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1 Introduction

Crossing symmetry states that particles can be interpreted as anti-particles traveling backward
in time. More precisely, it means that scattering amplitudes in different kinematic channels
are analytic continuations of one and the same function. This proposal equips us with a
powerful computational tool: if one, for example, knows the scattering amplitude for electron-
positron annihilation, e−e+ → γγ, then the amplitude for Compton scattering e−γ → e−γ

can simply be obtained by analytic continuation, as illustrated below in figure 1. Since its
proposal in 1954 [1], crossing symmetry has grown to be widely accepted as a fact of life
with many applications, including to dispersion relations, though its theoretical foundations
have remained arguably on shaky grounds beyond the simplest cases. For example, even
though Feynman diagrams for crossed processes look the same, since they are obviously
built out of the same propagators and vertices with simply some energy signs changed, this
by no means guarantees that the resulting functions are continuously related by a path
of analytic continuation.

In the case of 2 → 2 scattering of stable particles in mass-gapped theories, crossing
symmetry was rigorously proven by Bros, Epstein, and Glaser in the 1960s [2, 3] within the
framework of axiomatic field theory. The proof involves two main parts: first, showing that
there exists a region in the off-shell kinematic space for which Green’s functions corresponding
to two physical channels are the same, and second — vastly more difficult — that there
exists an analytic continuation between these Green’s functions purely within the on-shell
kinematics. Since then, there has been intermittent progress on crossing symmetry, including
an extension of the proof to the 2→ 3 case in [4, 5], and more recently a perturbative proof
of crossing in the planar limit for any multiplicities and masses in [6].

In this paper, we take a step towards understanding crossing for scattering at higher
points by asking: assuming that an analytic path interchanging some incoming particles to
outgoing anti-particles exists, what is the result of the continuation? For instance, what
could we reasonably expect to be the result of crossing the photon and the positron in the
e−γ → e−e−e+ process? Naively, based on the physical arguments of a symmetry between
particles and anti-particles, one could expect that the answer is the amplitude in the crossed
channel, or perhaps its complex conjugate.

Remarkably, it turns out that crossing is much richer: it does not only relate scattering
amplitudes to each other, but rather, it relates different types of observables! A simple
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Figure 1. Crossing symmetry illustrated on a 2→ 2 scattering processes. If we cross an electron and
photon in Compton scattering, e−γ → e−γ on the right, we end up with electron-photon annihilation,
e+e− → γγ on the left. The particles that cross are colored in red. The Mandelstam invariant s
crosses from being positive in one process to negative in the other. Note that time flows from right to
left in these diagrams.

way to motivate this idea is to recall why amplitudes are analytic in the first place. The
traditional explanation involves microcausality: vanishing of spacelike commutators makes
momentum-space correlators analytic in some domains, as reviewed below. The appearance
of commutators suggests that analytic continuation can modify the operator ordering, and
thus lead to observables in which the time ordering of operators is relaxed.

There are many contexts in which such observables occur [7]. For example, when the
scattered objects have a large degeneracy of internal states, exclusive S-matrix elements
between individual initial and final states are typically entropically suppressed ∼ e−S/2 and
can exhibit a high sensitivity to the details of initial and final states. In such situations, “in-in”
expectation values, where one inclusively sums over unobserved final states, are typically
closer to experiment and simultaneously easier to calculate using either many-body tools
or semi-classical approximations. As another example, according to the Kosower-Maybee-
O’Connell (KMOC) formalism [8, 9], on-shell in-in observables can describe gravitational
waveforms as detected by the LIGO-Virgo-KAGRA detectors [10–12], whether or not the
participating black holes or compact objects have a large entropy. The waveform in a related
scattering problem is then computed as the expectation value of a graviton in the background
of black-hole scattering (which can be related to the emission from bound orbits using effective
field theory logic). The KMOC formalism has recently been used to compute gravitational
waveforms in perturbation theory by modeling the black holes as heavy scalars [7, 13–16].

