
J
H
E
P
0
5
(
2
0
1
0
)
0
4
2

Published for SISSA by Springer

Received: April 12, 2010

Accepted: April 29, 2010

Published: May 11, 2010

Black brane viscosity and the

Gregory-Laflamme instability

Joan Camps,a Roberto Emparana,b and Nidal Haddada

aDepartament de F́ısica Fonamental and Institut de Ciències del Cosmos,
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1 Introduction and summary

Black holes exhibit thermodynamic behavior, so it is natural to expect that their long wave-

length fluctuations, relative to a suitable length scale, can be described using an effective

hydrodynamic theory. Over the years there have appeared several different realizations

of this idea, which differ in the precise set of gravitational degrees of freedom that are

captured hydrodynamically (e.g., only those inside a (stretched) horizon as in [1], or the

entire gravitational field up to a large distance from a black brane spacetime as in [3, 4]) or

in the kind of asymptotics (Anti-deSitter [3] or flat [4]) of the black hole/brane geometry.

In this paper we focus on the hydrodynamic formulation developed recently for higher-

dimensional black holes, including asymptotically flat vacuum black holes and black branes [4].

In this approach the effective stress tensor of the ‘black brane fluid’ is the quasilocal stress

tensor computed on a surface B in a region that is asymptotically flat in directions trans-

verse to the brane.1 The equations of stress-energy conservation describe both hydrody-

namic (intrinsic) fluctuations along the worldvolume of the brane, and elastic (extrinsic)

fluctuations of the brane worldvolume inside a ‘target’ spacetime that extends beyond B.

Thus the dynamics of a black p-brane takes the form of the dynamics of a fluid that lives

on a dynamical worldvolume. This is referred to as the blackfold approach.

In this paper we only study the intrinsic, hydrodynamic aspects of the brane. The

worldvolume geometry, defined by the surface B at spatial infinity, is kept flat and fixed.

Fluctuations of the worldvolume geometry are non-normalizable modes, so the extrinsic

worldvolume dynamics decouples. With this simplification, the set up is very similar to

the fluid/AdS-gravity correspondence of [3], which we follow in many respects. The main

1In the following, asymptotic flatness always refers to directions transverse to the brane.
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difference is that we consider vacuum black brane solutions, with no cosmological constant

and with different asymptotics.

The quasilocal stress tensor of a neutral vacuum black brane, with geometry equal to

the n+3-dimensional Schwarzschild-Tangherlini solution times R
p, is that of a perfect fluid

with energy density ρ and pressure P related by the equation of state

P = − ρ

n + 1
. (1.1)

We may choose the black brane temperature T as the variable that determines ρ and P . The

brane could also be boosted and thus have a non-zero velocity field along its worldvolume.

In a stationary equilibrium state, the temperature and the velocity are uniform. We study

fluctuations away from this state where these quantities vary slowly over the worldvolume.

Their wavelength is measured relative to the thermal length T−1, so for a fluctuation with

wavenumber k the small expansion parameter is

k

T
≪ 1 . (1.2)

Since for a vacuum black brane the temperature is inversely proportional to the thickness

of the brane, r0, this can be equivalently expressed as kr0 ≪ 1.

To leading order in this expansion we obtain the hydrodynamics of an effective perfect

fluid, which refs. [4–6] have used to derive non-trivial results for higher-dimensional black

holes. At the next order the stress tensor includes dissipative terms. For the purely intrinsic

dynamics, these are the shear and bulk viscosities, η and ζ. In contrast to [3], our fluid is

not conformally invariant so ζ 6= 0 is expected.

By analyzing long wavelength perturbations of the black brane and their effect on the

stress tensor measured near spatial infinity we obtain

η =
s

4π
, ζ = 2η

(

1

p
− c2

s

)

(1.3)

where s is the entropy density of the fluid, i.e., 1/4G times the area density of the black

brane, and

c2
s =

dP

dρ
= − 1

n + 1
(1.4)

is the speed of sound, squared.

