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1 Introduction

The BCS theory of superconductivity [1] is a microscopic theory of weakly coupled super-

conductors and describes them with great accuracy. However in the last few decades it has

been discovered that there is another class of superconductors that are strongly coupled.

Conventional theories have failed to describe these systems. The pairing mechanism and

the normal state of the system before the onset of superconductivity remain open questions

(see [2] for an introduction to strongly coupled superconductors). In recent years it has

been shown using the AdSd+1/CFTd correspondence [3] that for d = 3 and d = 4 we can

create a strongly coupled superconducting system from its gravitational dual [4–7], also

including an external magnetic field [8, 9]. The d = 3 systems are especially interesting

since many strongly coupled superconductors are effectively 2 + 1−dimensional with the

conductivity occurring in planes. Phenomena such as the Hall effect [10] and Nernst ef-

fect [11–13] have also been shown to have dual gravitational descriptions. Other areas of

Condensed Matter Physics have been discussed in terms of the AdS/CFT correspondence;

see [14] for a review. The analysis for the most part has been done numerically with the

exception of ref. [15] in which the WKB approximation was employed in the calculation

of conductivity.

Until recently the ground state of a holographic superconductor has been unreachable

because a numerical solution to the non-linear field equations becomes increasingly cum-

bersome as the temperature approaches zero. Progress was made in [16, 17] where the

ground state was reached numerically and the T = 0 conductivity was analyzed. Using the

ground state, the Fermi surface of these systems was then explored [18].

Here we explore the properties of holographic superconductors using analytical tech-

niques aiming at elucidating, among other things, the nature of the ground state. We

concentrate on the simplest case by working in the probe limit in which the back reaction

to the bulk metric can be ignored. We obtain analytic approximations to the solutions of
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the non-linear field equations both near the critical temperature Tc and in the low temper-

ature limit T → 0. This enables us to avoid problems with numerical instabilities which

one encounters when one solves the field equations numerically near zero temperature.

The paper is organized as follows. In section 2 we review the field equations. In

section 3 we discuss the properties of superconductors near the critical temperature. In

section 4 we analyze the zero temperature limit. In section 5 we discuss the conductivity.

Finally, section 6 contains our concluding remarks.

2 Field equations

We are interested in the dynamics of a scalar field of mass m coupled to a U(1) vector

potential in the backgound of a 3 + 1− dimensional AdS Schwarzschild black hole with

planar horizon of metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2d~x2 , f(r) = r2 − r3+

r
(2.1)

in units in which the AdS radius is l = 1. The radius of the horizon is r+ and the Hawking

temperature is

T =
3

4π
r+ (2.2)

Assuming that the scalar field is of the form Ψ(r) and the potential is an electrostatic

scalar potential Φ(r), the field equations are [5]

Ψ′′ +

(

f ′

f
+

2

r

)

Ψ′ +

(

Φ2

f2
− m2

f

)

Ψ = 0

Φ′′ +
2

r
Φ′ − 2

Ψ2

f
Φ = 0 (2.3)

Under the change of coordinates

z =
r+
r

(2.4)

the field equations become

zΨ′′ − 2 + z3

1 − z3
Ψ′ +

[

z
Φ2

r2+(1 − z3)2
− m2

z(1 − z3)

]

Ψ = 0

Φ′′ − 2Ψ2

z2(1 − z3)
Φ = 0 (2.5)

where prime now denotes differentiation with respect to z, to be solved in the interval

(0, 1), where z = 1 is the horizon and z = 0 is the boundary.

Near the boundary (z → 0), we have approximately

Ψ ≈ Ψ(±)z∆± , Φ ≈ µ− ρ

r+
z (2.6)

where

∆± =
3

2
±
√

9

4
+m2 (2.7)
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While a linear combination of asymptotics is allowed by the field equations, it turns out

that any such combination is unstable [21]. However, if the horizon has negative curvature,

such linear combinations lead to stable configurations in certain cases [22].

