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1 Introduction

Multiparton interactions (MPI) are an unavoidable consequence of colliding hadrons at high

energies. The theoretical description of soft MPI poses particular challenges, due to the

limited understanding of non-perturbative QCD. Unfortunately, it is exactly this physics

which is vital for describing minimum-bias (MB) and underlying events (UE) at hadron

colliders, such as the LHC. To this end, phenomenological models are often introduced, to

provide the best description possible.

The original MPI model, introduced in earlier versions of Pythia, extends the pertur-

bative picture down to very low p⊥ scales, such that one can view all events as containing

one or more interactions [1–3]. These low-p⊥ interactions fill the role of cut Pomerons [4, 5],

stretching colour fields longitudinally across an event, which later fragment. Of course,

these colour fields can also stretch to higher-p⊥ partons, giving a smooth transition to

(mini)jets, and a unified picture of MB and UE physics. This model has been updated

in recent times, and forms a part of the interleaved parton shower and MPI framework of

Pythia 8 [6–9].

Many other models for the structure of hadronic events have been formulated, that

are all based on some kind of multiple interactions framework, be it in the form of soft
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or (semi)hard interactions, or a mixture thereof [10]. A few implementations are formu-

lated with a view to be used also for hard-scale physics within and beyond the Stan-

dard Model [11], such as Herwig [12–17] and Sherpa [18, 19]. Others put more em-

phasis on the soft physics aspects, including the relations between elastic, diffractive and

non-diffractive topologies, using concepts such as Dual Topological Unitarization [20] and

Reggeon Field Theory [21]. Examples thereof include Phojet [22, 23], Dpmjet [24],

Epos [25], Sibyll [26], and Qgsjet [27].

In all of these programs the proton is handled as an extended object. That way an

eikonal description [28] can be used, wherein the probability for an event to be produced

is largest for head-on collisions and decreases for increasing impact parameter. The stan-

dard assumption for most of these scenarios is that the partons are distributed inside the

protons according to a Gaussian, with the same radius for all parton species and momenta.

There is no specific reason for this ansatz, but it makes for simple algebra in going from

a three-dimensional spherical ansatz to a two-dimensional impact-parameter plane, and

for convoluting these distributions for the two colliding hadrons. Other shapes have been

used, e.g. the electromagnetic form factor in Herwig, and some Pythia alternatives to

be described later. A collision-energy-dependent radius is often used, and sometimes two

different radii for soft and hard interactions, but these possibilities still offer fairly little

flexibility. The one notable exception we are aware of is Dipsy [29–31], see further below.

The key objective of the current article will thus be to study the consequences if one

of the conventional constraints is relaxed, namely that high- and low-momentum partons

have the same impact-parameter profile. This should actually be considered as the expected

behaviour, rather than an exotic variant, as follows.

The size of the proton is finite, owing to confinement, but exactly how it should be

defined is ambiguous. Low-energy measurements give a root-mean-squared (RMS) charge

radius ≈ 0.88 fm [32]. Combined with the mass gap of QCD — the lightest free state being

the pion — this leads to a finite proton-proton strong-interaction cross section σpp (while

the electromagnetic one is infinite, the photon being massless).

This cross section can vary as a function of energy, but its growth is limited by the

Froissart-Martin bound [33, 34]. The intuitive idea underlying this bound is that the pion

Yukawa potential fall-off ge−mπr/r sets the maximum impact parameter bmax of interac-

tions to be roughly where |g| exp(−mπbmax) = 1, i.e. σ ≃ πb2
max ≃ (π/m2

π) ln2 |g|. Since

it can be shown that |g| can increase at most like a power of the collision energy under

general conditions which should hold for QCD, it follows that σ ∝ ln2 s provides an upper

bound. The numerical prefactor to the bound [35] is far from saturated at current energies,

however, and work to improve on it is ongoing [36, 37].

The experimental observation of an increasing total cross section is reinforced by stud-

ies of the differential elastic cross section [38, 39], from which it is concluded that the

proton gets “blacker, edgier, larger” with increasing energy [40, 41].

By Gribov theory, the high-s behaviour can be related to a low-x one, with the size

of the proton growing proportionally to ln(1/x). Qualitatively (but not quantitatively, see

below) this can be understood as a transverse random walk [42, 43] in a BFKL [44, 45]

evolution, where a few initial high-x partons fairly close to the center of the proton emit
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a cascade of partons towards lower x scales, and in the process these partons diffuse to

be spread over a larger area. A more formal definition can be obtained by the Balitsky-

JIMWLK evolution equations for hadronic amplitudes [46], which also can be described by

the Color Glass Condensate formalism [47].

Mueller’s dipole cascade model [48, 49] offers a formulation of the BFKL evolution

in transverse coordinate space, and so gives direct access to information on the spread of

partons at different x scales. The Dipsy generator provides a complete implementation,

where effects of energy-momentum conservation, saturation, gluon recombination and the

running of αs are consistently taken into account. One important message that comes

out of the numerical studies is that the Froissart-Martin bound is violated asymptotically

in the evolution equations, unless confinement is also built into the gluon propagator, in

which case the ln2 s behaviour is nicely obtained [50].

The Dipsy generator can also be used to study a number of further issues, such as

diffraction [51] and elliptic flow [52]. So far it has not been used for comparisons with MB

event properties at hadron colliders, however, and is not well suited for UE studies.

Generalized parton distributions offer an alternative approach to explore the transverse

size of the proton [53], and to understand some MPI phenomenology [54]. Again an x

dependence is obtained, where the proton radius vanishes in the limit x → 1 (in part a

natural consequence of a center-of-gravity definition of the origin).

In the current article we will not attempt to trace the evolution of cascades in x.