Written in the form (1.3), these values for η and ζ saturate the bounds proposed

in [7] and [8]. The result for the shear viscosity is not too surprising: η can be argued to

depend only on the geometry near the horizon and its ratio to s is universal for theories

of two-derivative Einstein gravity [7, 9] (see also [10]). The bulk viscosity, instead, does

depend strongly on the radial profile transverse to the brane2 so the saturation of the

bound is presumably less expected. Note, however, that these black branes have different

asymptotics than in all the previous instances where the effective viscosities of black branes

have been considered. In particular, these black branes presumably are not dual to the

2For instance, in the membrane paradigm the bulk viscosity on the stretched horizon for a generic black

hole turns out to be negative. Our result (1.3) is instead positive.
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Figure 1. Left: dispersion relation Ω(k), eq. (1.5), for unstable sound waves in the effective

black brane fluid (normalized relative to the thickness r0). Right: Ω(k) for the unstable Gregory-

Laflamme mode for black branes (numerical data courtesy of P. Figueras). For black p-branes in D

spacetime dimensions, the curves depend only on n = D − p − 3.

plasma of any (local) quantum field theory. In any case it is worth emphasizing that our

computations are for the theory with the simplest gravitational dynamics: Rµν = 0.

The imaginary speed of sound (1.4) implies that sound waves along the effective black

brane fluid are unstable: under a density perturbation the fluid evolves to become more

and more inhomogenous. Since this means that the black brane horizon itself becomes

inhomogeneous, ref. [4] related this effect to the Gregory-Laflamme (GL) instability of

black branes [11, 12].3 Then (1.4) implies a simple form for the dispersion relation of the

GL unstable modes ω(k) = −iΩ(k) at long wavelength: Ω = k/
√

n + 1 + O(k2), i.e., the

slope of the curve Ω(k) near k = 0 is exactly (and very simply) determined in the unstable-

perfect-fluid approximation.

Using our results for η and ζ we can include the viscous damping of sound waves in

the effective black brane fluid. The dispersion relation of unstable modes becomes

Ω =
k√

n + 1

(

1 − n + 2

n
√

n + 1
kr0

)

, (1.5)

which is valid up to corrections ∝ k3. Figure 1 compares this dispersion relation to the

numerical results obtained from linearized perturbations of a black p-brane. Zooming in

on small values of kr0, the match is excellent. When kr0 is of order one we have no right

to expect agreement, but the overall qualitative resemblance of the curves is nevertheless

striking. The quantitative agreement improves with increasing n and indeed, as figure 2

shows, at large n it becomes impressively good over all wavelengths: for n = 100 the

numerical values are reproduced to better than 1% accuracy up to the maximum value of

k. Although the extent of this agreement is surprising, we will provide some arguments for

why the fluid approximation appears to be so successful as n grows.

Thus, the effective viscous fluid seems to capture in a simple manner some of the most

characteristic features of black brane dynamics. We believe this is a significant simplifica-

tion from the complexity of the full Einstein equations.

3This connection had also been made for black branes with gauge theory duals in [13].
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Figure 2. Dispersion relation Ω(k) of unstable modes for n = 100: the solid line is our analytic

approximation eq. (1.5); the dots are the numerical solution of the Gregory-Laflamme perturbations

of black branes (numerical data courtesy of P. Figueras).

The outline of the rest of the paper is as follows: the next section contains the bulk

of the calculations of the paper for a generic hydrodynamic-type perturbation of the black

brane. We highlight the differences with the analysis of [3], in particular at asymptotic

infinity, and compute the values (1.3) for the effective η and ζ. Section 3 relates the

linearized damped sound-mode perturbations of the fluid to the Gregory-Laflamme per-

turbations of the black brane. We examine the conditions that can lead to the surprising

quantitative agreement of the dispersion relation at large n, and we propose its exact form

as n → ∞. We close in section 4 with an examination of the differences with other fluid-like

approaches to the GL instability, and a discussion of our results within the context of the

blackfold approach.

2 Hydrodynamic perturbations of black branes

In this section we study general perturbations of a vacuum black p-brane with slow varia-

tion along the worlvolume directions of the brane. Up to gauge transformations, they are

fully determined by the boundary conditions of horizon regularity and asymptotic flatness

at spatial infinity. Most of our analysis is very close to the study of hydrodynamic per-

turbations of AdS black branes, but there is an additional complication in the study of

the perturbations at asymptotic infinity. Nevertheless, we are able to find the complete

explicit form of the perturbed solution for a generic hydrodynamic flow to first order in

the derivative expansion.
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Readers who do not need or want the technical details of the calculation of the per-

turbed solution and the viscous stress tensor can safely skip to section 3.

