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1 Introduction

Theories of gravity coupled to massless higher spin fields [1–5] have received increased at-

tention in recent years due to their appearance within the AdS/CFT correspondence [6–21].

These theories are more complex than the usual supergravity approximation in AdS/CFT

where only a finite number of fields are kept. However they are more tractable than the

full string theory in AdS with infinite towers of massive string excitations.
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One interesting conjecture [11] relates higher spin gravity in AdS4 to the O(N) vector

model in three dimensions. Another [17] relates a higher spin theory in AdS3 to a certain

two-dimensional conformal field theory with enhanced W-algebra symmetry. Higher spin

gravity also appears in the context of a constructive derivation of holography for free field

theory [18, 19].

Three-dimensional higher spin theories [22] are considerably simpler to work with than

their higher dimensional cousins, for two reasons. First, it is consistent to truncate the

tower of higher spin fields to a finite set, namely to only include those with spin s ≤ N .

Second, the action can be expressed very conveniently as a Chern-Simons theory. By

contrast, in higher dimensions the theory necessarily includes an infinite tower of higher

spin fields, and an action principle has only been written down very recently [23, 24].

We focus here on the simplest higher spin theory in three-dimensions, which consists

of a metric coupled to a spin-3 field. Ordinary gravity in AdS3 has left and right moving

Virasoro algebras as its asymptotic symmetry group [25]. BTZ black holes carry nonzero

Virasoro zero-mode charges, corresponding to mass and angular momentum. In the spin-3

theory the Virasoro algebras are enhanced to W3 algebras [14, 15]. From the W3 algebra

we have additional spin-3 charges that commute with the mass and angular momentum,

and so it is natural to seek generalized black hole solutions that carry these charges. The

purpose of this work is to find and study these solutions.1

To do so, we first need to extend previous discussions of the spin-3 theory and to

develop some elements of the AdS/CFT dictionary. In particular, previous work has con-

sidered asymptotically AdS3 solutions, but as we discuss, black holes carrying spin-3 charge

are expected to have different asymptotic behavior. To allow for charged black holes, we

show how to extend the boundary conditions; in the AdS/CFT context this corresponds

to allowing for nonzero sources coupled to the spin-3 boundary currents. Besides allowing

for black holes, this step is necessary for developing a framework to compute correlation

functions involving the spin-3 operators.

With suitably generalized boundary conditions in hand, we proceed to find charged

black hole solutions, which can be written down in a simple and explicit manner. Evaluating

their thermodynamic properties involves some novel elements compared to the familiar case

of ordinary gravity. The most convenient gauge for finding solutions is not one in which

there is a manifestly smooth horizon, and so we cannot directly impose the usual condition

of regularity of the Euclidean signature solution to find the temperature. We instead employ

an approach based on evaluating the holonomies of the Chern-Simons gauge field, and show

that this is consistent with the first law of thermodynamics and with smoothness of the

horizon in the linearized limit. Similarly, we do not base our computation of the black hole

entropy on computing the area of the event horizon, but instead by demanding consistency

with the first law. The output of this computation is an explicit formula for the black hole

entropy as a function of the black hole’s mass, angular momentum, and spin-3 charges.

The BTZ black hole can be thought of as contributing to a finite temperature partition

function, and the fact that the BTZ entropy takes the form of Cardy’s formula allows it to

1A candidate higher spin black hole solution in four dimensions was found in [26].
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be matched to the asymptotic number of states of a dual boundary CFT [27]. Similarly,

our spin-3 black holes contribute to a partition function that includes chemical potentials

for the spin-3 charge. The black hole entropy then yields a prediction for the asymptotic

growth of states at fixed charge in any candidate dual CFT with W3 symmetry. It will of

course be very interesting to see whether this prediction can be verified.

2 Spin-3 gravity and SL(3,R) Chern-Simons theory

We begin by briefly reviewing relevant aspects of spin-3 gravity in three dimensions, along

with the embedding of the BTZ black hole in this theory.

2.1 Chern-Simons action

It was discovered long ago that Einstein gravity with a negative cosmological constant

can be reformulated as a SL(2,R)× SL(2,R) Chern-Simons theory [28, 29]. It was shown

in [22, 30] that a SL(N,R)× SL(N,R) Chern Simons theory corresponds to Einstein gravity

coupled to N − 2 symmetric tensor fields of spin s = 3, 4, . . . , N .

In the following we will only consider the N = 3 case, i.e., SL(3,R)× SL(3,R) Chern-

Simons theory, which corresponds to spin-3 gravity in three dimensions with a negative

cosmological constant. Our conventions follow the recent paper [15], apart from a few

differences that we shall note explicitly.

The action is

S = SCS[A] − SCS[A] (2.1)

where

SCS [A] =
k

4π

∫

tr

(

A ∧ dA +
2

3
A ∧ A ∧ A

)

(2.2)

The 1-forms A and A take values in the Lie algebra of SL(3,R). An explicit representation

of the eight generators Li, i = −1, 0,+1 and Wj, j = −2,−1, . . . ,+2, as well as our

conventions, is given in appendix A. The Chern-Simons level k is related to the Newton

constant G and AdS3 radius l as

k =
l

4G
(2.3)

We henceforth set l = 1.

The Chern-Simons equations of motion correspond to vanishing field strengths,

F = dA + A ∧ A = 0 , F = dA + A ∧ A = 0 (2.4)

To relate these to the spin-3 Einstein equations we introduce a vielbein e and spin connec-

tion ω as

A = ω + e , A = ω − e (2.5)

Expanding e and ω in a basis of 1-forms dxµ, the spacetime metric gµν and spin-3 field

ϕµνγ are identified as

gµν =
1

2
tr(eµeν) , ϕµνγ =

1

9
√−σ

tr(e(µeνeγ)) (2.6)

– 3 –
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where ϕµνγ is totally symmetric as indicated. Here σ is a parameter that can be absorbed

into the normalization of the Wn generators; we assume σ < 0 but otherwise keep it arbi-

trary. For vanishing spin-3 field, ϕ = 0, the flatness conditions (2.4) can be seen to be equiv-

alent to Einstein’s equations for the metric gµν with a torsion free spin-connection. More

generally, we find equations describing a consistent coupling of the metric to the spin-3 field.

