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1 Introduction

Heterotic compactification has recently been met with some renewed interest and sub-
stantial development. This most traditional method of string phenomenology involves a
succinct formalism in terms of stable holomorphic vector bundles on smooth, compact
Calabi-Yau manifolds. Current progress is mainly due to advances in algebraic geometry,
both conceptual and computational, the latter facilitated greatly by the ever-increasing
power of computers and new algorithms. In particular, a programme has been established
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over the past few years on the systematic investigation of the so-called “general embedding”
realised by special unitary bundles of ranks 3, 4 and 5, on large datasets of the Calabi-Yau
threefolds [1–4]. Specifically, extensive use has been made of the “monad construction”,
one of the most efficient methods in creating vector bundles on projective varieties [5]. Such
a construction has been utilised throughout the years in string model building [6–10]. A
database of monad bundles was constructed in ref. [2], based on complete intersection three-
folds in products of projective spaces, or CICYs, a famous set of 7890 three-folds first classi-
fied in ref. [11–15]. On these, a total of 7118 positive bundles were found and the associated
particle content and interactions, computed. The result was conducive to an algorithmic
approach to string phenomenology, making possible the construction of a plethora of candi-
date models and the systematic selection of promising GUT or standard-model like theories.

It is expedient to summarise here the key features of heterotic compactification in our
context which will be of use later. For a more complete discussion see for example [16–20].

• An SU(N) stable holomorphic vector bundle V on a Calabi-Yau threefold X breaks
the E8 gauge theory down to an N = 1 four-dimensional GUT theory with gauge
group E6, SO(10) and SU(5), respectively for N = 3, 4, 5.

• The first Chern class of the bundle vanishes: c1(V ) = 0.

• The second Chern class of V , c2(V ), is constrained by the second Chern class c2(X)
of the manifold X through Green-Schwarz anomaly cancellation.

• The number of families and anti-families is given by the dimensions of the bundle
cohomologies H1(X,V ) and H2(X,V ), respectively.

• Stability of V implies that the cohomology groups H0(X,V ) and H3(X,V ) van-
ish, and, hence, the Atiyah-Singer index theorem shows that the index ind(V ) =
1
2

∫
X c3(V ) = −h1(X,V ) + h2(X,V ) provides the net number of generations.

To break the SU(N) group further one requires a non-trivial first fundamental group of the
three-fold and a Wilson line. The former is usually achieved by identifying a freely acting
discrete symmetry G of X “upstairs” and forming the “downstairs” quotient X̃ = X/G. In
addition, the bundle V on X needs to descend to a bundle Ṽ on X̃, typically a non-trivial
constraint. Here, we will not address this aspect of the construction in detail but merely im-
pose a necessary condition for such a “downstairs” model to exist and to produce three fam-
ilies. The “upstairs” and “downstairs” indices are related by ind(Ṽ ) = ind(V )/k, where k =
|G| is the order of the discrete symmetry group. We will require three families “downstairs”,
that is ind(Ṽ ) = 3, and that k divides χ(X), the Euler number of the three-fold, a necessary
condition for the existence of a free quotient. In addition, we will use the more refined topo-
logical invariants of X introduced in ref. [12] in order to further constrain the group order k.

In the present paper, we will take the first steps to carry out the aforementioned pro-
gramme for the largest available class of Calabi-Yau three-folds available, namely the hyper-
surfaces in toric varieties classified in refs. [21–27]1 and consisting of some 500 million man-
ifolds. From those manifolds, 124 embed into smooth toric ambient spaces and 101 of those

1Relevant data fetched at http://hep.itp.tuwien.ac.at/∼kreuzer/math/0702890/ToricFano.4d.gz.
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have a particularly simple structure of their Kähler cone (the number of Kähler cone genera-
tors equals h1,1(X)). In this paper, we will make a modest start and focus on these 101 toric
manifolds and the bundles which can be constructed on them. For brevity, we henceforth
refer to “Calabi-Yau hypersurfaces in a toric variety” as “toric Calabi-Yau manifolds”.2

We also emphasize that strictly speaking, we should call the ambient four-fold a “coarse
toric variety”. This is a variety which does not admit any further toric crepant blow-down.
Indeed, there are very small number of coarse toric varities which are smooth because blow-
downs in general introduce singularities; it is precisely these 124 smooth ones on which we
will focus as our ambient space.3 We hope that methods similar to the one developed for this
relatively small set can ultimately be applied to a very large class of manifolds and bundles
in a systematic search for the standard model from heterotic Calabi-Yau compactifications.

The organization of the paper is as follows. In section 2 we collect the relevant facts on
constructing smooth Calabi-Yau threefolds as hypersurfaces in an ambient toric fourfold,
focusing especially on the 101 manifolds of interest; we leave some more detailed discussion
to the appendices. In section 3 we show how to construct monad bundles on these toric
hypersurfaces, and how constraints on the Chern classes come from various mathematical
and physical restrictions. We proceed to show that a large class, the so-called “positive”
monads are finite in number and in section 4 present their complete classification. In sec-
tion 5 we extend our search to semi-positive monads and we conclude with discussion and
prospects in section 6.

2 The base manifolds: Calabi-Yau threefolds as hypersurfaces in toric

fourfolds

As mentioned above, the largest known data-set to date of smooth, compact Calabi-Yau
threefolds consists of hypersurfaces in ambient toric four-folds and has been constructed
in ref. [22, 23]. These hypersurfaces are defined by the zero set of a single equation in an
ambient toric four-fold A. Already, this leads to a substantial number of manifolds, namely
473, 800, 776. In this paper, we will focus on the cases where the ambient A is, in addition,
smooth. It is the purpose of this section to briefly summarise the relevant properties of
these Calabi-Yau threefolds, on which we shall construct a large class of vector bundles in
the ensuing section. We shall not give a pedagogical introduction to toric geometry and
the reader is referred to many excellent texts [28–31]. Instead, we leave a somewhat self-
contained collection of nomenclature and pertinent facts to appendix A, and here focus on
the geometrical data of the base Calabi-Yau space, as well as of the ambient toric variety,
important to the monad construction. In due course, we shall often draw similarities with
the CICY dataset of Calabi-Yau threefolds embedded in products of projective spaces,
studied in detail in [1, 2, 11, 12], of which we have some intuition and familiarity (cf. also
a recent three-generation model found in [33]).

2Of course, this is a slight abuse of nomenclature, since there are no compact, toric varieties which are

Calabi-Yau (see, for instance, ref. [31]).
3We thank the referee of JHEP for pointing out to us.
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The first ingredient is the construction of the ambient four-fold A; this is the analogue
of the product of projective spaces for the CICYs. The power of toric geometry is in using
the combinatorics of integer lattices to encode geometrical information. The ambient space
is specified by a convex integer polytope ∆ in R4 containing the origin. We can think of this
polytope as a collection of vertices (dimension 0), each of which is a 4-vector with integer
entries. Each pair of neighbouring vertices defines an edge (dimension 1), each triple a face
(dimension 2), and each quadruple, a facet (dimension 3). Alternatively, we could define
the polytope by a list of integer inequalities, each of which slices a facet. The polytope
is the convex body in R4 enclosed by these facets. We will only consider those polytopes
containing the origin (0, 0, 0, 0) as an interior point. We define the dual polytope ∆◦ to ∆
as all vectors in R4 whose inner product with all interior points of ∆ is greater than or
equal to −1, that is,

∆◦ = {v ∈ R4 | 〈m,v〉 ≥ −1 ∀m ∈ ∆}. (2.1)

To this dual polytope we can associate the collection of cones over its faces which, together,
form the normal fan Σ. This normal fan encodes the information necessary to construct the
toric ambient space A and a brief review of this construction can be found in appendix A.2.
It involves associating to each edge of Σ a coordinate xρ. Each cone in Σ determines a
patch of the toric variety and these patches are glued together in a way determined by how
the cones adjoin each other.

Next, we define a Calabi-Yau hypersurface X in A. It turns out that this is straight-
forward: as long as the polytope is reflexive we can define X. The polytope ∆ is called re-
flexive if the vertices of its dual ∆◦ defined by eq. (2.1) are all integer 4-vectors. Note that in
this case, ∆◦ is also a reflexive polytope, by symmetry in the definition. To a reflexive ∆, we
can associate a smooth Calabi-Yau threefold X given by the vanishing set of the polynomial

0 =
∑
m∈∆

Cm

k∏
ρ=1

x
〈m,vρ〉+1
ρ , (2.2)

where Cm are numerical coefficients parametrising the complex structure of X, xρ=1,...,k

are the coordinates of A, and finally, vρ=1,...,k are the vertices of ∆◦, with k being the
number of vertices in this dual polytope or equivalently, the number of facets in the orig-
inal polytope ∆.

As a concrete example, the quintic manifold in P4 is a hypersurface in the toric variety
P4. We have x1,...,5 as the (homogeneous) coordinates of P4 and can think of the reflexive
polytope ∆ as having vertices

m1 = (−1,−1,−1,−1),
m2 = ( 4,−1,−1,−1),
m3 = (−1, 4,−1,−1),
m4 = (−1,−1, 4,−1),
m5 = (−1,−1,−1, 4) ,

(2.3)
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as well as all the points interior to these extremal points, including, for example, (0, 0, 0, 0).
The dual polytope ∆◦ is easily checked to have vertices

v1 = (1, 0, 0, 0),
v2 = (0, 1, 0, 0),
v3 = (0, 0, 1, 0),
v4 = (0, 0, 0, 1),
v5 = (−1,−1,−1,−1) .

(2.4)

Then, according to eq. (2.2), each lattice point m ∈ ∆ contributes a quintic monomial in
the coordinates x1,...,5 to the defining polynomial. For example, the origin m = (0, 0, 0, 0)
gives rise to the monomial x1x2x3x4x5. We then sum over these monomials, with arbitrary
complex coefficients, giving us a homogeneous quintic polynomial which defines the quintic
Calabi-Yau three-fold in P4.

All complex projective spaces and products thereof are toric varieties. To anchor
ourselves, it is worth mentioning that five of the manifolds we shall subsequently encounter
are hypersurfaces in products of projective spaces for which monad bundles have already
been analysed in the literature [2]. These are the five manifolds correspond to the ambient
spaces, P4, P1×P3, P2×P2, P1×P1×P2, and P1×P1×P1×P1. The first is the quintic
mentioned above. It is also interesting to point out that the transpose CICYs [32] of these
five are the so-called cyclic CICYs, which have been studied in ref. [1].