2.1 Preliminaries

2.1.1 Black branes and their effective stress tensor

The black p-brane solution of vacuum gravity in D = p + n + 3 dimensions is

ds2 =

(

ηab +
rn
0

rn
uaub

)

dσadσb +
dr2

1 − rn
0

rn

+ r2dΩ2
n+1 , (2.1)

with a = 0, 1, . . . , p. The solution is characterized by the horizon radius r0 (or brane

‘thickness’) and the worldvolume velocity ua, with uaubηab = −1. It is asymptotically flat

in the directions transverse to the worldvolume coordinates σa. We can associate to it a

stress-energy tensor measured at spatial infinity. There are several possible definitions of

this stress tensor that would be equivalent for calculational purposes, but for conceptual

reasons the most convenient for us is the quasilocal one of Brown and York [14]. We

consider a boundary surface at large constant r, with induced metric hµν and compute

T (BY)
µν =

1

8πG

(

Kµν − hµνK − (K(0)
µν − hµνK(0))

)

, (2.2)

where Kµν is the extrinsic curvature of the surface and we perform a background substrac-

tion from flat spacetime.

The geometry of the boundary surface for (2.1) is R
1,p × Sn+1. We will introduce

perturbations with wavelengths much longer than the size r0 of the Sn+1 at the horizon.

The deformations of this sphere all have large masses ∼ 1/r0 and therefore decouple. Thus

the SO(n + 2) symmetry of Sn+1 is preserved and, in an appropriate gauge, the metric

will remain a direct product with a factor of this sphere. We integrate over the sphere to

obtain the stress tensor for the black p-brane

Tab =

∫

Sn+1

T
(BY)
ab . (2.3)

We regard this stress tensor as living on the worldvolume of the brane, i.e., the p + 1

extended directions of the boundary. The worldvolume metric results from the asymptotic

form of the boundary metric, which in our case is the Minkowski metric

hab → ηab . (2.4)

A main advantage of using the quasilocal stress tensor is that the Gauss-Codacci

equations for the constant-r cylinder imply ∂aTab ∝ Rr
b, so imposing the Einstein equations

in vacuum it follows that the stress tensor is conserved

∂aTab = 0 . (2.5)

The stress tensor for the solution (2.1) has the perfect fluid form

Tab = ρuaub + PPab , Pab = ηab + uaub (2.6)
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with energy density and pressure

ρ = −(n + 1)P = (n + 1)
Ωn+1r

n
0

16πG
. (2.7)

The horizon area allows to associate a local entropy density to this effective fluid

s =
Ωn+1r

n+1
0

4G
(2.8)

and all the thermodynamic functions can be expressed as functions of the temperature

T =
n

4πr0
. (2.9)

We can equivalently use T or r0 as the variable that determines local equilibrium. In this

section we will mostly use r0 for notational simplicity.

We will be interested in preserving regularity at the horizon. This is manifest if instead

of the Schwarzschild coordinates in (2.1) we use Eddington-Finkelstein (EF) ones,

σa → σa − uar∗ , r∗ =

∫

1

1 − (r0/r)n
dr , (2.10)

such that

ds2 = −
(

1 − rn
0

rn

)

uaubdσadσb − 2uadσadr + Pabdσadσb + r2dΩ2
n+1 . (2.11)

2.1.2 Perturbations

We promote the thickness and velocity parameters to collective fields over the worldvol-

ume, so

ds2
(0) =−

(

1− r0(σ)n

rn

)

ua(σ)ub(σ)dσadσb−2ua(σ)dσadr+(ηab+ua(σ)ub(σ)) dσadσb

+r2dΩ2
n+1 , (2.12)

where r0(σ) and ua(σ) are assumed to vary slowly relative to the scale set by r0. In this

paper we expand them to first order in derivatives, which we keep track of through a

formal derivative-counting parameter ǫ. With non-uniform r0 and ua, the metric (2.12) is

not Ricci flat so we add to it a component with radial dependence

ds2 = ds2
(0) + ǫfµν(r)dxµdxν + O(ǫ2) . (2.13)

We choose a gauge in which ∂r is a null vector with normalization fixed by the radius r of

Sn+1, so that

frr = 0 , fΩµ = 0 . (2.14)

With this choice the sphere Sn+1 can be integrated out.

