultiplet) plus 6 massless multiplets (1 massless graviton, 5 massless

vectors) belong to this category.

As far as we are aware of, only the massless multiplets as well as some low-lying

entries in the hypermultiplet tower (containing states dual to chiral ring operators) have

been studied or cross-checked in the literature. From the anlaysis of the field theory

dual of [28] proposed for the Q111, it still turns out that the large N field theory index

agrees with the gravity multiplets after discarding 6 of the 9 proposed towers of gravitino

multiplets in [31], and 1 of the 4 proposed towers of short vector multiplets with SU(2)3

charge (k/2, k/2, k/2). It could be that one might have to carefully re-examine the gravity

spectrum of [31], which is beyond the scope of this work.

In table 4, we present the set of gravity multiplets which will be compared to the field

theory results in the next subsection.
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ǫ+ j3 j3 SU(2)1 SU(2)2 SU(2)3
k ≥ 1 k + 4 3/2 k/2 k/2 k/2

k ≥ 0 k + 4 1 k/2 k/2 + 1 k/2 + 1

k + 4 1 k/2 + 1 k/2 k/2 + 1

k + 4 1 k/2 + 1 k/2 + 1 k/2

k ≥ 1 k + 2 1/2 k/2 + 1 k/2 k/2

k + 2 1/2 k/2 k/2 + 1 k/2

k + 2 1/2 k/2 k/2 k/2 + 1

k ≥ 1 k 0 k/2 k/2 k/2

· 4 3/2 0 0 0

· 2 1/2 1 0 0

· 2 1/2 0 1 0

· 2 1/2 0 0 1

Table 4. Gravity spectrum, ignoring 6 towers of short gravitino and 1 tower of short vector

multiplet of [31]. The first line from short graviton, second-fourth lines from short gravitino, fifth-

seventh lines from the short vector, eighth line from hypermultiplets. The last four lines are from

massless graviton and vector multiplets.

The single particle index over the above fields is

(1−x2)Isp(x, y, y2) = (1 − x2)tr
[

(−1)Fxǫ+j3y2J1yJ2+J3
2

]

(3.1)

=−
∞
∑

k=1

χk/2(y)χk/2(y
1/2
2 )2xk+4 − x4

+

∞
∑

k=0

(

χk/2+1(y
1/2
2 )2χk/2(y)+2χk/2(y

1/2
2 )χk/2+1(y

1/2
2 )χk/2+1(y)

)

xk+4

−
∞
∑

k=1

(

χk/2(y2)
2χk/2+1(y) + 2χk/2(y

1/2
2 )χk/2+1(y

1/2
2 )χk/2(y)

)

xk+2

−(χ1(y) + 2χ1(y
1/2
2 ) + 2)x2

Isp =
x
(

y
1/2
2 + y

−1/2
2

)2 (

(y + y−1) − x(y
1/2
2 + y

−1/2
2 )2 + x2(y + y−1)

)

(1 − xy1y2) (1 − xy/y2) (1 − xy2/y) (1 − x/(yy2))

with χj(y) = y2j+1−y−2j−1

y−y−1 , where J1,2,3 is the Cartan of SU(2)1,2,3, respectively, and the

combination J2 + J3 is to be identified with the U(1)B charge carried by the monopoles
∑

i ni =
∑

i ñi in the large N limit. y would later be identified with y1 in field theory

as y = y
1/2
1 .

Expanding this result in powers of y2, one obtains the single paraticle indices with
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definite U(1)B (or J2 + J3) charges as follows:

I(0)
sp = 2

(

xy
1/2
1

1 − xy
1/2
1

+
xy

−1/2
1

1 − xy
−1/2
1

− x2

1 − x2

)

(3.2)

I(1)
sp =

x
(

y + y−1 + 4x3 + x(−y−1 + y)2 − 3x2(y−1 + y)
)

(1 − x2)(1 − xy−1)(1 − xy)

I(2)
sp =

x2(x4y3 − 3x3(y2 + y4) − y(1 + y2 + y4) + 3x2(y + y5) − x(1 − 2y2 − 2y4 + y6))

(−1 + x2)(x− y)y2(−1 + xy)
,

and so on (y = y
1/2
1 ).

3.2 Field theory

The field theory model proposed for M2-branes on C(Q111) adds four fundamental chiral

supermultiplets to the N = 6 theory: two of them q1, q2 are anti-fundamental in the first

gauge group, while the other two q̃1, q̃2 are fundamental in the second gauge group. This

model is proposed to described M2-branes on C(Q111) when the bare Chern-Simons level

k is 0. One should also add the following superpotential

∆W = q1A1q̃1 + q2A2q̃2 (3.3)

to the N =6 theory.

In the U(1)×U(1) theory, the OPE of the monopole operators T , T̃ with charges (1)(1)

and (−1)(−1) is given by T T̃ = A1A2, which can be solved as

A1 = a1b2 , A2 = b1a2 , T = a1b1 , T̃ = a2b2 . (3.4)

This solution is invariant under (a1, a2, b1, b2) → (λa1, λa2, λ
−1b1, λ

−1b2). On the space of

(B1, B2, a1, a2, b1, b2), C
6//U(1)2 is given by (µ−2B1, µ

−2B2, µλa1, µλa2, µλ
−1b1, µλ

−1b2),

or equivalently (λB1, λB2, µa1, µa2, νb1, νb2) with λµν = 1, giving the cone over Q111. The

three SU(2) symmetries are given by rotating B1, B2 or a1, a2 or b1, b2.

In the non-Abelian field theory, only the SU(2) rotating B1, B2 is manifest. For the

remaining SU(2)’s only the Cartans could be manifest. Under the Cartans of second and

third SU(2)’s rotating a1, a2 and b1, b2, A1,2 carry charge ±1
2 and ∓1

2 . Also, the monopole

charge 1
2

∑

ni(=
1
2

∑

ñi in the large N limit) would contribute to this charge. Phase

rotations of A1,2 explained above for are not symmetries unless accompanied by appropriate

rotations of fundamental fields, to make the superpotential invariant. For simplicity, we

only weight the states with the sum of two SU(2) Cartans in this paper, carried by the

monopole charges.

