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1 Introduction

Being able to predict the structure of infrared divergences in scattering processes is relevant
for collider physics. For massless particles, the general structure of divergences is known to
three loops. The infrared divergences factorize, similar to ultraviolet divergences. Due to
color dependence, the infrared factorization takes the form of a matrix in color space. The
essential part of the matrix is computed by the soft anomalous dimension matrix, which is
determined from a correlation function of Wilson lines meeting at the origin, and pointing
in the direction of the scattered particles’ momenta [1–3].

Up to two loops the soft anomalous dimension matrix consists only of so-called dipole
terms, which depend on pairs of scattered particles only [4–6]. Starting from three loops, corre-
lations between multiple lines (in particular, four lines) are also present. Interestingly, the four-
line correlations depend on a function of two scale-invariant ratios, which has been computed at
three loops [7], and its presence has been confirmed in four-particle scattering amplitudes [8, 9].

The structure of infrared divergences of massive particles is more intricate. In the
two-line case, the state of the art for the cusp anomalous dimension is three-loop order
in QCD [10, 11] and four-loop order in QED [12]. Much less is known beyond the dipole
terms. The two-loop soft anomalous dimension matrix involving three massive particles
was computed by several groups [13–16]. The result includes a color structure beyond the
dipole terms, namely fabcTa

i Tb
jTc

k, where Ta
i is the colour matrix in the representation

of particle i [17, 18]. (At higher loop orders, further color structures may appear.) The
accompanying function depends on the scale invariant combination of the scalar products
between the velocities of the particles,

βij = vi · vj√
v2

i

√
v2

j

. (1.1)
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The function multiplying this color structure depends on three variables of the type (1.1), since
at two loops Feynman diagrams connect up to three Wilson lines, cf. figure 2. Remarkably,
the result is much simpler than a genuine three-variable function: it takes the form of a sum
over products of logarithms and dilogarithms that individually depend on one variable only.

This simplicity is not transparent in the state-of-the-art calculations. It is interesting to
note that the calculations in the literature were done by different means, via Mellin-Barnes
methods [14], by a position-space calculation [13, 15], and by a special gauge choice [16].
While all produce the correct result, it is not clear whether the methods can be easily
generalized to the next loop order. Moreover, for the first two methods, the answer takes
a simple form appears at the end of the calculation only. This motivates us to understand
why this is the case, and to look for other approaches.

In recent years, the differential equation method [19–21] has proven extremely useful for
the calculation of Feynman integrals, especially thanks to new ideas about the transcendental
structure of Feynman integrals [22]. It is therefore interesting to see how the two-loop
calculation would look like with this method. It turns out [23, 24] that the most complicated
two-loop Feynman diagram, shown in figure 2(b), involves elliptic functions. This can be
seen by a cut analysis, or by inspecting the differential equations matrix. What this means is
that the O(1/ϵ) part of the calculation, which contributes to the soft anomalous dimension
matrix, is simple, but the higher order terms in the ϵ-expansion are much more complicated.
Although extracting the relevant information from the complicated differential equations is
possible [24], by carefully expanding them in ϵ, this is rather cumbersome. So, the question
arises, is there a simpler approach?

It is important to realize that the soft anomalous dimension matrix corresponds to the
leading divergence in ϵ of the Feynman integrals (or, linear combinations of Feynman diagrams
organized in so-called webs [25–27]). In the calculations, a regularization choice is usually
made to extract this divergence. In the language of position-space Wilson line correlators,
the divergence we are interested in is a short-distance one, originating from webs of Feynman
diagrams that homogeneously scale to zero towards the origin. This divergence is regulated
by dimensional regularization, with d = 4− 2ϵ, and ϵ > 0. The soft anomalous dimension
matrix corresponds to the coefficient of the 1/ϵ pole. However, the Wilson lines extend all
the way to infinity, and this introduces a long-distance divergence that we are not interested
in. It is common in the literature to regulate this by an exponential suppression factor. It
is important to realize that due to the cutoff, only the leading 1/ϵ pole is gauge-invariant
and meaningful, while e.g. the finite term is not. So, it is no surprise that the functions
contributing to the finite term can be very complicated — they do not have a physical
meaning, and depend on the regularization procedure!

This motivates us to search for a different way of regulating the long-distance divergences
of the webs. Our idea is the following: to make the webs well-defined, it is sufficient to
regulate one of the Wilson lines with an exponential suppression factor. In this paper, we
provide an argument why this procedure leads to the correct soft anomalous dimension matrix.
We introduce the new method in section 2. We then show the effectiveness of the method in
section 3, by easily reproducing the known two-loop result, and by computing the contribution
of a previously unknown three-loop web function for the three-lines soft anomalous dimension
matrix, in section 4. We discuss implications for prospects of future investigations in section 5.
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2 Definitions and discussion of the method

2.1 Soft anomalous dimension matrix

Scattering amplitudes of massive particles contain infrared divergences due to virtual exchange
of small quanta between heavy particles. In particular, an n-point gauge theory amplitude
with massive external legs obeys a factorization formula which characterizes its all-loop
infrared structure [1–6, 28–35],

Mn(pi, mi, µ;αs(µ); ϵ) = Sn(vi;αs(µ); ϵ)Hn(pi, mi, µ;αs(µ)) , (2.1)

where Sn is the soft function encoding all the infrared singularities, and Hn collects the finite
remainder of the amplitude Mn. All quantities are renormalized with ultraviolet (UV) poles
removed. The running coupling αs(µ) is evaluated at the scale µ in MS scheme. It satisfies
the following equation in d = 4 − 2ϵ dimensions,

d lnαs

d lnµ
= −2ϵ − 2

∑
k

(
αs

4π

)k

bk . (2.2)

The bk coefficients are coefficients of the beta function β(αs).
The Sn is a universal function depending on the velocities vi ≡ pi/mi of the scattering

particles. It governs the singularity of the amplitudes both in the infrared region and in the
infinite mass limit of the external particles, which can be studied in the context of Heavy
Quark Effective Theory (HQET) (see, e.g. [36]). In the limit mQ → ∞, the heavy quark
traveling with velocity vi behaves like a classical source, whose interactions with soft gluons
are represented by a Wilson line

Yi(x) ≡ P exp
[
ig

∫ ∞

0
ds vi · Aa(x + vis)T a

]
. (2.3)

Hence Sn admits a formal definition as the correlation function of n semi-infinite Wilson lines
emanating from the origin, whose renormalization group equation defines the corresponding
soft anomalous dimension [1, 37–39],

Sn = ⟨0|
n∏

i=1
Yi(0)|0⟩ren.,

d

d lnµ
Sn = −Sn Γn . (2.4)

The anomalous dimension Γn is a matrix operator in color space acting on the multi-point
amplitudes. It can be expanded as a sum over dipole, tripole and quadrupole functions,
etc, [14, 40–44]

Γn(vi;αs) =
∑
(i,j)

Γij(xij ;αs) +
∑

(i,j,k)
Γijk(xij , xjk, xik;αs) + · · · , (2.5)

which are parametrized by the variables

vi · vj ≡ coshϕij ≡ −1
2(xij + 1/xij) , (2.6)

where we assume for simplicity v2
i = 1. The operators Γij··· come from multi-Wilson-line

diagrams describing the interactions between Wilson lines labeled by i, j, . . ., and hence
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depend on the associated color charges, as well as on the angles between the respective
lines. The corresponding light-like soft anomalous dimension matrix (which is reached via
iϕij ’s → ∞) is known up to the three-loop order [7]. In this case, beyond-dipole terms
vanish at two loops and begin at three loops. This is in contrary to the massive case, where
beyond-dipole terms are already present at two loops.