Demanding that (2.13) satisfies the vacuum Einstein equations to first order in ǫ results

into a set of ODEs for fµν(r). These will be solved subject to regularity at the horizon

r = r0, which is easily imposed as a condition of metric finiteness in EF coordinates, and

to asymptotic flatness, to which we turn next.

– 6 –
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2.1.3 Asymptotic infinity

The asymptotic behavior of our spacetimes introduces an important difference relative to

the perturbations of AdS black branes. For the latter, the calculations can be performed

in their entirety in EF coordinates in which ∂r is a null vector. By taking large values of

r in these coordinates one approaches null infinity, but in AdS this is the same as spatial

infinity. The AdS boundary is always a timelike surface. However, in our asymptotically

flat space, null and spatial infinities differ.

We are ultimately interested in computing the quasilocal stress tensor on a timelike

boundary of spacetime endowed with a non-degenerate metric. But if we approach null in-

finity, the boundary metric will be degenerate and it is unclear whether the quasilocal stress

tensor is well defined there. Instead, it seems more appropriate (and is definitely unprob-

lematic) to compute the stress tensor at spatial infinity.4 For this purpose EF coordinates

are very awkward and it is much more convenient to switch back to Schwarzschild-like

coordinates {r, t, σi} at large r.

Thus we will work with two sets of coordinates: EF ones, in which horizon regularity is

manifest, and Schwarzschild coordinates, in which spatial infinity is naturally approached.

We need to provide the change of coordinates that relates them, extending the inverse

of (2.10) to include O(ǫ) terms. The correction is naturally guessed by recalling that ua and

r0, which appear in the transformation (2.10), now depend on the EF coordinates. Thus,

σa → σa + ua(v, σi)

∫

dr

1 − (r0(v, σi)/r)n
, (2.15)

or more explicitly,

v → t + r∗ + ǫ
(t + r∗)∂vr0 + σi∂ir0

r0

(

r∗ −
r

1 − (r0/r)n

)

+ O(ǫ2) ,

σi → σi + ǫ
(

(t + r∗)∂vu
i + σj∂ju

i
)

r∗ + O(ǫ2) . (2.16)

2.2 Solving the perturbation equations

At each point we choose coordinates centered on that point and go to an (unperturbed)

local rest frame. In EF coordinates the velocity perturbation is

uv(σ) = 1 + O(ǫ2) , ui(σ) = ǫσa∂au
i(0) + O(ǫ2) . (2.17)

Note that since local velocities are small the constraint u2 = −1 is automatically satisfied

to the order we need. The other collective variable of the effective black brane fluid is the

temperature T , or equivalently the thickness r0, which we perturb as

r0(σ) = r0(0) + ǫσa∂ar0(0) + O(ǫ2) . (2.18)

4Presumably the appropriate notion of spatial infinity here is not Penrose’s i0 (which is just a point) but

more along the lines of [15], which naturally allows a dependence along the boundary directions. Although

our spatial infinity is not exactly the same as in [15] since instead of a hyperboloid we work on a cylinder

where R
1,p and Sn+1 scale differently at infinity, this is not a problem for us since we are integrating over

Sn+1. It would be interesting, especially with a view to holography, to further formalize this notion of

spatial infinity. Related remarks concerning holography in asymptotically flat spacetimes have been made

in [16].

– 7 –
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In the following we understand all quantities as evaluated at σa = 0 and thus denote

∂au
i(0) → ∂au

i, r0(0) → r0 etc.