The bosonic fields and charges are listed in table 5. Note that the R-charges of fields

are constrained to have the superpotential marginal, after which only one parameter b

is left. This parameter is expected to be b= 1
3 , for instance from the study of baryonic

states from the gravity dual. This can be determined by studying the extremization of the

partition function [21], say in the large N limit [13], or by comparing the O(N) energy

spectrum of the index with gravity. In this paper, we only study the low energy spectrum
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fields SU(2)1 SU(2)2 + SU(2)3 R U(N) × U(N)

B1 +1/2 0 b = 1/3 (N̄ ,N)

B2 −1/2 0 b = 1/3

A1 0 0 a = 1 − b (N, N̄)

A2 0 0 a = 1 − b

q1 0 0 1+b
2 (N̄ , 1)

q2 0 0 1+b
2

q̃1 0 0 1+b
2 (1, N)

q̃2 0 0 1+b
2

T = (1)(1) 0 1 1 − b

T̃ = (−1)(−1) 0 −1 1 − b

Table 5. Fields and charges: SU(2)1,2,3 denote the Cartan charges.

in the large N limit and work with the parameter b unfixed. It will turn out that the low

energy large N index does not depend on b, after imposing the gauge invariance constraint

(holonomy integrals, to be explained shortly).

From the general expressions in [23], one finds the following index with monopoles

charges {ni}, {ñi}:

I=
xǫ0

(symmetry)

∫
[

dαdα̃

(2π)2

]

eib0 exp





N
∑

i,j=1

∞
∑

n=1

1

n
xn|ni−ñj |

(

f+(·n)e−in(αi−α̃j)+f−(·n)ein(αi−α̃j)
)





exp

[

N
∑

i=1

∞
∑

n=1

1

n
xn|ni| (fB(·n)e−inαi + fF (·n)einαi

)

+ (ni, αi → ñi,−α̃i)

]

exp



−
N
∑

i6=j

∞
∑

n=1

1

n

(

xn|ni−nj |e−in(αi−αj) + (ni, αi → ñi, α̃i)
)



 (3.5)

ǫ0 =

N
∑

i,j=1

|ni − ñj| −
∑

i<j

(|ni − nj| + |ñi − ñj|) +
1 − b

2

N
∑

i=1

(|ni| + |ñi|)

b0 =
N
∑

i=1

(|ni|αi − |ñi|α̃i) . (3.6)

f+ =
xb

1 − x2

(

y
1/2
1 + y

−1/2
1

)

− 2x1+b

1 − x2
(from B†

a, ψAa)

f− =
2x1−b

1 − x2
− x2−b

1 − x2

(

y
1/2
1 + y

−1/2
1

)

(from A†
a, ψBa)

fB =
2x

1+b
2

1 − x2
, fF = − 2x

3−b
2

1 − x2
. (3.7)
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Again after going to the large N limit with energy and monopoles fixed to O(1), the index

factorizes as

IN→∞ = I0I
+I− (3.8)

where

I0 =

∞
∏

n=1

1

1 − f+(·n)f−(·n)
exp

[ ∞
∑

n=1

1

n

2fBfF + f−f2
B + f+f2

F

1 − f+f−
(·n)

]

=

∞
∏

n=1

(1 − x2n)2
(

1 − xny
n/2
1

)2 (

1 − xny
−n/2
1

)2 . (3.9)

Note that the second factor involving fundamental letter indices is simply 1. The part I+

depending on monopoles with positive flux is given by

I+ =
xǫ0

(symmetry)

∫
[

dαdα̃

(2π)2

]

ei
P

i(niα−ñiα̃i) (3.10)

exp

[

∑

i,j=1

∞
∑

n=1

1

n

(

xn|ni−ñj |−xn|ni|+n|ñj|
)(

f+(·n)e−in(αi−α̃j) + f−(·n)ein(αi−α̃j)
)

]

exp

[

−
∑

i,j

∞
∑

n=1

1

n

(

(1 − δij)x
n|ni−nj | − xn|ni|+n|nj |

)

e−in(αi−αj)

−
∑

i,j

∞
∑

n=1

1

n

(

(1 − δij)x
n|ñi−ñj | − xn|ñi|+n|ñj|

)

e−in(α̃i−α̃j)

]

Again the fundamental degrees disappear in I+, apart from their contribution to ǫ0 and

b0. On the gravity side, the flux
∑

ni =
∑

ñi in the large N corresponds to the sum of

the Cartans of the two SU(2)’s. The U(1)B neutral graviton contribution in (3.2) becomes

exp

[ ∞
∑

n=1

1

n
I(0)
sp (xn, yn

1 )

]

, I(0)
sp (x, y1) =

2xy
1/2
1

1 − xy
1/2
1

+
2xy

−1/2
1

1 − xy
−1/2
1

− 2x2

1 − x2
, (3.11)

in perfect agreement with I0 in (3.9) from field theory.

Let us now turn to the study of U(1)B charged states. From the structure of

the ‘quantum’ Chern-Simons phase factor ei(|ni|αi−|ñi|α̃i), one can easily confirm that

I+(x, y1) = I−(x, y1). We thus study I+ only. We again start from the flux (1)(1),

which should agree with the single graviton particles having unit U(1)B charge.

I+
(1)(1)(x, y1) = x1−b

∫

dα

2π
eiα

(

1 − x1+be−iα
)2
(

1 − x2−by
1/2
1 eiα

)(

1 − x2−by
−1/2
1 eiα

)

(

1 − xby
1/2
1 e−iα

)(

1 − xby
−1/2
1 e−iα

)

(1 − x1−beiα)
2
(1 − x2)2

.

(3.12)

After performing the contour integral, one obtains

I+
(1)(1) = −xy

−1/2
1

1 − x2
− xy

1/2
1

1 − x2
+

2xy
−1/2
1

1 − xy
−1/2
1

+
2xy

1/2
1

1 − xy
1/2
1

. (3.13)

This completely agrees with the gravity index I
(1)
sp .
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One can continue checking the agreement by studying the sector with two fluxes. One

should consider the fluxes (2)(2), (1, 1)(1, 1), (2)(1, 1), (1, 1)(2). One finds

I(2)(2) = x2(1 + 1/y2 + y2) + x3(2/y3 + 2y3) + x4(2/y4 − 2/y2 − 2y2 + 2y4)

+x5(2/y5 + 2/y + 2y + 2y5) + x6(−4 + 2/y6 + 1/y4 − 2/y2 − 2y2 + y4 + 2y6)

+x7(2/y7 − 4/y3 + 4/y + 4y − 4y3 + 2y7)

