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1 Introduction

Quantum phase transitions are continuous phase transitions at zero temperature [1]. The

transitions occur at quantum critical points, which are reached when a set of control pa-

rameters are properly tuned. These quantum critical points are an active area of research

in the condensed matter community. For example, they play an important role in a candi-

date theory of high-Tc superconductors [2]. Often, one is interested not just in the effective

theory at the critical point, but also in a neighborhood of the critical point. In this paper,

we study an example of a quantum critical point in the context of holography.

Holography establishes a large class of strongly-coupled, scale-invariant theories which

can be solved using a dual gravitational description. This duality has recently found many

applications to condensed matter physics. Reviews of this work can be found in [3–5].

In principle, any such scale-invariant theory is potentially the low-energy description of a

theory at a quantum critical point. However, to our knowledge, no scale-invariant theory

with a gravitational dual has been shown to be a quantum critical point between two

differently-ordered, finite-density phases arising from tuning the control parameters of a

microscopic model. In this work, we give an explicit realization of such a system. We

construct and analyze a holographic setup which exhibits an isolated quantum critical

point in its phase diagram as a function of magnetic field and charge-carrier density. This

class of critical points should be distinguished from the interesting class of quantum phase

transitions between finite and zero density phases [6–8].

Two complementary approaches to realize holographic finite density systems have been

developed. “Bottom-up” models study an effective gravitational theory in the background

– 1 –



J
H
E
P
0
5
(
2
0
1
0
)
0
1
5

of a charged black hole in an attempt to simulate a strongly-coupled theory at finite density.

By picking and choosing the ingredients and interactions of the effective theory, holographic

examples of diverse condensed matter phenomena have been constructed, including super-

conductivity and -fluidity [9, 10] as well as Fermi- [11] and non Fermi-liquidity [12–14]. The

only drawback of this approach is that typically one does not have a clear understanding of

what the dual field theory is. Nonetheless, these models see an emergent “quantum critical-

ity”: the bottom of the geometry has an AdS2 factor (or, after backreaction, a Lifshitz-like

space [15]), and so the dual theory appears to have an emergent 0+1 dimensional descrip-

tion in the IR. Even in cases where a scalar condensate is formed one typically sees a new

AdS geometry emerge in the infrared [16]. However, these systems are already tuned to

criticality from the start. It is then unclear not only what dual theory one is working with

in these setups, but also what parameters are being adjusted to reach criticality.

An alternative “top-down” approach is to start with a known gauge/gravity pair with

at least a global U(1) symmetry and to turn on a chemical potential for that U(1). Knowl-

edge of the explicit field theory Lagrangian, in particular the knowledge gained from any

weak-coupling limit it has in addition to the strong-coupling limit in which the gravita-

tional description is valid, is an important guide to understanding the phenomena one sees.

The main disadvantage of this approach is that, while one is studying a known and consis-

tent field theory, one has very little control over what dynamical behavior dominates the

low energy physics of the system. In particular, isolated quantum critical points at finite

density have been difficult to realize in this framework.

An important tool to build “top-down” models is the use of probe flavor branes [17, 18].

On the field theory side one adds a finite number Nf of fundamental representation charge

carriers (the “electrons”) to a known gauge theory with a large number of colors Nc and

a gravitational dual. This introduces a new U(1) global symmetry, “baryon” or “electron”

number, under which only the new fields are charged. For Nf/Nc ≪ 1, the dynamics of the

new charge carriers do not backreact on the underlying field theory (the “phonon bath”);

transport phenomena associated with electron number are dominated by electrons strongly

interacting with the underlying phonon bath. The addition of the extra charge carriers is

implemented in the gravity dual by including Nf flavor D-branes which do not backreact

on the dual geometry in the probe limit Nf/Nc ≪ 1. In addition, the flavor D-branes

support a U(1) gauge field on their wordvolume whose dynamics is universally governed

by the Dirac-Born-Infeld (DBI) action. The transport properties associated with electron

number on the field theory side can be found by studying the classical dynamics of this

DBI gauge field.

The study of finite density in flavor brane systems, and in particular the simplest

D3/D7 system of [18], was initiated in [19].1 Qualitatively, one finds that the finite density

attracts the flavor branes to the horizon of the bulk spacetime. While at zero density both

horizon-crossing probe brane embeddings as well as embeddings that always stay above the

horizon can be found [24], all consistent finite density brane embeddings cross the horizon.

The field theory density is realized by a bulk electric field, sourced by charge located behind

the horizon.

1See [20–23] for earlier work on finite density flavor brane systems.
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Figure 1. The phase diagram for the D3/D7 system in the m/µ - B/µ2 plane at zero temperature.

The red dot indicates a critical point at which we go from the high-density “boson-dominated”

phase and no condensate to the low-density, presumably “fermion-dominated” phase. The blue

line indicates a phase transition to a zero density phase with properties identical to the vacuum at

nonzero magnetic field, located in the upper right hand side of the diagram. While we can not rule

out the possibility that this transition is first order away from the B = 0 axis, our numerics suggest

that it is a second or higher order transition throughout.

In this work we generalize these studies by exposing the finite density of matter to an

external magnetic field. One important result we are able to establish is the existence of an

isolated critical point in the phase diagram of the D3/D7 system at zero temperature as a

function of magnetic field, density and a “coupling constant”, the bare mass of the charge

carriers in the underlying Lagrangian. The phase diagram of this D3/D7 system, which

constitutes the main result of our paper, is displayed in figure 1. While first order phase

transitions in probe brane systems are generic [25], one needs to work a little harder to find

continuous transitions. Continuous transitions with calculable critical exponents can be

found when studying a theory with probe branes at finite volume [26]. One example of an

analytically-tractable second-order transition involving finite density is the D3/D7 system

at zero magnetic field, as exhibited in [6]. The lightest charged quasiparticles of that theory

generally have some finite mass; a chemical potential larger than that mass is required to

populate a nonzero charge density. At the critical chemical potential one therefore expects

a phase transition from a trivial zero-density phase (equivalent to the vacuum) to a finite-

density phase. In nature, these phase transitions are often first order, but in the D3/D7

system the transition is second order [6]. In fact, we find an analogue of this phase transition

for all values of the magnetic field as indicated by the blue line in figure 1. Our numerics

indicate that the transition is at least second order everywhere along the line.2 The critical

chemical potential varies as a function of the magnetic field. We find it to be the mass of

the lightest charged quasiparticle (as a function of the magnetic field). Although this is a

continuous phase transition at zero temperature, it is still qualitatively different from the

typical quantum critical points of interest in the condensed matter community. Instead of

2This has to be contrasted with the transition in the (µ, T )-plane, where the second order transition

of [6] at zero temperature turns into a third order and eventually a first order transition [27].
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describing a critical point that results from a competition between two different ordered

phases in a finite density of material, the second order transition of [6] simply describes

a transition from the trivial vacuum to a phase where there is actually something. It is

a property only of the grand canonical ensemble and is obviously absent in the canonical

description. To our knowledge, the quantum critical point we find is the first example of

a continuous transition between two finite density phases with different order in a theory

with a gravitational dual.3

The phase transition we describe arises from a competition between finite density and

magnetic fields when the “electrons” have zero bare mass. In the gravitational system,

nonzero density pulls the brane to the horizon, whereas a magnetic field repels it. From

the field theory point of view, it has been well known that a magnetic field at zero density

triggers chiral symmetry breaking [29], presumably due to the interactions of fermion spin

with the magnetic field. This chiral condensate also serves as the order parameter that

detects our transition. In contrast, at finite density and zero magnetic field one finds

the boson-dominated chirally symmetric phase described in [6]. As we will argue in our

concluding section, we would like to interpret our phase transition as a competition between

bosonic and fermionic condensates.