The metric (2.13) is now

ds2 = 2dvdr − f(r)dv2 +

p
∑

i=1

dσ2
i + r2dΩ2

n+1

− 2ǫσa∂auidσidr + ǫ
nrn−1

0 σa∂ar0

rn
dv2 − 2ǫ

rn
0 σa∂aui

rn
dσidv + ǫfµν(r)dxµdxν ,

(2.19)

where we denote

f(r) = 1 − rn
0

rn
. (2.20)

The Einstein equations with a radial index, Rr
a = 0 do not involve second derivatives

and are constraint equations. Indeed they only involve the hydrodynamic fields r0 and ui

and not fµν ,

(n + 1)∂vr0 = −r0∂
iui , ∂ir0 = r0∂vui, (2.21)

so they are to be regarded as the equations of fluid dynamics, consistently with (2.5). We

also verify this interpretation later.

The remaining Einstein’s equations are dynamical and we solve them to find fµν . The

equations Rij = 0 give

∂r

(

rn+1ffij
′
)

= −2(n + 1)rn∂(iuj) , (2.22)

which, requiring finiteness at the horizon, are solved by

fij(r) = cij − 2∂(iuj)

(

r∗ −
r0

n
log f

)

. (2.23)

The integration constants cij will be fixed later demanding asymptotic flatness. The equa-

tions Rvi = 0,

∂r

(

rn+1fvi
′
)

= −(n + 1)rn∂vui , (2.24)

are solved by

fvi = c
(2)
vi +

c
(1)
vi

rn
− ∂vuir , (2.25)

which are regular at the horizon for all values of the constants. Next, the equations from

Rrr = 0 and RΩΩ = 0 are

fvr
′ =

r

2(n + 1)

p
∑

i=1

fii
′′ , (2.26)

and

∂r (rnfvv) = rn∂iui +
rnf

2

(

p
∑

i=1

fii
′ − 2fvr

′

)

− 2nrn−1fvr , (2.27)

which, assuming that eqs. (2.21) are satisfied, are solved by

fvr = cvr +
r2

2(n + 1)

d

dr

∑

i

fii

r
, (2.28)

– 8 –
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and

fvv =
2∂iuir +

(

1 − n+2
2

rn
0

rn

)

∑p
i=1 fii

n + 1
− 2cvr +

rn
0

rn
cvv . (2.29)

Again these are regular at the horizon for all choices of the integration constants. Note

that frj does not appear in Einstein’s equations to first order in ǫ and corresponds to a

gauge mode. This, and the integration constants, will be fixed shortly.

At this stage, for any hydrodynamic perturbation that solves the equations (2.21), we

have managed to construct a perturbed metric that is regular at the horizon. Next we

must ensure that the solution remains asymptotically flat. Transforming to Schwarzchild-

like coordinates using (2.16), we require that

gab = ηab + O(r−n) . (2.30)

For the other metric components, we find that grr = 1 + O(r−n), gri = O(r−n), and

gtr = O(r−n+1) when n > 1 (gtr = O(log r/r) when n = 1), are enough to obtain a finite

stress tensor. Recall also that all the metric components involving angular coordinates of

Sn+1 are unaltered.

Omitting details, we find that the conditions on gij and gtj fix

cij = c
(2)
vj = 0 . (2.31)

In addition, the effect of c
(1)
vj in gtj amounts to a global shift in the velocity field along the

spatial directions of the brane, so in order to remain in a local rest frame we set

c
(1)
vj = 0 . (2.32)

Furthermore, if we perform the change

t → t (1 − ǫcvr) , (2.33)

then cvv − 2cvr results in a global shift in the temperature, which we eliminate by choosing

cvv = 2cvr . (2.34)

Asymptotic flatness in gtr imposes a choice for cvr that singles out the slower fall-off of

n = 1,

cvr = −∂tr0 for n = 1 , cvr = 0 for n > 1 (2.35)

(note that the values of ∂tr0 and ∂vr0 at σa = 0 are equal).

Asymptotic flatness in these coordinates is a little delicate when n = 1 due to its

slower fall-off, and to make it manifest we take an frj gauge diverging at infinity. This is

not necessary when n > 1 (and neither choice affects the calculation of the stress tensor).