+x8(−3 + 2/y8 + 1/y4 + 2/y2 + 2y2 + y4 + 2y8) + · · ·
I(11)(11) = x2(1 + 1/y2 + y2) + x3(2/y3 + 2/y + 2y + 2y3)+x4(2 + 5/y4 + 2/y2 + 2y2+5y4)

+x5(6/y5 + 6y5) + x6(5 + 9/y6 − 1/y4 + 2/y2 + 2y2 − y4 + 9y6)

+x7(10/y7+4/y3+2/y+2y+4y3+10y7)

+x8(−3 + 13/y8 − 1/y4 − 3/y2 − 3y2 − y4 + 13y8) + · · ·
I(2)(11) = I(11)(2) = x6 − x7(2/y + 2y) + x8(5 + 1/y2 + y2) + · · · (3.14)

where y = y
1/2
1 . On the gravity side, the single particle index with U(1)B charge 2 and two

particle contributions from particles with U(1)B charge 1 are

I(2)
sp (x, y) = x2(1+1/y2+y2)+ x3(2/y3 + 2y3) + x4(2/y4 − 1/y2 − y2 + 2y4)

+x5(2/y5+2y5) + x6(2/y6 − 1/y2 − y2 + 2y6) + x7(2/y7+2y7)

+x8(2/y8 − 1/y2 − y2 + 2y8) + · · ·
I
(1)
sp (x2, y2)+I(1)(x, y)2sp

2
= x2(1 + 1/y2 + y2) + x3(2/y3 + 2/y + 2y + 2y3)

+x4(2 + 5/y4 + 1/y2 + y2 + 5y4)

+x5(6/y5 + 2/y + 2y + 6y5) + x6(3 + 9/y6 + 1/y2 + y2 + 9y6)

+x7(10/y7 + 2/y + 2y + 10y7)

+x8(4 + 13/y8 + 2/y2 + 2y2 + 13y8) + · · · . (3.15)

One finds that

I(2)(2) + I(11)(11) + I(2)(11) + I(11)(2) = I(2)
sp (x, y)+

I
(1)
sp (x2, y2) + I(1)(x, y)2sp

2
+O(x9) , (3.16)

a perfect agreement up to the order we checked.

4 The index for M2-branes probing C(M32)

4.1 Gravity

The gravity spectrum of M-theory on AdS4×M32 was obtained in [38]. Among them, in this

paper we are only interested in the BPS states saturating the bound ǫ ≥ h0 + j3, where h0

is the U(1) R-charge. Exactly one field in AdS4 appears to be BPS in each short OSp(2|4)
supermultiplet. Those fields are listed in table 6 with their quantum numbers for energy ǫ,

angular momentum j3, SU(3) label (M1,M2) which follows the same convention as [37] and

our presentation for N010 in section 2, SU(2) global symmetry. The Cartan of SU(2) global
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ǫ j3 ǫ+ j3 SU(3) SU(2)

p ≥ 1 2p+ 5/2 3/2 2p + 4 (0, 2p) p

p ≥ 0 2p + 3 1 2p + 4 (1, 3p + 1) p+ 1

p ≥ 1 2p + 1 1 2p + 2 (0, 3p) p− 1

p ≥ 1 2p+ 3/2 1/2 2p + 2 (1, 3p + 1) p

p ≥ 1 2p+ 3/2 1/2 2p + 2 (0, 3p) p+ 1

p ≥ 1 2p 0 2p (0, 3p) p

· 5/2 3/2 4 (0, 0) 0

· 3/2 1/2 2 (1, 1) 0

· 3/2 1/2 2 (0, 0) 1

· 3/2 1/2 2 (0, 0) 0

Table 6. Supersymmetric fields on AdS4 ×M32.

symmetry is identified as a ‘baryon-like’ U(1) symmetry carried by the sum of monopole

charge
∑

pi in the first gauge group U(N)−2. This U(1) which we often call ‘baryon-like’

should not be confused with the real baryon U(1) symmetry, as M32 has topological 5-

cycles on which M5-brane baryons can wrap. In the table, the first line comes from short

graviton multiplets, the second and third lines from the short gravitino multiplets, the

fourth and fifth lines from the short vector multiplets, sixth from the hypermultiplets. The

seventh line is from the massless graviton multiplets. The eighth and ninth line is from the

massless vector multiplet for the SU(3) and SU(2) isometry, respectively. The last line is

from the U(1) baryon symmetry for M5-branes wrapped on 5-cycles in M32.

Each field on the table contributes to the index. To calculate the single particle index,

one also has to take the wavefunction factors in AdS4 into account. This amounts to putting

the factor 1
1−x2 to the index over the above fields. Denoting by h1, h2 the Cartans of SU(3)

given by the diagonal matrices 1
2diag(1,−1, 0), 1

2diag(0, 1,−1) and by h3 the SU(2) Cartan,

one obtains

Isp(x, y1, y2, y3) = tr
[

(−1)Fxǫ+j3yh1
1 yh2

2 yh3
3

]

(4.1)

=
1

1 − x2



−
∞
∑

p=1

x2p+4χ
(0,2p)
SU(3)(y1, y2)χ

p
SU(2)(y3)+





where

χM1,M2

SU(3) (y1, y2) =

∣

∣

∣

∣

∣

∣

∣

yM1+M2+2
1 1/yM1+M2+2

2 (y2/y1)
M1+M2+2

yM2+1
1 1/yM2+1

2 (y2/y1)
M2+1

1 1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

y2
1 1/y2

2 y
2
2/y

2
1

y1 1/y2 y2/y1

1 1 1

∣

∣

∣

∣

∣

∣

∣

(4.2)
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and

χj
SU(2)

(y3) =
y

j+1/2
3 − y

−(j+1/2)
3

y
1/2
3 − y

−1/2
3

(4.3)

are the SU(3) and SU(2) characters.

The general expression for Isp(x, y1, y2, y3) after the infinite sums is very messy, al-

though an explicit closed form expression is available. The expressions we need below to

compare with field theory would be those with definite SU(2) Cartan charge, labeled by y3.

This charge would correspond to the U(1)B baryon-like charge carried by the monopoles.

