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1 Introduction, and relation to previous work

Of all energy conditions of general relativity (GR), the ‘null’ one stands out as the best

defined — thus the most likely to follow from fundamental properties of well-behaved

physical systems. The reason is that the null energy condition (NEC),

Tµν nµnν ≥ 0 for all null nµ’s , (1.1)

is saturated by the cosmological constant contribution’s to Tµν . It is therefore impossible

to violate the NEC by adding a suitably negative c.c. to an healthy system, or conversely,

to obey it by adding a large positive c.c. to an otherwise negative-energy system. This is

not the case for other energy conditions. One could postulate that the latter be obeyed by

the “non-cosmological constant part” of Tµν , but the splitting between the cosmological

constant and everything else is at best non-local in field space and thus in real space — in

the sense that it cannot be performed on the basis of local observations — and more likely

ill-defined.

1.1 A no-go theorem. . .

Since the value of the c.c. does not affect the behavior of a theory at distances smaller than

the curvature radius it is on the NEC that we should focus to look for a generic relation

with good properties of healthy physical systems; moreover because asking if the stress-

energy tensor of a given system violates the NEC is a well-defined question at scales where

gravity is negligible, in the rest of the paper we will consider the limit of decoupled gravity.
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It is notoriously difficult to violate the NEC while retaining stability. Indeed, it has

been shown in ref. [1] that for a generic effective theory of scalar fields φI ,1 the NEC follows

from stability and isotropy, or alternatively from stability and sub-luminality. Explicitly,

given the low-energy effective Lagrangian as a derivative expansion,

L = L
(

φI , ∂φI , ∂∂φI , . . .
)

, (1.2)

at low energies one can restrict to the lowest-derivative order — at most one derivative per

field — and ignore higher derivative terms,

L → L
(

φI , BIJ
)

, BIJ ≡ ∂µφI ∂µφJ . (1.3)

Then one can relate the derivatives of the Lagrangian w.r.t. the metric to the derivatives of

the Lagrangian w.r.t. the scalars’ derivatives. That is, there is a very direct relation between

a generic solution’s stress-energy tensor, and the kinetic action for small perturbations of

the same solution. One can thus show that if a solution violates the NEC, either (i) it is

unstable, or (ii) if it is stable, both its stress-energy tensor is anistropic, and some of its

perturbations are super-luminal. Conversely, if a solution is stable and has an isotropic

stress-energy tensor, or if it stable and admits sub-luminal excitations only, then it obeys

the NEC [1].

The instabilities we are concerned about are those associated with negative kinetic

or gradient energy for the fluctuations, rather than with negative mass terms.2 This is

because such instabilities plague all short-wavelength fluctuations, down to the UV cutoff

of the theory. The decay rate is thus extremely fast, dominated by the shortest scales in

the theory, and cannot be reliably computed within the effective theory. Conversely, a

standard tachyon-like instability, like Jeans’s or that associated with the negative mode

of a true-vacuum bubble, is dominated by modes with momenta of order of the tachyonic

mass scale, which can be parameterically smaller than the UV cutoff.

Now, the theorem summarized above crucially relies on neglecting higher-derivative

contributions to the Lagrangian. Is this justified? Usually it is, for higher-derivative

terms are irrelevant at low energies and, perhaps more to the point, if they do become

important the derivative expansion is expected to break down — with an infinite tower

of even higher-order terms all becoming important at the same time. At the level of the

classical e.o.m., higher-derivative terms signal the presence of massive ghost-like degrees

of freedom, thus demanding that the effective theory break down at energies below their

masses and effectively making the higher-derivative terms unimportant within the regime

of validity of the effective theory.

1.2 . . . with exceptions

However there can be exceptions to this general logic. The first exception is provided by

the ghost-condensate [2]. There, the fluctuations’ Lagrangian is degenerate (or nearly so)

1Such a system is quite general. For instance it describes the low-energy dynamics of perfect fluids and

solids [1].
2For background solutions that break Lorentz-invariance spontaneously, the definition of stability may

be subtler. See ref. [1] for a discussion about this point.

– 2 –



J
H
E
P
0
5
(
2
0
1
0
)
0
9
5

at the lowest-derivative level, and as a consequence certain higher-derivative terms can

be important at low energies, below the cutoff of the theory. This is consistent with the

derivative expansion because the background solution — the ‘condensate’ — spontaneously

breaks Lorentz invariance. It is then higher spatial derivative terms that become important

for the fluctuations’ dynamics. They do not introduce any new ghost-like degrees of freedom

at the classical level, and being the leading source of gradient energy, they change the

scaling dimensions of higher-order operators thus keeping the derivative expansion under

control [2]. Indeed the ghost-condensate was used in ref. [3] to construct a cosmological

solution that violates the NEC while being stable and isotropic, and having (highly) sub-

luminal excitations only.

Here we consider a second exception — that provided by the galileon [4]. The model

involves a scalar π enjoying a shift-symmetry on itself as well as on its first derivatives,

π → π + c + bµxµ , (1.4)

with constant c and bµ. This is reminiscent of the invariance of non-relativistic mechanics

under galilean transformations x(t) → x(t) + x0 + v0t—hence the name of the model.

Now, galilean invariance (1.4) forces each π in the e.o.m. to be acted upon by at least two

derivatives. Absence of ghosts requires instead that there be no more than two derivatives

per field. There is therefore a preferred set of higher-derivative terms in the Lagrangian

— those that yield purely two-derivative equations of motion for π. Such terms have been

classified in ref. [4]. In four spacetime dimensions there are four: the standard kinetic term

L2 = −1

2
(∂π)2 , (1.5)

a cubic interaction

L3 = −1

2
(∂π)2�π , (1.6)

and quartic and quintic ones

L4 ∼ ∂π∂π(∂2π)2 , L5 ∼ ∂π∂π(∂2π)3 , (1.7)

with suitable Lorentz contractions.3

Now, if we stick to this particular set of interactions, at the classical level no new

ghost-like degree of freedom shows up in the non-linear regime — by construction. This

is a necessary condition for the quantum effective theory not to break down for sizable

classical non-linearities. In fact the model exhibits remarkable properties at the quantum

level as well. First, thanks to galilean invariance, the Lagrangian terms we discussed do not

get renormalized upon inclusion of quantum corrections, nor do the latter generate terms

with fewer derivatives, like e.g. (∂π)4 [5]. Second, with a consistent, if not generic choice

of counter-terms, our effective theory can be extrapolated deep into the non-linear regime

of classical solutions. Essentially, galilean invariance allows for a robust disentaglement

3Formally, the tadpole π should also be added to this class [4]. However in its presence the trivial

configuration π = 0 is not a solution. We will therefore set it to zero.

