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1 Introduction

Near-conformal dynamics may describe physics beyond the Standard Model, in addition

to facets of QCD itself. Examples include walking [1–6] and conformal [7–9] technicolor,

dynamical explanations of the flavor hierarchies [10–13], solutions to the SUSY flavor prob-

lem [14–27], solutions to the µ/Bµ problem [28–32], and so on. While many of these ideas

are promising, they often rely crucially on assumptions about the behavior of strongly-

coupled field theories. However, conformal symmetry itself severely restricts the structure

of these theories, and it is not fully understood which assumptions are consistent with these

restrictions and which are not.

In [33–35] significant progress was made in understanding the range of behavior that

is possible in 4D conformal field theories. The key insight is that crossing symmetry of

four-point functions requires that coefficients appearing in the operator product expansion

(OPE) not be too large. Combined with certain assumptions about the spectrum of oper-

ators, these constraints can potentially lead to a contradiction with unitarity, allowing one

to rule out the spectrum. Concretely, in [33, 34] it was shown that there is a completely

general upper bound on the dimension of the lowest-dimension scalar primary operator

appearing in the OPE φ×φ of a real scalar primary of dimension d with itself, ∆φ2 ≤ f(d),

where f(d) is a function that is determined numerically. In [35] it was also shown that one

could compute an upper bound on the coefficient of the three-point function 〈φφO〉 for any

scalar primary O appearing in the OPE.

In the present work, we extend the analysis of [33–35] in several directions. First, we

examine crossing symmetries of correlators involving charged fields in CFTs with global

U(1) symmetries, focusing in particular on the additional constraints that are present

in superconformal theories. We consider a chiral superconformal primary operator Φ of

dimension d, and show how the four-point function 〈ΦΦ†ΦΦ†〉 may be expanded in terms

of “superconformal blocks”, which sum up the contributions of a given superconformal

multiplet appearing in the Φ × Φ† OPE. Since each superconformal multiplet contains a

finite number of primary operators under the conformal sub-algebra, superconformal blocks

may be decomposed into a finite sum of conformal blocks. While such a decomposition

was previously known in the context of N = 2 and N = 4 theories [37], we believe that the

N = 1 result we present is new. We further show how the N = 2 superconformal blocks

derived in [37] may be decomposed in terms of N = 1 superconformal blocks, providing a

non-trivial check on our result.

Second, we combine our superconformal block analysis with the methods of [33, 34] to

derive bounds on the spectrum of operators appearing in the Φ × Φ† OPE. In particular,

we find that there is an upper bound on the dimension of the Φ†Φ operator (defined as

the lowest-dimension scalar appearing in Φ × Φ†) when d is close to 1. Since the chiral

operator Φ2 with dimension 2d always appears in Φ×Φ, one cannot reproduce our bound

on Φ†Φ by simply applying results from [33, 34] to the real or imaginary parts of Φ. We also

compute bounds on the OPE coefficient of any scalar superconformal primary appearing in

Φ×Φ†, independent of assumptions about the spectrum. Our dimension and OPE bounds

constitute completely general non-perturbative results about non-BPS quantities in N = 1

superconformal theories.
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Third, we use crossing relations among complex scalars to study OPEs involving con-

served currents, both in the supersymmetric and non-supersymmetric context. If φ is a

complex scalar primary of dimension d, then the OPE φ×φ∗ contains global symmetry cur-

rents JaI , whose coefficients are fixed by a Ward identity to be proportional to the charges

of φ. Crossing symmetry of 〈φφ∗φφ∗〉 then implies an upper bound on the charges of φ rel-

ative to the “flavor central charges” τ IJ , defined by the coefficient of the two-point function

〈JaIJbJ 〉 ∝ τ IJ . Specifically, we show τIJT IT J ≤ fτ (d), where τIJ is the inverse of τ IJ ,

and T I are the global symmetry generators in the φ representation. We further strengthen

this bound when φ is the lowest component of a chiral multiplet Φ in a superconformal

theory, in which case flavor currents appear as descendants of scalar operators JI .

Last, we turn to OPE’s involving the stress tensor T ab in both supersymmetric and

non-supersymmetric theories. We show that in any CFT containing a real scalar pri-

mary operator φ of dimension d, there is a completely general lower bound on the value

of the central charge c ≥ fc(d). This again occurs because crossing symmetry of the

four-point function 〈φφφφ〉 requires that the OPE coefficient in front of the stress tensor

φ(x)φ(0) ∼ T ab(0) not be too large, and this coefficient is fixed in terms of c and d by a

Ward identity. This can perhaps be viewed as a four-dimensional counterpart to the bound

on c derived in [36] for two-dimensional CFTs. Once again, we strengthen this bound in

the supersymmetric case, where the stress tensor appears as a descendant of the U(1)R
current in the Φ × Φ† OPE.

Our bounds on τIJT IT J and c are particularly interesting in supersymmetric theories

since these quantities are determined in terms of the superconformal U(1)R symmetry as

τ IJ = −3Tr(RT IT J) and c = 1
32

(
9TrR3 − 5TrR

)
, and may be calculated via ’t Hooft

anomaly matching. Since Φ is chiral, its dimension is also determined in terms of the

U(1)R symmetry as d = 3
2R. Thus, one may check whether these bounds are satisfied in

the myriad asymptotically free N = 1 theories that are believed to flow to superconformal

fixed points, and we will demonstrate that this is the case in a few simple examples.

2 Preliminaries

2.1 CFT review

We will begin our discussion by reviewing some basic facts about 4D conformal field theo-

ries. The conformal algebra may be written as

[Mab, Pc] = Paηbc − Pbηac, [Mab,Kc] = Kaηbc − Kbηac

[Mab,Mcd] = ηbcMad − ηacMbd − ηbdMac + ηadMbc

[D,Pa] = Pa, [D,Ka] = −Ka

[Ka, Pb] = 2ηabD − 2Mab, (2.1)

and primary operators OI(0) are defined by the condition KaOI(0) = 0,1 where Ka is

the generator of special conformal transformations. Fields may then be constructed by

1For notational convenience we will leave the adjoint action of Ka implicit in expressions such as this, so

that KaO
I(0) → [Ka,OI(0)]. Fermionic gradings should be respected. For example if O is bosonic, then

Q
2
O is short for {Qα̇, [Q

α̇
,O]}.
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exponentiating the translation operator, OI(x) ≡ exPOI(0). Here I denotes possible

Lorentz indices, which can be labeled by (j, j) according to the representation of SO(4) ∼=
SU(2) × SU(2). For example, traceless symmetric tensors Oa1...al(x) have j = j = l/2

(which we call the “spin-l” representation). We refer the reader to appendix A for a more

complete summary of the conventions used in this paper.

In 4D conformal field theories the correlation functions of primary operators are highly

constrained (see e.g. [38]). In particular, the two-point function for a spin-l primary oper-

ator Oa1...al(x) of dimension ∆ can in general be written as

〈Oa1...al(x1)Ob1...bl(x2)〉 =
Ia1b1(x12) . . . Ialbl(x12)

x2∆
12

,

Iab(x) ≡ ηab − 2
xaxb

x2
, (2.2)

where x12 ≡ x1 − x2, and the indices a1 . . . al and b1 . . . bl are implicitly symmetrized and

made traceless. Unitarity requires that the coefficient of the two-point function is posi-

tive, so that one can choose a basis of primary operators with the above normalization,

where additionally two-point functions between different basis elements are taken to van-

ish, 〈O(x1)O′(x2)〉 = 0 for O 6= O′. Positivity of the two-point functions of descendant

operators then further imposes the unitarity bounds [39]

∆ ≥ 1 (l = 0),

∆ ≥ l + 2 (l ≥ 1). (2.3)

Three-point functions between scalar primary operators φi(x) of equal dimension d

and a spin-l primary Oa1...al(x) of dimension ∆ are fixed up to an overall constant as

〈φ1(x1)φ2(x2)Oa1...al(x3)〉 =
λφ1φ2O

x2d−∆+l
12 x∆−l

23 x∆−l
13

Za1 . . . Zal ,

Za ≡ xa
31

x2
31

− xa
32

x2
32

. (2.4)

If we take φ1 = φ2, it is straightforward to see that invariance under x1 ↔ x2 requires

that l must be even in order for the three-point function to be non-vanishing. However,

if φ1 6= φ2 then odd-l primaries are also allowed. Note that Lorentz representations with

j 6= j cannot appear because there does not exist a function built out of the xi’s having

the required transformation properties. As reviewed in [33], when φ1 and φ2 are real, the

coefficients λφ1φ2O are necessarily real in the basis of eq. (2.2).

Finally, four-point functions of scalar operators are not completely determined by

symmetry considerations alone, and in the case of equal dimensions can always be written

as

〈φ1(x1)φ2(x2)φ3(x3)φ4(x4)〉 =
g(u, v)

x2d
12x

2d
34

, (2.5)

where g(u, v) is a function of the conformally-invariant cross ratios u ≡ x2
12x2

34

x2
13x2

24
and v ≡

x2
14x2

23

x2
13x2

24
. Though g(u, v) is not fixed by conformal symmetry, it is fully determined by the
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dynamical data of the theory, namely the spectrum of operator dimensions and spins ∆, l

and three-point function coefficients λφ1φ2O. This is most easily seen through the operator

product expansion (OPE), which relates a product of operators at different positions to a

sum over operators at a single position. In the case of scalar primaries, we can write

φ1(x)φ2(0) =
∑

O∈φ1×φ2

CI(x, P )OI(0), (2.6)

where I stands for possible Lorentz indices. We use the notation O ∈ φ1 × φ2 to mean

that the sum should be taken over primary operators occurring in the OPE of φ1 with

φ2. The operator CI(x, P ) may for example be determined by inserting the OPE into the

three-point functions and using the known form of the two-point functions [40].

Taking the φ1(x1)×φ2(x2) OPE and the φ3(x3)×φ4(x4) OPE in the four-point function

then leads to the conformal block decomposition

g(u, v) =
∑

O∈φ1×φ2

λφ1φ2Oλφ3φ4Og∆,l(u, v), (2.7)

where the “conformal blocks” g∆,l(u, v) are given explicitly by [40]

g∆,l(u, v) =
(−1)l

2l

zz

z − z
[k∆+l(z)k∆−l−2(z) − z ↔ z]

kβ(x) = xβ/2
2F1(β/2, β/2, β;x), (2.8)

and the change of variables u = zz and v = (1−z)(1−z) has been used. We note in passing

that the conformal blocks can also be elegantly derived by viewing them as eigenfunctions

of the quadratic casimir of the conformal group [41].

If we take all of the scalars to be identical, then invariance of eq. (2.5) under x1 ↔ x3

leads to the “crossing symmetry” constraint

∑

O∈φ×φ

λ2
φφOg∆,l(u, v) =

(u

v

)d ∑

O∈φ×φ

λ2
φφOg∆,l(v, u), (2.9)

which must satisfied by any consistent spectrum of dimensions, spins, and choice of three-

point function coefficients. A key point is that unitarity requires λφφO ∈ R, so the coeffi-

cients λ2
φφO appearing above are positive. Invariance under x1 ↔ x2 again tells us that only

even-spin operators may appear, and other exchanges do not give any new information.

2.2 Bounds from crossing relations

In [33, 34], the crossing relation of eq. (2.9) was used to derive an upper bound on the

dimension of the lowest-dimension scalar operator appearing in the OPE φ × φ. In [35]

bounds were also derived on the size of the three-point function coefficients of scalar op-

erators appearing in φ × φ. The techniques employed depend on the explicit expression

eq. (2.8) for conformal blocks, together with the unitarity requirement λ2
φφO ≥ 0. We now

review these techniques; in the following subsection we will discuss some generalizations.

Let us begin by showing how to bound the OPE coefficient-squared λ2
O0

≡ λ2
φφO0

of a

given operator O0 of dimension ∆0 and spin l0 appearing in φ × φ. We first rewrite the

– 5 –
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S

α(F∆0,l0) = 1

V∗

α(F∆,l) ≥ 0

Figure 1. The “search space” S ⊂ V∗ is the intersection of the hyperplane α(F∆0,l0) = 1 with the

convex cone of linear functionals α satisfying α(F∆,l) ≥ 0 for all (∆, l) in the spectrum.

crossing relation by separating out and dividing by the contribution of the unit operator, as

well as separating out the contribution of the particular operator O0 whose OPE coefficient

we would like to study,

λ2
O0

F∆0,l0(u, v) = 1 −
∑

O6=O0

λ2
OF∆,l(u, v), (2.10)

where

F∆,l(u, v) ≡ vdg∆,l(u, v) − udg∆,l(v, u)

ud − vd
, (2.11)

and we have used that g0,0(u, v) = 1 for the unit operator. Note that F∆,l depends on d,

though we are suppressing this dependence for brevity. eq. (2.10) is a linear equation in

the space V of functions of two variables which are invariant under u ↔ v. It encodes an

infinite number of relations between OPE coefficients λO, but general statements about

solutions consistent with unitarity (λ2
O ≥ 0) can be difficult to extract. The approach

of [33–35] is to consider a real linear functional α ∈ V∗ = Hom(V, R), which satisfies

α(F∆0,l0) = 1, and (2.12)

α(F∆,l) ≥ 0, for all other operators in the spectrum. (2.13)

Then applying α to both sides of eq. (2.10), we obtain a bound

λ2
O0

= α(1) −
∑

O6=O0

λ2
Oα(F∆,l) ≤ α(1), (2.14)

where we have used that λ2
O ≥ 0 by unitarity. Let us denote by S the subspace of α ∈ V∗

which satisfy the constraints (2.12), (2.13) (depicted in figure 1). In many cases of interest,

S is non-empty, so a non-trivial bound on the OPE coefficient-squared λ2
O0

exists.

Given bounds on λ2
O0

, bounds on the dimension of O0 may or may not follow as a

consequence. For example, suppose we assume that O0 with dimension ∆0 is the lowest-

dimension scalar appearing in φ×φ. Then if we can find some α such that λ2
O0

≤ α(1) < 0,

– 6 –
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then we have found a contradiction with unitarity, implying that it’s impossible that O0

has dimension ∆0.