Rather we will assume that the impact-parameter distribution of partons at any x can

be described by a simple Gaussian, exp(−b2/a2(x)), with a width that grows like a(x) =

a0 (1 + a1 ln(1/x)). The coefficients a0 and a1 are tuned to the parameterised shape of

σpp(s) in the following. The potential overlap between two protons will be described only

in terms of their size at their respective x values. In principle one should also include a

third scale, related to the transverse distance the exchanged propagator particle, normally

a gluon, could travel. This distance should be made dependent on the p⊥ scale of the

interaction. For simplicity we will not consider this further complication here, and only

take the propagator distance into account by allowing a finite effective radius also for x → 1.

For minimum-bias studies, the results will be rather insensitive to the behaviour at large

x since, at high energies, the bulk of MPI occurs at small x. This choice will play more of

a role in the underlying event of hard processes, but is not studied further.

In section 2, some relevant aspects of the existing MPI model are given, before the

modified impact parameter framework is introduced. Some results are shown in section 3,

both in comparison to other matter profiles and to data, before a summary and outlook is

given in section 4.

2 Multiparton interaction framework

The starting point is the hadronic perturbative cross section

dσ

dp2
⊥

=
∑

i,j

∫∫

dx1 dx2 fi(x1, Q
2) fj(x2, Q

2)
dσ̂

dp2
⊥

, (2.1)
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where dσ̂/dp2
⊥ gives the partonic QCD 2 → 2 cross section, and fi and fj the PDF factors

of the two incoming hadrons. In the modelling of soft MPI activity, there are two key obser-

vations that can be made. First, the QCD 2 → 2 cross section contains a 1/p4
⊥ divergence

in the p⊥ → 0 limit. Second, the total integrated cross section down to some low-p⊥ limit

σhard(p⊥min) =

∫ s/4

p2
⊥min

dσ

dp2
⊥

dp2
⊥ , (2.2)

becomes comparable to the total cross section for p⊥min ≈ 2 − 5GeV at current collider

energies.

The original MPI model addresses these issues as follows [1]. It is observed that σhard

gives the hadron-hadron cross section and not the parton-parton one. If, in one hadron col-

lision, many parton-parton interactions are possible, then 〈n〉(p⊥min) = σhard(p⊥min)/σtot

gives the average number of parton-parton scatterings above p⊥min per event. In dealing

with non-diffractive inelastic events only, as in this article, the cross section for hard inter-

actions, σhard(p⊥min), must be distributed among the σND events, such that 〈n〉(p⊥min) =

σhard(p⊥min)/σND.

This is still not a solution to the divergence of the cross section in the p⊥ → 0 limit.

The average ŝ of scatterings decreases slower with p⊥min than the number of interactions

increases, which would lead to an infinite amount of scattered partonic energy. One part

of the solution is the need to include longitudinal correlations, including energy and mo-

mentum conservation effects. In the most recent iterations of the model, this is handled

using a model dependent PDF rescaling procedure [6].

This effect alone is too weak, however, and the model additionally introduces the idea

of colour screening to regularise the p⊥ → 0 divergence. The concept of a perturbative

cross section is based on the assumption of free incoming states, which is not the case when

partons are confined in colour-singlet hadrons. One therefore expects a colour charge to

be screened by the presence of nearby anti-charges; that is, if the typical charge separation

is d, gluons with a transverse wavelength ∼ 1/p⊥ > d are no longer able to resolve charges

individually, leading to a reduced effective coupling. This is introduced by reweighting the

interaction cross section such that it is regularised according to

dσ̂

dp2
⊥

∝ α2
s (p

2
⊥)

p4
⊥

→ α2
s (p

2
⊥0 + p2

⊥)

(p2
⊥0 + p2

⊥)2
, (2.3)

where p⊥0 (related to 1/d above) is now a free parameter in the model.

This parameter has an energy dependence, and the ansatz used is that it scales in a

similar manner to the total cross section, i.e. driven by an effective power related to the

Pomeron intercept [55], which in turn could be related to the small-x behaviour of parton

densities. This leads to a scaling

p⊥0(ECM) = pref
⊥0 ×

(

ECM

Eref
CM

)Epow

CM

, (2.4)

where Eref
CM is some convenient reference energy and pref

⊥0 and Epow
CM are parameters to be

tuned to data.
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2.1 Hadronic matter distribution

In the original MPI framework of [1], events are characterised by a varying impact pa-

rameter, b, representing a classical distance of closest approach between the two incoming

hadrons. The hadronic matter is assumed to have a spherically symmetric distribution,

taken to be the same for all parton species and momenta. The time-integrated overlap

between the two incoming matter distributions at an impact parameter, b, is given by

Õ(b) =

∫

dt

∫

d3x ρ(x, y, z) ρ(x, y, z −
√

b2 + t2) , (2.5)

where the ρ’s give the matter distributions after a scale change to take into account the

boosted nature of the hadrons. There are currently three different matter profiles available,

for now with r and b in unspecified length units:

1) Single Gaussian: a simple Gaussian with no free parameters

ρ(r) ∝ exp(−r2) . (2.6)

2) Double Gaussian: a core region, radius a2, contains a fraction β of the total hadronic

matter, embedded in a larger hadron of radius a1. The default parameters for this

profile are a2/a1 = 0.4 and β = 0.5

ρ(r) ∝ (1 − β)
1

a3
1

exp

(

−r2

a2
1

)

+ β
1

a3
2

exp

(

−r2

a2
2

)

. (2.7)

3) Overlap function: Õ(b), rather than ρ(r), is parameterised by a single parameter, p.

