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1 Introduction

We study the interplay between the fermionic T-duality and radiative corrections to the
sigma models. Our work is a preliminary account on these problems and we clarify some
issues both at the theoretical level (determination of the T-dual models) and at the com-
putational level (radiative corrections at higher loops).

We first review the T-duality for generic o-model [1, 2] and we extend it to supersym-
metric models with target space spinors. This is the way to embrace the Green-Schwarz
formalism for string theory, p-brane and the pure spinor string theory. The presence of tar-
get space spinors allows us to consider generic super-isometries which encompass the newly
discovered fermionic T-duality [3, 4]. The T-duality for o-models with Ramond-Ramond



fluxes have been studied in [5-7]. However, in [3, 4], the self-duality of AdSs x S° o-model
has been shown by composing the usual bosonic T-duality with the fermionic one.!

The first issues we encounter are the obstructions for constructing the T-dual models
in case of superisometries. Indeed, the Grassmannian nature of the spinorial variables
implies that some coordinate changes appear to be either trivial (redefinition by an overall
constants) or impossible. That prevents from finding the holonomy bases where the super-
isometry appears as a shift in the fermionic coordinates. In addition, the gauging procedure
which is a well-paved way to perform the T-duality for o-models gets obstructed by non-
invertible fermionic matrices. We review those problems and in particular we adopt a
recently discussed simple model [17] as a playground.

In paper [17], the author pointed out that there exists an interesting limit where the
AdSs x S® pure spinor string model shows a decoupling between the fermionic and bosonic
coordinates. In particular, in that limit, the model appears to be purely fermionic and it
can be viewed as a coset o-model (obtained by a Gauged Linear Sigma Model) based on a
fermionic coset. The latter is naturally obtained by dividing with respect to the complete
bosonic subgroup. We consider generalizations and simplifications of the above example
and in particular we take into account models based on OSp(n|m) supergroup [18].

In those coset models the super-isometries are non-abelian (they close on the bosonic
subgroup) and they are realized non-linearly [19]. For these two reasons, the usual gauging
procedure cannot be performed. These issues are discussed for generic OSp(n|m) models
and, in particular, we study the simplest one, namely OSp(1]|2), which already exhibits
such characteristics.

We first convert the non-linear symmetries into linear ones by introducing additional
bosonic coordinates to the o-model. In the simplest case, namely OSp(1|2), this can be
easily done by adding a single bosonic coordinate constrained by a quadratic algebraic
equation. That equation is invariant under the action of the isometries which are linearly
represented. In this way, the o-model can be easily written and the gauging procedure can
be employed. Since the superisometries are non-abelian, we use the construction provided
by [20, 21] and we introduce the gauge fields for all isometries. Then, a two-step process
leads us to a dual model which contains the dual fermionic coordinates, a dual bosonic
field (which appears to be dynamical in the dual model) and a ghost field associated to
the gauge fixing of the local isometries. Therefore, we have bypassed the obstructions
encountered in the theoretical analysis of T-dualities and we provided a dual lagrangian.

For a generic model, this procedure can be also applied with technical difficulties. The
first one is to discover the correct set of bosonic coordinates to implement the superisome-
tries as linear representations. The second step is finding a suitable algebraic constraints
(a similar procedure as the construction of the Pliicker relations in porjective geometry).
Finally, a conventional gauging procedure can be applied and the gauge field integrated.
However, we notice that the gauge fixing procedure suggested in [20] leads to a cumber-
some action which turns out not to be very useful for loop computations. On the other
side, a clever gauge choice yields remarkable simplifications and a good starting point for
loop computations.

!See also the new developments in [8-16].



At the quantum level we compute the one-loop and two-loop corrections to the ac-
tion and we check the conformal invariance at that order. This is a very preliminary
account on the problem of conformal invariance of o-models based on orthosymplectic
groups OSp(n|m). Indeed, even though there is a fairy amount of literature on the PSU-
type of supergroups and the conformal invariance of their o-models, there is no proof based
on the orthosymplectic ones. A related problem is checking the T-duality at the quantum
level as pointed out in a series of papers [22-25], but at the moment no check for fermionic
T-duality has been done.

In paper [26], for the first time, the analysis of o-models on supermanifolds has been
performed. It has been observed that for some supermanifolds viewed as supergroup man-
ifold, the vanishing of the dual Coxeter number (or the quandratic Casimir in a given
representation) might lead to a conformal invariant theory. In paper [27], the renormal-
ization of Principal Chiral Model on PSL(n|n) is studied. They assert the conformal
invariance of the model by looking at one-loop and by using symmetry arguments (based
on Background Field Method BFM) for higher loops. They also discuss the presence of
WZ terms and how does the conformal invariance depend upon it. In paper [28], the o-
model based on AdS; x S? is discussed using the hybrid formalism for superstrings. It
has been shown by explicit computation that the one-loop beta function vanishes because
of the vanishing of the dual Cexeter number. A discussion about the vanishing of beta
function depending on the structure of the coset is given. In the same paper, for the first
time the WZ term is written as a quadratic term in the worldsheet currents. In paper [29],
the proof of the conformal invariance to all orders in the case of AdS3 x S3 x CY3 is
provided. It is discussed how the proof can be implemented to all orders. They refer to
the situation of the supergroups U(n|n). In paper [30], the models based on supersphere
OSp(2n + m|2n)/OSp(2n + m — 1|2n) ~ S2Hm=12ntm anq the superprojective spaces
U(n+mln)/U(1) x U(n+m—1|n) ~ CP"*™~ 1" In particular, they claim: ”In most cases
(in a suitable range for m, and for n sufficiently large), the beta function for the coupling
in the nonlinear o-model is nonzero, and there is a single non-trivial renormalization-group
(RG) fixed-point theory for each model.” Other discussions can be found in [31, 32].

Recently, the regained interested into AdSs x X models [33-37] brought the attention
on the conformal invariance of those models. Here, we extend the computation in a specific
limit of fermionic coset and we found that up to two loops the condition on the target
manifold for being a super-Calabi-Yau seems to be sufficient for the conformal invariance.
In addition, we explored the dual models and we discover that they have the same type of
unique interaction terms leading to the same loop computations.

From technical point of view, we adopt two methods for computation: 1) we expand
the action around a trivial vacuum and we perform the computation at one-loop, 2) we use
the Background Field Method to expand the action around a non-trivial background and
we compute the corrections at two-loops. A complete all-loop proof is still missing.

The paper is organized as follows. We divide the work in two main sections by first
exploring the classical structure of the theory and its T-duals and in the second part by
studying the quantum corrections. In section 2, we review the T-duality. In section 3, we
construct the o-models used in the rest of the paper by three different methods. Section 4



deals with the possible obstructions in constructing the T-dual models. Finally, in section 5
we provide a T-dualization of our fermionic cosets. At the level of quantum analysis, in
section 6 we deal with one-loop computation and in section 7 the two-loop analysis with
BFM is completed. Some auxiliary material is contained in the appendices.

Part I

Classical analysis
2 Fermionc extension of T-duality

2.1 Review of bosonic T-duality

This section provides a short review of the T-duality construction method for o-models
with a single abelian isometry [2, 39, 40]. Let us introduce a D-dimensional o-model

S = / Gap(X)dXA AxdXP = / d%z/—yGapy" 9, X409, X P (2.1)

where A, B = 1,...,D and the set of {X A} are bosonic coordinates. If the o-model has
a translational isometry, then the metric G is independent of one coordinate (i.e. X%).
The (2.1) becomes then

S = / [Gab(x)dxa A #dXP + Goqd X A %d X + G gqd X A *dXd] (2.2)

where a,b=1,--- ,D — 1. To construct the T-dual o-model we introduce the gauge field
A via the covariant derivative dX¢ — VX% = dX? 4+ A. The new action is now invariant
under the local gauge transformation and therefore we can choose a suitable gauge where
X% =0.2 The new action is then

S = / [GabdX“ A *d X + Gyq (AN *A) + Gggd X A *A] (2.4)
Now we can add in (2.4) the 2-form F = dA, weighted by a Lagrange multiplier X¢
S = / [Gabdxa A *dXP + Gaq (AN *A) + Gogd X A5 A + 25(%1/1} (2.5)

2We use the BRST formalism

sX%=c, sA = —dc. (2.3)



The equation of motion for the new parameter X¢ shows that (2.5) is equivalent to (2.4).
Otherwise, from the equation of motion of A we compute?
1
A= —Gpqd X
Gad ( “d " dety
The T-dual model is then obtained substituting this result into (2.5)
GaaG
SDual = / [(Gab - bd) dX A xd X+
Gad
G

ad a d 1
- dX*ANdX* —
Gad Ggq dety

* df(d> (2.7)

dX4 A *df(d] (2.8)

Notice that this simple formulation is guaranteed by the trivial action of the isometry.
For a generic bosonic o-model one can choose a set of coordinates such that the isometry
appears as a translation along a single coordinate (holonomic coordinate). Nevertheless,
one can in principle perform a T-duality along any transformation of the isometry group.
In general the isometry group could be non-abelian and the corresponding Killing vectors
are non-trivial expression of the coordinates of the manifold, therefore the above derivation
can not be used any longer. For that, we refer to the work of de la Ossa and Quevedo [20]
where they study such a situation in detail.

At the classical level, the above derivation is correct, but at the quantum level in
the case of string models, we have to recall that the integration measure of the Feynman
integral gets an additional piece which can be reabsorbed by a dilaton shift

¢ = ¢ —Indet f (2.9)

where f is the Jacobian of the field redefinition [20, 41]. We also recall that the most
general quantum corrections for abelian T-duality are the dilaton shift and the zero-mode
determinant [38].

2.2 Review of fermionic T-duality

Here we review the fermionic T-duality for an abelian isometry [3, 4]. The above procedure
can be followed through verbatim changing the dictionary and the statistical nature of the
ingredients. The bosonic fields X4 = (Xa,Xd) becomes fermionic 4 = (Ga,del,Hd),
the symmetric metric Gap = (Gap, Gad, Gaa) is replaced by a super-metric where Gap =
—Gpa. Notice that, due to the antisymmetric nature of G4p, we need two translational
isometries. Therefore we consider a super-metric which is independent of the two fields
641 9 The action is written as

S = / [Gab () A A #d6° + 2G 4q_1dO% A xd? 1+
+2G g% A #d0 + 2Gy_14d0% 1 A *d@d] (2.10)

3Recall that * is the Hodge dual operator defined in the o-model 2-dimensional worldsheet equipped by
the metric v,,. Then

x %A = —detyA. (2.6)



As in the previous section, we promote the derivatives of holonomic coordinates 84~ and
6 to covariant ones, introducing two (fermionic) gauge fields A1 and A¢. Therefore we
add to (2.10) the field strengths F' = dA weighted by the dual coordinates: 691 and 9.
Using again BRST technique, we fix the gauge to set 841 and 6¢ to zero. The resulting
action is the following

S = / [Gab (0) dO% A %d6° + 2Gaq_1d0O% A x AL 4+ 2G 1qd0 A AT+
192G g AT A %A 4 GA1qATT 4 éddAd] —
_ / [Gab (6) 6 A +d® + A A <—2Gad «df® — déd> n

LA A (—2Gad_1 £ 0% + 2G_1q % AL + déd—l)] (2.11)

The computation of the EoM for A%~! gives

1

At =
Ga-1d

<Gad1d0“ — % déd—1> (2.12)

2det

The dual model is finally obtained inserting this solution back in (2.11)

SDual = / |:<Gab (9) - 2Gad;1fjbd> do* A *d9b+

Gad—l Ad Gad Ad—1
— do® A 9% — do* A 9+
Ga-14 Ga-1d
1 _ _
— dO?=1 A xd6? 2.1
2Gd71d det vy Nx :| ( 3)

Notice that the fermionic nature of the fields might lead to some problems (see the following
examples). In particular, we were able to find two obstructions in the construction of T-
dual model: the first is connected to the non existence of holonomic coordinates, and the
second deals with the non invertibility of the equation (2.12).

Notice that fermionic T-duality is valid only at tree level, since it is missing an inter-
pretation of a compact Grassmannian direction.

2.3 Geometry of T-duality

In order to illustrate the possible obstructions in performing the T-duality in the case of
fermionic isometries, we derive some general conditions for T-duality for coset models [42].
In particular we show that there is an algebraic and a differential condition. In the following
we present two explicit examples to which this analysis applies.