One important point to note is that while our numeric calculations are particular to

the D3/D7 system, the ingredients are very general. For a generic probe system with an

effective AdS wordvolume a very similar phase transition should arise. Most of our analysis

relies on studying the DBI action in AdS5 and does not make any reference to the internal

geometry. The mass of the slipping mode (that is, the dimension of the fermionic bilinear

condensate) is the only geometric input into the DBI action that influences the location of

the critical point. This large class of new quantum critical points should be a very useful

starting point for future investigations. The analogous phase diagram for the D3/D5 system

of [17] was recently studied in [30]. However, the analogue of the quantum critical point we

exhibit was missed in this work since only the chirally symmetric embedding was considered

for the massless “electron” case. We have identified a quantum critical point in the D3/D5

system as well. This critical point exhibits some novel properties and will be described in

a forthcoming paper in conjunction with Dam Son [31].

The outline of the paper is as follows. In the following section we will discuss the

theory with massless charge carriers, exhibiting the quantum critical point that arises from

the competition of magnetic field and finite density. In section 3, we then map out the full

phase diagram at zero temperature as a function of charge carrier mass and elucidate the

second order phase transition between the zero density and finite density phases. In our

concluding section, section 4, we characterize an anomalous phase of matter and present a

model that explains the phenomena we see in terms of a competition between bosons and

fermions. We also make a conjecture regarding the generality of similar critical points. We

present the details of our numerical methods in the appendix.

3While we were finishing this work, the authors of [28] released a paper that studies the phase diagram

of the D3/D7 system with a magnetic field, density, and temperature. Their zero temperature results agree

with ours.
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2 A quantum phase transition for massless flavor

2.1 The setup and action

In this work, we study Nf flavors of N = 2 supersymmetric matter coupled to an SU(Nc)

N = 4 super Yang-Mills (SYM) gauge theory in the strong ’t Hooft coupling λ, large Nc,

and quenched Nf ≪ Nc limits. The dual gravitational description of this system is that of

Nf D7 branes probing the near-horizon AdS5×S5 geometry of Nc D3 branes [18]. Without

turning on non-abelian field strengths, the DBI action of the probe D7 branes is

SDBI = −NfTD7

∫

d8ξ
√

−P[g] + F. (2.1)

Here, TD7 is the tension of the D7 branes, P[g] is the induced metric on the branes, F is

the field strength of the diagonal U(1) worldvolume gauge field living on them (we have

absorbed a factor of 2πα′ into our definition of the field strength, leaving it dimensionless),

and ξA indexes worldvolume coordinates. For the embeddings we consider, the Chern-

Simons terms in the D7 action vanish and the brane action is the DBI part.

We find it convenient to write the metric of the background geometry as [32]

g =
r2 + y2

R2

(

−(dx0)2 + d~x2
)

+
R2

r2 + y2

(

dr2 + r2dΩ2
3 + dy2 + y2dφ2

)

, (2.2)

where R is the radius of both the AdS space and the five-sphere and we have broken up the

six dimensions transverse to the D3 branes into a four-dimensional and a two-dimensional

subspace, writing both spaces in polar coordinates. In these coordinates, the boundary of

AdS occurs when either r → ∞ or y → ∞ and the Poincáre horizon is located at y = r = 0.

We take an ansatz that the D7 branes wrap the AdS space as well as the three-sphere

in the metric above. Additionally, the position of the branes in the y direction is allowed

to depend on the “radial coordinate” r and we consider solutions with constant φ. We use

the U(1) symmetry that rotates φ to set it to zero. The embedding is then described by

one function y(r). With this ansatz the induced metric

P[g] = GABdξAdξB , GAB =
∂Xa

∂ξA

∂Xb

∂ξB
gab, (2.3)

where a, b run over all ten dimensions, gab is the background metric (2.2), and the Xa are

the embedding functions, is given by

P[g] =
r2 + y2

R2

(

−(dx0)2 + d~x2
)

+
R2

r2 + y2

((

1 + (y′)2
)

dr2 + r2dΩ2
3

)

. (2.4)

We pause to note that these embeddings preserve the SO(4) isometry of the three-

sphere and, when the embedding is simply y = 0, the U(1) isometry that rotates φ. These

isometries are mapped onto R-symmetries of the dual field theory. In particular, the U(1)R
symmetry is a chiral symmetry that is explicitly broken by mass terms for the flavor

multiplet and spontaneously broken when the operator dual to the field y attains a vev.

We will come back to this later.
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We now turn on a finite density of matter and a magnetic field in the dual field theory,

using the diagonal U(1) flavor symmetry representing electron number. On the gravity

side, the conserved current for this U(1) is dual to the diagonal U(1) subgroup of the

worldvolume gauge theory on the branes. The field theory density is dual to a radial

electric field on the gravity side, F = A′
0(r)dx0 ∧ dr, sourced by bulk charge behind the

AdS horizon. Our branes therefore cross the AdS horizon. We also turn on a background

magnetic field by introducing a constant field strength F = B dx1 ∧ dx2 in both the field

theory and the bulk.

Plugging in these ansätze for the induced metric and gauge field into the DBI action,

integrating over both the internal three-sphere and the non-compact R
4, and representing

the brane tension TD7 and α′ in field theory quantities,

TD7 =
1

gs(2π)3(2πα′)4
, gs =

λ

4πNc
, (α′)4 =

R8

λ2
, (2.5)

we arrive at the following action governing the dynamics of the embedding scalar y(r) and

the worldvolume gauge fields,

SD7 = −NcNfλ

(2π)4
V4

R4

∫

dr

R

r3

R3

√

(1 + y′(r)2 − A′
0(r)

2)

(

1 +
B2R4

(r2 + y(r)2)2

)

, (2.6)

where V4 is the volume of the R
4.

Finally, we rescale all of our coordinates by a factor of R, divide the action by V4 to

give the action density (abusing notation by not changing symbols), and define the overall

normalization to be N =
NfNcλ

(2π)4
, leaving us with the action density

SD7 = −N
∫

dr r3

√

(1 + y′(r)2 − A′
0(r)

2)

(

1 +
B2

(r2 + y(r)2)2

)

. (2.7)

From this action, we could derive the coupled equations of motion for the fields A0(r)

and y(r). However, because the action only depends on the derivative of A0, we replace

A0 in favor of the conserved quantity d ≡ δLD7

δA′

0
(r,x) . This is the electron density of the dual

theory [19],

d = lim
Λ→∞

δSD7

δA0(r = Λ, x)
= N r3A′

0(r)

√

√

√

√

1 + B2

(r2+y(r)2)2

1 + y′(r)2 − A′
0(r)

2
. (2.8)

Next, we solve for A′
0 in terms of y and d, giving

A′
0(r)

2 =
d2(1 + y′(r)2)

(d2 + N 2r6) + N 2r6B2

(r2+y(r)2)2

. (2.9)

We now Legendre transform to eliminate A0 and find the action at fixed rescaled density

d = Nρ,

ŜD7[d; y, y′] = SD7[A
′
0(d, y, y′); y, y′] −

∫

dr
δLD7

δA′
0

A′
0(d; y, y′)

= −N
∫

dr
√

1 + y′(r)2

√

ρ2 + r6 +
r6B2

(r2 + y(r)2)2
. (2.10)
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From ŜD7 we can derive a single nonlinear equation of motion for y(r) in terms of the

density ρ and the magnetic field B. The resulting second-order differential equation for

y(r) has two singular points, one at the boundary r → ∞ and one at r = 0. We can

perform a Frobenius expansion at either singular point and from there determine suitable

boundary conditions on the field y.

Our finite density embeddings cross the AdS horizon as described in [19]. These

embeddings therefore obey the boundary condition y(0) = 0. The Frobenius expansion

near r = 0 then takes the form

y(r) = γ1r +

∞
∑

i=2

γir
i, (2.11)

where γ1 is a free parameter, and all the other γi are determined by γ0.