The soft function obeys the exponentiation theorem for Wilson-line matrix elements,
whose logarithm defines a web function free from sub-divergences in the infrared regime.
More explicitly, it can be constructed through its αs−expansion,

W (αs(µ)) ≡ log ⟨Y1 · · ·Yn⟩ren. (2.7)

= log
{
1 +

∞∑
k=1

(
αs(µ)
4π

)k

S(k)
n

}
(2.8)

=
∞∑

k=1

(
αs(µ)
4π

)k

W (k) . (2.9)

In the abelian theory, e.g. QED, the L−loop web function determines the L−loop soft
anomalous dimension through its evolution equation d

d ln µW
(L)
QED = −Γ(L)

QED. In particular, in
the cases where all fermions are treated as massive, the abelian web function is one-loop
exact. In the non-abelian theory like QCD, higher-loop web functions contain maximally
non-abelian color structures, which, at a given loop order, vanish in the abelian theory
and cannot be decomposed onto an abelian product of lower-loop color structures. More
intuitively, the L−loop color factors can be associated with web diagrams containing L − 1
interation vertices among the virtual soft particles. These non-abelian contributions give
rise to multi-line color correlations in the web function.

We are interested in the tripole function Γijk in the soft anomalous dimension. Up to
the three-loop order it has the following structure, [14, 43]

Γ123 = ifabcTa
1Tb

2Tc
3 F1(x12, x13, x23;αs)

+
{
[Tc

1,Ta
1] [Tb

2,Tc
2] {Ta

3,Tb
3}F2(x12, x13, x23;αs)+

+ (1, 2, 3) → (2, 3, 1) + (1, 2, 3) → (3, 1, 2)
}

. (2.10)

Here the αs-expansion of F1 starts at the two-loop order, i.e.

F1 =
∞∑

k=2

(
αs

4π

)k

F
(k)
1 , (2.11)

and that of F2 starts at three-loop order, i.e.

F2 =
∞∑

k=3

(
αs

4π

)k

F
(k)
2 . (2.12)

In the light-like limit, the all-order F1 vanishes due to Bose symmetry, and F
(3)
2 reduces to a

constant [7]. In this work we introduce a new method to compute the full angle-dependent
functions F

(3)
1 and F

(3)
2 .
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2.2 Proposal of a new infrared regularization procedure

The factorization properties we just reviewed suggest that the soft anomalous dimension does
not depend on all details of a scattering process, but only on the effective physics at the
relevant scales. Based on that physical intuition we argue that the details of the regulator does
not alter the singularity at the cusp, i.e. the divergent part. A similar argument was made
in [30] in the context of the cusp anomalous dimension, where an exponential suppression
factor was introduced to cut off the infrared, without modifying the cusp singularity. In
momentum space, this corresponds to considering the Wilson lines slightly off-shell. A concern
may be that this procedure breaks gauge invariance. This is indeed the case for the finite
parts, but the gauge invariance is expected to be recovered for the divergent part. In the
context of multiparton webs, such a suppression factor is also used [42].

In dimensional regularization, Wilson-line correlators do not depend on a physical scale.
In reference [42], the soft function is be regularized by introducing offshellness regulators
δi on each Wilson line, which cut off the infrared (IR) divergences,

Sδ1,··· ,δn ≡ ⟨0|
∏

i

Yi,δi
|0⟩, Yi,δi

≡ Pδi
exp

[
ig

∫ ∞

0
ds vi · Aa(svi)T a

]
, (2.13)

where the modified path-ordered exponential reads

Pδ exp
[∫

ds

]
≡ 1 +

∫
ds θ(s) eiδs + 1

2!

∫∫
ds1ds2 θ(s1)θ(s2 − s1) eiδs2

+ 1
2!

∫∫
ds1ds2 θ(s2)θ(s1 − s2) eiδs1 + · · · . (2.14)

The modified soft function contains only UV ϵ−poles, which can be collected into a multi-
plicative renormalization Z−factor for the Wilson-line operator such that

Sδ1,...,δn(vi, δi;αs; ϵ) = Sfin.
δ1,··· ,δn

(vi, δi/δn, µ/δn;αs(µ); ϵ)Z−1
n (vi;αs(µ); ϵ) , (2.15)

where Sfin. is finite at ϵ = 0. The factor Zn is a matrix in color space satisfying the evolution
equation [1, 5, 37, 38]

d

d lnµ
Zn = −Zn Γn . (2.16)

In this way the soft anomalous dimension matrix can be determined order-by-order in αs

by extracting the UV ϵ-poles of the modified corrector Sδ1,··· ,δn .
The matrix Zn encodes the UV divergences and is therefore expected to be independent

of the choice of IR regulators. We have the freedom to set the parameters δi to be any
nonzero value. The standard choice is to consider S1,··· ,1 where all δi’s are set to 1, see
e.g. [11]. In the present work we adopt a new approach where we set all but one of them to
be zero. In other words, we introduce the regulator on the last external leg only. Physically,
one may think of that regulator arising from the emission of a photon or gluon. The latter
provides an offshellness which regulates the infrared, while leaving the ultraviolet physics
unchanged. Of course, introducing an ad-hoc regulator does not preserve gauge invariance
in general, but — as in similar appraoches in the literature — gauge invariance is expected

– 5 –
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to be recovered for the soft anomalous dimension matrix. At the technical level, the novel
regularization prescriptions leads to simpler HQET integrals.

In the following we explain how to apply the new method to determine the soft anomalous
dimension matrix. For simplicity we focus on the three-line case where we consider S0,0,1
in the MS scheme.

Let us argue that S0,0,1 has the same ϵ−pole structures as the ratio between the standard
three-line and two-line correlators, i.e. [S1,1]−1S1,1,1, which implies that the finite remainder
Sfin.

0,0,1(vi, µ;αs(µ)) obeys

[
µ

∂

∂µ
+ β(αs)

∂

∂αs

]
Sfin.

0,0,1 = Γ2 Sfin.
0,0,1 − Sfin.

0,0,1 Γ3 . (2.17)

To see why the statement is true, it is helpful to introduce modified correlators Sδ,δ and Sδ,δ,1
where δ ≪ 1. Let us consider the ratio [Sδ,δ(v1, v2)]−1Sδ,δ,1(v1, v2, v3). Since the parameter
δ is an IR cutoff, which characterizes the virtuality of the heavy particle p2 − m2 ≃ mδ,
the infrared singularity in Sδ,δ,1, as δ goes to zero, factorizes and cancels with the two-line
correlator. Therefore the ratio [Sδ,δ]−1Sδ,δ,1 is regular in the δ → 0 limit at fixed order in
αs. Formally we can take the limit δ → 0 in this ratio, yielding

lim
δ→0

[Sδ,δ]−1Sδ,δ,1 = [S0,0]−1S0,0,1 = S0,0,1 , (2.18)

where we set the scaleless function S0,0 = 1. Our argument is based on expected factorization
properties, a rigurous proof however is beyond the scope of this paper. In appendix A we
explicitly verify relation (2.18) at the two-loop order, by carrying out an expansion by
region analysis.