Now our bound λ2
O0

≤ α(1) is most interesting when α(1) is as small as possible.

Thus we would like to minimize α(1) over all α ∈ S. This problem resembles an infinite-

dimensional version of a linear program, which usually refers to a linear optimization prob-

lem over R
n, subject to a finite number of affine constraints. Linear programs have been

well-studied in mathematics and computer science, and a number of efficient algorithms

for their solution are known. A key observation is that since the search space is an inter-

section of half-spaces (one for each inequality) and hyperplanes (one for each equality), it

is convex. Consequently, the optimum of any linear function lies on the boundary of the

search space, and can be reached deterministically by following the direction of steepest

descent (either along the boundary or in the interior).

A first step towards making our problem tractable via these methods is to restrict to

a finite-dimensional subspace W ⊂ V∗. Then, minimizing α(1) over α ∈ W ∩ S will give

a possibly sub-optimal, but still valid bound λ2
O0

≤ α(1). The choice of W is somewhat

arbitrary and unfortunately can have a significant effect on the answer. A convenient class

of subspaces is given by taking linear combinations of derivatives at some point in z, z

space. Following [33–35], we take these derivatives around the point z = z = 1/2 (which is

invariant under u ↔ v). That is, we define Wk ⊂ V∗ to be the space of functionals

α : F (z, z) 7→
∑

m+n≤2k

amn∂m
z ∂n

z F (1/2, 1/2) (2.15)

with real coefficients amn.2 We can then scan over Wk ∩ S by varying the amn, subject to

the constraints of eqs. (2.12), (2.13). One hopes that as we take k → ∞, our search will

cover more and more of S, and our bound will converge to the optimal one.3

Even after restricting to Wk, our problem differs from a typical linear program in that

eq. (2.13) includes an infinite number of affine constraints on α. For example, if we are

interested in bounding λ2
O0

with no additional assumptions on the spectrum, then we must

demand α(F∆,l) ≥ 0 for all (∆, l) obeying the unitarity bound. Alternatively, if we wish to

bound the OPE coefficient of the lowest-dimension scalar in φ×φ, we must take α(F∆,l) ≥ 0

for all scalars with ∆ ≥ ∆0, and all (∆, l) with l > 0 that obey unitarity. In each case, we

have a continuously infinite number of constraints on α — one for each (∆, l) pair.

In a typical linear program, the search space is a convex polytope in R
n, given by an

intersection of a finite number of half-spaces and hyperplanes. In our case, the search space

S ⊂ V∗ is still convex, since it is an intersection of half-spaces U∆,l = {α : α(F∆,l) ≥ 0}
and a hyperplane H = {α : α(F∆0,l0) = 1}. However, because ∆ can vary continuously,

S is not a polytope. In general, the intersection S ∩ W with any finite-dimensional W is

2In addition to being simple to describe, the spaces Wk are computationally convenient, since one can in

fact derive relatively simple analytic expressions for derivatives of the functions F∆,l(z, z) at z = z = 1/2,

and these expressions can be computed efficiently using recursion relations (see appendix B).
3Here, “optimal” means “optimal given our assumptions,” namely the diagonal crossing relation eq. (2.9)

and unitarity of each OPE coefficient in φ× φ. These are a small subset of the full consistency relations of

a CFT, so it’s certainly possible that inputting more information could lead to even stronger bounds.

– 7 –
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“piecewise-curved,” e.g. it has (not-necessarily flat) faces, (possibly curved) edges, vertices,

etc. Consequently, we expect that at finite k, as we vary the underlying parameters of our

problem (d, ∆0, etc.), our bound will vary in a “piecewise-curved” way, with corners as

the optimal α = α∗ passes over edges on the boundary of S ∩Wk.

In order to apply linear programming techniques, we need to approximate S ∩Wk by

a polytope.4 Let us pick some finite discrete set D = {(∆i, li)} and reduce the constraints

in eq. (2.13) to simply α(F∆i,li) ≥ 0 for all (∆i, li) ∈ D. This expands the search space,

and we are now in danger of obtaining an invalid bound if the optimal α = α∗ satisfies

α∗(F∆′,l′) < 0 for some (∆′, l′) not in D. However, this danger disappears as we increase

the size of D and approximate S ∩ Wk by more and more refined polytopes. A type of

discretization that works well in practice is

D = {(∆min + nǫ, l) : n = 0, . . . , N and l = 0, 2, . . . , L}, (2.16)

where Nǫ and L are large numbers (say ∼ 50), and ǫ is some small step size (say ǫ ∼ .1

or .01). By decreasing ǫ, we can ensure that violations of our constraints α∗(F∆′,l′) < 0

become less and less important. One must also ensure that α(F∆,l) is greater than zero

asymptotically as ∆, l → ∞. This is easy to check using the analytic expressions for

derivatives of F∆,l given in appendix B. In practice, the optimal α = α∗ often obeys the

asymptotic constraint automatically, provided Nǫ and L are sufficiently large.

2.2.1 Solutions to the crossing relations from linear programs

In this subsection, we will show how in principle, the linear program described above

produces not just an OPE coefficient bound, but also the corresponding “optimal” solution

to the crossing relations consistent with the given assumptions. This type of solution

doesn’t necessarily have anything to do with CFTs, since we’re only inputting a subset of

the full CFT consistency relations. However, we mention it here because it helps give some

intuition for properties of optimal solutions α∗ ∈ S. The results of this subsection are not

used elsewhere in the paper, so the reader should feel free to skip to section 2.3 if desired.

Let us briefly introduce some notation. A subset K ⊂ V of a finite-dimensional real

vector space V is called a convex cone if λ1x1+λ2x2 ∈ K for all x1, x2 ∈ K and λ1, λ2 ∈ R+.

The dual cone of K is the space of linear functions K∨ = {ℓ ∈ V ∗ such that ℓ(x) ≥
0 for all x ∈ K}. One can show that if K is closed, then (K∨)∨ = K.

In the following, let us be cavalier and pretend that the space V∗ of possible α’s is finite-

dimensional. Suppose we have run our linear program and arrived at an optimal α∗ ∈ S that

minimizes α(1) subject to eqs. (2.12) and (2.13). Since α∗ lies on the boundary of S, some of

the constraints defining S must be saturated at α∗. That is, there is some set {F∆i,li for i =

1, 2, . . . } such that α∗(F∆i,li) = 0. We also have α∗(F∆0,l0) = 1 by assumption.

For the local geometry of S near α∗, only the constraints which are saturated at α∗

are important. In other words, we can imagine locally replacing S with the set α∗ + Kα∗ ,

4Actually, there do exist algorithms to solve more general classes of “convex optimization problems”,

which can involve curved search spaces. It might be interesting to investigate whether any of these can be

applied to crossing relations.

– 8 –
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S
α∗

−F∆1,l1

−F∆2,l2

−1

Figure 2. Picking a metric on V∗, we arrive at the following picture. The linear functional that

minimizes α(1) is the unique point α∗ on the boundary of S where −1 is in the positive span of

the “normal vectors” −F∆i,li to S at α∗. Here, the three parallel arrows illustrate the direction

of steepest descent of α(1). We have suppressed an infinite number of dimensions (including the

F∆0,l0 direction) in order to draw this figure in the plane.

where Kα∗ is the convex cone

Kα∗ ≡ {β : β(F∆i,li) ≥ 0 for i ≥ 1, and β(F∆0,l0) = 0}. (2.17)

Note that Kα∗ is the dual cone of

K∨
α∗

= RF∆0,l0 +
∑

i≥1

R+F∆i,li , (2.18)

namely the positive span of the F∆i,li , plus F∆0,l0 with an arbitrary real coefficient.

Now, the condition that α∗ minimize α∗(1) means that (α∗ + δα)(1) ≥ α∗(1) for all

δα pointing into the interior of S, that is all δα ∈ Kα∗ . But this just means that 1 is an

element of the dual cone K∨
α∗

, so that there exist coefficients q ∈ R and pi ∈ R+ with

1 = qF∆0,l0 +
∑

i≥1

piF∆i,li . (2.19)

In other words, the (∆i, li) whose constraints are saturated at α∗, along with (∆0, l0), give

the spectrum of a solution to the crossing relation eq. (2.10). Further, if q > 0 then this

solution is consistent with unitarity, since the pi are positive.

A useful geometric picture (illustrated in figure 2) for arriving at the above result is

to imagine picking a metric and thinking of −F∆i,li as specifying “normal vectors” to the

search space S at α∗. The minimum of α(1) occurs precisely when the vector −1 ∈ V
(which points in the direction we want to go) is in the positive span of normal vectors to

S. Meanwhile, since we can never move off the hyperplane α(F∆0,l0) = 1, it doesn’t matter

whether −1 has a component in the direction of F∆0,l0, which is why q can have either sign.

In practice, we must solve our linear program by first restricting to a finite dimensional

search space S ∩ Wk. In this case, the optimal α∗ will have a few saturated constraints

α∗(F∆i,li) = 0 (i = 1, . . . , Nk). We can see this explicitly in figure 3 which plots α∗(F∆,l)
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α∗(F∆,l)

(∆0, 1)

∆

l=0

l=2

l=4

102 4 6 8
0

2

4

6

8

−2

Figure 3. A plot of α∗(F∆,l) for various ∆, l, where α∗ ∈ S gives the strongest bound on the

OPE coefficient of the lowest-dimension scalar O0 ∈ φ × φ. Here, we have taken dimφ = 1.1,

∆0 = dimO0 = 1.15, and k = 4. We show only pairs ∆, l satisfying unitarity. Note that α∗(F∆,l) is

never negative in this range, consistent with the constraints of our linear program, although it has

zeros (∆, l) ∈ {(2.2, 0), (8.2, 0), (4, 2), (7.7, 2), (6, 4)}. Note also that α∗(F∆0,0) = 1, as required.

for varying ∆ and l, where α∗ is the solution to a linear program. Note that α∗(F∆,l)

has zeros at particular (∆, l), but of course never becomes negative. As we increase k, we

expect new zeros of α∗(F∆,l) to appear, with Nk eventually running off to infinity. If the

limit k → ∞ is “well-behaved” in some appropriate sense, we might hope that the zeros

(∆i, li) for small ∆ and l values converge quickly as k → ∞, giving us some information

about the low-dimension and spin part of the spectrum corresponding to the “optimal”

solution eq. (2.19). Indeed, this seems to be the case in practice. It would be interesting

to see if this information has any practical applications.

2.3 Limitations and generalizations

One limitation of the formalism outlined above and the one used in [33–35] is that one

only learns about the OPE of a real scalar with itself. In particular, the formalism does

not allow one to distinguish between operators appearing in the OPE that have different

global symmetry charges. For example, in N = 1 superconformal field theories there is a

global U(1)R symmetry, and chiral operators have dimension d = 3
2R. If we take φ to be

the lowest component of a chiral multiplet Φ, then the Re[φ]×Re[φ] OPE will contain both

operators in the φ × φ OPE having U(1)R charge 2RΦ, and operators in the φ × φ∗ OPE

that are neutral under U(1)R. Since the φ2 operator appearing in the φ× φ OPE is chiral,

it always has dimension 2d and automatically satisfies the bounds derived in [33, 34]. Thus,

we unfortunately do not learn anything new about the U(1)R-singlet non-chiral operators

appearing in φ × φ∗.5

5Another example, extensively discussed in [33], is that the bounds do not distinguish between SU(2)-

singlet and SU(2)-triplet operators appearing in the h × h OPE in conformal technicolor scenarios.
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With this motivation in mind, let us consider more carefully what crossing relations

apply in the case of a complex scalar charged under a global U(1) symmetry. We must first

determine the unitarity constraints for three-point functions involving a complex scalar.

We know that the correlator with a real spin-l operator 〈φ(x1)φ
∗(x2)Oa1...al(x3)〉 must be

invariant under the exchange x1 ↔ x2 combined with complex conjugation. From this we

learn that even-l operators must have coefficients that are real, λφφ∗O = λ∗
φφ∗O, and odd-l

operators must have coefficients that are imaginary, λφφ∗O = −λ∗
φφ∗O. On the other hand,

the three-point function 〈φ(x1)φ(x2)Oa1...al∗(x3)〉 must simply be invariant under x1 ↔ x2,

and hence only even-l operators may appear. In this case, however, the coefficient λφφO∗

is in general complex. Of course, the above arguments reproduce exactly what we would

have concluded by breaking φ into its real and imaginary parts φ = φ1 + iφ2, and using

the requirement from section 2.1 that λφiφjO ∈ R.

Now let us consider the four-point function 〈φ(x1)φ(x2)φ
∗(x3)φ

∗(x4)〉. We can evaluate

this in two qualitatively different ways: by taking the φ(x1) × φ(x2) and φ∗(x3) × φ∗(x4)

OPEs, or alternatively by taking φ(x1)×φ∗(x4) and φ(x2)×φ∗(x3). Equating the resulting

expressions leads to the crossing relation

∑

O∈φ×φ

|λφφO∗ |2g∆,l(u, v) =
(u

v

)d ∑

O∈φ×φ∗

|λφφ∗O|2g∆,l(v, u). (2.20)

Although one could conceivably apply the ideas of section 2.2 to this kind of relation, we

have had more success applying linear programs to crossing relations that display symmetry

under u ↔ v — that is, relations which involve the same spectrum of operators on both

sides. As we will see, eq. (2.20) implies two such independent relations that must be

satisfied in a consistent theory. By adding the equation to itself we can immediately derive

one of them,

∑

O∈φ×φ
O∈φ×φ∗

|λO|2g∆,l(u, v) =
(u

v

)d ∑

O∈φ×φ
O∈φ×φ∗

|λO|2g∆,l(v, u), (2.21)

where λO is shorthand for the appropriate three-point function coefficient.

The simplest way to see the second crossing symmetry constraint is to al-

ternatively relabel the coordinates and consider expanding the four-point function

〈φ(x1)φ
∗(x2)φ(x3)φ

∗(x4)〉 by taking the φ(x1)×φ∗(x2) OPE and the φ(x3)×φ∗(x4) OPE.