Acting on the metric and spin-3 field, the SL(3,R) × SL(3,R) gauge symmetries of

the Chern-Simons theory turn into diffeomorphisms along with spin-3 gauge transforma-

tions (the Chern-Simons gauge transformation also include frame rotations, which leave

the metric and spin-3 field invariant). Under diffeomorphisms, the metric and spin-3 field

transform according to the usual tensor transformation rules. The spin-3 gauge transfor-

mations are less familiar, as they in general act nontrivially on both the metric and spin-3

field. It is worth noting, though, that if we ignore the spin-3 gauge invariance, then we can

view the theory as a particular diffeomorphism invariant theory of a metric and a rank-3

symmetric tensor field.

2.2 Asymptotically AdS3 boundary conditions

To motivate the form of asymptotically AdS3 boundary conditions, it is helpful to note

that the metric of global AdS3, written in Fefferman-Graham coordinates,

ds2
AdS = dρ2 −

(

eρ +
1

4
e−ρ

)2

dt2 +

(

eρ − 1

4
e−ρ

)2

dφ2 (2.7)

is obtained from the connections

AAdS =

(

eρL1 +
1

4
e−ρL−1

)

dx+ + L0dρ

AAdS = −
(

eρL−1 +
1

4
e−ρL1

)

dx− − L0dρ (2.8)

where x± = t ± φ, and φ ∼= φ + 2π. Introducing

b(ρ) = eρL0 (2.9)

we can write

AAdS = b−1

(

L1 +
1

4
L−1

)

bdx+ + b−1∂ρbdρ

AAdS = −b

(

L−1 +
1

4
L1

)

b−1dx− + b∂ρb
−1dρ (2.10)

In [15], an asymptotically AdS3 connection A is taken to obey A− = 0, Aρ = b−1(ρ)∂ρb(ρ),

and

A − AAdS ∼ O(1) as ρ → ∞ (2.11)

The analogous condition for A is also imposed.

Upon using the freedom to make gauge transformations (see [15] for a proof), asymp-

totically AdS3 connections can be taken to have the form

A = b−1a(x+)b + b−1db , A = ba(x−)b−1 + bdb−1 (2.12)
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with b given by (2.9), and2

a(x+) =

(

L1 −
2π

k
L(x+)L−1 +

π

2kσ
W(x+)W−2

)

dx+

a(x−) = −
(

L−1 −
2π

k
L(x−)L1 +

π

2kσ
W(x+)W2

)

dx− (2.13)

Given these connections, the asymptotic symmetry algebra is obtained by finding the

most general gauge transformation that preserves the asymptotic conditions. The functions

appearing in the connections, L(x+) etc., transform under these gauge transformations.

Expanding in modes, one thereby arrives at two copies of the classical W3 algebra. L and

W are identified with the stress tensor and spin-3 current. The modes of L by themselves

form a Virasoro algebra with the standard Brown-Henneaux central charge. We again refer

to [15] (and [14]) for the details.

2.3 BTZ black hole

Before turning to generalizations, it is useful to review a few aspects of the standard BTZ

black hole in this formulation; see [28, 31, 32] for relevant background on the Chern-Simons

description and the BTZ solution. For a BTZ black hole of mass M and angular momentum

J we take

L =
M − J

4π
, L =

M + J

4π
(2.14)

Setting W = W = 0, we have the connections

A =

(

eρL1 −
2π

k
e−ρLL−1

)

dx+ + L0dρ

A = −
(

eρL−1 −
2π

k
Le−ρL1

)

dx− − L0dρ (2.15)

Using (2.5) and (2.6) yields the BTZ metric in the form

ds2 = dρ2 +
2π

k

(

L(dx+)2 + L(dx−)2
)

−
(

e2ρ +

(

2π

k

)2

LLe−2ρ

)

dx+dx− (2.16)

As above, writing x± = t ± φ, the angular coordinate φ is taken to have 2π periodicity.

The black hole entropy is

S =
AH

4G
= 2π

(√
2πkL +

√

2πkL
)

(2.17)

Expressed in terms of the Brown-Henneaux central charge,

c =
3

2G
= 6k (2.18)

we have the well-known result that the entropy takes the form of Cardy’s formula.

2Our L and L are defined with opposite sign relative to those in [15]. With the sign convention used

here, black holes will have L,L ≥ 0.
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Going to Euclidean signature, x+ → z and x− → −z, demanding the absence of a

conical singularity at the horizon imposes the periodicity conditions

(z, z) ∼= (z + 2πτ, z + 2πτ ) (2.19)

where the modular parameter is given by

τ =
ik

2

1√
2πkL

, τ =
−ik

2

1√
2πkL

(2.20)

The Hawking temperature T = 1/β, and the angular velocity of the horizon Ω are then

given by

τ =
iβ + iβΩ

2π
, τ =

−iβ + iβΩ

2π
(2.21)

Note that J and Ω should be continued to pure imaginary values in order to obtain a real

Euclidean section.

In the framework of the AdS3/CFT2 correspondence, the BTZ black hole is to be

thought of as contributing to the partition function

Z(τ, τ) = TrAdS e4π2iτ L̂−4π2iτ L̂ = TrCFT(qL0−
c

24 q̄L̄0−
c

24 ) (2.22)

where L̂ and L̂ now denote the Virasoro zero mode operators: 2πL̂ = L0, 2πL̂ = L0. In par-

ticular, the contribution to the partition function is given by e−I , where I is the Euclidean

Einstein-Hilbert action supplemented by appropriate boundary terms. The classical black

hole geometry gives a good approximation to the full partition function at high tempera-

tures and for k ≫ 1, i.e. for a CFT with very large central charge.