When p = 2, this gives the single Gaussian behaviour, while when p = 1, results are

similar to the default double Gaussian behaviour

Õ(b) ∝ exp (−bp) . (2.8)

In what follows, we relax the assumption that this distribution remains the same for

all momenta, such that the wavefunction for small-x partons is broader in spatial extent

than for large-x ones. In particular, a form

ρ(r, x) ∝ 1

a3(x)
exp

(

− r2

a2(x)

)

, (2.9)

a(x) = a0

(

1 + a1 ln
1

x

)

, (2.10)

is chosen, where x represents the momentum fraction of the parton being probed within the

hadron, a0 is a constant to be tuned according to the non-diffractive cross section (detailed

below) and a1 is a free parameter. When a1 = 0, the single Gaussian profile is recovered.

With this matter profile, the time-integrated overlap is given by

Õ(b, x1, x2) =
1

π

1

a2(x1) + a2(x2)
exp

(

− b2

a2(x1) + a2(x2)

)

, (2.11)

where the normalisation has been chosen such that
∫

Õ(b, x1, x2) d2b = 1 . (2.12)
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2.2 Impact parameter framework

Within the framework, the number of interactions at fixed b is assumed to be distributed

according to a Poissonian distribution. If n̄(b) gives the average number of interactions

when two hadrons pass each other with an impact parameter b, the probability that there

is at least one interaction is given by

Pint(b) = 1 − e−n̄(b) . (2.13)

This gives the requirement for an event to be produced in the first place. The average

number of interactions per event at impact parameter b is therefore given by

n̄(b)|n 6=0 =
n̄(b)

Pint(b)
. (2.14)

When integrated over all impact parameters, the relation 〈n〉 = σhard/σND (section 2) must

still hold, giving

〈n〉 =

∫

n̄(b)|n 6=0 Pint(b) d2b
∫

Pint(b) d2b
=

∫

n̄(b) d2b
∫ (

1 − e−n̄(b)
)

d2b
=

σhard

σND
. (2.15)

Defining the shorthand X = (x1, x2, p2
⊥) and dX = dx1 dx2 dp2

⊥, σhard may now be written

as

σhard =

∫

dX
dσ

dX
=

∫∫

dX d2b
dσ

dX
Õ(b, x1, x2) , (2.16)

where eq. (2.12) has been used to associate an impact-parameter profile with each X co-

ordinate. Here, dσ/dX gives the convolution of PDF factors and the (regularised) hard

partonic cross section
dσ

dX
= f1(x1, p

2
⊥) f2(x2, p

2
⊥)

dσ̂

dp2
⊥

∣

∣

∣

∣

reg

. (2.17)

Comparing with eq. (2.15), this gives the average number of interactions at an impact

parameter b to be

n̄(b) =

∫

dX
dσ

dX
Õ(b, x1, x2) . (2.18)

One can now give a geometrical interpretation to σhard and σND

σhard =

∫

n̄(b) d2b , (2.19)

σND =

∫

Pint(b) d2b =

∫

(

1 − e−n̄(b)
)

d2b , (2.20)

such that eq. (2.15) is fulfilled. This determines the value of a0 as follows. Eq. (2.19)

fixes the total area of n̄(b), within the constraint that it is possible to have either a large

width a0 and a small height n̄(0), or the other way around. In the former case, for n̄(0)

small, there is negligible saturation with 1 − exp(−n̄(0)) ≈ n̄(0) and σND ≈ σhard. In

the latter, for n̄(0) large, there is strong saturation with 1 − exp(−n̄(0)) ≪ n̄(0) and

σND ≪ σhard. The saturation corrections increase monotonically with n̄(0) and therefore

decrease monotonically with a0 for a fixed σhard, such that a unique solution for a0 is

defined by the σND in eq. (2.20). This is studied further in section 3.1.

– 6 –
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2.3 Impact parameter selection

In picking the hardest interaction in an event, p2
⊥1, the naive probability for a collision

must be multiplied by the probability that there were no harder ones at scales p2
⊥ > p2

⊥1.

Using the notation

n̄(b) =

∫

dn̄(b)

dp2
⊥

dp2
⊥ , (2.21)

the total probability distribution is now

dPhardest

d2bdp2
⊥1

=
dn̄(b)

dp2
⊥1

exp

(

−
∫ s/4

p2
⊥1

dn̄(b)

dp2
⊥

dp2
⊥

)

. (2.22)

One possible way of generating events according to this distribution is through trial

interactions, similar to e.g. trial showers in CKKW-L [56], in the following way. If the

evaluation of the Sudakov factor is temporarily deferred, then

dPhardest

dp2
⊥1

=

∫

d2b
dn̄(b)

dp2
⊥1

=

∫∫

dx1 dx2 f1(x1, p
2
⊥1) f2(x2, p

2
⊥1)

dσ̂

dp2
⊥1

∣

∣

∣

∣

reg

. (2.23)

p2
⊥1, x1 and x2 may then be picked according to the above distribution, before an impact

parameter b is selected according to Õ(b, x1, x2) d2b. The scale of a trial MPI interaction,

p2
⊥2, may then be generated for this b value, as described in the next section. It is impor-

tant to note that the p2
⊥2 evolution is started from the kinematical limit, s/4, as for an

event with no previous interaction. If p2
⊥2 < p2

⊥1, then p2
⊥1 and b are accepted, else the

selection procedure must restart from the beginning.

The above provides a prescription for generating an inclusive sample of non-diffractive

events (hereafter referred to as minimum bias), but can also be used to generate the MPI

activity accompanying a pre-given hard process. This is simplest in the case where the hard

process in question is already part of the set of processes contained in dσ/dX. Here, p2
⊥1 is

provided by this hard process, and the MPI framework should not generate any interactions

at higher scales, or else one would double count. Given a hard process at a scale p2
⊥1, b can

be selected from Õ(b, x1, x2) d2b, and then retained with a probability equal to the Sudakov

of eq. (2.22). Again, trial interactions are a possible way to generate this Sudakov factor.