Exchanging x1 ↔ x3 then leads to the constraint

∑

O∈φ×φ∗

|λφφ∗O|2(−1)lg∆,l(u, v) =
(u

v

)d ∑

O∈φ×φ∗

|λφφ∗O|2(−1)lg∆,l(v, u), (2.22)

which is a crossing symmetry relation that only involves operators in the φ×φ∗ OPE. Here

the (−1)l factors appear because the odd-l operators necessarily have 3-point function

coefficients that are imaginary, and their square (and not absolute value squared) enters

the conformal block decomposition when the φ’s have the above ordering. One can

show that eq. (2.22) in fact follows from eq. (2.20) through repeated use of the identity

g∆,l(u, v) = (−1)lg∆,l(u/v, 1/v) along with the knowledge that only even-l operators
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appear in the φ × φ OPE. It can similarly be verified that other crossings do not contain

any additional information.

Note that by adding together eqs. (2.21) and (2.22) all of the odd-spin terms cancel

and we recover the crossing symmetry constraint for the operators appearing in the Re[φ]×
Re[φ] OPE. Alternatively, we could subtract eq. (2.22) from eq. (2.21) to obtain a crossing

constraint which relates just the odd-spin operators appearing in φ × φ∗ to the operators

appearing in φ×φ. Also notice that the (−1)l factor in eq. (2.22) cancels against the (−1)l

factor that occurs in the definition of the conformal blocks, so that in this equation the odd-

spin terms are qualitatively similar to the even-spin terms. This may be contrasted with

eq. (2.21), where odd-spin terms have the opposite sign relative to the even-spin terms. For

this reason, we have found that it is much easier to obtain a well-behaved linear program

using the constraints of eq. (2.22) as compared to the constraints of eq. (2.21). Thus, in

the present work we will mainly focus on the bounds that can be obtained using eq. (2.22),

though in future studies it may be useful to incorporate the full set of constraints.

Let us also briefly mention another way to generalize the procedure outlined in the

previous section. Thus far, we have only used the knowledge that the unit operator appears

in the crossing relation, but in many situations one might have additional information. For

example, if it is known that an operator Õ of dimension ∆̃ and spin l̃ appears in the φ× φ

OPE in addition to the unit operator, and we also know its three-point function coefficient

λ eO, then one can simply make the replacement 1 → 1 − λ2
eO
Fe∆,el

in the objective function

of the linear program. This modification can then lead to more stringent bounds. It is

particularly straightforward to implement in the case of the stress tensor T ab or a conserved

global symmetry current Ja, since in these cases the dimensions are known and the λ’s are

fixed by Ward identities, as we will review in section 4.

3 Superconformal blocks

At this stage we could proceed to derive bounds on 3-point function coefficients in conformal

field theories with global U(1) symmetries. However, because we would also like to derive

similar bounds in N = 1 superconformal theories, we will first consider more carefully the

additional constraints imposed by supersymmetry. In particular, three-point functions of

primary operators in the same supersymmetry multiplet are related to each other by the

superconformal algebra, and one can construct “superconformal blocks” which sum up the

contributions of all operators in a given superconformal multiplet.

We will focus on four-point functions involving a complex scalar φ that is the lowest

component of a chiral superfield Φ of dimension d = 3
2RΦ. In terms of the operators

appearing in the φ × φ∗ OPE, the superconformal block decomposition looks like

〈φ(x1)φ
∗(x2)φ(x3)φ

∗(x4)〉 =
1

x2d
12x

2d
34

∑

O∈Φ×Φ†

|λO|2(−1)lG∆,l(u, v). (3.1)

Here, we have adopted the notation O ∈ Φ × Φ† to indicate that the sum is over super-

conformal primaries O appearing in φ×φ∗, and not simply primaries under the conformal

subgroup. By definition, superconformal primary operators O are annihilated by the S
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and S generators in the superconformal algebra, from which it follows that they are also

annihilated by the K generator. However, a finite number of superconformal descendants

of O are also killed by K, so one may decompose G∆,l(u, v) into a finite sum of conformal

blocks g∆,l(u, v).

Just as the explicit expression (2.8) for conformal blocks was crucial for the analysis

of [33–35], an explicit expression for superconformal blocks will be crucial for us. We find

that N = 1 superconformal blocks in the φ × φ∗ channel are given by

G∆,l = g∆,l −
(∆ + l)

2(∆ + l + 1)
g∆+1,l+1 −

(∆ − l − 2)

8(∆ − l − 1)
g∆+1,l−1

+
(∆ + l)(∆ − l − 2)

16(∆ + l + 1)(∆ − l − 1)
g∆+2,l. (3.2)

To our knowledge, this expression has not yet appeared in the literature, though analogous

results for N = 2 and N = 4 theories are known [37]. Eq. (3.2) is the key ingredient we

need to apply the technology of section 2.2 to superconformal theories. In the following

subsections, we will give two derivations — one involving explicit analysis of superconfor-

mal two- and three-point functions, and another quicker but less illuminating argument

leveraging known expressions from N = 2 theories [37]. The discussion is somewhat tech-

nical, and readers interested solely in bounds on dimensions and OPE coefficients should

feel free to skip to section 4.

Our first derivation of eq. (3.2) proceeds as follows. We start by understanding which

superconformal primary operators Oa1...al can appear in the OPE φ×φ∗. We then determine

which superconformal descendants of Oa1...al are conformal primaries, and further calculate

the relationships between two- and three- point functions of these conformal primaries.

Since each conformal primary contributes a block g∆′,l′ to 〈φφ∗φφ∗〉, we can piece together

G∆,l from these contributions. For completeness we also include a brief discussion of the

φ×φ channel. However, in this case only a single operator in each supersymmetry multiplet

may contribute, so the superconformal blocks turn out to be the same as the conformal

blocks eq. (2.8). Our conventions for the superconformal algebra and spinor notation are

summarized in appendix A.

3.1 Superconformal three-point functions

3.1.1 φ × φ OPE

Let us start by examining the φ × φ OPE, since the constraints from superconformal

symmetry are particularly transparent in this case. This analysis is not needed later,

but we include it for completeness and to establish some notation. For some previous

discussions of this OPE, see [46, 47]. In this subsection we will follow the notation and

conventions of [45], where a superconformal primary OI (I denotes Lorentz indices) is

specified by spins (j, ) and conformal weights (qO, qO), which are related to the dimension

and R-charge via qO + qO = ∆O and 2
3(qO− qO) = RO. The unitarity bound for non-chiral

superconformal primary operators then requires [42–44]

∆OI ≥
∣∣∣
3

2
ROI − j + j

∣∣∣+ j + j + 2. (3.3)
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To begin, note that since Qφ(x) = 0, only operators that are annihilated by Q may

appear in φ × φ. A priori, there are four possibilities:

1. Chiral primaries. Since these transform in (j, 0) representations of the Lorentz group

SU(2)× SU(2), they can appear only if j = 0. We will denote the linear combination

of chiral primaries appearing in φ × φ by “φ2”.

2. Descendants of the form Q
(α̇1Oα̇2...α̇l)α1...αl , where l is even and OI satisfies the

shortening condition Qα̇Oα̇α̇3...α̇lα1...αl = 0. (Note that this implies Q
2OI = 0, so

that QOI is indeed killed by Q.) The superconformal algebra implies [45] that such

operators satisfy qO = (l + 1)/2. Then using RQOI = 2RΦ we find ∆OI = 2d + l− 1
2 ,

so that the dimensions of these operators are determined by their spins. We will

denote the linear combination of these descendants with spin l as QOI
l .

6

3. Descendants of the form Qα̇Oα̇α̇1...α̇lα1...αl , where O satisfies the shortening condition

Q
(α̇1Oα̇2...α̇l+2)α1...αl = 0. Such multiplets must satisfy qO = −(l+1)/2, which implies

upon matching R-charges that ∆O = 2d−l−5/2. However, this violates the unitarity

bound eq. (3.3), so such operators actually cannot appear.

4. Descendants of the form Q
2
Q2−nOI , with n = 0, 1, 2.

Thus, we expect the OPE to take the form

φ(x)φ(0) = C(x, P )φ2(0) +
∑

l=2,4,...

C l
I(x, P )QOI

l (0) +
∑

OI

Q
2
CI(x, P,Q)OI (0), (3.4)

where the latter sum runs over superconformal primaries with ROI = 2RΦ−n, and a priori

n = 0, 1, 2 depending on how many powers of Q appear.

We can obtain additional constraints on the operators OI by acting on both sides of

eq. (3.4) with an S generator. Note that S kills the left-hand side because [S,P ] ∼ Q and

φ is chiral and primary. On the right-hand side, we can commute S through all powers of

Q and P , since {S,Q} = 0 and Q
2
[S,P ] ∼ Q

3
= 0. However, if powers of Q were present,

there would be terms involving {S,Q} which would not vanish when acting on OI . Thus,

we conclude that CI(x, P,Q) = CI(x, P ) and therefore ROI = 2RΦ − 2. In this case the

I indices must correspond to even-spin operators due to the symmetry under exchanging

x ↔ −x. Finally, the unitarity bound eq. (3.3) implies ∆
Q

2
OI ≥ |3RΦ − 3| + l + 3. Note

also that Q
2OI is primary under the conformal sub-algebra.

Instead of playing directly with the superconformal generators, an alternative approach

that will prove useful later is to consider the general form of superconformal-covariant three-

point functions. Let us take a moment to recover the above results using this language.

The Φ×Φ OPE contains a superconformal multiplet OI if and only if the three-point

function 〈Φ(z1+)Φ(z2+)OI†(z3)〉 is non-vanishing, where the z’s are superspace coordinates

(x, θ, θ), and z+ indicates dependence only on the chiral subspace (x+iθσθ, θ). The general

6We are grateful to Alessandro Vichi for pointing out the possibility of these operators in the φ×φ OPE.
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form of such a three-point function consistent with superconformal symmetry is

〈Φ(z1+)Φ(z2+)OI†(z3)〉 =
tI(X3,Θ3,Θ3)

x2d
31

x2d
32

, (3.5)

where xij = xi− + 2iθjσθi − xj+ denotes the supertranslation-invariant interval built out

of anti-/chiral coordinates xi± = xi ± iθiσθi, X3 and Θ3 are given by

Xa
3 = −1

2

xb
31

xc
12

xd
23

x2
13

x2
32

tr(σaσbσcσd), (3.6)

Θ3 = i
xa

31

x2
13

σaθ31 − i
xa

32

x2
23

σaθ32, Θ3 = Θ†
3, (3.7)

and tI has the homogeneity properties

tI(λλX3, λΘ3, λΘ3) = λ2aλ
2a

tI(X3,Θ3,Θ3) (3.8)

with a = 1
3(2qO + qO − 4d) and a = 1

3(qO + 2qO − 2d).

Since the covariant derivative D
α̇
1 vanishes when acting on the left hand side of eq. (3.5),

we obtain an additional constraint (using eqs. (6.1) and (6.2) in [45])

0 = D
α̇
1 tI(X3,Θ3,Θ3)

= −i
(x13)

α̇α

x2
31

(
∂

∂Θα
3

− 2i(σaΘ3)α
∂

∂Xa
3

)
tI(X3,Θ3,Θ3), (3.9)

which implies that tI(X3,Θ3,Θ3) = tI(X3,Θ3), where X3 ≡ X3 +2iΘ3σΘ3. Finally, under

z1 ↔ z2 we have X3 ↔ −X3 and Θ3 ↔ −Θ3. There are three possible solutions to these

constraints,

tI(X3,Θ3) = const., (3.10)

corresponding to OI being a chiral “Φ2” operator with RO = 2RΦ,

tI(X3,Θ3) ∝ Θ
(α̇1

3 X3
α̇2

α2
. . . X3

α̇l)
αl

= Θ
(α̇1

3 X3
α̇2
α2

. . . X3
α̇l)
αl

, (3.11)

corresponding to the short operators OI
l , and

tI(X3,Θ3) ∝ Θ
2
3X

∆O−2d−l−1
3 X

a1

3 . . . X
al

3 = Θ
2
3X

∆O−2d−l−1
3 Xa1

3 . . . Xal

3 , (3.12)

corresponding to OI being a non-chiral operator with RO = 2RΦ − 2. Since the only

irreducible Lorentz representations that can be built out of a single vector X
a
3 (or Xa

3 ) are

traceless symmetric tensors, OI = Oa1...al must have definite integer spin l = 2j = 2j, and

invariance under z1 ↔ z2 further tells us that l must be even. The descendant operator

Q
2OI then has the correct quantum numbers to appear in the φ × φ OPE, in precise

agreement with the preceding argument.

Here we see that for each supermultiplet appearing in Φ × Φ, there is exactly one

conformal primary appearing in φ× φ. This is essentially because φ2, QOI
l , and Q

2OI are

the only conformal primaries in their respective supermultiplets with the correct R-charge.

Consequently, the superconformal blocks for decomposing 〈φφ∗φφ∗〉 in the φ × φ channel

are the same as the conformal blocks. Next we will turn to considering the φ×φ∗ channel,

where this will no longer be the case.
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3.1.2 φ × φ∗ OPE

We determine which operators can appear in the φ × φ∗ OPE by examining three-point

functions 〈ΦΦ†OI†〉. Once again, let OI be a superconformal primary with conformal

weights (qO, qO) and spins (j, j). Following [45], we must have

〈Φ(z1+)Φ†(z2−)OI†(z3)〉 ∝ 1

x2d
31

x2d
23

tI(X3,Θ3,Θ3), (3.13)

where tI satisfies eq. (3.8) with a = 1
3(2qO + qO) − d and a = 1

3 (2qO + qO) − d.