The single particle indices with this charge being 0, 1, 2 are

I(0)
sp =

x2/y3
1

1 − x2/y3
1

+
x2y3

2

1 − x2y3
2

+
x2y3

1/y
3
2

1 − x2y3
1/y

3
2

− 3x2

1 − x2
(4.4)

I(1)
sp =

x2/y3
1

1 − x2/y3
1

+
x2y3

2

1 − x2y3
2

+
x2y3

1/y
3
2

1 − x2y3
1/y

3
2

− x4

1 − x2

(

1/y3
1 + y3

2 + y3
1/y

3
2

)

+x2
(

y2
1/y2 + y2

2/y1 + y1/y
2
2 + y2/y

2
1 + y1y2 + 1/(y1y2)

)

I(2)
sp =

(x8 + x4y3
1 − 2x6y3

1 + x2y6
1 − x4y6

1 − y9
1 + x2y9

1 − x6y9
1 + x8y9

1 + x4y12
1 − x6y12

1 )

(−1 + x2)y6
1(x

2 − y3
1)

+
x6y6

1

(−1 + x2)y6
2

+
x4y4

1

y5
2

+
x4y2

1 + x4y5
1

y4
2

+
x4 − x2y3

1

y3
2

+
x4 + x4y6

1

y2
1y

2
2

+
x4

y4
1y2

+
x4y2

y5
1

+
x4(1 + y6

1)y
2
2

y4
1

+
x2(x2 − y3

1)y
3
2

y3
1

+
x4(1 + y3

1)y
4
2

y2
1

+
x4y5

2

y1
+

x6y6
2

−1 + x2
+

x2y3
1

(−x2y13 + y23)
− 1

(−1 + x2y3
2)

and so on, where I
(p)
sp =

∮

|y3|=1
dy3

yp+1
3

Isp(x, y1, y2, y3) is the single particle index with U(1)B

charge p. Note that, as one takes the SU(3) chemical potentials y1, y2 to 1, a dramatic

simplification (or cancelation) appears:

Isp(x, y1 =1, y2 =1, y3) =
9x2y3

(1 − x2y3)2
+

9x2y−1
3

(1 − x2y−1
3 )2

, (4.5)

or

I(0)
sp = 0 , I(1)

sp = 9x2 , I(2)
sp = 18x4 , I(3)

sp = 27x6 , · · · (4.6)

and so on.

4.2 Field theory

The field theory proposed for M2-branes on C(M32) is given by the quiver diagram in

figure 1. The Chern-Simons levels for the three U(N) gauge fields are (−2k, k, k) for

M32/Zk [34, 35]. For the brevity of notation, we shall often denote the fields by Xi
23 = Ai,

Xi
31 = Bi, Xi

12 = Ci. i = 1, 2, 3 is the triplet index for the SU(3) global symmetry.

This N =2 model for M32 is chiral in a 4 dimensional sense. As the number of ‘flavors’

3 for each bi-fundamental is odd, one has to worry about the issue of parity anomaly. The

fermion determinant could pick up a minus sign under certain large gauge transformations,
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X12

i

2

1

3 X23

X31

i

i

Figure 1. The quiver diagram of M2-branes on C(M32).

which will make the path integral gauge non-invariant. More concretely, on S2 × S1 that

we are going to consider, the relevant large gauge transformations are 2π periodic shifts of

the holonomy variables in our convention. The possible −1 sign will come from the phase

eib0 defined below.

The canonical way of making such a theory consistent would be adding Chern-Simons

term with appropriate half-integral levels, providing an extra minus sign to the path in-

tegral measure under the large gauge transformation which cancels that from the fermion

determinant. As we shall see in the context of index shortly, the required Chern-Simons

term is a mixed Chern-Simons term between the three gauge fields. As we shall see in the

context of the index below, the required mixed Chern-Simons term is needed only for the

overall U(1)3 part of the U(N)3 gauge fields. It should be very interesting to study the

index for a suitably modified theory of this sort.6

In this section, we try to do best to make the proposed model of [34, 35] sensible in

the context of the superconformal index. To this end, let us consider at this point another

possible way of making the path integral consistent on S2×S1, which later will turn out to

be a prescription yielding an interesting index structure containing all the gravity spectrum.

At least when one considers a theory on S2×R (or S2×S1) rather than generic case, there

appear nontrivial sectors labeled by the magnetic monopole charges. Depending on these

magnetic charges that we allow in this QFT as we shall explain below, it is possible to

make the path integral measure to be invariant under the large gauge transformations of

holonomies. We postpone the explanation until we have a concrete form of this measure.

We take the dimensions of three chiral fields Ai, Bi, Ci to be a, b, c, respectively. They

should satisfy a+b+c = 2 for the superpotential to be marginal. In principle, the parame-

ters a, b, c, including the superpotential constaint, could be derivable from an extremization

principle like that of [21]. We simply start with them unfixed, but at appropriate stage

will constrain them by hand if necessary, to have a sensible model with the M32 gravity

6We thank I. Klebanov for discussions, and especially F. Benini for explaining to us his studies on this

issue.
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dual. The only other constaint we impose will be b = c, which is anyway reasonable from

the quiver diagram.

From the general expression in [23], one can immediately write down the integral

expression for the index for this model:

I(p,q,r) =
xǫ0

(symmetry)

∫
[

dαdβdγ

(2π)3

]

eik
P

i(−2piαi+qiβi+riγi)eib0(p,q,r,α,β,γ) (4.7)

exp

[

N
∑

i,j=1

∞
∑

n=1

1

n
xn|qi−rj |

(

f+
A (·n)e−in(βi−γj) + f−A e

in(βi−γj)
)

+(A, β, γ, q, r → B, γ, α, r, p) + (A, β, γ, q, r → C,α, β, p, q)

−
∑

i6=j

∞
∑

n=1

1

n
xn|pi−pj |e−in(αi−αj) + (p, α→ q, β) + (p, α→ r, γ)

]

with

f+
A =

xa

1 − x2
(1/y1 + y2 + y1/y2) , f−A = − x2−a

1 − x2
(y1 + 1/y2 + y2/y1) ;

f±B,C = (replace a→ b, c) (4.8)

and

b0 =
3

2

[

∑

|pi − qj|(αi − βj) +
∑

|qi − rj|(βi − γj) +
∑

|ri − pj|(γi − αj)
]

(4.9)

ǫ0 =
3

2

(

(1−c)
∑

i,j

|pi−qj| + (1−a)
∑

i,j

|qi−rj | + (1−b)
∑

i,j

|ri−pj|
)

−
∑

i<j

(

|pi−pj| + |qi−qj| + |ri−rj |
)

.

The set of N integers {pi}, {qi}, {ri} are monopole charges in U(N)−2k, U(N)k, U(N)k
gauge groups. We shall be mostly interested in the case with k = 1 below.