The Frobenius expansion near the boundary takes the form

y(r) = c0 +
c2

r2
+

∞
∑

i=2

c2i

r2i
, (2.12)

where both c0 and c2 are free parameters and the higher ci are determined by them. After

performing holographic renormalization [33], which we review in section 2.2, we learn that

c0 is essentially the bare mass, m, for the N = 2 matter. More precisely, it is the source for

an operator that includes the standard chiral condensate bilinear in the matter fermions

and whose specific form is given in [19]. The bulk field y is dual to this operator and its

expectation value (divided by N ) is given by c = −2c2, found by

〈Oy〉 = N c = lim
Λ→∞

1

Λ3

δŜD7

δy(r = Λ, x)
. (2.13)

This condensate will serve as an order parameter for chiral symmetry breaking.

Except for the trivial solution y = 0, the equation of motion for y can only be solved

numerically. We therefore elect to shoot; we can shoot from the bottom of the brane at

r = 0 by dialing γ1 in the near-horizon solution eq. (2.11). Each solution will correspond

to an extremum of the dual theory at the mass and condensate represented in the large

r behavior of that solution. Alternatively, we could impose a boundary condition at large

r — say m = 0 — and dial the condensate until the embedding crosses the horizon,

corresponding to an extremum of the massless theory.

2.2 Holographic renormalization

The exponentiated (negative) on-shell action of the bulk theory is the generating functional

of the dual field theory [34, 35]. The on-shell action is then (minus) the free energy of

the dual state. In our case, the bulk theory is the dimensional reduction of type IIB

supergravity on AdS5 × S5 onto AdS5 plus Nf D7 branes. The action of the supergravity

fields is much larger than the DBI action of the branes. The former corresponds to an

order N2
c contribution to the free energy of the field theory, while the DBI action of the

probe branes gives an order Nc contribution. It is this order Nc term (the leading flavor

– 7 –
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contribution) that we consider hereafter. Moreover, since the on-shell action is extremized

on solutions y(r), a given solution corresponds to an extremum of the dual field theory.

The DBI action at fixed density naturally corresponds to the free energy at fixed

density, i.e. in the canonical ensemble,

F (B, d,m) = −ŜD7|on−shell. (2.14)

However, simply plugging bulk solutions into the DBI action and attempting to integrate

leads to divergences. The same problem usually emerges when differentiating the action to

obtain expectation values in the dual field theory. These divergences are well understood

and can be removed by holographically renormalizing the bulk theory [33, 36]. On the

bulk side, the gravitational theory naively diverges because it lives in an infinite volume.

These bulk divergences occur near the AdS boundary and correspond precisely to the UV

divergences of the dual theory. Holographic renormalization is the process of regulating

a bulk theory in a diffeomorphism invariant fashion, leading to both a well-defined bulk

theory and its dual.

The easiest way to perform holographic renormalization is to examine the near-

boundary behaviour of the action density for a general solution. The action will have

a number of divergences, each of which will be removed with an appropriate counterterm.

Using the near-boundary solution, eq. (2.12), for y(r) we find the near-boundary expansion

of the action,

ŜD7 = −N
∫

drd4x

(

r3 +
B2

2r
+ O(r−2)

)

. (2.15)

The action has two divergences. The first term corresponds to the infinite volume of an

asymptotically AdS5 space, while the second term leads to a logarithmic divergence and

corresponds to a conformal anomaly of the dual theory. We proceed to regulate the action

by cutting off the integral at some large value of r, which we call Λ. The divergent parts

of the action are

ŜD7 ⊃ −N
∫

d4x

(

Λ4

4
+

B2

2
log Λ

)

. (2.16)

We regulate these divergences by adding counterterms that live purely on this fixed-r

slice and are invariant under diffeomorphisms on the slice.4 In our case, we need to add

the counterterms

Scounter = N
∫

r=Λ
d4x

√−γ

4
(1 + FµνFµν log Λ), (2.17)

where γ is the induced metric on the r = Λ slice and the indices µ, ν on the field strength

run only over the slice coordinates µ = 0−3. These terms exactly cancel the near-boundary

divergences of the bulk theory. Adding the counterterms and taking the Λ → ∞ limit, we

obtain the regulated, diffeomorphism-invariant action

ŜD7,ren[d; y, y′] ≡ lim
Λ→∞

[
∫ Λ

dr L̂D7[d; y, y′] + Scounter

]

. (2.18)

4This is a radial slice of the asymptotic AdS5 factor in the branes, rather than in the full eight-dimensional

worldvolume.
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It is this renormalized action that corresponds to the renormalized generating functional

of the dual theory.

As alluded to above, the logarithmic counterterm indicates a conformal anomaly of

the dual theory [37, 38]. To see this, recall that dilatations of the field theory correspond

to bulk scale transformations

r′ = λr, (xµ)′ = λ−1xµ. (2.19)

A bulk field dual to an operator of dimension ∆ transforms with a power of λ∆, and so

the magnetic field transforms as B′ = λ2B. The original DBI action is invariant, but the

logarithmic counterterm is not. Writing it in terms of the new primed coordinates we find

S′
counter = N

∫

d4x′ (Λ
′)4

4

(

1 +
2(B′)2

(Λ′)4
log Λ′

)

= Scounter + N
∫

r=Λ
d4x

√−γ
FµνFµν log λ

4
,

(2.20)

where Λ′ = λΛ is the new cutoff. With this result, the renormalized free energy then

transforms as

F ′
ren = Fren −N

∫

d4x
FµνFµν

4
log λ, (2.21)

written in terms of the field strength in the field theory and the Minkowski metric. The

dilatation invariance of the free energy of the field theory is violated, corresponding to a

conformal anomaly proportional to F 2.

Finally, we need to say a few words about our renormalization scheme. By dimensional

analysis, we could also include a counterterm of the form

Sfinite = α

∫

r=Λ
d4x

√−γFµνFµν , (2.22)

in our renormalized action eq. (2.18). This term introduces no divergences for any value of

α, but rather shifts the on-shell action by the amount αB2. Different values of α correspond

to different renormalization schemes for the dual theory, where some correlation functions

will contain scheme-dependent terms. Since we must make a choice of scheme, we have

decided to choose the simplest scheme α = 0 in this work.

2.3 Numerical analysis of phase structure at T = 0, m = 0

We now investigate the phase diagram of the D3/D7 system at zero bare mass and zero

temperature. Fixing the density ρ, we use the shooting techniques discussed in section 2.1

to find the brane embeddings that correspond to the theory at zero mass as we dial the

magnetic field. We find two distinct regimes, separated by a critical magnetic field, which

we found to be Bc/ρ
2/3 = 2.1387341 . . . For completeness, we write this critical magnetic

field in terms of the physical charge density and field theory quantities as

Bc = β
(2π)8/3d2/3

(NcNf )2/3λ2/3
, (2.23)

where β is the numerical factor above.

– 9 –
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Figure 2. On the left, we plot the field theory condensate c as a function of the magnetic field

near the critical point. At small magnetic fields, the condensate vanishes and chiral symmetry is

preserved. Above the transition, a condensate develops and scales as |c| = 1.017(B−Bc)
1/2ρ2/3. On

the right, we plot the difference of free energy density (normalized by 1/N ) between the broken and

symmetric phases over the same domain. The broken phase has a lower energy and the difference

scales as ∆F = −0.07852(B − Bc)
2N .

For small B < Bc (the “high density” phase), there is only one solution that corre-

sponds to zero mass, the trivial embedding y = 0. The condensate vanishes and this phase

is chirally symmetric. However, for B > Bc (the “large magnetic field” phase), we find at

least two solutions corresponding to zero mass. There is now a second, non-trivial solution

that corresponds to a nonzero condensate. We calculated the renormalized free energies

for both solutions and found that the non-trivial embedding always has a lower free energy

and thus is the thermodynamically preferred equilibrium state of the theory.