3 Generalized boundary conditions

A CFT with W3 symmetry has, by definition, a dimension (3, 0) primary field W. Similarly,

assuming W3 symmetry on the anti-holomorphic side we have a dimension (0, 3) primary

W . We can add to the CFT Lagrangian source terms for these operators,

I → I +

∫

d2x
(

µ(x)W(x) + µ(x)W(x)
)

(3.1)

Since the operators have scaling dimension 3, they are non-renormalizable in two-

dimensions, which makes it unclear at this stage whether we can make sense of the path

integral for finite values of µ and µ. On the other hand, we should certainly be able to

obtain sensible results at the level of perturbation theory in the sources.

We now want to give a prescription for computing in the bulk in the presence of

these source terms. According to the rules of the AdS/CFT correspondence, we should

associate the sources with boundary conditions for the spin-3 field in the bulk. In the last

section we reviewed the boundary conditions for asymptotically AdS3 solutions, but it’s

clear that these now need to be generalized. Since the spin-3 operators are irrelevant in the

renormalization group sense, adding them to the action changes the UV structure of the

– 6 –
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would-be CFT; the bulk analog of this statement is that the geometry should no longer be

asymptotically AdS3.

Without further ado, we propose to consider connections of the form

A = b−1a(x+)b + b−1db , A = ba(x−)b−1 + bdb−1 (3.2)

where, as above, b = eρL0 , and now

a =

(

L1 −
2π

k
LL−1 +

π

2kσ
WW−2

)

dx+

+
(

µW2 + w1W1 + w0W0 + w−1W−1 + w−2W−2 + ℓL−1

)

dx−

a = −
(

L−1 −
2π

k
LL1 +

π

2kσ
WW2

)

dx−

−
(

µW−2 + w−1W−1 + w0W0 + w1W1 + w2W2 + ℓL1

)

dx+ (3.3)

As shown in [15], by performing a gauge transformation one can always arrange for a+ and

a− to take the above form. The formulas for a− and a+ are dictated by the structure of the

field equations, as seen in the next section. At this stage, a contains 8 unspecified functions,

(L,W, µ, w1, w0, w−1, w−2, ℓ), all of which are allowed to depend on both x+ and x−, but not

ρ; the analogous statement holds for a. We claim that the functions µ and µ should be iden-

tified with the sources in (3.1). To verify this claim we will compare the bulk field equations

evaluated on this ansatz to the Ward identities in the CFT in the presence of spin-3 sources.

4 Ward identities

In this section we translate the bulk field equations for spin-3 gravity into Ward identities

for the stress tensor and spin-3 current. We will focus on the A-connection; the treatment

of A proceeds along exactly the same lines. This computation will establish the AdS/CFT

dictionary in the presence of sources for the spin-3 operators. See [33] for an analogous

computation in ordinary gravity.

4.1 Bulk field equations

According to (3.2), the connection A is gauge equivalent to a, and therefore the field

equations can be written as

da + a ∧ a = 0 (4.1)

Plugging the ansatz (3.3) into (4.1) and solving iteratively, we find

w1 = −∂+µ

w0 =
1

2
∂2

+µ − 4π

k
Lµ

w−1 = −1

6
∂3

+µ +
4π

3k
∂+Lµ +

10π

3k
L∂+µ

w−2 =
1

24
∂4

+µ − 4π

3k
L∂2

+µ − 7π

6k
∂+L∂+µ − π

3k
∂2

+Lµ +
4π2

k2
L2µ

ℓ =
4π

k
Wµ (4.2)
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and that L and W are subject to

∂−L = −3W∂+µ − 2∂+Wµ

∂−W =
σk

12π
∂5

+µ − 2σ

3
∂3

+Lµ − 3σ∂2
+L∂+µ − 5σ∂+L∂2

+µ − 10σ

3
L∂3

+µ

+
64πσ

3k
L∂+Lµ +

64πσ

3k
L2∂+µ (4.3)

Any solution of these equations is a solution of (4.1). Note that µ can be chosen freely.

4.2 Stress tensor Ward identity

Our conventions and the operator product expansion for the stress tensor and the spin-3

current are reviewed in appendix B. In particular, the OPE for the stress tensor and the

spin-3 primary is

T (z)W(0) ∼ 3

z2
W(0) +

1

z
∂W(0) + · · · (4.4)

Due to the singular terms in the OPE, adding the source term
∫

d2z µ(z, z)W to the CFT

action causes the stress tensor to pick up a z dependence. To characterize this we compute

∂z〈T (z, z)〉µ (4.5)

where 〈· · · 〉µ denotes an insertion of e−
R

µW inside the expectation value. Expanding in

powers of µ, and using

∂z

(

1

z

)

= 2πδ(2)(z, z) (4.6)

we find
1

2π
∂z〈T (z, z)〉µ = 〈3W(z, z)∂zµ(z, z) + 2∂zW(z, z)µ(z, z)〉µ (4.7)

Converting to Lorentzian signature, this agrees with (4.3) under the expected identification

L = − 1
2π

T . It is quite convenient that the stress tensor corresponds precisely to a single

term in the connection, in contrast to what one has in the metric formulation where there

are also contributions from boundary counterterms [34].

4.3 Spin-3 Ward identity

The OPE between two spin-3 currents is3

W(z)W(0) ∼ −5σk

π2

1

z6
+

10σ

π

1

z4
L +

5σ

π

1

z3
∂L +

3σ

2π

1

z2
∂2L − σ

3π

1

z
∂3L

−32σ

3k

1

z
L∂L − 32σ

3k

1

z2
L2 (4.8)

3More precisely, this is to be regarded as the “classical” large k version. At finite k the coefficients

of the terms quadratic in L are changed, and the L2 operator needs a normal ordering prescription [35];

see appendix B. Expanding in 1/k, such corrections would correspond to quantum effects in the bulk.