When the hard process is not contained in dσ/dX, such as Z0 production, the MPI

framework can begin evolution at the kinematical limit without any risk of double counting.

For this discussion, noting that p⊥ is intended as a measure of hardness, we assume a scale

such as ŝ to be a reasonable choice for this process. One choice that must be made relates

to which interaction is used in selecting the impact parameter for an event. If we decide

that it is always the hardest interaction in an event, it should be remembered that there

is now the possibility that this is an MPI, although this is rather unlikely for a process

already picked to be hard.

When the pre-given hard process has a scale above 10 − 20GeV, the Sudakov of

eq. (2.22) will be close to unity, meaning that b can be directly selected from Õ(b, x1, x2) d2b

and any ambiguity will be minor. For hard processes around these scales, the correct pro-

cedure is less clear. One choice would be to retain the selection according to Õ(b, x1, x2) d2b

only, while another would be to additionally apply a Sudakov weight to the selection.
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In the hard process studies that follow, the impact parameter is always selected ac-

cording to the hard process (not necessarily the hardest interaction, as above), and this

selection is not weighted with a Sudakov. As above, for hard processes above 10− 20GeV,

these choices do not greatly affect the outcome. With the single Gaussian, double Gaussian

and overlap matter profiles, the MPI framework will give exactly the same impact parame-

ter profile for e.g. a 1TeV Z′ as for Z0 production. The amount of MPI activity is modified

by longitudinal correlations, however, such that the 1TeV Z′ will, on average, have less ac-

tivity. The new matter profile, with its varying width, instead, dynamically changes to give

more underlying activity for the more massive state, given the differing x values that enter.

2.4 Subsequent evolution

Once b has been fixed, as in the previous section, the remaining sequence of multiple

interactions must be generated according to

dP

dp⊥i
=

dn̄(b)

dp⊥i
exp

(

−
∫ p⊥i−1

p⊥i

dn̄(b)

dp2
⊥

dp2
⊥

)

. (2.24)

This can be achieved through the veto algorithm [3], as follows. Temporarily neglecting

the impact parameter dependence, an overestimate of the form
∫∫

dx1 dx2 f1(x1, p
2
⊥) f2(x2, p

2
⊥)

dσ̂

dp2
⊥

∣

∣

∣

∣

reg

≤ N

(p2
⊥ + r p2

⊥0)
2

(2.25)

can be used, where r and N are tunable factors; the former to help flatten the correction

ratio, to improve generation efficiency, and the latter to ensure that the overestimate sits

above the cross section over the entire phase space. With the impact parameter dependence

present, an additional factor, giving the maximum of the overlap distribution is introduced

Õ(b, x1, x2) ≤ Õmax(b) =
1

2πa2
0

exp

(

− b2

2a2
max

)

, (2.26)

amax = a0

(

1 + a1 ln
1

xmin

)

, (2.27)

where the first factor gives the maximum height of the distribution, while the exponential

width is dictated by smallest x values reached. This then gives a total overestimate

dn̄(b)

dp2
⊥

≤ N Õmax(b)

(p2
⊥ + r p2

⊥0)
2

, (2.28)

giving a uniform overestimation for all x1 and x2

∫

Õmax(b) d2b =
a2

max

a2
0

. (2.29)

Eq. (2.28) is inserted into eq. (2.24) to pick the next p⊥ scale. The additional acceptance

weight for this interaction is now given by

Õ(b, x1, x2)

Õmax(b)
=

2a2
0

a2(x1) + a2(x2)
exp

(

b2

2a2
max

− b2

a2(x1) + a2(x2)

)

. (2.30)

In case of failure, the evolution in p⊥ is continued downwards from the rejected p⊥ value.

– 8 –
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Figure 1. (a) The rise of the total and non-diffractive pp cross section with energy, and (b) the

ratio a0(ECM)/a0(200 GeV), over the same energy range, for a set of different a1 values

3 Results

3.1 Growth of the total cross section

In principle, a1, as introduced so far, is a free parameter. If, however, as suggested earlier,

the wider profile of low-x partons is to account for the growth of the total cross section

(or the inelastic non-diffractive one, as in this model), then it can be constrained by the

requirement that a0 should be independent of energy.

The total cross section is taken from a Donnachie-Landshoff parameterisation [55]. It

is also necessary to break this down into elastic, diffractive and non-diffractive components,

which is done based on a parameterisation incorporating empirical corrections such that

the elastic and diffractive cross sections do not exceed the total at higher energies [57]. In

all that follows, we will deal explicitly with pp collisions. The assumed rise of the total and

non-diffractive cross sections are shown as a function of centre-of-mass energy in figure 1a.

In the calculation of a0, dσ/dX enters, giving a dependence on PDFs and the p⊥0 used

to regularise the cross section. In all that follows, the parameters of Tune 4C [9], a tune

to early LHC data, are used. It is the relative variation of a0 as a function of energy that

is of interest here, and in figure 1b the ratio a0(ECM)/a0(200GeV) is shown over the same

range of energies, for a set of different a1 values. A value of a1 = 0.15 gives an a0 that is

relatively stable across this energy range with an average value of 0.26 fm.

As discussed in section 2.2, through the eikonalisation procedure and tuning of the a0

parameter, the width of the matter profile has an absolute meaning, related to the size of

the incoming hadron. As a1 is increased from zero, n̄(b), after integration over x values,

is higher both at small and large b values, and smaller at intermediate b values, such that

the total area is conserved. In some ways the shape is similar to what one would expect

from a double Gaussian matter profile, where the central core of matter would tend to

push the distribution up at small b, while the tail would also have a larger content, due

to the peripheral component. This is also the trend shown by the electromagnetic form

factor, which is similar to the double Gaussian matter profile when used with its default

parameters, although less peaked at small b [6].
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Figure 2. Root-mean-squared value of (a) n̄ and (b) Pint as a function of the centre-of-mass energy

Before eikonalisation, and given that the form of eq. (2.9) stretches out to infinity, a

simple measure is given by the RMS value of n̄(b)

〈b2〉 =

∫

b2 n̄(b) d2b
∫

n̄(b) d2b
=

1

σhard

∫

b2 n̄(b) d2b . (3.1)

The variation of 〈b2〉 with energy is shown in figure 2a. The slope slightly decreases with

the rise of a1, dependent on the enhancement of n̄(b) at low b relative to high.