The theory therefore has a chiral symmetry breaking transition at B = Bc. Moreover,

near the transition, the condensate scales as c ∝ (B − Bc)
1/2 and the difference of free

energies as ∆F ∝ (B − Bc)
2. We plot these results in figure 2. This transition is there-

fore second order with mean-field exponents. We have found a concrete realization of a

holographic quantum critical point and the primary result of this work.

The mean-field critical exponents indicate that there is a nice Landau-Ginzburg-Wilson

effective potential [39, 40] in the neighborhood of the critical point. With the results plotted

in figure 2, we can write that effective potential as (in units where ρ = 1)

Feff(c,B)/N = α0(B) − α2(B)(B − Bc)
c2

2
+ α4(B)

c4

4
+ O(c6), (2.24)

where α0 is the free energy of the symmetric embedding and the functions α2,4 are numer-

ically determined to be α2 = 0.3038 and α4 = 0.2939 up to corrections of order B − Bc.

We could have also directly measured the effective potential with our brane embed-

dings. At fixed magnetic field and density, we can scan the space of all physical values of

the mass and condensate by dialing the parameter γ1 in the near-horizon series solution

eq. (2.11) for y. Interpreted another way, we can numerically find the expectation value c

that corresponds to turning on the mass m. Since the effective potential at nonzero mass

is just

Feff,m(c) = Feff,m=0(c) + Nmc, (2.25)
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the effective potential at zero mass can be found by integrating

F ′
eff,m=0(c) = −Nm. (2.26)

This picture only makes sense when the mass (as a function of the condensate) is single-

valued. When the mass is multi-valued, more degrees of freedom are light in the infrared

and must therefore be included in the effective potential.

This is exactly what happens when we increase the magnetic field. For magnetic fields

below the critical Bc, the mass monotonically decreases with the condensate. The curve

has one zero at zero condensate, corresponding to the symmetric phase. At the transition,

the mass develops a second root at nonzero condensate, but the curve is still single-valued.

This new root is the broken vacuum. At larger magnetic fields, the curve begins to spiral

and at a magnetic field of Bspiral = 4.595ρ2/3 it becomes multi-valued at zero condensate.

The effective potential becomes infinitely curved here. We conclude that more degrees of

freedom are becoming light near the symmetric phase. On the other hand, the mass curve

is single-valued near the second zero and so the effective potential (as a function of only

the condensate) seems to be valid near the broken vacuum.

The mass curve continues to spiral as we increase the magnetic field. In fact, a second

non-trivial extremum develops at a magnetic field of B2 = 9.664ρ2/3. Remarkably, the con-

densate scales as c ∝ (B −B2)
1/2 near this new transition. The new extremum has a lower

free energy than the symmetric state with a difference that scales as ∆F ∝ −(B − B2)
2.

Against our intuition, there appears to be a second chiral symmetry breaking transition

with mean-field exponents. We also note that both of these extrema have higher free energy

than that of the first non-trivial vacuum.

The simplest way to interpret this result is that a mean-field picture holds near the

symmetric extremum (i.e. for small condensates) and the second transition B = B2. If

this is correct, the symmetric extremum must become perturbatively stable (presumably

at B = Bspiral) and then unstable again at B = B2. This picture would also suggest

that the new broken extremum is perturbatively stable and so metastable. However, we

cannot verify any of these claims without computing the fluctuation spectrum around

these extrema.

Increasing the magnetic field further, the spiral continues to wind around

(m = 0, c = 0). We plot the spiral at a magnetic field above the second transition in figure 3

for a visual aid. In any event, more and more non-trivial extrema are generated as the

spiral winds. Numerically, there appear to be many chiral symmetry-breaking transitions,

each with mean-field exponents. Finally, if we denote the free energy of the nth non-trivial

extremum as Fn (where the actual vacuum is F1) and the free energy of the symmetric

extremum as F0, we have

F1 < F2 < F3 < . . . < Fn < F0, (2.27)

at a magnetic field for which there are n non-trivial extrema. The free energies then form a

tower rather than suggesting a landscape. We speculate that all of the non-trivial extrema

are metastable.
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Figure 3. We plot the mass as a function of the condensate at a magnetic field of B = 20ρ2/3. The

mass has three roots, one at zero condensate and two away from zero. The three roots correspond

to the three extrema of the dual theory at this value of the magnetic field. The outermost root is

the true vacuum of the theory, but we speculate that the other non-trivial root is metastable.

3 The full phase diagram at zero temperature

This theory has been studied before at finite density and zero magnetic field [6] as well as

at zero density and finite magnetic field [29]. We will begin this section by reviewing these

works, using their results as a foundation upon which we will construct the phase diagram

of this theory at finite density and finite magnetic field. We will find the phase diagram

in the grand canonical ensemble, allowing us to find the transition line separating the zero

and nonzero density phases.

At zero magnetic field and zero temperature, the theory has two dimensionful parame-

ters - the bare hypermultiplet mass m and the chemical potential µ - and so the theory can

be studied as a function of the dimensionless parameter m/µ. In [6], the authors found that

there is a second-order transition between a finite density phase and a zero density phase

at m/µ = 1. They interpret this result in light of the fact that, at zero density, the lightest

charged quasiparticle in the theory has a mass precisely equal to the bare hyper mass m.

The field theory interpretation of the transition is simply that a chemical potential greater

than that mass is required to condense these charges.

On the gravity side, the finite density embeddings are just as the ones we studied in

section 2.3: they support nonzero field strength sourced by charge that lies behind the

Poincáre horizon of AdS. These embeddings therefore cross that horizon and extend to the

bottom of AdS. Moreover, these horizon-crossing branes only exist for values of chemical

potential greater than bare mass, i.e. for m/µ ≤ 1. On the other hand, the zero density

embeddings are just those with zero field strength but constant bulk gauge field A = µ dx0.

The equations of motion that govern the brane embedding do not depend on µ and so these

embeddings are the same as at µ = 0 [18], i.e. constant y = m (with m measured in units

of R). The free energy of the zero density embeddings is always zero and the free energy of

the finite density embeddings is always negative. Thus, the finite density phase is always

thermodynamically preferred above the zero density phase. Since that finite density phase
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does not exist for m/µ > 1, there is a transition between the two phases at m/µ = 1. Below

the transition, the zero density phase is perturbatively stable (it has the same spectrum as

at µ = 0 [32]) and so is metastable. Finally, the mass of the lightest charged quasiparticle

in the zero density phase corresponds to the mass of the lightest charged state on the

gravity side. That state is a static fundamental string stretching from the bottom of the

brane to the stack of D3 branes at the bottom of AdS. For a brane with constant y = m,

that string has a mass m
2πα′ . In our units, the chemical potential corresponding to this

mass is simply m, and so a chemical potential larger than this quasiparticle mass indeed

condenses charge.

The story is a little less complicated at zero density and finite magnetic field [29]. The

only dimensionless parameter in the theory is now B/m2 and there is no transition along

that line. The field strength on the brane is a constant B dx1 ∧ dx2 and the embedding

equations can only be solved numerically. At all values of B/m2, the D7 brane is repelled

from the bottom of AdS, inducing a condensate in the dual field theory. The theory

therefore has a single Goldstone boson (or pseudo-Goldstone boson at finite quark mass)

corresponding to the spontaneous breaking of the U(1) chiral symmetry by the condensate.

We now seek to combine these two studies by studying the theory at finite density and

finite magnetic field. We now have three dimensionful parameters - the bare hyper mass

m, the magnetic field B, and the chemical potential µ - which we combine into the two

dimensionless quantities m/µ and B/µ2. We choose to plot the phase diagram as a function

of these quantities as shown earlier in figure 1. There are also two order parameters for

a transition: the condensate (measured in units of µ) c/µ3 and the density d/µ3. At the

least, we should expect a line of finite-density/zero-density transitions connected to the one

at zero magnetic field. There may also be a line of chiral symmetry-breaking/preserving

transitions connected to the one at zero mass.