– 3 –



J
H
E
P
0
5
(
2
0
1
0
)
0
9
5

of large classical non-linearities from large quantum effects. See ref. [6] for details and

discussions about this point.

In summary, the galileon provides us with a classically as well as quantum-mechanically

consistent higher-derivative Lagrangian, which can potentially evade the no-go theorem

reviewed above. Analyzing this possibility is the goal of our paper.

2 The NEC-violating solution

For practical purposes and for reasons that will become clear below, it is more convenient

to work with a slight deformation of the theory. We can promote the Poincaré group

supplemented by the galilean transformations (1.4) (a fifteen-dimensional symmetry group

overall) to the conformal group SO(4, 2) [4]. Indeed, if we think of the conformal group as

the subgroup of diffeomorphisms that leaves the fictitious metric

g(π)
µν (x) ≡ e2π(x)ηµν (2.1)

conformally flat, then we recognize in eq. (1.4) the small-π limit of infinitesimal dilations

π(x) → π(λx) + log λ , (2.2)

and of infinitesimal special conformal transformations

π(x) → π
(

x + (b x2 − 2(b · x)x)
)

− 2bµxµ . (2.3)

Then one can show that for each galilean invariant term, there is a corresponding confor-

mally invariant one that reduces to that for small π. For instance the kinetic and cubic

terms (1.5), (1.6) get promoted to

L2 → −1

2
e2π(∂π)2 (2.4)

L3 → −1

2
(∂π)2�π − 1

4
(∂π)4 . (2.5)

Such conformally invariant ‘completion’ is most easily constructed by taking suitable curva-

ture invariants for the metric (2.1) in terms of the Ricci tensor Rµν , as described in ref. [4].

Notice that the Riemann tensor does not appear because it can be rewritten in terms of

the Ricci since the metric (2.1) is conformally flat. Working with the model’s conformal

version makes finding interesting highly symmetric solutions and studying their proper-

ties particularly easy. For instance, there is a deSitter-like solution where the fictitious

metric (2.1) describes (part of) deSitter space:

eπdS = − 1

H0t
, −∞ < t < 0 . (2.6)

Such a solution spontaneously breaks the conformal group SO(4, 2) down to one of its

maximal subgroups, the deSitter group SO(4, 1). The ‘curvature’ scale H0 depends on the

model’s parameters. Starting from a generic linear combination of our Lagrangian terms

L = c2L2 + · · · + c5L5 , (2.7)
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where with an abuse of notation by Ln we refer to the conformal versions of the galilean

invariants (1.5)–(1.7), H0 is a solution to the algebraic equation [4]

H2
0

(

− 2c2 + 3c3 H2
0 − 3c4 H4

0 +
3

2
c5 H6

0

)

= 0 . (2.8)

Notice that, since we work with the dimensionless field π, the lagrangian coefficients are

dimensionful: cn ∝ E6−2n. To make conformal invariance explicit, one could conveniently

define a dimensionful dilaton field φ ≡ Meπ, where M is an arbitrary mass scale, and

write the lagrangian in terms of φ and dimensionless couplings c̄n = cnM2n−6. The action

parameterized this way would not depend explicitly on M , thanks to scale invariance.

In section 3 we shall conveniently pick M ≡ H0. Here we prefer to use the somewhat

redundant notation with dimensionful cn for basically two reasons. First we want to make

contact with the non-conformal galileon limit. Second, the role of conformal invariance in

our dicussion is mostly technical: to simplify computations and to deliver a simple globally

defined solution around which to expand. The lesson about NEC violation is more general.

Now, let us consider fluctuations about eq. (2.6). They are exactly luminal, because

of the high degree of symmetry: by construction the full action only involves the fictitious

metric (2.1) and its curvature invariants. For the background solution we are expanding

about, the latter are proportional to the former, since the background is maximally sym-

metric. Therefore, although the solution (2.6) spontaneously breaks Lorentz invariance, the

only background tensor structure appearing in the fluctations’ action is ηµν . In particular,

it is easy to see that the quadratic Lagrangian for the fluctuations ϕ ≡ π − πdS is

Lϕ = d2
1

H4
0 t4

[

−1

2
H2

0 t2(∂ϕ)2 − 1

2
(−4H2

0 )ϕ2

]

, (2.9)

where the overall normalization factor d2 is [4]

d2 ≡ c2 − 3c3 H2
0 +

9

2
c4 H4

0 − 3c5 H6
0 . (2.10)

The kinetic term is fixed by the above symmetry considerations, and its normalization by

the local analysis of ref. [4]. The mass term is also enforced by symmetry. The back-

ground π configuration spontaneously break time-translational invariance, t → t + ǫ. The

fluctuation ϕ is the associated Goldstone boson, which has to non-linearly represent the

broken symmetry:

ϕ → ϕ + π′
dS(t) · ǫ = ϕ − ǫ

t
. (2.11)

The variation of the kinetic term under an infinitesimal transformation is non-zero:

δ

(

− 1

2

1

H2
0 t2

(∂ϕ)2
)

=
1

H2
0 t2

∂µϕ∂µ ǫ

t
= ǫ · 4ϕ 1

H2
0 t5

, (2.12)

where in the last step we integrated by parts. Then the kinetic term has to be accompanied

by a mass term that compensates for this variation,

δ

(

− 1

2

1

H4
0 t4

m2ϕ2

)

= ǫ · m2ϕ
1

H4
0 t5

, (2.13)
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which happens precisely for m2 = −4H2
0 . This is obviously the same logic that for spon-

taneously broken internal symmetries ensures the masslessness of the associated Gold-

stone bosons.

Notice that while the fluctuation’s kinetic energy is positive definite for

d2 > 0 , (2.14)

the mass term always has the wrong sign. However its size is of order of the typical time

variation rate of the background solution. As a consequence ascertaining the solution’s

stability is subtler than for a time-independent one. In fact the very concept of stability

is somewhat ambiguous for a time-dependent solution (see a related discussion in ref. [6]).

As to short wave-length perturbations, the solution is certainly stable, for the fluctuations’

kinetic energy is positive, and the mass term is negligible at high frequencies. For longer

wavelengths, we can tentatively define stability in the following way. For given initial

conditions, the fluctuation’s equation of motion yields two solutions. At zero momentum,

one of these will always be the Goldstone solution:

ϕGoldstone ≡ π′
dS(t) · ǫ = −ǫ

t
, (2.15)

with constant ǫ. If this is the leading solution at late times (t → 0−, in our case), we

say that the background solution πdS is stable. Indeed in such a case any long-wavelength

small departures from the background solution will be diluted away at sufficiently late

times, and we will be left with the background solution itself, slightly translated in time.