Likewise,

lim
δ→0

[Sfin.
δ,δ ]−1Sfin.

δ,δ,1 = Sfin.
0,0,1 . (2.19)

Meanwhile, given the universal pole structure eq. (2.15), we have

[Z2]−1[Sδ,δ]−1Sδ,δ,1Z3 = [Sfin.
δ,δ ]−1Sfin.

δ,δ,1 . (2.20)

Taking the δ → 0 limit on both sides we find

Z−1
2 S0,0,1Z3 = Sfin.

0,0,1 , (2.21)

which is equivalent to the statement in eq. (2.17). Thus we observe, the ϵ−pole structure
of the soft function S0,0,1 is governed by the ratio between Z3 and Z2. This concludes our
argument. Using Γ2, we can determine Γ3 from S0,0,1 by demanding that the left-hand
side of (2.21) is finite.

The procedure works with any number of Wilson lines at any loop order, as we demon-
strate presently. Indeed, writing Γn =

∑∞
i=1 αi

sΓ
(i)
n , and solving the renormalization group

– 6 –
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equation (2.16) gives

logZn = αs
Γ(1)

n

2ϵ
+ α2

s

(
Γ(2)

n

4ϵ
− b0

4ϵ2Γ
(1)
n

)
(2.22)

+ α3
s

(
Γ(3)

n

6ϵ
+ 1

48ϵ2

[
Γ(1)

n ,Γ(2)
n

]
− 1

6ϵ2

(
b0Γ(2)

n + b1Γ(1)
n

)
+ b2

0
6ϵ3Γ

(1)
n

)

+ α4
s

(
Γ(4)

n

8ϵ
+ 1

48ϵ2

[
Γ(1)

n ,Γ(3)
n

]
− b0

8ϵ2Γ
(3)
n + Γ(2)

n

8ϵ2

(
b2

0
ϵ
− b1

)

− Γ(1)
n

8ϵ2

(
b3

0
ϵ2 − 2b0b1

ϵ
+ b2

)
− b0

48ϵ3

[
Γ(1)

n ,Γ(2)
n

])
.

Next, we write

S0,...,0,δ = exp
(∑

i

αi
sw(i)

n

)
= exp

∑
i,j

αi
sϵ jw(i,j)

n

 , (2.23)

where w
(i)
n is the coefficient of αi

s in the exponent and w
(i,j)
n is the coefficient of αi

sϵ j . We
have also reinstated an arbitrary regulator δ. We then impose Z−1

n−1SnZn = finite, at each
order in the coupling constant. At the first order this implies the relation

Γ(1)
n = Γ(1)

n−1 − 2w(1,−1)
n . (2.24)

Hence we obtain Γ(1)
n from Γ(1)

n−1, supplemented by w
(1,−1)
n . Proceeding to the next orders,

we have

Γ(2)
n = Γ(2)

n−1 − 4w(2,−1)
n + 2

[
Γ(1)

n−1, w(1,0)
n

]
− 2

[
w(1,−1)

n , w(1,0)
n

]
, (2.25)

Γ(3)
n = Γ(3)

n−1 − 6w(3,−1)
n + 3

2b0
[
w(1,−1)

n , w(1,1)
n

]
+ 3

[
w(1,0)

n , w(2,−1)
n

]
+ 3

[
w(2,0)

n , w(1,−1)
n

]
+
[
w(1,0)

n ,
[
w(1,−1)

n , w(1,0)
n

]]
−
[
w(1,−1)

n ,
[
w(1,−1)

n , w(1,1)
n

]]
+ 3

2
[
Γ(2)

n−1, w(1,0)
n

]
− 3

2b0
[
Γ(1)

n−1, w(1,1)
n

]
+ 3

4
[
Γ(1)

n−1,
[
w(1,−1)

n , w(1,1)
n

]]
+ 3

4
[
w(1,−1)

n ,
[
Γ(1)

n−1, w(1,1)
n

]]
+ 3

[
Γ(1)

n−1, w(2,0)
n

]
− 3

4
[
Γ(1)

n−1,
[
Γ(1)

n−1, w(1,1)
n

]]
+ 3

2
[
w(1,0)

n ,
[
w(1,0)

n ,Γ(1)
n−1

]]
. (2.26)

Eqs. (2.24), (2.25) and (2.26) specify all the ingredients needed to determine the soft anomalous
dimension matrix up to three-loop order. Requiring higher-order poles to cancel implies
further relations. For instance we have

w(2,−2)
n = 1

4
[
Γ(1)

n−1, w(1,−1)
n

]
. (2.27)

This can be used as a consistency check when calculating the two-loop web function w
(2)
n .

We will demonstrate in the following section that eq. (2.25) reproduces the correct
two-loop result for Γ(2)

3 .
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vn

vi

s

t

(a) One-loop gluon exchange.

vn

vi

t

s

(b) Self-energy correction on
the regulated line.

vn

vi

s

t

(c) Self-energy correction on
the unregulated line.

Figure 1. The three one-loop diagrams.

3 The two-loop soft anomalous dimension matrix via the new method

3.1 One loop

The one-loop soft anomalous dimension can be found from the recurrence equation in
eq. (2.24). Solving eq. (2.24) we find

Γ(1)
n = −2

n∑
i=1

w
(1,−1)
i , (3.1)

where w
(1,−1)
i is the single pole of the soft function that involves Wilson lines 1 to i, in

eq. (2.23). We recall that only the n-th Wilson line is IR-regulated.
There are two contributions to w

(1)
n : firstly, a gluon exchange between the regulated

n-th Wilson line and an unregulated i-th line, with i = {0, . . . , n − 1}, and secondly, the
self-energy (SE) graph involving the n-th Wilson line. The former is shown in figure 1(a),
whereas the latter in figure 1(b). Other potential contributions, due to gluon exchanges
involving unregulated lines only, vanish as the integrals are scaleless. For example, the self-
energy on an unregulated line is shown in figure 1(c). Note that this involves a cancellation
between the IR and the UV.

It is convenient to compute the one-loop exchanges in configuration space where the
Feynman-gauge gluon propagator is given by∫

ddk

(2π)d

e−ik·x(−igµν)
k2 + iε

= −Γ(1− ϵ)
4π2−ϵ

gµν

(−x2 + iε)1−ϵ
, (3.2)

and where x is the spacetime distance associated to the gluon propagator. In the diagram
shown in figure 1(a), it is given by x = svn − tvi. Here s, t are line parameters that are
integrated along the semi-infinite Wilson line segments, i.e. s, t ∈ [0,∞]. In figure 1(b) we
have t ∈ [0, s] and s ∈ [0,∞].