Let us begin mapping out the full phase diagram of this theory in the
(

m
µ , B

µ2

)

plane

by seeing what happens to the finite/zero density transition away from the limit of zero

magnetic field. As with the transition at B = 0, the finite density embeddings are the

horizon-crossing solutions with nonzero radial electric field and constant magnetic field

while the zero density embeddings are the Minkowski embeddings with constant gauge field

A = µ dx0 and magnetic field. These embeddings do not depend on the chemical potential

but do depend on the magnetic field. The mass of the lightest charged quasiparticle is

therefore a function of the magnetic field and bare mass through mQP = mfQP(B/m2).

We then hazard an informed guess about the finite/zero density transition: the chem-

ical potential required to condense charged quasiparticles of some mass should simply be

that mass. Processing this statement, we can define a curve in the
(

m
µ , B

µ2

)

plane by

(

B

µ2

)

crit

≡
(

m

µ

)2

f−1
QP

( µ

m

)

, (3.1)

which should give the location of the transition as a function of m/µ. It is important to

remember that, at zero density, the D7 brane is repelled from the bottom of AdS for all

values of B/m2. Thus, the mass of the lightest charged quasiparticle is always greater than
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Figure 4. The transition line between the finite and zero-density phases is plotted in blue in the
(

m
µ , B

µ2

)

plane. The data points indicate finite density extrema at ρ = 1 and constant magnetic

field. The blue circles are at B = 10, the purple squares at B = 15, and the gold diamonds at

B = 25. As the magnetic field increases, these curves approach the transition line, indicating that

the blue curve is indeed the spinodal line of the finite density phase.

the bare mass and so m/µ is less than or equal to unity along this curve. Moreover, the

lightest charged quasiparticle remains massive as the bare mass goes to zero, so this curve

extends all the way to zero mass. This curve therefore cuts through the
(

m
µ , B

µ2

)

plane

from one axis to the other.

If the curve eq. (3.1) is a transition line of second or higher order (as we might expect

it to be, since the zero density phase exists everywhere in the
(

m
µ , B

µ2

)

plane but the finite

density phase will not), then it is also the spinodal line for the finite density phase.5 That

is, we only approach the hypothesized transition line from the finite density side as we take

the d → 0 limit. This is a tricky numerical limit, since we are taking a parameter to zero

but the embedding depends crucially on that small parameter for a large region near the

bottom of the brane. As a result the practical limit is actually that of a large number,

namely B → ∞ (and so µ and m → ∞ as well).

There is a natural two-step process we use to verify that eq. (3.1) is indeed the transition

line between the finite and zero density phases of the theory. First, we verify that this curve

is the spinodal line of the finite density phase by studying the d → 0 limit of the finite

density embeddings. We have plotted the curve eq. (3.1) in addition to three lines of data

at small density in figure 4. Each data set is taken at small but fixed density, fixed magnetic

field, and varying mass. As the density decreases (or, the magnetic field increases), each

of these curves appears to approach the hypothesized critical line. We have studied this

question further by considering densities as small as ρ = 10−6 at unit magnetic field and

found that the curve eq. (3.1) is indeed the spinodal line of the finite density phase within

our numerical accuracy.

Next, we should compare the free energy of our finite density embeddings with those

5In this section, we will ignore all of the extra extrema that we found in section 2.3. From our measure-

ments, they have more free energy than the zero density embeddings.
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Figure 5. The condensate of the theory at zero mass as a function of the magnetic field. The purple

line indicates the chiral symmetry preserving phase, the blue line the chiral symmetry breaking (but

finite density) phase, and the red line the zero density phase.

of the corresponding zero density embeddings. Since we also learn about the magnetic

properties of the flavor this way, we consider both the free energy and condensate along

lines of fixed mass. For now, we will look at the condensate and save the free energies for our

Discussion in section 4. We begin by plotting the condensate at zero mass in figure 5. For

small magnetic field, the vacuum preserves chiral symmetry and the condensate vanishes;

at the critical magnetic field Bc, we hit the chiral symmetry breaking transition and the

condensate is nonzero. Next, we zoom in near the spinodal point B/µ2 = 4.390 and

find that the condensate is continuous between the finite and zero density phases at the

spinodal point. The finite/zero density transition is therefore at least second order at zero

mass. We go further and plot the derivative of the condensate in figure 6 near the spinodal

point. Unfortunately, we can only approach that spinodal point from the finite density

side and so our data only extends to within a small distance of the transition. Within this

domain the derivative of the condensate changes rapidly and may indeed limit to the zero

density value at the transition. The combined results of figure 6 therefore indicate that the

finite/zero density transition at zero mass is at least second order and may be third order,

but no higher.

The last remaining question about the full phase diagram is whether there is a line of

transitions connected to the chiral symmetry breaking transition we found earlier at zero

mass. To answer this question, we calculated both the free energy and condensate in the

region near the transition in the
(

m
µ , B

µ2

)

plane. We found no evidence of a transition other

than at zero mass. This is consistent with the effective potential picture we developed in

section 2.3. Near the critical point, the theory lives at finite density and so we miss

no information by switching to the canonical ensemble. Earlier, we found the effective

potential to be

Feff,m(c,B)/N = α0(B) − α2(B)(B − Bc)c
2 + α4(B)c4 + mc + O(c6), (3.2)

where we measured α2,4 to be constants up to order B − Bc corrections. For any nonzero
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Figure 6. The condensate of the theory (left panel) and derivative of the condensate (right panel)

at zero mass as a function of the magnetic field near the finite/zero density transition. The blue line

indicates the chiral symmetry breaking (but finite density) phase and the red line the zero density

phase. Since the condensate appears to be continuous across the transition, the transition must

be at least second order. We lack data for the finite density phase between B/µ2 = 4.389916 and

the transition at B/µ2 = 4.389930, so it is possible that the derivative of the condensate is also

continuous at the transition. If this is so, then the transition is third order.

mass, this potential exhibits no phase transition near B = Bc. There is only an isolated

second-order transition in this Landau-Ginzburg-Wilson model corresponding to no mass,

just as we see for the D3/D7 system. For completeness, we should also say that we did

not see any transitions in our system other than the finite/zero density transition and the

chiral symmetry breaking transition at zero mass.

To summarize, the full phase diagram of the theory at zero temperature consists of

a single curve eq. (3.1) between the finite and zero-density phases. The transition along

this line is at least second and possibly third order along most of the curve. There is also

the second-order transition at zero mass from section 2.3. This transition is isolated. We

therefore arrive at the phase diagram in figure 1. The picture in the canonical ensemble is

even clearer. The zero density phase and the transition to finite density collapses to a line

at d = 0, so that the only interesting feature is the transition at zero mass.

4 Discussion

4.1 Quantum critical matter

Physical systems with a quantum critical point generally have an anomalous phase of mat-

ter. This phase is found at nonzero temperatures and for values of the control parameters

near the critical point. The anomalous phase is thought to be controlled by the conformal

theory at the critical point heated up to a temperature T . In the (control parameter, T )

plane, the anomalous phase is roughly wedge-shaped with two borders. The borders may

be continuous transitions or crossovers. In nature, this “quantum critical matter” has been

identified by studying both the resistance and the specific heat near the critical point [41].