This is hardly an instability. It is straightforward to check that for the Lagrangian (2.9)

the Goldstone solution (2.15) is indeed the leading one at late times.

In summary, the deSitter solution is stable against small perturbations if d2 defined in

eq. (2.10) is positive. Also perturbations are exactly luminal, thanks to the solution’s high

degree of symmetry.

2.1 The stress-tensor

It remains to be determined whether such a solution can violate the NEC. To answer this

question, we have to compute the stress-energy tensor,

T µν =
2√−g

δSπ

δgµν
. (2.16)

For a generic π configuration the computation is straightforward, but painful due to the

higher-derivative structure of the Lagrangian. However for our deSitter solution (2.6)

things drastically simplify, as we now show. The reader not interested in the details of

the computation can jump directly to eq. (2.45), which expresses the condition on the

coefficients ci for the solution to violate the NEC.

All conformal-invariant operators are of the form [4]

e(4−2n)π(∂2π)m(∂π)2n−2m ∼ 1

t4
(2.17)
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This is just a consequence of scale-invariance, which is unbroken by the solution:

e2πdS(t) → e2πdS(λt)+2 log λ = e2πdS(t) (2.18)

Therefore

T µν = τµν 1

t4
, (2.19)

with a constant and isotropic τµν . Now, conservation of T µν for an homogeneous solution

in flat space is simply
dρ

dt
= 0 , (2.20)

which implies τ00 = 0. We are left with the pressure T ij = p δij , which we can get from

the trace

3p = T µ
µ , (2.21)

which in turn we can compute by varying the action just w.r.t. the conformal mode of the

metric:

T µ
µ = ηµν 2

δSπ

δgµν

∣

∣

∣

∣

ηµν

=
δSπ

δϕ

∣

∣

∣

∣

ϕ=0

, (2.22)

where

gµν(x) = e2ϕ(x)ηµν ≡ g(ϕ)
µν (x) . (2.23)

Now we can use the fact that Sπ is built out of curvature invariants involving the

fictitious metric (2.1), where π itself appears as the conformal mode. More precisely,

suppose we compute the Ricci tensor for the metric e2πgµν , with gµν generic. We get

Rµν [e2πg] = Rµν [g] + Rµν [e
2πη, g] , (2.24)

where by the last term we denote the Ricci tensor for the metric (2.1), “covariantized” with

the metric gµν—precisely what makes up Sπ upon minimal coupling. Actually, to perform

the contractions appearing in Sπ we have to raise one index with the metric e2πgµν :

Rµ
ν [e2πg] = e−2πRµ

ν [g] + e−2πgµαRαν [e2πη, g] , (2.25)

where by Rµ
ν [g] we are denoting gµαRαν [g]. As we mentioned, minimal coupling corre-

sponds to the replacement

Sπ =

∫

d4x e4πF
(

Rµ
ν [e2πη]

)

→
∫

d4x
√−g e4πF

(

e−2πgµαRαν [e
2πη, g]

)

=

∫

d4x
√−g e4πF

(

Rµ
ν [e

2πg] − e−2πRµ
ν [g]

)

(2.26)

which for the conformally flat metric (2.23), at linear order in ϕ becomes

Sπ[π, ϕ] =

∫

d4x e4(π+ϕ)F
(

Rµ
ν [e

2(π+ϕ)η] − e−2πRµ
ν [e2ϕη]

)

≃ Sπ[π + ϕ, 0] −
∫

d4x e2π ∂F

∂Rµ
ν
Rµ

ν [e
2ϕη]

≃ Sπ[π + ϕ, 0] +

∫

d4xϕ(x)
(

2 ∂µ∂ν + δµ
ν �

)

(

e2π ∂F

∂Rµ
ν

)

(2.27)
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On a solution of the π eom, the first term has vanishing variation w.r.t. ϕ, and we are left

just with the second:

T µ
µ =

(

2 ∂µ∂ν + δµ
ν �

)

(

e2π ∂F

∂Rµ
ν

)

. (2.28)

The above expression holds for any solution. However in our deSitter case we can

simplify this expression even further. For the deSitter solution,

RdS
µ

ν = 3H2
0δµ

ν . (2.29)

It is straightforward to convince oneself that

∂F

∂Rµ
ν

∣

∣

∣

∣

dS

=
1

12
δµ
ν

dF (RdS
µ

ν)

dH2
0

(2.30)

Then derivatives in eq. (2.28) only act on the e2π factor, and we finally get

T µ
µ = − 3

H2
0 t4

dF (RdS
µ

ν)

dH2
0

(2.31)

In summary, to compute the pressure, we just have to express the action of π in terms

of curvature invariants of the metric (2.1), plug in the deSitter solution, and then derive

w.r.t. to H2
0 .

2.2 The problem with L3

If we apply eq. (2.31) to L3, we run into a problem. In order to express L3 in terms of

curvature invariants, on top of R2 and (Rµ
ν)

2 we need the operator [4]

∫

ddx
√−gd

1

d − 4

[

(Rµ
ν)

2

d − 1
− R2

(d − 1)2

]

, (2.32)

which diverges when d → 4 for generic metric, but is regular for conformally flat metrics

gµν = e2πηµν , for which it reduces to

∫

ddx e(d−4)π

[

(d − 2)(3d − 4)

2(d − 1)
�π(∂π)2 +

(d − 2)3

2(d − 1)
(∂π)4 + (�π)2

]

. (2.33)

Now, the problem is that to get from eq. (2.32) to eq. (2.33), we integrated by parts. This

amounts to neglecting a boundary term, whose coefficient diverges for d → 4. This is fine

for asymptotically trivial π’s, but for our deSitter solution we have to keep track of the

boundary term. Indeed eq. (2.32) diverges when computed on a deSitter solution, even

though the latter is conformally flat. The bottom line is that if we want to apply eq. (2.31)

to an action containing L3, we must be more careful about boundary terms.

We can bypass this problem by treating L3 separately, since the computation of its

stress-energy tensor is straightforward anyway:
∫

d4xL3 → T (3)
µν =

1

2

[

2 ∂µπ∂νπ�π −
(

∂µπ ∂ν(∂π)2 + ∂νπ ∂µ(∂π)2
)

+ ηµν ∂απ ∂α(∂π)2
]

+
1

4

[

4(∂π)2∂µπ∂νπ − ηµν(∂π)4
]

. (2.34)
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[In computing the first line, which comes from eq. (1.6), care has to be taken in varying

the �, because it contains a covariant derivative. However this is straightforward to do if

we rewrite �π as 1√−g
∂µ(

√−g gµν∂νπ).]