Thus we set

frj = −∂jr0 log
r

r0
for n = 1 , frj = 0 for n > 1 . (2.36)

– 9 –
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Summarizing, we obtain

gij = δij + ǫr0

2∂(iuj)

n
log f , (2.37)

gtj = − ǫ
rn
0

rn
σa∂auj , (2.38)

gtr = ǫ
∂tr0

f

((

rn
0

rn
− f

n

)

log f − rn
0

rn

(

n
r∗
r0

+ 1

))

− ǫcvr , (2.39)

grj = ǫfrj(r) + ǫ
∂jr0

r0

r∗ − r

f
, (2.40)

grr = f−1 + ǫf−2

(

nrn−1
0 σa∂ar0

rn
+

rn
0 ∂tr0

rn
(log f − 2)

)

, (2.41)

gtt = − f + ǫ

(

nrn−1
0 σa∂ar0

rn
+ ∂tr0 log f

(

rn
0

rn
− 2

n
f

))

, (2.42)

(σa correspond to Schwarzschild coordinates here, so σ0 = t). This is the complete solution

for the black brane metric that corresponds to a hydrodynamic perturbation that solves

the equations (2.21) expanded around the origin of the local rest frame, σa = 0.

2.3 Viscous stress tensor

We are now ready to compute the quasilocal stress tensor (2.2). The renormalization via

background subtraction is simple and appropriate, since our metrics are infinitesimally close

to the uniform black p-brane and their asymptotic boundaries can always be embedded in

flat spacetime. Straightforward calculations give

Tij =
Ωn+1

16πG

(

− δij(r0 + ǫσa∂ar0)
n

−ǫrn+1
0

[(

2∂(iuj) −
2

p
δij∂

ℓuℓ

)

+ 2

(

1

p
+

1

n + 1

)

δij∂
ℓuℓ

])

,

Ttt =
Ωn+1

16πG
(n + 1) (r0 + ǫσa∂ar0)

n , (2.43)

Ttj = −Ωn+1r
n
0

16πG
ǫnσa∂auj ,

which are valid up to O(ǫ2). One can easily check that the hydrodynamic equations ∂aT
ab =

0 are indeed equivalent to the constraint equations (2.21).

Write now this stress tensor in the form

Tab = ρuaub + PPab − ζθPab − 2ησab + O(∂2) (2.44)

where the expansion and shear of the velocity congruence are

θ = ∂au
a , σab = Pa

c

(

∂(c ud) −
θ

p
Pcd

)

P d
b . (2.45)

The component Ttt in (2.43) determines the energy density, and requiring that the

equation of state (1.1) holds locally uniquely identifies the pressure. Then we can write

Tij = Pδij − ǫη

(

2∂(iuj) −
2

p
δij∂

ℓuℓ

)

− ǫζδij∂
ℓuℓ (2.46)
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with

η =
Ωn+1

16πG
rn+1
0 , ζ =

Ωn+1

8πG
rn+1
0

(

1

p
+

1

n + 1

)

. (2.47)

Using (1.4) and (2.8) these can be rewritten as in (1.3).

3 Damped unstable sound waves and the Gregory-Laflamme instability

Our analysis in the previous section applies to generic long-wavelength perturbations of

arbitrarily large amplitude. Let us now consider small perturbations of a static fluid of

the form

ρ → ρ + δρ , P → P + c2
sδρ , ua = (1, 0, . . . ) → (1, δui) , (3.1)

where cs is the speed of sound, and with

δρ(t, σi) = δρ eiωt+ikjσj

, δui(t, σi) = δui eiωt+ikjσj

. (3.2)

We substitute these in the viscous fluid equations and linearize in the amplitudes δρ and

δui, to find

ωδρ + (ρ + P )kiδu
i + O(k3) = 0 , (3.3)

iω(ρ + P )δuj + ic2
sk

jδρ + ηk2δuj + kj

((

1 − 2

p

)

η + ζ

)

klδu
l + O(k3) = 0 . (3.4)

Applying our results above, any solution to these equations can be used to obtain an

explicit black brane solution with a small, long-wavelength fluctuation of r0 and ua. If we

eliminate δρ we find that non-trivial sound waves require

ω − c2
s

k2

ω
− i

k2

Ts

(

2

(

1 − 1

p

)

η + ζ

)