Demanding the appropriate chirality properties imposes further constraints. Just as

in the φ×φ case, requiring D
α̇
1 tI = 0 means tI must be a function of X3 and Θ3. We must

additionally require

0 = Dα
2 tI(X3,Θ3) = i

xα̇α
23

x2
23

∂

∂Θ
α̇
3

tI(X3,Θ3), (3.14)

so that tI is actually a function of X3 alone. Note that since the R-charge of X3 vanishes,

the R-charge of the correlator 〈ΦΦ†OI†〉 must vanish as well, which means OI = OI† should

be a real operator with qO = qO. Since we again can only build Lorentz representations out

of a single vector X
a
3, the only possibilities are traceless symmetric tensors, so OI = Oa1...al

must have definite integer spin l = 2j = 2j.

In summary, we have found that the only superconformal primaries appearing in the

Φ × Φ† OPE are traceless symmetric tensors Oa1...al with vanishing R-charge. Supercon-

formal symmetry determines the 3-point function to be

〈Φ(z1+)Φ†(z2−)Oa1...al(z3)〉 ∝ 1

x2d
31

x2d
23

X
∆O−2d−l
3 X

a1

3 . . . X
al

3 − traces. (3.15)

In this case, the unitarity bound eq. (3.3) requires ∆O ≥ l + 2.7 The operators which can

enter the OPE of the lowest components φ×φ∗ are then R-charge zero descendants of a real

superconformal primary, Pn(QQ)mOa1...al . To understand how these operators contribute

to the four-point function 〈φφ∗φφ∗〉, we must now organize them into representations of

the conformal sub-algebra.

3.2 Decomposition of superconformal multiplets into conformal multiplets

In this section, we will examine the structure of a multiplet built from a real superconfor-

mal primary Oa1...al of dimension ∆. The full superconformal multiplet can be decomposed

into a direct sum of conformal multiplets, connected together by supersymmetry transfor-

mations. Here we will show explicitly how this decomposition works for operators that

appear in the φ×φ∗ OPE — namely operators of vanishing R-charge and definite spin. As

a result, we will see how superconformal symmetry relates the OPE coefficients of different

conformal primaries, and consequently how G∆,l decomposes into a sum of g∆,l’s.

Note that Oa1...al is symmetric and traceless in its indices. Throughout this subsection,

we will adopt the convention of implicitly symmetrizing and subtracting traces in ai for

7With an exception, of course, for the unit operator which has ∆ = l = 0.
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i = 1, . . . , l. This has the virtue of greatly simplifying notation, though one must be careful

when manipulating expressions.

A convenient way to describe the descendants of a superconformal primary operator

Oa1...al(0) is through superspace. For example, defining the superfield Oa1...al(x, θ, θ) =

exP+θQ+θQOa1...al(0), we have the component expansion

Oa1...al(x, θ, θ) = Aa1...al(x) + ζaB
aa1...al(x) + ζ2Da1...al(x) + . . . (3.16)

where ζa ≡ θσaθ, and “. . . ” represents fields with non-zero R-charges. The component

fields Baa1...al and Da1...al are then related to Aa1...al through the action of Q and Q as

Baa1...al = −1

4
ΞaAa1...al , (3.17)

Da1...al = − 1

64
ΞaB

aa1...al − 1

16
∂2Aa1...al , (3.18)

where we have defined Ξa ≡ σaα̇α[Qα, Qα̇].

Both Aa1...al and Da1...al are in the spin-l representation of the Lorentz group, but

Baa1...al can be further decomposed into irreducible representations. Recall that under

SO(4) ∼= SU(2)×SU(2), the spin-l representation of SO(4) transforms as (j, j) with j = l/2.

Since Baa1...al has an additional vector index, it transforms as

(1/2, 1/2) ⊗ (j, j) = (j + 1/2, j + 1/2) ⊕ (j − 1/2, j − 1/2)

⊕ (j + 1/2, j − 1/2) ⊕ (j − 1/2, j + 1/2) . (3.19)

The first two components on the right-hand side are a spin-(l+1) representation Jaa1...al ≡
B(aa1...al) − traces, and a spin-(l − 1) representation Na2...al ≡ Bb

ba1...al . The remaining

two components comprise an operator Laa1...al which is traceless and has vanishing to-

tal symmetrization. L can be further decomposed into irreducibles by projecting onto its

“anti/self-dual” parts, satisfying Laa1...al
± = ±i l

l+1ǫaa1
bcL

bca2...al
± (although this will not be

important in our discussion). Notice that since L is not in a traceless symmetric representa-

tion, a primary operator built from it cannot appear in the OPE of φ with φ∗. Nonetheless,

it will play a role in the identification of conformal primaries below. Altogether, we may

write

Baa1...al = Jaa1...al +
l2

(l + 1)2
ηaa1Na2...al + Laa1...al , (3.20)

where as usual we are implicitly symmetrizing and subtracting traces in the ai. The

coefficient of N is such that the projection Na2...al = Bb
ba1...al works correctly.

Now let us consider the action of a special conformal generator Ka on the components

of O. We will be interested in determining which linear combinations of superconformal

descendants are annihilated by Ka. After some algebra, one can determine the action

Ka

(
Bba1...al

ǫba1
cdP

cAda2...al

)
=

(
2l

2(∆ − 1)

)(
ǫba1

adA
da2...al

)
, (3.21)

– 17 –



J
H
E
P
0
5
(
2
0
1
1
)
0
1
7

as well as

Ka




Da1...al

P 2Aa1...al

PbP
a1Aba2...al

ǫa1b
cdPbB

cda2...al


=




1
2 0 0 l

2

4(∆−1) −4l 4l 0

0 2(∆− l− 2) 2(∆ + l) 0

2(l + 1) −2(l − 1) −2(l + 1) 2(∆ − 1)







PaA
a1...al

P a1Aa
a2...al

δa1
a PbA

ba2...al

ǫa1
acdB

cda2...al


,

(3.22)

from which we find that the linear combinations

Baa1...al

prim ≡ Baa1...al − l

∆ − 1
ǫaa1

cdP
cAda2...al (3.23)

Da1...al

prim ≡ Da1...al +
l(l + 1) − (∆ − 1)

8(∆ − 1)2
P 2Aa1...al − l2

4(∆ − 1)2
PbP

a1Aba2...al

− l

4(∆ − 1)
ǫa1b

cdPbB
cda2...al (3.24)

are primary operators under the conformal subgroup. Note that only the L component of

B is shifted in the above expression for Bprim, so that J and N are already primary.

An important fact is that when the unitarity bound ∆ ≥ l + 2 is saturated, our

superconformal multiplet is “shortened,” and the descendants N,Lprim, and Dprim actually

vanish. For example, the supercurrent J a(z) with ∆ = 3 and l = 1 contains only the R-

symmetry current Ja
R(x) and stress tensor T ab(x) as conformal primary components with

vanishing R-charge. This will be reflected in explicit calculations below.

3.3 Conformal primary three-point functions

Next we would like to see how the three point functions 〈φφ∗J〉, 〈φφ∗N〉, and 〈φφ∗Dprim〉
are related to 〈φφ∗A〉. We will also verify that 〈φφ∗Lprim〉 = 0, as expected because Lprim

is not in an integer-spin (traceless symmetric) representation of the Lorentz group.

Let us set θ1 = θ2 = θ1 = θ2 = 0, and θ3 = θ, θ3 = θ in the correlator eq. (3.15) to get

the 3-point function 〈φ(x1)φ
∗(x2)Oa1...al(x3, θ, θ)〉. Next, expanding in θ, θ and comparing

with our component expansion eq. (3.16), we find

〈φφ∗Aa1...al〉 =
x∆−2q−l

12

x∆−l
13 x∆−l

23

Za1 . . . Zal (3.25)

〈φφ∗Jaa1...al〉 = i(∆ + l)
x∆−2q−l

12

x∆−l
13 x∆−l

23

ZaZa1 . . . Zal (3.26)

〈φφ∗Na2...al〉 = i
(∆ − l − 2)(l + 1)

2l

x∆−2q−l
12

x∆−l
13 x∆−l

23

Z2Za2 . . . Zal (3.27)

〈φφ∗Laa1...al〉 = 2l
x∆−2q−l

12

x∆−l
13 x∆−l

23

Y aa1Za2 . . . Zal (3.28)

〈φφ∗Da1...al〉 =
x∆−2q−l

12

x∆−l
13 x∆−l

23

(
l

2
Z2 xa1

21

x2
21

Za2 . . . Zal +
l(l − 1)

2
ηbcY

a1bY a2cZa3 . . . Zal (3.29)

−
(

(∆ + l)

2

x32 · x13

x2
13x

2
32

+
(∆ + l)(∆ − l − 2)

8
Z2

)
Za1 . . . Zal

)
,
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where

Za ≡ xa
31

x2
31

− xa
32

x2
32

, Y ab ≡ 1

x2
32x

2
31

ǫab
cdx

c
31x

d
32, (3.30)

and we are implicitly projecting the right-hand side of each expression onto the appropriate

Lorentz representation (symmetrizing and subtracting traces as necessary). Using Z2 =

x2
12/(x

2
31x

2
32), we see that the correlators 〈φφ∗A〉, 〈φφ∗J〉 and 〈φφ∗N〉 take the expected

form for a 3-point function of conformal primary operators. Further, taking the appropriate

derivatives of the above expressions and constructing the linear combinations corresponding

to Lprim and Dprim, we obtain

〈φφ∗Laa1...al

prim 〉 = 0 (3.31)

as expected, and

〈φφ∗Da1...al

prim 〉 = −∆(∆ + l)(∆ − l − 2)

8(∆ − 1)

x∆−2q−l
12

x∆−l
13 x∆−l

23

Z2Za1 . . . Zal . (3.32)

Notice that three-point functions involving N and Dprim vanish when ∆ = l + 2, which is

precisely what we expect for short multiplets that saturate the unitarity bound.

3.4 Conformal primary norms

Finally we must determine the normalization of the two-point functions 〈JJ〉, 〈NN〉, and

〈DprimDprim〉. One could do this either by expanding out the superconformally covariant

expression for the two-point function of O derived in [45] into its various components, or

by using the explicit expressions for J,N , and Dprim in terms of Q,Q, and P acting on

A, and using the superconformal algebra to compute their norms in radial quantization.

We here adopt the latter approach. We refer the reader to [44] for many examples of this

type of computation.

To begin, we assume that the superconformal primary operator A is canonically nor-

malized

〈Ab1...bl |Aa1...al〉 = symmetrize(ηa1b1 . . . ηalbl) − traces

=
1

l!

∑

π∈Sl

ηa1bπ(1) . . . ηalbπ(l) − traces

≡ Ia1...al;b1...bl

l , (3.33)

where we’ve defined Ia1...al;b1...bl

l for future convenience, and |Aa1...al〉 = Aa1...al(0)|0〉 is the

state created by the operator Aa1...al(0) in radial quantization.

Next we would like to determine the normalization of Baa1...al

prim . Starting from eqs. (3.17)

and (3.23) and working through the algebra, we find that

〈Bbb1...bl

prim |Baa1...al

prim 〉= 2

((
∆(∆ + 1)− l2− l(l+1)

∆−1

)
ηbaηa1

c1 + l

(
2∆ + 2l + 1 +

l+1

∆−1

)
ηba1ηa

c1

−l

(
2∆ − 2l + 1 − l − 1

∆ − 1

)
ηb

c1η
aa1

)
〈Ab1...bl |Ac1a2...al〉, (3.34)
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from which we can extract the component normalizations

〈Jbb1...bl |Jaa1...al〉 = 2(∆ + l)(∆ + l + 1)Iaa1...al;bb1...bl

l+1 , (3.35)

as well as

〈N b2...bl |Na2...al〉 =
2(l + 1)2

l2
(∆ − l − 2)(∆ − l − 1)Ia2...al;b2...bl

l−1 , (3.36)

where we have used the relation ηabIaa2...al;bb2...bl

l = (l+1)2

l2
Ia2...al;b2...bl

l−1 . Although we will

not need it, for completeness we also have

〈Lbb1...bl

prim |Laa1...al

prim 〉 =
8l2∆(∆ + l)(∆ − l − 2)

(l + 1)2(∆ − 1)
ηabIa1...al;b1...bl

l , (3.37)

where we are implicitly subtracting traces and the full symmetrization (in either the a, ai or

b, bi indices) from the right hand side — that is, projecting onto the Lorentz representation

corresponding to L.

Finally we must determine the normalization of Da1...al

prim . In order to simplify the

calculation, it will be helpful to write everything in terms of primary fields,

Da1...al

prim =− 1

64
ΞaB

aa1...al

prim − l(l + 1) + (∆ − 1)(∆ + 1)

16(∆ − 1)2
P 2Aa1...al +

l2

8(∆ − 1)2
P a1PbA

ba2...al

− 3l

16(∆ − 1)
ǫa1b

cdPbB
cda2...al

prim (3.38)

so that

642〈Db1...bl

prim |Da1...al

prim 〉= 〈Bbb1...bl

prim |(Ξb)
†Ξa|Baa1...al

prim 〉 − 8l2

(∆ − 1)2
〈Bbb1...bl

prim |(Ξb)
†P a1Pc|Aca2...al〉

+4
l(l + 1) + (∆ − 1)(∆ + 1)

(∆ − 1)2
〈Bbb1...bl

prim |(Ξb)
†P 2|Aa1...al〉

+
12l

(∆ − 1)
ǫa1e

cd〈Bbb1...bl

prim |(Ξb)
†Pe|Bcda2...al

prim 〉, (3.39)

where we have used that all terms of the form 〈(. . . )K|Dprim〉 vanish. Evaluating each of

these terms using the superconformal algebra and putting everything together, we obtain

the final result

〈Db1...bl

prim |Da1...al

prim 〉 =
∆2(∆ − l − 2)(∆ − l − 1)(∆ + l)(∆ + l + 1)

4(∆ − 1)2
Ia1...al;b1...bl

l . (3.40)

3.5 N = 1 superconformal blocks

To summarize the results in the previous subsections, we have found the three-point func-

tion coefficients

λφφ∗A = 1

λφφ∗J = i(∆ + l)

λφφ∗N = i
(∆ − l − 2)(l + 1)

2l

λφφ∗D = −∆(∆ + l)(∆ − l − 2)

8(∆ − 1)
(3.41)
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and the norms

〈A|A〉 ∼ 1

〈J |J〉 ∼ 2(∆ + l)(∆ + l + 1)

〈N |N〉 ∼ 2(l + 1)2(∆ − l − 2)(∆ − l − 1)

l2

〈D|D〉 ∼ ∆2(∆ − l − 2)(∆ − l − 1)(∆ + l)(∆ + l + 1)

4(∆ − 1)2
, (3.42)

where “∼” means multiplied by the appropriate canonically normalized tensor. Combining

these results, we find the dimension ∆, spin l superconformal block given in eq. (3.2), which

we reproduce here for the reader’s convenience,

G∆,l = g∆,l −
(∆ + l)

2(∆ + l + 1)
g∆+1,l+1 −

(∆ − l − 2)

8(∆ − l − 1)
g∆+1,l−1

+
(∆ + l)(∆ − l − 2)

16(∆ + l + 1)(∆ − l − 1)
g∆+2,l. (3.43)

A few comments are in order. First, l = 0 is special, since in this case the N com-

ponent does not exist. However, one can consistently take g∆,−1 = 0, and then the above

equation correctly accounts for this situation. Second, in the case of superconformal pri-

mary operators that saturate the unitarity bound, ∆ = l + 2, the third and fourth terms

vanish, which is precisely what we expect due to the fact that the N and Dprim compo-

nents are not present in short multiplets. Finally, in the case of the unit operator, with

∆ = l = 0, the second and fourth terms vanish due to the coefficient going to zero, and

the third term vanishes because the conformal block goes to zero. Thus, we simply obtain

that G0,0 = g0,0 = 1.