In particular, the trace T (3) µ
µ computed on the deSitter solution e2πdS = 1/H2

0 t2 is

T (3) µ
µ =

3

t4
. (2.35)

Now we can subtract the L3 contribution from the action, and apply eq. (2.27) to the

remainder. The first term in eq. (2.27), which would vanish on-shell for the full action, now

can be rewritten as minus the e.o.m. contribution coming from L3. Combining everything

we thus get

T µ
µ = c3 T (3) µ

µ − c3
δL3

δπ
− 3

H2
0 t4

dF (−3)(RdS
µ

ν)

dH2
0

, (2.36)

where the last term is the same as eq. (2.31), applied to the non-L3 part of the action. As

to second term, for the deSitter solution it is

− c3
δL3

δπ
= −c3

[

(�π)2 − ∂µ∂νπ ∂µ∂νπ + ∂µ
(

∂µπ(∂π)2
)]

= −c3
3

t4
, (2.37)

which exactly cancels the first term. In conclusion, eq. (2.31) holds on-shell if we restrict

it to the non-L3 part of the action:

T µ
µ = − 3

H2
0 t4

dF (−3)(RdS
µ

ν)

dH2
0

(2.38)

2.3 The recipe

We are now in a position to check whether there exists a choice for the Lagrangian coef-

ficients c2, . . . , c5 that makes our deSitter solution (2.6) violate the NEC without giving

up stability. (As we stressed, absence of superluminality is automatic for this particular

solution.) The various contributions to

F (−3) = c2L2 + c4L4 + c5L5 (2.39)

computed on the deSitter solution are [4]

L2 =− 1

12
R = −H2

0 (2.40)

L4 =
1

24

[

7

36
R3 + R(Rµ

ν)
2 − (Rµ

ν)
3

]

=
55

2
H6

0 (2.41)

L5 =
1

16

[

93

2 · 64
R4− 39

4 · 62
R2(Rµ

ν)
2+

5

12
R(Rµ

ν)
3+

3

16

(

(Rµ
ν)

2
)2− 3

8
(Rµ

ν)
4

]

=
3

32
H8

0 . (2.42)

We thus get

p =
1

3
T µ

µ = − 1

H2t4

[

− c2 +
3 · 55

2
c4 H4

0 +
3

8
c5 H6

0

]

(2.43)

= − 1

H2
0 t4

[

− 1

2
c2 −

3

4
c3 H2

0 +
333

4
c4 H4

0

]

, (2.44)
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where in the second step we used the e.o.m. (2.8). To violate the NEC, since the energy

density vanishes on the de Sitter solution, it is enough to have negative pressure, that is

− 1

2
c2 −

3

4
c3 H2

0 +
333

4
c4 H4

0 > 0 . (2.45)

On the other hand, for the de Sitter solution to be stable, we need (2.14), that is

− 3c2 + 3c3 H2
0 − 3

2
c4 H4

0 > 0 , (2.46)

where we used the e.o.m. (2.8). Notice that the e.o.m. (2.8) is the only one of our conditions

where c5 appears. We can thus think of it as determining c5 for given H2
0 and c2, c3, c4.

Furthermore, we can eliminate H2
0 by absorbing it into a redefinition of c2, c3, c4. That is,

for the moment we can work in H2
0 = 1 units and reintroduce H2

0 later by dimensional

analysis. Then, combining eqs. (2.45) and (2.46) we get a condition on c4:

1

333
(2c2 + 3c3) < c4 < 2(c3 − c2) . (2.47)

This interval exists if and only if

c3 >
2

3
· 334

221
c2 . (2.48)

So, summarizing, here is the recipe for a system that has a stable NEC-violating, de Sitter-

like solution:

1. Pick H2
0 > 0 for the deSitter-like solution;

2. Pick c2;

3. Pick c3 > 2
3 · 334

221 c2/H
2
0 ;

4. Pick c4 in the interval 1
333 (2c2 + 3c3 H2

0 ) < c4 H4
0 < 2(c3 H2

0 − c2) ;

5. c5 is fixed by the e.o.m.: c5 H6
0 = −2

3(−2c2 + 3c3 H2
0 − 3c4 H4

0 ) ;

6. The desired action is Sπ =
∫

d4x c2L2 + · · · + c5L5 .

Notice that if we want the trivial configuration π = 0 to be stable, so that we can think

of our theory as a standard relativistic QFT constructed about a (perturbatively) stable

Poincaré invariant vacuum state, then at point 2 above we need c2 > 0. This is compatible

with everything else, however.

3 The quantum theory

So far we focused on classical aspects of our solution. However we also have to impose that it

make sense quantum-mechanically — that is, that it be within the regime of validity of our

– 10 –



J
H
E
P
0
5
(
2
0
1
0
)
0
9
5

effective theory. At first sight, this is not difficult to achieve. The constraints derived in the

previous section are linear in cnH
2(n−2)
0 , and thus can be generically satisfied by choosing

c2 ≡ f2 , cn>2 = an
f2

H
2(n−2)
0

. (3.1)

with arbitrary f2 and with an = O(1). Now, f2 appears as an overall multiplicative con-

stant in the Lagrangian, and therefore its value cannot affect the classical solutions. On

the other hand, quantum-mechanically it formally plays the role of 1/~. The bigger f2, the

smaller the quantum mechanical effects. Indeed this is made manifest by going to canonical

normalization for π: πc ≡ f π. Then all self-interactions for πc are suppressed by powers

of H0 and of f . By keeping H0 fixed and taking f ≫ H0, we can make quantum effects

arbitrarily weak while keeping a given classical solution unchanged.

Still, the limit f ≫ H0 entails not quite an inconsistency — but a peculiarity of our

model. The problem lies in the structure of the coefficients of 2 → 2 scattering amplitudes

at low energies, as we now explain. Our analysis is a refinement, in a quantitative way, of the

argument presented in ref. [7]. In that paper it has been pointed out, that for an effective

theory to be the low-energy limit of a relativistic microscopic theory obeying the standard

properties of the S-matrix (analyticity, unitarity, Froissart bound), the 2 → 2 forward

scattering amplitude for identical particles cannot go to zero faster than s2 at low energies

— and the coefficient of the s2 term has to be positive. Now, the galileon grossly violates

this, before the conformal completion we adopted. This is because each galilean interaction

involves too many derivatives per field (see eqs. (1.6), (1.7)). And in fact at tree-level the

2 → 2 amplitude vanishes exactly in the forward limit (t → 0)—by power counting it should

behave like s3, but crossing symmetry in the forward limit implies parity under s → −s.