We write the total contribution to w
(1)
n as

αsw(1)
n = g2

sµ2ϵΓ(1− ϵ)
4π2−ϵ

[ n−1∑
i=1

Ti ·Tn vi · vn

∫ ∞

0
dsdt

eiδs

(−(svn − tvi)2 + iε)1−ϵ

+ Cn

2

∫ ∞

0
dseiδs

∫ s

0
dt

1
(−(svn − tvn)2 + iε)1−ϵ

]
, (3.3)

– 8 –
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where Ci = Ta
i Ta

i is the quadratic Casimir associated to line i. The integrals in eq. (3.3) can
be performed to all orders in ϵ, resulting in a 2F1 function. However, we will only require
the expansion in ϵ. In order to display the results, it is convenient to define the integral
f(x, ϵ) and its expansion in ϵ as follows

f(x, ϵ) = −1
2

(
x + 1

x

)∫ ∞

0
dt

1
(t + 1

x)1−ϵ(t + x)1−ϵ
= r(x)

2

∞∑
n=0

ϵn

n!Mn00(x), (3.4a)

r(x) = 1 + x2

1− x2 , (3.4b)

M000(x) = 2 log(x), (3.4c)
M100(x) = 2Li2(x2) + 4 log(x) log(1− x2)− 2 log2(x)− 2ζ2. (3.4d)

The functions Mn00 are a subset of a larger class of functions Mklm which form a basis of
functions for multiple-gluon exchange webs [44], where three- and four-gluon vertices are
absent. We only display the explicit results up to M100 as this is all we require to two loops.
The one-loop web contribution in eq. (3.3) can be written as

αsw(1)
n = −αs

π

(
µ2

δ2

)ϵ Γ(1− ϵ)
π−ϵ

[ n−1∑
i=1

Ti ·Tn f(xin, ϵ)Γ(2ϵ) + Cn

2 Γ(−1 + 2ϵ)
]

(3.5)

= −αs

π

(
µ̄2

δ
2

)ϵ

eϵγEΓ(1− ϵ)
[ n−1∑

i=1
Ti ·Tn f(xin, ϵ)Γ(2ϵ) + Cn

2 Γ(−1 + 2ϵ)
]
, (3.6)

where µ̄2 = 4πe−γE µ2 is the MS scale, δ = 2δ is a modified regulator and we have used the
convenient xij variables defined in eq. (2.6). The coefficients as an expansion in ϵ are then

αsw(1,−1)
n = −αs

4π

[
n−1∑
i=1

Ti ·Tnr(xin)M000(xin)− Cn

]
, (3.7)

αsw(1,0)
n = −αs

4π

[
n−1∑
i=1

Ti ·Tnr(xin)M100(xin)− 2Cn

]

− αs

4π
log

(
µ̄2

δ
2

)[
n−1∑
i=1

Ti ·Tnr(xin)M000(xin)− Cn

]
. (3.8)

Then using eq. (3.7) in eq. (3.1), we have the result for the one-loop anomalous dimension

αs Γ(1)
n = αs

2π

n∑
i=1

i−1∑
j=1

Ti ·Tj r(xij)M000(xij)− Ci

 . (3.9)

Eq. (3.9) is in agreement with the classic result of Korchemsky and Radyushkin [45]. In our
computation of Γ(1)

n , we have had to handle conceptual issues around extra infrared poles,
as correlations between unregulated Wilson lines vanish. These are then accounted for in
eq. (3.1) by effectively adding them back. We will see in the remaining sections that using our
regularisation scheme is combinatorically more complex than when all the lines are regulated
due to a lack of symmetry. However, the integrals become simpler and can be computed
using standard methods, as only one line is regulated.
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(a) (b)

Figure 2. Contributions to the two-loop soft anomalous dimension matrix.

3.2 Two loops

The two-loop contribution to the soft anomalous dimension is described by eq. (2.25). In this
section we compute it for the case of three Wilson lines, focusing on structures connecting all
three lines, cf. eq. (2.10). In this case, we do not have the first term of eq. (2.25), Γ(2)

2 , and
we do not consider any two-particle colour structures. Thus we write

Γ(2)
3

∣∣∣∣
connected

=
{
−4w

(2,−1)
3 + 2

[
Γ(1)

2 , w
(1,0)
3

]
− 2

[
w

(1,−1)
3 , w

(1,0)
3

]} ∣∣∣∣
connected

. (3.10)

At two loops, there are two types of graphs connecting all three lines. One of them is the
gluon exchange diagram shown in figure 2(a), which we label as [1, 2, 1]. (This notation keeps
track of the number of gluon attachments to each line.) The other graph is the three-gluon-
vertex diagram shown in figure 2(b). The calculation of these graphs is instructive. The
calculation of the gluon exchange diagram shows us how to deal with a subtlety related to
infrared divergences, while that of the three-gluon-vertex diagram shows us the computational
advantages of regulating only one Wilson line.

3.2.1 Gluon exchange diagram

For the case of the [1, 2, 1], the contributions to w
(2,−1)
3 in eq. (3.10) are shown in figure 3.

The diagrams correspond to each permutation of gluon attachments to the Wilson lines.
The thick Wilson line, v3 is the regulated one. Diagrams 3(f) and 3(e) can be obtained
from diagrams 3(a) and 3(b), respectively, by interchanging v1 and v2. Therefore, we only
need to compute diagrams 3(a)–(d).

Diagrams 3(a) and 3(b) have the kinematic factor

F3(a) − F3(b) = (v1 · v2)(v2 · v3)
∫ ∞

0
dudt1dt2ds eiδs θ(t1 − t2)− θ(t2 − t1)

(−(sv3 − t1v2)2)1−ϵ(−(uv1 − t2v2)2)1−ϵ
,

(3.11)
whereas diagrams 3(c) and 3(d) are

F3(c)−F3(d) = (v1·v3)(v2·v3)
∫ ∞

0
dudtds1ds2

eiδs1θ(s1 − s2)− eiδs2θ(s2 − s1)
(−(s1v3 − uv1)2)1−ϵ(−(s2v3 − tv2)2)1−ϵ

, (3.12)
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v3

v2v1

s

u

t1

t2

(a) (b)

(c) (d)

(e) (f)

Figure 3. Two-loop gluon exchange diagrams contributing to three-line color structures.

where the relative minus signs comes from non-Abelian exponentiation. It is reminded
that the exponential damping factor eiδs is only added to the outer most attachment on
v3. The contribution to w

(2)
3 is

w
(2)
3, [1,2,1] =

T123
2π2

[
(F3(a) − F3(b))− (F3(a) − F3(b))(v1 ↔ v2) + F3(c) − F3(d)

]
. (3.13)

Here we denoted the overall tripole colour factor by T123 ≡ ifabcTa
1Tb

2Tc
3. The combination

F3(a) − F3(b) can be computed to give

F3(a) − F3(b) = e−4ϵγE (δ2)−2ϵ r(x12)r(x23)
16

[ 1
ϵ2 M000(x12)M000(x23) (3.14)

+ 1
ϵ
(M000(x12)M100(x23) + M100(x12)M000(x23))

]
,

whereas

F3(c) − F3(d) = 0, , (3.15)
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due to symmetry. We define a modified M100 function to absorb regulator-dependent terms
as follows,

M
(κ)
100(x) = M100(x) + log(e−κγE δ−2κ)M000(x). (3.16)

Using w(1,−1) from eq. (3.7), w(1,0) from eq. (3.8) and Γ(1)
2 from eq. (3.9), the three contri-

butions to eq. (3.10) are then written as

−4w
(2,−1)
3,[1,2,1] =

T123
8π2 r(x12)

{
r(x13)

[
M100(x12)M000(x13) + M000(x12)M (2)

100(x13)
]

− r(x23)
[
M100(x12)M000(x23) + M000(x12)M (2)

100(x23)
]}

,

2
[
Γ(1)

2 , w
(1,0)
3

]
= T123

4π2 r(x12)M000(x12)
[
r(x23)M (1)

100(x23)− r(x13)M (1)
100(x13)

]
, (3.17)

−2
[
w

(1,−1)
3 , w

(1,0)
3

]
= T123

8π2 r(x13)r(x23)
[
M

(1)
100(x13)M000(x23)− M000(x13)M (1)

100(x23)
]

.