We want to generalize the procedure reviewed in the first section to o-models with an
arbitrary number of isometries for which we can not use the holonomic coordinates. We
consider a (super) group G and one of its subgroup H. The generators of the associated
Lie algebra g are divided as follows

g=t+h (2.14)



where b is the super-algebra associated to H and £ is the coset vector space. We consider
the case of symmetric and reductive coset

[H;, Hj] = C,"Hg
[Hy,Ka] = C14,"Kp
[Ka,Kp] = Cyp'Hp (2.15)

where H € h and K € €. The vielbeins V4 of the coset manifold G/H are obtained
expanding the left invariant 1-form ¢~'dg on the g generators

g 'dg =VAKs+ Q' H, (2.16)

where Q! are the connections associated to the H-subgroup. Differentiating (2.16) and
using (2.15) we obtain the Maurer-Cartan equations

V4 = —Cp VP A Q!
ol = —;CABIVA AVE - ;CJKIQJ A QE (2.17)
These equations are rewritten defining the torsion 2-form T4 and the curvature 2-form R
T4 = dvA 4+ C VB AQl =0
R =d0' + ;CJKIQJ NOK = —;CABIVA N (2.18)
i.e. the coset manifold is a Einstein symmetric space. The metric is defined as
G=VAeVBkp (2.19)

where kap = Str (K4 Kp) is the Killing metric restricted to coset generators.
To define a o-model we need the pull-back

VA=V, 21y (2.20)

where z' are the coordinates on the 2-dimensional manifold ¥ and Z* = ZH(z) are the
embeddings of ¥ in the target space G/H, the action of the o-model is then

S:/ VANV BB (2.21)
3

We can now focus on Killing vectors Ky = K§ ag#. They generate the isometries A
that act on the coordinates as follows

Zr — 7P £ NAKY (2.22)

where Ay denote a set of infinitesimal parameters and KX is a function of Z. By definition
the Killing vectors satisfy LxG = 0 which reads

Lk, (VA N *VBIQAB) =2 (ﬁKAVA) A *VBKAB =0 (2.23)



The general solution to (2.23) is
Li, VA =(0))" V7 (2.24)
where, because of the symmetries of the reduced Killing metric, (©5)ap is antisymmetric
if V4 are bosonic. Otherwise, if the vielbeins are fermionic (anticommutant) and kap is
antisymmetric and then (©5)4p is symmetric. Using Lxw = ixdw + d(ixw) we get
Li, VA = dig, VA4 iy, dVA =
= diKAVA — K, (QAB VAN VB) =

= dig, VA~ (ig,Q5) VE + Q5 (ir, VP) (2.25)
where Q4 = Q/C4, 5. Then the condition (2.24) can be rewritten as
V (i VA) = (O + ik, Q)5 VB (2.26)

where the covariant derivative is defined by
V (i, V) = d (i, V) + Q4 A (ix, VE) (2.27)

This relation will be useful to search for the holonomy basis.

It is important to understand how the vielbein V4 = VMAdZ“ transforms under (2.22).
First of all, we notice that (2.22) shall be rewritten using the contraction operator ix, as
follows

ZF — ZH 4 Ny, dZH (2.28)
Using the fact that the components V4 are functions of Z we can obtain, expanding V4
in the first order of A

VA S VA{Z + N ig,dZ}) d (2% + Mg, dZ) =
- [VQA({Z}) Mg 428 aﬁvﬂ [dZ® + d\ i, dZ + M d(ig,dZ2%)] =
= VAL VA i, dZo + A [V;‘d(z‘KA dZ%) + ig,dZ° aﬁv;‘dza] -

= VAL, VA + A0 [v;‘d(z'KA dZ%) + ig,dZ° aﬁvjdza] (2.29)
Consider now

K, 27 05V az® = ixg, (42° V1) az® =

= g, (AV) dz® (2.30)
and

i(dVA) =ik, (AVAAdAZY) =
= i, (V) dZ® — dViig,dZz* =

= ir, (AV) dZY + VA (i, dZ%) — d (i, V) (2.31)



we then obtain the final relation
VA S VAL AN g VAN L, VA (2.32)
Using (2.24) this becomes
VA S VAL d g, VAN (004, VE (2.33)

This relation expresses the transformation of the vielbeins induced by (2.28).
We are now ready to generalize the construction method of the T-duality . First of all
we gauge the action (2.21) via the following shift of the vielbeins

VA VA4 44 (2.34)

for a not-yet-specified number of vielbeins and gauge fields A. After this, the action is
invariant under the gauge transformations

A A A A A A B
{v S VAL AN i VA+ AL ()4, V (2.35)

AL — A — AN, VA

and so we can gauge some vielbeins to zero. For that we have to solve the following
equations
dAN = —VA (i, VA (2.36)

Notice that, thanks to the symmetries of the reduced Killing metric, the term
NCING 5 VP can be omitted. The condition (2.36) implies two constraints on the matrix*

Mig = (iKﬁ VS >: which must be invertible

detM # 0 (2.37)
and .
3 S — G
dAY = -V5 (M), (2.38)
which locally is equivalent to A A
d [VS (M) gG} ~0 (2.39)

because of the Poincaré Lemma. Being constraints (2.37) and (2.39) satisfied, we are able
to construct the T-dual model: first, we add to the action the field strength weighted
with the Lagrange multipliers Z;dA” (Chern-Simons term in 2d), then we substitute the
expression of AL as functions of the X obtained by solving the equations of motion of A~L.

2.4 Gauge fixing and cyclic coordinates

Dealing with the generic isometry-T-duality construction, we discuss the connection be-
tween the possibility of fixing the gauge (and performing the T-duality) and the existence
of a system of coordinates in which the generic isometry is reduced to a translational one.
To do this, we first focus on a simple bosonic-coordinates system.

4Notice we have restricted the set of indices in order to find a minor satisfying the two conditions.



Consider the following isometry of action S = [ £ (z)
7% — 7° + A\K© (2.40)
We note that to fix the gauge we must have that
ZP4AK"=0 = A=-2°[K°"" (2.41)

Then we try to find a system of coordinates (the holonomy base) in which (2.40) is reduced
to
70 5 70 4\ (2.42)

Introducing a new variable Z° (Z) and imposing condition (2.42) we get

Z9(Z4+2NK) = Z° 4+ A

_ VAL _
7% (7 K = 70
(Z)+ A 57 15—z + A
YA o
= [K 2.4
YA K] (2.43)
then
20 — / K] dz (2.44)

From (2.41) and (2.44) we see that the non-existence of the inverse of the Killing vector
invalidates both the gauge fixing and the redefinition of cyclic coordinate.

This conclusion changes dramatically if we include also fermionic coordinates 6. For
sake of simplicity let us consider a purely fermionic lagrangian and following isometry

0% — 0 + " Kg (0) (2.45)
Condition (2.43) reads
o0r _1 e
oge = K L) (2.46)

This differential equation can not be integrated in Berezin sense. We can find the solution
defining the more general combination of 6

0 S 1 o 024
" Z; <2z' 110707 H) (247)

where in the most general case, ¢’4,...,, are function of the bosonic coordinates. Equa-
tion (2.46) becomes

n

Y (a7 0701) = [K )] (249
1=0

where, for i = 0 we have ch. In conclusion, to construct the holonomic base , the Killing
vector component K has to be invertible and (2.48) must be solvable.

,10,



3 Fermionic coset models

Before applying the above considerations, we present a set of models which become of
interest recently [43-45]. We mainly deal with fermionic coset models based on the or-
thosymplectic supergroup OSp(n|m) where we quotient by its maximal bosonic subgroup
SO(n) x Sp(m). These models are obtained as a certain limit of AdSs x S° in [43] and as
a limit of AdS; x P? in [45].

We take into account only the principal part without any WZ term and we study its
conformal invariance. To construct the model, we do not proceed from a string theory and
taking its limit, but we use three independent methods to construct such simple models.
Since we are interested in studying the (super) isometries, we focus on the symmetry
constraints.

The first method is based on a specific choice of the coset representative, on the
nilpotency of the supercharges and their anticommutative properties. As examples, we
construct the OSp(1|2)/Sp(2) and the OSp(2|2)/SO(2) x Sp(2) models. This method is
very powerful and advantageous in the case of small supergroups. The second method
is based on the geometric construction of the vielbeins and H-connection. We follow the
book [19] for the derivation and we adapt their formulas for our purposes. Finally, the
third method is based on the symmetric requirements. The latter can be implemented
perturbatively and it allows more general models for which only the conformal invariance
seems to discriminate among them.

3.1 Nilpotent supercharges method

Given the supercharges (), we impose an ordering (1, Qs,--- and we construct the coset
representative L as the product of exponentials

L(0) = 1@102Q2 (3.1)

By the fermionic statistic of the #’s and the anticommutation relations of the super-algebra
we can compute the complete expansion of L (f) and we easily derive the action for the
models.

3.1.1 OSp(1]2)/Sp(2)

This simple model has 2 anticommuting coordinates 67 and 0. Notice that they form a
vector of sp (2). We can write the coset representative L (#) as (3.1) and we can expand in
power of 6

L(§) = P1Q1,02Q2
= (1+6:1Q1) (1 + 62Q2) (3.2)

then, the inverse L~! and the 1-form dL are defined as follows

L7 = (1= 62Q2) (1 —6:1Q1)
dL = d6:1Qq (1 + 02Q2) + (1 +0:Q1) dO2Q2 (3.3)

— 11 —



Therefore, the left invariant 1-form is

L_ldL = (1 — 02@2) (1 — 91@1) df1 Q4 (1 + 92@2) +
+ (1 = 02Q2) d62Q2
= d61Q1 + db2Q2 +

—;91(191{@1, Q1) — ;92d92{Q2, Q2} — 02d01{Q1,Q2} +
—;92916191 [Q2,{Q1,Q1}] (3.4)

Using the (anti)commutation relations given in appendix A, the left invariant 1-form can
be expanded into the osp (1|2) generators, obtaining the vielbein V,, (the 1-form associated
the coset generators @Q,) and the H-connection (the 1-form associated to the generators of
the isotropy subalgebra sp(2))

L7dL = (14 6162) dO1Q1 + db2Q2 + H-connection (3.5)
The vielbeins are then

Vi = (14 6,62)d6;
Vo = dfy (3.6)

The action reads
S = / kPVy A %V (3.7)
%
where k%7 is the Killing metric reduced to the coset. Here, k% = £*#. Then we obtain

S / (1 + (91(92) do; A xdbs (3.8)
3

We can also derive the same action (up to a field redefinition) from the Maurer Cartan

equations (2.17)
AV — e gV AVT =0
1
AV — VEAVY = 2805V N VA =0 (3.9)
From these equations we obtain the vielbeins
1
o (e P
1
Vel — - (aadeﬁ +9ﬁdaa> (3.10)
then the action is
1
S / (1 +, 9%,,090> Eapdd® A xd0P =
b
1 _
— /E d?z (1 + 4 epe,wa") £ap00°00" (3.11)

The action is invariant under the isometries discussed in section 4.
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3.1.2  OSp(2]2)/SO(2) x Sp(2)

The procedure described in the previous section can be used also for the present model,
but we show that an alternative choice of the generators of super-algebra osp (n|m), with
n even, (see for example [46]) leads to a further simplification.