The conformal completion can in principle fix this, because it supplements the galileon

Lagrangian with interaction terms with fewer derivatives per field [4]. For instance with

L3 there is an associated (∂π)4 term, which has exactly the right structure to yield an

s2 contribution to the scattering amplitude. On the other hand, the conformal version

of L4 has too many derivatives, and that of L5 has too many π’s (as well as too many

derivatives), so we can neglect them. So, the part of the Lagrangian that can contribute

an s2 piece to the forward scattering amplitude is (see eqs. (2.4), (2.5))

L ⊃ c2L2 + c3L3

= −1

2
c2 e2π(∂π)2 − 1

2
c3 �π(∂π)2 − 1

4
c3 (∂π)4

→ −1

2
c2 (∂π̃)2 +

1

4
c3(∂π̃)4 + . . . , (3.2)

where we got the last line after suitable non-linear field redefinitions, and the dots stand

for higher orders in π̃ and derivatives thereof.

We thus see that with our conformally invariant Lagrangian, we can have a positive

s2 term in the low-energy forward 2 → 2 scattering amplitude,

M(s, t → 0) ∼ c3

c2
2

s2 + . . . , (3.3)
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for positive c3. Notice that c3 > 0 is consistent with our ‘recipe’ of section 2.3. The strong

coupling scale associated with this term in the amplitude is

Λ =
(

c2
2/c3

)1/4 ∼
(

fH0)
1/2 . (3.4)

However, the strong coupling scales associated with higher-order terms can be lower. For

instance the cubic interaction �π(∂π)2 used twice in two trilinear vertices connected by a

propagator yields an s3 + t3 + u3 term (which vanishes in the forward limit but is non-zero

otherwise) suppressed by the scale

Λ′ =
(

c3
2/c

2
3

)1/6 ∼
(

fH2
0 )1/3 . (3.5)

This is much lower than Λ for f ≫ H0. More systematically, expanding the tree-level

Lagrangian in powers of the canonicallly normalized field πc, we get interactions of the form

Ln,m,q ∼ ∂πc∂πc

(

πc/f
)n(

∂πc/H0f
)2m(

∂∂πc/H
2
0f

)q
, (3.6)

with 1 ≤ m + q ≤ 3 and arbitrary n, except for m = 0, q = 1, in which case n = 0. The

associated strong-coupling scales are

Λn,m,q = H0

(

f/H0

)
n+2m+q

n+4m+3q . (3.7)

For f ≫ H0 the lowest of such scales corresponds to n = m = 0,

Λstrong ≡ Λ0,0,q = H0

(

f/H0

)1/3
, (3.8)

which is exactly the scale Λ′ of eq. (3.5).

Now, the fact that the leading low-energy term in the amplitude is weighed by a scale

that is much higher than that weighing higher-order terms is not inconsistent, but suggests

that the UV-completion of the model, if it exists, is weakly coupled. In such a case,

the different strong-coupling scales Λn,m,q do not correspond to any physical scales in the

theory — the theory never becomes strongly coupled — they are just low-energy mirages

arising from taking different combinations of a weak coupling and of the true new physics

mass-scale of the theory. This is evident for instance in the tree-level exchange of a weakly

coupled massive particle at low energies:

g2 1

p2 + M2
→ 1

(

M/g
)2 − p2

(

M/g1/2
)4 +

p4

(

M/g1/3
)6 + . . . , p2 ≪ M2 (3.9)

(as we will see our case suggests a slightly subtler interpretation than this simple example).

Now, because of scale invariance (2.2) and of eq. (3.1), the structure of our Lagrangian is

L = f2 e2π ∂π∂π F
(

e−π∂π/H0, e
−2π∂∂π/H2

0

)

(3.10)

where the function F is dimensionless, and has no small parameter. Then, it is natural to

conjecture that the derivative expansion be controlled by the scale

φ(x) ≡ eπ(x)H0 . (3.11)
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That is, if we rewrite our classical Lagrangian as

L =
1

g2
· φ4 F̃

(

∂φ/φ2, ∂∂φ/φ3) , g2 ≡ H2
0/f2 , (3.12)

its form invites the interpretation of g as a coupling constant — weak, in the limit f2 ≫
H2

0—and of φ as a dilaton controlling the mass-scale where the UV-completion enters. If

this interpretation is correct, then the weakly coupled limit g ≪ 1 indeed has formally

very high strong coupling scale, but this says nothing about where the effective theory is

actually breaking down. New physics has to enter at the scale φ. For the trivial solution

π = 0 we have φ = H0, and the effective theory is valid at energies below this. For our

deSitter solution (2.6) we have

φdS =
1

|t| , (3.13)

and the solution itself is outside the effective theory, in the sense that all terms in F̃ above

are of the same order, thus signaling a breakdown of the derivative expansion.

We want to stress that, in fact, we are not forced to this conclusion. If F̃ were an infinite

series — the full derivative expansion — then indeed identifying the UV-completion’s

mass scale would be unambiguous. For instance one could compute the 2 → 2 tree-level

scattering amplitude at all orders in s/φ2 about a φ = const solution. Then the radius

of convergence of that series — the distance of the first non-analyticities from the origin

— would define the scale of new physics. Perhaps more physically, the strong-coupling

scale associated with a very high-order term would be very close to φ, the extra factor of

g being diluted by a tiny fractional power (see eq. (3.9)). In our case instead F̃ is a finite

polynomial, and the identification of the UV-scale is not as straightforward. For g ≪ 1

quantum effects are small, and the effective theory is unitary up to energies of order of the

strong-coupling scale Λstrong = H0/g
1/3.

We can however put an upper bound on the UV-completion’s scale by means of disper-

sion relations, and such a bound turns out to be parameterically smaller than the strong

coupling scale — in agreement with the idea that the UV-completion be weakly coupled.

If we assume analyticity, unitarity, and that the forward 2 → 2 scattering amplitude

A(s) ≡ M(s, t → 0) is bounded by s2 at large s, then we have [7]

A′′(0) =
2

π

∫ ∞

0

σ(s)

s2
ds (3.14)

where σ(s) is the total cross-section for ππ scattering. With our effective theory we can

compute the left-hand side, and the low-energy contribution to the right-hand one. Since

the integrand is positive, this equation then yields an upper bound ΛUV on the scale where

we should stop trusting our low-energy computations — the cutoff of the effective theory.