Thus, the system is labeled uniquely by the dimension ∆ = ∆±. We shall examine

the range
1

2
< ∆ < 3 (2.8)

where ∆ > 3/2 (∆ < 3/2) if ∆ = ∆+ (∆ = ∆−), corresponding to masses in the range

0 > m2 > −9/4 (above the Breitenlohner-Friedman bound [19, 20]).

Demanding at the horizon

Φ(1) = 0 (2.9)

µ is interpreted as the chemical potential of the dual theory on the boundary. ρ is the

charge density on the boundary and the leading coefficient in the expansion of the scalar

yields vacuum expectation values of operators of dimension ∆±,

〈O∆±
〉 =

√
2r

∆±

+ Ψ(±) (2.10)

The field equations admit non-vanishing solutions for the scalar below a critical temperature

Tc where these operators condense.

3 Near the critical temperature

At the critical temperature Tc, Ψ = 0, so the field equation (2.3) for the electrostatic

potential reduces to Φ′′ = 0. We may set

Φ(z) = λr+c(1 − z) , λ =
ρ

r2+c

(3.1)

where r+c is the radius of the horizon at T = Tc.

As T → Tc, the field equation for the scalar field Ψ approaches the limit

− Ψ′′ +
2 + z3

z(1 − z3)
Ψ′ +

m2

z2(1 − z3)
Ψ =

λ2

(1 + z + z2)2
Ψ (3.2)

which is valid even at T = Tc, because it is linear in Ψ (one may divide Ψ by the leading

coefficient in the expansion around z = 0 before letting Ψ → 0).

To match the behavior at the boundary, define

Ψ(z) =
〈O∆〉√

2r∆+
z∆F (z) (3.3)

where we used eq. (2.10) to express the leading order coefficient so that F is normalized to

F (0) = 1.

We deduce

− F ′′ +
1

z

[

2 + z3

1 − z3
− 2∆

]

F ′ +
∆2z

1 − z3
F =

λ2

(1 + z + z2)2
F (3.4)
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to be solved subject to the boundary condition

F ′(0) = 0 (3.5)

The eigenvalue λ minimizes the expression

λ2 =

∫ 1
0 dz z

2∆−2{(1 − z3)[F ′(z)]2 + ∆2z[F (z)]2}
∫ 1
0 dz z

2∆−2 1−z
1+z+z2 [F (z)]2

(3.6)

To estimate it, use the trial function

F = Fα(z) ≡ 1 − αz2 (3.7)

For ∆ = 1 we obtain

λ2
α =

6 − 6α+ 10α2

2
√

3π − 6 ln 3 + 4(
√

3π + 3 ln 3 − 9)α + (12 ln 3 − 13)α2
(3.8)

which attains its minimum at α ≈ 0.24. We obtain

λ2 ≈ λ2
0.24 ≈ 1.27 (3.9)

to be compared with the exact value λ2 = 1.245. The critical temperature is

Tc =
3

4π
r+c =

3

4π

√

ρ

λ
(3.10)

so for ∆ = 1, Tc ≈ 0.225
√
ρ, in very good agreement with the exact Tc = 0.226

√
ρ [5].

Similarly, for ∆ = 2 we obtain

λ2
α = 2

1 − 4
3α+ 4

5α
2

3 − ln 3 − π√
3

+ (13
3 − 4 ln 3)α+ ( π√

3
− 7

10 + ln 3)α2
(3.11)

whose minimum is λ2 ≈ 17.3 (at α ≈ 0.6) to be compared with the exact value λ2 = 16.754.

The critical temperature in this case is Tc ≈ 0.117
√
ρ, in very good agreement with the exact

Tc = 0.118
√
ρ [5]. In figure 1 we compare the analytic estimate of the critical temperature

obtained from eqs. (3.6) and (3.7) with exact numerical results. The agreement between

the two is excellent.