We redefine the generators to make the fermionic ones nilpotent (i.e. {Q;,Q;} = 0).
To do this, we first define the following matrices

0 Iy
0
I 0
Gry=1" if M =2m (3.12)
0 I,
0
-1, 0
0 L, 0
I, 0 0 0
0 01
Gy = if M =2m+1 (3.13)
0 I,
0
-1, 0

We introduce a new set of matrices er; by components

(ers) g = OrLdsK (3.14)
By these ingredients we can introduce the generators of osp (n|m)

Eij = Gikerj — Gjkeri
El'/j’ = Gi/klek/j/ + Gj’k/ek’i’
Eij’ = Ej’i = Gikekj/ (315)

where we have splitted the capital indices {I,J} in {i,j} = 1---M and {/,j'} = M +
1--- N. They satisfy the (anti)commutation relations

ij» Er] = GipEi + GuEj, — GiEj — G Eig

By, En] = GiuBq + GaEje — GiuEy — GE

[Ei’j’ , Ek:’l’] = _Gj’k"Ei’l’ — Gi’l’Ej’k" — Gi’k"Ej’l’ — Gj’l’Ei’k"
[Eij s Epv] =0
[Eij7 Ekl’] = ijEil/ — GikEjl/ (316)
(B Exy] = =Gy Eyjr — Gy Egy

{Eij” Ekl’} = Gy Ejy — G By
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where E;; are generators of so(n), the Ey ;s of € sp(m) and E;j are the supercharges Notice
that, with this choice, the supercharges are nilpotent

(Biy)* =0 Vi, 5 (3.17)

and this simplifies the computation. We set

Q1 = Q}, Q:=Qy Q3=0Q7 Qi=0Q3 (3.18)
Ey = Ty Eor = Tygr = Torqs Ey = Too (319)
and
Ey =T =-Tn (3.20)
where the prime indices corresponds to the sp indices. The reduced Killing metric is
(A={i,i'})
0001
0 0-10
=4 3.21
rAB 0100 (8:21)
—-10 00

The complete computation is derived in appendix B. We choose the coset representative
as in (3.2)
L(0) = P1Q1 02Q2 03Q3 02Q4 (3.22)

which expanded in series becomes

L(#) = (1+61Q1) (14 62Q2) (1 +65Q3) (1 + 04Q4) (3.23)

Then, the left-invariant 1-form reads:

L7 = (1 - 04Qu) (1 — 03Q3) (1 — 02Q2) (1 — 61Q1) x
xdfh Q1 (1 + 02Q2) (14 03Q3) (1+ 04Q4) +
+ (1 = 04Q4) (1 — 03Q3) (1 — 02Q2) dfz Q2 (1 + 03Q3) (1 4 04Q4) +

+ (1 = 04Q4) (1 — 03Q3) d3 Q3 (1 + 04Q4) + (1 — 02Q4) dO4 Q4 (3.24)

Notice that only an even number of commutators of () gives again ). Therefore, to obtain
the vielbeins we compute only this kind of terms. We get (see appendix B)

L~YdL = Q1d01 + Q2dbs + Q3 (—26394(1(91 + d@g) + Q4 (—29394(162 + d(94) + QIH[ (3.25)
hence, the vielbeins are

Vi=do, V3= -2030,d6; + dbs

3.26
VZ=df, V*=-2050,d6,+ db, (326)
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So, the o-model action is
S = / tr (VA*V) = / kapVAN«VE =
% %
= 4/ {d91 N * (—29394(192 + d64) —dfy A * (—26394(1(91 + d@g) +
%
+ (—29394d91 + d93) A *dfy — (—29394d92 + d94) AN *d91} (327)
But df® A xd6? is antisymmetric, then: the action of OSp(2[2)/SO(2) x Sp(2) is
S =8 / {d91 A sdfy — dfy A +dBs — 405046, A *daz} (3.28)
%
or, explicitly:

S =8 / Q2237 { 0,010,04 — 0,0:0,05 — 403019,0:0,05 | (3.29)
b

3.2 Vielbein construction method

In this section we construct the OSp(n|m)/SO(n) x Sp(m) action through the coset viel-
beins. The method used is similar to the one described in [19].
Let L be the coset element

L =expf2QY (3.30)

where Q% € osp(n|m)/so(n) x sp(m) (see appendix A). The vielbeins V,* are obtained by
expanding the left-invariant 1-form L~'dL

L7'dL = V*Q% + H-connection (3.31)
Consider now the matrix realization in fundamental representation of the generators Q¢
Q)" =6y + 0%e,! (3.32)

Notice that e,/ = Sal where ¢ is the Kronecker delta in m dimensions. We write the
generators as block matrices

02Qe = <Q b) (3.33)
where

(3.34)

,15,



The group element is then

5+ 30T b+ o 4 b DI

L) = _

ol + 3 O bR b+ e+ éi)leIfJ +-

cosh \/ bb bSin\h/Eb bb

Sin\h/bgbz’g cosh \/ bb

We shall now perform the following change of variable

go — bsinh Vb
’ Vb
then the group element becomes
1
(6 + 032050 ) * 59185 0269l ey
L(0) =
1
posae, ! (227 + 036°0)) e, ey
The inverse is then
1
(6 + 022050y ) * 62135 —925% e,
L7H(0) =
1
—ga5ee,! (220 + 039900} )* e, ey

and the 1-form dL
dL (9) = EF
G H

BT, = L (6 + 002p003) 2 640 [A072,200 + 072,102 67165

where
FIJ = degéalsaj
G', = dossse,’

HT, = L (697 4 0267507) 2 £, [A0X6%007 + 6260d65] 2,1 c,

We shall write the left-invariant 1-form as

L_l(a)dL(e):<AB> (EF>:< AF+BH>
cD|\GH CE + DG

,16,
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(3.36)
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(3.38)
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In order to obtain the vielbeins, we compute only the off-diagonal blocks. We gets
Vose,; = AF + BH =
= (Gur + 0320507 e (67 -+ 01te 0, 0757007+
—;agewdagéuwg 6,y (3.42)
and

Vie 169 = CE + DG =
1
- 1
- (eap + agéabe,f?) * €po [dag — 2955Wd95w93+
+075% 0T 2d0 | €,105 (3.43)

The o-model is then

S :/Str(V/\*V> =
by
= /2 <Va"6alea JA*V;ea153> =
_ /E <gm5a8v; /\*‘A/;O‘) (3.44)

Dealing with fermionic fields, the expansion of (3.44) leads to a polynomial action in §. We
obtain

S ~ / d?zy/dety [auegaﬂafsaﬁém
050, 0,070 05 (2076 sz gy + 050ty + 07072 0pess ) + o] (3.45)

3.3 Supersymmetry construction method

Here we derive the 4-field terms (i.e. §6096060) for OSp(n|m)/SO(n) x Sp(m) action using
supersymmetry invariance. To perform this computation we have to build the supersym-
metry transformation up to the second-order. Now, the variation of the zero-order term
of the action must be canceled by the zero-order variation of the 000000 term. With this
observation we are able to reconstruct the second-order contribution to the action.

The first-order generators of Sp(m) and SO(n) are

0 0
af _ poBp B _ap
M 05 e 695+9a€ 06"
0 0
My, = 9{;61)6895 — 956@0895 (3.46)

To find the second-order supersymmetry generators (5 we use the closure relation

{Q2, Q%Y = &% Mygs + s M (3.47)
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The generators Q5 can be written as

a _ ~af _ 0
Qa - Gab agbﬁa 695 = 695 (348)

and the relation (3.47) becomes
Gol (9060 ) + G (9,Gar ) | e =
ab 0, a'r a'b’ 95/ ar or

= |:5aa/ Hgaa’p + 50,0/97(,)/504) 4 &.aa’egéa/r _ 80{0/95,(5(”,] ({99: (349)

Consider now Ggf . at zero-order it is €*6,;,. To find the exact second-order structure, we
construct the most general term

G = 260207 + y 0307 + 025707 + 6,50 + e 0)e,56°103%0 54, (3.50)

Using the zero- and second-order in (3.49) we set the coefficient a, b, ¢, d, e. The computa-

tion yields the following results

r=2e , c=d , d—y=1 (3.51)
where we used the following relations
Po1 =g 00 =c"0 (3.52)
Then, the supersymmetric generators are

Qi = | 0w+ w020] + y 0507 + (14 1) 02570+

0

o6;

(1 +1) 03,60 + 3, 02225005605 + O(4) (3.53)

up to second-order. Now we have to perform the second-order variation of the zero-order
lagrangian density
Lo =" 0,000,0 c0pd™ (3.54)

The supersymmetric transformation generated by (3.53) is
e = €,Qq (3.55)
explicitly
500 = e + egag,?a@bﬁeg =

= & + 220200 + y 0208 4+ (1 +y) 20561055, +
X
+(1+y) €20)e.,500% + ) €20 e,50°00967 5 4y (3.56)

€a
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The second-order transformation of (3.54) is then

8(L0))|,, = 7€) 0"05000,07¢ 300" po 0" + x €) 02 0M0PD, 07 € 00" € 675 +
€ D 02000,07 500 pr 07 + 1y € 0S0M020,07 £ 500" pr 07 +
(1 + y) € 002050,07 € 500 po 0¥ + (1 + y) € 020"050,07 € 5o 0%y 0° +
(1 +y) ) 00)020,0725,8" 150" + (1 +y) € 010"020,07 ¢ 5,6 e,50™ +

+;” 2 01071000,07 ¢ gper 56567 + ;” €20701000,07 ¢ gpe, 56055

=

(3.57)
Finally
o)l = +2 eﬁ‘@“@ﬁ@f@ueggap(sar%o(gbs T
— 2 €01000) 0,07 20507 o 07 +
(1 + 2y) €20"0260,) 0,07 0002 50" +
—(1+ 2y) €201000) 0,07 0,307 ¢ py 67 +
2L+ 1) OO0 0" 35%)

As we have already said, this variation must be compensated by the zero-order variation
of the second-order lagrangian density E‘ ;- Imposing this we obtain

L), = +22050"000) 0,07 c0pd™ 5s0"° +
— 205010207 0,07 030"y 075 +
(1 + 29)000"000) 9,07 €00 0%e y50" +
— (1 + 29)02 0020, 0,07 050 pr 0™ +
+2(1 4 y)05 0”020, 0,07 €0y 0 € 50" (3.59)

Notice that for x =0 and y = — 3 we obtain the 4-field term derived in section 3.2.

Since this method is merely perturbative, to each orders some freedom is left by the
constants leading different models. If we were able to pursue it till to the end (namely in
the case of a limited number of §’s coordinates) then we would have seen a unique solution.
Hence this falls in the same class of problems known as gauge completion in supergravity
and supersymmetry where starting from the bosonic components of a given superfield, the
constraints would permit the construction of the full superfield. However, this is in general
not achievable (see [47] and reference therein.).

4 Obstructions to conventional T-duality
Here, as we announced in section 2, we present two typical obstructions in the T-duality

construction. To do this we apply the procedures outlined there to the simple models
discussed above.
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4.1 0Sp(1]2)/Sp(2)

This first case refers to the coset space OSp(1|2)/Sp(2), characterized by two fermionic
coordinates €; and 6. We recall the action (3.11)

1 _
S /E d?z (1 + 4 9p5p09‘7> £ap00°00" (4.1)

This model is not invariant under § — 6+¢, but it possesses — besides the Sp (2) invariance
under 8¢ — Ao‘ﬁﬁﬁ with Ayg = Agy — also the following isometry®

0% — 0 + (1 + ;Hpspoﬁ(") e (4.2)
i.e. the action (3.11) has the following Killing vectors
K, = (1 + ;9%,,09”> 82 (4.3)
To demonstrate this we use the fermionic Killing equation

Ky 0rGpo — 0Ky Gag — 0 K,y Gpr = 0 (4.4)

an alternative proof is found in appendix C. To construct the T-dual model we have to
determine the matrix ix, V4, find a invertible minor, and check eq. (2.39). We obtain

. A (1 + 39192) 0
iKWV = < 0 (1+36,6) (4.5)

and this matrix is invertible, so we do not need to find a minor. Otherwise, the (2.39)
becomes

{ 02d6y A dBy + 61dO; AdB; =0 (4.6)

01dO5 A dBy + 02d0; A dBy; =0

and these two condition are not in general true. So, the dual model can not be constructed
in the conventional way. In the following we will show a way to bypass this step by first
linearizing the isometries and then by gauging them.

4.2 0Sp(2]2)/S0(2) x Sp(2)

The action for this new coset space is derived in section 3.1
S=8 / {d01 A dfy — dfa A +d0s — 4050,d0; A *d92} (4.7)
%

notice that there are two translational isometries, referred to 6; and 65

01 — 01+ N\ and Oy — Oy + Ao (48)

°It is easy to demonstrate that it does not exist a coordinate transformation that reduces this isometry
tod — 60+c.
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where A is a fermionic parameter (i.e. A0 = —6\). To find the dual model we then use the
first procedure. First of all, we introduce the gauge field A; via the covariant derivative,

obtaining
o _ 8/ {(dgl + Ap) A #dBy — (A0 + Ag) A #dBs +
b))
— 40504 (A0 + A1) A * (df + Ay) } (4.9)

The new action is then invariant under a local transformation which allows us to choose
the gauge
01 =05=0 (4.10)

After doing this, we introduce the 2-forms and the Lagrange multipliers 6;
S’ = 8/ {Al A xdfy — Ay A xdf3 — 40304 A1 N\ xAg + éldAg + égdAl} (411)
b

Now we calculate the equation of motion for A, obtaining
40304 % Ay = *dfy — B (4.12)

We have to factor As but this is not possible, considering that €36, is not invertible. This
problem hinders the construction of the dual model.
However we can modify the original action (4.7) in this way

S x lim {d91 A xdfy — dfy A %dfs — (¢ + 4050,)d0; A *daz} (4.13)

e—0 J»

In the limit € — 0 this action is equivalent to the original, but in this form we are able to
invert the equations of motion. The results are

1 - B
Ag = dé dé 4.14
27 e+ 4050, i at dety i 2_ (4.14)
and _ -
A= 1 de L ad (4.15)
L e+ 40304 | 3 dety 1_ ’

Through the substitution of these equations in (4.13), we obtain the dual model

- 1
ST x lim

1 - - - -
dfs A xdfy — dfy A xdfy — db; A dBy — dbs A dB 4.16
e—0 254—49304{ 3 /Ao det~y 1A AR ! 4 2 3} (4.16)

In order to analyze the connection between the actions, we compute the curvature for both

models. From the torsion equation we derive the spin connection
AVA — kpeP AVE =0 (4.17)
then, from the definition of the curvature 2-form, we obtain the curvature components

RAB = A8 — kopaC A oPP (4.18)
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However, the results obtained for the dual model depend on the term _ _&99, for instance

1

11
=—4
i (6 + 49394)3

036,4d6, A dbq (419)
This shows that a physical quantities such as the curvature of the dual model is not defined
for e — 0.