2.1 Smooth ambient spaces and the selection of 101 spaces

Half-billion reflexive 4-polytopes ∆ and their associated Calabi-Yau threefolds X represent
a formidable dataset. Of these, 124 distinguish themselves in that the ambient four-fold
A is smooth. (We emphasise that even for a singular A in the list, we can choose its
partial desingularisation and a polynomial representative of X so that the singular locus
of the ambient space does not intersect the zero locus [34]. Therefore, all our Calabi-Yau
hypersurfaces X are smooth.) These smooth toric 4-folds and the corresponding smooth
Calabi-Yau 3-folds form a natural starting point. In this paper we restrict ourselves even
further to the 101 pairs, whose toric 4-folds are not only smooth but also equipped with
simplicial Kähler cones (we will expound more upon this shortly), and thereon we build
vector bundles. We will call the spaces with the latter property simple manifolds. Focusing
on this subset leads to a number of technical simplifications which are helpful in dealing
with the bundle construction. A systematic analysis of singular toric varieties and their
Calabi-Yau hypersurfaces will be the subject of future work.

We will adhere to the notation of eq. (2.4) and represent both A and X by the vertices
of the dual polytope ∆◦. For reference, we present the complete dataset of the 124 smooth
ambient toric 4-folds in appendix C; the rows are the integer 4-vectors for the coordinates of
the vertices. Furthermore, for comparision, we have marked numbers 1 (the quintic), 2, 7,
26, 40 with a subscript P because these are precisely the 5 manifolds whose ambient spaces
are the products of projective spaces. It is interesting to notice that our dataset includes
10 ambient spaces of the form A = dPk1 × dPk2 and 4 of the form A = dPk1 × P1 × P1

(k1, k2 = 0, 1, 2, 3), where dPk is del Pezzo surface with k general points blown-up. Table 8
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h1,1 1 2 3 4 5 6
Number 1 9 28 44 18 1

Table 1. Number of simple toric Calabi-Yau hypersurfaces X in smooth toric ambient spaces for
each value of h1,1(X).

in appendix C lists these ambients separately. We have also marked 23 numbers with
a subscript N , which means that their Kähler cones are non-simplicial and we did not
attempt to analyse them in this paper.

2.2 Geometrical data

Armed with our dataset, we now proceed to discuss some geometrical quantities which will
be important to the construction of vector bundles on X. Again, we leave the details to
appendix B and will walk the reader through a detailed example in appendix C.

First, we can compute the Hodge numbers of X by simple combinatorics [34] of ∆◦

(beautifully reflecting mirror symmetry); the relevant equations are explicitly presented
in (B.4) and (B.5). It turns out that the equality h1,1(X) = h1,1(A) holds for each of the
101 Calabi-Yau 3-folds, which means that all the closed (1,1)-forms of X descend from A.
We will say that X is favourable if it has this property; favourability turns out to be very
convenient for the description of line bundles which we will see shortly. Indeed, for the
CICY dataset, containing 7890 threefolds, 4515 of them are favourable in the same sense.
It was on these favourable spaces that monads were classified in ref. [2]. It is convenient
that not only the 101 simple manifolds, but all our 124 manifolds with smooth ambient
space are favourable. To find h1,1(A), we use the relation

Pic(A) ' H2(A,Z) ' Zk−n , (2.5)

where Pic(A) is the Picard group of A, k, as before, is the number of vertices in the dual
polytope and n = dimCA = 4. For favourable manifolds we then have h1,1(X) = h1,1(A)
and this number can be easily extracted from table 7 in appendix C; one only needs to
count the number of vertices and subtract 4 from it. For reference, table 1 shows the
distribution of Hodge numbers h1,1(X) of the 101 simple manifolds.

Next, we need a description of the Kähler cone of X. The Kähler cone of the toric
ambient space A is determined by the structure of its polytope (for the details, see Theo-
rem 2 and Theorem 3 in appendix B). Since our Calabi-Yau hypersurface X is taken to be
favourable, every closed (1, 1)-form in X can be thought of as the pull-back of a (1, 1)-form
in A. Hence, the Kähler cone of X must contain that of A (note the reverse inclusion).
It is reasonable to suppose that the Kähler cone of X is the same as that of A. To be
more precise, we first introduce a basis {Jr} of (1, 1) forms. We will explain the precise
definition of this basis shortly. A general (1, 1) form J can then be expanded as J = trJr.
We can represent the Kähler cone of A (and of X) by an m× h1,1 matrix K = [K r̄

r], such
that all tr satisfying

K r̄
rt
r ≥ 0 for r̄ = 1, . . . ,m (2.6)
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correspond to allowed Kähler parameters. Here, the barred index r̄ runs over the facets of
the Kähler cone and m represents the number of these facets. Since the number of facets
cannot be less than the dimension of the cone, we have

m ≥ h1,1 . (2.7)

Our definition of simpleness, for our database of 124 Calabi-Yau threefolds, is then
when (2.7) is saturated, that is, m = h1,1. Appendix B explains in detail how the matrix
K can be determined.

We will also need the Mori cone of effective curve classes on X; this will be crucial to
check the anomaly cancellation conditions. Mori cone is the dual cone to the Kähler cone
and can thus be determined from the latter readily.

Furthermore, we will require the Chern classes and the intersection numbers of X;
these can be determined by a restriction from A. Indeed, the Adjunction formula dictates
that we have the following relation

c(A) = c(X) ∧ c(N ) (2.8)

between the total Chern classes of A and X, where N is the normal bundle of X, of which
we have a good understanding because its Chern class is simply the (multi-)degree of the
defining polynomial of X in A. In practice, these degrees can be obtained from the so-called
charge matrix βrρ which follows from the linear relations between the vertices vρ=1,...,k, as
described in appendix B. Given the charge matrix we simply have

c1(N ) = nrJr , where nr =
k∑
ρ=1

βrρ . (2.9)

The Chern class c(A) can be again determined by the combinatorics of the toric data and
is presented in appendix B (see (B.9) and (B.10), for the formula). Using the relation (2.8)
we subsequently find, apart from the vanishing c1(X), that:

c2(X) =

[ ∑
1≤ρ<σ≤k

βrρβ
s
σ

]
Jr ∧ Js , (2.10)

c3(X) =

[ ∑
1≤ρ<σ<τ≤k

βrρβ
s
σβ

t
τ −

( ∑
1≤ρ<σ≤k

βrρβ
s
σ

)
·
( ∑

1≤τ≤k
βtτ

)]
Jr ∧ Js ∧ Jt .(2.11)

Finally, the intersection numbers on A are

drstu =
∫
A
Jr ∧ Js ∧ Jt ∧ Ju ; (2.12)

note that we slightly abuse notation and refer to both the (1, 1)-forms in A and X as Jr

with r = 1, . . . , h1,1(X) = h1,1(A), because all our X are favourable. A number of linear
relations for the intersection numbers of A, explicitly given in eq. (B.7), can be extracted
from the toric data and explicitly solved for drstu. Subsequently, the triple intersection
numbers drst of X can be determined from the intersection numbers on A by

drst =
∫
X
Jr ∧ Js ∧ Jt =

∫
A
Jr ∧ Js ∧ Jt ∧ c1(N ) = nudrstu . (2.13)

– 7 –
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3 Construction of vector bundles

For heterotic string models, gauge bundles need to be constructed over the Calabi-Yau
3-folds. In the preceding section, we have introduced the base Calabi-Yau manifolds as
hypersurfaces in toric four-folds. In this section, our purpose is to construct explicit vector
bundles on them. In particular, we will extend the so-called monad construction which has
been applied to the CICY dataset in ref. [2], and arrive at analogous classification results.

3.1 Line bundles

In our vector-bundle construction, we will make frequent usage of line-bundles; they are
the basic building blocks of our gauge bundles. We begin by studying line-bundles on the
ambient A and then consider their restriction to X.

We have seen earlier that Pic(A) ' Zk−4 ' H2(A, Z), where k is the number of
vertices in the dual polytope for A. Hence, we can denote line bundles on A by OA(a)
for a ∈ Zk−4. With the standard basis {er} of unit normal vectors in Zk−4, we can then
define a basis {Jr} of (1, 1)-forms by setting

Jr ≡ c1(OA(er)) , r = 1, . . . , k − 4 (= h1,1(A)) . (3.1)

Relative to this basis, the first Chern class of an arbitrary line bundle OA(a) can be
expressed as

c1(OA(a)) = arJr , (3.2)

where the sum over r is implicit. The restriction of OA(a) to the hypersurface X will be
denoted by OX(a). Favourability of X says that we obtain all line bundles on X in this
way. Positive line bundles on X are those whose first Chern class is in the interior of the
Kähler cone. From eq. (2.6) this means a line bundle OX(a) is positive iff

K r̄
ra
r > 0 for r̄ = 1, . . . ,m . (3.3)

For such positive line bundles the Kodaira vanishing theorem implies that H i(X,OX(a)) =
0 for all i > 0, that is, the zeroth cohomology is the only non-trivial one.

3.2 The monad construction

Having understood the properties of the Calabi-Yau manifolds X and the line bundles on
them, we are now ready to apply monad construction in order to create vector bundles
over X. We can form direct sums of such line bundles and a monad bundle is essentially
the quotient of two such sums. More precisely, a monad bundle V over X is defined by the
following short exact sequence:

0→ V → B
f→ C → 0 (3.4)

where B =
rB⊕
i=1
OX(bi), C =

rC⊕
j=1
OX(cj) are direct sums of line bundles of ranks rB and

rC , respectively.

– 8 –
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From the definition, one can readily compute all relevant Chern classes of the monad
bundle V :

rk(V ) = rB − rC = N , with N = 3, 4, or 5 ,

c1(V ) =

 rB∑
i=1

bri −
rC∑
j=1

crj

 Jr ,

c2(V ) =
1
2
drst

 rC∑
j=1

csjc
t
j −

rB∑
i=1

bsi b
t
i

 νr , (3.5)

c3(V ) =
1
3
drst

 rB∑
i=1

bri b
s
i b
t
i −

rC∑
j=1

crjc
s
jc
t
j

 ,

where the 4-forms νr furnish the dual basis elements to the Kähler cone generatos Jr, and
satisfy the duality relation: ∫

X
Jr ∧ νs = δsr . (3.6)

As was discussed in ref. [2], a number of constraints should be imposed on our monad
construction. Let us summarise these constraints.