Away from (but close to) the critical temperature, the field equation (2.3) for Φ becomes

Φ′′ =
〈O∆〉2
2r2∆+

z2(∆−1)F 2(z)

1 − z3
Φ (3.12)

where the parameter 〈O∆〉2/(2r2∆+ ) is small. We may expand in the small parameter,

Φ

r+
= λ(1 − z) +

〈O∆〉2
2r2∆+

χ(z) + . . . (3.13)

We deduce for the correction χ near the critical temperature

χ′′ = λ
z2(∆−1)F 2(z)

1 + z + z2
(3.14)
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Figure 1. The critical temperature in units of
√
ρ vs. the dimension of the condensate ∆

(eq. (3.10)). The solid line is the analytic estimate (eqs. (3.6) and (3.7)) and the almost indis-

tinguishable dashed line is found by solving the field eqs. (2.3) numericallly.

with χ(1) = χ′(1) = 0.

To find the temperature, we need

χ′
1(0) = λC , C =

∫ 1

0
dz

z2(∆−1)F 2(z)

1 + z + z2
(3.15)

From eq. (2.6), we deduce the ratio

ρ

r2+
= λ

(

1 +
C〈O∆〉2
2r2∆+

+ . . .

)

(3.16)

therefore the condensate near the critical temperature is

〈O∆〉 ≈ γT∆
c

(

1 − T

Tc

)

, γ =
2√
C

(

4π

3

)∆

(3.17)

Using the trial functions (3.7), for ∆ = 1, we obtain from (3.15), C ≈ 0.54 and γ ≈ 11.4

to be compared with the exact γ = 9.3 [5]. Similarly, for ∆ = 2, we find C ≈ 0.07 and

γ ≈ 133 to be compared with the exact γ = 144 [5]. In figure 2 we plot the analytic

prediction (3.17) for the parameter γ as a function of the dimension of the condensate ∆.

Notice that γ diverges as ∆ → 3.

4 Low temperatures

Turning to low temperatures, as T → 0, we expect a simple scaling, Ψ = Ψ(bz), Φ = Φ(bz)

where b→ ∞. Then scaling z → z/b and letting b→ ∞, the field equations (2.3) simplify,

since the dominant contribution comes from the neighborhood of the boundary (z = 0).

– 5 –
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Figure 2. The parameter γ that determines the condensate near the critical temperature vs. the

dimension of the condensate ∆ (eq. (3.17)).

Thus at low temperature we obtain the simplified system of equations

− F ′′ +
2(1 − ∆)

z
F ′ − Φ2

r2+
F = 0

Φ′′ − 〈O∆〉2
r2∆+

F 2z2(∆−1)Φ = 0 (4.1)

where we restored the original coordinate z (before scaling).

This system of coupled non-linear equations is to be solved subject to the boundary

condition at the horizon

3F ′(1) + ∆2F (1) = 0 (4.2)

which is obtained from (2.3), (2.9) and (3.3), as well as those at the boundary, F (0) = 1

and F ′(0) = 0.

For ∆ = ∆− < 3/2, numerical results indicate that F → 1 as T → 0. The solution to

the field equation (4.1) for Φ is

Φ(z) = Ar+
√
zK 1

2∆
(b∆z∆) , b∆ =

〈O∆〉
∆r∆+

(4.3)

The other solution is rejected because it is large at the horizon, contradicting the boundary

condition (2.9). Notice that at the horizon Φ(1) ∼ e−b∆ , which is an exponentially small

error in the T → 0 (b→ ∞) limit.

From the behavior of Φ (eq. (4.3)) near the boundary (z = 0), using (2.6), we deduce

ρ

r2+
= −Γ(− 1

2∆)

21+ 1
2∆

Ab (4.4)

The field equation (4.1) for F becomes

− F ′′ +
2(1 − ∆)

z
F ′ −A2bz(K 1

2∆
(b∆z∆))2F = 0 (4.5)
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Using perturbation theory, we obtain the solution

F (z) = 1 −A2b

∫ z

0
dz′ z′2(1−∆)

∫ z′

0
dz′′ z′′(K 1

2∆
(b∆z′′∆))2 (4.6)

Applying the boundary condition (4.2) at the horizon, we obtain

A2 =
∆2b2(2−∆)

3bF ′
∆(b) + ∆2F∆(b)

, F∆(x) =

∫ x

0
dx′ x′2(1−∆)