Assuming a single Gaussian matter profile, the width, a, needed to give the same

〈b2〉 is given by a =
√

3〈b2〉/2, noting that the RMS radius is defined in 3 rather than 2

dimensions. This gives values beneath the conventional charge RMS radius. We do not

study this further here, but do note that the eikonalisation procedure used ignores any

contribution from diffractive components, also noted below.

The same quantity, after the eikonalisation procedure can also be obtained from

〈b2〉eik =

∫

b2 Pint(b) d2b
∫

Pint(b) d2b
=

1

σND

∫

b2 Pint(b) d2b . (3.2)

The variation of this quantity with energy is shown in figure 2b. After eikonalisation, the

component of n̄(b) at large b becomes more important, leading to an increase as a1 grows

from zero, due to the contribution of low-x partons.

A final consistency check is provided by the standard eikonal formulae [28], providing

a relation between the total and inelastic cross sections

σinel =

∫

d2b
(

1 − e2χ(b)
)

, (3.3)

σtot = 2

∫

d2b
(

1 − eχ(b)
)

. (3.4)

From the former equation, we can identify the eikonal function χ(b) = n̄(b)/2. Using the

latter equation to calculate the total cross section, the result is consistently below the total

cross section of figure 1a by around 10 − 20%. As noted above, the diffractive component

has been ignored in the above framework, and is a potential source for these deviations,

including the low 〈b2〉 values noted previously.
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3.2 Hard processes

In what follows, comparisons are made between the different hadronic matter distributions

(section 2.1). For impact parameter distributions, results are presented in terms of bnorm
MPI =

b/bavg, where

bavg =

∫

b Pint(b) d2b
∫

Pint(b) d2b
=

1

σND

∫

b Pint(b) d2b , (3.5)

such that the average value is unity for minimum-bias events. Also of interest is the

enhancement factor associated with each interaction, Õ(b, x1, x2) of eq. (2.18). This is also

normalised such that the average is unity for the hard process in minimum-bias events,

enorm
hard = Õ(b, x1, x2)/eavg, where

eavg =

∫

n̄(b)Pint(b) d2b
∫

n̄(b) d2b
=

1

σhard

∫

n̄(b)Pint(b) d2b , (3.6)

compensating for the fact that the average number of interactions is raised by removing

the sample with no interactions.

As discussed in section 2.3, those processes with final states which cannot be produced

by the MPI framework will begin their p⊥ evolution at the kinematical limit. Due to this,

their impact parameter profiles will be picked directly according to Õ(b, x1, x2) d2b, with

no Sudakov weighting. This offers a direct way to examine the effects of the new matter

profile in comparison to previous ones.

3.2.1 Z0 production

In this section, the MPI accompanying Z0 (with no γ∗ interference) production is studied.

The following matter profiles are compared:

SG: single Gaussian,

DG: double Gaussian with default parameters a2/a1 = 0.4 and β = 0.5,

Overlap: overlap function with p = 1.5,

Log: logarithmically x-dependent Gaussian with a1 = 0.15.

This process is studied in pp collisions at
√

s = 7TeV. To study only the effects of the MPI

model, parton showers are switched off. This does affect some longitudinal correlations;

initial-state radiation, in particular, is in competition with MPI for momentum from the

beams.

Figure 3a shows the impact parameter distributions for these matter profiles. As out-

lined previously, in Z0 production, they are picked unmodified from Õ(b, x1, x2) d2b, but

shown normalised such that the average value would be unity for minimum bias events.

Noting that d2b ∝ bdb, it is possible to study the general features of Õ(b, x1, x2) itself. In

the double Gaussian profile, relative to the single Gaussian, the central core of hadronic

matter dominates at small b, giving larger overlap values, although with a faster fall-off.

The peripheral Gaussian component then slows this fall-off, giving contributions out to

larger b values. The overlap scenario sits roughly between the single and double Gaussian

distributions. The log profile is now an average of single Gaussian overlap functions, whose

widths are determined by the combination of x1 and x2 values that contribute. These x
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Figure 3. Z0 production in pp collisions at 7 TeV. (a) The impact parameter distribution, (b)

enhancement factor of the hard interaction, (c) number of MPI and (d) inclusive p⊥ spectrum of

MPI per event. The ratio plot in (d) is normalised to the single Gaussian result

values give a narrower distribution than the single Gaussian case. At larger values of a1,

this distribution would become even more narrow. It is these features which directly give

rise to the form of the impact parameter profile, shown in the figure. In particular, the log

scenario is peaked at smaller values than the single Gaussian, but without a large tail out

to high b values, unlike the double Gaussian.