The general non-time-ordered observables that will appear in this paper can be character-
ized by arbitrary strings of creation/annihilation operators, a†/a and b†/b, that, respectively,
act in the far past and future. Besides in-in expectation values and inclusive cross sec-
tions, these include more exotic out-of-time-order amplitudes that have been classified in
a recent paper [7], which also gave various methods to compute them. Thus, we will find
that analyticity of the S-matrix unites families of asymptotic observables. This statement
is powerful, since knowing one asymptotic observable in a family, others can be computed
simply by analytic continuation. It also means that aspects of one observable, such as symbol
properties, automatically translate to the others.
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Figure 2. Crossing symmetry illustrated on a 2→ 3 processes. We cross an electron (photon) in the
scattering process e−γ → e−e−e+ from outgoing (incoming), using a path parameterized by z. The
particles that cross are colored in red. The original scattering amplitude is obtained for z > 0, but
after the analytic continuation to z < 0, we land on the inclusive observable for measuring a photon
in the background of e−e− scattering. The observable is obtained as the conjugated S-matrix for the
process e−e− → γX times the S-matrix for X → e−e−, where X contains all possible states which
must be summed and integrated over.

The crossing paths we will consider involve a set of particles that are highly boosted
along a specific lightcone direction, say the “p+” direction. We will use a single complex
variable z to apply a complex boost to these particles while staying entirely on-shell, thus
rotating some momenta from incoming to outgoing and vice versa. This complex boost
coincides with a standard CPT transformation [17], however one which acts on only a subset
of the momenta. We stress that, because this complex boost is not applied to all momenta,
crossing symmetry does not merely follow from CPT invariance of amplitudes.

The result of applying this continuation to the 2→ 3 process e−γ → e−e−e+ is shown in
figure 2: for z < 0 it yields an inclusive measurement of the photon field in the background of
an e−e−. Replacing the electrons with black holes (or other compact objects), and the photon
by a graviton, yields the gravitational waveform mentioned above. This is a striking result:
inclusive waveforms can be computed by analytically continuing the exclusive amplitude for
a graviton and black hole to scatter into two black holes and an anti-black hole! However,
a price to pay is that the specific paths of analytic continuation we will study ask us to go
outside the kinematics describing the classical scattering of two black holes.1

Starting from a scattering amplitude AB → CD, our main conjectured crossing equation
predicts what happens when we cross an incoming single-particle state B with an outgoing C:

23

S

B

A

C

D

cross 2↔ 3
3̄2̄

S†

SS
Y X

C̄

A

B̄

D

(1.1)

Following [7], we use conventions in which operator products are taken from right to left,
as in bra-ket notation (so time flows to the left in the S-blobs). The dashed lines represent

1Analytic continuations relating inclusive cross-sections to exclusive scattering amplitudes have been
discussed in the old Regge theory literature, see [18, Ch. 6].
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cuts that sum over the intermediate on-shell states X and Y and integrate over their phase
space with positive energies.

The above conjecture will be motivated by rigorous manipulations of off-shell correlators.
We thus expect it to hold when the corresponding analyticity properties extend to the mass
shell, which we will physically argue for in some situations. Rigorously proving that last part,
similarly to [2, 3, 5, 19], will require efforts that are beyond the scope of this paper. Our
main goal is to elucidate what statements of crossing and microcausality can actually be valid
beyond 2→ 2, and to test them in examples. Our results are not restricted to axiomatic field
theory, and we consider various processes order-by-order in perturbation theory, as well as
individual diagrams with massless and massive internal particles in dimensional regularization.

In section 2 we recall the main axioms of S-matrix theory and how they naturally allow
for generalized (non-time-ordered) amplitudes; we also review the classical arguments linking
microcausality and analyticity, highlighting subtleties with the on-shell limits. In section 3 we
combine these ideas to formulate the crossing equation (1.1), illustrating in simple tree-level
and one-loop cases why all factors are necessary. We speculate in section 3.5 on a minimal
extension to general multi-particle clusters A,B,C and D. Intriguingly, this extension makes
diagrammatic sense, but cannot be written as a string of operators acting on a Hilbert space.

We will stress that crossing is already non-trivial at tree level if one pays close attention to
the iε prescriptions in the propagators of (unstable) heavy intermediate particles. In section 4
we give a combinatorial proof that our conjecture (including its speculative multi-particle
extension) holds at tree level for any multiplicity.

In section 5 we continue our investigations to one loop and consider all master integrals for
massless five-particle amplitudes. The crossing equation relates various amplitudes and cuts
in different channels, which we test using a variety of techniques for analytic continuation of (i)
closed-form expressions, (ii) loop-momentum Feynman integrals, (iii) Schwinger-parametrized
integrals, and (iv) differential equations. The crossing equation is verified by comparing these
results to direct computations of unitarity cuts. We also highlight the existence of moves
which relate (ordinary) amplitudes to amplitudes, leading to non-trivial relations between
integration constants in different channels for the differential equation method.