3.2.1 Mathematical constraints

Bundleness. It is not a priori obvious that the exact sequence (3.4) indeed defines a
bundle rather than a sheaf in general. However, thanks to the theorem by Fulton and
Lazarsfeld [35] this is the case provided the map f : B → C is sufficiently generic and
the bundle C ⊗ B? is globally generated. One can ensure that both conditions are met
by requiring that all the line bundles in C ⊗ B? =

⊕
i,j OX(kij) are positive, that is, the

vectors kij ≡ ci − bi should all satisfy eq. (3.3). So, explicitly, we demand that

K r̄
sk
s
ij ≥ 0 ∀r̄, i, j . (3.7)

Non-triviality. Suppose we have a monad bundle VR defined by the short exact sequence

0→ VR → B ⊕R fR→ C ⊕R→ 0 . (3.8)

where R is a sum of line bundles. Comparing eqs. (3.8) and (3.4), one can see that VR
is actually equivalent to V . To remove such equivalent monad bundles we should require
that no line bundle is contained in both B and C. This means that we can somewhat
strengthen the bundleness constraint and require, in addition to eq. (3.7), that there exists
at least one r̄ such that K r̄

rk
r
ij > 0.

Positivity. We will call a monad positive if both B and C are sums of positive line
bundles. From eq. (3.3) this means a positive monad is characterised by

K r̄
rb
r
i > 0 ∀r̄, i ; K r̄

rc
r
j > 0 ∀r̄, j . (3.9)

– 9 –
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Unlike the previous two conditions, positivity is primarily a technical requirement which
simplifies many calculations due to Kodaira vanishing being applicable. It also has impor-
tant physical consequences. For example, consider the long exact cohomology sequence

0 → H0(X,V ) → H0(X,B) → H0(X,C)
→ H1(X,V ) → H1(X,B) → H1(X,C)
→ H2(X,V ) → H2(X,B) → H2(X,C)
→ H3(X,V ) → H3(X,B) → H3(X,C) → 0 .

(3.10)

Given that H i(X,B) = H i(X,C) = 0 for all i > 0 it follows immediately that H2(X,V ) =
H3(X,V ) = 0. In particular, positive monads do not have anti-families. There is also a
more tenuous connection between positivity and stability of the bundle V . It was shown
in ref. [1] that all positive monads on cyclic CICYs are stable and, indeed, that all non-
positive monads are unstable. The relation is less clear on non-cyclic CICYs but in this
case stability has been proven for a large number of positive monads and it is suspected
that all positive monads are stable. On the other hand, it is also known that on non-cyclic
CICYs positivity is not a necessary condition for stability and some explicit examples of
non-positive stable monad bundles are known [41, 42]. In the following section, we will
focus on positive monads, that is monads satisfying the condition (3.9) and work out a
complete classification of these bundles. Subsequently, we will slightly relax this condition
and also study semi-positive monads, that is monads, which, instead of (3.9), satisfy:

K r̄
rb
r
i ≥ 0 ∀r̄, i ; K r̄

rc
r
j ≥ 0 ∀r̄, j (3.11)

3.2.2 Physical constraints

In addition to the mathematical constraints above, we should also consider physical ones.

Correct structure group. For the structure group of monad bundles to be either SU(3),
SU(4) or SU(5), we first need N = rB − rC = 3, 4 or 5. In addition, c1(V ) needs to vanish
because the structure group is special unitary. Therefore, we have that

rB∑
i=1

bri =
rB−N∑
j=1

crj ≡ Sr , ∀r = 1, . . . , h1,1(X). (3.12)

Anomaly cancellation. To ensure that 4-dimensional N = 1 gauge theory is anomaly-
free upon compactification, we use the standard Green-Schwarz cancellation method. We
can further allow the existence of a bulk 5-brane which wraps a holomorphic curve C, such
that its class W = [C] represents a true complex curve. Hence W should be effective, that
is, it should be an element of the Mori cone of X. If we take, for simplicity, a trivial hidden
bundle, the 5-brane class then becomes

W = c2(X)− c2(V ) =

c2r(X)− 1
2
drst

 rC∑
j=1

csjc
t
j −

rB∑
i=1

bsi b
t
i

 νr

≡ wr({bi}, {cj})νr . (3.13)
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Note, that the five-brane class W is determined by the coefficients wr which are functions
of the integers bri and crj . Hence, for each monad we can compute this five-brane class
explicitly and, since we have determined the Mori cone for our base manifolds as discussed
earlier, we can check if W is indeed effective. For favourable CICYs the Mori cone is the
positive quadrant4 and this check amounts to verifying that all wr ≥ 0. Here, the situation
is somewhat more complicated since the Mori cone of our toric Calabi-Yau manifolds is not
necessarily the positive quadrant in our chosen basis νr of four-forms. We will now explain
how to deal with this technical complication.

3.3 Mori cones and basis change in H2(X,Z)

For a simple space, by definition, the Kähler cone only has h1,1 facets and hence, it also
has exactly h1,1 generators which we denote by J̃r. So the generators J̃r can be set as
the standard basis elements of the h1,1-dimensional vector space by an appropriate linear
transformation. In other words, upon the linear transformation, the Kähler cone fits into
the positive quadrant. This is a crucial step for the finiteness arguments in the next section.

With our new basis elements, an arbitrary closed (1, 1)-form can be re-expressed as

asJs = asδtsJt = as(K−1)trK
r
sJt = ãrJ̃r , (3.14)

where ãr = Kr
sa
s and J̃r = Jt(K−1)tr. Note that we no longer distinguish barred indices

from unbarred ones and use the unbarred for both upper and lower indices of K since the
Kähler cone matrices are square for simple spaces.

Let ν̃r be the dual basis elements of J̃r such that∫
X
J̃r ∧ ν̃s = δsr (3.15)

and let us rewrite the 5-brane class in terms of the new basis:

W = wrν
r = w̃rν̃

r. (3.16)

It is then straightforward to see that the condition for anomaly cancellation gets translated
as follows:

The 5-brane class W is effective if and only if w̃r = (K−1)srws ≥ 0 for all r. (3.17)

Here, the matrix K which describes the Kähler cone of X has been introduced in
section 2.2 and the ws are computed from eq. (3.13).

4 Classification of positive monads

We have now laid the groundwork necessary to address the main purpose of this paper,
namely, to initiate the systematic study of monad bundles with structure group SU(N),
N = 3, 4, 5 over Calabi-Yau threefold hypersurfaces in four complex dimensional toric

4To be precise, the terminology positive “quadrant” is only valid in dimension 2 but we adhere to this

without ambiguity.
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ambient varieties. To begin with, we have first restricted to the 124 smooth ambient
spaces which all turn out to be favourable, and thence further to the 101 simple spaces
where the number of Kähler cone generators equals to the dimension of the cone. On
these spaces, we can very easily define monads, especially positive monads where the
entries which determine the sums of line bundles B and C in (3.4) are all strictly positive.
Some of the reasons for focusing on this data set of positive monads initially have already
been explained: technical advantages in computing bundle cohomology due to Kodaira
vanishing, the guaranteed absence of anti-families and the likely stability of positive
monad bundles. In this section, we will prove another attractive property which has
already been observed in the context of CICYs: Subject to the constraints explained in the
previous section positive monad bundles form a finite set. This opens up the possibility
of a complete classification which we will carry out explicitly.

4.1 Finiteness of the classification programme

One obvious question to ask before we start the actual search for positive monads is whether
there are finitely many solutions given the constraints described in the previous section. To
answer this question, we begin by re-stating the problem in a more formal way. We translate
the list of constraints in the previous section to a set of explicit Diophantine (in)equalities,
in complete analogy to the CICY case in [2]. For any simple Calabi-Yau hypersurface X
defined in a nonsingular toric 4-fold, and for any N = 3, 4, 5, we wish to find all sets of
integers b̃ri and c̃rj , where r = 1, . . . , h1,1(X), i = 1, . . . , rB = rC + N and j = 1, . . . , rC ,
satisfying the following constraints:

1. b̃ri ≥ 1, c̃rj ≥ 1 , ∀ i, j, r ;

2. k̃rij ≥ 0 ∀ i, j, r where k̃rij = c̃rj − b̃ri ;

3. ∀ i, j, ∃ r such that k̃rij > 0 ;

4.
rB∑
i=1

b̃ri =
rC∑
j=1

c̃rj = S̃r , ∀ r ; (4.1)

5. d̃rst

 rC∑
j=1

c̃sj c̃
t
j −

rB∑
i=1

b̃si b̃
t
i

 ≤ 2c̃2r(X) , ∀ r .

Here, tilded quantities are obtained by transforming lower r, s, t-type indices of their un-
tilded counterparts with (K−1)sr and upper indices with Ks

r, so, for example

d̃rst = dr′s′t′(K−1)r
′
r(K

−1)s
′
s(K

−1)t
′
t ,

b̃ri = Kr
r′b

r′
i .

Here, K is the matrix which describes the Kähler cone of the manifold and was introduced
in section 2.2. A few lines of algebra (see eq. (5.7) in ref. [2]) then lead us to the following
inequality on b̃rmax = maxi{b̃ri }:

2
N
c̃2r(X) ≥Mrsb̃

s
max, (4.2)

– 12 –



J
H
E
P
0
5
(
2
0
1
0
)
0
7
1

where Mrs =
h1,1∑
t=1

d̃rst. It turns out that these inequalities provide upper bounds of b̃rmax

for every simple Calabi-Yau 3-fold on which we are working. Moreover, since each b̃rmax

is a strictly positive integer, not all of the 101 simple spaces admit solutions to b̃rmax. In
fact, the inequalities above immediately eliminate all but 18 spaces, which include the 5
products of projective spaces studied in ref. [2].

In order to proceed further, having bounded the maximal entries of the bundle B, we
now find an upper bound of rB, the rank of B. This once again proceeds along the same
lines as section 5 of ref. [2]. There turn out to be three independent bounds, and for each
Calabi-Yau, we can check which one leads to the strongest constraint, which is then used
in any further calculations. These independent constraints are inequalities (5.13), (5.14)
and (5.16) of ref. [2]:

1. Given the calculated values of b̃rmax, the following inequality gives us an upper bound:

rB ≤ N

1 +
h1,1∑
r=1

b̃rmax

 . (4.3)

2. We first find non-negative integers ur, satisfying

Mrsu
s ≤ 2c̃2r(X). (4.4)

Note that the inequality above has essentially the same form as the one (4.2) for b̃rmax

and, therefore, the solution space for the ur is finite. The non-negative integers ur

are related to rB by

rB = N +
h1,1∑
r=1

ur . (4.5)

Given the finite solution set for ur, we take the maximum of the corresponding rB
values.