We also note that symmetry algebras containing nonlinear terms have appeared before in the AdS/CFT

context [36–38].
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To compare this to formulas in [15], recall that for a symmetry transformation generated

by χ(z)W(z), Noether’s theorem yields the variation δχO as

δχO = −2πResz→0 [χ(z)W(z)O(0)] (4.9)

Applying this to O = W, we have

δχW = −σ

3

(

2χL′′′ + 9χ′L′′ + 15χ′′L′ + 10χ′′′L− k

4π
χ(5) − 64π

k
(χLL′ + χ′L2)

)

(4.10)

which is the same as (4.20b) of [15], taking into account the sign flip in the relative defini-

tions of L.

Proceeding in the same manner as led to (4.7), we now find

− ∂zW(z) =
σk

12π
∂5

zµ − 10σ

3
∂3

zµL− 5σ∂2
z µ∂zL − 3σ∂zµ∂2

zL − 2

3
σµ∂3

zL

+
64πσ

3k
µL∂zL +

64πσ

3k
∂zµL2 (4.11)

This agrees with the second line in (4.3) after converting from Euclidean to Lorentzian

signature.

4.4 Comments

Having satisfied the Ward identities, we now know that we have a consistent holographic

dictionary for computing correlation functions of the stress tensor and spin-3 current. In

particular, we have established that in (3.3) we should interpret L and W as the stress

tensor and spin-3 current, and µ as the source for the spin-3 current. A source for the

stress tensor can be introduced by allowing the coefficient of L1 in the expansion of a

in (3.3) to be a nontrivial function of x±.

The solution (4.2)–(4.3) can be used as the starting point for computing AdS/CFT

correlation functions of the stress tensor and spin-3 current. The equations (4.5) can be

solved iteratively as a power series in µ, and the functional coefficient of the µn term

gives the correlation function of L/W with n additional insertions of the spin-3 current.

Of course, in solving (4.3) one needs to invert ∂−, which requires imposing boundary

conditions, which in the AdS/CFT correspondence are usually imposed at the Poincare

horizon of the bulk geometry.

Since the Ward identities are equivalent to the OPEs, which can in turn be used

to derive the symmetry algebra obeyed by the mode operators, we can view the above

computations as a derivation of the W3 algebra obeyed by the bulk higher spin theory.

This is to be compared to the derivation in [15], which in our language set µ = 0 and then

considered the algebra of gauge transformations preserving specified asymptotic boundary

conditions. Consistency demands that these two approaches yield the same result, as we

have indeed verified.

Before proceeding, we should emphasize that the connections (3.2)–(3.3), at finite µ and

µ, correspond to non-asymptotically AdS3 geometries. The metric is easily seen to contain

terms growing like e4ρ, while asymptotic AdS3 metrics grow as e2ρ. As noted above, this is

– 9 –
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to be expected from the AdS/CFT dictionary given that we are adding to the CFT action an

irrelevant dimension 3 operator. To further address whether this is sensible, we now turn to

the physical interpretation of such solutions, and will see that a consistent picture emerges.

5 Black holes with spin-3 charge

5.1 Solutions

To obtain black hole solutions we consider the ansatz (3.2)–(3.3), but with all functions

independent of x±. From (4.2) (and the analogous formulas for a) we see that solutions

take the form

a =

(

L1 −
2π

k
LL−1 +

π

2kσ
WW−2

)

dx+

+µ

(

W2 −
4πL
k

W0 +
4π2L2

k2
W−2 +

4πW
k

L−1

)

dx−

a = −
(

L−1 −
2π

k
LL1 +

π

2kσ
WW2

)

dx−

−µ

(

W−2 −
4πL
k

W0 +
4π2L2

k2
W2 +

4πW
k

L1

)

dx+ (5.1)

The corresponding connections (A,A) are

A =

(

eρL1 −
2π

k
Le−ρL−1 +

π

2kσ
We−2ρW−2

)

dx+

+µ

(

e2ρW2 −
4πL
k

W0 +
4π2L2

k2
e−2ρW−2 +

4πW
k

e−ρL−1

)

dx− + L0dρ

A = −
(

eρL−1 −
2π

k
Le−ρL1 +

π

2kσ
We−2ρW2

)

dx−

−µ

(

e2ρW−2 −
4πL
k

W0 +
4π2L2

k2
e−2ρW2 +

4πW
k

e−ρL1

)

dx+ − L0dρ (5.2)

The metric and spin-3 field are extracted using (2.6); we will just display the metric:

ds2 = dρ2 − 4σ

(

µe2ρdx− +
π

2kσ
We−2ρdx− +

4π2

k2
µL2

e−2ρdx+

)

×
(

µe2ρdx+ +
π

2kσ
We−2ρdx+ +

4π2

k2
µL2e−2ρdx−

)

−
(

eρdx+− 2π

k
Le−ρdx−+

4π

k
µWe−ρdx+

)(

eρdx−− 2π

k
Le−ρdx++

4π

k
µWe−ρdx−

)

−σ

3

(

4π

k

)2
(

µLdx− + µLdx+
)2

(5.3)

A few immediate comments are in order. Since we are taking σ < 0, we see that the metric

has the correct signature. For µ = µ = W = W = 0, the metric is that of a rotating BTZ

black hole, but it becomes deformed once the spin-3 field is turned on. We also see very

explicitly that for µµ 6= 0 the metric grows like e4ρ, and so is not asymptotically AdS3, as

discussed above.
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5.2 Interpretation and specification of parameters

Just as the Euclidean BTZ solution can be thought of as contributing to the partition

function (2.22), we now wish to think of the higher spin black hole solutions as contributing

to a generalized partition function which includes chemical potentials conjugate to the

spin-3 currents. An analogous situation occurs when the bulk theory consists of gravity

along with pure Chern-Simons gauge fields; the AdS/CFT correspondence has been well

developed for that case [39, 40]. With this in mind we consider the partition function

Z(τ, α, τ , α) = Tr e4π2i[τ L̂+αŴ−τ L̂−αŴ] = TrCFTqL0−
c

24 uW0 q̄L̄0−
c

24 ūW0 (5.4)

On the CFT side the partition function can be expanded in terms of generalized characters

of the W3 algebra. As discussed briefly in appendix B, not much is known about these

characters.