The prerequisite for crossing to work, i.e., that amplitudes are actually analytic on the
mass shell along the considered path, is not merely a mathematical detail waiting to be
eventually ironed out. In section 6 we give a non-trivial counterexample, involving massive
external legs and a massless internal particle, where our crossing conjecture fails as a result
of landing us on the “wrong side” of an anomalous threshold branch cut. We introduce
an extension of the Coleman-Norton picture of anomalous thresholds to illustrate how this
phenomenon is caused by internal particles moving faster than the crossed external ones,
thus highlighting the importance of a mass gap in the arguments from the last century.
However, we will also observe that even in gapless theories, certain crossing moves, including
the one in figure 2, appear to be immune from this phenomenon, suggesting that a mass
gap is not always necessary.

In section 7 we analyze the predictions of crossing for tree-level string amplitudes.
Analytic continuation can be achieved directly by contour manipulations on the moduli space
of Riemann surfaces. After reviewing how to see unitarity cuts from this perspective, we
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give an example of an in-in observable in string theory by crossing from a time-ordered
amplitude and numerically plot the corresponding space-time geometry. In section 8 we
present our conclusions.

In appendix A we offer simplified physicist-level versions of the axiomatic field theory
proofs of crossing symmetry and of analyticity near the mass shell. We highlight powerful
simplifications and theorems that have been developed in the 1970’s, a decade after the most-
cited results were initially obtained, in the hope that these will help answer the questions raised
in this work. The remaining appendices give details of technical computations: embedding-
space formulae for cuts in appendix B, differential equations for massless pentagon diagram
in appendix C, and numerical approach to solving differential equations in appendix D.

Notations and conventions. We work in D spacetime dimensions, and take momentum
components of pµ to be pµ = (p0, p1, . . . , pD−1). The spatial part of pµ is labeled with
p⃗ = (p1, . . . , pD−1). We work in mostly-plus signature where p2 = −(p0)2+(p1)2+. . .+(pD−1)2
and all-outgoing conventions in which p0i < 0 for incoming particles and p0i > 0 for the outgoing
ones. When using lightcone coordinates, we define

p± = p0 ± pD−1 , p⊥ = (p1, . . . , pD−2) , (1.2)

and hence p2 = −p+p− + (p⊥)2. To summarize, we will use the following terminology:

Future timelike: p0 > 0 , p2 < 0 , (1.3)
Past timelike: p0 < 0 , p2 < 0 , (1.4)

Spacelike: • p2 > 0 . (1.5)

We use the notation pµ
ij···k = pµ

i +p
µ
j + . . .+p

µ
k , and sij···k = −p2ij···k for Mandelstam invariants.

The connected interacting part T of the S-matrix is obtained as usual with

S = 1+ iT + . . . , (1.6)

where the dots include disconnected products of T ’s (that are only present at high mul-
tiplicity). The interacting part of the scattering amplitude, M, is obtained as the ma-
trix element of T with the overall momentum-conserving delta function factored out:
Mf←i = ⟨f |T |i⟩(2π)DδD(∑i p

µ
i ).

We draw diagrams to follow the ordering of operators in bra-ket notation, so that time
flows towards the left in scattering amplitudes S or M, and towards the right in conjugated
amplitudes S† or M† factors.

2 Background

In this section, we review some background material on the S-matrix, ranging from the
algebra of asymptotic creation/annihilation operators to causality and crossing symmetry.

– 6 –
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2.1 Review of S-matrix axioms

In this paper, we use manipulations in axiomatic field theory to motivate our formulae and
conjectures for scattering amplitudes and other asymptotic observables. In a recent paper [7],
we detailed the necessary axioms of S-matrix theory, explained the blob notation and how to
efficiently compute asymptotic observables. Here, we provide a brief review of these points.