Let us also note that eq. (3.43) determines the superconformal blocks for four-point

functions of all component fields in Φ(z+), not just the lowest component φ(x). The reason

is that there are unique superconformally-invariant extensions of the conformally-invariant

cross-ratios u, v with the correct chirality properties to appear in a four-point function

〈Φ(z1+)Φ†(z2−)Φ(z3+)Φ†(z4−)〉. They are given by [45]

ũ =
x2

21
x2

43

x2
23

x2
41

, ṽ =
1

2
tr(x21x

−1
41

x43x
−1
23

), (3.44)

where the x’s in the trace should be thought of as bispinors, (x)α̇α = xaσα̇α
a and (x−1)αα̇ =

−xaσ
a
αα̇/x2. Since ũ and ṽ become u and v when we set θi = θi = 0, we must have

〈Φ(z1+)Φ†(z2−)Φ(z3+)Φ†(z4−)〉 =
1

x2d
12

x2d
34

∑

O∈Φ×Φ†

λ2
OG∆,l(ũ, ṽ), (3.45)

where G∆,l is given by eq. (3.43) above. One can now perform θ, θ expansions on both sides

to derive the superconformal blocks for specific component fields.

Finally, let us mention that it may be possible to derive the superconformal blocks by

mimicking the derivation of g∆,l in [41]. One would start with the expansion eq. (3.45) and

apply the quadratic casimir of the superconformal group acting on Φ(z1+) and Φ(z2−) to

obtain a differential equation for G∆,l, which could then be solved.
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3.6 Deriving N = 1 blocks from N = 2 blocks

In [37], Dolan and Osborn computed superconformal blocks for four-point functions of a

particular kind of BPS operator in N = 2 theories, using Ward identities special to higher

supersymmetry. At the very least, we should be able to decompose their expression into

N = 1 superconformal blocks G∆,l. However, requiring that this is possible gives a strong

consistency condition on G∆,l — so strong in fact that it determines G∆,l completely! In this

subsection, we will use this fact to give an alternate derivation of eq. (3.43) that requires far

less computation than in sections 3.1–3.5, though it leverages important results from [37].

The operator ϕij considered in [37] is a triplet under SU(2)R, neutral under U(1)R, and

has scaling dimension 2 (here i, j = 1, 2 are SU(2)R indices). It satisfies the BPS conditions

Q
(i
αϕjk) = ǫl(iQα̇lϕ

jk) = 0, which imply that under the N = 1 sub-algebra generated by Q1
α

and Qα̇1, the operators ϕ11, ϕ21, and ϕ22 are anti-chiral, linear, and chiral respectively. The

important fact for us is that ϕ22 ≡ φ is chiral, so 〈φφ∗φφ∗〉 can be decomposed into a sum

of G∆,l’s. Note that the form of G∆,l is independent of the dimension of φ. In particular, it

is irrelevant for our purposes that φ is restricted to have dimension 2.

Any N = 2 multiplet that can appear in the OPE ϕij×ϕkl must be built from a primary

of dimension ∆ and definite integer spin l. We will denote such a multiplet by (∆)N=2
l .

The “extra” supersymmetry generators Q2, Q2 connect different N = 1 multiplets within

(∆)N=2
l exactly analogously to the way Q and Q connect different conformal multiplets

within (∆)N=1
l , as discussed in section 3.2. Thus, we have the decompositions

(∆)N=2
l = (∆)N=1

l ⊕ (∆ + 1)N=1
l±1 ⊕ (∆ + 2)N=1

l (3.46)

(∆)N=1
l = (∆)N=0

l ⊕ (∆ + 1)N=0
l±1 ⊕ (∆ + 2)N=0

l , (3.47)

where we have ignored multiplets which cannot appear in the OPE of two scalars. We can

then write the ansatze

GN=2
∆,l = G∆,l + N(∆, l)G∆+1,l−1 + J(∆, l)G∆+1,l+1 + D(∆, l)G∆+2,l (3.48)

G∆,l = g∆,l + n(∆, l)g∆+1,l−1 + j(∆, l)g∆+1,l+1 + d(∆, l)g∆+2,l, (3.49)

where N,J,D, n, j, d are functions we would like to determine. Note that j, n, and d must

be rational functions of ∆ and l. This is clear without any computation, simply from the

viability of our first method for determining G∆,l (sections 3.1–3.5).

Using formulae from [37], we find that the N = 2 superconformal block contributing

to 〈φφ∗φφ∗〉 is given in terms of conformal blocks by

GN=2
∆,l = g∆,l − g∆+1,l+1 −

1

4
g∆+1,l−1 +

1

4
g∆+2,l

+
(∆ + l + 2)2

4(∆ + l + 1)(∆ + l + 3)
g∆+2,l+2 −

(∆ + l + 2)2

16(∆ + l + 1)(∆ + l + 3)
g∆+3,l+1

+
(∆ − l)2

64(∆ − l − 1)(∆ − l + 1)
g∆+2,l−2 −

(∆ − l)2

64(∆ − l − 1)(∆ − l + 1)
g∆+3,l−1

+
(∆ + l + 2)2(∆ − l)2

256(∆ + l + 1)(∆ + l + 3)(∆ − l − 1)(∆ − l + 1)
g∆+4,l. (3.50)
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Upon comparison with eqs. (3.48) and (3.49), each coefficient in the above expression

implies an equation relating N,J,D, n, j, and d. We will solve these equations by first

determining j and n, and finally computing d in terms of them. To begin, the g∆+1,l+1

and g∆+2,l+2 terms in eq. (3.50) imply

− 1 = J(∆, l) + j(∆, l), and
(∆ + l + 2)2

4(∆ + l + 1)(∆ + l + 3)
= J(∆, l)j(∆ + 1, l + 1). (3.51)

With some foresight, but without loss of generality, let us make the substitution

j(∆, l) = − (∆ + l)

2(∆ + l + 1)
(1 + α(∆ + l,∆ − l)), (3.52)

where α(x, x) is a rational function we must determine. Then eqs. (3.51) imply the equation

α(x, x) =
x + 2

x

α(x + 2, x)

1 + α(x + 2, x)
, (3.53)

and it’s not difficult to show that any rational solution α(x, x) must vanish identically.

Consequently, we obtain

j(∆, l) = − (∆ + l)

2(∆ + l + 1)
, J(∆, l) = − (∆ + l + 2)

2(∆ + l + 1)
. (3.54)

A similar analysis using the g∆+1,l−1 and g∆+2,l−2 terms in eq. (3.50) gives

n(∆, l) = − (∆ − l − 2)

8(∆ − l − 1)
, N(∆, l) = − (∆ − l)

8(∆ − l − 1)
. (3.55)

Finally, let us solve for d(∆, l). The g∆+4,l term in eq. (3.50) determines D(∆, l) in

terms of d(∆ + 2, l). Plugging this in, along with our solutions for N,J, n, and j, the

remaining terms in eq. (3.50) imply equations with the following structure

g∆+2,l : d(∆, l) ∼ d(∆ + 2, l) (3.56)

g∆+3,l+1 : d(∆ + 1, l + 1) ∼ d(∆ + 2, l) (3.57)

g∆+3,l−1 : d(∆ + 1, l − 1) ∼ d(∆ + 2, l), (3.58)

where “∼” means “is algebraically related to.” Making the substitutions ∆ → ∆ − 1 and

l → l− 1 in eq. (3.57), we are left with three algebraic equations relating three “variables”

d(∆, l), d(∆ + 2, l), and d(∆ + 1, l − 1). Solving them gives

d(∆, l) =
(∆ + l)(∆ − l − 2)

16(∆ + l + 1)(∆ − l − 1)
, D(∆, l) =

(∆ + l + 2)(∆ − l)

16(∆ + l + 1)(∆ − l − 1)
. (3.59)

To summarize, we have re-derived eq. (3.43),8 and also obtained the decomposition of

N = 2 conformal blocks into N = 1 conformal blocks

GN=2
∆,l = G∆,l −

(∆ + l + 2)

2(∆ + l + 1)
G∆+1,l+1 −

(∆ − l)

8(∆ − l − 1)
G∆+1,l−1

+
(∆ + l + 2)(∆ − l)

16(∆ + l + 1)(∆ − l − 1)
G∆+2,l. (3.60)

8It’s possible that similar arguments suffice to determine N = 2 conformal blocks from N = 4 conformal

blocks. If this is the case, it’s fascinating that a maximally supersymmetric result, which can be derived

using special properties of N = 4 BPS multiplets, completely determines the corresponding results for lower

supersymmetry.
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4 Bounds

Now we finally turn to using the results obtained in sections 2 and 3 to obtain bounds

on CFT and SCFT data. We will start by considering bounds on the OPE coefficient of

the lowest-dimension scalar appearing in the Φ × Φ† OPE (which we call “Φ†Φ”), where

Φ is a chiral multiplet in an N = 1 superconformal theory. When the dimension of Φ

is somewhat close to 1, we find that these OPE coefficient bounds are sufficiently strong

to yield an upper bound on the dimension of Φ†Φ. This is a completely general result

about the dimensions of non-chiral operators in strongly-coupled N = 1 superconformal

field theories. We will also present a bound on the OPE coefficient of an arbitrary scalar

operator that can appear in this OPE, independent of any assumptions about the spectrum.

Then we turn to bounding the OPE coefficients of flavor currents. In general CFTs

these are spin-1 operators JaI of dimension 3, and in N = 1 theories the JaI are embedded

into real scalar operators JI of dimension 2. We will review how Ward identities fix these

OPE coefficients in terms of the coefficient of 〈JIJJ〉 ∝ τ IJ and the charges of φ, allowing

us to bound the quantity τIJT IT J , where τIJ = (τ IJ)−1 and T I are the generators of the

flavor symmetry in the φ representation. Roughly speaking, τ IJ measures the number of

degrees of freedom charged under the global symmetries,9 and our bound says that the

effective number of degrees of freedom that are charged cannot be much smaller than 1.

We present this bound in both non-supersymmetric and supersymmetric CFTs.

Finally we consider the OPE coefficient of the stress tensor, which is similarly fixed by

Ward identities in terms of the dimension d of φ and the central charge c. This will allow

us to derive a lower bound on the value of the central charge in both non-supersymmetric

and supersymmetric CFTs. In the former case, the stress tensor is a spin-2 operator of

dimension 4, and the bound will assume only the existence of a real scalar primary operator

of dimension d. In the latter case, the stress-tensor is the θσaθ component of a spin-1 U(1)R
current multiplet of dimension 3, and the bound will assume only the existence of a chiral

primary scalar of dimension d.

4.1 Dimension of Φ†Φ and scalar OPE coefficients

We start from the crossing relation eq. (2.22), which involves only the φ×φ∗ channel of the

four-point function 〈φφ∗φφ∗〉. Superconformal symmetry additionally allows us to group

terms into superconformal blocks, so that we may write

∑

O∈Φ×Φ†

|λO|2(−1)lG∆,l(u, v) =
(u

v

)d ∑

O∈Φ×Φ†

|λO|2(−1)lG∆,l(v, u), (4.1)

where as before we have written Φ × Φ† instead of φ× φ∗ to indicate that the sum is over

superconformal primaries in the OPE of φ with φ∗, as opposed to simply primaries under

the conformal subgroup.10

9For example, if the flavor symmetry is weakly gauged with coupling g, then τ IJ is proportional to the

contribution of the CFT to the beta function of g.
10Note that the methods in this section apply equally well to a general CFT with a global U(1) symmetry,

in which case the bounds are strictly weaker.
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From here, the procedure is exactly as described in section 2.2. Suppose the operator

O0 with dimension ∆0 is the lowest-dimension scalar appearing in Φ × Φ†. Isolating the

contributions of O0 and the unit operator, we have

|λO0 |2F∆0,l0 = 1 −
∑

O6=O0

|λO|2F∆,l, (4.2)

where F∆,l is given by eq. (2.11) with g∆,l → (−1)lG∆,l. Finally, to obtain the best possible

bound |λO0 |2 ≤ α(1), we must minimize α(1) over all α ⊂ V∗ satisfying the constraints

• α(F∆,0) ≥ 0 for all ∆ ≥ ∆0,

• α(F∆,l) ≥ 0 for all ∆ ≥ l + 2 and l ≥ 1 (not necessarily even),

• α(F∆0,0) = 1.

Then if the resulting bound tells us that |λO0 |2 ≤ α(1) < 0, there is a contradiction with

unitarity, and we learn that O0 cannot have dimension ∆0.