∫ x′

0
dx′′ x′′

(

K 1
2∆

(x′′∆)
)2

(4.7)

For large b, the denominator scales like b3−2∆, showing that A ∼
√
b. Then eq. (4.4) implies

ρ/r2+ ∼ b3/2. Since 〈O∆〉 ∼ (r+b)
∆ (see eq. (4.3)), it follows that

〈O∆〉1/∆

Tc
∼ b1/4 ∼

(

T

Tc

)−1/3

(4.8)

showing that the condensate diverges as 〈O∆〉 ∼ T−∆/3 for ∆ in the range 1/2 < ∆ < 3/2

signaling the breakdown of the probe-limit approximation at low temperatures.

Turning to the case ∆ = ∆+ > 3/2, notice that as we switch from ∆ = ∆− to ∆ = ∆+,

the boundary conditions at z = 0 change, but not at the horizon. Thus, for a given m, the

electrostatic potential Φ has the same asymptotic behavior for both ∆+ and ∆−. In terms

of the scalar field, this implies F ≈ 1 near the boundary (z = 0), whereas

F (z) ≈
(

bz

α

)3−2∆

(4.9)

asymptotically (z & 1/b, where b≫ 1 is to be determined). Then in the asymptotic regime,

eq. (4.1) for Φ has solution (cf. eq. (4.3))

Φ(z) = Ar+
√
bzK 1

2(3−∆)
(b3−∆z3−∆) , b∆ =

〈O∆〉α2∆−3

(3 − ∆)r∆+
(4.10)

Notice that a singularity appears to develop at ∆ = 3 indicating the onset of a quantum

phase transition.

Near the boundary, we deduce the estimate for the ratio ρ/r2+,

ρ

r2+
= −

Γ(− 1
2(3−∆))

2
1+ 1

2(3−∆)

Ab (4.11)

However, this is not a good estimate. In fact, it diverges at ∆ = 5/2. We shall improve on

this estimate by better accounting for the behavior of F near the boundary (where eq. (4.9)

ought to be replaced by F ≈ 1).

The field equation (4.1) for F is

− F ′′ +
2(1 − ∆)

z
F ′ −A2bz

(

K 1
2(3−∆)

(b3−∆z3−∆)
)2
F = 0 (4.12)

Unlike with ∆ < 3/2, in this case the term involving the electrostatic potential Φ cannot

be treated as a perturbation. By rescaling z → z/b, eq. (4.12) becomes

− F ′′ +
2(1 − ∆)

z
F ′ − Â2z

(

K 1
2(3−∆)

(z3−∆)
)2
F = 0 , Â =

A
b

(4.13)
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Figure 3. The eigenvalue Â defined in (4.13) as a function of ∆ [solid line] compared with the

estimate (4.15) [dashed line].

With

A ∼ b (4.14)

eq. (4.13) is independent of temperature and provides a good approximation to F and the

corresponding eigenvalue Â at T = 0. It ought to be solved in the interval (0,∞) subject

to the boundary conditions F (0) = 1, F ′(0) = 0, F → 0 as z → ∞ (see eq. (4.9)). These

conditions determine the eigenvalue Â.

To estimate Â, note that

Â2 =

∫∞
0 dz z2(∆−1)[F ′(z)]2

∫∞
0 dz z2∆−1[K 1

2(3−∆)
(z3−∆)F (z)]2

(4.15)

The eigenfunction F (z) minimizes this expression. We may substitute the trial function

Fα(z) =
(α

z

)2∆−3
tanh

( z

α

)2∆−3
(4.16)

which obeys the correct boundary conditions. It interpolates smoothly between a constant

value (F = 1) near the boundary and the power behavior (4.9) away from the boundary.

The parameter α is fixed by minimizing the ratio (4.15). Similar functions have been

considered before [23, 24] but without a determination of the parameter α. In figure 3

we compare the analytic estimate of the eigenvalue Â using the trial functions (4.16) with

exact numerical results. The agreement between the two is excellent. Notice that the

limit ∆ → 3 is singular. Â → 0 in this limit. Also, the parameter α labeling the trial

function that minimizes (4.15), which is plotted in figure 4 as a function of the dimension

∆, diverges as ∆ → 3.