About the trivial solution π = 0, φ = H0, the l.h.s. can be got from eq. (3.3):

A′′(0) ∼ c3

c2
2

=
g2

H4
0

. (3.15)

On the other hand the low-energy cross-section is UV-dominated (as befits a derivatively

coupled theory), and in particular at energies above Λ3
0,0,1/Λ

2
0,1,0 = H0 it is dominated by
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the s3 piece in the amplitude, thus scaling as

σ(s) ∼ g4 s5

H12
0

. (3.16)

We thus see that in order not to violate eq. (3.14), the low-energy contribution has to be

cut off below

ΛUV =
H0

g1/4
. (3.17)

This defines the highest possible energy scale our effective theory can be extrapolated to

(under the assumptions given above). The UV-completion has to enter below this scale. No-

tice that ΛUV is parameterically higher than φ = H0, which was the cutoff scale ‘naturally’

suggested by the structure of eq. (3.12). This makes our deSitter-like solution consistent

with the standard S-matrix properties of well behaved relativistic theories. Notice also

that ΛUV is lower than the strong-coupling scale,

Λstrong =
H0

g1/3
, (3.18)

as it should be for the consistency of our estimate.

In general there may be infinitely many more dispersion relations that can constrain

further the structure of the low-energy effective Lagrangian, and set an upper-bound on its

cutoff lower than eq. (3.17). For instance one could consider n → n scattering amplitudes

with n larger than two. Such constraints are going to be quite cumbersome to work out, and

are beyond the scope of the present paper. On the other hand, in the case of weakly coupled

UV-completion further information can be extracted from the forward 2 → 2 amplitude

A(s) [7]. We will not take this route either — in fact it is straightforward to show that in

our case nothing new is learned on the cutoff of the theory by taking it. Instead, we will

consider signal propagation in the presence of weak background fields. This will turn out

to be surprisingly powerful.

4 Retaining causality

Ref. [7] identified a class of derivatively coupled theories for which S-matrix positivity

along the lines of last section implies the sub-luminality of excitations in the presence of

non-trivial background fields. In our case, as we will see in a moment, quite the opposite is

true: amplitude positivity forces c3 to be positive, which in turn makes certain excitations

about background fields super -luminal, unless the cutoff of the theory is low enough. We

will use this to constrain the cutoff of our effective theory. Notice that the analyses of

refs. [4, 7] already exhibited the presence of super-luminal excitations for DGP-like and

galileon theories about certain background solutions. We find it useful however to provide

a self-contained similar analysis here, mainly for two reasons. The first is that we will

exhibit superluminality for essentially any static weak-field solution to the field equations

— which eliminates the possibility that perhaps superluminality about a particular solution

just signals that the field cannot be coupled to sources in such a way as to produce that
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solution. The second reason is that we will show that superluminality is gone if the UV

cutoff of the theory is of order 〈φ〉.
To study the propagation of fluctuations about a background solution, it is more

convenient to use φ = H0e
π as field variable. The Lagrangian becomes (see eq. (3.2))

L =
1

g2

[

− 1

2
(∂φ)2 − c̃3

2

�φ(∂φ)2

φ3
+

c̃3

4

(∂φ)4

φ4
+ . . .

]

, (4.1)

where g = H0/f , c̃3 ≡ c3H
2
0/f2, and the dots stand for higher-order terms, coming from

L4 and L5. As clear from last section’s discussion, the dimensionless coefficient c̃3 has to

be positive, and of order unity. Now, consider a background solution φ0(x), and small

fluctuations ϕ about it. At quadratic order the fluctuation Lagrangian is

Lϕ =
1

g2

[

− 1

2
(∂ϕ)2

(

1+c̃3
�φ0

φ3
0

− c̃3
(∂φ0)

2

φ4
0

)

+c̃3

(

∂µ∂νφ0

φ3
0

− 2
∂µφ0∂

νφ0

φ4
0

)

∂µϕ∂νϕ + . . .

]

≡ − 1

2g2
Gµν ∂µϕ∂νϕ + . . . , (4.2)

where the dots stand for non-derivative terms (i.e. mass terms) for ϕ, as well as for contri-

butions from the terms already neglected in eq. (4.1), and we defined the effective inverse

metric Gµν as

Gµν = ηµν

(

1 + c̃3
�φ0

φ3
0

− c̃3
(∂φ0)

2

φ4
0

)

− 2c̃3

(

∂µ∂νφ0

φ3
0

− 2
∂µφ0∂

νφ0

φ4
0

)

(4.3)

The reason why we focus on the kinetic action for ϕ and neglect non-derivative terms, is

that the causal structure is defined by the highest-derivative terms: according to Leray’s

theorem [8], for a Lagrangian of the form (4.2), ϕ excitations travel along the light-cone of

the effective metric Gµν .

We are thus led to analyze the light-cone of the effective metric (4.3) in the presence

of a non-trivial φ0(x). To be as general as possible, we consider a generic weak vacuum

solution φ0(x). By ‘weak’ we mean that the non-linearities of our action are negligible.

Also, for simplicity we restrict to a static configuration, so that the solution obeys

∇2φ0 ≃ 0 . (4.4)

The physical situation we have in mind is that we have stationary, localized sources for φ,

and that away from the sources the field is in its linear regime. We generically expect there

to be a stationary point for φ0.
4 We zoom in on that point, and choose it as the origin of

our coordinate system. The solution can be Taylor expanded about the origin

φ0(~x) ≃ Φ0

(

1 +
1

2
Aij

xixj

L2

)

, (4.5)

4This is guaranteed if the source arrangement is minimally inventive. Also such an assumption is not

necessary to proceed, but makes the discussion neater. Indeed a space gradient term, corresponding to a

term linear in xj in eq. (4.5), gives just a negative definite contribution to Gij in eq. (4.7), making the light

cone even wider.
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where Φ0 is the field value at the origin, L is the typical scale over which the solution varies,

and Aij is a dimensionless matrix with entries of order unity and which, because of Laplace’s

equation (4.4), is traceless. As we will see, this last property is crucial for our argument.

Now, to impose, as we assumed, that the solution be in a linear regime, we have to

demand

L ≫ 1/Φ0 . (4.6)

Indeed the size of non-linearities in eq. (4.1) for the terms explicitly kept is of order ∂2/φ2,

which for a configuration like (4.5) is precisely 1/(LΦ0)
2. The neglected terms in eq. (4.1)

are suppressed by even higher powers of ∂2/φ2 ∼ 1/(LΦ0)
2—that is why we are allowed

to neglect them in the first place. Not surprisingly, the size of non-linearities 1/(LΦ0)
2 is

also controlling the corrections to ηµν in the inverse metric (4.3). As long as this is small,

the latter can be straightforwardly inverted to yield the effective metric

Gµν ≃ ηµν + 2c̃3

(

∂µ∂νφ0

φ3
0

− 2
∂µφ0∂νφ0

φ4
0

)

, (4.7)

where we neglected the correction proportional to ηµν , because it does not affect the light-

cone aperture. That is, at this order we can factor it out of the metric, as an overall

conformal factor, which is irrelevant for our question.