As will be seen, the potentials (α,α) are related to (µ, µ) as

α = τµ , α = τµ (5.5)

In the BTZ solution, the stress tensor L is related to the modular parameter τ according

to (2.20), so that the solution is labelled by either τ or L (and similarly for the barred

quantities). By the same token, in our solution (5.2), after imposing the periodicity condi-

tions (2.19) we need to relate (L,W) to (τ, α) in order to obtain solutions with the same

free parameters as appear in the partition function (5.4). From the CFT standpoint these

assignments are understood as expectation values, according to

L = 〈L̂〉 = − i
4π2

∂ ln Z
∂τ

, W = 〈Ŵ〉 = − i
4π2

∂ lnZ
∂α

(5.6)

The problem for us is to specify the physical conditions that determine (L,W) in terms

of (τ, α).

For a spin-3 black hole solution, we would like to impose the following 3 conditions:

1. The euclidean geometry is smooth and the spin-3 field is nonsingular at the horizon.

In the BTZ solution, after fixing τ the value of L is obtained by demanding that

the Euclidean geometry close off smoothly at the location of the Lorentzian event

horizon. This is of course well known to yield the correct relation between the black

hole mass and Hawking temperature.

2. In the limit µ → 0 the solution goes smoothly over to the BTZ black hole. In

particular, we want that W → 0 and the black hole entropy becomes (2.17).

3. The following constraint should be satisfied by any consistent assignment of (L,W).

From (5.6), we see that if (L,W) are to arise from an underlying partition function

then they should obey the integrability condition

∂L
∂α

=
∂W
∂τ

(5.7)

Another way to say this is that (5.7) needs to be satisfied in order that the thermody-

namic quantities assigned to the black hole will obey the first law of thermodynamics.
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As we shall now discuss, it is not obvious that all three conditions can be satisfied at

the same time.

5.3 Nonrotating solution

The basic complications can be seen in the nonrotating case, where we take τ = −τ = iβ,

µ = −µ, L = L, and W = −W. We also set σ = −1 for the moment. The metric (5.3)

becomes,

ds2 = dρ2 −
{(

2µe2ρ +
π

k
We−2ρ − 8π2

k2
µL2e−2ρ

)2

+

(

eρ − 2π

k
Le−ρ +

4π

k
µWe−ρ

)2}

dt2

+

{(

eρ +
2π

k
Le−ρ +

4π

k
µWe−ρ

)2

+ 4

(

µe2ρ +
π

2k
We−2ρ +

4π2

k2
µL2e−2ρ

)2

+
4

3

(

4π

k

)2

µ2L2

}

dφ2 (5.8)

The horizon occurs where gtt vanishes, and since the radial dependence of the metric

is simply dρ2, we need gtt to have a double zero at the horizon in order for the Euclidean

time circle to smoothly pinch off. One solution is given by W = 0 and µ = 0, which is the

nonrotating BTZ black hole. There is a second solution provided

k + 32µ2π(µW −L) = 0 (5.9)

is satisfied. The temperature is then determined by demanding the absence of a conical

singularity at the horizon, which is located at eρ+ =
√

(2πL − 4πµW)/k,

β = 2π

√

2

−g′′tt

∣

∣

∣

∣

∣

ρ=ρ+

=
2
√

2πkµ
√

(3k − 32πLµ2)(16πLµ2 − k)
(5.10)

For the nonrotating solution (5.5) becomes α = −iβµ. The two equations (5.9) and (5.10)

can be solved in terms of L and W to give

L =
k

64π

β2

α2

(

√

1 − 64σπ2α2/β4 − 5
)

W = − k

64π

β3

α3

(

√

1 − 64σπ2α2/β4 − 3
)

(5.11)

It is easy to see from (5.11) that L and W diverge in the limit µ → 0. Furthermore

the integrability condition (5.7) (and hence the first law of thermodynamics) is violated

for (5.11). Hence, while the metric (5.8) satisfies condition 1 of section 5.2, it violates

conditions 2 and 3.

In the next section we will propose a different approach based on gauge invariant

information of the Chern-Simons formulation.
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5.4 Holonomy condition

Since Chern-Simons theory is a theory of flat connections, the gauge invariant information

is contained in the holonomies. Let us therefore step back and consider the holonomies as-

sociated to the BTZ black hole. In general, the holonomy associated with the identification

(z, z) ∼= (z + 2πτ, z + 2πτ) is

H = b−1eωb , ω = 2π(τa+ − τa−)

H = beωb−1 , ω = 2π(τa+ − τa−) (5.12)

If we evaluate these for the BTZ black hole, using the relations (2.20), we find that ω and ω

have eigenvalues (0, 2πi,−2πi). We take this as the gauge invariant information associated

with the Euclidean time circle. In particular, demanding that these eigenvalues are realized

leads to the correct relation between L and τ , namely (2.20).

We now come to the key point: for the generalized spin-3 black hole we will continue

to demand that ω and ω have eigenvalues (0, 2πi,−2πi), the motivation being that this

represents the gauge invariant characterization of a smooth horizon. As further — com-

pelling in our view — evidence in favor of this proposal, we now show that it leads to a

solution of the integrability condition (5.7), and coincides with the smoothness condition

for a linearized spin-3 field on the BTZ background.