We assume the existence of an asymptotic algebra separately in the far past and far
future. In the far past, we have asymptotic creation (annihilation) operators, a†i (ai), for
each particle i, which satisfy the usual commutation relations

[ai, a
†
j ] = δi,j 2|p0i | (2π)D−1δD−1(p⃗i − p⃗j) . (2.1)

The Kronecker delta function δi,j ensures that the flavor and spin indices, which are included
in the labels i and j, are the same and p0i is the energy of particle i. We assume an analogous
algebra in the far future, where the operators are labeled as bi and b†i .2 These operators
act on equivalent Hilbert spaces. In particular, we assume the existence of a time-invariant
vacuum, |0⟩, which is annihilated by all the ai and all the bi. The operators in the past and
future are related by a unitary evolution operator, S, according to

bi = S†aiS , (2.2)

and its conjugate b†i = S†a†iS. The evolution operator acts trivially on the vacuum,

S|0⟩ = S†|0⟩ = |0⟩. (2.3)

We also assume that one-particle states are stable, which means that

Sa†i |0⟩ = S†a†i |0⟩ = a†i |0⟩, (2.4)

along with the analogous equations obtained by replacing a†i with b†i . We frequently use the
shorthand notation |i · · · j⟩ ≡ a†i · · · a

†
j |0⟩ and ⟨i · · · j| ≡ ⟨0|ai · · · aj . Notice, in particular, that

states such as |i · · · j⟩ are taken by default to live in the far past.
This setup can be applied to any quantum field theory in which the conventional S-

matrix makes sense, such as pion scattering in four dimensions or perturbative QCD in
dimensional regularization.

Equipped with these rules, we can build various objects that we call asymptotic observables
by stringing together creation and annihilation operators. For example, we can string together
three bi’s and two a†i ’s to get

⟨0|b5b4b3a†2a
†
1|0⟩ = ⟨0|S†a5SS†a4SS†a3Sa

†
2a
†
1|0⟩ = ⟨0|a5a4a3Sa

†
2a
†
1|0⟩ = ⟨345|S|12⟩ , (2.5)

which is the usual (time-ordered) scattering amplitude for 12 → 345. To match with the
time-ordering in these expressions, we will henceforth write such an amplitude using the
mirrored convention 345← 12. An analogous derivation shows that the m← n scattering

2Note that the literature often uses ain
i and aout

i for the operators ai and bi, respectively. Here we use a’s
and b’s instead for clarity.
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amplitude ⟨n+ 1 · · ·n+m|S|12 · · ·n⟩ is obtained by stringing m operators of bi type with
n operators of a†i type.

Scattering amplitudes comprise only a small number of possible strings of creation and
annihilation operators. We can, for example, form the following observable,

Exp3 ≡ ⟨0|a5a4b3a
†
2a
†
1|0⟩ = ⟨45|S†a3S|12⟩ =

∑̂
X

⟨45|S†|X⟩⟨X3|S|12⟩ , (2.6)

where we have inserted a complete set of states 1 = ∑́
X |X⟩⟨X| in the rightmost equality. This

represents the inclusive amplitude for measuring the particle labeled by 3 in the background
of 45 ← 12 scattering, and it is important enough so that we give it a name: Exp3. As
discussed in detail in [7], this type of measurement is relevant when the scattered particles
have many internal states, in which the exclusive scattering amplitude for producing particle
3 is suppressed. The relevant object is rather an inclusive observable, where the in-states
|12⟩ and |45⟩ are integrated against the same wavefunction, and we measure 3 after the
collision, while being inclusive over anything that might have happened after the scattering.
It has been used, for example, in the KMOC formalism [8] to compute the gravitational
waveform emitted by scattering of two black holes.

At higher points we can form even more asymptotic observables. For example, at
six points, we can build an out-of-time-ordered correlator (OTOC), ⟨0|a6b5a4b†3a

†
2a
†
1|0⟩, or

inclusive cross sections, such as lim4→3⟨0|a6a5b†4b3a
†
2a
†
1|0⟩ =

∑́
X⟨56|S

†|3X⟩⟨X3|S|12⟩. As the
number of external particles n grows larger, scattering amplitudes account for ever-smaller
fraction of the total possibilities for forming asymptotic observables to ultimately become
of measure zero.