In figure 3b the distribution of the enhancement factor, Õ(b, x1, x2), is shown, again

normalised such the average value would be unity for minimum bias events. It is noted

that this distribution gives the overlap for those events where b has already been se-

lected according to Õ(b, x1, x2) d2b. Formally, this is stated by dN/dÕ(b, x1, x2) =

dN/db db/dÕ(b, x1, x2), where dN/db ∝ b Õ(b, x1, x2). For the single Gaussian, where

also dÕ(b, x1, x2)/db ∝ b Õ(b, x1, x2), the enhancement is flat. It stretches from 0 to π,

as determined by the normalisation of eq. (2.11). The log profile is again an average of

single Gaussians. The upper cutoff is determined by the combination of x values that gives

the lowest possible a2(x1) + a2(x2). The width and shape of the fall-off is related to the

range and relative rate of these x combinations, respectively. The shape for the overlap

scenario can similarly be calculated. For an overlap Õ(b) = k exp(−b1.5), this is given by

dN/dÕ(b) ∝ − ln1/3(k/Õ(b)). It is not so easily calculated for the double Gaussian, but

the shape of the distribution can be understood as its peripheral Gaussian component,

stretching out to large b, giving the peaking behaviour as enorm
hard → 0.
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It is perhaps the number of MPI accompanying Z0 production and their p⊥ spectrum

that are of more interest, since they directly influence physical observables. The distribu-

tion of the number of MPI per event is shown in figure 3c. For the single Gaussian, double

Gaussian and overlap scenarios, the enhancement factor of the hard process is retained for

the remaining sequence of MPI. Before taking into account energy-momentum conservation,

the average number of MPI per event is directly proportional to the enhancement factor,

with the actual number fluctuating around this mean value. The PDF rescaling then sup-

presses the high tail of this distribution, pushing events to smaller NMPI. This does affect

the overall shape of the curves, but it remains true that the widths of the NMPI distributions

are essentially dictated by the widths of enorm
hard . For the double Gaussian and overlap scenar-

ios, the peaking behaviour as enorm
hard → 0 gives a similarly peaked distribution as NMPI → 0.

For the log profile, the narrower impact parameter gives rise to fewer events with small

numbers of MPI. The tail, however, does not go out much beyond the single Gaussian, as

the double Gaussian and overlap profiles do. This can be explained by the fact that the

enhancement factor for the sequence of MPI is no longer fixed to the hard enhancement

factor, but varies as a function of the x values of each individual interaction.

The dominant process in MPI is t-channel gluon exchange. The parton-level process

has no suppression at large-x values, but is affected by PDF factors. Given the requirement

that τ = x1x2 > 4p2
⊥/s, as p⊥ falls, the minimum τ also falls, opening up new regions of

allowed x values. From the small-x peaking of the PDFs, one would expect that, on average,

the x values will fall as p⊥ does. This, in turn, would lead to lower enhancement factors,

as the partons become more smeared out in the proton.

The result of the above is visible in figure 3d, where the increase in the inclusive p⊥
spectra of MPI is flat for the double Gaussian and overlap profiles, relative to the single

Gaussian, but falls off towards low p⊥ for the log scenario. The slope of this fall-off is

affected by the impact parameter distribution, which, in turn, is determined by the x

values of the hard process. There are also additional PDF rescaling effects at play, but

checks show that these are small. The change in shape of the absolute distributions at

∼ 2GeV is due to the freezing of the PDFs. Overall, then, the changing enhancement

factor of MPI regulates the amount of MPI, affecting the tail of the log profile in figure 3c.

3.2.2 Low mass Drell-Yan, Z0 and Z′ production

The next step of our comparisons is to include other processes, again where there is no

Sudakov involved, but for which the log profile will dynamically produce variations in

the distributions. In particular, the following processes are used as templates to explore

different well-defined x ranges:

DY: low mass Drell-Yan (10.0 < m̂ < 12.5GeV),

Z0: as in the previous section,

Z′: a 1TeV Z′ resonance.

Again, we note that parton showers are not switched on here, which also take momentum

from the beams, affecting PDF rescaling. For the log profile, it is the combination of x1

and x2 together in eq. (2.9) that is important. In figure 4, the τ = x1x2 distribution of the
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Figure 4. The τ distribution of low mass Drell-Yan (DY), Z0 and Z′ events in pp collisions at√
s = 7 TeV
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Figure 5. Low-mass Drell-Yan, Z0 and Z′ production in pp collisions at
√

s = 7 TeV. (a) The

impact parameter distribution and (b) enhancement factor of the hard interaction per event. The

single Gaussian distributions are identical between the three processes

three processes is shown, with each contained in a well defined region.

In section 2.3, some discussion was given relating to the choice of impact parameter

in hard processes, when its scale is in regions where the Sudakov of eq. (2.22) begins to

vary away from unity, and where the chance of having a harder MPI also grows. The

Drell-Yan process used here will be affected by these issues. We side step them here; this

comparison is designed to highlight the effects of the log profile in certain x-ranges, without

the additional complications of the Sudakov factor. We retain the decision to pick impact

parameters according to the hard process and without any Sudakov weighting.

Figure 5 shows the (a) impact parameter and (b) enhancement factor in the hard

process per event, this time comparing the processes given above. These are also compared

to the single Gaussian profile, which, as noted previously, gives the same results for these

distributions for all three processes. In figure 6, the number of MPI is shown for (a) low-

mass Drell-Yan, (b) Z0 and (c) Z′. Figure 7 shows the ratio of the inclusive p⊥ spectrum

of MPI for the log profile to the single Gaussian result for the three processes.
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Figure 6. The number of MPI per event in (a) low-mass Drell-Yan, (b) Z0 and (c) Z′ production
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Figure 7. Ratio of the inclusive p⊥ spectrum of MPI for the log profile to the single Gaussian

result for the three different processes

All the features in these distributions can be understood in terms of the previous dis-

cussion of Z0 events. As expected, the impact parameter distributions become narrower as

the τ range in question increases, leading to a wider distribution for the enhancement factor

in the hard process. The Drell-Yan process gives very similar results to the single Gaussian

for the impact parameter, hard enhancement factor and number of MPI distributions. The

x values that contribute, in some sense, correspond to an average “hardness”, with the same

amount of activity above and below. All three processes have a similar endpoint in NMPI,
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Figure 8. Minimum-bias events in pp collisions at
√

s = 7 TeV. (a) The impact parameter

distribution, (b) enhancement factor of the hard interaction and (c) number of MPI per event.