Let us make comment on the 1-loop shift of the phase b0, which is the index version of

the 1-loop fermion determinant contributing to the Chern-Simons term. This could pick up

dangerous minus signs by the large gauge transformations. The large gauge transformations

in this case are periodic shifts of the holonomy variables αi, βi, γi by 2π, making them live

on a 3N dimensional torus. With generic integers {pi}, {qi}, {ri}, the phase eib0 may not

be well-defined on this torus due to the 3
2 factor. However, by suitably restricting these

integers, constraining the monopole sectors of the theory, we can make this phase well

defined. Let us see how this can happen.

Let us first consider the appearance of a variable αi in the phase eib0 :

exp

[

3

2
αi

N
∑

j=1

(|pi − qj|−|pi − rj |)
]

=exp

[

3

2
αi

N
∑

j=1

(|pi| + |qj | − |pi| − |rj |)
]

e
3
2
αi(even ingeter) ,

(4.10)
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where we used the fact that |m| + |n| − |m − n| is an even integer for integer m,n. The

second phase in the last expression is thus well defined. To have the first part well defined,

we demand the restriction

N
∑

i=1

|qi| =

N
∑

i=1

|ri| mod 2 . (4.11)

Considering the large gauge transformation of βi, γi, one finds that the restriction is
∑ |p| =

∑ |q| =
∑ |r| mod 2. This can again be written as

N
∑

i=1

pi =
N
∑

i=1

qi =
N
∑

i=1

ri mod 2 . (4.12)

These are actually constraining the overall U(1)3 fluxes in U(N)3,

∫

S2

trF1 =

∫

S2

trF2 =

∫

S2

trF3 mod 2 , (4.13)

which are U(N)3 gauge invariant constraints. One interpretation is that this condition

comes from different quantization for Chern-Simons level for U(1) of U(N). Assigning

different Chern-Simons level for U(1) part and SU(N) part out of U(N) is possible. This

suggests that we have to choose the different Chern-Simons levels for U(1) and SU(N) to

make theory free of the potential parity anomalies due to fermion one-loop determinants.

It would be interesting to see if a similar consideration works for other manifolds, say on

S3. Below, we simply consider the index (4.7) with this restriction understood.

Again our main concern of this paper is the large N index with energies kept at O(1).

In particular, we again require only O(1) number of magnetic charges to be nonzero among

the above 3N of them. The details of the large N integration over holonomies with zero

flux is analogous to the previous section. After this calculation, the large N index is given

by

IN=∞(x, y1, y2, y3) = I0(x, y1, y2)I
′(x, y1, y2, y3) , (4.14)

where

I0 =
∞
∏

n=1

(1 − x2n)3

(1 − x2n/y3n
1 )(1 − x2ny3n

2 )(1 − x2ny3n
1 /y3n

2 )
≡ exp

[ ∞
∑

n=1

1

n
f(xn, yn

1 , y
n
2 )

]

(4.15)

with

f(x, y1, y2) =
x2/y3

1

1 − x2/y3
1

+
x2y3

2

1 − x2y3
2

+
x2y3

1/y
3
2

1 − x2y3
1/y

3
2

− 3x2

1 − x2
. (4.16)
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The monopole part I ′ is given by

I ′(p,q,r) =
xǫ0

(symmetry)

∫
[

dαdβdγ

(2π)3

]

eik
P

i(−2piαi+qiβi+riγi)eib0(p,q,r,α,β,γ) (4.17)

exp

[

∑

i,j=1

∞
∑

n=1

1

n
(xn|qi−rj | − xn|qi|+n|rj|)

(

f+
A (·n)e−in(βi−γj) + f−A e

in(βi−γj)
)

+(A, β, γ, q, r → B, γ, α, r, p) + (A, β, γ, q, r → C,α, β, p, q)

−
∑

i,j

∞
∑

n=1

1

n

(

(1 − δij)x
n|pi−pj | − xn|pi|+n|pi|

)

e−in(αi−αj)

+(p, α→ q, β) + (p, α→ r, γ)

]

where the holonomies αi, βi, γi range over those supporting nonzero fluxes. For a given set

of fluxes, this index does not have any factorization structure.

As the diagonal combination of U(1) ⊂ U(N)−2k × U(N) × U(N)k decouples with

matter fields, the fluxes should satisfy

2
∑

pi =
∑

qi +
∑

ri . (4.18)

Also, the magnetic charge
∑

i

pi (4.19)

for the first gauge group U(N)−2k is to be identified with the Cartan of the SU(2) flavor

symmetry at k= 1, which is explicit in the gravity side. We call this the U(1)B ‘baryon-

like’ symmetry, again not to be confused withe the real baryon symmetry for wrapped

M5-branes.

As our first goal is to study gravitons with O(1) numbers of magnetic flux, we consider

the condition for the energy to remain O(1). Firstly, from the phase b0, it happens that

there can appearO(N) number of phase variables in the exponent even with O(1) number of

fluxes. This would cause gauge invariant operators to carry O(N) energy after integration.

For this not to happen, one finds that

∑

|p| =
∑

|q| =
∑

|r| (4.20)

has to be imposed, where the summations are over all nonzero fluxes in each gauge group.

Of course this is compatible with the flux restriction we imposed above. Let us next

investigate the possible O(N) contribution to ǫ0. Denoting by N1, N2, N3 the number of

zero magnetic fluxes in each gauge group, one finds

N1

(

3

2
(1 − c)

∑

|q| + 3

2
(1 − b)

∑

|r| −
∑

|p|
)

+ cyclic. (4.21)

When the condition (4.20) is met, the O(N) contribution always vanishes from a+b+c = 2.

Firstly, the expression (4.15) for I0 from field theory completely agrees with the gravity

index I(0) coming from U(1)B neutral particles, similar to the N =6 models and also the
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models studied in the previous sections. Actually, when the large N index is factorized into

I0I
+I− acquiring contribution from U(1)B neutal sector, positive monopoles and negative

monopoles, respectively, this agreement I0 = I(0) has to be the case. But as we shall

see more concretely with examples, the index I ′ does not generally factorize to I+I−

for separate saddle points (i.e. monopole fluxes). Below, we shall explain how such a

factorization can appear after summing over the saddle points.