+ O(k3) = 0 , (3.5)

where k =
√

kiki and we have used the Gibbs-Duhem relation ρ + P = Ts. This equation

determines the dispersion relation ω(k). For a stable fluid with c2
s > 0, viscosity adds

a small imaginary part to the frequency, which becomes complex and describes damped

sound oscillations. Instead our effective fluid has imaginary sound-speed, eq. (1.4), so ω is

purely imaginary: sound waves are unstable. Writing

ω = −iΩ (3.6)

we solve (3.5) to find

Ω =
√

−c2
sk −

((

1 − 1

p

)

η

s
+

ζ

2s

)

k2

T
+ O(k3) . (3.7)

For the specific black p-brane fluid this yields the dispersion relation (1.5). The con-

nection between these unstable sound waves and the Gregory-Laflamme instability was

pointed out at the perfect fluid level (i.e., Ω linear in k) in [4], and we have discussed it in

the introduction.5

5Observe that the result (1.5) is independent of p. That this must be the case is clear from the outset

in the GL analysis and also in our analysis of the Einstein equations.
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Figures 1 and 2 show that our approximation (1.5) improves as n grows. In order to

see how this might be justified, let us first rewrite the dispersion relation (1.5) in terms of

the temperature T instead of r0,

Ω =
k√

n + 1

(

1 − n + 2√
n + 1

k

4πT
+ O(k2/T 2)

)

. (3.8)

In principle, at any given n, both quantities r0 and T−1 define length scales that are

parametrically equivalent. But if we vary n and allow it to take large values, then r0

and T−1 ∼ r0/n can differ greatly. We propose that in this case, T−1, and not r0, is the

length scale that limits the validity of the fluid approximation, so the appropriate expansion

variable for large n is k/T and not kr0. This may actually be natural since from the fluid

point of view T has a clearer physical meaning than r0. In effect, we are proposing that

when n ≫ 1 it is more accurate to view the effective theory as describing very hot black

branes, rather than very thin ones.

The point of this exercise is that for large n the maximum values over which Ω and k

in (3.8) range are (k/T )|max ∼ 1/
√

n and (Ω/T )|max ∼ 1/n. So as n grows the frequency

and wavenumber of unstable modes extend over a smaller range of k/T and Ω/T . This

strongly suggests that hydrodynamics can capture more accurately the dynamics of GL

modes when the number of dimensions becomes very large.6 More precisely, if we write the

corrections inside the brackets in (3.8) in the form
∑

j≥2 aj(k/T )j , and assume that the

n-dependence of the coefficients aj is such that ajn
−j/2 → 0 as n → ∞, then the expansion

in k/T , i.e., the hydrodynamic derivative expansion, becomes a better approximation over

a larger portion of the curves Ω(k).

This is a relatively mild-looking assumption on the n-dependence of the higher-order

coefficients in the expansion in k/T ,7 and in particular is satisfied if the aj≥2 remain

finite as n → ∞. But since we have not computed higher-derivative transport coefficients

then, within our perturbative framework, we cannot prove its validity. However, since the

numerical data appear to strongly support it, we conjecture that the truncation of the

dispersion relation up to k2-terms captures the complete dispersion relation at large n.

More precisely, if we define a rescaled frequency and wavenumber,

Ω̃ = nΩ , k̃ =
√

nk (3.9)

that remain finite as n → ∞, then we propose that

Ω̃ = k̃

(

1 − k̃

4πT

)

(3.10)

is the exact limiting relation valid for all wavenumbers 0 ≤ k̃ ≤ 4πT .

Note that the truncation of Ω(k) in (3.8) appears to capture the zero-mode with Ω = 0

at a finite k = kGL. This is quite remarkable, since the viscous fluid equation (3.5) does

6This is similar in spirit, although not precisely equal, to the proposal in [17] that in the limit of large

number of dimensions black holes are accurately described by fluid mechanics.
7Which, crucially, is not satisfied by the coefficient of the linear term inside the brackets in (3.8).
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not admit any zero-mode solution. The comparison with numerical data in figure 2 shows

that the quantitative result for kGL, although poor for small n, becomes excellent for large

n. Further evidence for the validity of our proposal comes from the analytical value of the

GL zero mode in the limit n → ∞ [18]

kGL → 4πT√
n

. (3.11)

This is the same as the limiting value for the zero-mode ‘predicted’ by (3.9), (3.10).8

Presumably, by effecting the scaling (3.9) in the full linearized perturbation equations

of the GL problem one may prove (or possibly disprove) equation (3.10).