For example, the resistance and specific heat at low temperatures in some metals appear

to scale with different powers of the temperature inside and outside the wedge.
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We would like to identify a quantum critical phase in our theory if it exists. Following

the lead of the condensed matter community, we will search for critical matter by studying

the resistance and specific heat near the critical point. In order to do so, we need to turn

on a temperature. On the gravity side, this amounts to studying probe branes in and

supergravity on AdS-Schwarchild×S5. Our finite density embeddings still have an electric

field supported by charge behind the horizon, so the branes still fall into the black brane

of the geometry. The background metric is now

g =
−f(z)dt2 + d~x2

z2
+

dz2

f(z)z2
+ dθ2 + cos2 θdΩ2

3 + sin2 θdφ2, (4.1)

where f(z) = 1− z4

z4

H

and zH is the horizon radius of the geometry, related to the Hawking

temperature of the black brane as zH = 1
πT . We identify the Hawking temperature with

the temperature of the dual theory. The boundary of the AdS-Schwarzchild space is at

z → 0. We now wrap probe D7 branes in this geometry as before; the branes wrap

a five-cycle inside AdS-Schwarschild as well as the three-sphere, live at constant φ, and

are parametrized by the “slipping mode” θ = θ(z). In the zero temperature limit, these

coordinates are related to our old ones by y z = sin θ, r z = cos θ.

The DBI action of these probes at fixed density is now given by

ŜD7 = −N
∫

dz

√

1 + z2f(z)θ′(z)2
√

ρ2z6 + (1 + B2z4) cos6 θ(r)

z5
. (4.2)

We can repeat the analysis of [36] and holographically renormalize this action. The coun-

terterms required in this parametrization are a little bit more complicated than those in

section 2.2, but the idea is the same. The equation of motion for the field θ has two singu-

lar points that concern us: one at the boundary of AdS-Schwarschild and the other at the

horizon. Near the horizon, we simply mandate that θ is regular. The series solution for θ

there then has the form

θ(z) = θ0 +

∞
∑

i=1

θi

(

z − zH

zH

)i

, (4.3)

where the θi are determined by the free parameter θ0. Conversely, the near-boundary series

solution for θ is

θ(z) = a1z + a3z
3 +

∞
∑

i=1

a2i+3z
2i+3, (4.4)

where a1 and a3 are free parameters and the remaining ai are determined by them. After

performing holographic renormalization, we learn that a1 is the bare hyper mass m and a3

is related to the condensate and mass by a3 = − c
2 + m3

6 .

The chiral symmetry-preserving embedding is still a solution at nonzero temperature.

In these coordinates, it is simply θ = 0. The broken vacuum, on the other hand, will have

θ0 ∝ (B −Bc(T ))1/2 near the transition. As before, we elect to shoot in order to find dual

extrema at zero bare mass. We are now set to study the resistance and specific heat. We

first consider the resistance. The calculation of the resistance of probe brane systems at

finite density and magnetic field was first discussed in [42]. At zero electric field, the DC
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resistance can be found in terms of one input: the angle at the horizon θ0. At first sight,

this is promising. At fixed temperature, θ0 behaves differently in three distinct regions. At

small magnetic field, chiral symmetry is preserved and θ0 = 0; just above the transition,

θ0 scales nicely as
√

B − Bc(T ); finally, at large magnetic field θ0 simply asymptotes to

π/2. On these grounds alone, we expect the resistance to behave differently in those three

regions. Indeed, the first two regions are separated by a line of transitions and the last two

by a crossover, matching our expectations for a quantum critical phase. However, it turns

out that all of these effects are small.

To see this, consider the resistance at small temperatures (in units where ρ and N are

both unity),

Rxx = Ryy = π2T 2 +
1

2
B2π4 cos6 θ0 T 4 + O(T 6),

Rxy = −B + Bπ6 cos6 θ0 T 6 + O(T 8). (4.5)

The series expansions eq. (4.5) inform us that the dominant terms in the resistance are

uniform near the critical point. In the diagonal resistance, the first non-trivial difference

between the symmetric and broken phases is a term of order (B − Bc(T ))T 4; in the off-

diagonal, the first difference goes like (B − Bc(T ))T 6. We therefore conclude that the

anomalous resistance of our critical matter is a subleading part of the resistance in both

temperature and B − Bc.

We move on to consider the specific heat in the neighborhood of the critical point.

First, we compute the specific heat in the symmetric phase. At zero magnetic field and

small temperatures, this scales as a bizarre T 6 [43]. At nonzero magnetic field, we find

that the specific heat scales as T 2. The computation is simple. Consider the renormalized

free energy corresponding to a small temperature T and the symmetric embedding θ = 0.

Then we can write the thermodynamic potential of the canonical ensemble as

F = − lim
Λ→∞

[

∫ ∞

1/Λ
dzL̂[d; 0, 0] + Fcounter(Λ)

]

+

∫ ∞

zH

L̂[d; 0, 0], (4.6)

where Fcounter(Λ) is some set of counterterms living on the slice z = 1/Λ. Only the

temperature-dependent part of the potential contributes to the specific heat, so we need

only consider the second integral. For small temperatures, zH is close to infinity and we

can expand the integrand in powers of z. The potential is

F

N = −πρT − B2T 3

6ρ
+ O(T 5), (4.7)

and so the entropy density s = −
(

∂F
∂T

)

ρ,V
is large at zero temperature. This is a classic

feature of probe brane systems and indicates a large ground state degeneracy that is pre-

sumably broken away from large N and λ. In any event, the specific heat cV = T
(

∂s
∂T

)

ρ,V
is

cV,0 = N B2T 2

ρ
+ O(T 4). (4.8)
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Figure 7. Schematic behavior of the specific heat close to the quantum critical point as a function

of temperature. The solid line indicates a line of 2nd order phase transition, the broken line is a

crossover as described in the text.

We now endeavor to measure the specific heat in the broken phase. To do so, we will

take advantage of the fact that we have a nice effective potential description of the theory

near the critical point,

Feff(c,B, T )/N = α0(B,T ) − α2(B,T )(B − Bc(T ))c2 + α4(B,T )c4 + O(c6), (4.9)

where everything in sight can be represented as a double series in T and B−Bc(T ). More-

over, we can make the constraint that our theory violates the third law of thermodynamics

no worse than in the symmetric phase. In other words, the zero temperature entropy den-

sity is πd everywhere. We have numerically confirmed this result. The consequence is that

neither the coefficients α2, α4, nor the location of the critical magnetic field Bc have a piece

linear in the temperature. At low temperatures, the specific heat is then

cV /N = −α2(B, 0)2B′′
c (0)

2α4(B, 0)
(B − Bc)T

+
α2(B, 0)

2α4(B, 0)

(

α′′
2(B, 0) − α2(B, 0)α′′

4(B, 0)

2α4(B, 0)

)

(B − Bc)
2T + O(T 2), (4.10)

where Bc is the location of the critical magnetic field at zero temperature, Bc(0), and ′

denotes differentiation with respect to temperature. Before measuring the parameters of

the effective potential, we pause to note two things. First, a wide class of theories with

a second order transition and mean-field exponents will have a linear specific heat in the

broken phase. We need not necessarily interpret this result as a signature of fermionic

degrees of freedom dominating the broken phase. Rather, we find a linear specific heat

because it is the most generic thing we could find. Second, in our system chiral symmetry

is restored by a temperature, so Bc(T ) > Bc(0) and B′′
c (0) ≥ 0. However, if B′′

c (0) > 0,

the specific heat near the transition at small temperature will be negative. We therefore
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predict that B′′
c (0) = 0, a prediction borne out in our numerics. Indeed, we find that the

critical magnetic field behaves as Bc +a3T
3 at small temperatures. Moreover, we find that

the parameters α′′
2(B) and α′′

4(B) scale at least as O(B − Bc). Unfortunately, we have

not been able to accurately measure the O(B − Bc) or higher order terms in α′′
2 or α′′

4 . It

is possible that both of these functions vanish for all B, but we have no firm theoretical

justification for why they should as we did for the vanishing of B′′
c and the linear terms in

T . As a result, we expect that there will be a specific heat in the broken phase that scales

at least as (B − Bc)
3T at small temperatures.