For ∆ = 2 the minimum is obtained for α ≈ 0.8 which yields Â ≈ 1.92. In this case,

Â can be found exactly because eq. (4.13) can be solved analytically. We find explicitly

F (z) =
π

2z

[

Y0

(
√

π

2
Â
)

J0

(
√

π

2
Âe−z

)

− J0

(
√

π

2
Â
)

Y0

(
√

π

2
Âe−z

)]

(4.17)
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Figure 4. The parameter α that determines the approximation (4.16) to the scalar field as a

function of ∆.

which obeys the correct boundary conditions at z = 0. Demanding F → 0 as z → ∞
then yields

J0

(
√

π

2
Â
)

= 0 (4.18)

showing that

Â =
A
b

= ξ0

√

2

π
, ξ0 ≈ 2.4 (4.19)

where ξ0 is the first root of the Bessel function J0. Numerically, Â = 1.91, in good

agreement with our earlier estimate.

Restoring b,

F (z) =
π

2bz
Y0(ξ0)J0(ξ0e

−bz) (4.20)

so F (z) = 1 + O(z2), as desired. Away from the boundary (z & 1/b),

F (z) ≈ πY0(ξ0)

2bz
(4.21)

which upon comparison with (4.9) yields

α =
πY0(ξ0)

2
≈ 0.8 (4.22)

in excellent agreement with our earlier estimate.

To calculate the condensate at T = 0, we need a better estimate of the ratio (4.11).

To this end, we shall solve eq. (4.1) for Φ perturbatively using (4.10) with ∆ = 2 as our

zeroth-order solution. We obtain

Φ(z) =

√

π

2
Ar+ e−bz

[

1 +
α

2
− πα2

sinπα
e2bz (4.23)

+
α

2
F (−α, 1; 1 − α;−e2bz/α) +

α2

2(1 − α)
e2bz/αF (1 − α, 1, 2 − α;−e2bz/α)

]

– 9 –
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We deduce the ratio

√
ρ

r+
≈ b
√

ξ0

[

1 − δ

2

]

, δ = α+
πα2

sinπα
+
α2

2
ψ

(

1 − α

2

)

− α2

2
ψ
(

−α
2

)

∣

∣

∣

∣

α=πY0(ξ0)/2

(4.24)

improving the zeroth-order result
√
ρ/r+ ≈

√
ξ0 b (eqs. (4.11) with ∆ = 2 and (4.19)).

Numerically, δ = 0.58 and the condensate at T = 0 is

√

〈O2〉
Tc

≈ 1 + δ
2

0.118
√
αξ0

≈ 7.9 (4.25)

in good agreement with the exact result 〈O2〉1/2 = 8.3Tc.

To generalize to arbitrary ∆ > 3/2, substitute the approximation to the function Fα(z)

(eq. (4.16)),

Fα(z) ≈
{

1 , z ≤ α

(α/z)2∆−3 , z > α
(4.26)

into the field equation for the electrostatic potential Φ and solve it to find a better approx-

imation for Φ than (4.10). After rescaling, z → z/b, for z > α we obtain

Φ = Φ>(z) = Âbr+
√
zK 1

2(3−∆)
(z3−∆) (4.27)

whereas for z ≤ α,

Φ = Φ<(z) = B+

√
zI 1

2∆

(

3 − ∆

∆

z∆

α2∆−3

)

+B−
√
zI− 1

2∆

(

3 − ∆

∆

z∆

α2∆−3

)

(4.28)

providing the estimate for ρ improving on (4.11),

ρ = − B+br+

Γ(1 + 1
2∆)

(

3 − ∆

2∆α2∆−3

)
1

2∆

(4.29)

The coefficients B± are found by matching the two expressions at z = α. For ∆ = 2 we

obtain B+ ≈ −1.73br+, B− ≈ 1.96br+, therefore ρ ≈ 1.43b2r2+ and
√

〈O2〉/Tc ≈ 7.9, as

before. Figure 5 shows the dependence of the condensate on the dimension ∆. Our analytic

estimate is in good agreement with the exact numerical value for most of the range of ∆.