3. As in method 2, we first solve the inequality below for non-negative integers ur:

h1,1∑
s=1

(
2
h1,1∑
t=1

d̃rstb̃
t
max + d̃rss

)
us ≤ 2c̃2r(X) +Nd̃rstb̃

s
maxb̃

t
max. (4.6)

Then we calculate all possible values of rB from eq. (4.5) and find their maximum.

Since rB and b̃rmax are now both bounded, we conclude that, as in the CICY cases, the
number of positive monads over the 101 simple Calabi-Yau hypersurfaces in smooth toric
4-folds is finite, and in fact exists only on 18 of them.

4.2 The classification results

Given that our problem is bounded we can now explicitly classify all solutions by a computer
scan. For each of the 18 simple Calabi-Yaus with solutions to the inequalitiy for b̃rmax, we
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Space No. 1P 2P 3 4 6 7P 12 17 22 26P 40P
SU(3) 20 611 4 9 153 38 74 34 9 304 251
SU(4) 14 308 0 0 35 27 0 0 0 135 70
SU(5) 9 56 0 0 19 10 0 0 0 0 0

Table 2. Number of positive monad bundles over the 11 CY 3-folds for which positive monads
exist. The numbers labelling the space are according to table 7 where the toric data of the base
manifolds can be found. The subscript P indicates that the space is a hypersurface in a product of
projective spaces.

scan over all allowed values of N, rB and over all values of the sum vector S̃r. This last
vector, is again constrained, and is subject to inequality (5.7) of [2]:

2c̃2r(X) ≥ N

rB
MrsS̃

s. (4.7)

For each fixed set of these quantities we generate all multi-partitions of entries b̃ri and c̃rj
modulo permutation symmetry, since the order of summands in a direct sum of line
bundles is clearly irrelevant.

Upon performing this scan, we find that positive monads only exist over 11 simple
Calabi-Yaus out of the 18. There are 2190 positive monads in total. The majority of these
bundles, namely 1853 of them, arises on the five hypersurfaces in products of projective
spaces and is, therefore, already contained in the classification carried out in ref. [2]. The
remaining 337 bundles are new. The number of bundles as a function of ind(V ), the net
number of generations, is shown in part (a) of figure 1 and table 2 lists the number of
solutions for each of the 11 base manifolds. Two explicit examples are

1 : 0→ V +
1 → OX1(1, 1)⊕7 f1→ OX1(5, 1)⊕OX1(1, 3)⊕2 → 0 ,

2 : 0→ V +
2 → OX2(1, 1)⊕15 f2→ OX2(1, 2)⊕5 ⊕OX2(2, 1)⊕5 → 0 ,

where the first one is an SU(4)-bundle on the space number 6 and the second one an SU(5)-
bundle on 7P (the numbering of the spaces is according to table 7 where the toric data for
these base spaces can be found). Note that h1,1 = 2 for both of the spaces.

We would now like to impose a basic three-familiy constraint on our models. We require
that the number of families is a multiple of three, that is, ind(V ) = 3k for k ∈ Z6=0, and
that the Euler number of X is divisible by the potential group order k, that is, k | χ(X).
These two conditions are clearly necessary (although not sufficient) for the existence of a
free quotient X/G with three generations “downstairs”, where |G| = k. The number of
models satisfying these condition is given, as a function of ind(V ), in part (b) of figure 1
and their total number is given in table 3.

For the above constraints, we have used that possible orders, k, of discrete symmetry
groups must divide the Euler number of the manifold. There exist a number of more
refined topological invariants, given in ref. [12], which can be used to further constrain the
group order. These are the Euler characteristics χ(N k ⊗ TX l) and Hirzebruch signatures
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No Constraints ind(V ) = 3k, k | χ(X)

SU(3) 1507 (283) 204 (59)
SU(4) 589 (35) 57 (5)
SU(5) 94 (19) 4 (0)
Tot. 2190 (337) 265 (64)

Table 3. Total number of positive monads on the 11 base manifolds (left column) and those which
satisfy a basic three-generation constraint (right column). The numbers in the parenthesis only
count new monads which have not been already found in ref. [2].

(a) (b)

Figure 1. The number of positive monads as a function of ind(V ). Figure (a) contains all models,
figure (b) only those which satisfy the three-familiy constraint ind(V ) = 3k, k | χ(X). The three
colours blue, red, and green correspond to SU(3), SU(4) and SU(5) models, respectively.

σ(N k⊗TX l) of the “twisted” bundlesN k⊗TX l (whereN is the normal bundle of X) which
must be divisible by the group order |G| for all integers k, l ≥ 0. It was shown in ref. [12],
that is it sufficient to consider the cases (k, l) = (0, 1), (1, 0), (2, 0), (3, 0) for the Euler
characteristic and (k, l) = (1, 1) for the Hirzebruch signature without loosing information.
We have computed these indices for all the 11 spaces with positive monad bundles, using
the equations provided in ref. [12]. Their common divisors in any one case provides us
with a list, S(X), which must include the orders of all freely-acting symmetry groups for
X. Requiring that k = ind(V )/3 is an element of this list dramatically reduces the number
of solutions and we remain with 21 positive monads over 3 Calabi-Yau spaces, all of which
are hypersurfaces in products of projective spaces. These 21 models have already been
found in ref. [2] and will, therefore, not be discussed further in this paper. We conclude
that there are no physically relevant positive monad bundles on the 101 simple Calabi-Yau
hypersurfaces in smooth toric varieties over and above what has been found for CICYs.

5 Partial search: semi-positive monads

As was mentioned above, unfortunately, the classification programme of positive monads
has not given us any new three-generation string models. So, a natural approach to take,
in order to find more realistic string models, is to look for bundles under somewhat weaker
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No Constraints ind(V ) = 3k, k | χ(X) Constraints eq. (5.1)

SU(3) 35206 1902 195
SU(4) 8066 579 72
SU(5) 1049 109 13
Tot. 44321 2590 280

Table 4. The cumulative number of semi-positive monads on the 101 simple Calabi-Yau manifolds
with S̃r ≤ 2. The left column gives the total number of models, the middle column the models
satisfying the “mild” three-generation constraint ind(V ) = 3k, k | χ(X) and the right column those
which satisfy the “strong” three-family constraint, eq. (5.1).

(a) (b)

Figure 2. The number of semi-positive monads as a function of ind(V ). Figure (a) contains all
models, figure (b) only those which satisfy the “strong” three-familiy constraint, eq. (5.1). The
three colours blue, red, and green correspond to SU(3), SU(4) and SU(5) models, respectively.

constraints. The most obvious relaxation is to accept zeros for b̃ri and c̃rj , which means that
we are searching for semi-positive monads. It is straightforward to see that the classification
problem, based on the constraints in section 3.2 but with the positivity condition (3.9)
replaced by (3.11) is no longer closed, in the sense that infinite sets of sums of line bundles
B and C compatible with all constraints can be found. The set of associated inequivalent
bundles V might still be finite, due to more subtle isomorphisms between monads, but we
will not address this somewhat involved problem here. Instead, we “artificially” impose
the bound S̃r ≤ 2 for all r which leads to a finite search problem for semi-positive monads.

As before, we impose the following physical constraints on the bundle solutions:

1. ind(V ) = 3k , k 6= 0 ,

2. k | χ(X) , (5.1)

3. k belongs to the set, S(X), of possible group orders .

in order to filter out candidates for realistic three-generation models. The statistics of
semi-positive monads on the 101 simple Calabi-Yau manifolds is summarised in figure 2
and table 4.

While positive monads existed on only 11 of the 101 base manifolds, semi-positive
monads can be found on all spaces. Their number is considerably larger than that of pos-
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Space No. 40P 43 56 61 63 69 71 78 105 106 113
SU(3) 10 3 2 13 7 32 15 39 6 6 62
SU(4) 4 1 0 5 2 13 3 19 2 2 21
SU(5) 1 0 0 1 0 2 0 5 0 0 4

Table 5. Number of semi-positive monad solutions with S̃r ≤ 2, which satisfy the “strong” three-
family constraint (5.1). The subscript P stands for a product of projective spaces.

itive monads, as can be seen by comparing tables 4 with 3. Recall, that in the case of
positive monads, there was no model which satisfied the “strong” three-generation con-
straint (5.1). In contrast, we now have 195 SU(3) models, 72 SU(4) models and 13 SU(5)
models consistent with this constraint, as table 4 shows. These models arise on 11 different
base manifolds, distributed as shown in table 5.

We remark that the bound on S̃r was set to 2 merely for practical reasons, in order to
keep cpu times in the computer search low. There is no implication that physical models
with S̃r > 2 do not exist. In fact, it can be explicitly seen, at least for some base spaces,
that this is not the case. For example, as can be seen from table 5, we have found no three-
generation bundles with S̃r ≤ 2 on the space 73, while, for S̃r ≤ 3 there turn out to exist 49,
21 and 6 bundles with structure groups SU(3), SU(4) and SU(5), respectively. Hence, our
results do not represent an exhaustive classification of semi-positive three-family models.
However, they show that a significant number of promising models do indeed exist.

Now, let us take a glance at some example solutions. We will consider SU(4) semi-
positive monads over the space 71 (the seventh column in table 5), whose set of possible
group orders, S(X), turns out to be {2, 4, 8, 16}. For this example, h1,1(A) = h1,1(X) = 4,
and therefore, every line bundle is described by a 4-tuple of integers. As can be seen
in table 5, there are three SU(4) semi-positive monads over X defined by the exact
sequence (3.4):

1 : 0→ V1 → OX(1, 0, 0, 0)⊕OX(0, 1, 0, 0)⊕2 ⊕OX(0, 0, 0, 1)⊕2 f1→ OX(1, 2, 0, 2)→ 0 ,

2 : 0→ V2 → OX(1, 0, 0, 0)⊕2 ⊕OX(0, 0, 1, 0)⊕2 ⊕O(0, 0, 0, 1)⊕2 f2→ OX(1, 0, 1, 1)⊕2 → 0 ,

3 : 0→ V3 → OX(1, 0, 0, 0)⊕2 ⊕OX(0, 1, 0, 0)⊕2 ⊕O(0, 0, 0, 1)⊕2 f3→ OX(1, 1, 0, 1)⊕2 → 0 .