Let us first phrase our claim, and then illustrate by many examples. For a given saddle

point, we decompose nonzero magnetic charges {pi} into positive and negative ones, and

call them pi+, pi−, respectively. We will set b = c for the trial R-charge, which we shall

motivate shortly with examples, so that the only independent parameter left is b. Define

P+ =
∑

pi+ , P− =
∑

|pi−| (4.22)

to be the sums of all positive/negative fluxes. Defining I(P+,P−) to be the sum over all

indices whose saddle points have given values of P+, P−, this quantity can be written as

I(P+,P−) = Î(P+,P−) + Ib
(P+,P−) , (4.23)

where Î refers to the index summed over the sectors whose energies do not depend on b,

and Ib that does depend on b.7 We find that

Î(P+,P−) = Î(P+,0)Î(0,P−) = Igrav
P+

Igrav
P−

, (4.24)

i.e. Î factorizes into two contribution which are identical to the multi-graviton index Igrav
P+

with U(1)B charge P+ coming from positively charged particles, and the index Igrac
P−

with

charge −P− coming from negatively charge particles. If, for some reason, one has to discard

all the seemingly existing saddle points contributing to Ib, then one finds from (4.24) that

the following factorization is allowed. Labeling the index with its U(1)B charge P+ − P−
with the chemical potential y3, the above factorization implies

Î ′(x, y1, y2, y3) =

∞
∑

P+,P−=0

y
P+−P−

3 Î(P+,P−)(x, y1, y2) (4.25)

=

∞
∑

P+=0

y
P+

3 Î(P+,0)(x, y1, y2)

∞
∑

P−=0

y
−P−

3 Î(0,P−)(x, y1, y2) ≡ I+I− . (4.26)

I+ and I− separately agrees with the gravity index coming from particles with posi-

tive/negative charges.

Before proceeding, let us explain what could be the meaning of discarding/keeping

Ib. We have two possibilities in mind. Firstly, quite naturally, if we seriously keep this

contribution, this could simply be reflecting the fact that the proposed field theory is not

the correct one for M-theory on AdS4×M32, as the index captures extra branches of states

other than those seen in the gravity. This looks a bit similar to the phenomenon observed

7Coefficients of the expansion with chemical potentials are always independent of b in both parts, being

integers from the Plethystic exponential structure.
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in the so-called ‘dual ABJM’ model [39] that extra branches of moduli spaces develop [40],

although appearing here in a much more nontrivial way of showing two sectors in the

index. As we shall explain in more detail below, the fluxes contributing to Î and Ib have

clear distinctions in their properties. So even though this model itself does not seem to be

showing the correct gravity spectrum, it still sounds quite amazing that the known gravity

contribution is so well organized as above. So we could hope that a small modification of

the existing model could provide a much better index structure.

One the other hand, let us also emphasize a potential subtlety of the localization calcu-

lation in quantum field theories which may justify discarding Ib as unphysical. Localization

refers to a property of an integral with fermionic, or nilpotent, symmetry Q which makes

the integral to acquire contribution only around the fixed points of the symmetry. In par-

ticular, a practical way of carrying out such integrals is to add to the integrand Q-exact

measures with free parameters, using which one can perform a Gaussian evaluation of the

exact result. The location of the fixed points of the symmetry in the integration domain

could change during this deformation. This change of the fixed point profiles does not

change the result as long as the saddle points do not disappear or appear during the defor-

mation. This can happen if the integration domain is noncompact. A classic example of

this sort appears in the calculation of the partition function of 2 dimensional topological

Yang-Mills theory [41].

The localization calculation of the index, or the path integral for the partition function

of Chern-Simons-matter theory on S2×S1 in principle has the same issue when we introduce

the Yang-Mills like deformation of [16]. It is not easy to determine a priori which saddle

points are to be kept and which to be discarded. In the case of N =6 theory, originally some

saddle points which appeared in the deformed theory of [16] were not clearly understood

in the QFT without deformation. Many of these saddle points were constructed later from

the undeformed theory [42], justifying in the honest sense the prescription of [16].

In the present case of M32, the observation summarized above suggest that all sad-

dle points which contain the undetermined trial R-charge parameter b might have to be

discarded as being unphysical ones. Also, the possibility of discarding Ib is not simply dis-

carding all unwanted terms in the index, as the ambiguity mentioned above only allows one

to keep or discard the whole contribution from a saddle point, not allowing to keep some

term while discarding others. It should be interesting to see if this is the case or not for

this model, using the QFT on S2 ×R written down in [23] with and without deformations.

Now let us present examples which shows that our claims (4.23), (4.24) are true in

various sectors. The sector with p = q = r = 1 is for smallest positive U(1)B charge.

Inserting ǫ0 = 0 and b0 = 0, the field theory index is

∫

α,β,γ
ei(−2α+β+γ) (1 − x2−cei(α−β))3(1 − x2−aei(β−γ))3(1 − x2−bei(γ−α))3

(1 − xce−i(α−β))3(1 − xae−i(β−γ))3(1 − xbe−i(γ−α))3(1 − x2)3
. (4.27)

The result turns out to be extremely simple: 9xa+2b. Note that in this simple result, even

the constant infinite series factor 1
(1−x2)3

is canceled out, implying that there should be a

large amount of cancelation between bosonic and fermionic operators.
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Let us explain the first few terms to illustrate how to understand this number, and how

the higher order cancelation is happening. We should suitably excite the fields to obtain the

phase ei(2α−β−γ) ≡ u2

vw . There are two possible ways of obtaining it at the lowest energy

xa+2b. This is either by exciting scalars AiB(jBk) carrying w
v

(

u
w

)2
phase which yields

(3xa)(6x2b), or by exciting BiΨ̄Cj as u
v

u
w with (3xb)(−3x2−c), yielding (28 − 9)xa+2b =

9xa+2b in total and explains the above result.8 One may further wonder what happens

at higher orders. One can easily find that the phase can also be provided as
(

u
v

)2 v
w by

ψC[iψCj]ψAk with the index (3x2a+2b)(−3xb+c) = −9xa+2b+2, and by (AB2−BψC)(ABC−
BψB) with (6 · 10 · 3 − 33 · 6 − 10 · 32 + 6 · 32)xa+2b+2 = −18xa+2b+2. So at this order,

one obtains 9xa+2b(1 − x2)3, where the second factor cancels the overall factor 1
(1−x2)3

,

consistent with our general computation.