We represent asymptotic observables diagrammatically by rewriting all operators in the
future using the relation bi = S†aiS, and inserting a complete set of states. As an example,
for the OTOC above, we write

⟨0|b6b5a4b†3a
†
2a
†
1|0⟩ =

∑̂
X,Y

⟨56|S|X⟩⟨X4|S†|Y 3⟩⟨Y |S|12⟩ , (2.7)

which we then represent diagrammatically as

timetime time

5
6

1
2

3

4

S S† SX Y (2.8)

The diagram portrays how we broke the OTOC into the following contributions: the scattering
amplitude for Y ← 12, the conjugated amplitude for X4← Y 3, and the amplitude for 56← X.
Here, both X and Y are inclusively summed and integrated over, that is, we add a phase-
space integral of the form ∑́

X = ∑
Xj∈X

∏
i∈Xj

´ dDqi

(2π)D−1 δ
+(q2i +m2

i ) for any set of states
Xj that can take part in the process. Note that to mirror the convention for the ordering
of asymptotic creation/annihilation operators, our convention is that time flows from right
to left in the blob diagrams.

– 8 –
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2.2 Causality and crossing: naive, but not too naive

Crossing symmetry of 2 ← 2 scattering amplitudes is well-established in the context of
axiomatic quantum field theory for theories with a mass gap, i.e., where all particles in the
spectrum have positive masses [3]. In this subsection, we briefly review the argument in
a way that will highlight the new complications at higher multiplicities (n > 4 particles).
To avoid clutter, we discuss below a real scalar theory with a single field ϕ, normalized
such that its two-point function features a canonically normalized pole. We comment on
spin later in the next section.

The conventional axiomatic approach involves considering retarded commutators of
currents in scattering states [3, 20, 21],

R(p3, p2) =
ˆ

dDx3 dDx2 e−ip2·x2−ip3·x3 ⟨0|D [j(x3), j(x2)]RA|0⟩ . (2.9)

Here, the current j(x) = i(−∂2x + m2)ϕ(x) is the derivative of a local field ϕ(x) and the
retarded product of fields is defined as3

[ϕ(x), ϕ(y)]R = [ϕ(x), ϕ(y)]θ(x0 − y0) . (2.10)

Note that the effect of each (−∂2x +m2) in the correlation function is simply to amputate
external-leg poles at p2 +m2 = 0 (after Fourier transform) as in the standard LSZ reduction
formula. The retarded product is sandwiched between two strings of asymptotic creation
and annihilation operators A and D, for example A = a†1 and D = b4.

As we will see, for real positive energy p03, (2.9) evaluates to the amplitude for a certain
process, and for real negative p03, it evaluates to that of another process when the momenta
are taken to be on shell. The key idea is then to use analyticity to relate these two processes.
It turns out that analyticity will come about because the retarded product (2.10) vanishes
unless xµ lies inside the future lightcone V + of yµ thanks to the θ-function. Consequently,
its Fourier transform (2.9) is analytic in some domain. It includes, off-shell, the upper-half
energy plane. Let us now make all of this precise.

Retarded product for real momenta. The first step is to evaluate (2.9) for real and
on-shell momenta. On-shell, the current is a total derivative, namely

j(p) ≡
ˆ

dDx e−ip·xj(x)
on-shell:

p2→−m2
−−−−−−→

ˆ
dDx

∂

∂xµ

[
e−ip·x (−i∂µ

x + pµ)ϕ(x)
]
. (2.11)

Observe that this is solely an identity about the Fourier transform of a distribution, and
we have not yet made use of the equations of motion. Instead, the dynamics comes into
play through the presumption that the product e−ip·xϕ(x) undergoes rapid oscillations as x
approaches infinity, except potentially along the paths xµ ∝ ±pµ of particles heading towards
infinity. As a result, after integrating against a smooth function of the (on-shell) momentum

3The R-product (2.10) is to be understood as an operation on fields, similar to the time-ordering symbol,
such that derivatives in the current are allowed to act on the θ-function: [∂µϕ(x), ϕ(y)]R ≡ ∂µ

x ([ϕ(x), ϕ(y)]R).
In this setup, (2.9) is analogous to the standard time-ordered LSZ formula, where derivatives acting on θ are
also necessary to correctly account for vertices where two or more external legs join.
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⟨0|D b3a†2A|0⟩−⟨0|D a2b†3A|0⟩

R(p3, p2)

Figure 3. The retarded product provides a path of analytic continuation between the two observables
shown on the right and on the left.

p, on-shell currents are reduced to surface terms along the direction of particles, thereby
naturally giving rise to asymptotic creation and annihilation operators:

lim
p2→−m2

j(p) ≡
{
a†−p − b

†
−p p0 < 0 (incoming) ,

bp − ap p0 > 0 (outgoing) .
(2.12)

The argument presented above is recognizable from textbook derivations of the LSZ reduction
formula (see, for instance, [22]). That said, the ap and b†−p terms are usually omitted in
textbooks, given that they vanish for vacuum time-ordered correlators, wherein fields only
carry negative frequency components in the past (and positive frequency in the future).
Nevertheless, when different operator orderings are taken into consideration, all terms matter.
Many examples of reduction formulae obtained from (2.12) were recently discussed in [7].