The sum of the above gives

Γ(2)
3,[1,2,1] = T123

( 1
8π2

)∑
i,j,k

εijk r(xij) r(xik)M100(xij)M000(xik), (3.18)

where all the dependence on the regulator δ cancels, as expected.

3.2.2 The three-gluon-vertex diagram

To complete the calculation of the three-line soft anomalous dimension at two loops we
require the coefficient of the single pole of figure 2(b). Using our new method that places
a regulator only on one Wilson line, we find that only four basis integrals are required in
the top sector, as opposed to six in the traditional approach [23, 24]. (See also [46] for a
calculation using unitarity cuts.)

The contribution to the exponent of the soft function is written as

w
(2)
3, 3gv = T123

16π2

(
µ̄2
)2ϵ

e2ϵγE

×
∫

ddk1
iπd/2

ddk2
iπd/2

∫
ddk3

δ(d)(k1 + k2 + k3)
∑

i,j,k ϵijk (vi · vj) (ki · vk)
k2

1k2
2(k1 + k2)2(k1 · v1)(k2 · v2)(k3 · v3 − δ)

. (3.19)

We will conveniently set δ = 1 as the dependence on δ can be easily recovered by counting
mass dimensions. We define the integral family as

I [3gv]
a1a2a3a4a5a6a7a8a9 = e2ϵγE

∫
ddk1
iπd/2

ddk2
iπd/2 (3.20)

× (k1 · v2)−a7(k2 · v3)−a8(k2 · v1)−a9

(k2
1)a1(k2

2)a2((k1 + k2)2)a3(k1 · v1)a4(k2 · v2)a5(−(k1 + k2) · v3 − 1)a6
.

Using Kira [47] we identify 16 basis integrals, 4 of which are in the top sector I
[3gv]
111111000.

Differential equations are derived with respect to the three xij variables. The rotation to
canonical form [22] is found using a combination of techniques. For the lower sectors, using
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the automated package CANONICA [48], is enough. For the top sector we use DlogBasis [49]
to reveal uniform weight integrals. Through this method we find the following three integals,

g
[3gv]
13 = ϵ4 1− x2

13
x13

I
[3gv]
111111−100 , (3.21a)

g
[3gv]
14 = ϵ4 1− x2

12
x12

I
[3gv]
1111110−10 , (3.21b)

g
[3gv]
15 = ϵ4 1− x2

23
x23

I
[3gv]
11111100−1 . (3.21c)

The last required integral is found using INITIAL [50]

g
[3gv]
16 = ϵ3

(
2I

[3gv]
111112−10−1 + (v1 · v3) I

[3gv]
111112−100 + (v2 · v3) I

[3gv]
11111200−1

)
+ lower sectors.

(3.22)
Using this integral basis, we find a differential equation in the canonical form [22]

dg[3gv] = ϵ
∑

ℓ∈A[3gv]

c
[3gv]
ℓ d log(ℓ)g[3gv] , (3.23)

where the set of ℓ, the alphabet A, is

A[3gv] ={1− x12, x12, 1 + x12, 1− x13, x13, 1 + x13, 1− x23, x23, 1 + x23, (3.24)
x12x13 + x23, x12x23 + x13, x12 + x13x23, 1 + x12x13x23} .

To solve the system in eq. (3.23) we need a boundary condition. We choose xij = 1 for
all i and j. At this boundary point, the lower sector integrals are just iterated eikonal
bubbles which evaluate to∫

ddk

iπd/2
1

(k2)α(k · v − 1)β
= (−1)α+β 2d−2αΓ(d/2− α)Γ(2α + β − d)

Γ(α)Γ(β) , (3.25)

or, because of the differing regulators on different lines,∫
ddk

iπd/2
1

(k2)α(k · v − 1)β(k · v)γ
(3.26)

= (−1)α+β+γ 2d−2αΓ(d/2− α)Γ(d − 2α − γ)Γ(2α + β + γ − d)
Γ(α)Γ(β)Γ(d − 2α) .

The top sector integrals g
[3gv]
13 to g

[3gv]
15 in eqs. (3.21a)–(3.21c) clearly vanish at such a

boundary. However, g
[3gv]
16 in eq. (3.22) does not and depends on integrals more complicated

than the bubble integrals in eqs. (3.25) and (3.26). Instead of attempting to compute them
or determining from physical consistency conditions obtained from the differential equations
(see e.g. [49]), we will fix the remaining boundary value from knowledge of the lightlike limit.

Solving the differential equation gives the following expansion in ϵ for w
(2)
3, 3gv in eq. (3.19)

w
(2,−3)
3, 3gv = T123

c0
16π2 (r(x13)M000(x13)− r(x23)M000(x23)) (3.27a)

w
(2,−2)
3, 3gv = T123

c1
16π2 (r(x13)M000(x13)− r(x23)M000(x23)) (3.27b)

w
(2,−1)
3, 3gv = T123

32π2

{1
2
∑
ijk

ϵijkr(xij)M000(xij)M000(xik)2 (3.27c)

− c2 [r(x13)M000(x13)− r(x23)M000(x23)]
}

,
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Figure 4. The three-loop w
(3)
122 diagram.

where the ci are constants coming from the remaining integral and the subscript denotes its
transcendental weight. The web only has a single pole divergence, thus c0 = c1 = 0. Together
with eq. (3.18) the complete three-line two-loop soft anomalous dimension is

Γ(2)
3 = −T123

1
8π2

{∑
ijk

ϵijkr(xij)M000(xij)
(

r(xik)M100(xik) +
1
2M000(xik)2

)

− c2

(
r(x13)M000(x13)− r(x23)M000(x23)

)}
. (3.28)

In the lightlike limit, when all xij → 0 simultaneously, we have

lim
xij→0

Γ(2)
3 = T123

c2
4π2 log x13

x23
. (3.29)

It is known that there is no tripole colour structure when all Wilson lines are lightlike,
since we cannot construct conformally invariant cross ratios [51]. Therefore we conclude
that c2 = 0, giving

Γ(2)
3 = −T123

1
8π2

∑
ijk

ϵijkr(xij)M000(xij)
(

r(xik)M100(xik) +
1
2M000(xik)2

)
, (3.30)

in agreement with previous computations [13–16].
In summary, we see that the calculation of the two-loop soft anomalous dimension matrix

is greatly simplified by regulating only one of the multiple Wilson lines. In the next section,
we show that the new method is promising for higher-loop applications as well.