5.5 Integrability condition

Rather than working directly with eigenvalues, it is convenient to impose the equivalent

conditions

det(ω) = 0 , Tr(ω2) + 8π2 = 0

det(ω) = 0 , Tr(ω2) + 8π2 = 0 (5.13)

Using (5.1), these conditions are explicitly

0 = 2048π2σ2α3L3 + 576πσkτ2αL2 + 864πσkα2τWL + 864πσkα3W2 − 27k2τ3W
0 = 256π2σα2L2 − 24πkτ2L− 72πkταW − 3k2 (5.14)

together with the same formulas with unbarred quantities replaced by their barred versions.

We have replaced µ by α using (5.5).

To verify the integrability conditions we proceed as follows. First solve the second

equation for W and differentiate with respect to τ to get an expression for ∂W
∂τ

in terms

of ∂L
∂τ

. Next, insert the solution for W into the first equation, and then differentiate with

respect to α, and solve to get an expression for ∂L
∂α

. Similarly, differentiate with respect to

τ to get an expression for ∂L
∂τ

. Substituting the latter into our previous expression for ∂W
∂τ

,

we find that it precisely equals ∂L
∂α

, which is the desired integrability condition.

5.6 Linearized spin-3 solution

We now look for a solution representing a smooth linearized spin-3 perturbation of a non-

rotating BTZ black hole. We’ll find that the smoothness condition is equivalent to imposing

the condition (5.13) on the holonomy.
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The connections corresponding to non-rotating BTZ are

ABTZ =

(

eρL1 −
2π

k
Le−ρL−1

)

dx+ + L0dρ

ABTZ = −
(

eρL−1 −
2π

k
Le−ρL1

)

dx− − L0dρ (5.15)

From our general result (5.2), a linearized solution with µ = −µ and W = −W is obtained

by adding

δA =
π

2kσ
We−2ρW−2dx+ + µ

(

e2ρW2 −
4π

k
LW0 +

4π2

k2
L2e−2ρW−2

)

dx−

δA =
π

2kσ
We−2ρW2dx− + µ

(

e2ρW−2 −
4π

k
LW0 +

4π2

k2
L2e−2ρW2

)

dx+ (5.16)

where we’re dropping terms of order µW. To linear order the metric is

ds2 = dρ2 −
(

eρ − 2π

k
Le−ρ

)2

dt2 +

(

eρ +
2π

k
Le−ρ

)2

dφ2 (5.17)

with a horizon at

eρ+ =

√

2πL
k

(5.18)

The corrections to the metric are quadratic in (µ,W), and so are zero in the linearized

approximation.

The holonomy around the Euclidean time direction is,

ω = 2π(τA+ − τA−) (5.19)

with τ given by its usual BTZ expression,

τ =
ik

2

1√
2πkL

(5.20)

The eigenvalues of ω, to first order in (µ,W), are computed to be

iδ, ± 2πi − iδ

2
(5.21)

with

δ =

√

2π

−σkL3

(

64πσL2µ + 3kW
12

)

(5.22)

Demanding that these eigenvalues are unchanged from their BTZ values therefore fixes W
in terms of µ as

W = −64πσL2

3k
µ (5.23)

We now want to see whether this condition coincides with demanding smoothness of the

perturbation.
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The spin-3 field, normalized here as

ϕ = ϕαβγdxαdxβdxγ = Tr(eαeβeγ)dxαdxβdxγ (5.24)

is found to have nonzero components: ϕφφφ, ϕφρρ, ϕφtt. Of particular interest is the

behavior near the horizon. We compute

ϕ = ϕαβγdxαdxβdxγ

=

(

− 24πW√
−σk

(ρ − ρ+) +
4π√
−σk2

(224πσL2µ + 9kW)(ρ − ρ+)2 + · · ·
)

dφdtdt

+

(

16π
√−σL
k

µ + · · ·
)

dφdρdρ

+

(

4π√
−σk2

(64πσL2µ − 3kW) + · · ·
)

dφdφdφ (5.25)

In general, this is singular at ρ = ρ+. Just as we require gtt to have a double zero at the

horizon, so too must ϕφtt.

In order to get a smooth solution we need to perform a gauge transformation. Under

a gauge transformation by parameter λ we have

δλA = dλ + [A,λ] (5.26)

and similarly for barred quantities. Now, since the background solution only involves L-

type generators, and the trace of any mixed bilinear combination vanishes, TrLW = 0,

it’s clear that the background metric, gµν = 1
2Tr(eµeν), will be invariant under a gauge

transformation with λ made up of purely W -type generators. These will just act on the

spin-3 field. So we consider

λ = λ2W2 + λ1W1 + λ0W0 + λ−1W−1 + λ−2W−2

λ = λ2W2 + λ1W1 + λ0W0 + λ−1W−1 + λ−2W−2 (5.27)

We want to preserve translation invariance along (t, φ), so we take the parameters to depend

only on ρ. After a bit of experimentation, the simplest option is

λ1 = −λ−1 = −λ1 = λ−1 = f(ρ) (5.28)

with the rest of the parameters vanishing. Acting on the background solution, this induces

nonzero components for ϕφφφ, ϕφρρ, ϕφtt, which are the same components as appear in the

original linearized solution. Expanding around the horizon we find

δλϕ = −192
√
−σ

√

2π3L3

k3
f(ρ+)(ρ − ρ+)dφdt2 − 192

√
−σ

√

2π3L3

k3
f ′(ρ+)(ρ − ρ+)2dφdt2

+24
√
−σ

√

2πL
k

f ′(ρ+)dφdρ2 (5.29)