It becomes increasingly unreliable as ∆ → 3. This is expected from our estimate of the

electrostatic potential (4.28) which is singular in the limit ∆ → 3.

5 Conductivity

The conductivity on the boundary is found by applying a sinusoidal electromagnetic per-

turbation in the bulk of frequency ω obeying the wave equation

− d2A

dr2∗
+ V A = ω2A , V = 2fΨ2 (5.1)

– 10 –
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Figure 5. The condensate at zero temperature as a function of ∆. The solid line is our anaytic

estimate whereas the dashed line is the exact numerical result.

where A is any component of the perturbing electromagnetic potential along the boundary.

Eq. (5.1) is to be solved subject to ingoing boundary condition at the horizon

A ∼ e−iωr∗ ∼ (1 − z)−iω/(3r+) (5.2)

as z → 1 (r∗ → −∞), where r∗ is the tortoise coordinate

r∗ =

∫

dr

f(r)
=

1

6r+

[

ln
(1 − z)3

1 − z3
− 2

√
3 tan−1

√
3z

2 + z

]

(5.3)

with the integration constant chosen so that the boundary is at r∗ = 0. We shall solve this

equation in the entire frequency spectrum.

To this end, we shall replace the potential V with its average 〈V 〉 in a self-consistent

manner. We readily obtain the solution

A = e−i
√

ω2−〈V 〉 r∗ (5.4)

The other solution is discarded because it contradicts the boundary condition at the hori-

zon (5.2). We deduce the conductivity

σ(ω) =

√

1 − 〈V 〉
ω2

(5.5)

The average value of the potential is found from

〈V 〉 =

∫ 0
−∞ dr∗V |A(r∗)|2
∫ 0
−∞ dr∗|A(r∗)|2

(5.6)

The integrals are well-defined if ω has an imaginary part (which should be set equal to zero

at the end of the calculation).
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For ∆ < 3/2, in the low temperature limit the potential simplies to

V ≈ 〈O∆〉2

r
2(∆−1)
+

z2(∆−1)(1 − z3) (5.7)

where we used eq. (3.3) with F (z) ≈ 1. Moreover, since r+ → 0, the main contribution to

the integrals in (5.6) is from the vicinity of the boundary where r∗ ≈ −z/r+. We deduce

the leading contribution

〈V 〉 ≈ 〈O∆〉2

r
2(∆−1)
+

∫∞
0 dz z2(∆−1)|A(−z/r+)|2

∫∞
0 |A(−z/r+)|2 = Γ(2∆ − 1)〈O∆〉2

[

−2i
√

ω2 − 〈V 〉
]2(1−∆)

(5.8)

which determines 〈V 〉 implicitly as a function of ω. We obtain the low-temperature high-

frequency (ω & 〈O∆〉1/∆) conductivity

σ(ω) =

√

1 − Γ(2∆ − 1)〈O∆〉2(−2i)2(1−∆)

ω2∆
(5.9)

whereas for low frequencies, we have

σ(ω) =

√

1 − [22(1−∆)Γ(2∆ − 1)〈O∆〉2]1/∆

ω2
(5.10)

In particular for ∆ = 1 eq. (5.8) can be solved for all frequencies and the expression (5.9)

for the conductivity, which coincides with (5.10), is valid in the entire spectrum,

σ(ω) =

√

1 − 〈O1〉2
ω2

(5.11)

This expression is in excellent agreement with numerical results even down to low frequen-

cies (ω ≪ 〈O1〉).
For ∆ > 3/2, the potential can be approximated by

V ≈ (3 − ∆)2b2r2+(1 − z3)(bz)2(2−∆) tanh2

(

bz

α

)2∆−3

(5.12)

where b is given in (4.10). This expression can be used, as before, to find an estimate for

〈V 〉. In particular, for ∆ = 2, we obtain

V̂ = 1 + 2α

√

V̂ − ω̂2 + 2α2(V̂ − ω̂2)

[

ψ

(

α

2

√

V̂ − ω̂2

)