5 New methods for T-duality

Now, we decided to go for another path. Since in general the holonomic coordinates can
not be found, we use de la Ossa-Quevedo method [20], which is suitable for non-abelian
T-dualities, for constructing the T-dual. Therefore we add new gauge fields and we perform
the integration of them as suggested in [20].

We would like to mention that a possible issue for non-abelian T-duality is the non-
equivalence of the actions at the quantum level [50].

Another important point is that the model for the coset space is written in terms of
a given parametrization. If some isometries act non linearly, we might encounter several
problems in the duality construction. To avoid them we choose a new set of coordinates
subject to some algebraic equations (Pliicker relations [48]) in terms of which the original
model can be written. In this way the isometries act linearly and therefore they can be

easily gauged in the conventional way [49].

5.1 BRST transformations for OSp(1]2)
Consider the following lagrangian density
Lo= V¢V +easV0* VO +a(¢® — 6% —1) (5.1)
The covariant derivatives are defined as
VY = 00% — A% — A%40°
V¢ = 0p — A%0,, (5.2)

The equation of motion for o reduces the lagrangian to the usual form (3.11). Notice that
we use A, = €qpAP and A = £* A, as raising-lowering convection. The nilpotence of
BRST operator s implies the following BRST transformations

s0% = n%p + ca“’ayﬁﬁﬁ

s = n%0,
sn® = caﬁ€57n7
sc®P = P 4 ey (5.3)

where the ghosts denoted by a latin letter are anticommuting while those denoted by a
greek letter are commuting quantities. Last, they have the following symmetries

CaB = Cha Ang = Apa (5.4)
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We fix the transformations rules for the gauge fields by requiring the covariance of covariant

derivatives

s (V%) = n*V¢ — c*3V0° = V¢ + ey, VO
5 (Vo) = 1Vl = n%0s VO’ (5.5)
From the second equation of (5.5) we obtain
sAY = O™ + Aey)c —nPe)e A7 =
= O + *Peg, AV + A%e on® (5.6)

and from s2A% = 0 we get
SAY = —9cP — > AP — AP 4 ca)‘esMA'Yﬁ — AO‘)‘QPCPB (5.7)
We define the following field strengths

FY = QA% — 9A® + A%Pep AV — A%Pcy A
FoB = 9A%P —§A%F 1 A%e ;A% — A% 5 A% 1 A AP — A% AP (5.8)

which transform as follows

sF* = caﬁsﬁyFV + Fo‘ﬁsgwﬂ
sF0 = e sFOP — e s — @ P — Fopf (5.9)

5.2 Performing T-duality

In order to construct the T-dual model we consider the gauged form of lagrangian (5.1)
Loauging = —~VOVG + £05VOIVO® + o (¢? — 02 — 1) +i0%,5F° + 6™ ep,e06F1° =
= (67— 02— 1) + (99 — A%090%) (06— A7e,50°) +
+ (907 — A% + A%Peg,07) 205 (967 — A+ A%e,567) + (5.10)
—l—iéo‘saﬁ <8Aﬁ —0A° + Aﬁpam[ﬂ - AﬁpamA“/) +
+i¢PegrEas <8[1”’5 — DAY - AVPe,, AT — AVPe, A% 4 ATAS — A“’A‘S)

Notice we gauged the whole isometry group OSp (1|2). Following the procedure described
in [20] we rewrite (5.10) as

£gauging = Lo+ (ha + faBAﬁ + ga(BW)AﬁV) Ay +
+ (l(aﬁ) +m@ra, n(aﬁ)(pU)Apo) App+ WO Aq + T Ay (5.11)
where

he = —0 (p0%) — 106 198) = 99> 9P — j9p>?
g?B7) = B _ By g n(eB)po) — _jgelpa)B _ ;4B co)e

he = —9 (p0%) +i96° 19 = 9998 + igpP (5.12)
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Notice that
ey, = 5, §%Pes = —*P55, # oy (5.13)

This model has 8 degrees of freedom: 2 for 8%, 1 for ¢, 2 for % and 3 for ¢*°. By gauge
fixing we eliminate some degrees of freedom among them. Notice that it is not possible to
set a symmetric 2 x 2 tensor field to a constant by a Sp (2)-transformation: we can not set
all the three components of &aﬁ to a constant. Nevertheless, we choose

1

¢ = (detqfﬁ) * 50 (5.14)

thus, only one degree of freedom survives and there is an Sp(2)-gauge isometry left. Now, we
set 0 to zero via the OSp(1|2)/Sp(2) gauge transformation. Consequently, the constraint
in Ly impose that ¢ = 1. This reduces the degrees of freedom from 8 to 3. The remained
fields are

deto, 6 (5.15)

and we have a one-parameter residual Sp (2) symmetry. If we rename

1

(detgfa) S (5.16)
definitions (5.12) become
he = —idf* 1(0F) = _ipds*P
faﬁ — P 4 22'(255045 m@Ble — yigleBlp
g?B") = jeB g n(eB)po) — _ig5a(p B _ 48P o)
A = +i00" 1@8) = +idps™? (5.17)

To derive the T-dual model we compute from (5.11) the equation of motion for A,, ob-
taining

Ap == (hA + g“’”’)Am) (5.18)
The lagrangian becomes

Loging = Lo+ {l(aﬁ) _ mlaB)e [f—l]pA e <n(a6)(pa) _ mlaB) [f—l]o\ g)\(PU))APU}Aag +

—h° [fil]a,\ B+ {l‘(po) _po [ffl] /\gA(po)] Ay (5.19)

Q.

That is
Lag =2+ A5+ QD A5+ TOAC 4 54, (5.20)
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where

_ 1 - -
E=-hof 1 m=- . 90%,300°

e} e} e} —1 A
Q08) — @) _ lede 1] )
el 1 n(a 9n - n(a N
— —iDpeB — o (9< 967 + 2i40 emp(spAaeA)

M@0 P0) = p@d)oo) _ e [=1] golpo)

po
52
. [t o]
4 (1 . 4¢2>
21— 4¢% — 62

+io, (1 ’ 4@32) [ew&ﬁp 0B 4 ghogor 4 gﬁ%ao] (5.21)

Now, we can find the equation of motion (EoM) of the last gauge fields. Substituting it
back into the lagrangian gives the T-dual model. To do this we have to compute the inverse

of II. Consider the following 4-indices tensor
T(eB)(78) _ 4 [Eaégﬁw n Ewgﬁs] B [80455/37 4B | B gay 4 B b (5.22)
To find its inverse we impose the following definition of inverse tensor

-1 aff po __ ( o)
(M~ 5, MO P = e S (5.23)

and then we can fix the coefficient of the following generic tensor

=L [Ea(gaﬁﬂf + eayeps) + P [50,55[%/ + dary0as] +
+M [ea(;(Sg,y + 60{7555 + 65550{7 + 6575045] =

1
A P

=L<ee>+M<ed>+P <6 > (5.24)
We find that
A? 4 2B? B 282
_ + _ P— (5.25)
A (A2 +4B?) A2+ 4B? A (A2 +4B?)

Here, A 62, then it is impossible to invert.

5.3 Residual gauge fixing

We want to fix the residual gauge invariance, via BRST method: we introduce a set of
lagrangian multipliers b,3 and the corresponding ghosts ¢, 3 such that

SCap = baﬁ, Sbaﬁ =0 (5.26)
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Notice that the metric in this model is £,43 and we use it to raise and lower the indices. To
fix the gauge we introduce a new term in (5.20)

Lon— Loy = Laits [Wwwmm + g ase 0y | =
1-
+ 5 bane b+ f ({}) (5:27)
where
1
(aB)(po) _ ac _Bp | cap_fo
€ 5 <e e’P + e%e ) (5.28)

We collect the ghost term into the symbol f ({c}). Computing the EoM for b and b we
obtain

bap = —EAup bap = —EAup (5.29)

Then we have
Log = E+ 0D gy + Q0N Ay 4 [MON0) — gleD0 | 4054, 1 £ ({e}) - (5:30)
Defining [H(aﬁ)(m) — gg(aﬁ)(po)] = [1(@F)(r9) | we get
Lo =54+ 000 A+ QOO Ay L OO A LA, 1+ f({e))  (531)

Now, we fix £ to make II invertible. Comparing with (5.21) we have

N2 72 N2
A= f L tE B:z’q@l_4¢ fe (5.32)
4 <1 - 4¢2) 4 (1 . 4¢2>
or, more simply
A= 924“51 , B:ig@l_4¢2f‘92 (5.33)
4 <1 . 4¢2> 4 <1 . 4¢2>
Then
(ma) (3 (e ()
L= , o (5.34)
040 (13 (e s o) o (0
id (1 — 442 — 92)
M= ) 2 ey (5.35)
192 (~1+ 492+ 07) + A
~ ~ ~ 2
842 (1 —4¢?) (-1 + 49> + 6>
po o) ) 9

040 (38 (1) )
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The EoM for flpo is then

Aop = Qro) (5.37)

- [ﬁil] (B)(po)

Finally the dual lagrangian is

Laua = = — Q) 1171 Qo) 4 5.38
v L P I {e}) (5.38)

With simple algebraic manipulations (see appendix D), the dual lagrangian becomes

Laual = E — g — 21(L_ Z(; ) [-ié@@aaa%ﬁ +i0900°5 0500+
+20860°90% 5 + 29aéeﬂgaﬁ$3¢} +
2
. o, [69@89%5 (—4M (1 + 4@2) +4i (3L — P)) +
P (1 _ 4¢2>
+ 80°00% ¢ 05 <— (3L — P) (1 n 4552) - 8¢M¢3>} + 1 ({e}) (5.39)

Notice that exist just two combinations of L and P. Using (5.25), we have

4(1—4¢?
L+P:i1: (02+§>
3L_P:,11+A2—2:t132:

4(1-45&2) (62 +€) 4(1-45&2)

= + 5.40
(6% + &) + 492 (1-4&2—02) 02+ ¢ (40

The form of the lagrangian is rather cumbersome and therefore it might be rather awful to
proceed with a loop analysis from this expression. Of course, it can be expanded in power
of qAS, suitable for 1-loops analysis.

5.4 Another gauge fixing for OSp(m|n)/SO(n) x Sp(m)

The method presented above can not be used in general: even in a slightly more extended
example as OSp(4/2)/SO(4) x Sp(2) the computation becomes quite prohibitive. We then
found an alternative gauge fixing condition that leads to a simpler treatment.

The coset model OSp (m|n) /SO (n) x Sp(m) is built from the following fields

e A(j;) bosonic SO (n) fields;
e &g antisymmetric Sp (m) fields;
e O,, fermionic fields.