Finally, as the number of SU(5) bundles are reasonably small, we list them exhaustively
in table 6.

6 Conclusions and prospects

In this paper, we have constructed heterotic E8×E8 string models, based on toric Calabi-
Yau manifolds and non-trivial vector bundles on them. Specifically, we have restricted our
search to a simple class of toric Calabi-Yau manifolds, namely the 101 manifolds which
arise as hypersurfaces in smooth toric four-folds and which have simplicial Kähler cones.
Monad bundles with structure group SU(N) (where N = 3, 4, 5) have been built over each
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of these 101 spaces, and a stringent 3-generation constraint (see eq. (5.1)) has been imposed
on the resulting models, in order to filter out phenomenologically promising cases.

We have completely classified all positive monads, consistent with heterotic anomaly
cancellation, on our 101 base spaces, resulting in a total of 2190 bundles concentrated on
just 11 manifolds. From those, only 21 (19 of rank 3, 1 of rank 4, and 1 of rank 5) pass the
three-family test, but they all correspond to base spaces which are hypersurfaces in products
of projective spaces and have, hence, already been found in the classification of positive
monads on CICYs carried out in ref. [2]. We have then moved on to a partial search of semi-
positive monads, which led to a substantially larger list of about 44000 models. Among
these, 280 (195 of rank 3, 72 of rank 4, and 13 of rank 5) pass the three-family test. The
13 semi-positive monads of rank 5 have been listed in table 6; each of them, via an SU(5)
GUT, could potentially lead to a standard model with three generations. These models,
particularly the ones with rank 4 and 5, provide a starting point for the construction of
realistic heterotic models on toric Calabi-Yau manifolds with monad bundles.

It is encouraging that even our preliminary scan of the semi-positive bundles has led
to a significant number of promising models. It is likely that a more systematic scan,
possibly allowing for slightly negative values of the integers bri and crj which specify the
monad bundle, will lead to thousands of such models. Such a systematic scan as well as a
more detailed analysis of the resulting models will be the subject of future work.
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A Construction of the manifolds in toric geometry

The three sub-sections in this appendix will constitute a step-wise summary of the
construction of our three-folds. First, we introduce the basic tool kit which will be
essential in toric description of varieties, namely, lattices, cones and fans. Second, we
outline the construction of the toric variety, and finally, we define the Calabi-Yau manifold
as a hypersurface in this ambient toric variety. For a more complete review, the reader
can consult [28–31, 36–38].

A.1 Basic definitions: lattices, cones and fans

Let us begin by discussing the spaces on which the toric combinatorial data is defined.
We first introduce a rank n integer lattice N and define its dual lattice M via the natural
inner-product 〈 · , · 〉 : M ×N → Z. Their extensions over R are denoted by NR and MR,
and the same bracket symbol will be used for the extended inner-product. We can think
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Sp No. B C ind(V ) Group Order

40P OX

[
1

0

0

0

]
⊕

[
0

1

0

0

]
⊕

[
0

0

1

0

]⊕2

⊕

[
0

0

0

1

]⊕2

OX

[
1

1

2

2

]
-24 2, 4, 8, 16

61 OX

[
1

1

0

0

]
⊕

[
1

0

0

0

]
⊕

[
0

1

0

0

]
⊕

[
0

0

1

0

]⊕2

⊕

[
0

0

0

1

]⊕2

OX

[
1

1

1

1

]⊕2

-48 2, 4, 8, 16

69 OX

[
1

0

0

0

]
⊕

[
0

1

0

0

]⊕2

⊕

[
0

0

1

0

]⊕2

⊕

[
0

0

0

1

]
OX

[
1

2

2

1

]
-48 2, 4, 8, 16

OX

[
1

0

0

0

]⊕2

⊕

[
0

1

0

0

]⊕2

⊕

[
0

0

0

1

]⊕2

OX

[
2

2

0

2

]
-24

78 OX

[
1

0

0

0

]⊕2

⊕

[
0

1

0

0

]
⊕

[
0

0

1

0

]⊕2

⊕

[
0

0

0

2

]
OX

[
2

1

2

2

]
-48 2, 4, 8, 16

OX

[
1

0

0

0

]⊕2

⊕

[
0

1

0

0

]
⊕

[
0

0

1

1

]
⊕

[
0

0

1

0

]
⊕

[
0

0

0

1

]
OX

[
2

1

2

2

]
-48

OX

[
1

0

0

1

]
⊕

[
1

0

0

0

]
⊕

[
0

1

0

0

]
⊕

[
0

0

1

0

]⊕2

⊕

[
0

0

0

1

]
OX

[
2

1

2

2

]
-48

OX

[
1

1

0

0

]
⊕

[
1

0

0

0

]
⊕

[
0

0

1

0

]⊕2

⊕

[
0

0

0

1

]⊕2

OX

[
2
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0

0

0
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1

0
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0

0
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0

1
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0

0

0

0

0

1

 OX
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1

1

0

1

1
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-21
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0

1

0

0

1

0

⊕


0

1

0

0

0

0

⊕


0

0

1

0

0

0


⊕2

⊕


0

0

0

0

1

0

⊕


0

0

0

0

0

1


⊕2

OX


0

1

1

0

1

1


⊕2

-21

Table 6. Exhaustive list of SU(5) semi-positive monads with S̃r ≤ 2, satisfying the three-generation
constraint (5.1); we have marked the simple toric Calabi-Yau spaces in the left-most column, as
well as their respective possibilities for orders of freely acting symmetry groups in the right-most.
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Figure 3. The fan for P2 (left) and the 2-dimensional dual cones (right).

of N and M (respectively NR and MR) as being isomorphic to Zn (respectively Rn), and
the inner product can be taken as simply the vector dot-product. Note that neither the
lattices nor their real extensions are directly where the toric variety itself lives; they only
furnish as auxiliary spaces. The rank of the lattices, however, is equal to the complex
dimension of the toric variety.

Having introduced these objects, we can now define the basic tool-kit. A set σ ⊂ NR
is a strongly convex rational polyhedral cone if

σ =

{
k∑
i=1

aivi | ai ∈ R≥0

}
(A.1)

for a finite set of vectors v1, . . . ,vk ∈ N and σ ∩ (−σ) = {0}. For simplicity, σ is often
called a cone. Every cone σ ⊂ NR has its dual cone σ̌ ⊂MR defined as

σ̌ = {m ∈MR | 〈m,v〉 ≥ 0 ∀v ∈ σ} . (A.2)

A set τ ⊂ σ is called a face of the cone σ if it is spanned over R≥0 by a subset of generators
of σ and lies on the boundary of σ. A fan is then defined as a collection Σ of cones in NR
such that each face of a cone in Σ is also a cone in Σ and the intersection of two cones in Σ is
a face of each. The collection of d-dimensional cones in Σ is denoted by Σ(d) for 0 ≤ d ≤ n.
We also denote the union of all the cones in Σ by |Σ| and call it the support of Σ.

As an example, figure 3 depicts a fan in NR = R2, shown at the left. This fan consists
of one 0-dimensional cone, namely, the origin (0, 0), three 1-dimensional cones, namely the
three rays generated respectively by v1 = (1, 0), v2 = (0, 1), v3 = (−1,−1), as well as three
2-dimensional cones (shaded), generated respectively by the neighbouring pairs: {v1,v2},
{v2,v3}, and {v3,v1}. The three 2-dimensional dual cones are depicted on the right.

A.2 Construction of toric varieties

There are several equivalent ways how we construct toric varieties from their toric data,
that is from their associated fans. Amongst them is the algebro-geometric construction,
where each affine patch of the variety is explicitly realised as the maximal spectrum of some
ring. One of the basic ideas underlying this local construction is that there is an one-to-one
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correspondence between the cones σ ∈ Σ and the orbits of the torus action T on the toric
variety A. It turns out that the correspondence is dimension-reversing. To be precise,

dim(σ) + dim(orb(σ)) = n. (A.3)

In particular, the top-dimensional cones correspond to the fixed points of the T -action
and the 1-dimensional cones to the T -invariant divisors. We denote such divisors by Dρ

where ρ ∈ Σ(1) are the edges in the fan.
In this paper, however, we are more interested in the global construction. Let us first

recall the ordinary construction of Pn. One considers Pn as the quotient of Cn+1 − {0} by
the multiplicative group C∗. Each point in Pn is labelled by its homogeneous coordinates
(x1, . . . , xn+1), which we identify with λ · (x1, . . . , xn+1) for all λ ∈ C∗. This can be easily
generalised to the case of arbitrary toric varieties.

With each edge ρ ∈ Σ(1) of the fan Σ, we associate a homogeneous coordinate xρ.
So there are k homogeneous coordinates (x1, . . . , xk) on Ck, where k = |Σ(1)|. Just as
for ordinary projective spaces, the next task is to identify certain measure zero subsets of
Ck which should be removed. Let S be a subset of Σ(1) that does not span a cone of Σ
and let Z(S) ⊂ Ck be the linear subspace defined by setting xρ = 0 ∀ ρ ∈ S. Now let
Z(Σ) ⊂ Ck be the union of all such subspaces V (S). Then the toric variety is constructed
as a quotient of Cn − Z(Σ) by some group G. We refer to [36] for a detailed description
of how G is constructed. Here we rather content ourselves with a partial answer which is
valid for the smooth toric varieties which are the primary interest of the present paper.

For such cases, G is isomorphic to (C∗)k−n and the G quotient is implemented by the
following equivalence relations

(x1, . . . , xk) ∼ (λβ
r
1

r x1, . . . , λ
βrk
r xk) , (A.4)

with λr ∈ C∗. The coefficients βrρ are defined by the linear relations
k∑
ρ=1

βrρvρ = 0 which

amount to n independent conditions. Hence, βrρ form an (k−n)× k matrix which is often
referred to as a charge matrix [36]. Choosing all its entries to be integers and requiring
that g.c.d.(βr

1, . . . , β
r
k) = 1 it is uniquely defined (up to lattice isomorphisms). It is easy

to see that G preserves Ck − Z(Σ) and hence, we can take the quotient

A = (Ck − Z(Σ))/G , (A.5)

to construct the toric variety.

A.3 Construction of Calabi-Yau hypersurfaces

In this sub-section, we briefly describe how to construct our desired Calabi-Yau three-fold
X as a hypersurface of a 4-dimensional ambient toric variety A.