To check whether the light-cone of Gµν includes directions that are super-luminal with

respect to the true Minkwoski light-cone defined by ηµν , we contract Gµν with a generic

null direction nµ = (1, n̂). If nµ turns out to be time-like for Gµν at least for some direction

n̂, we know that ϕ signals can travel superluminally along n̂. For the moment we consider

small distances from the origin, x ≪ L, so that the denominators in (4.7) can be taken as

constant for our solution. We have

Gµν nµnν ≃ 2c̃3

(LΦ0)2

[

Aij − 2
(Aikxk)(Ajlx

l)

L2

]

n̂in̂j . (4.8)

The second term in brackets is always a negative definite matrix, being minus the tensor

product of A · ~x with itself. It thus gives a superluminal contribution in all directions —

that is, it tends to make nµ time-like w.r.t. Gµν regardless of n̂. However at small distances

from the origin, x ≪ L, the second term is negligible with respect to the first. Now, Aij ,

being traceless, has at least one negative eigenvalue. The corresponding eigenvector, defines

a direction n̂ for which the first term also gives a superluminal shift in the propagation

speed, of order

∆c ∼ 1

(LΦ0)2
(4.9)

(recall that both c̃3 and Aij are of order one.) We are thus led to the conclusion that

a generic linear solution φ0(x) allows for superluminal excitations, because the effective

metric perturbations propagate on has a light-cone that is broader than that defined by

ηµν . We stress that this result does not depend on the detailed form of the coupling of φ to

each individual source. For instance on whether it couples through a ‘monopole’ φJ , or via

dipole ∂µφJµ or even via higher multipoles. This generalizes the proof of superluminality

given in ref. [4] by considering spherical solutions induced by monopole coupling.

– 16 –



J
H
E
P
0
5
(
2
0
1
0
)
0
9
5

The one we just obtained is a purely classical result: at the classical level, to ascertain

the existence of superluminal signals, it is enough to analyze the effective metric (Leray’s

theorem). Upon canonical quantization the causal structure does not change [9], but since

we have an effective theory with a cutoff, to be consistent we have to demand that the

superluminal effect we isolated be measurable within the effective theory. The superluminal

shift (4.9) in the propagation speed entails superluminal propagation of actual signals if,

for a mode of given momentum k propagating from the origin all the way to L, the gain

over a strictly luminal signal is at least of order of one wavelength. That is, we need

∆c kL ∼ k

Φ0

1

LΦ0
& 1 . (4.10)

We are restricting to a region of size L around the origin, because that is where our

approximations hold. We will comment below on what happens outside this region. Recall

that for the solution to be linear, we want LΦ0 larger than one. We thus see that the

superluminal effect is unobservable if we restrict to fluctuations with momenta smaller

than Φ0. Therefore, if we postulate that the cutoff of our effective theory is the local value

of φ, like the structure of our Lagrangian (3.12) naturally suggested, we cannot consistently

conclude that the causal structure of the theory is different than the usual relativistic one.

Nothing new is learned by relaxing the x ≪ L restriction. For a generic linear solution,

with a generic arrangement of sources, the structure of the solution will deviate significantly

from eq. (4.5) beyond x ∼ L, and full knowledge of the solution will be needed to conclude

anything about signal propagation. However since eq. (4.5) is a good vacuum solution for

x ≫ L as well — non-linear effects are down by powers of L4/(Φ2
0x

6)—one could study

how signals propagate on it for distances much longer than L. The problem is that the

superluminal effect is proportional to the leading non-linearity, and so the former also

rapidly goes to zero at very large x. That is, for a solution like eq. (4.5) the superluminal

effect is concentrated in a region of size L around the origin.

In summary, if we assume that our effective theory arises as the low-energy limit of a

microscopic theory with the standard relativistic causal structure, we are forced to bound

its regime of validity by the local value of φ. Under those assumptions our stable NEC-

violating solution of section 2 is therefore untenable.

5 Back to the amplitude

In hindsight, it is natural to ask whether the S-matrix encodes any signs of the superluminal

effect we unveiled. In simpler examples, like those considered in ref. [7], sub-luminality of

excitations about background fields is tied to positivity of forward 2 → 2 amplitudes at

order s2. In our case instead, as we discussed, such positivity is obeyed so long as c3 is

positive, yet we have super-luminality regardless of c3’s sign. In fact, our super-luminal

effect relies on the cubic interaction �π(∂π)2 whose contributes to 2 → 2 amplitudes is of

order s3 and vanishes in the forward limit, being proportional to s3 + t3 +u3. It thus looks

like that in order to isolate the term responsible for super-luminality, we need to consider

non-forward amplitudes.
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Some form of positivity still holds for non-forward 2 → 2 amplitudes M(s, t). Indeed

following Martin5 [10], unitarity together with standard properties of Legendre polynomials

imply that for real s
∂n

∂tn
ImM(s + iǫ, 0) ≥ 0 ∀n , (5.1)

which is a generalization of the optical theorem, ImM(s + iǫ, 0) ∝ σtot > 0. If there is

a mass-gap, M(s + iǫ, t) is analytic in the t-plane, for |t| below threshold.6 This means

that we can Taylor-expand M(s+ iǫ, t) in t about the origin, and use the inequalities (5.1)

to conclude

ImM(s + iǫ, t) > 0 for t > 0 , (5.2)

so long as t (now real and positive) is below threshold. We can then run a standard dis-

persion argument (see e.g. [7])—this time using analiticity in the s-plane — and show that

∂2

∂s2
M(0, t) =

2

π

∫

ds ImM(s + iǫ, t)

[

1

s3
+

1

(s + t)3

]

> 0 for t > 0 , (5.3)

where the integral is taken along the cut on the positive real axis, from the threshold

to infinity.

Now, in our case there is no mass-gap — the particles we are scattering are themselves

massless — and we have non-analyticities at arbitrarily low s and t. However, we already

argued that the UV-completion of our model must be weakly coupled, with coupling λ ≪ 1.

We can then consider the scattering amplitude at tree-level in λ. Such an amplitude has

non-analiticities associated with the exchange of the UV-completion’s massive states, but

it does not have low-energy cuts associated with multi-massless particle states — these

enter at higher order in λ [7]. It thus makes sense to apply the above dispersion relation

to the tree-level amplitude, even in the absence of a mass gap. The mass-scale playing

the role of the gap is then the UV cutoff of the effective theory, where the UV-completion

enters and the first non-analiticities show up.