We should identify 9xa+2b with suitable gravity states, which will give us a hint about

the values of the R-charge a, b. Obviously, there is a cancelation 18 − 9 = 9 between

bosonic and fermionic modes. As for the bosonic modes AB2, it is easy to guess what are

the true BPS operators, as they are chiral rings. One simply symmetrizes all three SU(3)

indices, obtaining 10xa+2b. So this should be part of the hypermultiplet with p= 1 and

SU(3) representation (0, 3). Thus, we find a+ 2b = 2, i.e. b= c. This in turn implies that

only one out of 9 operators BψC survive to be BPS. It is easy to find what they are in the

gravity dual. They are the fermions in the massless vector multiplet for SU(2) symmetry,

as the operator carries nonzero U(1)B to be the SU(2) Cartan. Therefore, only the SU(3)

singlet survives to be BPS.

In fact, summing over an infinite tower of all single gravity particles with U(1)B charge

1, one obtains I
(1)
sp (x) = 9x2 as shown in the previous subsection, agreeing with I(1)(1)(1) cal-

culated above. More generally, with all chemical potentials y1, y2 kept, we have also checked

that the integral (4.27) again completely reproduces the gravity index I(1)sp of (4.4).

To get a more nontrivial test of our claim, we investigate the sector with charge 2 with

P+ = 2 and P− = 0. We shall compare the index with the charge 2 gravity index made of

positively charge particles only. Up to O(x12) and for any trial R-charge b, we find

I(2)(2)(2) = 18x4 + 9x8 − 27x10 − 27x12 · · ·
I(1,1)(1,1)(1,1) = 45x4 − 54x8 + 378x10 − 1053x12 · · ·
I(1,1)(1,1)(2) = 0 + · · ·
I(1,1)(2)(1,1) = 45x8 − 360x10 + 1251x12 · · ·
I(2)(1,1)(1,1) = 0 + · · ·
I(2)(2)(1,1) = 9x8 − 18x10 − 171x12 · · ·
I(2)(1,1)(2) = −9x8 + 27x10 + 27x12 · · ·
I(1,1)(2)(2) = −27x12 · · · . (4.28)

8Just by requiring gauge invariance, one might think that the operator of the form BiC
†
j could screen

the monopole charge (1)(1)(1) with scale dimension b + c. The gauge invariance certainly can be achieved.

However, since all the fields are chiral, this operator is not BPS (i.e. does not belong to chiral ring) and

would acquire large anomalous dimension at strong coupling. The operators of the form BiCj are chiral,

but cannot screen the monopole charge.
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At O(x4), the first two contributions are the expected ones. The first is the single particle

contribution with U(1)B charge 2, from hypermultiplets scalars in (0, 6) and vector multi-

plet fermion in (0, 3): 28−10−18. The second is simply the 2-particle states of the 9 charge

1 particles: 9 + 36 = 45. At higher orders, the sum of the above indices is 63x4 −O(x14).

From the results summarized in the previous subsection, the single particle gravity

index at charge 2 and 2 particle index of charge 1 particles are given by

I(2)
sp (x) = 18x4 ,

I
(1)
sp (x2) + I

(1)
sp (x)2

2
= 45x4 , (4.29)

again after a vast cancelation of the infinite tower of graviton states, similar to the charge 1

single particle index. Although the expression is too messy to be recorded here, we report

that we have also checked the agreement after keeping the SU(3) chemical potentials y1, y2.

Therefore, the positive flux part of the index agrees with the charge 2 field theory index

restricted to the positive fluxes up to O(x14), and we claim this happens to all orders.

To study more nontrivial sectors, we study the sector with U(1)B charge 1 with P+ = 2,

P− = 1. To classify the fluxes in this sector, we denote by P± ≡ ∑ |p±|, O± ≡ ∑ |q±|,
R± ≡ ∑ |r±| the sum over positive/negative fluxes in a gauge group. The conditions for

decoupling overall U(1) and O(1) energy are

P+ + P− = Q+ +Q− = R+ +R− , Q+ −Q− +R+ −R− = 2(P+ − P−) = 2 . (4.30)

These fluxes are again classified by a non-negative integer n, with P+ = n+1, P− = n.

As the sector labeled by n starts at the order x4n+2, we study the saddle points with

P+ = 2, P− = 1 which corrects the n = 0 sector (positive flux only) that we considered

above. Possible values of flux sums are

(Q+, Q−, R+, R−) = (2, 1, 2, 1), (1, 2, 3, 0), (3, 0, 1, 2) . (4.31)

The fluxes in the first case and the correspondinc indices are as follows:

I(2,−1)(2,−1)(2,−1) = I(2)(2)(2)I(−1)(−1)(−1) = 9x2(18x4 + 9x8 − 27x10 − 27x12 + · · · )
I(1,1,−1)(1,1,−1)(1,1,−1) = I(1,1)(1,1)(1,1)I(−1)(−1)(−1) = 9x2(45x4− 54x8+378x10−1053x12 · · · )

I(2,−1)(2,−1)(1,1,−1) = I(2)(2)(1,1)I(−1)(−1)(−1) = 9x2(9x8 − 18x10 − 171x12 · · · )
I(2,−1)(1,1,−1)(2,−1) = I(2)(1,1)(2)I(−1)(−1)(−1) = 9x2(−9x8 + 27x10 + 27x12 · · · )
I(1,1,−1)(2,−1)(2,−1) = I(1,1)(2)(2)I(−1)(−1)(−1) = 9x2(−27x12 + · · · )

I(2,−1)(1,1,−1)(1,1,−1) = 162(27x16 − 125x18 + 169x20 + · · · )
I(1,1,−1)(2,−1)(1,1,−1) : 405x10 − 3240x12 + 11259x14 + · · ·
I(1,1,−1)(1,1,−1)(2,−1) : 0x14 + · · · . (4.32)
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The 12 fluxes in the second case are

I(2,−1)(1,−2)(3) = x4b
(

9x6 − 9x8 − 171x10 − 135x12 + 747x14 + 1323x16 + · · ·
)

I(2,−1)(1,−2)(2,1) = x4b
(

−63x8 + 144x10 + 270x12 − 351x14 − 1440x16 + · · ·
)

I(2,−1)(1,−2)(1,1,1) = x4b
(

180x14 − 261x16 + · · ·
)

I(2,−1)(1,−1,−1)(3) = x4b
(

−x10 + x12 + 17x14 + 17x16 + · · ·
)

I(2,−1)(1,−1,−1)(2,1) = x4b
(

126x12 − 288x14 − 288x16 + · · ·
)