When applying the total-derivative argument (2.11) to the Fourier transform of (2.10)
with respect to x2, one finds surface terms exclusively at past infinity because of the step
function:

lim
p2

2→−m2
[j(x3), j(p2)]R =

 [j(x3), a†2 − b
†
2] p02 < 0 ,

−[j(x3), a2 − b2] p02 > 0 ,
(2.13)

where we used the shorthand notation a†2 = a†−p2 and a2 = ap2 , and similarly for the b’s/b†’s.
Below, the regime relevant to crossing is when p3 and p2 have the largest energies in

the problem. By momentum conservation, their energies necessarily have opposite signs,
and we also assume that pµ

2 + pµ
3 ̸= 0, i.e., the two particles are not forward with each

other. The Fourier transform with respect to x3 of the first line of (2.13) then reduces to
[b3 − a3, a†2 − b

†
2] = [b3, a†2]. Furthermore, we can drop one term in the commutator since

b3A|0⟩ = 0 due to energy considerations (if |p03| is larger than the energy of the states in A).
Analogous comments apply to the second line in (2.13). Thus, on shell, we have

R(p3, p2) =
{
⟨0|D b3a†2A|0⟩, p03 ∼ −p02 > 0, p03 ≫ all other energies ,
−⟨0|D a2b†3A|0⟩, p02 ∼ −p03 > 0, p02 ≫ all other energies .

(2.14)

This completes our evaluation of R for real momenta. Note that when either A or D
creates a multi-particle state, the second line of (2.14) is not a conventional scattering
amplitude. Figure 3 sketches how analytic continuation in energy relates these two objects.
The deformation parameter z will be defined more carefully later in section 3.1.

Analyticity of the retarded product. Analyticity of R at complex momenta finds its
root in the support of (2.10), which implies analyticity of the (generally off-shell) correlation
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function (2.9) at fixed real (p2 + p3)µ when a positive-timelike imaginary part is added to pµ
3 :

R(p3, p2) is analytic in D ≡ {(p2, p3) | (p2 + p3)µ ∈ R1,3 and Im pµ
3 ∈ V

+} , (2.15)

where V + ≡ {pµ ∈ R1,3 | p0 > |p⃗|} is the set of positive-timelike vectors.
Equations (2.14) and (2.15) are the building blocks from which one would like to establish

crossing symmetry. Before moving on, it is instructive to highlight two important points:

(i) For 2→ 2 scattering, the amplitude (2.9) is a function of the two independent Mandel-
stam invariants

s = −(p1 + p2)2 and t = −(p2 + p3)2 . (2.16)

Using A = a†1, D = b4, and the stability condition mentioned earlier, (2.14) simplifies
to

R(s, t) =
{

out⟨34|1|12⟩in s-channel kinematics ,
−in⟨24|1|13⟩out u-channel kinematics . (2.17)

The opposite arrangements of “in” and “out” states in (2.17) explains why fixed-t
analyticity connects the s-channel amplitude to the complex conjugate of the u-channel
amplitude.

(ii) At face value, the statements (2.14) and (2.15) have non-overlapping validity. This
is the well-known difficulty in establishing crossing: the axiomatic domain D does
not intersect the mass shell. In fact, it is simply not possible to add a small timelike
imaginary part to a real momentum without leaving the mass shell:

Im pµ
3 ∈ V

+ =⇒ Re p3 · Im p3 ̸= 0 =⇒ p23 ̸= −m2
3 ∈ R . (2.18)

The traditional “work-around” involves two steps [3]. First, we consider off-shell
correlators as a function of s and complexified masses −p2i 7→ m2

i + ξ, where ξ ∈ C. For
2← 2 scattering, by writing s = m2

3 +m2
4 − 2p3·p4 + 2ξ, one sees that (2.15) contains

an off-shell domain of the form

D ⊃ D1 ≡ {s,m2
3 ∈ C | Im s > 0, Re ξ < ξ0 < 0} , (2.19)

where ξ0 is fixed by the masses and the kinematics in the transverse plane (see
appendix A). Next, we need to show that the on-shell limit is sufficiently mild for
amputated correlators such as R, and specifically that they enjoy local analyticity in a
neighborhood of the mass shell for real physical momenta:

D2 ≡ {s ∈ R | |s| > s0} × {ξ ∈ Dr(ξ0)} . (2.20)

Here, Dr(ξ0) denotes an open disk centered at ξ0 < 0 with radius r large enough for
the disk to contain the mass shell (the origin in the ξ-plane: ξ = 0). Then, general
properties of complex functions of two variables imply that the analyticity domain DR
of R contains the mass shell as well as complex s, at least for sufficiently large s. To
put it more clearly, we have

DR ⊃ D1∪D2 =⇒ DR ⊃ {s ∈ C | Im s > 0, |s| “large enough” and ξ = 0} . (2.21)
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For the reader’s benefit, this mathematical step is reviewed at a physicist’s level of
rigor in appendix A. The upshot is that crossing paths like those in figure 3 exist and
remain on shell at all times. To our knowledge, such arguments have been carried out
rigorously for 2 ← 2 scattering processes but have never been completed for generic
n← m processes (excluding the 3← 2 case [5]).

The central objective of this paper is to address and resolve point (i) for n-point processes
and to formulate a reasonable statement of crossing in the general case. We propose to take
seriously the idea that the two objects in (2.17) (or more generally in (2.14)) are related by an
on-shell analytic continuation, and leave a rigorous proof addressing point (ii) to future work.

3 Crossing symmetry

In this section, we introduce the crossing equation (3.6), which relates asymptotic observables
of the type discussed above.

3.1 Main proposal: crossing two particles in an n-point amplitude

To state our proposal precisely, it is useful to introduce a complex variable z, which naturally
generalizes the s-plane to n-point kinematics. We first go to the Lorentz frame in which the
lightcone components of the momenta p2 and p3 are real and directly opposite, i.e., p±3 = −p±2 .
Next, we apply the deformation parameter z, such that

pµ
2 (z) =

(
zp+2 ,

1
zp
−
2 , p

⊥
2
)
,

pµ
3 (z) =

(
−zp+2 , −1

zp
−
2 , p

⊥
3
)
,

(3.1)

where p±2 < 0. It is straightforward to verify that momentum conservation ∑n
i=1 pi(z) = 0

and on-shell conditions pi(z)2 = p2i are preserved for any complex value of z.
Owing to point (ii) mentioned earlier, we only expect crossing to work for “large enough” z.

Indeed, to avoid extraneous terms in (2.14), z needs to be sufficiently large that |zp+i | > |p+j |
for all i ∈ {2, 3} and j ∈ A ∪ D, where A and D denote the sets of particles created and
annihilated within the A and D strings respectively. We will consider paths that take the
form of large arcs across the z half-plane:

z

−1 1

(3.2)

The Mandelstam invariants that involve both 2 and 3 simultaneously, or neither of them,
remain fixed. On the other hand, the invariants that get deformed are of the form sijk...

with i ∈ {2, 3} and j, k, . . . ∈ A ∪ D,

sijk...(z) = −(pi(z) + pj + pk + . . .)2 = z p+i (p−j + p−k + . . .) +O(z0) , (3.3)

and hence for large enough z, they rotate counter-clockwise and remain within one half-plane,
from being large positive to large negative or vice versa. Our proposal is that such paths
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indeed connect the two observables in (2.14), as was shown in figure 3. We summarize it
in the following relation: [

⟨0|D b3a†2A|0⟩
]
↶z

= −⟨0|D a2b†3A|0⟩ . (3.4)

We call (3.4) the crossing equation. Its simplest instance is when A = ∏
i∈A a

†
i gives a multi-

particle incoming state and D = ∏
i∈D bi creates a multi-particle outgoing state. Before the

continuation, this choice results in the ordinary time-ordered scattering amplitude SD3←2A.
The crossing equation in this case can be written as

[SD3←2A]↶z =
[
⟨D|a3Sa†2|A⟩

]
↶z

= −⟨D|Sa2S†a†3S|A⟩ = −
∑̂
X,Y

SD←Y S
†
Y 2←3XSX←A , (3.5)

where on the right-hand side we inserted two resolutions of identity. In the diagrammatic
language, we have

23

S

AD

cross 2↔ 3
3̄2̄

S†

SS
Y X

AD

(3.6)

Here, red color-coding marks which particles are being crossed. If they carried charges, after
crossing 2 and 3 become their own anti-particles, 2̄ and 3̄. The more general case (3.4) can
also be written in the blob picture if we simply embed the above relation in a bigger diagram.
We remind the reader that S and S† contain both connected and disconnected terms.