4 Three-loop calculation of a three-line web function

To illustrate the potential of the new method, we evaluate in this section a three-loop web
diagram. This is a contribution to the soft anomalous dimension matrix of three Wilson
lines at the three-loop order. Naturally, many further diagrams are required for the full
calculation. Here, our intention is to provide a proof-of-concept by calculating a diagram,
shown in figure 4, of genuine complexity.
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The kinematic part of the integral shown in figure 4 can be conveniently written as

F (3)
122 =

∫
ddk1
iπd/2

ddk2
iπd/2

ddk3
iπd/2 (4.1)

×
∫

ddk4
δ(d)(k1 + k2 + k3)

∑
i,j,k ϵijk(vi · vj)(vk · ki)

k2
1k2

2k2
3k2

4(k1 · v1)((k1 − k4) · v1)(k4 · v2)((k2 + k4) · v2)(k3 · v3 − 1)
.

Using Kira [47] we find that there are 66 basis integrals, belonging to 22 sectors. The
dimension of the sector with the most number of integrals is 8. We then find the differential
equation satisfied by these integrals.

For the transformation of the differential equation to canonical form, we found it conve-
nient to transform sector-by-sector. The diagonal block transformations were found using
either CANONICA [48] or using DlogBasis [49] to identify one uniform weight integral and
then using INITIAL [50] for the transformation.

Once all the diagonal blocks are in canonical form, we then need to transform all the
off-diagonal blocks. For this we used a combination of CANONICA and Libra [52]. We
write our equation as

dg[122] = ϵ
∑

ℓ∈A[122]

c
[122]
ℓ d log(ℓ)g[122] , (4.2)

where c
[122]
ℓ are 66× 66 constant matrices. The canonical differential equation matrices c[122],

as well as the definition of the canonical basis g[122], are included in the ancillary files. The
alphabet appearing in the differential equation involves two additional letters compared to
the two-loop case of eq. (3.24), namely

{x13 + x12x23 + x12x2
13x23 + x13x2

23, x12x13 + x23 + x2
13x23 + x12x13x2

23} . (4.3)

In order to fully solve the differential equation we need a boundary condition. In practice,
we consider kinematic points vi = v, vj = v, vk = −v, where 36 of the 66 integrals can
be found analytically. Either they vanish or reduce to real-valued iterated integrals of the
form given in eqs. (3.25) and (3.26). This does not completely fix the required constants
for the single pole of F (3)

122 which we label as F (3,−1)
122 . We can find the remaining constants

by imposing finiteness of the differential equation on single-variable slices. Consider the
single-variable regime (x12, x13, x23) = (1, x, x). Then we impose the condition that eq. (4.2)
remains finite as x → 1 and x → ±i. Doing this also for the other permutations we find
we can fix all the boundary conditions.

Thus we arrive at the result

F (3,−1)
122 = r(x12)2fA(x12, x13, x23) + r(x12)r(x13)fB(x12, x13, x23)

+ r(x12)r(x23)fC(x12, x13, x23), (4.4)

where the functions fA, fB and fC are of pure weight five. They can be written in terms of
classical polylogarithms Lin(−s) up to weight n = 5, with the following arguments,

s ∈
{

x12,−x12, x13,−x13,
x12

x13x23
,
x12x13

x23
,
x12x23

x13
, x12x13x23

}
. (4.5)
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Their symbols are drawn from a smaller set of alphabets given in eq. (3.24). The expressions
for fA,B,C are given explicitly in the ancillary files.

We would like to present the total contribution of web function w
(3)
122 after symmetrization

under permutations of Wilson lines. Hence let us introduce a basis {g±A , g±B , g±C} defined
as follows

g±A(3, 2, 1) = ±g±A(3, 1, 2) ≡ 1
2 [fA(x12, x13, x23)± (x13 ↔ x23)] ,

g±B(3, 2, 1) = ±g±B(2, 3, 1) ≡ 1
2 [fB(x12, x13, x23)± (x12 ↔ x13)] ,

g±C (3, 2, 1) = ±g±C (1, 2, 3) ≡ 1
2 [fC(x12, x13, x23)± (x12 ↔ x23)] . (4.6)

where we adopt a short-hand notation g(i, j, k) = g(αi, αj , αk) where

α3 ≡ x12 , α2 ≡ x13 , α1 ≡ x23 . (4.7)

In this notation the permutation among Wilson lines vi,j,k is equivalent to the permutation
among arguments of the function g(i, j, k).

Summing over all six permutations of the web diagram F (3)
122, we obtain

C(1, 2, 3)F (3)
122(3, 2, 1) + perm. = 1

ϵ
(4.8)

×
{

r(1)2
(
[C(3, 2, 1) + C(2, 3, 1)] g+

A(1, 2, 3) + [C(3, 2, 1)− C(2, 3, 1)] g−A(1, 2, 3)
)

+ r(3)r(2)
(
[C(1, 2, 3) + C(1, 3, 2)] g+

B(3, 2, 1) + [C(1, 2, 3)− C(1, 3, 2)] g−B(3, 2, 1)

+ [C(2, 1, 3) + C(3, 1, 2)] g+
C (3, 1, 2) + [C(2, 1, 3)− C(3, 1, 2)] g−C (3, 1, 2)

)
+ cyc.

}
.

The expression in the braces is manifestly symmetric under exchange 2 ↔ 3 , and cyc.
represents the sum of two cyclic permutations. The color factor C(1, 2, 3) = Tc

1 [T3 ·T1,T3 ·
T2]Tc

2 is associated with the diagram we computed, whose maximally non-abelian component
can be decomposed onto the following basis,

Tc
1 [T3 ·T1,T3 ·T2]Tc

2−
1
2
{
T1 ·T2, [T3 ·T1,T3 ·T2]

}
(4.9)

= 1
4 [T

a
3,Tb

3] [Tc
1,Ta

1]{Tb
2,Tc

2}+
1
4 [T

a
3,Tb

3]{Tc
1,Ta

1} [Tb
2,Tc

2]+
1
2 [T

a
3,Tb

3] [Tc
1,Ta

1] [Tb
2,Tc

2] .

We would like to isolate the contributions to F1− and F2−term in the soft anomalous
dimension. For this purpose it is convenient to regroup terms associated with r(3)r(2) in
the following way

r(3)r(2)
(
[C(1, 2, 3) + C(2, 1, 3)] gBB + [C(1, 3, 2) + C(3, 1, 2)] gCC

+ [C(1, 2, 3)− C(2, 1, 3) + C(1, 3, 2)− C(3, 1, 2)] g+−

+ [C(1, 2, 3)− C(2, 1, 3)− C(1, 3, 2) + C(3, 1, 2)] g−−
)
, (4.10)
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where

gBB = g+
B(3, 2, 1) + g+

C (3, 1, 2) + g−B(3, 2, 1) + g−C (3, 1, 2), gCC = gBB|2↔3 (4.11)
g+− = g+

B(3, 2, 1)− g+
C (3, 1, 2), g−− = g−B(3, 2, 1)− g−C (3, 1, 2).