Let us highlight some assumptions implicit in this procedure. Firstly, we are assuming

that Φ is uncharged under any global flavor symmetries (that is, non-R symmetries), since

otherwise there would be a symmetry current J of dimension 2 in the OPE Φ×Φ†, which

would necessarily be the lowest-dimension scalar by the SUSY unitarity bound. Alterna-

tively, if Φ has flavor charges, and we wish to bound the lowest-dimension scalar in Φ×Φ†

that is not a flavor current, then we must incorporate flavor current blocks F2,0 into the

objective function of our linear program 1 → 1 − |λJ |2F2,0, as discussed in section 2.3.

Secondly, note that we are only using part of the full crossing relation eq. (2.20), and it

is possible that one could obtain stronger bounds by incorporating the additional relations

eq. (2.21) (whose terms also can be grouped into superconformal blocks if desired). So

far, we have not had success incorporating these extra constraints into a well-behaved

linear program — namely one where our choices of finite-dimensional subspaces Wk and

discretizations D = {(∆i, li)} lead to answers that don’t violate other constraints F∆′,l′ ≥ 0

for (∆′, l′) /∈ D. It is certainly possible that these difficulties can be circumvented. However,

in this paper, we choose to focus on the information that can be learned from eq. (4.1).

Figure 4 shows the resulting bound on the dimension of Φ†Φ as a function of the

dimension d of Φ. Here we have taken k = 6, and then for each value of d we scan over

values of ∆0 (with a spacing of 0.01) until we find the smallest dimension such that there

is a contradiction with unitarity. As d → 1, we see that the bound approaches 2 from

above, consistent with the existence of the free theory. (Bounds very near d = 1 are

computationally intensive to obtain, so we defer very close exploration of this region to

future work.) On the other hand, we see that the bound becomes very weak and shoots off

to infinity around d ∼ 1.16. For dimensions larger than this value, the resulting bounds on

|λO0 |2 become stronger and stronger as ∆0 becomes large, but never lead to a violation of

unitarity. We also note that at k < 6 we do not find a dimension bound at any value of d,
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∆ = 2d

∆

d

max(∆Φ†Φ)

1.025 1.05 1.075 1.1 1.125 1.151
2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

Figure 4. An upper bound on the dimension of Φ†Φ (the lowest-dimension scalar appearing in

the Φ × Φ† OPE), as a function of d = dimΦ. Here, we have taken k = 6. The bound appears

to approach 2 as d → 1, as expected. On the other hand, we do not find a dimension bound for

d & 1.16. It is possible that pushing the numerics beyond k = 6 could lead to bounds in this region.

so that one can only see these bounds when a large number of derivatives are considered.11

It would be very interesting to see if pushing the numerics further and incorporating even

more derivatives could lead to bounds at larger values of d.

We can also consider bounds on the OPE coefficients of operators without making

any assumptions about the spectrum. In this case we simply require that α(F∆,0) ≥ 0 for

all ∆ ≥ 2, which is the SUSY unitarity bound for scalar operators with vanishing U(1)R
charge. In figure 5 we show the resulting bounds on |λO0 | for scalar operators appearing in

this OPE as a function of their dimension, at various values of d. This is a supersymmetric

generalization of the bounds considered in [35] in non-supersymmetric theories. Here we

see that the bounds become very strong as ∆0 is increased, and appear to approach zero

asymptotically. On the other hand, there are still finite bounds at ∆0 = 2, which tells

us that even the coefficients appearing in front of flavor symmetry currents cannot be too

large. We will explore this in more detail in the next subsection.

4.2 Flavor currents

When φ is charged under a flavor symmetry, Ward identities guarantee that flavor currents

appear in the OPE φ×φ∗, and thus contribute non-trivially to the conformal block expan-

sion of 〈φφ∗φφ∗〉. In this subsection, we review the relevant Ward identities for both general

11As discussed in appendix B, Wk has dimension k(k+1)
2

, so that k = 6 corresponds to 21 derivatives. It

may be that not all of these derivatives are important for obtaining a dimension bound, and one possible

numerical optimization might involve using a subspace of W6 other than Wk for k < 6.
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d=
1.05

d=
1.1

d=1.25

d=1.5

∆0

|λO0 |
max |λO0 | for l0 = 0

2 2.5 3 3.5 4 4.5 5 5.5
0

1

1.5

2

2.5

0.5

Figure 5. An upper bound on the OPE coefficient |λO0
| of a scalar primary O0 appearing in

Φ×Φ†, as a function of ∆0 = dimO0, for d = dimΦ = 1.05, 1.1, 1.25, 1.5 (with k = 5). Here we no

longer assume O0 is the lowest-dimension scalar in Φ × Φ†.

CFTs and superconformal theories, and compute these conformal block contributions. In

the next section, we present bounds on these quantities. Although we will eventually spe-

cialize to the case of a single operator φ, let us first consider a collection of operators φi

transforming in some general representation under a flavor group G.

Suppose G has generators T I and conserved currents JIa. The flavor charges in radial

quantization are given by integrating the radial component of JIa over a three-sphere

surrounding the origin, QI ≡ −i
∫

dΩ x̂ · JI . These charges then act non-trivially on our

φi as QIφi(0) = −(T I)jiφj(0).
12 Comparing this action with our expression for QI , we see

that the J × φ OPE must take the form

JIa(x)φi(0) ∼ − i

2π2
(T I)ji

xa

x4
φj(0) + . . . , (4.3)

where “. . . ” represents other operators, and we have used that vol(S3) = 2π2.

Suppose the φi’s and JIa’s are normalized so that

〈φi(x1)φ
∗
ı (x2)〉 =

giı

x2d
12

, and (4.4)

〈JIa(x1)J
Jb(x2)〉 =

τ IJ

(2π)4
(∂2ηab − ∂a∂b)

1

x4
12

= 12
τ IJ

(2π)4
Iab(x12)

x6
12

. (4.5)

12A word about i’s and −1’s. The minus sign in the action of QI on φi ensures that commutators of

QI ’s act correctly. The −i in the definition of QI comes from Wick-rotation to Euclidean signature. This

is easiest to see in the usual time slicing, where
R

d3~xJ0 → −i
R

d3~xJ0
E under J0 → −iJ0

E . OPE coefficients

that don’t involve ǫ-tensors are the same in Euclidean and Lorentzian signature, so we are free to compute

them in either signature.
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Together, eqs. (4.3) and (4.4) give the three-point function

〈φi(x1)φ
∗
 (x2)J

Ia(x3)〉 = − i

2π2
T I

i

x2−2d
12

x2
13x

2
23

Za, (4.6)

where T I
i ≡ (T I)jigj. Combining this with eq. (4.5), we find that the conformal block

corresponding to an exchange of flavor currents in the φ × φ∗ channel is given by

x2d
12x

2d
34〈φiφ

∗
ı φjφ

∗
 〉 ∼ −1

3
τIJT I

iıT
J
j g3,1 (general CFTs), (4.7)

where τIJ is the inverse of τ IJ .

In superconformal theories, flavor currents JIa(x) are the θσaθ terms in scalar super-

multiplets JI(z) of dimension 2. Comparing eq. (4.7) to the superconformal block eq. (3.43)

with ∆ = 2 and l = 0, we see that flavor supermultiplets contribute to a four-point function

of anti-/chiral superconformal primaries as

x2d
12x

2d
34〈φiφ

∗
ı φjφ

∗
 〉 ∼ τIJT I

iıT
J
j G2,0 (SCFTs). (4.8)

Although the coefficients τ IJ are incalculable in general CFTs, in superconformal the-

ories they have a simple expression in terms of the U(1)R generator [48, 49]:

τ IJ = −3Tr(RT IT J), (4.9)

where the trace stands for the coefficient of the U(1)R anomaly induced by weakly gauging

the flavor currents JIa. For those SCFTs which emerge from a weakly coupled UV theory,

this can often be calculated via ’t Hooft anomaly matching.

4.2.1 Flavor bounds

Consider now a single scalar primary φ = φ1, normalized so that g11 = 1. We can

bound the flavor current contribution τIJT I
11

T J
11

using the same procedure described in

section 4.1, with slightly modified constraints on the linear functional α. First, we demand

that α(F∆,l) ≥ 0 (or α(F∆,l) ≥ 0 in the supersymmetric case) for all pairs (∆, l) obeying

the relevant unitarity bound. In general, this is ∆ ≥ 1 when l = 0, and ∆ ≥ l+2 otherwise,

while in a supersymmetric theory, it is simply ∆ ≥ l+2. We also require α(F3,1) = 1 in the

non-supersymmetric case and α(F2,0) = 1 in the supersymmetric case, since these are the

conformal blocks whose coefficients we wish to study. Note that we are no longer making

implicit assumptions about the spectrum of operators appearing in φ×φ∗, so the resulting

bounds hold in any unitary CFT with a charged scalar primary.

An upper bound on τIJT I
11

T J
11

as a function of d = dim φ1 is shown in figure 6 for a

general CFT, and figure 7 for a superconformal theory. Both bounds are strongest when d

is near 1, and become weaker as d increases. The supersymmetric bound is most stringent,

requiring τIJT I
11

T J
11

. 1.6 when d ≈ 1.

Let us pause for a moment to appreciate the non-trivial nature of these bounds. If we

for example consider a global U(1) symmetry with charges Qi in an asymptotically free

superconformal theory, then using eq. (4.9) we are placing an upper bound on the quantity

Q2

−3
∑

i(Ri − 1)Q2
i

, (4.10)
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d

max(τIJT IT J) for a charged scalar
τIJT IT J
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0
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35

40

5

Figure 6. An upper bound on τIJT I
11

T J
11

which is −3 times the flavor current coefficient in the

OPE φ × φ∗ of a complex scalar with its conjugate, as a function of d = dim φ. Here k = 5.

d

max(τIJT IT J) for a chiral primary
τIJT IT J

1.11 1.2 1.3 1.4 1.5 1.6
0

10

2

4

6

8

Figure 7. An upper bound on the flavor current coefficient τIJT I
11

T J
11

appearing in the OPE φ×φ∗

of a chiral primary with its conjugate in an N = 1 SCFT, as a function of d = dim φ. Here k = 5.

where the sum runs over chiral superfields in the UV description, and we are considering a

gauge-invariant operator with charge Q. First note that this quantity does not depend on

the overall normalization of the U(1) charges, which is unphysical. Our bound immediately

tells us that one cannot have a global U(1) symmetry that acts only on fields that have R

very close to 1. In addition, in principle one could imagine a cancellation between terms in

the denominator, since some fields may have R smaller than 1 and some may have R greater

than 1. Our bound also tells us that an arbitrary cancellation between terms is not possible.
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These bounds are also potentially interesting in light of the AdS/CFT correspon-

dence [50–52]. In this case τ IJ is directly mapped to the size of the coupling constants for

the corresponding bulk gauge fields. In AdS5 this mapping is given by [53]

τ IJ = 8π2L(g−2)IJ , (4.11)

where L is the AdS length scale and the gauge coupling (g−2)IJ appears in the action as

SAdS =

∫
d5x

√−g

[
1

4
(g−2)IJFµν

I FJµν + . . .

]
. (4.12)

Our bound tells us that there is a fundamental obstruction to making the gauge couplings

arbitrarily large in the presence of charged scalar bulk excitations corresponding to oper-

ators with dimension close to 1. It would be very interesting to explore this connection

further in a controlled setting, and to see if there is any kind of bulk reasoning that could

give rise to this bound.

4.3 The stress tensor

The stress tensor T ab also makes a non-trivial contribution to conformal block expansions.

Let us now review the relevant Ward identities, and compute the coefficient of the stress

tensor conformal block in the supersymmetric and non-supersymmetric case. In the fol-

lowing subsection we will present bounds on these contributions.

The dilatation operator in radial quantization is given by D = (−i)2
∫

dΩ x̂axbT
ab,

where the integral is over a three-sphere surrounding the origin. Requiring the action

Dφ(0) = dφ(0) then determines the OPE

T ab(x)φ(0) ∼ −4d

3

1

2π2

(
xaxb − 1

4
ηabx2

)
1

x6
φ(0) + . . . (4.13)

The stress tensor is conventionally normalized as

〈T ab(x)T cd(0)〉 =
40c

π4

Iac(x)Ibd(x)

x8
, (4.14)

where we implicitly symmetrize and subtract traces in each pair of indices a, b and c, d on

the right-hand side. The coefficient c is the central charge, which appears for example in

the trace anomaly 〈T a
a 〉 = c

16π2 (Weyl)2− a
16π2 (Euler) of the theory on a curved background.

In our conventions, a free real scalar has c = 1
120 while a free Weyl fermion has c = 1

40 .

Just as with the flavor current normalization τ IJ , there is an explicit formula for c in

superconformal theories,

c =
1

32
(9TrR3 − 5TrR), (4.15)

where R is the U(1)R generator, and the traces stand for anomaly coefficients. For a free

chiral superfield (R = 2/3), the above equation yields c = 1
24 .

Now combining eqs. (4.13) and (4.14), we obtain the stress tensor conformal block

contribution

x2d
12x

2d
34〈φφ∗φφ∗〉 ∼ d2

90c
g4,2, (general CFTs) (4.16)

where we’ve assumed that φ is normalized to have 〈φ(x)φ∗(0)〉 = x−2d.
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In superconformal theories, the stress tensor is the θσaθ component of the supercurrent

J a(z) [54], a supermultiplet with dimension 3 and spin 1. Comparing with the supercon-

formal block eq. (3.43), we see that the supercurrent contribution is

x2d
12x

2d
34〈φφ∗φφ∗〉 ∼ − d2

36c
G3,1 (SCFTs) (4.17)

Note that the lowest component of J a is the U(1)R current Ja
R, which has a conformal

block contribution dictated by eq. (4.7) with TR = 2
3d. Comparing with eq. (4.17), we find

τRR = 16c
3 , which is indeed correct (see for example [55]).