− ψ

(

1

2
+
α

2

√

V̂ − ω̂2

)]

(5.13)

where

V̂ =
〈V 〉

〈O2〉α
, ω̂2 =

ω2

〈O2〉α
(5.14)

At high frequencies, this implies

σ(ω) ≈
√

1 +
〈O2〉2
2ω4

(5.15)
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showing that σ > 1 for ω &
√

〈O2〉, whereas as ω → 0, V̂ ≈ 0.65, and the low-frequency

conductivity is

σ(ω) ≈ 0.7i

√

〈O2〉
ω

(5.16)

We shall improve on this estimate later by using a more accurate analytic technique which

is better suited for low frequencies. We shall also obtain an exponentially small real part

of the conductivity which survives in the limit ω → 0.

At intermediate frequencies, we may expand around V̂ = ω̂2 = 1. We obtain

σ(ω) ≈
√

1 − α〈O2〉
ω2

(5.17)

for ω/
√

〈O2〉 ≈
√
α ≈ 0.9. We may also use perturbation theory to go beyond the leading

order. Treating δV = V − 〈O2〉α as a perturbation, we obtain the wavefunction

A = e−i
√

ω2−〈O2〉α r∗

[

1+
α2

2β
− α2π

sin βπ
e2i

√
ω2−〈O2〉α r∗+

α2

2β
F
(

β, 1; 1 + β;−e−2
√

〈O2〉/α r∗
)

− α2

2 (1 + β)
e−2

√
〈O2〉/α r∗F

(

1 + β, 1, 2 + β;−e−2
√

〈O2〉/α r∗
)

]

(5.18)

where

β = iα

√

ω2

〈O2〉α
− 1 (5.19)

We deduce the conductivity

σ(ω) ≈
√

1 − 〈O2〉α
ω2

− i
√

〈O2〉α3

ω
(5.20)

improving on the leading order expression (5.17). The conductivity resulting from our

analytic procedure (both real and imaginary parts) is plotted in figure 6 for the entire

spectrum.

At low frequencies, the above expressions do not properly account for the boundary

condition at the horizon. To this end, define

A = (1 − z)−iω/(3r+)G(z) (5.21)

where G is regular at the horizon (z = 1). The wave equation (5.1) reads

−3(1 − z3)G′′ +

(

9z2 − 2(1 + z + z2)
iω

r+

)

G′

+

[

6Ψ2

z2
− (1 + 2z)

iω

r+
− (2 + z)(4 + z + z2)

3(1 + z + z2)

ω2

r2+

]

G = 0 (5.22)

At the horizon we may expand G in a Taylor series. We deduce the boundary condition

G′(1) +

[

2Ψ2(1)

3 − 2iω/r+
− iω

3r+

]

G(1) = 0 (5.23)
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Figure 6. The real and imaginary parts of the conductivity at low temperatures for ∆ = 2.

At low temperature, for ∆ = 1, we have Ψ ≈ 〈O1〉√
2r+

z. We may rescale z → z/b, where

b = 〈O1〉/r+ and then let b→ ∞. We obtain the approximate solution

A =
(

c+e
+〈O1〉2 z/r+ + c−e

−〈O1〉2 z/r+

)

e
− iωz

3r+ (5.24)

which is valid for low frequencies (ω ≪ 〈O1〉). We deduce the conductivity

σ(ω) ≈ i
1 − c+

c−

1 + c+
c−

〈O1〉
ω

(5.25)

The ratio c+/c− is found by applying the boundary condition (5.23). We obtain

c+
c−

=
a− 3

a+ 3
e−2a +

2(2a2 − 3)

a(a+ 3)2
e−2a iω

r+
+ O(ω2) , a =

〈O1〉
r+

(5.26)

We deduce the low frequency expansion

σ(ω) =
i〈O1〉
ω

[

1 − 2
a− 3

a+ 3
e−2a − 2(2a2 − 3)

a(a+ 3)2
e−2a iω

r+
+ O(ω2)

]

(5.27)
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in agreement with the leading order result (5.11). The DC conductivity is