To cancel off the previous (ρ − ρ+) term in ϕφtt we thus take

f(ρ+) =

√

k

2πL3

W
8σ

(5.30)
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To achieve a smooth solution we still have to impose one more condition. Near the

horizon, the metric in the (it, ρ) plane approaches the origin of flat space in polar coordi-

nates provided the imaginary time direction is identified with the correct periodicity. This

periodicity is determined from the result

g′′tt
gρρ

∣

∣

∣

ρ+

= −16πL
k

(5.31)

Since the φ direction is effectively inert in this computation, smoothness of the spin-3 field

demands that we have the same ratio:

ϕ′′
φtt

ϕφρρ

∣

∣

∣

ρ+

= −16πL
k

(5.32)

From (5.29) we observe that the values computed from δλϕ obey this by themselves. This

means that the gauge transformation (5.28) acting on the BTZ background leads to a

smooth solution, which is reassuring. It also means that the linearized solution (5.25)

needs to satisfy this condition by itself, so that the total solution, corresponding to A =

ABTZ + δA + δλA, will as well. This condition is evaluated to be

− 112πL
k

− 9W
2σLµ

= −16πL
k

(5.33)

which yields

W = −64πσL2

3k
µ (5.34)

Comparing with (5.23), we see precise agreement. Thus, at the linearized level smoothness

is equivalent to the holonomy condition (5.13).

5.7 Summary

We have shown that the holonomy condition (5.13) leads to a solution that satisfies

conditions 2 and 3 of section 5.2, as well as condition 1 in the linearized limit. We take

this as strong evidence that this is the physically correct condition to impose in order to

define the spin-3 black holes.

This proposal does however have a surprising implication that we would ultimately like

to understand better in the future. In the special case of the nonrotating solution with met-

ric (5.8), it is not hard to see that with L and W determined by (5.14), the time component

of the metric gtt never vanishes. This solution, therefore, does not at first glance appear to

be a black hole at all, but rather a wormhole with a second asymptotic region extending

out to ρ → −∞. One may therefore question whether we have really satisfied condition 1.

We believe that the resolution of this issue has to do with the spin-3 gauge transforma-

tions, which we recall act nontrivially on the metric as well as the spin-3 field. We already

saw in our linearized analysis that it was necessary to perform such a gauge transformation

in order to exhibit a manifestly smooth horizon. More generally, we expect that the non-

appearance of an event horizon in the fully nonlinear solutions is a consequence of our choice

of gauge, and that an appropriate gauge transformation will restore it. Here we should em-

phasize that one’s usual intuition about the definition of an event horizon has to be modified
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in this context, due to the noninvariance of the metric under spin-3 gauge transformations.

This is a fascinating issue that deserves to be better understood, but for now we will proceed

under the assumption that the holonomy condition (5.13) defines the spin-3 black hole.

6 Black hole thermodynamics

Having satisfied the integrability condition, we know that if we now compute the entropy

from the partition function it is guaranteed to be consistent with the first law of thermo-

dynamics. For black holes in Einstein-Hilbert gravity, we can of course directly compute

the entropy in terms of the area of the event horizon. But in the present context we do

not know a priori whether the entropy is related to the area in this way, in particular due

to the nontrivial spin-3 field. We instead base our entropy computation on demanding

adherence to the first law.

Expressed as a function of (L,W) the entropy S obeys the following thermodynamic

relations:

τ =
i

4π2

∂S

∂L , α =
i

4π2

∂S

∂W (6.1)

The analogous barred relations hold as well. Since the entropy breaks up into a sum of an

unbarred piece plus a barred piece with identical structure, in the following we just focus

on the unbarred part and add the two parts at the end.

We can use dimensional analysis to write the entropy in terms of an unknown function

of the dimensionless ratio W2/L3. With some foresight, it proves convenient to write

S = 2π
√

2πkLf(y) (6.2)

with

y =
27kW2

−64σπL3
(6.3)

Demanding agreement with the BTZ entropy imposes f(0) = 1. Using (6.1) and plugging

into the second line of (5.14) we arrive at the following differential equation

36y
(

2 − y
)

(f ′)2 + f2 − 1 = 0 (6.4)

This equation also implies the first equation in (5.14). The solution with the correct

boundary condition is

f(y) = cos θ , θ =
1

6
arctan

(

√

y(2 − y)

1 − y

)

(6.5)

The physical range of y is given by 0 ≤ y ≤ 2, and we choose a branch of the arctangent

such that 0 ≤ θ ≤ π
6 .

Our final result for the entropy, including both sectors, is thus

S = 2π
√

2πkLf

(

27kW2

−64σπL3

)

+ 2π
√

2πkLf

(

27kW2

−64σπL3

)

(6.6)
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For small argument, f(y) has the expansion

f(y) ∼ 1 − 1

36
y − 35

7776
y2 − 1001

839808
y3 + · · · (6.7)

Near y = 2 we have

f(y) ∼
√

3

4
+

√
2

12

√

2 − y + · · · (6.8)

For given L we thus have a maximal spin-3 charge W given by

W2
max =

−128σπ

27k
L3 (6.9)

As the maximal value is approached τ diverges according to (6.1), corresponding to

vanishing chiral temperature. On the other hand, the entropy is finite, attaining a relative

value of
√

3
4 compared to the entropy at W = 0. This behavior is to be contrasted with

that of the BTZ black hole, or its charged generalizations with respect to bulk U(1) gauge

fields [41]. In those cases, whenever the temperature of one chiral sector goes to zero,

so too does the entropy associated with that sector. For extremal BTZ black holes the

entropy is carried entirely by the sector at nonzero temperature, whereas here a zero

temperature sector can contribute to the entropy.

Given the entropy, τ and α can be computed using (6.1), and from there we compute

the partition function according to

ln Z = S + 4π2i
(

τL + αW − τL − αW
)

(6.10)

This partition function should match the asymptotic behavior of the partition function of

any candidate CFT dual to the higher spin theory in the bulk.