To these are associated ghost fields
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e dj;;): fermionic SO (n) ghosts;

® c(p): fermionic Sp(m) ghosts;
® 7);: bosonic ghosts

The BRST transformations read

59ia = Cape” Oy + dij0* Opa + 0ige™ Prg + 1jad’F Ay
sD(ij) = Mi1ae™0 jyg + dapd Ay
5Plag) = Mifad” O3] + Clapye " Py (5.41)

In order to construct a gauged principal chiral model, we introduce the following gauge

fields
e Apj: antisymmetric SO (n) gauge fields;
o A(yp): symmetric Sp (m) gauge fields;
e A;,: fermionic gauge fields.
Their associated field strengths are
Fiij) = 0Aij — 0Aij + Appd”* Ay +
A be af x A «a
—Appd" Acj) + A A s — Apjas™ A
Flag) = 0Aag — 0Aas + Aape™ Agp) +
B s . .
~A(are Aslp) + Aia 07 Ajig) — Aia 0 Ajyp)
Ea = aﬁia - 514@'04 + Aij(;]kleka +
— Ay Ap + A€V Ais — Apry€° As (5.42)

5.5 Construction method

The lagrangian for the coset model is constructed starting from the whole model O.Sp (m|n)
lagrangian. The supergroup representative L is

Al @
L= 7 "« (5.43)
<@j¢ﬁ>

The vielbein are obtained expanding L~ '0L into the generators of the superalgebra
osp (m|n). Our final aim is the fermionic coset, so the vielbeins are the off-diagonal part
of L=Y9L: V2 and V<. We get

Ve = A%00', + B 097,
Ve = C%0N', + D 00] (5.44)
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where

7

. . -1 -1
A = [Alj—elg @7,] @V]} 54
BY, = —A"0'; [2]
ot «a i 1—1
C% = =D, 07 [AY]

)

-1

. .71
Doy = [0 —e7 [a] e | e (5.45)

The lagrangian for the coset is made of two pieces. The first one is the contraction of the
vielbeins by the Killing metric and it produces the kinetic term for the fields ©, A and ®.
The second term deals with the so-called Pliicker relations as constraints. By solving them
we re-express the bosonic fields as functions of © and the purely-fermionic coset model is
reproduced.

The first term is

Ly = V50ea5V7 + V', 5,6V, (5.46)
And the second one is:
Lp =l <Aik5klAlj — 0,0e"0,5 — 5ij> + glesl ((I)Omew(l)(;g —0i0670,5 — %5) +
e <Aik5kl@ka n @aﬁgﬁvgm) (5.47)

The constraints imply

Ary = \/51J + 07,290 5
CI)O,B = \/e’;‘ag + @]a(SIJeJﬁ (5.48)

It can be shown that substituting them into (5.46) will recover the original la-
grangian (3.44). The OSp(m|n)/SO(n) x Sp(m) lagrangian is then

Lo=Ly+Lp (5.49)

5.6 T-duality

In order to construct the T-dual model we gauge the whole isometry group. We introduce

then the covariant derivatives defined as

VOin = 00 — Aij0% Oy — Aupe® 0, +
—Aipe? @ — AjudTF A
VAGj) = OAj) — Aplac™O))s — Aard™ Ay
V@) = 0Plag) — Aifa)07Oj15) = Alalpe” ol (5.50)

and we add the field strengths (5.42) as Chern-Simons terms

Lp = i Fi + i\ F + i @D Fp (5.51)
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Now, we set O = 0 adding to the lagrangian the BRST gauge fixing condition
LBRST1 = S [5m@ia] (5.52)

where s¢'® = b and sb' = 0. Solving the Pliicker constraint, we get A;; = d;; and
®.p5 = €,,- This simplifies the functions (5.45)

Al =4, B* =0, c* =0, D% = &% (5.53)
The lagrangian is then
Lyp1 = Aiad7ePAj5+ Lp (5.54)
We can now perform another gauge fixing. We can set, analogously to (5.52)
A;j =0, Aup =0 (5.55)
notice that this gauge fixing does not imply A;; = 0 and A,3 = 0. Then, (5.54) becomes
Lopp = | (8167 + 20\ ™ 4 2065t ) Ayy+

—i9g" + Z'QMA[ij](Sjl + ielo‘A(M)ew‘] Al)\ +

000" A, + iONIT Ay 1+ 000D A5 (5.56)
We now compute the EoM for A,
A = iZiar (+00™ = 00 Aoy — 919 A g, ) (5.57)
where 2" P ig defined as follows
Eilar = Oir€apZ " PHOmigun (5.58)
and
BT G iE ua (5”5” + 20\ 4 2¢¢<”>5”> = o"lerT (5.59)

Substituting (5.57) in (5.56) we obtain a first version of the dual lagrangian
Lpualy = — 00"Zax90™ + 106"y <9kAA[kj]5ﬂ'l + Hl”A(W)e“”\> +
+iONT A5 + 106 A (5.60)

We notice that in 2-dimensions the gauge fields A are not dynamics. Therefore we can
integrate them and take their EoM’s as constraints. The dual model then is composed by
a lagrangian

Lpual = —00"E; 200" (5.61)
and two constraints

INI] 1 Hgha= lilAgdll —
{ OAML + 00%E L (20170 0 (5.62)

5¢(aﬁ) + 59’67516[7)\9“&'56))‘ =0

The fields AW and ¢(“? are expressed in term of #®. The EoM’s for Aldl and ¢ can
be constructed by recursive application of @ and 0 to the constraints (5.62).
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5.7 Analysis

To study the lagrangian (5.61) and the constraints (5.62) we can expand over small A and
¢. Using definition (5.59) we compute the first order of Z"~H

BIPH o, _§TMgPl _ 9\l gpn Qigb(p“)&rm (5.63)
We obtain then
LDual ~ 59ia5ij€aﬁ89j6 + 22‘56”(5”)\[’“}5%5@80“ +
120007818 0,y PP 0 OO (5.64)

and

I\ = _Gglile.gild
{ ) 90l 50 (5.65)

dploP) = —pgele5,,0%5)
The two interacting terms of (5.64) can be rewritten as
0076, A 6,1200 00 = =07 55,007 5,,120000™ +

—07 5, ATMS, e 00 D00 + total derivative (5.66)

The last term vanishes on-shell for the EoM of 6 (i.e. 90" = 0). Therefore, it can be
absorbed by a field redefinition and we can neglect this kind of term. The lagrangian
becomes

Lpual ~ 00"01560,5007° — 2106, 0N 5,120,060 +
—2i0"6;16.0,y 0P £, DO (5.67)
Substituting the two constraints (5.65)
Lbual ~ 9056030070 + 2i0°%5,,00 e 50195 ,,12,,00 +
2008116 0,0 5,40 £, DO (5.68)
We obtain the following 4-6 terms

Lbual| gy = 2i0%*0°° D0 00U (250e0pa w65y — OabdedEas iy — OadObeEapens) (5.69)

and this is exactly the same expression for the 4-0 term of the original model (3.45).

Notice that we neglected some terms proportional to the equations of motion. That
is allowed at the classical level, but at the quantum one some suitable field redefinitions
must be performed to achieve the equivalence. Indeed we check at one loop such
field redefinitions.

5.8 Fibration and T-duality

Finally, we treat a further example where the T-duality can be done as outlined in sec-
tion 2.2 for a fermionic model. This model is obtained adding to every point of a base
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space a vectorial space (a fiber). This can be done adding at the metric of the base space
a term like

Vip1 A %V (5.70)

where

dy — Vi = dop + B (5.71)

B is the connection from the various fibers and it depends only by the coordinates of the
basic space. We use this method in the case of OSp(1]|2)/Sp(2) and we get (we consider
only the lagrangian density for simplicity)

Lo x (1 + 9192) dby A xdfy — L4 x (d¢3 + Bg) N * (dT,Z)4 + B4) + Lo (572)
The most general form of the connection is the following

The new model has four fermionic coordinates and has two translational isometries, as in
OSp(2]2)/SO(2) x Sp(2), so the procedure is the same: we introduce the gauge fields, we
set the coordinates to zero, we sum the 2-forms and finally we calculate the equation of
motion, from which we have

{ A4 = —B4 — delt'y * d1;4 (5 74)

Az = =By + 4+ dis

Notice that in contrast to the example given in sec 4.2 we do not need to modify the action
to solve the equations. The dual model is then

1 - _ _ _
L4Dual X det7d¢3 A xdypy + (1 + 9192) dfy A %dfs + ds A By + Bs A diyy (5.75)

We shall calculate the curvature components for both the models obtained (the origi-
nal (5.72) and the T-dual (5.75)), without considering topological terms. However, it
seems that does not exist a trivial connection between the two curvatures.

Part 11
OSp(n|m)

SO (n) xSp(m) models

Quantum analysis for

6 One loop computation

In this section we compute the 1-loop correction to #6 propagator from the 2-parameter
dependent model derived in section 3.3. As told in [27], OSp (n|m) has vanishing G-function
(i.e. UV-finiteness) at least at 1-loop if m + 2 —n = 0. We expect the same behavior also
for the associated purely fermionic coset model.
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6.1 Propagator and vertex

The 660 propagator is obtained from Ly defined in (3.54) using the usual Green-functions

method. We have that )
b £6ad”

P aaﬁ (p) - 042

p
Where p is the 2d-entering momentum. The 4-vertex is obtained from (3.59) symmetrizing

the fermionic 6 legs (which are labelled by A, B, C, D)

(6.1)

Vip = (4xpa - pp +4apa - pc +4apa - pp +
+4app - po + 4xpp - pp + 4xpe - pp) 6°%6% e 0se 5, +

+ (4pa - pB +4ypa - pB + 2pa - P + 4ypa - po +
+2pa - pp +4ypa - pp + 2pB - PO + 4ypB - PC +
+2pp - pp + 4yps - pp + 4pc - pp + Aypc - pp) 60" ense sy +

+ (2pa - PB4+ 4ypa - PB +4pA - PC + Yypa - PC + 2pa - PD +
+4ypa - pp + 2pp - pc + 4yps - pc +4pB - Pp +
+4ypp - pp + 2pc - PD + 4ypc - pp) 008 e s py +

+ (—4pa - pB — 4ypa - PB — 2pA - PC — 4Ypa - po +
—2pa - pp —4ypa -pp — 2pp - pc — 4ypB - PCc — 2pB - PD +
~4ypp - pp — 4pc - pp — dype - pp) 0% e qneps +

+ (—4apa - pp — 4xpa - po — 4xpa - pp +
—dapp - po — 4xpp - pp — 4xpc - pp) 86" c0yEgs +

+(—=2pa - pB — 4ypa - PB — 2pA - PC — 4Ypa - po +
—4pa - pp —4ypa -pp — 4pp - pc — 4ypB - PC — 2pB - PD +
—4ypp - pp — 2pc - Pp — 4ype - pp) 000055 +

+ (2pa - PB4+ 4ypa - PB +4pA - e+ 4ypa - PC + 2pa - PD +
+4ypa - pp + 2pp - pc + 4yps - pc +4pB - PD +4YpB - PD +
+2pc - pp + dypc - pp) 6%46% e 4pe5 +

+ (2pa - pB +4ypa - pB + 2pa - PC + 4ypa - PO+ 4pa - DD +
+4ypa - pp +4pp - pc + 4ypB - pc + 2pB - P +4YpB - PD +
+2pc - pp + dypc - pp) 86" ypes +

+ (4apa - pB +4xpa - po +4xpa - pp +4TpB - PO +
+app - pp + 4ape - pp) 606 qpeqs (6.2)

Notice that the dot product refers to the world-sheet metric «;; contraction
PA-PB = [PA]z’Yij [pB]j
6.2 1-loop self energy

The 1-loop correction to propagator is obtained contracting the 460 vertex (6.2) with the
propagator (6.1)
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pp L @ Lc

pA — — PB

Moreover, we impose the following momentum redefinitions

pA=p PB=-p
pc=—-q pPp=¢ (6.3)

We obtain then

ab o (P! +47)
' =—4(-24+m—n—2zx+mnz+2y(—14+m—n))d Eaﬁ/d q .2 (6.4)
We add to the lagrangian a mass term in order to avoid IR-divergences
L — L+ M?0%c,50%0) (6.5)
then, the propagator (6.1) becomes
. B Eor 5st
Pr(a) = 24 M2 (6.6)
Notice that setting x = 0 and y = —%, which leads to the vertex obtained in section 3.2,
we have
4 b o (P + %)
F:3(2—|—m—n)6a5aﬁ/d DA (6.7)

It is easy to show that this is the only choice of x and y that leads to a 1-loop correction
depending by 2 + m — n. This vertex is obtained from the following lagrangian term

£] 1y = 02070,000"0% (~206Menszgy + 00 eqseny + 0967 20p205)  (65)

as in section 3.2.

It is useful to introduce the following pictorial convection:

> >
>

£‘49 =—-2000000+ 000000+ 600000

where the upper arrow line contracts the Sp indices while the lower simple line contracts
the SO ones. Notice that this vertex is exactly the same found via the vielbein construction
method (3.45).