ℜσ(0) ∼ e−2a = e−∆g/T , ∆g =
3〈O1〉

2π
≈ 0.48〈O1〉 (5.28)

For ∆ = 2, at low temperatures eq. (5.22) reads

− 3G′′ − 2iω

r+
G′ +

[

3b2 tanh2 bz

α
− 8ω2

r2+

]

G = 0 (5.29)

whose general solution is given in terms of Legendre functions,

G(z) ≈
(

1 − tanh bz
α

1 + tanh bz
α

)
iωα
6br+

[

c+P
+α
1
2
(−1+

√
1+4α2)

(

tanh
bz

α

)

+ c−P
−α
1
2
(−1+

√
1+4α2)

(

tanh
bz

α

)]

(5.30)

We deduce the conductivity

σ(ω) ≈ i

√

〈O2〉
ω

0.47 − 0.66 c+
c−

0.85 − 0.30 c+
c−

(5.31)

The ratio c+/c− is found from the boundary condition at the horizon (5.23). At z ≈ 1 we

have tanh bz
α ≈ 1, so we may approximate

P±α
1
2
(−1+

√
1+4α2)

(

tanh
bz

α

)

=
2±α/2

Γ(1 ∓ α)

(

1 − tanh
bz

α

)∓α/2

+ . . . (5.32)

We obtain

G(1) ≈
[

c+
Γ(1 − α)

e+b +
c−

Γ(1 + α)
e−b

]

e
− iω

3r+ ,

G′(1) ≈





c+

(

b− iω
3r+

)

Γ(1 − α)
e+b −

c−
(

b+ iω
3r+

)

Γ(1 + α)
e−b



 e
− iω

3r+ (5.33)

Applying the boundary condition (5.23), we obtain

c+
c−

= −e−2b Γ(1 − α)

Γ(1 + α)

[

1 +
4iω

br+
+ . . .

]

(5.34)

showing that at low frequencies,

ℑσ(ω) ≈ 0.55i

√

〈O2〉
ω

, ℜσ(ω) ∼ e−2b = e−∆g/T , ∆g ≈ 3
√

α〈O2〉
2π

≈ 0.43
√

〈O2〉
(5.35)

to be compared with our earlier estimate (5.16) of the imaginary part which was obtained

via a different, less accurate, analytic method. The real part is exponentially small and

was not detected earlier.

The above method can also be applied to other values of the dimension ∆ if one replaces

the potential by its self-consistent average 〈V 〉. Then by solving the wave equation (5.1)

using perturbation theory, we obtain the real part of the conductivity in the limit ω → 0

and therefore the gap ∆g (ℜσ(0) ∼ e−∆g/T ) for all values of the dimension ∆.
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6 Conclusion

We have discussed analytic calculations involving holographic superconductors in the probe

limit [5]. These systems are labeled by the dimension ∆ of the operator that condences

below a certain critical temperature Tc. We found approximate explicit solutions of the

non-linear field equations in the bulk near the critical temperature as well as in the zero

temperature limit. We obtained an analytic expression for the critical temperature in

terms of an eigenvalue associated with the field equation of the scalar and showed that

it was in good agreement with numerical results. At low temperatures, we showed that

the condensate diverges as 〈O∆〉 ∼ T−∆/3 for ∆ < 3/2 signaling the breakdown of the

probe approximation. For ∆ > 3/2, we obtained an expression for the condensate at zero

temperature in terms of an eigenvalue associated with the field equation of the scalar and

demonstrated agreement with numerical results. Our method becomes unreliable in the

limit ∆ → 3. We presented evidence that this limit is singular signaling the onset of a

phase transition [16]. We also calculated the conductivity analytically for various values of

∆ and obtained good agreement with numerical results. In the DC limit we showed that

the real part of the conductivity behaves as e−∆g/T and found analytic estimates of the

gap ∆g.

It would be interesting to extend our results beyond the probe limit by including back

reaction to the bulk metric. Studying the resulting field equations will enable us to take

the zero temperature limit without the obstruction of numerical instabilities. This will

elucidate the nature of the ground state. Work in this direction is in progress.
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