I(2,−1)(1,−1,−1)(1,1,1) = x4b
(

0x16 + · · ·
)

I(1,1,−1)(1,−2)(3) = x4b
(

−18x10 − 36x12 + 198x14 + 549x16 + · · ·
)

I(1,1,−1)(1,−2)(2,1) = x4b
(

90x8 + 45x10 − 36x12 + · · ·
)

I(1,1,−1)(1,−2)(1,1,1) = x4b
(

0x12 + · · ·
)

I(1,1,−1)(1,−1,−1)(3) = x4b
(

36x14 + · · ·
)

I(1,1,−1)(1,−1,−1)(2,1) = x4b
(

−180x12 + · · ·
)

I(1,1,−1)(1,−1,−1)(1,1,1) = x4b
(

0x12 + · · ·
)

(4.33)

Note the explicit appearance of the trial R-charge b. At generic b, this does not cancel with

any other term in the field theory index: for instance, the first term 9x4b+6 on the first

line, which is larger than x10, cannot combine with other terms listed above and below.

In particular, for the field theory index to match with the gravity index including these

sectors, b has to be half an integer as the gravity spectrum of ǫ+ j3 is all even. The fluxes

in the last case are obtained by flipping the second and third fluxes. We find that, up

to the order that we wish to check, these sectors all give zero contributions (which might

mean that they are identically zero):

I(2,−1)(3)(1,−2) = 0x16bx20 + · · · , I(2,−1)(2,1)(1,−2) = 0x16bx20 + · · · ,
I(2,−1)(1,1,1)(1,−2) = 0x16bx12 + · · · , I(2,−1)(3)(1,−1,−1) = 0x16bx12 + · · ·
I(2,−1)(2,1)(1,−1,−1) = 0x16bx12 + · · · , I(2,−1)(1,1,1)(1,−1,−1) = 0x16bx12 + · · ·
I(1,1,−1)(3)(1,−2) = 0x16bx12 + · · · , I(1,1,−1)(2,1)(1,−2) = 0x8bx10 + · · ·

I(1,1,−1)(1,1,1)(1,−2) = 0x8bx10 + · · · , I(1,1,−1)(3)(1,−1,−1) = 0x8bx10 +

I(1,1,−1)(2,1)(1,−1,−1) = 0x8bx10 + · · · , I(1,1,−1)(1,1,1)(1,−1,−1) = 0x8bx10 + · · · . (4.34)

We want to compute the full index up to O(x14) and show that this factorizes into the

product of ‘positive-flux part’ I(P+,P−)=(2,0) and ‘negative-flux part’ I(P+,P−)=(0,1) after sum-

ming over all the saddle points with P+ =2, P− =1. Summing over 32 saddle points with

P+ = 2, P− = 1, one obtains

I(P+,P−)=(2,1) = Î(P+,P−)=(2,1) + Ib
(P+,P−)=(2,1)

≡ 9x2
(

63x4 − 45x8 + 360x10 − 1251x12 + · · ·
)

(4.35)

+(405x10 − 3240x12 + 11259x14 + · · · ) + x4b
(

9x6 + 18x8 − x10 + · · ·
)

,

where Î is the expression on the second line while Ib is the expression on the last line

containing the trial R-charge b. The first parenthesis of the second line is from the first six
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saddle points with factorized indices, the second term from the next three with unfactor-

ized indices, and the last line is from the next 12 saddle points whose leading energy levels

depend on the undetermined trial R-charge b. It is easy to find that the first two contribu-

tions show a nontrivial cancelation and yield Î = (9x2)(63x4) = I(P+,P−)=(2,0)I(P+,P−)=(0,1),

and this agrees with the graviton index consisting of positive charged particles with net

charge 2 and negatively charged particles with charge −1,

Î(x) = I(−1)
sp (x)

(

I(+2)
sp (x) +

I
(+1)
sp (x2) + I

(+1)
sp (x)2

2

)

= (9x2)(63x4) . (4.36)

On the other hand, the Ib contribution does not appear to correspond to anything in the

gravity dual. Especially, considering the allowed range 0 < b < 1 from a, b, c > 0, the

first term is or lower order than O(x10). As we have explained, if these saddle points are

artifacts of our localization calculations introduced by unphysical saddle points ‘flowing

in from infinite’ [41], the remaining index completely agrees with the gravity index. This

however requires a careful study, similar to [42].

At this stage, let us comment that we empirically find from the the above saddle points

a rule for the indices which do not contain b. Namely, in the first eight saddle points, if

one decomposes the positive and negative fluxes into two, each of them separately satisfies

the flux condition (4.18) for the fluxes. Note that this restriction turns out to pick up the

factorizable saddle points only.

5 Discussions

We initiated the index computation of Chern-Simons matter theories with N = 2, 3 theo-

ries. We find the perfect matchings between the field theory index and the gravity index

for N = 3 theory, which describes M2 brane probing N010/Zk theory. On the other hand

we find the several subtleties for N = 2 models even with the impressive matching with the

gravity index. For Q111 model, which is realized as flavored ABJM model, the field theory

index gives the definite prediction for the gravity index, which begs the reexamination of

the KK spectrum of Q111 in the gravity side available in the literature.

For M32 model, the presence of odd number (i = 1, 2, 3) fermions in each bi-

fundamental sector seems to pose a potential issue on whether this theory is consistent

or not. At least in the context of dealing with QFT on S2 × S1 and partition function

there, we find that appropriately restricting the magnetic charges of gauge fields in the

overall U(1)’s of U(N)’s on S2 makes the resulting partition function well-defined. This

is basically due to shifting of Chern-Simons level for U(1) factors (among others) out of

U(N) due to fermion determinant. It would be interesting to work out the structure of

the potential mixed Chern-Simons terms. The comparison with the known gravity index

is amazingly impressive but we face handling with the new saddle points. It could be

important to understand this problem to understand better AdS4/CFT3 correspondence

for vast classes of N = 2 theories. Even though we do not report our computation of the

index for Q111 model suggested at [32, 33], they are suffering from the same problems as

our M32 model has, i.e., potential anomaly issues due to chiral fermions and new saddle
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points. Now these problems are not appearing in the Q111 model [28, 29] we considered,

we hope to construct new M32 model free from such subtleties, yet giving the impressive

matching with the gravity index, which our currentM32 model exhibits. We hope to report

our progress in this direction in near future. However, we emphasize that final verdict on

the current M32 model has not been made yet.
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