4 Discussion

Our analysis of the GL instability must not be confused with recent studies where a con-

nection to the Rayleigh-Plateau instability of fluid tubes is made. In the latter approach,

following a suggestion in [20], refs. [17, 21] related a d-dimensional black string in a Scherk-

Schwarz compactification of Anti-deSitter space to a d − 2-dimensional fluid tube with a

boundary with surface tension (see [22]). The Rayleigh-Plateau instability of the fluid tube

arises from the competition between surface tension and bulk pressure. In contrast, our

effective fluid does not have any boundaries so the instability is not of the Rayleigh-Plateau

type, but rather one in the sound modes. Also note that our calculations in section 2 yield

explicit black brane solutions to the Einstein equations (in vacuum) in a derivative expan-

sion, something that, although expected to be possible in principle, at present cannot be

realized for the fluid solutions in [17, 21].

We stress that our analysis is not a ‘dual’ solution of the GL instability problem: we

have investigated the same perturbation problem as in [11, 12] and explicitly solved it in

closed analytic form in a derivative expansion. Since our approach does not require the

perturbations to be small, it may even be used to study the non-linear evolution of the

GL instability.

One of our motivations has been to show explicitly how the effective theory of blackfolds

of [4] can be systematically developed as a derivative expansion of the Einstein equations.

Although we have done it only for the intrinsic aspects of blackfold dynamics, we have

been able to: (i) derive in detail, starting from the ‘microscopic’ (full Einstein) theory, the

lowest-order blackfold formalism that ref. [4] had developed following general principles;

(ii) prove that the first corrections to the lowest-order formalism can be computed and

result in perturbations of the black brane that preserve regularity of the horizon. The

viscosity coefficients are determined precisely from this condition.

In general, the worldvolume of a blackfold is dynamical and can be curved. Our

calculations in this paper can be regarded as being valid for fluid perturbations with a

wavelength that, while longer than T−1, is much shorter than the typical curvature radius

R of the blackfold worldvolume. In this case, the intrinsic and extrinsic dynamics decouple.

8The relative difference between the results for kGL from the large-n subleading correction computed

in [19] and from (1.5) is equal to 1/n. This is precisely the size of the discrepancy observed in figure 2.
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Thus, for a curved blackfold our results for the GL instability are valid at most up to

wavelengths smaller than R. At longer wavelengths the hydrodynamics of the effective

fluid is fully coupled to the elastic dynamics of the worldvolume. For instance this is case

for perturbations of thin black rings with wavelength comparable to the ring radius. These

lie beyond the range of applicability of our results.

It should be quite interesting to extend our analysis to include the extrinsic aspects

of the blackfold. To do this, one first allows the worldvolume metric where the fluid lives

to be a curved background, with an extrinsic curvature radius much larger than T−1.

This curvature acts as an external force on the fluid [4]. In the derivative expansion, the

stress tensor will in general contain, besides the viscosities, higher-derivative coefficients

that multiply derivatives of the worldvolume metric. These coefficients will be determined

by demanding horizon regularity of a perturbation that curves the asymptotic geometry.

Perturbations of this kind have been studied for certain illustrative examples in [6, 23, 24]

in stationary situations that do not involve viscous dissipation. Thus it may be possible to

extract the extrinsic pressure coefficients in the stress tensor.

In the AdS context, the external force on the fluid from a worldvolume curvature has

been studied in [25]. However, in that case the worldvolume geometry is regarded as a fixed,

non-dynamical background. Instead, in the blackfold context this geometry is dynamical.

A solution of the forced fluid equations will backreact on the background spacetime where

the blackfold lives, and thus modify the worldvolume geometry. Therefore for a generic,

curved blackfold the explicit construction of perturbative metrics becomes rather more

complicated than in the fluid/AdS-gravity correspondence.
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