7 Two loop computation with BFM

7.1 Outline of the method

The background field method (BFM) is a powerful tool that allows various simplifications to

compute 1PI Green’s functions [51]. Here we briefly review the foundations of the method.
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Consider the generating functional for connected graphs
W] = —iln/DCD cap {(iS[®] +iJ - @) (7.1)

where J is the classic source of the field ®. We now split the ® in a background field B and
in a quantum one ¢, for example through a linear splitting ® = B + ¢. The background
field B is seen as another classical source. We have then

W B = —iln/Dgp exp {iS B+ ¢ +iJ - o} (7.2)

where J is now the source of the quantum field ¢. Notice that 5BnW‘ B==0 gives the
n-point connected Green functions with only external B fields while with 6 In W| Bejeo W
obtain the n-points connected Green functions with external ¢ fields.

The 1-particle irreducible (1PI) functional generator is defined as

rRl=wlJj-aJ (7.3)
where Q = %7 . In presence of the background field splitting, it becomes
[Q B} W1J,B] — QJ (7.4)

with Q = 5 7 -
Notice that there is a class of transformations of the quantum and background fields

that preserve the lagrangian. If the splitting is linear ® = B + ¢ the 1PI generating
functional T is invariant under the following transformations

B—B+n o—=p—n (7.5)

Notice that from the definition of ', Q transforms as ¢. Then, we shall write

ST
— 5= _ 4+ 0B .
0=26= 5QQ+5 s (7.6)

Further differentiations give the Ward identities between n-point 1PI Green’s function.
These observations yield

I [Q, B} —T [Q n B} (7.7)
and setting Q = 0 we have
I'[0,B] =T[B] (7.8)

thus, the 1PI Green functions of the original field theory obtained differentiating the r.h.s.
functional generator are computed by the 1PI Green functions with only external back-
ground legs derived from l.h.s. generator.
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7.2 BFM lagrangian

We define the group elements as

g = goe™* (7.9)

where g is the background field and X is an element of the coset Lie algebra ( X € g/bh).
Notice that A is a coupling constant. We can write the left-invariant 1-form current as the
following

j,u — gflaﬂg — ef)\XB‘ue)\X 4+ efAXaﬂe)\X _
A2 A2
= Bu+ ABu, X+, (1B, X, X+ 0,X + ) [0,X, X] +

A3 At
+ oy 10X XT, XTXT + 7 ([[[0,.X, XT, XL XT X+ (7.10)

where B, = galﬁugo.

The action is then obtained via the principal chiral sigma model construction

[ Str (Li,n“”)

_ 1 X )\X‘ AX 9 X ?
Scia = 92 /Str (e B,e o/ +e " oue ‘g/h (7.11)

The total current jﬂ can be expanded in term of algebra generators. Considering the Zo-
grading of the fermionic coset algebra and the (anti-)commutation relations we can divide
jﬂ = jg + jﬁ where

b5 T = BY +a[BY, X] + A; [BO, x|, x] + A; [0,X , X]+ ...
g > JI = BY + 2 [BY, X] + A; [BD, x|, X]+ 20,5+ (7.12)

Notice that B,(}) is the fermionic background field and B,(P) is the bosonic one. The coset
formalism allows us to neglect the bosonic current J(®) and all the bosonic contributions
(obtained from commutators). The only term which survives is then

850 _ g, AN [0 A
5 2 =B+ [[BD, x|, X] +29,x + 3 [0.X, X1, X] 4. (7.13)
The action is then computed from the following
1 L - -
por / Str <J-J> = Str <J<1> : J<1>) (7.14)
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We use (7.10) and the cyclic property of the supertrace to compute (7.11)

1
Se/n = 5 42 / Str (B<1> -BW 4+ 2ABW . 9X + A\20X - 9X +

+2§33<1> [[0X, X], X] + A HB@),X] ,X} aX +
2).\4 2 1 1

+7, 110X, X],X]9X + 2B [[BD,x], x]+
M X

ooy 05X X)X X+ (18X X [8.X0,X] ) =

=, 1>\2 /Str (B(1> -BW 1 2ABW . 9X + \20X - 0X +
T

+§)\3B(1) [0X, X], X] +
2\

+7, 10, X],X] 9X + 2B [[B0, x], x| +
4 4
oy 05X X)X X+ ) (8,30 X][B,X),X]) (79

7.3 Feynman rules

We now obtain the Feynman rules for the propagators and for the basic vertex in (7.15).
Further details are in appendix F. We expand X and the background current on the
fermionic generators X = 05Q% € g/b , Bf}) = B;(Ll)aan.

To compute the X X propagator we extract the quadratic operator from the lagrangian
as follows
1

£=,

£3,070000) = O =4dep, "0 (7.16)

Notice that a factor 2 comes from the supertraces (A.3) and the other is due to (F.2). Then
we define the propagator A as

O()Ap)=1 (7.17)
We obtain (we omit the metrics)
4 pup A =1 (7.18)
The full propagator is finally
By 1 57650[)

With this set of conventions (no i for the propagator and no —i for the vertex and
the (7.17)), 2-point functions are simply defined as i. Then the 66 2-point function
is

6T

= +4p’es, 8 (7.20)
50, (p) 662 (—p) !
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The BB 2-point function is

5T

= +4X\"2y,,65,0% (7.21)
0B, (p) 6B, (—p)

The simplest vertex we found in (7.15) is 2AStr(B - Q). It corresponds to the following
Feynman rule

52T

= 4 ep, 0" (i) g =
0B, (p) 662 (—p)

= _41')‘71%“/5{)0 (=pu) =
= 4iX"teg,6"p, (7.22)

We compute now the 4-legs vertex Str (B(l) HB(D,X} ,X]). Recalling the
(anti)commutator rules (A.1), we can write the vertex as follows

pa Bup
X (—5b06555tr <QZQ¥,> — %5, Str (Qg@%) +
+6%e 5. Str (QgQg) — oMey Sty (QgQg)) (7.23)

Str <B<1>, HBﬂ),X} X]) = BWapWigrgo

Using the relations (A.3) we obtain that

BB 01052 (~220525, 00" + £asepn 00 + cageysd™d ) (7.24)

pa v

Notice that we treat B,, as a vectorial field. So we do not associate any momentum. To
obtain the Feynman rules we go in the momentum frame (0, — —ip,) and we perform
all the possible permutations of indistinguishable quantum legs. We obtain the following
expression (we consider also the constant in the action (7.15) but we skip the (27) ™" factor)

[BBXX]CO%%.W = V[Q] =
= [—45ac5bd6a565y + 25ab56d6a5657 + 45ad5bcea7655+
—26%5%e , e55 + 207467 yge5 + 20°°0" e ppens | Y (7.25)

where K; are the momenta associated with the background fields. Notice that we define
VIl as the vertex obtained symmetrizing only the metric term, without constants. The

explicit structure for all the derived terms VI are in appendix G. In the same way we now
compute the BXXX term Str (BW [[0X, X], X]). The lagrangian term gives

B()*0,00~" 67652 (-2%(5%5“5% + £ase,0%5% + eaﬁew&bcaad) (7.26)
Performing the symmetrization we have

abe AN
[BXXX)il5t,, = —i [V[?’]]M (7.27)
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We determine the X X X X vertex. From the lagrangian we have®
05005702052 (~220585 070" + 05z 000 + £apes0™6™ ) (7.28)
The final term is then
1
bed 2y7[4
[XXXXJo50s = =, 145 (7.29)
Finally, we calculate the BBX X X X vertex. As usual, from the lagrangian we get

BS B A" 0105020 x

X (—65“051?85%%55,,575 + 60" 6" e e gpEns + 60707 0P e g pE prEnst
60767 0% e 58 oy — 6098750 e p5E 5 e + 6076 e B pEryat
+25“06b”5d35a065765p - 26“b5”6d56a065765p — 25ac6bdf5rseaosme(5ﬂ+
120058y sy + 60987 6% e potsy — 60°UT 6 e prEsyt
—25”55’0561350{755065,) + 25ad5bc5r56a765065p — 25“T6b06d36a56w€5p+
+2096% 575 yper sy — 20907 8N e 0 pe grEse + 20700 8M e 0 pE 5y E 0+
—66%7 85 e ppEse + 607080 6T e qnEppEse + 26%0 6% 6N e e BpESe T
—607467 6 5 e pEse + 606U e 0 ppEss + 209067 0M E0pEn S0t
2095058 e 5 51 por + 20706 3% € 56 516 po — 60U 8% 056 5yE port-

—66“565”'6“[5&75555,,0 + 65ad5br(5086a76556p0 + 25%5{)056”6&76556[,0—}—

+25“5(5b65d’"6a5€w€p0 + 65“65b’"5d85aﬁ€758p0> (7.30)
The final result is
)\2
bed, 6
[BBXX X X|2505, = 12VH (7.31)

7.4 Wick theorem

Now that we have derived all the Feynman rules (summarized in appendix G), we compute
the Wick theorem for all the diagrams we are interested to. The first computation will
clarify the method.

e 1-loop BB:

BaBp  BuByffaVin.,

the notation used is: V? indicates the vertex with i quantum legs, capital latin index
{A, B, ...} labels the external fields and small latin index {a, b, ... } the internal ones.
Contractions between legs are performed using both SO and Sp metrics.

_ 2] _ (2]
- _ecedv’[ABcd] - _‘/[ABcc] (732)

e 1-loop BX:

Analogously, we obtain
Bl _ (3]
Balp BaﬂbHCHdV[abcd} = _V[ABcc} (7.33)

5Notice that this vertex shall be written as 6.8.
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e 1-loop XX:
Again

0405 00,00,V =~V

[abed] [ABcc] (734)

e l-loop BBXX =BBXX x XXXX:

This computation is more complicated

BaBpl-0p BaBbecadV[fb]cd]

4 _
aeafagehv[efgh] =

= BBHCHD (—Bbacadvﬁﬂwd} Heefegehvv[[eélf]gh]) =

4
efageh ‘/[[C}fgh]> =
4

_ (2] [4] _
=0p <+909dV[ABcd] ergth[Cfgh]) =

_ 2] (4] _
= <+006dV[ABcd] egehv[cpgh}> =

_ 2] (4]
- _V[ABcd} V[CDcd]

= Bitp (~BubbaV iy

(7.35)

e l-loop BBXX = BXXX x BXXX:

BauBgpOcOp  BuOyfbVE

[abed) B, Hf 9!] ah

B
V[efgh] B

00,0,V

= BBHCHD <9b909dV[ﬂcd]BerQthVB] - Baabecadv[:ﬂ d [Afgh}) =

lefgh] [abed]

_ oyl B

(3] (3]
[ACrs] Y [BDrs] 2V Vi

[ADrs] " [BCrs] (736)

1-loop BBXX = BBXXXX:

BaBgbc0p BaBbacad(geafV[G} _ _V[G}

[abcde f) [ABC Dee] (737)

2-loops BB =BBXX x XXXX:

BaBp  BuByf.0,V

e 050,00V = VT v (7.38)

lefgh] — [ABrs] " [rsgg|

2-loop BB=BXXX x BXXX:

= oyl yld (7.39)

3]
Be0,61V, [Abed] ¥ [Bbed]

[3]
BuBg B,0y0.04V, lefgh]

[abed]

2-loop BB = BBX XX X:

BuBp  BoByf040.0,V = vl

[abed) [ABccee] (740)
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7.5 Non linear splitting and Ward identities

As already discussed in section 7.1, the BEM is implementated by some Ward identities.
In the present model the splitting (7.9) is non linear and the fields transformations which
make the 1P functional generator invariant are not trivial. To find them we choose a
simple transformation for one of the two fields and derive the transformation law for the
other one imposing the invariance of the action. We set the linear field X transforming
linearly

X = X 4= M o  AX) (7.41)

Obviously, with this notation we intend that the true field 65 transform linearly. Notice
that for the action to be invariant it is enough that the group element or, more simpler,

the left invariant 1-form is invariant. Considering the A power expansion, B becomes
B — B+ B £ \26BA ¢ (7.42)

To find the various 0BlY we impose the invariance of J(!) (7.13) under the transforma-
tion (7.41) and (7.42). We obtain

6B;[}} = —0un
0B = —; (B nl, X]+[[B, X],n] +[[B, 0], 1]) (7.43)
that is
OB = B,[0/nk Q0 Qs + By nink 5 Q5 (7.44)
where
Qe = +;gm5rla;5§ — £rp01e\ 707 — exr07e,70L +
—;&“)\pétraf@i - ;€T>\5lr€p"5§ + ;,,w“wag (7.45)
and
Qrlte = —;sT,\él”ep"éé + ;eﬂé"epoéé + ;emé”s)\"ég + ;epﬁ”e;’ag (7.46)

As we mentioned in section 7.1, if the lagrangian is invariant under the simultane-
ous transformations (7.41) and (7.43), the 1PI functional generator satisfies the following
relation

or or

5B, (x) T (2) o @ = 0 (7.47)

6T =0 = 6B, (z)

where X is the analogous of Q defined in section 7.1. Obviously this equation must hold
for every power of \. If we derive (7.48) by B or X we obtain relations between 1PI Green
functions: the Ward Identities.