There is also a large piece of the specific heat that scales as T 2. This is just the specific

heat of the symmetric phase. If the linear piece of the specific heat is α(B−Bc)
3T and the

piece from the symmetric phase is βT 2, then there is a crossover region near the critical

point where the specific heat changes its scaling from T to T 2. The line between these two

regions is roughly given by α(B − Bc)
3Tcross = βT 2

cross, i.e. by Tcross = α
β (B − Bc)

3. We

therefore arrive at a picture for the critical matter in the D3/D7 system, which we present

schematically in figure 7. The critical matter is the region in the broken phase where the

specific heat scales as T 2, rather than as T in the “normal” but broken phase below it.

4.2 Fermions?

It is tempting to speculate that our quantum phase transition indicates a competition

between bosonic and fermionic condensates. While the high density phase is probably

dominated by bosons as they do not need to form a Fermi surface, the chiral symmetry

breaking condensate may arise from the interaction of the background magnetic field with

the fermion spin. We might hope that the broken phase is dominated by strongly-coupled

fermions. If so, we would expect to see signs of the de Haas-van Alphen effect. This effect is

a result of the simultaneous presence of Landau levels and a Fermi surface. As the magnetic

field is dialed, the spectrum of Landau levels shifts up or down. For a fixed Fermi surface,

there will be particular values of the magnetic field where a Landau level crosses the Fermi

surface. For system of free fermions, these crossings lead to discontinuities and spikes in

thermodynamic quantities, including the magnetic susceptibility. These discontinuities are

smoothed out by interactions, but still persist in the form of oscillations or plateaus.

For example, the magnetic susceptibility for a free fermion in a magnetic field will have

a series of delta function spikes located at field values

B =
µ2 − m2

2(l + 1
2)

, (4.11)

where l is a positive integer. With interactions, these spikes are smoothed out into a series

of oscillations. The “lowest” peak will occur for relatively large B, and the density of peaks

will increase as B is taken to zero. While the physical interpretation of this effect is most

clear at fixed chemical potential, such hills also appear at fixed density.

We have calculated the magnetic susceptibility of our system for magnetic fields above

the phase transition and at three values of the mass - the massless case m = 0, the

relativistic massive case of m/µ = 1/2, and the non-relativistic case of m/µ = 0.999. The

results are plotted below in figure 8.
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Figure 8. We plot the (normalized) magnetic susceptibility N−1∂2F/∂B2 as a function of the

magnetic field at m/µ = 0 (left), m/µ = 0.5 (right), and m/µ = 0.999 (bottom). For the sus-

ceptibility at m = 0, we only plot in the broken phase. At large magnetic field for both m = 0

and m/µ = 0.5 there is a “tail” in the susceptibility. For m = 0, the tail is roughly 3% of the

total susceptibility and at m/µ = 0.5 the tail is smaller, about 1.5%. In each case, we fail to see

oscillations in the susceptibility.

We do not see a series of oscillations. The only interesting feature in our susceptibilities

is a small upturn at very large magnetic field. A consistent interpretation of our results

at zero mass is that we see the lowest peak of the oscillations in the de Haas-van Alphen

effect. If this is true, then we posit that the higher peaks (occurring at lower magnetic

field) are cut out by the critical point.

Within our interpretation, what is happening is that for sufficiently large magnetic

fields the system prefers to condense fermions rather than scalars. This is indeed what

would happen in our theory at weak coupling and in the non-relativistic regime (0 <

µ − m ≪ m). In this weakly-coupled, non-relativistic limit the presence of a magnetic

field gives rise to a Zeeman splitting for the spin 1/2 fermions, but not for the spinless

scalars. The fermionic state splits into two states, one of which would have a lower energy

than the scalar state. The Zeeman splitting is given by ∆Ez = 2µBB, where µB is the

Bohr magneton. For non-relativistic fermions, the splitting is hence of the same size as the

spacing between Landau levels, which is also ~qB
mc = 2µBB. By the time the system would

be wanting to put fermions in the second Landau level, it has become favorable to once

again condense scalars.
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It is at least plausible to suspect that the same microscopic physics still dominates

our system at strong coupling. Thus, despite the absence of oscillations in the magnetic

susceptibility of our system, we have not been able to rule out the condensation of fermions.

4.3 A conjecture

The quantum phase transition that we have described in this paper for the D3/D7 system

arises out of a competition between a finite density and a finite magnetic field. These

competing effects are well understood in the brane picture. As first established in [19],

the charged strings required to turn on a nonzero field strength on the branes (and thus

a density in the field theory) will pull the probe branes into the horizon, and the only

relevant embeddings at finite density are thus the black-hole embeddings. We see that

a finite density attracts the probe branes into the horizon and so tends to restore chiral

symmetry. This result should be equally true in the weak-coupling limit.

On the other hand, a magnetic field on the probes repels them from the horizon [29].

For small magnetic fields, this repulsive force is not enough to overcome the attractive

force from a finite density, and the resulting embeddings are symmetric. However, for large

magnetic fields the repulsive force is stronger than the attractive, leading to a non-trivial

profile for the embedding and thus to the breaking of chiral symmetry.

This scenario is only possible because the dimension of the density operator is always

greater than (or equal to, in two spatial dimensions) the dimension of a magnetic field.

The near-horizon dynamics of the D7 branes are then dominated by the finite density. If,

unphysically, the density had a lower dimension than the magnetic field, an infinitesimally

small magnetic field would trigger chiral symmetry breaking and there would be no critical

point at nonzero magnetic field.

In terms of brane mechanics, our quantum critical point seems as though it could be

generic. Moreover, the fact that we see an analogous transition in the D3/D5 system [31]

gives us a little more liberty to speculate. From our analysis, the necessary conditions for

our quantum critical point were (i.) the existence of a global symmetry for which we could

turn on a density and magnetic field, (ii.) some chiral symmetry, (iii.) the fact that the

magnetic field broke the chiral symmetry at zero density, and (iv.) the conformality of

the theory before turning on a density and magnetic field. We therefore conjecture that

all of these conditions are sufficient to guarantee a quantum critical point in the theory

at some nonzero magnetic field. It would be very interesting to investigate the validity of

this conjecture in weakly-coupled field theories and for those field theories whose dual is

outside the supergravity regime.
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A Numerical methods

This appendix is designed to be a how-to guide for the construction of high-precision

numerical brane embeddings. In it, we will describe the means by which we generate

our embeddings as well as how we obtain properties of the dual field theory states. This

will include a discussion of accurate numerical holographic renormalization, as well as the

practical implications of the conformal anomaly eq. (2.21).

We solve for two types of embeddings in this work: (i.) those that fall into the horizon

of either AdS or AdS-Schwarschild and (ii.) those that end outside the horizon. In each

case, our solution technique is the same. The equation of motion for the brane embedding

has a regular singular point at the bottom of the brane and at the AdS boundary. Since

we cannot start to numerically integrate the equation of motion at a singular point, we

begin by obtaining Frobenius expansions near both the top and the bottom of the brane.

As we mentioned in the text, we elect to shoot from the bottom of the brane. In practice,

this amounts to using the series solution to generate initial conditions a small distance

above the bottom. We then feed those initial conditions into a numerical integrator like

Mathematica’s NDSolve routine and solve for the embedding up to a close distance below

the singular point at the AdS boundary. We then match the numerically generated solution

with the near-boundary series solution to determine the asymptotic data eq. (2.12) of the

solution, i.e. the mass and condensate of the dual field theory state.

For completeness, we present the first few terms of the series solutions for the field y

in pure AdS and θ in AdS-Schwarschild at both the top and the bottom of the D7 branes.