4.3.1 Central charge bounds

We can now produce bounds on the central charge c using the same procedure as for flavor

currents in section 4.2.1, but with the equality constraints modified to α(F4,2) = 1 in

the non-supersymmetric case and α(F3,1) = 1 in the supersymmetric case. Note that the

coefficients in eqs. (4.16) and (4.17) are inversely proportional to c, so that an upper bound

on conformal block coefficients implies a lower bound on the central charge c ≥ fc(d), as a

function of d = dimφ.

We plot this bound for the case of a real scalar in figure 8. We have included curves

for different values of k (indexing the size of our finite-dimensional subspaces Wk) to show

how the bound gets stronger as we widen the search space S ∩ Wk. In particular, as k

increases, the series of bounds c ≥ f
(k)
c (d) appears to approach c ≥ cfree scalar at d = 1.

Recall that precisely at d = 1, the φ operator is free and decouples from the rest of the

theory, contributing exactly cfree scalar to c. We conjecture that f
(k)
c (1) → cfree scalar as

k → ∞, namely that the optimal bound at d = 1 can be achieved with these methods.

In figure 9, we plot a lower bound on the central charge c ≥ fSUSY
c (d), in any supercon-

formal theory containing a scalar chiral primary of dimension d. Incorporating constraints

from superconformal symmetry into the crossing relations certainly gives a stronger bound

than in the case of a real scalar. However, we do not have fSUSY
c (1) ∼ cfree chiral superfield,

possibly reflecting the fact that we are using only the partial crossing relation eq. (4.1).

Unfortunately these central charge bounds are not “additive.” That is, they are not

stronger in the presence of multiple degrees of freedom, unless those degrees of freedom

are completely decoupled from one another. Consider, for instance, a CFT with n real

scalars transforming in the fundamental of an SO(n) flavor symmetry. If these scalars

are decoupled, each with central charge c, then we can safely write T ab
full theory =

∑
i T

ab
i ,

where T ab
i is the stress tensor in the i-th decoupled sector, and compute cfull theory = nc.

In this case, a lower bound on c translates trivially into a much stronger lower bound on

cfull theory. However, now suppose our scalars are weakly interacting. We no longer have

separate conserved stress tensors T ab
i , but rather a single stress tensor T ab which is a singlet

under SO(n), along with a non-conserved spin-2 operator T ab
fake transforming in a traceless

symmetric tensor of SO(n). We can no longer say what the dimension of T ab
fake is, since it’s

no longer protected by a conservation law, and consequently we cannot straightforwardly

include it in a linear program.
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Figure 8. A lower bound on the central charge c in a general CFT containing a real scalar

primary φ, as a function of d = dimφ. Here, we show the optimal bound for various values of

k, corresponding to restrictions of the search to different finite-dimensional subspaces Wk ⊂ V∗

(eq. (2.15)). As k increases, the bound gets stronger, though it becomes more computationally

intensive to obtain. The bounds possibly converge to the free scalar value c = 1/120 as d → 1.

While our bounds on c are perhaps somewhat weak, they are still highly non-trivial.

In superconformal theories, for example, there is no a priori reason to think that different

contributions to the central charge in eq. (4.15) cannot cancel each other to a high degree.

However, our bound says that this is not possible if the theory contains a scalar chiral

primary operator of low dimension.

In the context of AdS/CFT, c can be related to the bulk Planck scale MP and AdS

length scale L as c ∼ π2L3M3
P [56]. Our bound then suggests that there is a fundamental

obstruction to making quantum gravity on AdS5 arbitrarily strong in the presence of bulk

scalar excitations corresponding to operators with dimension close to 1. It would be very

interesting to make this more precise, and to understand the origin of the bound from the

bulk perspective.

Finally, we note that a somewhat similar bound on the central charge was derived

in [36] in the context of 2D conformal field theories. There, an inequality relating c to

the dimension of the lowest-dimension primary operator was derived through the use of

unitarity and modular invariance, the latter of which is not available in 4 dimensions.13

It would be interesting to derive bounds on c in 2-dimensional theories using the present

techniques and see how the results compare to those of [36].

13Or rather, modular invariance of the partition function on T 4 ∼= T 3 × S1 doesn’t lead to simple

statements about the spectrum of operators, which is given by quantizing the theory on S3×time and not

T 3×time.
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min(c) for SCFT
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Figure 9. A lower bound on the central charge c of a superconformal theory containing a scalar

chiral primary φ, as a function of d = dimφ. Here we have taken k = 5. Note that the assumption of

supersymmetry allows us to strengthen the bound significantly from the real scalar case (figure 8).

However, the bound does not appear to approach the free chiral superfield value c = 1/24 near

d = 1. This is likely because we are only using the partial crossing relation eq. (2.22) instead of the

full information in eq. (2.20).

5 Comparison to known theories

Since the SUSY flavor and central charge bounds derived in the previous section apply to

quantities that are computable via ’t Hooft anomaly matching using eqs. (4.9) and (4.15),

we can check whether they are satisfied in theories believed to flow to superconformal

fixed points. Doing so requires knowing how the U(1)R subgroup of the superconformal

group acts on our theory. In simple cases this action is uniquely determined by symmetry

considerations, but in general it must be determined using a-maximization [57]. This

requires knowing the full set of IR flavor symmetries that can mix with U(1)R, and in

many cases accidental symmetries can arise that are not apparent from the UV description

of the theory (for a nice discussion see [58]). In practice, one can sometimes identify the

emergence of such accidental symmetries through apparent violations of the unitarity bound

for the dimension of chiral primary operators, or by using a Seiberg dual description [59] if

one is available. For a number of examples of such analyses, see e.g. [60–70]. In principle,

apparent violation of our bounds could provide additional evidence for the emergence of

such accidental symmetries, or even the absence of a superconformal fixed point.

In this section, we will develop some intuition for the strength of our bounds by apply-

ing them to some simple superconformal theories, namely SU(Nc) SQCD in the conformal

window, and SQCD with an adjoint X and superpotential TrX3. In both cases, we find that

the bounds are most interesting at small Nc, although they are easily satisfied for all Nc ≥ 2

throughout the conformal window. While there are of course many other theories that can

be checked, we will leave a more comprehensive survey of N = 1 theories to future work.
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5.1 SQCD

Let us start by considering SU(Nc) SUSY QCD with Nf vector-like flavors Qi and Q̃eı. For
3
2Nc < Nf < 3Nc the theory is believed to flow to an interacting conformal fixed point [59].

The anomaly-free global symmetries are SU(Nf )L × SU(Nf )R × U(1)B × U(1)R, with Qi

transforming as
(
Nf , 1, 1, 1 − Nf

Nc

)
and Q̃eı transforming as

(
1,N f ,−1, 1− Nf

Nc

)
. The ring of

gauge-invariant chiral primary operators is generated by mesons M i
e = QiQ̃e and baryons

Bi1...iNc = Qi1 . . . QiNc and B̃eı1...eıNc
= Q̃eı1 . . . Q̃eıNc

.

Mesons have dimension dM = 3(1−Nc/Nf ) which can be close to 1 near the lower end

of the conformal window Nf ∼ 3
2Nc. Thus, they are good candidates for operators on which

to check our bounds. Concretely, we may pick out a single component M1
1 , and consider the

constraints that crossing symmetry imposes on the superconformal block decomposition of

the four-point function 〈M1
1 M1†

1 M1
1 M1†

1 〉. In particular, the M1
1 ×M1†

1 OPE contains both

SU(Nf )L and SU(Nf )R flavor currents, along with the supercurrent J a.

Let us focus on SU(Nf )L and first compute τ IJ . We can work in the UV using ’t Hooft

anomaly matching. The fermions contained in Q have R-charge −Nc

Nf
, so we find

τ IJ = −3Tr(RT IT J) =
3N2

c

2Nf
δIJ , (5.1)

where the generators T I of SU(Nf )L have the usual normalization Tr(T IT J) = 1
2δIJ in

the fundamental representation, and the extra Nc factor comes from summing over colors.

Thus, we obtain

τIJT I
11T

J
11 =

2Nf

3N2
c

δIJT I
11T

J
11 =

Nf − 1

3N2
c

, (5.2)

where we have used the contraction δIJT I
iıT

J
j = 1

2

(
δiδjı − 1

Nf
δiıδj

)
. Now, the meson

M1
1 also gets an equal contribution from SU(Nf )R, so the total contribution from flavor

currents is 2(Nf − 1)/3N2
c . Note that this scales as ∼ 1/Nc for large Nc and fixed Nf/Nc,

so the bound is mainly interesting for small Nc theories. However, it is readily verified

that all values of Nf and Nc within the conformal window satisfy the bound given in

figure 7. For example, taking Nc = 2 and Nf = 4 we have dM = 1.5 and a coefficient of

.5, whereas the bound tells us that the coefficient cannot be larger than ∼ 6. Similarly,

taking Nc = 3 and Nf = 5 we have dM = 1.2 and a coefficient of .3, whereas the bound

is ∼ 2. Thus, while these theories are a factor of a few away, they do not come very close

to saturating the bound.

Finally, let us compare the central charge to the bound given in figure 9. We can

calculate

c =
1

32

(
9TrR3 − 5TrR

)
=

1

16

(
7N2

c − 9
N4

c

N2
f

− 2

)
. (5.3)

Note that this grows like ∼ N2
c for fixed Nf/Nc, so the bound is again most likely to be

interesting for small Nc theories. However, it is also interesting that there are contributions
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to c with opposite signs, so in principle there could have been a cancellation. This occurs

at Nf ∼ 3N2
c /
√

7N2
c − 2, which is always outside the conformal window. On the other

hand, for all values of Nc and Nf inside the conformal window c is greater than 1, and

hence easily satisfies the bound in figure 9.

5.2 SQCD with an adjoint

Let us next consider SU(Nc) SUSY QCD with Nf flavors and an adjoint X. For simplicity,

we focus on the theory with superpotential W = TrX3, which was studied in detail in [71].14

This theory is believed to flow to an interacting fixed point for 2
3Nc < Nf < 2Nc. The

anomaly-free global symmetries are SU(Nf )L × SU(Nf )R ×U(1)B ×U(1)R, with Qi trans-

forming as
(
Nf , 1, 1, 1− 2

3
Nc

Nf

)
, Q̃eı transforming as

(
1,N f ,−1, 1− 2

3
Nc

Nf

)
, and X transforming

as
(
1, 1, 0, 2

3

)
. Here we will focus on the chiral primary “meson” operators M i

e = QiQ̃e and

N i
e = QiXQ̃e. The theory also contains the chiral operator TrX2 as well as baryons built

out of products of Qi and XQi, and anti-baryons built out of products of Q̃eı and XQ̃eı.

Note that when 2
3Nc < Nf < Nc, M i

e possesses a U(1)R charge that appears to violate

the unitarity bound, and the interpretation in this case is that this operator has decoupled

from the theory and become a free field.

Let us begin with the case of Nf > Nc. The dimension of M i
e is given by dM = 3− 2Nc

Nf

and approaches 1 for Nf ∼ Nc. We will consider the bounds arising from crossing symmetry

of the four-point function 〈M1
1 M1†

1 M1
1 M1†

1 〉. Each flavor group SU(Nf )L,R has

τ IJ =
N2

c

Nf
δIJ . (5.4)

Since M is a flavor bifundamental, the flavor current conformal block contribution is

(τIJT I
11T

J
11)L + (τIJT I

11T
J
11)R =

Nf − 1

N2
c

. (5.5)

Again this scales as ∼ 1/Nc, and there is no violation of our bound for any choice of

Nc < Nf < 2Nc. Further, when Nf > Nc the central charge is given by

c =
1

24

(
9N2

c − 4
N4

c

N2
f

− 4

)
. (5.6)

Again, for Nc < Nf < 2Nc we always have c > 1 and are unable to approach the bound.

Next let us consider the range 2
3Nc < Nf < Nc. In this case the meson M becomes

a free field and decouples from the rest of the theory. In the dual magnetic description

this is simply described by the superpotential coupling involving M flowing to zero rather

than a fixed point value [71]. In the present description we may equivalently describe this

situation by adding to the theory a superpotential WLM = Le
i(M

i
e −QiQ̃e), containing new

gauge-singlet fields L and M [63]. When Nf > Nc, L and M are massive and can simply be

integrated out, with the L equation of motion setting M = QQ̃ in the chiral ring. However,

14Note that one can straightforwardly generalize this discussion to the case of W = TrXk+1 or a vanishing

superpotential using the results of [60, 72, 73].
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when Nf < Nc the “mass term” LM flows to zero and M is no longer interacting. We are

left with a single new interacting field L whose equation of motion now sets QQ̃ to zero in

the chiral ring, thus avoiding the unitarity constraint. One must then include both L and

M when computing τ and c via anomaly matching. Of course, we already know that the

central charge is at least as large as the contribution from M , so we cannot learn anything

new from this bound. Additionally, since M has decoupled from the theory we can take it

to transform under separate flavor symmetries as compared to the interacting sector.

Now we will investigate the flavor current constraints imposed by crossing symmetry of

the four-point function 〈N1
1 N1†

1 N1
1 N1†

1 〉 in this regime. For both flavor groups SU(Nf )L,R

(which no longer act on M , but do act on L), we have

τ IJ =

(
N2

c

Nf
+

3

2
Nf − 2Nc

)
δIJ , (5.7)

from which we obtain

(τIJT I
11T

J
11)L + (τIJT I

11T
J
11)R =

2Nf − 2

2N2
c + 3N2

f − 4NcNf
. (5.8)

One can then verify that for all 2
3Nc < Nf < Nc the bound of figure 7 is satisfied.

6 Conclusions

Let us point out some possible directions for future research. First, the bounds obtained

in this work can of course be improved with more refined numerical methods. In the case

of operators transforming under global symmetries, it also seems possible that additional

crossing constraints can be incorporated that were not utilized in the present study. It

would be interesting to see if doing so could lead to even stronger bounds on the dimen-

sions of non-chiral operators in superconformal theories, so that one could start probing

more phenomenologically interesting scenarios such as those of [28, 29]. Another inter-

esting application is to see if one can bound the lowest-dimension SU(2)-singlet operator

in conformal technicolor models, as was extensively discussed in [33]. In an ideal world,

by incorporating the full set of crossing constraints one could perhaps obtain bounds that

scale with the size of global symmetry representations. For example, the central charge

c should roughly reflect the number of degrees of freedom of a theory, so the presence of

large flavor representations should signal larger c.15 It would be nice to derive a bound

that supports this intuition.