Investigating the structure of color factors, we observe that only {g−A , g−−} contribute to the
F1−term in the soft anomalous dimension , whereas only {g+

A , gBB, gCC} contribute to the
F2−term. The expressions for {g−A(1, 2, 3), g−−, g+

A(1, 2, 3), gBB} are given in the following,
which involve products of logarithms with classical polylogarithms up to weight four.

g−A = −8
9 l+l−h3(1), (4.12)

g−− = −4
9

[
− 6 l−Lc

4 + 6 l+Ld
4 + 4 l3hb

4(2)− 4 l2hb
4(3) (4.13)

− 3 l−l+Lb
3 + 6 l1l−Lc

3 − 6 l1l+Ld
3

+ 3 l1l−l+Lb
2 − l−(3 l21 + π2)Lc

2 + l+(3 l21 + π2)Ld
2

+ l2l3l−l+La
1 + 1

2 l−l+(−3 l21 + l22 + l23 + π2)Lb
1 + l1l−(l21 + π2)Lc

1 − l1l+(l21 + π2)Ld
1

]
,

g+
A = 4

9 l1

[
− 6La

4 − 6 l+Lc
3 − 6 l−Ld

3 − 8ha
4(1) (4.14)

− (−3 l21 + 3 l22 + 3 l23 + π2)La
2 − 6 l2l3Lb

2

− 2 l1(l21 + π2)La
1 − l+(−3 l21 + l2+ + π2)Lc

1 − l−(−3 l21 + l2− + π2)Ld
1

]
,

gBB = −4
9 l3

[
− 6 (Lc

4 + Ld
4)− 6 l3Lb

3 + 6 l1(Lc
3 + Ld

3) + 8ha
4(2) (4.15)

+ 6 l1l3Lb
2 + (−3 l21 + 3 l+l− − π2)(Lc

2 + Ld
2)

+ 2 l2(l22 + π2)La
1 − l3(3 l21 − 3 l22 + l23 + π2)Lb

1 + l1(l21 − 3 l+l− + π2)(Lc
1 + Ld

1)
]
.

Here we define logarithms

l1 = lnα1, l2 = lnα2, l3 = lnα3, l+ = lnα2α3, l− = ln α2
α3

, (4.16)

and basis of polylogarithms

La
n = 1

2

[
Lin

(
− α1

α2α3

)
+ Lin

(
−α1α3

α2

)
+ Lin

(
−α1α2

α3

)
+ Lin (−α1α2α3)

]
±
(

α ↔ 1
α

)
Lb

n = 1
2

[
Lin

(
− α1

α2α3

)
− Lin

(
−α1α3

α2

)
− Lin

(
−α1α2

α3

)
+ Lin (−α1α2α3)

]
±
(

α ↔ 1
α

)
Lc

n = 1
2

[
Lin

(
− α1

α2α3

)
− Lin(−α1α2α3)

]
±
(

α ↔ 1
α

)
Ld

n = 1
2

[
Lin

(
−α1α3

α2

)
− Lin

(
−α1α2

α3

)]
±
(

α ↔ 1
α

)
, (4.17)

where ± stands for + if n is odd, and − if n is even. By construction, these basis are
(anti-)symmetric under the transformation which inverts all α’s.
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In addition, there are terms which depend on a single cusp angle. We group them
together and introduce the following set of functions

h3(i) = −24 li3(i),
ha

4(i) = 6 li4(i)− 4 li li3(i) + (l2i + π2) li2(i) , hb
4(i) = 72 li4(i) + ha

4(i), (4.18)

where

lin(i) ≡
1
2n

[
Lin(α2

i )− ζn − 2
n − 1 lnαi (Lin−1(α2

i )− ζn−1)
]
±
(

αi ↔
1
αi

)
. (4.19)

Again, ± stands for + if n is odd, and − if n is even, ∀n ∈ {2, 3, 4}. In the special case
where n = 2, the ζn−1 term in (4.19) should be set to 0.

Let us emphasize that the basis of polylogarithms given in (4.16), (4.17) and (4.19)
satisfy the following properties. Firstly, they are single-valued in the so-called Euclidean
region, where α1, α2, α3 > 0. In particular the branch cuts on the positive real axis of αi

cancel in (4.19). Secondly, each member in the set of function we introduced, i.e.

{l1, l2, l3,La
n,Lb

n,Lc
n ± Ld

n, lin}

is either symmetric or anti-symmetric under the transformation which inverts any set of cusp
angle variables (αi → α−1

i , ∀ i). Moreover, the functions

{l+, l−,La
n,Lb

n,Lc
n,Ld

n}

are (anti-)symmetric under the exchange (2 ↔ 3). Given these nice properties, the form
of the final result is highly constrained.

5 Discussion and outlook

In this paper we proposed and tested a new regularization scheme for computing the soft
anomalous dimension matrix. We considered the ratio between the correlation function for n

and n − 1 Wilson-line operators, which is free from IR divergences, provided that the n−th
Wilson-line is dressed with an offshellness regulator. Based on this observation, we defined a
renormalized quantity Sfin.

0,··· ,1 that satisfies the renormalization group equation[
µ

∂

∂µ
+ β(α) ∂

∂α

]
Sfin.

0,··· ,1 = Γn−1 Sfin.
0,··· ,1 − Sfin.

0,··· ,1 Γn . (5.1)

This allows us to determine the soft anomalous dimension matrix for an arbitrary number
of massive particles, by sequentially computing S0,1,S0,0,1, · · · ,S0,··· ,1 and extracting their
UV poles.

We motivated the regularization scheme by physical arguments, rather than providing
a mathematical proof. We tested the novel method by demonstrating how the known one-
and two-loop results are obtained within this setup. Employing the differential equations
method, we note that calculations are simpler compared to the traditional setup where
all Wilson lines are regulated in the IR. As a proof of principle, we evaluated one of the
three-loop web diagrams that contributes to the three-Wilson-line soft anomalous dimension
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matrix Γ3. Previously, this was out of reach of conventional methods. This contribution to
the soft anomalous dimension matrix is computed here for the first time. A natural next
step, beyond the scope of this paper, is to evaluate the other relevant Feynman diagrams
contributing to this observable.

Our two-loop and sample three-loop calculations shed light on the new features that
might appear in Γ3. The final formula for the two-loop soft anomalous dimension matrix
depends on the following alphabet only,

{1− x12, x12, 1 + x12, 1− x13, x13, 1 + x13, 1− x23, x23, 1 + x23} . (5.2)

Although this depends on three variables, the dependence is factorized, which implies that any
function within this alphabet is a sum of products of single-variable functions. In-contrast,
the web diagrams we computed involve the thirteen-letter alphabet (3.24). Compared to (5.2),
this involves the following new alphabet letters,

{x12 + x13x23, x13 + x12x23, x23 + x12x13, 1 + x12x13x23} . (5.3)

This implies more complicated and richer structures for the transcendental functions.1 (At
the same time, it is interesting that F122 is given by products of logarithms with classical
polylogarithms whose arguments are drawn from a small set of variables.) These observations
motivate a more systematic study on the function space of multi-line soft anomalous dimension,
which will be valuable input for bootstrap approaches.