Now, in our case we assumed that the cutoff of the theory is parameterically higher

than H0, perhaps as high as eq. (3.17). At intermediate energies, H0 ≪ E ≪ ΛUV, the

amplitude is dominated by the O(s3) terms, and we can neglect the O(s2) ones. The former

gets a contribution from the Lagrangian term we are trying to isolate, �π(∂π)2, but also

directly from the quartic galilean interaction contained in L4. Indeed we can perform a

non-linear field redefinition that eliminates the cubic interaction and yields a quartic term

of the form

∂π∂π ∂∂π ∂∂π , (5.4)

which is precisely the structure of L4. Therefore, unless the L4 contribution accidentally

vanishes, which it does not, we already see that our attempt to connect super-luminality

with violation of amplitude positivity, fails: amplitude positivity can be fixed by a suitable

choice of c4, which as we argued does not affect signal propagation in the presence of weak

5For a recent application see also [11].
6More precisely, as proven in ref. [10], analyticity in (s, t) holds on the product space (|t| < M) ×

(cut splane).
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background fields. However, if we want our Lagrangian to describe NEC-violating stable

solutions, c4 is not completely arbitrary. It may be that once we impose the conditions of

section 2.3, positivity turns out to be violated.

Computing the O(s3) tree-level amplitude is straightforward. The result is

M(s, t) =
3

4

1

c3
2

(

c2
3 − 2 c2c4

)

st(s + t) . (5.5)

Positivity in the form of eq. (5.3) is obeyed iff

c2
3 > 2 c2c4 . (5.6)

Such an inequality is in fact implied by our conditions of section 2.3, as manifest from the

following simple algebraic manipulation:

0 ≤ (c3 − 2 c2/H
2
0 )2 = c2

3 − 4
(

c3c2/H
2
0 − c2

2/H
4
0

)

< c2
3 − 2c2c4 , (5.7)

where in the last step we used item 4. of section 2.3.

In conclusion, by assuming that our effective theory can be extrapolated to energies

parameterically higher than H0 we find no contradiction with amplitude positivity, even in

the non-forward case. Conversely, absence of superluminal excitations demands the theory

to be cut off at H0.

6 Discussion

Our effective theory allows for an isotropic NEC-violating solution that is stable against

small fluctuations. Moreover, signal propagation on this solution is exactly luminal. This

is a nice counterexample to the theorem of ref. [1], which here is violated because one of

the hypotheses, subtly, is. The relevant part of the Lagrangian formally involves higher-

derivative terms, yet the corresponding field equations are second-order.

Still, if the goal was to find a completely sensible relativistic QFT that can violate the

NEC in the semi-classical regime, then we failed. From the standard EFT standpoint, our

theory is perfectly sensible, and the relevant NEC solution is within its regime of validity.

Moreover, our theory obeys standard positivity of 2 → 2 amplitudes, even in the non-

forward case — which is a stronger requirement than purely low-energy consistency [7].

Nevertheless, if we start from the vacuum and excite a generic weak field configuration,

small excitations about this background will now propagate super-luminally. The presence

of super-luminal excitations signals that the causal structure of the theory is not the stan-

dard Lorentz-invariant one. As a consequence our effective theory cannot arise as the low

energy limit of a Lorentz-invariant UV-complete local QFT, for which micro-causality has

to hold as an exact (i.e., non-perturbative) operator statement [7, 9].

Now, we can avoid super-luminality if the cutoff of our theory is in fact much lower

than expected. However for such a low cutoff, our NEC-violating solution is outside the

effective theory and thus cannot be trusted. That is: either (i) we believe that the cutoff

is high enough to make room for the NEC-violating solution, but then we have to accept
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the existence of super-luminal excitations about other solutions, also inside the effective

theory; or (ii) we believe that the cutoff is low enough to forbid superluminal propagation

of signals, but then our NEC-violating solution is gone as well. Essentially, absence of

superluminal excitations demands that all non-linearities be small: if the cutoff of the

theory is the local value of φ, as required by sub-luminality, then all non-linear terms in

eq. (3.12) have to be small for the solution to be within the effective theory, despite what

suggested by purely low-energy EFT considerations and even by dispersion relations. This

makes the tension we found particularly robust. It is not an accident of our particular

solution, but rather it is a property of any solutions that crucially rely on non-linearities.

Since the NEC is obeyed by the free part of the Lagrangian, all NEC-violating classical

solutions are outside the regime of the effective theory.

We thus see that there still is a strong tie linking the NEC and subluminality. It is

less direct than in the absence of higher-derivative terms, where it is the NEC-violating

solutions themselves that support superluminal excitations [1], but it appears to be equally

tight. It would be interesting however to understand whether this relation is an accident of

our Lagrangian, or whether instead it is a more general, and thus deeper, fact. For instance,

we adopted a conformal modification of the galileon theory in order to respect positivity at

order s2 in the scattering amplitude. However this requirement by itself does not single out

the conformal group SO(4, 2) as the symmetry group of our theory. We chose it because

then with such a high degree of symmetry, finding very symmetric solutions and studying

their properties is immediate. However there are probably other equally convenient choices

— for instance the 5D Poincaré group ISO(4, 1) [4] — and in principle nothing stops us

from lowering the number of symmetry generators, as long as galilean invariance is an

approximate symmetry in the UV. Note that for superluminality to happen, one just needs

a non-vanishing galilean cubic term. In our theory c3 has to be strictly positive for the

NEC-violating solution to be well behaved (section 2.3) and for the forward amplitude to

be positive at order s2 (section 3). It is entirely possible that disentangling the coefficient

of the cubic galilean term from others’ could eliminate superluminality altogether while

retaining the good features of our theory as well as of the NEC-violating solution.

From a more general field theoretical perspective, we find it interesting that in our

theory relativistic dispersion relations involving the 2 → 2 scattering amplitude are not

enough to discover superluminality in the presence of sources. In the simple cases of ref. [7],

the link was so direct that forward dispersion relations were enough to imply sub-luminality

about any background solution. In our case instead, even non-forward ones are obeyed

by a theory with superluminal excitations. We expect that at some level of complexity

(for instance one could consider n → n scattering amplitudes, with n > 2) dispersion

relations should encompass the requirement of subluminality about any background fields.

Indeed the sources turning on these backgrounds may be viewed as fictitious ones — used to

construct the generating functional W [J ] from which the n-point functions 〈φ(x1) . . . φ(xn)〉
are then straightforwardly derived. It is clear then, that the propagation properties of φ

fluctuations about some background field are encoded in these n-point functions, and thus

in the S-matrix elements. It would be interesting to understand for a generic theory the

S-matrix equivalent of the sub-luminality requirement.
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