Ratio plots are normalised to the single Gaussian results

due to PDF rescaling. The even narrower impact parameter for Z′ events further suppresses

events with low NMPI, relative to Z0 production. The p⊥ ratios of figure 7 all show an en-

hancement of high-p⊥ activity relative to low, as expected. As the x values of the hard

process get larger, and the impact parameter profile narrower, the slope becomes steeper.

3.3 Minimum bias

We now move on to minimum-bias events. Here, there are additional correlations to con-

sider, relative to the hard processes of the previous section. In particular, once a hard

process has been selected, the subsequent MPI evolution will begin from this scale, mean-

ing that high-p⊥ events are likely to have more MPI, given the larger p⊥ evolution range

they have available. Low-p⊥ events will also be biased towards larger impact parameters

relative to high-p⊥ ones, given the Sudakov weighting of eq. (2.22).

Again, we begin with the (a) impact parameter, (b) enhancement factor in the hard

process and (c) number of MPI per event, now shown in figure 8, for the same four matter

profiles used in Z0 production. The differences here are somewhat smaller than for the

hard processes, so the ratios of the double Gaussian, overlap and log matter profiles to

the single Gaussian are also given.
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Figure 9. p⊥ distribution (a) of the hard process and (b) inclusive for subsequent MPI in minimum

bias events. Ratio plots are normalised to the single Gaussian result

Both the impact parameter and enhancement factor distributions are now fixed, so

that they have an average value of unity for all the different profiles. Any increase or

decrease of these distributions over a given range must be compensated elsewhere. The

shape of the impact parameter distributions are now directly dictated by n̄(b). For the log

profile, it contains all the correlations brought about by the x-dependent width. Relative

to the single Gaussian, the other three profiles show the same features; larger contributions

at small and large b values and a region of intermediate b where it sits below. For the log

profile, this is consistent with the shape of n̄(b) described in section 3.1. Figure 8a shows

that the variation of the log profile, relative to the single Gaussian, is smaller than for the

double Gaussian and overlap scenarios.

The overall shape of the enorm
hard distributions is given by the effect of the impact pa-

rameter profiles, which now vary as a function of the p⊥ of the hard process, as noted

above. Low-p⊥ events, which dominate, will be biased to higher impact parameters, giving

the increase at low enhancement factors. Relative to the single Gaussian, the three other

profiles all show the same features; there is an increase at low enorm
hard , followed by a decrease,

before the tails continue out beyond where the single Gaussian cuts off. These changes are

a direct consequence of the changed impact parameter distributions.

For the NMPI distributions, the overall shape is now due to the correlation between

p⊥ and the number of MPI. On average, the more numerous low-p⊥ events have less range

of evolution, and therefore fewer MPI. The variation of the log profile, relative to the

single Gaussian is small, but follows those of the double Gaussian and overlap; there is an

increase at low NMPI, followed by a decrease, before again increasing in the tails. Again,

these changes follow directly from the differences of the impact parameter distributions.

Finally, in figure 9, the p⊥ distribution (a) of the hard process and (b) inclusive for

subsequent MPI are shown. For the hard process, relative to the single Gaussian, the other

three profiles give more activity at low p⊥, relative to high. It becomes easier to have

peripheral interactions involving small-x partons, with the event containing no further

activity. In the high-p⊥ tails, the overlap is essentially saturated. There is a sharp rise as

p⊥ → 0 for the log profile. This change in shape is due to the freezing of the PDFs; in these
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low-p⊥ bins, there is no penalty to pay for taking higher x values, up to this freezing point,

resulting in extra contributions here. The inclusive p⊥ spectra for the subsequent MPI now

give exactly the opposite results to those of the hard process, such that, when they are

summed together, they give back the unmodified p⊥ spectrum of eq. (2.17), as they must.

3.4 Minimum-bias and underlying-event studies

We can examine the effect of this new matter profile on minimum-bias and underlying

event studies. In particular, Tune 4C, used also in the previous studies, offers an attractive

starting point. This tune is based on a modification to a Tevatron tune, such that it is able

to describe early LHC data. One of the features of this tune is a single Gaussian matter

profile, which gives a reasonable match to both the rise of the underlying event as well as

the width of charged multiplicity distributions in minimum-bias events.

In figure 10, the results of this tune are shown for (left-to-right, top-to-bottom):

1) ATLAS (|η| < 2.5, p⊥ > 500MeV) minimum-bias dataset. INEL>0 trigger requiring

a minimum of one track in the acceptance region. Charged rapidity distribution in

minimum-bias events at
√

s = 900GeV and 7TeV [58, 59]. The 900GeV data is

taken from the online HEPDATA database, while the 7TeV data is taken from the

corresponding reference.

2) As (1), but showing the charged multiplicity distributions. Errors are not included

for the 7TeV data.

3) ATLAS (|η| < 2.5, p⊥ > 500MeV) charged track based underlying event at√
s = 900GeV and 7TeV [60]. A charged track of p⊥ > 1GeV in the η accep-

tance is required to trigger an event. Data and errors have been read off from the

corresponding reference. Charged particle number density in the toward region.

4) As (3), but showing the sum-p⊥ density in the toward region.

5) As (3), but showing the charged particle number density in the transverse region.

6) As (3), but showing the sum-p⊥ density in the transverse region.

Where errors are shown, they represent the systematic and statistical errors summed in

quadrature. Although the rise of the underlying event is too steep in the toward region,

and activity in the transverse region is slightly too low, overall it gives a reasonable

description of data.