A further interesting direction is to investigate the web function in N = 4 super Yang-
Mills (sYM). At the three-loop order, the difference between the corresponding soft anomalous
dimension matrices is captures by simpler, matter-dependent terms. Interestingly, those terms
have been observed to exhibit an universal iterative structure [11] in the two-line case, namely

Γcusp(ϕ) = CR
a

π

[
Ω(ϕ) + a

π
CAΩA(ϕ) +

(
a

π

)2
C2

AΩAA(ϕ)
]
+O(α4

s) . (5.4)

The angle-dependent function Ω’s are independent of the particle content of the gauge theory,
whereas nf− and ns−dependence can be associated with an effective coupling constant a.
(This holds up to three loops; at four loops terms proportional to the quartic Casimir color
component break this pattern [12].) It would be interesting to see whether such a pattern
exists for the tripole function F

(2)
1 and F

(3)
1 as well. Finally, in addition to considering

the standard Wilson line operator, it is possible to consider the (locally supersymmetric)
Maldacena operator, which includes a term coupling to scalars. This leads to additional sets
of angle parameters in the flavour space of scalars that the correlation functions depend on,
and that can be used to organize calculations and define novel limits [54].
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A Asymptotic expansion by regions for Sδ,δ,1 at two-loop level

We perform the asymptotic expansion in δ for the two-loop soft function Sδ,δ,1. Our analysis
is based on the method of regions approach [55], and provides a proof-of-concept example
for the factorization property as stated in eq. (2.18).

The two-loop soft function receives contributions from two types of diagrams as illustrated
in figure 2. The dark black line represents the ‘hard offshell’ Wilson line for which the IR
cutoff parameter is set to 1. In the limit where δ → 0, the asymptotic expansion for a
given diagram has the schematic form:

I(δ, δ, 1; ϵ) =
∑

n

δ−nϵ[an,0(ϵ) + an,1(ϵ) δ + · · · ] (A.1)

where we have omitted the kinematic dependence on vi · vj . Only the leading terms with
coefficients an,0(ϵ) could be responsible for the singularity in the δ−parameter. We perform
the expansion by regions using Mathematica package asy2.m [56, 57] and thus predicting
the leading behaviour for each two-loop diagrams.

First we consider figure 2 (b) with triple gluon interaction

I2b =
∫

ddk1
iπd/2

ddk2
iπd/2

∑9
k=7 nk Dk

D1 D2 D3 D4 D5 D6
where

D1 = v1 · k1 + δ, D2 = v2 · k2 + δ, D3 = −v3 · (k1 + k2) + 1,

D4 = k2
1, D5 = k2

2, D6 = (k1 + k2)2, D7 = k1 · v3,

D8 = k1 · v2, D9 = k2 · v1 . (A.2)

Using asy2.m to expand in small parameter δ, we identify all potential singular regions,
characterized by region vectors

u1 = {0, 1, 0, 0, 2, 0, 0, 0, 1}, u2 = {0, 0, 0, 0, 0, 0, 0, 0, 0},

u3 = {1, 1, 0, 2, 2, 2, 1, 1, 1}, u4 = {1, 0, 0, 2, 0, 0, 1, 1, 0}, (A.3)

where each vector uI specifies the scales of propagators {D1, · · ·D9} ∼ δuI in a given region.
Further investigating the corresponding loop momentum scaling behaviours, we find

u1 : k2 − soft. kµ
2 ∼ δ, kµ

1 ∼ 1 u2 : hard. (kµ
1 , kµ

2 ) ∼ 1
u3 : (k1, k2)− soft. (kµ

1 , kµ
2 ) ∼ δ u4 : k1 − soft. kµ

1 ∼ δ, kµ
2 ∼ 1 (A.4)

The scales of integral I2b in the four regions are given by

δ1−2ϵ , δ0 , δ1−4ϵ , δ1−2ϵ , (A.5)
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respectively. Hence u2 is the only leading region in the asymptotic limit and contributes to
the a0,0 term in the expansion. This is a hard region where all the loop momenta are order 1
and the δ−regulators should be set to zero. Thus we conclude, for the triple-gluon diagram,

I2b(δ, δ, 1; ϵ) = I2b(0, 0, 1; ϵ) + O(δ) (A.6)

Next we proceed with the ladder-type diagrams in figure 3. Following the same proce-
dure, we can show that the hard region is the only leading region for diagrams in figure 3
(a),(c),(d),(f), whose asymptotic expansion behaviours are the same as (A.6).

The remaining two diagrams, figure 3(b) and 3(e), are related by switching v1 with
v2. Figure 3(b) defines an integral I3b ≡ F1,1,1,1,1,1,0,0,0 which belongs to the following
integral family

Fa1,··· ,a9 ≡
∫

ddk1
iπd/2

ddk2
iπd/2

1∏9
i=1 Dai

i

where

D1 = v1 · k1 + δ, D2 = v2 · (k1 + k2) + δ, D3 = v2 · k1 + δ, D4 = −v3 · k2 + 1,

D5 = k2
1, D6 = k2

2, D7 = (k1 + k2)2, D8 = k1 · v3, D9 = k2 · v1 (A.7)

Allowing arbitrary propagator indices, the potential singular regions for the family of integrals
are specified by the following vectors

u1 = {0, 1, 0, 0, 0, 0, 2, 0, 0}, u2 = {0, 0, 0, 0, 0, 0, 0, 0, 0},

u3 = {1, 1, 1, 0, 2, 2, 2, 1, 1}, u4 = {1, 0, 1, 0, 2, 0, 0, 1, 0} . (A.8)

For the specific integral I3b = F1,1,1,1,1,1,0,0,0, u1, u3 are subleading by power counting, which
we do not discuss. u2 is the hard region. u4 is the k1−soft region, where kµ

1 ∼ δ, kµ
2 ∼ 1,

and I3b reduces to the product of two one-loop integrals

I3b
u4∼=
[∫

ddk1
iπd/2

1
D1 D3 D5

]
×
[∫

ddk2
iπd/2

1
[v2 · k2] [−v3 · k2 + 1] [k2

2]

]
≡ Iv1,2(δ, δ; ϵ)× Iv2,3(0, 1; ϵ) (A.9)

where Iv1,2(δ, δ) = δ−2ϵIv1,2(1, 1) is a single-scale integral. Hence the ladder integral I3b has
the following asymptotic expansion:

I3b(δ, δ, 1; ϵ) = δ−2ϵIv1,2(1, 1; ϵ) Iv2,3(0, 1; ϵ) + I3b(0, 0, 1; ϵ) + O(δ) (A.10)

where only the first term contains logarithmic singularity in the δ−parameter.
In summary, we have investigated the behaviours of all three-line diagrams that contribute

to Sδ,δ,1 at two-loop level, in the limit where δ → 0. The only diagrams that are singular
in this limit are figure 3(b) and 3(e), where such singularity factorizes in terms of one-loop
two-line integrals. The structure of the asymptotic expansions in (A.6), (A.9) verifies the
following statement

S(2)
δ,δ,1 = S(1)

δ,δ S
(1)
0,0,1 + S(2)

0,0,1 +O(δ) (A.11)

which holds for the three-line diagrams at two-loop level, where S(k) denotes the fixed-order
expansion for the soft function at k−loop order. Hereby we have tested the validity of
eq. (2.18) through method-of-regions analysis on concrete examples. In section 3 we will
further test our new method by explicit calculation of the two-loop soft anomalous dimension.
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