First, the near-horizon solution for y in pure AdS is given by

y(r) = γ1r −
γ2
1B2

2(1 + γ2
1)ρ2

r3 +
γ1(11 + 15γ2

1)B4

40(1 + γ2
1)ρ4

r5 + O(r7). (A.1)

This series solution obeys the infrared boundary condition y(0) = 0 and corresponds to

finite density embeddings. The other type of solution is the Minkowski embedding that

does not support a density and so ends outside the AdS horizon, i.e. y(0) 6= 0. However,

we require the embedding to end smoothly as ρ → 0 without a conical singularity. For us

this means that the embedding must obey the infrared boundary condition y′(0) = 0. The

series solution for those embeddings is

y(r) = y0 −
B2

4y0(y4
0 + B2)

r2 +
B2[(4y4

0 + B2)2 + 4B2y4
0]

64y3
0(y

4
0 + B2)3

r4 + O(r6). (A.2)

We implicitly solved for this type of embedding in section 3. In particular, we used these

embeddings to obtain the transition line between the finite and zero density phases of

the theory. The parameter y0 is the minimum distance between the brane and the AdS

horizon. It corresponds to the mass of the lightest charged quasiparticle in the field theory,

so y0 = mQP for the dual state. Finally, the solution of y near the AdS boundary takes

the form

y(r) = m − c

2r2
− B2

4mr4
+

B2(2m3 + c)

8r6
+ O(r8). (A.3)
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We found it convenient to compute the near-boundary series solution to very high order,

namely O(r−14), in order to measure the condensate and free energy to high precision.

The equation of motion and series solutions for θ in AdS-Schwarschild are much nastier

than those for y in pure AdS. When we measured the chiral symmetry-breaking transition

at finite temperature in section 4.1, we only computed finite density embeddings. These

branes fall into the black hole horizon of AdS-Schwarschild and are regular at the horizon,

i.e. they obey the boundary condition θ(zH) = θ0. The near-horizon solution is then

θ(z) = θ0 +
3(1 + B2z4

H) cos5 θ0 sin θ0

4(ρ2z6
H + (1 + B2z4

H) cos6 θ0)

(z − zH)

zH
+ O

(

(

z − zH

zH

)2
)

. (A.4)

The near-boundary solution is also more complicated and is given by

θ(z) = mz +

(

−c +
m3

3

)

z3

2
− m

40

(

10B2 + 30mc − 3m4 − 5

z4
H

)

z5 + O(z7), (A.5)

where m and c are the mass and condensate of the dual state.

We used the series solutions above to integrate the equation of motion for y and θ a

small distance away from the bottom of the brane. For our zero temperature numerics, we

computed the near-horizon expansions to O(r5) and used them to generate initial conditions

for y at a position r = 10−8 for order one values of all other quantities. At finite temper-

atures, we usually generated our numerical solutions at a value of (zH − z0)/zH ∼ 10−8

depending on the temperature (and thus the horizon radius). Feeding these initial condi-

tions into Mathematica’s NDSolve, we would integrate the equation of motion for either

y or θ to values of either rmax ∼ 109 or zmin ∼ 10−9. We also drove up the precision and

accuracy goals inside of NDSolve depending on the context. For the numerics near the

transition, we usually turned the working precision of all our numerics up to 17−18. Away

from the transition, we usually found that we needed higher working precisions in order to

ensure stable numerical solutions and accurate measurements of field theory quantities.

Once we generated an embedding, we characterized it with its asymptotic data. We

have found that an accurate way to measure that data is to perform a two-step process.

First, we construct a table of the form {r, y(r)} or {z, θ′(z)} very close to the boundary.

We then fit this table to measure the mass of the dual state m = y(0) or m = θ′(0). Having

fit the mass, we obtain the condensate by matching the embedding with the near-boundary

series solution much further away from the boundary. At zero temperature, for example,

we matched at a value of r = 20 for embeddings “close” to the critical point. If we match

much closer to the boundary, the subleading term that contains information about the

condensate dies too quickly and the numerical matching is unstable.

The next step in our analysis depended on our objective. When we found the critical

point in section 2.3, we varied the initial parameter γ0 in the near-horizon solution in

order to locate the embeddings with asymptotics m = 0. However, when we measured the

magnetic susceptibility at fixed mass in section 4.2 we next obtained the chemical potential

µ by integrating

µ =

∫ ∞

0
drA′

0(d; y(r), y′(r)) (A.6)
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along the embedding. We then varied γ0 until we found the embeddings with

m/µ =constant.

The last quantity we measured for an embedding is also the most difficult to measure.

The renormalized free energy eq. (2.18) corresponding to a brane solution is obtained by

some numerical trickery that we will now discuss. Recall that we obtained the renormalized

free energy by beginning with the (divergent) bulk action, cutting off the integration a

short distance away from the boundary, adding counterterms on that radial slice, and

then removing the cutoff. This is a numerically intractable procedure: it is the numerical

equivalent of subtracting ∞−∞. Instead, we modify the bulk action by subtracting the

appropriate terms. The radial integral of these terms up to the cutoff simply produces

the slice counterterms. The modified Lagrangian is convergent near the boundary and so

suitable for numerical integration. At zero temperature, for example, our modified bulk

action is

ŜD7,new(Λ) = −N
∫ Λ

1
dr

[

L̂D7[d; y(r), y′(r)] − r3 − B2

2r

]

−N
∫ 1

0
dr
[

L̂D7[d; y(r), y′(r)] − r3
]

, (A.7)

where we broke the integral up into two parts so that the integral of the 1/r term gives

the logarithmic counterterm. As we take the Λ → ∞ limit, this modified action converges

to the renormalized one. However, our story does not end here. The modified Lagrangian

L̂ − r3 − B2/2r tends to behave poorly for numerical solutions at large r. We solve this

problem by breaking up the first integral in eq. (A.7) into a numeric part and an analytic

part. The numeric part is simply the first integral up to a cutoff where we matched the

condensate to the embedding. We find the analytic part by series expanding the integrand

of the first integral in powers of 1/r to high order in terms of the asymptotic data (m, c)

of an arbitrary embedding. Our numerical holographically renormalized action then takes

the form

ŜD7,ren = −N
∫ ∞

Λ
Lanalytic(d,m, c) + ŜD7,new(Λ), (A.8)

where m and c take on their measured values.

We find that a good test of all our numerics is to compute the difference of free energies

between the trivial embedding y = 0 and one arbitrarily close to it. If we do our job right,

this difference vanishes as we let the numerical embedding become arbitrarily close to the

trivial one. Moreover, each piece of the numerics must function correctly to pass this test.

By adjusting the parameters we mentioned above and not working too hard, we were able

to resolve differences of free energy at zero temperature down to 10−20, much smaller than

we needed to verify any of the results in this work. The finite temperature numerics are

more temperamental: near the critical point, we resolved differences of order 10−14.

Finally, we want to mention the practical consequences of the conformal anomaly

eq. (2.21). As we discussed in the text, the simplest way to find a brane embedding is

to solve an equation of motion at fixed density. We are then naturally in the canonical

ensemble. The chemical potential is determined by the density and the embedding. In order
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to transform our results into statements in the grand canonical ensemble, we must find a

class of embeddings at fixed chemical potential. One way to do this is to generate a host of

embeddings at varying density and shoot for the desired chemical potential. This is silly;

instead, it is easier to obtain results at fixed density, say ρ = 1, and then use dimensional

analysis to find the corresponding result at fixed µ. Since dimensional analysis is actually

a dilatation, the free energy picks up a logarithmic term from the conformal anomaly. For

example, say that we have an embedding with some chemical potential µ. We want to

find the free energy of the related embedding at µ = µ0; that embedding is related to the

original one by a scale factor λ = µ0/µ. The free energy density of the new embedding is

F ′ =
µ4

0

(

F + B2

2 log
(

µ
µ0

))

µ4
, (A.9)

where F is the free energy density of the original embedding. The first term is the one you

get from naive dimensional analysis and the second (proportional to ~) is the anomalous

contribution. We employed this procedure throughout section 3 and 4, collecting data at

ρ = 1 and then translating it into data at µ = 1.
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