— 41 —



We consider only 0B, = A(SBB] = —Adun. We get

or or
5B, (x) +n(x) =0 (7.48)

=200 (2) 55X (x)

We now perform a Fourier transformation, recalling that
Oy — —ipy (7.49)

we obtain, simplifying 7, the following functional equation

or

iApy 5 B % = 0 (7.50)

From this equation we shall obtain the Ward Identities differentiating by the fields B or
X. To be more precise, we expand B or X over the generators and we consider the fields
Bya and 02. We have

, 6T 62T
2V , + 5 , =0 (7.51)
6By, (p)0Bue (=p) 66, (p) 6Bud (—p)

In an analogous way we obtain a second Ward Identity

T 5°T
2V T + o =0 (7.52)
0B,y (p)66¢ (—p) 66, (p)d6c (—p)
Using relations (7.21), (7.22) and (7.20) we get
4ipy AL, 0% — dip A reg, 0% = 0
4(1)2p2e gy 67 + dpacy 0" = 0 (7.53)

Then, the 1-loop 2-legs first order Ward Identities are satisfied.

7.6 1-loop correction to 2-legs Green functions

We now construct the 1-loop diagram for the self-energy of the background field B,(}). The
1-loop correction to the propagator is obtained contracting the indices ¢,d and ~,d with
the propagator (7.19) and integrating over the loop momentum g. We obtain

BB _ (! 2] —
Flloopuu - (4 (1) <_Vv[ABcc}> -

(oo o)

1
= —(n—m+2)ea36? / ddqq2 Yo (7.54)

So, when m + 2 — n = 0 the 1 loop contribute is zero. In the same way we compute the
1-loop two point function with one external leg B and one X. We contract the indices ¢, d
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and v, 6 of the term (7.27) with (7.19)7
1 4\
BX  _ : 3] _
Plloopu - <4> <_Z 3 > (_‘/’[ABCC}) -
1 AN o [ 1
= <4> <—z 3 ) <4(n—m—|—2)ea55 /d qquﬂ> =

4 1
= —ig)\ (24+m —n) eq50° / ddqq2pu (7.55)

Finally, we calculate the 1-loop self energy for the X X propagator. As usual we contract
the indices §.4¢%Y. We obtain®

xx _ (1 Lo 4] _
I\lloop - <4 _3)\ <_‘/[ABCC]> -
1 1 2 2
— (4) (—3>\2> (4(n—m—{—2) 6a55ab/ddqp ;;q pﬂ> —

Lo ab [ 4 PP+
:—3)\ (2+m —n)eypd /dq 2
(7.56)

To compute the UV-divergences we introduce a mass term (M?) associated to the @ field,

as we have done in section 6.2. The lagrangian is then modified, becoming

L=, 1A2 Str <B<1> -BW 4 2ABW . 9X + A20X - X +
7'('

+M?X - X + §A3B<1> [0X, X], X] +

2 [0X, X],X] 90X + 2B HB(U X} X] n
3! ) ) ) )
A4 A4
oy 05X X)X X+ 18X X 801, 0] )
(7.57)
the new propagator is
1 6“/55 b
AP(9) = ¢ :
o (0) Lq? 4 M2 (7.58)
Using (E.2)-(E.6), we obtain
b 2T
Fﬁfopw —— (2+m —mn)eypd b _ (7.59)
4 o 2m
Fﬁé’p“‘Uv = —23)\ (24+m —n)easd™p, - (7.60)

"Remember that B labels the external @ field and that we choose all the momenta as entering in the

vertex.
8See note [7].
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and

1 2m
Tiiop| gy = — 5 2+ m =) eapd™ 7 (p = M?) (7.61)
From now on we set F = (m+2—n) and F = (m+2 —n) Zgr. Then, skipping the metric
terms
BB -
IHloopuu uv = —F
4 .
BX .
F1loopu uv = _23)‘Fpu
1.5
Migop| gy = — 3V F (07 = M%) (7.62)

7.7 Renormalization

In order to renormalize the theory we have to notice that
e we have to cancel the divergences from BB, Bf and 660 1-loop functions (7.62);

e to absorb such divergences we have to consider the following terms from the la-

grangian (we miss the coefficient (27)~!

2
Eapd®y BS,, 00y, Eapd®y 002,00, (7.63)

o,

1
azEef
e the classic field B should not be renormalized via the wave function renormalization;

To perform the renormalization we introduce

A= Z\\g
0= 7,05 (7.64)

where
Zy =14+ \%07, (7.65)

The coefficient 67, is the counterterm. Notice that it is possible to perform the following

expansion

1 1 1 1

= 1—2)%0Zy + O(\} 7.66
Y T 1oz, oz, (1T PRIA+ 00R) (7.66)

The first terms (7.63) of the lagrangian read

L=Lr+0L=

1 2 1/2
:Xﬂl—%%ﬁQB-B+ARU—A%MQB-%R@+X%ZQ/+

+ (1 + \3629) 00R - 00R =

1 2
- ,B-B} B - 90k + 00r - 90

1
—20Z\B - B+ 2R (—5Z)\ + 2629) B-00gr + )\%52@693 -00g (7.67)
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where the - sign here implies the contraction between all the indices with the metrics
ea55“b7“”. To absorb the coefficients we construct the counterterm diagrams. Using the
same rules we obtain

BB = —467,
1
SBX = 4i\ (—5ZA + 2529> Py

SXX =2X?0Z (p° + M?) (7.68)

In order to cancel the divergences (7.62) we have to solve the following equations

IR oy TOBB =0
rﬁggw‘w +OBX =0
T'oop by TOXX =0 (7.69)
We have then
67\ = —leﬁ , 62y = éF (7.70)

7.8 2-loop correction to 2-legs Green function

We want to compute a more complicated diagram. The 1-loop 4B Green function is
obtained from two vertices V2 but power counting assures that it is UV-finite. We shall
then pass to 2-loop correction to 2-legs Green function.

There are three diagrams which contribute to the 2-loop 2-point function

i o £

The Wick theorem fixed the combinatorial coefficients.

7.8.1 First diagram
To construct the first diagram we consider the BBX X and X X X X vertices

A R L
C
D
B S T

with the following conventions

KR:—Q KC:—k Kqu
Ks =q Kp=k Kr=—q (7.71)
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We obtain

1’ 1y o
<4> (1) <_3)‘ > <+V[ABrs]V[rsgg}> =

I SR A 1 2] 4 \ _
o _192>\ / (q2 +M2)2 (k2 +M2) (+ [ABrs}V[rsgg]) -

__ 8y 2 [ adadd 1 2
- 192)\ (2+m n) /d qd k(q2+M2)2 (k2+M2) (+‘/[ABTS]‘/[ngg]) x

X(QPC‘pD_pC‘pL—pC‘pT—pD‘pL—pD‘pT+2pL‘pT)5ab5aﬁ =

8 —2k? — 242
= — " XN (24+m—n) /ddqddk , €af =
192 (g2 + M2)* (k2 + M?)
1 k‘2 2
= N (24+m—n) / d?qd?k ;_ e €ap (7.72)
12 (42 + M2)* (k2 + M?)

7.8.2 Second diagram

The second diagrams is

A < ¢ s B
T

with the following conventions

Kr =q Ke=q—-p—k Kp=k

We obtain

1N\? /. 4)\? 3 3
(4) <_2)\3> <_2V’[E41)cd}‘/[[3}bcd]):

Loy 08
- 18)\ V[Abcd]V[Bbcd} -
72

— 2 _
= 18)\ (n+m (=14 2n)) x

X/ddqddk? (k2+§p2+k(p_q)_pq+q2) 5ab€a,8
(

7.74
¢+ 22)° (k2 4 002) (g = k= p)? + M12) o

We shall use the results (E.8), (E.9), (E.11) to extract explicitly the UV divergent part

723 1
189 (m—n mn)/dqdk(q2+ 2) (k2 + 2)—1-0()
1
=6A*(m—n—2 qd¢ 1 :
(m—n mn)/d qd k(q2+ 2) (k2 + 2)+O() (7.75)
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7.8.3 Third diagram

The third diagrams is

A B
with the following conventions
Kr =k Ko =—q
Kg = —k Kp=gq (7.76)
We obtain
1\ (1, 0
<4> <12>\ > (_‘/Y[Abccdd]) -
I N
- _192)\ ‘/[Abccdd] -
:—96)\2(4—|—m2+m(7—8n)—7n+n2)/ddqddk !
192 (%2 + M?) (k2 + M?)
1

1
= =, A (4+m? +m (7T —8n) - Tn+n?) /ddqddk (7.77)

(2 + M) (k2 + 21?)
7.8.4 Results

To compute the total correction to BB 2-point function we combine the three partial
results, obtaining

2

pxx A (m+2—n)/ddqddk !

(@@ + 02) (2 + M12) T

2loop 12
This confirms the conformal property of OSp(m + 2|m)/SO(m + 2) x Sp(m) coset models
at 2-loops.

8 Conclusions

We discuss some aspects of fermionic T-duality from the quantum point of view. For that
purpose we decided to adopt the fermionic cosets introduced in [17] as a new limit of the
AdS,, x 8™ string theory models as a playground. They have the advantage that the large
amount of isometries permits an easy, even though not straightforwardly, computation of
the quantum corrections at higher loops. In addition, for that model we can easily point
out some of the obstructions in the T-dual construction.

We start by considering three different techniques to build this coset models based on
the underlying superalgebra, on the nilpotency of the supercharges in terms of vielbeins and

connections. In particular we discuss the pricipal o-model based on orthosymplectic group
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OSp(n|m). We discuss the constraints to be satisfied for having a T-duality in the conven-
tional sense (namely by gauging the isometry group and then eliminating the original coor-
dinates in terms of the Lagrange multipliers) and we show that for the fermionic T-duality
there might be some obstructions due to anticommuting nature of the fundamental fields.
Nonetheless, we propose a new technique based on non-abelian T-duality derived in [20].
We show that it is possibile to construct the T-dual for all the models proposed and we give
a recipe to compute the quantum corrections. Moreover, we derived the simplest terms for
the dual lagrangian and we found they possess the same structure of the original model.

In the second part of the paper, we use two different methods to compute the correc-
tions to the action. Using the first method, we are able to compute the first loop corrections
finding that they vanish if the relation between the dimensions of the bosonic subgroups
SO(n) and Sp(m) is n = m + 2. This condition guarantees that the supergroup, viewed as
a supermanifold, is a super Calabi-Yau and that implies the conformal invariance of the
principal o-model (as discussed also in [27]). Using the BFM, we are able to push it to
two-loops confirming the result at one-loop.

There are several open issues that are not discussed in the present work and presently
are under investigation: 1) is it possibile to extend the well-known result of [29] and [52]
to all orders also for orthosymplectic groups? 2) is it possible to extend the fermionic
T-duality to other models by overpassing the obstruction discussed section 3? 3) do the
WZW models presented in [53-55] can be T-dualized? 4) how does the T-duality survive
the quantum corrections?