7 Discussion

We conclude with a few assorted observations and open questions.

The natural extension of our work is to consider charged black holes in the general

spin-N gravity theory. The large N limit is of particular interest given that the explicit

duality proposal in [17] involves large N . Similarly, the bulk field content arising in [17]

involves massive scalar fields, and it would be interesting to see how they interact with

the black holes. In particular, they could serve as a useful physical probe of the putative

event horizon.

A key step in our logic involved using the holonomies to fix the black hole parameters in

a manner consistent with the first law of thermodynamics, and smoothness in the linearized

limit. This was shown to work by direct computation, but it would be very helpful to have

a more conceptual understanding of this procedure. Another important issue to be resolved

concerns the existence of a smooth event horizon in the nonlinear regime. We conjectured

that there exists a spin-3 gauge transformation that can be used to exhibit a manifestly

nonsingular horizon, and we hope that this can be demonstrated explicitly. More generally,

greater understanding of the role of spin-3 gauge transformations will be very helpful for

gaining a better physical understanding of the theory.

– 18 –



J
H
E
P
0
5
(
2
0
1
1
)
0
2
2

Some subtleties associated with black holes in higher spin gravity were discussed in [20].

For sufficiently large N (at fixed k), the number of linearized states in the bulk appears

to exceed the Cardy bound, and hence also exceeds the number of states associated with

black holes. These issues do not arise in the present work, as we are considering the regime

k ≫ N where the number of linearized bulk states is parametrically smaller.

The generalized partition functions of CFTs with W3 symmetry have apparently not

been studied in the literature. Our black hole entropy result suggests that a universal for-

mula for the asymptotic behavior exists, at least at large k, and it would be very interesting

to see whether this can be established directly in CFT.
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A SL(3,R) generators

As in [15], we use the following basis of SL(3, R) generators

L1 =







0 00

1 0 0

0 1 0






, L0 =







100

0 0 0

0 0 −1






, L−1 =







0 − 20

0 0 −2

0 0 0







W2 = 2
√
−σ







0 00

0 0 0

1 0 0






, W1 =

√
−σ







000

1 0 0

0 −1 0






, W0 =

2

3

√
−σ







100

0 −2 0

0 0 1







W−1 =
√
−σ







0 −20

0 0 2

0 0 0






, W−2 = 2

√
−σ

(

004

0 0 0000

)

(A.1)

The parameter σ will always be taken to be negative, but is otherwise left unspecified; it

can be set to any desired value by rescaling the W generators. The generators obey the

following commutation relations

[Li, Lj ] = (i − j)Li+j

[Li,Wm] = (2i − m)Wi+m

[Wm,Wn] =
σ

3
(m − n)(2m2 + 2n2 − mn − 8)Lm+n (A.2)

and trace relations

tr(L0L0) = 2 , tr(L1L−1) = −4

tr(W0W0) = −8σ

3
, tr(W1W−1) = 4σ , tr(W2W−2) = −16σ (A.3)

All other traces involving a product two generators vanish.
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B W3 algebra

The W3 algebra [35] has in addition to the stress energy tensor T (z), a primary W (z) of

conformal weight 3. These operators have mode expansions on the plane

T (z) =
∑

n

Lnz−n−2, W (z) =
∑

n

Wnz−n−3 (B.1)

Their operator product expansions are given by

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂wT (w)

z − w
+ · · ·

T (z)W (w) =
3W (w)

(z − w)2
+

∂wW

z − w
+ · · ·

W (z)W (w) =
c/3

(z − w)6
+

2T (w)

(z − w)4
+

∂wT (w)

(z − w)3
+

1

(z − w)2

(

2βΛ(w) +
3

10
∂2

wT (w)

)

+
1

z − w

(

β ∂Λ(w) +
1

15
∂2

wT (w)

)

(B.2)

where the parameter β is given by

β =
16

22 + 5c
(B.3)

and the operator Λ can be defined as follows

Λ =: T (w)T (w) : − 3

10
∂2

wT (w) (B.4)

A “classical” version of this algebra is obtained by taking the large c limit and disregarding

the normal ordering. It is this version of the algebra that is reproduced in the dual grav-

itational theory. In particular, the WW OPE agrees with (4.8) upon setting σ = −1/10,

c = 6k, and identifying T = −2πL, W = 2πW.

One can define a highest weight representation based on a highest weight state | φh,w〉
which satisfies

L0 | φh,w〉 = h | φh,w〉
W0 | φh,w〉 = w | φh,w〉
Ln | φh,w〉 = 0, Wn | φh,w〉 = 0, for n > 0 (B.5)

One considers the Verma module V (h,w, c) associated with the highest weight vector φh,w

as spanned by the linearly independent basis vectors

L−m1
L−m2

· · ·L−mn
W−n1

W−n2
· · ·W−nk

| φh,w〉
with m1 ≥ m2 ≥ · · · ≥ mn > 0, n1 ≥ n2 ≥ · · · ≥ nk > 0 (B.6)

We can consider the character of the Verma module V . For generic values of c where there

exist no null submodules in the Verma module, the character has the following form.

χV (q) = trV (qL0−
c

24 ) =
qh− c

24

(

∏

n>0(1 − qn)
)2 (B.7)
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Since the zero modes W0 and L0 commute, it is natural to consider a generalized form of

the character

χV (q, u) = trV (qL0−
c

24 uW0) (B.8)

However not much is known about these characters. In principle, W0 can be expressed

in Jordan normal form as an upper triangular matrix and the contribution to (B.8) for

generic values of c can be calculated [42]. However even at level 2 this involves solving a

quintic and can only be done numerically. The result does not seem to be illuminating.4

As far as we know, the modular properties and asymptotic growth formulas for the number

of states have not been calculated.
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