Not every toric n-fold contains a Calabi-Yau hypersurface. To formulate what exactly
the condition on the fan is, we first need to introduce an n-dimensional polytope ∆ ⊂MR.
By a polytope, we mean that ∆ is the convex hull of a certain finite set, which one can
take to be the set of vertices of ∆. This is called the vertex representation, for the obvious
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reason. As an equivalent definition, a polytope can also be defined as the intersection of
a finite number of half-spaces, which can be chosen as the collection of facet-defining half-
spaces. We only consider a polytope containing the origin and hence, can subsequently
define its dual polytope ∆◦ ⊂ NR as

∆◦ = {v ∈ NR | 〈m,v〉 ≥ −1 ∀m ∈ ∆} . (A.6)

The polytope ∆ is called reflexive if all the vertices of ∆ as well as ∆◦ are lattice points.
Note that the dual polytope ∆◦ ⊂ NR also contains the origin as its interior point. We
can then define a fan Σ in NR which consists of the cones over the faces of ∆◦ with their
apexes at the origin. This fan Σ is called the normal fan of the polytope ∆, and we have
the following statement: the normal fan Σ in NR of a reflexive polytope ∆ ⊂MR defines a
toric n-fold as well as a Calabi-Yau (n-1)-fold embedded therein.

More precisely, the normal fan tells us about the defining equation of the Calabi-Yau
hypersurface as follows. To each lattice point m of a reflexive polytope ∆ ⊂MR we assign
a monomial

x[m] =
k∏
ρ=1

x
〈m,vρ〉+1
ρ , (A.7)

where xρ=1,...,k are the homogeneous coordinates of the toric variety A associated to the
polytope ∆. These homogeneous coordinates correspond to the k edge vectors vρ=1,...,k of
the normal fan Σ of ∆. Now, it turns out that a linear combination of all the monomials
corresponding to the lattice points m ∈ ∆ is a homogenous polynomial and hence, its zero
locus can define a hypersurface X to A. What is more, the hypersurface X indeed satisfies
the Calabi-Yau condition. It is straightforward to see that this defining polynomial is a

section of the line bundle OA(
k∑
ρ=1

Dρ), the anticanonical bundle of the ambient space A.

In other words, the normal bundle of X is

N = OA
( k∑
ρ=1

Dρ

)
. (A.8)

Figure 4 is a 2-dimensional example depicting a reflexive polytope ∆ ⊂ MR and the
dual polytope ∆◦ ⊂ NR. Note that the normal fan Σ of ∆, which is the collection of
the cones over the faces of ∆◦, reproduces the fan for P2 in figure 3. Note also that the
polytope ∆ ⊂ MR in the figure gives us all the monomials of degree 3 and hence, defines
the toric variety P2 as well as the family of cubic Calabi-Yau hypersurfaces. Of course, the
lattice of our main concern is of rank 4, rather than of rank 2 as in this simple example.
It turns out that there are 473, 800, 776 4-dimensional reflexive polytopes [22] and hence,
that many Calabi-Yau 3-folds arise this way.

B Relevant properties of the manifolds

Various properties of the ambient toric varieties and their associated Calabi-Yau hyper-
surfaces can be easily read off from the toric data. Here, we summarise the ones relevant
to our string models.
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Figure 4. A polytope ∆ ⊂MR(left) and its dual polytope ∆◦ ⊂ NR(right).

Given a toric variety constructed by its fan, a natural question to ask is how we
describe line bundles thereon; this will be key to our discussion of monads. We have a
simple answer to this question for a smooth, compact, toric variety. The Picard group
Pic(A), which parametrises the space of line-bundles on A, is determined by the following
short exact sequence

0→M
α→

k⊕
ρ=1

ZDρ
β→ Pic(A)→ 0 (B.1)

where k = |Σ(1)| is the number of edges in Σ and n = dimCA, we recall, is the complex

dimension of A. The first map α maps m to
k∑
ρ=1
〈m,vρ〉Dρ and therefore,

Ker(β) = Im(α) = {(〈m,v1〉 , . . . , 〈m,vk〉) | m ∈M} .

This expression for Ker(β) together with the exactness of the sequence (B.1) fixes the
linear map β up to lattice isomorphisms. In fact, the (k − n)× k matrix representing the
β-map, is precisely the charge matrix

[
βrρ
]

defined in A.2. Since the dual lattice M is
isomorphic to Zn, the short exact sequence (B.1) implies

Pic(A) ' Zk−n . (B.2)

So every line bundle is determined by a (k − n)-tuple of integers, and we can denote it by
OA(a) for a ∈ Zk−n. A basis of (1, 1)-forms for H2(A,Z) can then be defined by setting
Jr ≡ c1(OA(er)) for r = 1, . . . , k − n, where er are the standard unit normal vectors in
Zk−n. With this definition the first Chern class of line-bundles can be written as

c1(OA(a)) = arJr , (B.3)

where the sum over the index r is implicit.
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The non-trivial Hodge numbers of the smooth Calabi-Yau 3-fold X are given by the
formulas [34]

h1,1(X) = l(∆◦)− 5−
∑

codimΘ̌=1

l?(Θ̌) +
∑

codimΘ̌=2

l?(Θ̌)l?(Θ) , (B.4)

h2,1(X) = l(∆)− 5−
∑

codimΘ=1

l?(Θ) +
∑

codimΘ=2

l?(Θ)l?(Θ̌) . (B.5)

Here, l(Θ) denotes the number of lattice points in Θ, and l?(Θ) the number of lattice
points in the interior of Θ. The summations run over the faces Θ and Θ̌ of the polytopes
∆ and ∆◦, respectively. As was mentioned in the main text of this paper, it turns out that
all the pairs of A and X within our database satisfy dim(Pic(A)) = h1,1(X) = h1,1(A).
For simplicity, we will denote this number by h1,1.

Another important task is to compute the intersection numbers of both the am-
bient space A and the Calabi-Yau hypersurface X. We first work out the intersection
numbers of A

drstu =
∫
A
Jr ∧ Js ∧ Jt ∧ Ju , (B.6)

where r, s, t, u = 1, . . . , h1,1. The basic idea is to take four edge vectors of the fan and
check whether they span a four-cone or not. A linear equation on drstu arises from the
choice of the four distinct edges ρ1, ρ2, ρ3, ρ4 as follows:

drstuβ
r
ρ1β

s
ρ2β

t
ρ3β

u
ρ4 =

{
1 if {vρ1 ,vρ2 ,vρ3 ,vρ4} spans a 4-cone ,
0 otherwise ,

(B.7)

where the summations over r, s, t, u are implicit. Even if a vector appears multiple times
in the set {vρ1 ,vρ2 ,vρ3 ,vρ4}, eq. (B.7) still holds provided the set does not span a cone.
By making different choices for the set of vectors we can obtain a set of simultaneous equa-
tions which uniquely determine the intersection numbers drstu. It is then straightforward to
calculate the intersection numbers drst of the (favourable) Calabi-Yau hypersurface X by

drst =
∫
X
Jr ∧ Js ∧ Jt =

∫
A
Jr ∧ Js ∧ Jt ∧ c1(N ) = nudrstu (B.8)

where c1(N ) := nuJu. Note that, by abuse of notation, we denote the (1,1) forms on A
and their pull-backs to X by the same symbol Jr.

We now move on to Chern classes. The total Chern class of A is given by

c(A) =
k∏
ρ=1

[1 + c1(OA(Dρ))] (B.9)

where OA(Dρ) is the line-bundle associated to the toric divisor Dρ. On the other hand, the
correspondence between divisors and line-bundles can be inferred from the β-map which
appears in (B.1). The expression (B.9) for the Chern class then simplifies to

c(A) =
k∏
ρ=1

[
1 + βrρJr

]
, (B.10)
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where Jr ≡ c1(OA(er)) for r = 1, . . . , k−n. For instance, for the first two non-trivial terms
in (B.10) one reads off

c1(A) =
∑

1≤ρ≤k
βrρJr ,

c2(A) =
∑

1≤ρ<σ≤k
βrρβ

s
σJrJs .

On the other hand, we have the following standard short exact sequence

0→ TX → TA|X → N → 0 , (B.11)

which relates the tangent bundles TX of our Calabi-Yau threefold X, the restriction TA|X
of the tangent bundle TA of A to X and the normal bundle N of X in A. The above
sequence implies that the Chern classes of these three bundles are related by

c(A) = c(X) ∧ c(N ) . (B.12)

This relation can also be understood in terms of the adjunction formula. Combining the
result with eqs. (A.8) and (B.10), it is straightforward to calculate c(X), and in particular,
c2(X), which, in fact, turns out to be equal to c2(A).

In the rest of this section, we study Kähler and Mori cones. As a preparation, we cite
the following theorem

Theorem 1 The toric variety of a fan Σ in NR is projective if and only if Σ is the normal
fan of an n-dimensional lattice polytope ∆ ⊂MR.

which assures us that A always admits Kähler structures.
In order to determine the Kähler cone of A, we first associate to each cohomology class

a =
k∑
ρ=1

aρ [Dρ] ∈ H1,1(A,R), a support function ψ : |Σ| → R defined as follows. For every

maximal cone σ ∈ Σ, there is a unique mσ ∈MR such that

〈mσ,vρ〉 = −aρ if vρ ⊂ σ , (B.13)

and extending this linearly over the cone σ we can define a linear function on σ ⊂ Σ. Now,
with this as a local definition, we construct the support function ψ on the whole support
|Σ|, which can be thought of as the union of all maximal cones of Σ. More precisely, we
define the Σ-piecewise linear function ψ : |Σ| → R so that

ψ(v) = 〈mσ,v〉 , (B.14)

where σ is a maximal cone containing v. Note that ψ is only well defined up to the linear
equivalence of divisors (following from the short exact sequence (B.1)). Note also that ψ(v)
has a well-defined value even when v is contained in more than one maximal cones, due to
eq. (B.13) and to the linearity over each σ. We call ψ the support function of the class a.
The cohomology class a is said to be convex if its support function ψ is a convex function
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in the usual sense.5 Convex classes form a cone denoted by cpl ⊂ H1,1(A,R). Now, the
following theorem determines the Kähler cone of A:

Theorem 2 If A is a simplicial projective toric variety,6 then cpl(Σ) ⊂ H1,1(A,R) is a
strongly convex polyhedral cone with nonempty interior in H1,1(A,R). Furthermore, the
interior of this cone is precisely the Kähler cone of A.