A  osp(n|m) algebra
The generators of the osp(n|m) algebra satisfy the following (anti)commutator relations

[Tab,Tcd_ _ gbeqrad 4 gadpbe _ sacrpbd _ sbdrpac

(T Tys] = — (~€pyTs — €asTy — €ayTas — €36Tar)

[T“b,Taﬁ_ —0

{Tab’Qf/_ _ 5ch% _ 5GCQZ

[Tap, Q5] = —£4aQf — £95Q5

{ g,@%} = cog T + 6T 5 (A1)

We can now choose the following matrix form for the fundamental representation of
osp(n|m)

(Q2)'p = 6" can +0%pe,"
1
(Tab) _ 5a15bB _ 5b15aB

B
(TaB)IB = 6oglgﬁB + 5515(13 (AQ)
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To compute the supertraces of the generators we use the fundamental representation
instead of the adjoint one.? The reason for this is that for a particular choice of 2n and 2m
the dual Coxeter number is zero and so the Killing metric is totally degenerate. We obtain

Str (TopTpe) = —2€a0€8p — 2€apEpo
Str <TabTrs> _ _25ar5bs + 25as(5br
Str <QZQ%> = 20%¢,4 (A.3)

B Details on OSp(2|2)/SO(2) x Sp(2) construction

In this appendix we show the complete derivation of the left invariant 1-form for the coset
model OSp (2]2) /SO (2) x Sp(2) described in section 3.1.2.
From (3.16) we extract the non trivial structure constants

Copt =1 Cp? =1 Cos® = —1 Cot = —1

Cuo = —2 Cup=-2 Cyf =2 Cygt =2

Cysi =1 Coft = -1 Cyl =1 Cysd = —1 (B.1)
Ct =1 c.,0=-1 2 =1

Cy? =1 Cy =1 ) =1

The constants from the first three lines are antisymmetric respect the exchange of the lower
indices, the other are otherwise symmetric. The reduced Killing metric is then (A = {i,4'})

0001
kap =4 8 (1) _01 8 (B.2)
—-10 00
The representative is chosen as in (3.2)
L(0) = 1Q1 (02Q2 3R 04Qu (B.3)
end, expanding in series, we obtain
L(0) = (1 +61Q1) (1 4 02Q2) (1 + 03Q3) (1 + 04Q4) (B.4)

To construct the left-invariant 1-form we shall compute

L7 = (1-04Quq) (1 — 03Q3) (1 — 02Q2) (1 — 61Q1) (B.5)

9The trace of generators in the adjoint representation corresponds to the Killing metric.
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and

dL = df; Q1 (1 + 02Q2) (1 + 63Q3) (1 + 04Q4) +
+ (14 61Q1) dO2 Q2 (1 4 03Q3) (1 + 04Q4) +
+ (14 601Q1) (1 + 02Q2) df3 Q3 (1 + 04Q4) +

+ (1+6:1Q1) (14 62Q2) (1 + 603Q3) dbs Q4 (B.6)

Finally, the left-invariant 1-form reads

LML = (1 - 64Q4) (1 — 63Q3) (1 — 62Q2) (1 — 61Q1) x
xdfh Q1 (1 + 02Q2) (14 03Q3) (1+ 04Q4) +
+ (1 = 04Q4) (1 — 03Q3) (1 — 02Q2) db2 Q2 (1 + 63Q3) (1 4 04Q4) +

+ (1= 04Q4) (1 — 03Q3) A3 Q3 (1 + 04Q4) + (1 — 04Q4) dO4 Q4 (B.7)

As we have already told in section 3.1.2, the vielbeins receive contribution only from terms
with a even number of commutators between coset generators ).

A single @ is obtained only from d#
df1Q1 + A2 + dO3Q3 + dO1Q4 (B.8)

Three Qs come from 6;0;d0,

— 04d6102Q4Q1 Q2 — 04d0103Q4Q1Q3 — 03d010:Q30Q1Q2 — 03d0104Q3Q1 Qs+

— 02d0103Q2Q1Q3 — 02d0104Q2Q1Q4 — 01d010201Q1Q2 — 61d0105Q1Q1Q3+

— 01d010,Q1Q1Q4 + 0403d01Q1Q3Q1 + 0402d01Q4Q2Q1 + 0401d01Q4Q1 Q1+

+ 0362d601 Q3Q2Q1 + 0361d01Q3Q1Q1 + 0201d01Q2Q1Q1 + d010203Q01Q2Q3+  (B.9)
+ d610204,Q1Q2Q4 + d610304Q1Q3Q4 — 04d0203Q4Q2Q3 — 03d0204Q3Q2Q4+

— 02d0203Q2Q2Q3 — 02d0204Q2Q2Q4 + 0403d02Q1Q3Q2 + 0402d02Q4Q2Q2+

+ 0302d02Q3Q2Q2 + d020301Q2Q3Q4 — 03d0304Q3Q3Q4 + 0403d03Q4Q3C)3

Finally, the five generators contribute

— 01d0102030,Q10Q1Q2Q3Q4 + 0401d010203Q,Q1Q1Q2Q3+
+ 0361d01020,Q3Q1Q1Q2Q4 + 0201d601030,Q2Q1Q1Q3Q4+
— 040301d0102Q1Q3Q1Q1Q2 — 040261d010304Q2Q1Q1Q3+
— 036201d610,Q3Q201Q1Q4

(B.10)
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Due to nilpotency and the choice of the representative (3.22), all the previous terms are
zero. We then have

0204d01 [-QuQ1Q2 + Q2Q1Q4 + Q1Q2Q4 — Q1Q2Q1]
0304d61 [—QuQ1Q3 + Q3Q1Qs — Q1Q3Q1 + Q1Q3Q4]
0203d61 [—Q3Q1Q2 + Q2Q1Q3 — Q3Q2Q1 + Q1Q2Q3]
0304d02 [-Q1Q2Q3 + Q3Q2Q4 — Q1Q3Q2 + Q2Q3Q4]

(B.11)

that is

0204d01 [{Q1, Q2} Q4] = 0

0304d01 [{Q1, Q3} Q4] = —2036,d6, Q3

0203d60, [{Q1, Q2} Q3] =0 (B.12)
0304d05 [{Q2, Q3} Q4] = —2050,d6, Q4

Summing up all the contributions, the left-invariant 1-form is

L7YdL = Q1d6; + Q2dfs + Q3 (—260304d6; + db3) + Q4 (—26030,d0y + dby) + Q' H; (B.13)

C Non linear isometry for 20 actions

We find a generic non linear isometry transformation for a generic 26 action
S x / (1 + B6102) do; A xdbs (Cl)
%

where B is a generic constant. Due to the nilpotent behaviour of fermionic fields 0, the
generic non linear transformation is

where ¢ is a fermionic constant and A is a generic constant. Imposing the invariance of the

action we find a constraint for A and B
S — /E (1 F B0+ (14 A16102) 1] [f2 + (1 + A16165) 62]) x
X d[01 4+ (14 A10102) e1] Axd [02 + (1 4+ A10102) e2] =
_ /E (1 4 BO16s + By (1 + A101605) ea + B (1 + A10,05) 6192) x

X [d91 + A1d01609¢1 + A191d9261] N * [d92 + A9dbq69ey + A291d9262] =
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= /z <1 + B010y + Bbea + 36192> X
X <d91 A xdfs + Aadby A #(01d02e2) + A1(dO102¢1) A xdOy +
24, Ao (d6162) A *(91d92)6162) -
- /Z (14 Bo:6 )4ty A+t +
+ BA161e9d0102¢1 N %009 + BAse102d01 A x(01db2€2) +
+ 241 As(d6162) A x(01d62)er1ea +
+ BOeadfy A xdby + Bei6odbfy A xdby +
+ Aodfy A #(61d0962) + A1fa(d0109¢1) A +dfy =
- /E (1 + 39102>d91 A +dfy +
+ A1[B — A2)0102d6; A xdbaeieq + Ag[B — A3]0102d0; A %dbseqea +
+ [B — A3)01d6; A xdbseq + [A1 — B]O2dby A xdbae; (C.3)

then, (C.2) is an isometry if
A=A, =B (C.4)

D Computation detail for OSp(1|2) T-duality construction

Here we compute the 9 pieces that form Q%) {fl_l] (0B)(po) Q) Notice that
e we rewrite €2 in three parts:
07 = —iddsr — L yoggo - 2@ 0P A5, 007
1 —4¢2 1-— 4A¢2
0 = vigdr — g B0 geensar o)

e the following relation holds, where M is a generic symmetric matrix:

M(aﬁ)[< gd >](a6) )M(pg) =0

(po

The different pieces are
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partlA
8P (L < ee > +M < &6 > +P < 68 >)(,3(p0) 8" = 4 (L + P) (D.2)
partlB

0P (L <ee>+M <6 > +P <06 >) p)(p0) 00007 = 2(L+ P)0°90%505 (D.3)

part1C
8P (L < e > +M < &6 > +P < 56 >) o3 (o) 0702007
=2(L + P)6°00°¢,p (D.4)
part2A

0007 (L < ee > +M < &6 > +P < 55 >) (a1 077 = 2(L+ P) 0907505 (D.5)

part2B
0007 (L < ee > +M < &5 > +P < 68 >)(43)(pe) 0 007
— 9162 (—4M590‘8956a5 — 3LO0°00%ens + Péeaaeﬁeaﬁ> (D.6)
part2C
0007 (L < ee > +M < &6 > +P < 55 >)03)(pe 0¥ € 7102007
= 010 (~AMO0*00 23 + BLOO°00° 5,5 — POO°00°5,5 ) (D.7)
part3A
0 P63, 007 (L < ee > +M < €0 > +P < 86 >) (5 (po) 07
=2(L + P)0°00°¢,p (D.8)
part3B
0 eP263,007 (L < g2 > +M < €6 > +P < 66 >) (1) (pr) 0 007
= 010 (+4MO0*00 23 + BLOO°00° 5,5 — POO°00°5,5 ) (D.9)
part3C
0PN, 00" (L < ce > +M <6 > +P < 66 >) (a8)(p0) 9P oINS, 007
— 0107 (~AMOO° 00603 — BLOO° 00 ey + POY"00 2, 5) (D.10)
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E UV-divergences

Here we summarize some important results for divergent integrals. First of all, we recall

the expansion near to zero of the Euler gamma function
1
PE) =L —7+0()

we have that (see [56-58])

1 I(a—79) (d/2-0)
B ~Ba _ d — d/2 2 M2 o
= [ e = T OF)
which yields to
—iBy= [d qq2+M2 = —7r(7+1n7r+lnM)+O(e)

Moreover

dd u —

/ Tg2 4+ 02

and

quqv . 1 M?
d? K = —iB§ | —
/ ©(q2 + M2)a 0 < 2g_a+1VW>

from which we obtain

2
quqy  M* (27 9
/dq2+M2—— 5 <€ —W(’y+ln7r+lnM)+O(€)>ny

With these results, we compute the following integrals

1
= [ d%d% =
/ Y5 (g2 + M2) (k2 + M2)
27T 2 2 27T
= —2r (y+Inm+InM?) "7 +0(1)
g g

and

d?qd’k v =

(a2 + M) (2 4 M2) (g = k= p)* + 212)
d?qdk ¢’ + M? — M? _
(a2 + M) (2 £ M2) (g = k= p)* + 212)

b=
/
:/ Hadh (k2 + M?) ((q—lk—p)2+M2) rom=
1
R

> 4 a2y (k2 4 2y TOW
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where we perform the shift ¢ — ¢ — k — p.

-k
/ d4qdk ) 1 ) = (E.9)
(2 + M2 (2 + M2) (g — k = p)* + M?)

We notice that

2 k=— <(q—kz—p)2—|—M2) + PR+ PP+ M —2pq+ 2k (E.10)
so we get
1 1

Iy = ) (~h+ 1+ 1)+ 0(1) = [ +0(1) (E.11)

F Feynman rules conventions
We define the Green function G (2’ — z) as the solution of
OG (2 — z) = +6° (2/ — z) (F.1)

Where O is the operator associated to the quadratic term in the fields ¢ obtained by
rewriting the lagrangian'® as

L= ;¢o¢ (F.2)

To solve the equation we use the Fourier transformation defined as

2
f(z)= / (jﬂ];e—"p“f (p) (F.3)

from which we have that the transformation rule for the derivative operator is
Oy — —ipy (F.4)

Now, for quantum field theory purpose, we need the vacuum expectation value of the
T-product of two fields. It can be shown that the following relation holds

<0|T¢(z) ¢ (2') |0 >=iG (z — a') (F.5)

Although, we use the convention to define the propagator as the Green function (F.1).

The vertices are defined via the Gell-Mann low formula, in which is present the factor
exp [—4S], with S the action of the model. Again, in spite of this we define the vertex
without any factor.

The 1PI 2-point function is defined as the inverse of the propagator.

10For simplicity consider a single real field .
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G Feynman rules
We summarize here the Feynman rules.

e Propagator X X:

1 8’7[3505,

AP9) = +
cb() 4 p2

e Vertex BX:

52F 4)\71 5bc( )

= €6y —1)qu =

0B, (p) 662 (—p)
= —4iX e, 0" (—py) =

= 4iX"eg,0"p,,

e Vertex BBX X:

[BBX X)W = VP =

= —45ac5bd€a5€ﬁv + 25ab56d€a5€ﬁv + 45ad5b66a7€55+

(G.1)
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e Vertex BXXX:
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,56,

(G.4)



e Vertex XX XX:
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