Another goal is to try to find N = 1 SCFTs that come closer to saturating the bounds

on c and τIJT IT J . If any violation of these bounds could be found, it would be evidence for

the emergence of new accidental symmetries or perhaps the absence of a conformal fixed

point altogether. It may also be possible to extend these results to N = 2 theories where

one could obtain even stronger bounds.

15Actually, the central charge a generally appears to be a better measure of the number of degrees of

freedom [48, 49, 57]. However, c is constrained by c ≥ 2
3
a in supersymmetric theories and c ≥ 18

31
a in

general [74], so c is large whenever a is large.
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Similar studies in different numbers of dimensions are also feasable. The extension

to other even dimensions should be completely straightforward since the conformal blocks

are known, and it would for example be interesting to see what kind of central charge

bounds can be obtained in 2D using the present methods. While closed-form expressions

for the conformal blocks in odd dimensions are not currently available, it seems likely that

one could still use recursion relations (as described in appendix B) to efficiently evaluate

conformal blocks and their derivatives. Bounds obtained in 3D might then be relevant for

condensed matter systems.

Finally, it would be fascinating to better understand the interpretation of these bounds

in the context of the AdS/CFT correspondence. They suggest that there should be a

fundamental limit to the strength of gravitational and gauge forces in the presence of light

bulk excitations in AdS5. Since our bounds are most interesting for small N theories, it

seems likely that one will have to go to a highly quantum regime in order to see these

effects. Nevertheless, it would be interesting to see if there is any simple bulk reasoning

that could shed light on the origin of these bounds. One might then hope that thinking

about these issues could lead to a deeper understanding of the nature of quantum gravity.
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A Conventions

Our metric and spinor conventions are those of the ηab = diag(−1,+1,+1,+1) version

of [75]. The Clifford relation is σaσb + σbσa = −2ηab, so that one can convert between

vectors and bispinors as (x)αα̇ = xaσ
a
αα̇ and xa = −1

2tr(σax). These conventions agree

with those of Wess and Bagger [76] and Osborn [45], with a single exception — the sign of

σ0, which affects the coefficient of ǫabcd in products of σ’s and σ’s. Specifically, we have

σaσbσc = −ηabσc + ηcaσb − ηbcσa − iǫabcdσd (this paper) (A.1)

σaσbσc = −ηabσc + ηcaσb − ηbcσa + iǫabcdσd (W&B) (A.2)

To convert between these conventions, one simply flips the sign of ǫabcd wherever it appears.

For the N = 1 superconformal algebra SU(2, 2|1), we follow the conventions used

in [77]; in particular we take bosonic generators to be anti-hermitian (that is, they differ

from the usual definitions by a factor of i). This eliminates some factors of i from the

commutation relations, somewhat simplifying the algebra in section 3.

– 37 –



J
H
E
P
0
5
(
2
0
1
1
)
0
1
7

Let us arrange the superconformal generators according to their dimensions and spins

as follows

dim(X)

+1 Pa

+1/2 Qα Qα̇

0 Mαβ D,R Mα̇β̇

−1/2 Sα Sα̇

−1 Ka,

(A.3)

where Mαβ = (σbaǫ)αβMab and M α̇β̇ = (σbaǫ)α̇β̇Mab are self-dual and anti-self-dual rotation

generators.

The dilatation operator and U(1)R generator act as

[D,X] = dim(X)X [R,X] = i r(X)X, (A.4)

where X is any generator, dim(X) is given in the above table (A.3), and r(X) is the R-

charge of X, given by +1 for X = S,Q, by −1 for X = Q,S, and zero otherwise. The

additional commutation relations of the conformal sub-algebra are given by

[Mab, Pc] = Paηbc − Pbηac, [Mab,Kc] = Kaηbc − Kbηac

[Mab,Mcd] = ηbcMad − ηacMbd − ηbdMac + ηadMbc

[Ka, Pb] = 2ηabD − 2Mab. (A.5)

Rotation generators act on spinors as

[Mab,Xα] = (σab)α
βXβ [Mab,X

α̇
] = (σab)

α̇
β̇X

β̇
, (A.6)

where Xα = S,Q and X = Q,S. Finally, the remaining non-vanishing commutation

relations involving fermionic generators are

{Qα, Qα̇} = −2iσa
αα̇Pa, {Sα, Sα̇} = +2iσa

αα̇Ka (A.7)

[Ka, Qα] = iσaαβ̇S
β̇
, [Sα, Pa] = iσaαβ̇Q

β̇
(A.8)

[Ka, Q
α̇
] = iσα̇β

a Sβ, [S
α̇
, Pa] = iσα̇β

a Qβ, (A.9)

{Sα, Qβ} = 2Dǫαβ − 2Mαβ − 3iRǫαβ , (A.10)

{Sα̇
, Q

β̇} = 2Dǫα̇β̇ − 2M α̇β̇ + 3iRǫα̇β̇. (A.11)

The relation between our conventions for the super-Poincaré subalgebra, and those of

Wess and Bagger is summarized by equating supergroup elements at each point (x, θ, θ) in

superspace
[
ex·P+θQ+θQ

]
this paper

=
[
ei(−x·P+θQ+θQ)

]
W&B

. (A.12)

In particular, component expansions of our superfields O(x, θ, θ) = ex·P+θQ+θQO(0) are

the same as component expansions in Wess and Bagger, with the only difference being an

overall factor of i or −i in the action of super-Poincaré generators.
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B Implementation details

In this appendix, we discuss some details of our implementation of linear programs for

extracting bounds from crossing relations. We first manipulate the crossing relation into a

useful form, and then discuss efficient methods for calculation. Finally, we summarize our

choice of programs and parameters for generating the bounds in this paper.

B.1 Explicit formulae for linear functionals

Using the explicit expression (2.8), we can rewrite the crossing relations eq. (2.9) and (2.22)

as

[
(z − z)

[(1−z)(1−z)]d
− (z − z)

(zz)d

]
=
∑

∆,l

|λO|2
2l

[
k∆+l(z)k∆−l−2(z)

(zz)d−1
+

k∆+l(1−z)k∆−l−2(1−z)

[(1 − z)(1 − z)]d−1

]

−(z ↔ z), (B.1)

where the left-hand side is the contribution of the unit operator, and the sum is over the

appropriate spectrum of primaries appearing in the OPE. Note that in the charged-scalar

case, the (−1)l factor in the conformal blocks cancels with the (−1)l in eq. (2.22), so that

odd-spin contributions are not qualitatively different from even-spin contributions.

We could bring this into the form (4.2) by additionally dividing by the left-hand side

and isolating the term in the sum corresponding to a particular operator O0. We would

then consider the space of linear functionals α : f(z, z) 7→ ∑
m+n≤2k amn∂m

z ∂n
z f(1/2, 1/2)

applied to both sides. Note however that we get the same space of functionals if we do not

first divide by the unit operator, since derivatives of a product are linear combinations of

derivatives of the two factors. Thus, to implement the algorithm described in section 2.2,

we can simply compute derivatives at z = z = 1/2 of eq. (B.1) as written.

Because of symmetry under (z, z) ↔ (1 − z, 1 − z) and antisymmetry under z ↔ z,

derivatives ∂m
z ∂n

z at (1/2, 1/2) will vanish unless m 6= n and m + n is even. Further, it

suffices to take m < n by symmetry. Thus, our Wk are precisely defined as the space of

real linear functionals

α : f(z, z) 7→
∑

m+n≤2k

m+n∈2Z,m<n

amn∂m
z ∂n

z f(1/2, 1/2), (B.2)

which has dimension k(k+1)
2 . We will write the coefficients amn collectively as a vector a.

From eq. (B.1), we see that the building blocks of these functionals are derivatives

of z1−dkβ(z) at z = 1/2. These have an analytic expression in terms of hypergeometric
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functions which we can derive by matching power series,

∞∑

n=0

Cn
β,d

(z − 1/2)n

n!
≡ z1−d+β/2

2F1(β/2, β/2, β, z)

=
∞∑

m=0

Γ(β)Γ(β/2 + m)2

Γ(β/2)2Γ(β + m)

zm+1−d+β/2

m!

=

∞∑

n,m=0

Γ(β)Γ(β/2 + m)2Γ(m + β/2 − (d − 1) + 1)

Γ(β/2)2Γ(β + m)Γ(m + β/2 − (d − 1) + 1 − n)

×
(

1

2

)m−n+β/2−(d−1) (z − 1/2)n

n!m!
. (B.3)

Performing the m-summation finally determines the coefficients

Cn
β,d = 2n+(d−1)−β/2 Γ(β/2 + 2 − d)

Γ(β/2 + 2−d−n)
3F2(β/2 + 2 − d, β/2, β/2;β/2 + 2 − d − n, β; 1/2).

(B.4)

Now ∂m
z ∂n

z |(1/2,1/2) applied to eq. (B.1) can be written

22d+n+m−1(d−1)(n−m)Γ(1−d)2

Γ(2 − d − n)Γ(2 − d − m)
=
∑

∆,l

|λO|2
2l

[
Cn

∆+l,dC
m
∆−l−2,d − Cm

∆+l,dC
n
∆−l−2,d

]
, (B.5)

where we have assumed that m + n is even. Hence the objective function “α(1)” in our

linear program is given by a 7→ v · a, where v is a vector of values of the left-hand side

of eq. (B.5) for different m and n (depending on our choice of Wk). Meanwhile, each

constraint α(F∆,l) ≥ 0 becomes u∆,l · a ≥ 0, where u∆,l is a vector of values of

1

2l

[
Cn

∆+l,dC
m
∆−l−2,d − Cm

∆+l,dC
n
∆−l−2,d

]
(B.6)

for different m,n.

B.2 Optimizations

Before running each linear program, we must compile a list of u∆i,li for all (∆i, li) in our

choice of discretization D. We found in practice that simply evaluating the expression (B.4)

for Cm
β,d in Mathematica introduced a performance bottleneck. One possible remedy is to

precompute values of Cm
β,d for different m,β, d, and then perform table lookups to compile

the list of constraints u∆i,li . However, because there are three parameters m,β, d to scan

over, this would require a lot of memory and some careful bookkeeping.

An alternative approach uses the fact that z1−dkβ(z) ≡ uβ,d(z) satisfies a simple differ-

ential equation which implies a recursion relation for its derivatives. Using the hypergeo-

metric differential equation for 2F1(β/2, β/2, β, z), and conjugating the resulting differential

operator by zβ/2+1−d, we find

0 =

(
z2(1 − z)

∂2

∂z2
+ z(2d(1 − z) + z − 2)

∂

∂z
+ (d − 1)(d(1 − z) + z − 2) − λβ

)
uβ,d(z),

(B.7)
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Figure Title Nǫ L ǫ k Resolution

4 max(∆Φ†Φ) 50 25 0.02 6 δd = 0.0025

5 max |λO0 | for l0 = 0 30 25 0.02 5 δ∆0 = 0.025

6 max(τIJT IT J) for a charged scalar 20 25 0.05 5 δd = 0.05

7 max(τIJT IT J) for a chiral primary 20 25 0.05 5 δd = 0.05

8 min(c) for a general CFT 80 25 0.02 3,4,5,6 δd = 0.01

9 min(c) for a SCFT 20 25 0.05 5 δd = 0.01

Table 1. Parameters used to generate the plots in section 4, along with their resolutions.

where λβ ≡ 1
4β(β − 2). Now taking n − 2 derivatives with respect to z and evaluating at

z = 1/2, we find the recursion relation

Cn
β,d = 2(5 − 2d − n)Cn−1

β,d + 4
(
2λβ + n(n − 3) − d2 + 4d − 1

)
Cn−2

β,d

+ 8(n − 2)(n + d − 4)2Cn−3
β,d . (B.8)

This can be iterated to give

Cn
β,d = Pn(β, d)2d−1kβ(1/2) + Qn(β, d)2d−1k′

β(1/2), (B.9)

where Pn and Qn are polynomials in β and d. Now eq. (B.9) can be made extremely

computationally efficient. We first determine Pn and Qn for all 0 ≤ n ≤ 2k using (B.8).

Additionally, we precompute a table of kβ(1/2) and k′
β(1/2) for different β values. This

reduces the evaluation of Cn
β,d to simple polynomial and exponential evaluation, along with

two table lookups.

B.3 Programs and parameters

Here, we give an account of the programs and parameters used to generate the bounds in

section 4. In each linear program, we take a discretization of the form

D = {(∆min + nǫ, l) : n = 0, . . . , N and l = 0, 2, . . . , L}, (B.10)

where ∆min depends on the problem at hand, as discussed in the text. In addition to the

parameters ǫ,N, and L, one must also pick a subspace Wk ⊂ V∗. Our choices in this paper,

along with the resolution of our plots are given in table 1.

We have chosen Nǫ and L large enough so that the optimal linear combination satisfies

α∗(F∆,l) ≥ 0 asymptotically as ∆, l → ∞. At any finite ǫ > 0, one can expect violations of

the constraints α(F∆,l) ≥ 0 of order ǫ2 at isolated ∆, l. Decreasing ǫ reduces these effects,

but has a computational cost since the linear programming algorithm we use (the simplex

algorithm) runs in O(1/ǫ3) time (cubic in the number of constraints). In each case above,

we have verified that changing ǫ slightly does not appreciably affect the results, so that we

believe our plots accurately reflect the ǫ → 0 limit. The curves themselves were generated

by computing points with the resolution specified above (dropping a small number of points

where the linear program was not well-behaved) and plotting an interpolating function.
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We generated the input data for each linear program with Mathematica. For actually

solving linear programs, we used the GNU Linear Programming Kit (glpk) [78], which

seemed generally faster and less unpredictable than Mathematica’s LinearProgramming

routine. Most of our computations were run on Harvard’s Odyssey cluster supported by

the FAS Sciences Division Research Computing Group.
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