Support functions ψ corresponding to Kähler classes are then strictly convex. Thus, the
theorem below provides the practical prescription for the Kähler cone:

Theorem 3 If A is a simplicial projective toric variety, then the support function ψ of
k∑
ρ=1

aρ[Dρ] is strictly convex if and only if for every primitive collection7 P = {v1, . . . ,vl},

we have
ψ(v1 + · · ·+ vl) > ψ(v1) + · · ·+ ψ(vl) . (B.15)

For each primitive collection P, eq. (B.15) gives a linear homogeneous inequality for aρ,
which then leads to the corresponding inequality for the Kähler moduli tr. Here, we make
use of the map β, which relates aρ linearly to tr. Now we scan over all the primitive
collections of the fan Σ and choose a maximal set of the independent inequalities. This set
forms a system of linear homogeneous inequalities on tr which can be written as

K r̄
rt
r ≥ 0 for r̄ = 1, . . . ,m . (B.16)

with an m× h1,1 matrix K = [K r̄
r], where m is the cardinality of the maximal set.

For a favourable Calabi-Yau hypersurface X, every closed (1, 1)-form in X can be
thought of as the pull-back of a (1, 1)-form in A. Hence, the Kähler cone of X must contain
that of A (note the reverse inclusion). Although we do not have a complete understanding
of the Kähler cone of X, it is plausible to conjecture that for smooth toric ambient spaces
the Kähler cone of X is equal to that of A. We will work under this assumption when we
need the precise details of the Kähler cone of X.

The set of effective curves in a Kähler manifold generates a cone; these live in H2(A,Z)
and form a cone which is dual to the Kähler cone. This cone is called the Mori cone of
A. Of course, once the Kähler cone is known, the Mori cone can be obtained as its dual.
On the other hand, the toric data provides an alternative way of calculating the Mori
cone [39], and this can serve us as a consistency check for our Kähler cone calculations.
Indeed, we have confirmed that each of the edge vectors of the Mori cone corresponds to
a facet of the Kähler cone.

Now, the Mori cone of X should be contained in that of A due to the duality of Mori
and Kähler cones. We assume that the two Mori cones are the same for our collection of
smooth spaces.

5A real-valued function f defined on a convex subset C ⊂ Rn is called convex if, for any two points x

and y in its domain C and any t in [0, 1], we have f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).
6A toric variety is simplicial if each cone in its fan is simplicial, i.e., if the generators of each cone are

linearly independent.
7A primitive collection of a fan Σ is a subset P ⊂ Σ(1) s.t. P itself is not the set of generators of a cone

in Σ while every proper subset of P is.
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C The database and an illustrative example

Table 7 lists the complete database of the 124 smooth toric 4-folds which contain the Calabi-
Yau 3-folds; the two hodge numbers of the Calabi-Yaus are denoted below the space number
as (h1,1, h2,1). The toric data is expressed in terms of the 4-dimensional reflexive polytopes
∆◦ ⊂ NR. For reference, we separately tabulate in table 8 those ambient spaces which are
products of del Pezzo surfaces and projective spaces.

As outlined previously, the polytope information is sufficient in order to determine all
the relevant differential-geometric properties of the ambient and Calabi-Yau spaces. Let
us illustrate this by an explicit example. The two simplest spaces in table 7, with labels
1P and 2 correspond respectively to the quintic hypersurface in P4 and the bidegree-(3,3)
hypersurface in P2 × P2. Hence, we will work with the next simplest and non-trivial space
with label 3.

Fan. The toric data in table 7 shows the lattice vertices of ∆◦ ⊂ NR. Because the
normal fan Σ in NR consists of the cones over the faces of ∆◦, the lattice vertices of ∆◦

correspond precisely to the edge vectors of Σ. Hence, the set of one-cones can be directly
read off from table 7:

v1 = e1; v2 = e2; v3 = e3; v4 = e4; v5 = (−1, 0, 0, 0); v6 = ( 1,−1,−1,−1) .

Here, e1, . . . , e4 are the standard unit vectors. From these, one can also compute the
higher dimensional cones, and this process has already been automated in the computer
programme PALP [40]. Figure 5 shows the PALP input and output screen for our
example, and it lists all the cones in the normal fan Σ.

PALP also has the routine for calculating the hodge numbers of X and the result is,
as shown in figure 5,

h1,1 = 2; h1,2 = 90 .

We could as well work out these numbers by hands, using eqs. (B.4) and (B.5).

Charge matrix. The six edge vectors v1, . . . ,v6 have two linear relations

v1 + v5 = 0 ,

−v1 + v2 + v3 + v4 + v6 = 0 ,

and thus, we have the following charge matrix:

β =

(
1 0 0 0 1 0
−1 1 1 1 0 1

)
.

So, the divisor-linebundle correspondence follows from the short exact sequence (B.1),
which tells us that Pic(A) ' Z2 and that the divisor D = aρDρ corresponds to the
line-bundle

β(D) = β · a =

(
β1
ρa
ρ

β2
ρa
ρ

)
,

where sums over ρ are implicit.
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Degrees and weights ‘d1 w11 w12 \ldots d2 w21 w22 \ldots ’

or ‘#lines #colums’ (= ‘PolyDim #Points’ or ‘#Points PolyDim’):

4 6

Type the 24 coordinates as dim=4 lines with #pts=6 colums:

1 0 0 0 -1 1

0 1 0 0 0 -1

0 0 1 0 0 -1

0 0 0 1 0 -1

M:7 6 N:111 8 H:90,2 [176]

Incidences as binary numbers [F-vector=(6 14 16 8)]:

v[d][i]: sum_j Incidence(i’th dim-d-face, j-th vertex) x 2^j

v[0]: 100000 001000 010000 000010 000100 000001

v[1]: 101000 110000 011000 100010 001010 010010 100100 001100 010100 100001 001001 000011 000101

000110

v[2]: 111000 101010 110010 011010 101100 110100 011100 101001 100011 001011 100101 001101 100110

010110 000111 001110

v[3]: 111010 111100 101011 101101 110110 100111 011110 001111

Figure 5. The in/out-put screen in PALP [40]. The first input 4 and 6 denote the lattice rank and
the number of the vertices in ∆◦, respectively, and the second input is the list of those vertices, ρ-th
column being vρ for ρ = 1, . . . , 6. The output includes two Hodge numbers and Euler character of
X, which are denoted by H in the middle, as well as the incidence information of the normal fan
Σ. The latter is expressed in binary notation: for instance, the first entry in the last row, 111010,
represents a four-cone generated by the four edge vectors v2,v4,v5 and v6.

Normal bundle. The normal bundle N of the Calabi-Yau hypersurface is, by eq. (A.8),
the line-bundle corresponding to the divisor DN = D1 + · · · + D6, which gets mapped by
β to the 2-tuple:

β(DN ) =

(
2
3

)
.

Thus, the normal bundle is represented as

N = OA(2, 3) ,

and hence, bi-degree (2, 3) homogeneous equations define the family of our Calabi-Yau
hypersurfaces in this toric variety. For instance, the monomial corresponding to the origin
0 ∈ ∆ is, by (A.7),

x[0] = x1x2x3x4x5x6 ,

whose bi-degree (a, b) is obtained as

a = 1 + 0 + 0 + 0 + 1 + 0 = 2 ,

b = −1 + 1 + 1 + 1 + 0 + 1 = 3 .

Note that the degrees are added up weighted by the entries of the charge matrix β. One
can check that every lattice point in ∆ corresponds to a monomial of the same bi-degree.

Intersection numbers. The intersection numbers drstu in A have 5 degrees of freedom,
namely, d1111, d1112, d1122, d1222 and d2222. Thus, we have to make at least five choices of
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four edge vectors in the fan, in order to obtain five linear equations of the form (B.7).
Many of these are redundant and five independent choices are:

{v1,v2,v3,v5} → 010111 → 0 = d1122 − d1222

{v2,v3,v4,v5} → 011110 → 1 = d1222

{v2,v3,v4,v6} → 101110 → 0 = d2222

{v1,v5,v5,v5} → 010001 → 0 = d1111 − d1112

{v1,v1,v5,v5} → 010001 → 0 = d1111 − 2d1112 + d1122 .

Note that the middle column is written in binary notation so that we can check with the
incidence information shown in figure 5, and that eq. (B.7) has been used in the last step.
The solution to the above set of simultaneous equations is

d1111 = 1; d1112 = 1; d1122 = 1; d1222 = 1; d2222 = 0 .

Now, the intersection numbers drst in X are, from eq. (B.8), (with n1 = 2 and n2 = 3)

d111 = 5; d112 = 5; d122 = 5; d222 = 2 .

Chern class. The total Chern class of A is directly given by (B.10)

c(A) = (1 + J1 − J2)(1 + J2)4(1 + J1)

= 1+(2J1+3J2)+(J2
1 +7J1J2+2J2

2 )+(4J2
1J2+8J1J

2
2−2J3

2 )+(6J2
1J

2
2 +2J1J

3
2−3J4

2 ) ,

from which all the Chern classes can be read off. The relation (B.12) between c(X), c(A)
and c(N ) can then be used to compute the total Chern class of X:

c(X) =
c(A)

1 + 2J1 + 3J2
= 1 + (J2

1 + 7J1J2 + 2J2
2 )− (2J3

1 + 13J2
1J2 + 17J1J

2
2 + 8J3

2 ) .

Note that c1(X) vanishes and c2(X) = c2(A) = 50ν1 + 44ν2, where ν1, ν2 are the 4-form
basis elements satisfying ∫

X
Jr ∧ νs = δsr .