The first step is to replace the single Gaussian with the logarithmically x-dependent

matter profile with a1 = 0.15. This change is made just in the non-diffractive component,

while that used in the diffractive framework for now remains a single Gaussian. Diffraction

primarily impacts the low bins of the charged multiplicity distribution, and will not greatly

affect the results shown here. Just this change leads to a rise in the tail of the charged

multiplicity distributions, with an increase in activity in all regions of the underlying event,

as expected from the considerations of the previous sections. This behaviour is most closely

matched by an overlap function with p = 1.6, against which we can compare the results.
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Figure 10. Tune 4C compared against early LHC data. Further details are given in the text

The simplest way to remove this excess activity is a retuning of the p⊥0 parameter of the

MPI framework, in this case achieved by raising pref
⊥0 = 2.085 → 2.15GeV. This rise does

not greatly affect the relative slope of a0, as constrained in section 3.1. The results are

shown in figure 11 for the same distributions as figure 10.

After this retuning, the log profile shows some promise. For the charged multiplicity

distribution, the tail now sits above the data with the overlap profile, while the match is

improved with the log. This effect has already been seen in figure 8c, where the overlap

and double Gaussian profiles “shoot up” in the tails, while the log profile gives a more

gradual rise. The rise of the underlying event is almost exactly the same in the two

different profiles. In the toward region, the rise is still too fast, and slightly worse than
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Figure 11. Tune 4C, using the log profile, and with a raised p⊥0 in the MPI framework, compared

against an overlap profile with p = 1.6, also with a raised p⊥0, and LHC data

the unmodified tune. The log profile, here, does have slightly higher tails, consistent with

a narrower matter profile in higher bins of plead
⊥ , that do suggest a slightly better shape

overall. The description in the transverse region is, in fact, improved, although a further

decrease in activity, for example to improve agreement in the toward region, would likely

push activity lower here, similar to the unmodified tune.

3.5 Underlying event in Drell-Yan

Studies can also be made on the underlying event in Drell-Yan processes. Here, a CDF

study [61] is used, where a leading Z0 is reconstructed from the lepton pair. For simplicity,

we stay with Tune 4C and the modified version of it, using the new matter profile, but not-
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Figure 12. Charged number and sum-p⊥ density in the transverse region of the underlying event

in Drell-Yan

ing that it has been shown to give too much activity at the Tevatron. Tune 2C, also intro-

duced in [9], is a tune based only on Tevatron data. It describes minimum-bias and jet-based

underlying event studies well, but gives only limited agreement with the Drell-Yan results.

In particular, the charged particle number and sum-p⊥ densities in all regions are too low.

The results from Pythia are run through the Rivet analysis of this study [62]. The

charged particle number and sum-p⊥ densities in the transverse region, as a function of

p⊥(Z0), are shown in figure 12. At first glance, it appears that Tune 4C does not do too

badly, but, as above, it is known to give too much activity at the Tevatron. As expected

from previous sections, the log profile, then, gives an increase in activity, which also

occurs in the toward and away regions. It should be noted that the increase of the sum-p⊥
density, relative to the charged number density, is dependent on other factors, such as

colour reconnection, which differ between Tunes 4C and 2C. Given this, the conclusions

we can draw from this study are limited, but the x-dependent matter profile appears to

be a step in the right direction.

4 Summary and outlook

There is both theoretical and experimental evidence suggesting that the wave function

of high-x partons should be narrower than that of low-x ones. In this article, we have

not tried to examine the underlying mechanism for this, but instead have modelled the

effect using a simple Gaussian shape with a width that varies logarithmically with the

x-value of the parton being probed. This is introduced as a new matter profile in the MPI

framework of Pythia 8.

The framework, outlined in section 2, is additionally formulated in terms of a physical

size of the proton. Although introduced with a free parameter, a1, regulating the impor-

tance of the logarithmic component, it can be fixed if it is assumed that the variation should

account for the growth of the total cross section. For this to be the case, this parameter
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should lie in the region of a1 = 0.15. In the studies made here, it has been considered

a fixed quantity rather than a free parameter. The estimates of the proton size come

out somewhat below current low-energy measurements, but as noted, the eikonalisation

procedure neglects the diffractive components of the cross section.

The model gives a matter profile which in some ways is similar to the double Gaussian

scenario. There is an increase in the matter at both small and large impact parameters,

arising naturally due to the form of the eq. (2.9). The results are further changed, however,

by the varying enhancement factors in the subsequent chain of MPI. An early tune to LHC

data has been used to quantify the effects of this profile on minimum-bias and underlying-

event distributions. In particular, although the physical results are somewhat similar to

an intermediate overlap profile, there are differences which give some indication that this

profile could give rise to a viable tune to LHC data.

The case of MPI activity accompanying hard processes which do not contain final-state

particles which can be created in MPI, such that the evolution covers the entire phase

space, is interesting both in its own right, and as an illustration of the features of the

model. The previous matter profiles give exactly the same impact parameter distribution,

regardless of whether the underlying process is a Z0 or a 1TeV resonance. The new profile

changes this situation. The x dependence now leads to a situation where the higher-mass

resonance will give rise to a narrower impact parameter profile, leading to changes in both

the number of MPI and their p⊥ spectrum. In comparisons to data, it leads to extra

activity in the underlying event description of Drell-Yan processes, which appears to be a

step in the right direction, in terms of describing Tevatron data.

The results, then, are promising. A more general tuning to data would help ascertain

more clearly if this profile can improve the overall description, relative to the other profiles

available. Future LHC studies on the underlying event in Drell-Yan processes would be a

welcome addition, in order to further test the model. The framework will be released in

the upcoming Pythia 8.150 version, along with the modified Tune 4C, where we hope it

will be studied further by a wider community.
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[29] E. Avsar, G. Gustafson and L. Lönnblad, Energy conservation and saturation in small-x

evolution, JHEP 07 (2005) 062 [hep-ph/0503181] [SPIRES].
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