Kähler cone. Our final task is to compute the Kähler and the Mori cone of A. Because
the two cones are dual to each other, it is enough to work out the former. We first need to
find all of the primitive collections, and, as can be seen in figure 5, PALP computes these
as P1 = 010001 and P2 = 101110. Now, applying the inequality (B.15) of Theorem 3 to
P1, the strictly-convexness condition becomes

ψ(v1 + v5) > ψ(v1) + ψ(v5) ⇒ 0 > −a1 − a5 , (C.1)

where ψ(vρ) = −aρ is obvious from the definition of support function. Similarly, we have
from the other primitive collection P2,

ψ(v2 +v3 +v4 +v6) > ψ(v2)+ψ(v3)+ψ(v4)+ψ(v6) ⇒ −a1 > −a2−a3−a4−a6 . (C.2)
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As the Kähler cone lives in the vector space H1,1, we had better express (C.1) and (C.2)
in terms of t1 = β1

ρa
ρ = a1 + a5 and t2 = β2

ρa
ρ = −a1 + a2 + a3 + a4 + a6. It is obvious

to see that they are equivalent to

t1 > 0; t2 > 0 , (C.3)

which is exactly the first quadrant.
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no. Vertices of ∆◦ no. Vertices of ∆◦ no. Vertices of ∆◦ no. Vertices of ∆◦

1P
(1, 101)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 −1 −1 −1

2P
(2, 86)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 −1 −1

3

(2, 90)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 −1 −1

4

(2, 86)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 −1 0 0

1 0 −1 −1

5

(2, 86)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 −1 0 0

1 1 −1 −1

6

(2, 86)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 −1 −1 0

1 0 0 −1

7P
(2, 83)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 −1 0

−1 0 0 −1

8

(2, 102)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

2 −1 −1 −1

9

(2, 95)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 −1 0 0

2 0 −1 −1

10

(2, 122)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

3 −1 −1 −1

11

(3, 71)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

−1 −1 0 0

1 0 −1 −1

12

(3, 75)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 −1 0

0 1 0 −1

13

(3, 75)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 −1 0

1 1 1 −1

14

(3, 75)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 −1 −1

1 1 0 0

15

(3, 83)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 −1 −1

1 1 0 0

16

(3, 79)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 −1 0

0 1 0 −1

17

(3, 75)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 0 −1 0

0 −1 0 −1

18

(3, 87)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 −1 0

1 1 1 −1

19

(3, 75)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

−1 1 −1 −1

20

(3, 81)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

0 1 −1 −1

21

(3, 83)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

1 0 −1 −1

22

(3, 72)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 −1 0 0

0 1 −1 0

1 0 0 −1

23

(3, 73)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 −1 0 0

1 1 −1 −1

0 −1 1 0

24

(3, 78)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 −1 0 0

1 0 −1 0

0 0 1 −1

25

(3, 81)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 −1 0 0

1 0 −1 0

1 0 0 −1

26P
(3, 75)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

0 0 −1 −1

27

(3, 77)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 0 −1 −1

28

(3, 79)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 −1 −1

29

(3, 71)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 −1 0

−1 0 0 −1

1 1 0 0

30

(3, 72)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 −1 0

−1 0 0 −1

1 1 1 0

31

(3, 71)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

−1 −1 0 0

2 0 −1 −1

32

(3, 99)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

2 −1 −1 −1

1 1 0 0

33

(3, 91)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

2 −1 −1 0

0 1 0 −1

34

(3, 93)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

0 2 −1 −1

35

(3, 91)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

2 −1 −1 −1

36

(3, 95)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

2 0 −1 −1

37

(3, 76)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 −1 0 0

1 0 −1 −1

2 0 −1 −1

38

(3, 83)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

2 0 −1 −1

39

(4, 60)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 −1 0

−1 0 0 −1

1 1 0 0

0 0 1 1

40P
(4, 68)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0
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41

(4, 63)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

−1 −1 0 0

0 0 −1 −1

1 0 1 0

42

(4, 61)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

−1 −1 0 0

1 0 −1 −1

1 0 1 0

43

(4, 64)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

−1 −1 0 0

1 0 −1 0

0 0 1 −1

44N
(4, 61)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

−1 1 0 0

1 −1 −1 0

0 −1 0 −1

45

(4, 64)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

−1 0 −1 0

1 0 0 −1

1 −1 0 0

46

(4, 68)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 −1 0

1 1 0 0

0 1 0 −1

47

(4, 66)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 −1 0

1 0 0 −1

0 1 1 1

48

(4, 65)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 −1 0

1 1 0 0

0 0 1 −1

49N
(4, 67)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 −1 0

1 1 0 0

1 −1 0 −1

50

(4, 71)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 −1 0

1 1 0 0

1 1 0 −1

51

(4, 73)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 −1 0

1 1 0 0

0 1 0 −1

52

(4, 80)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

1 0 0 −1

1 0 −1 0

53

(4, 72)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

1 0 −1 0

−1 1 1 −1

54

(4, 73)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 −1 0

1 1 0 0

0 0 1 −1

55

(4, 82)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 −1 0

1 1 0 0

1 1 0 −1

56

(4, 68)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

−1 1 −1 −1

1 0 1 0

57

(4, 74)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

0 1 −1 0

0 0 1 −1

58

(4, 78)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

0 1 −1 0

0 1 0 −1

59

(4, 69)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

0 0 −1 −1

1 0 1 0

60

(4, 76)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

0 1 −1 −1

1 0 1 0

61

(4, 68)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

1 −1 −1 0

0 1 0 −1

62

(4, 79)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

1 0 −1 −1

1 0 1 0

63

(4, 76)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

−1 0 0 0

1 −1 0 0

1 0 −1 0

0 0 1 −1

64

(4, 64)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 −1 0 0

1 1 −1 −1

65

(4, 66)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 1 0 0

1 0 −1 −1

66

(4, 72)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 1 0 0

1 1 −1 −1

67

(4, 64)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 0 −1 0

1 0 0 −1

68

(4, 66)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

0 0 −1 −1

1 0 1 0

69

(4, 68)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

0 1 0 −1

1 0 −1 0

70

(4, 66)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

0 1 −1 0

1 0 −1 −1

71

(4, 68)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 0 −1 −1

0 1 1 0

72

(4, 70)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 0 −1 −1

1 0 1 0
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73

(4, 72)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 0 0 −1

1 0 −1 0

74

(4, 70)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 0 −1 0

0 0 1 −1

75

(4, 67)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

0 0 −1 −1

76

(4, 72)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 0 −1 −1

77

(4, 76)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 1 −1 −1

78

(4, 68)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 0 0 −1

79

(4, 68)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 1 −1

80N
(4, 61)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 −1 0

−1 0 0 −1

1 1 1 0

0 0 −1 1

81

(4, 65)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 −1 0

−1 0 0 −1

1 1 1 0

1 1 0 0

82

(4, 69)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 1 0 0

2 0 −1 −1

83

(4, 81)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

2 0 −1 −1

84

(4, 84)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

2 1 −1 −1

85

(4, 91)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

2 2 −1 −1

86

(5, 61)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 0 0

87N
(5, 57)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 1 1

88N
(5, 59)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 1 0 0

0 1 −1 0

1 −1 1 −1

89

(5, 61)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 1 0 0

1 0 0 −1

1 0 −1 0

90

(5, 60)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 1 0 0

1 0 −1 0

0 0 1 −1

91

(5, 56)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 0 −1 0

1 1 0 0

0 −1 0 −1

92

(5, 57)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

−1 0 −1 0

1 1 0 0

1 0 0 −1

93

(5, 58)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

0 0 −1 −1

1 0 0 1

0 1 1 0

94

(5, 62)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

0 −1 −1 0

1 1 0 0

1 0 0 −1

95

(5, 60)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

0 −1 −1 0

1 1 0 0

1 1 0 −1

96

(5, 66)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 0 −1 0

0 0 1 −1

97

(5, 69)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 0 −1 0

1 0 0 −1

98N
(5, 60)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

0 0 −1 −1

1 1 1 1

99

(5, 64)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

0 1 −1 0

1 0 0 −1

100

(5, 70)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 1 −1 0

0 0 1 −1
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101
(5, 70)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 0 −1 0

1 1 0 −1

102
(5, 75)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 −1 0 0

−1 0 0 0

1 1 0 0

1 1 −1 0

1 1 0 −1

103N
(5, 57)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

0 −1 −1 0

1 1 1 −1

104
(5, 61)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

0 1 1 0

1 0 0 −1

105
(5, 63)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 0 0

1 0 0 −1

106
(5, 59)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 0 0

0 −1 0 −1

107
(5, 65)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 0 0

1 1 0 −1

108N
(5, 59)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

0 0 −1 −1

109N
(5, 61)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

1 0 −1 −1

110N
(5, 65)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

1 1 −1 −1

111N
(5, 50)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 −1 0

0 −1 0 −1

0 −1 1 −1

−1 1 −1 1

112N
(5, 67)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

2 0 −1 −1

113
(6, 55)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 0 0

0 0 1 1

114N
(6, 54)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 −1

0 0 −1 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

115N
(6, 46)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 1 −1 −1

−1 −1 1 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

116N
(6, 54)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 −1 0

0 −1 1 0

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 0 0 −1

117N
(6, 54)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 −1 0

−1 0 1 0

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 0 0 −1

118N
(6, 50)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

−1 0 −1 0

1 0 0 −1

119N
(6, 52)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

−1 1 −1 0

1 0 0 −1

120N
(6, 56)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

0 1 0 −1

1 0 −1 0

121N
(6, 58)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

1 0 0 −1

1 0 −1 0

122N
(6, 56)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 −1 0 0

−1 1 0 0

0 −1 0 0

−1 0 0 0

1 0 −1 0

0 0 1 −1

123N
(7, 49)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 1 −1

0 0 −1 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

1 1 0 0

124N
(8, 44)

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 −1

0 1 −1 0

0 −1 1 0

−1 0 0 1

0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0

Table 7. List of the lattice vertices of ∆◦, for each of the 124 smooth toric ambient spaces. The
subscripts P and N indicate a product of projective spaces and a non-simple space, respectively.
Each pair of integers below the space numbers denotes the two hodge numbers h1,1 and h2,1 of the
Calabi-Yau hypersurface.
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no. Ambient space A no. Ambient space A no. Ambient space A
1P

(1, 101)

P4 2P
(2, 86)

P1 × P3 7P
(2, 83)

P2 × P2

17
(3, 75)

P2 × dP1
26P
(3, 75)

P1 × P1 × P2 40P
(4, 68)

P1×P1×P1×P1

69
(4, 68)

dP1 × dP1
75

(4, 67)

P2 × dP2
78

(4, 68)

P1 × P1 × dP1

86
(5, 61)

P1 × P1 × dP2
104

(5, 61)

dP1 × dP2
108N
(5, 59)

P2 × dP3

113
(6, 55)

dP2 × dP2
114N
(6, 54)

P1 × P1 × dP3
116N
(6, 54)

dP1 × dP3

123N
(7, 49)

dP2 × dP3
124N
(8, 44)

dP3 × dP3

Table 8. List of the ambient spaces A which are products of del Pezzo surfaces and projective
spaces. Note that only three del Pezzo surfaces dPk=1,2,3 are toric 2-folds, and that we indeed have
all the possible 17 combinations within the database of the 124. The subscripts P and N indicate a
product of projective spaces and a non-simple space, respectively. Each pair of integers below the
space numbers denotes the two hodge numbers h1,1 and h2,1 of the Calabi-Yau hypersurface.
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