This is the main proposal which we will explore in this paper, for both massive and
massless particles. To be fully precise, our conjecture is that this holds whenever the retarded
product is analytic in a neighborhood of the mass shell, meaning that there is no obstruction
from point (ii) above. This condition is non-trivial and a tentative criterion is proposed
in section 6.

Spinning particles. Let us emphasize that the above proposal can also be straightforwardly
stated for amplitudes of spinning particles, even though all our examples will involve only
scalars. All that is needed is to deform the external polarization spinors and vectors
in such a way that the transverse conditions (pj ·εj(z) = 0) and/or the Dirac equation
((/pj

(z)−mj)uj(z) = 0) remain satisfied at all times. Since the deformations in (3.1) coincide
with a boost along the 3-direction, a simple way to achieve this is to apply the same boost to
the polarizations of all particles j ∈ B ∪C, which gives, respectively, for vectors and spinors:4

εµ
j (z) =

(
zε+j ,

1
z ε
−
j , ε

⊥
j

)
,

uj(z) = z−iS03
uj ≃ diag

(
1√
z
,
√
z,
√
z, 1√

z

)
· uj (D=4) .

(3.7)

Here, S03 = i
2γ

0γ3 is the generator of a Lorentz boost (assuming that the Clifford algebra is
written as {γµ, γν} = −2ηµν

1, recall that we work in mostly-plus signature) and “≃” gives
4Alternatively, one could view spinning amplitudes as collections of scalar amplitudes multiplying suitable

polarization structures, but note that this approach can introduce extra branch cuts [23–26].
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the special case for a four-dimensional Dirac spinor in the standard chiral basis [27]. Note
that for fermions, the spinors thus obtained at the z < 0 endpoint of (3.7) may differ by
overall “little group” phases compared with some predetermined standard choice for the
corresponding momentum. In addition, for fermions, the minus sign in (2.14) would be
absent, since the retarded product involves an anticommutator.

3.2 A simple tree-level example

The relation (3.6) can be interpreted in two ways: as a linear relation between out-of-time-
ordered amplitudes, or as a non-linear relation between conventional time-ordered amplitudes.

This latter perspective gives predictions that can be immediately tested. Consider,
for example, a theory where the following tree-level process is possible, involving a heavy
intermediate particle of mass M :

iM345←12 =
2

3 1
4

5

= −ig3

(−s45 +M2 − iε)(−s13 +M2) . (3.8)

It might sound strange that crossing has something to say about tree-level amplitudes, which
are rational functions. The point is that amplitudes are really boundary values of (sums of)
analytic functions and so, under crossing, they can contain δ-function contributions. Below,
we wish to check whether these are also correctly reproduced. For this reason, it is important
to carefully keep track of the iε factors.

In (3.8), we can omit the iε prescription for s13 since this invariant is spacelike in the
considered kinematics and, consequently, its propagator cannot vanish. However, we need
to keep iε for the timelike Mandelstam invariant s45. We now analytically continue the
kinematics so as to swap the energies of particles 2 and 3. The invariant s13 starts negative
and rotates in the counter-clockwise direction, which means it ends up below the positive
axis, while the invariant s45 stays fixed:

sij

s45

s13

(3.9)

The result of analytic continuation can be written as

[iM345←12]↷s13
= −ig3

(−s45 +M2 − iε)(−s13 +M2 + iε) , (3.10)

where now s13 > 0 and its −iε prescription matters. Notice how the second propagator ended
up with the “wrong” iε prescription. This fact is significant because this pole is accessible
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in 245← 13 kinematics.5 This is a similar situation to how the crossing transformation for
34← 12 scattering ends up on the “wrong side” of the u-channel branch cut for a general
non-perturbative amplitude (see figure 1). Here, however, the s45 pole is still on the correct
side, so we cannot identify the right-hand side with a complex conjugated amplitude. It
is a different object.

The crossing equation in (3.6) gives a definite prediction for the result of analytic
continuation. It should be equal to the complex-conjugated five-particle amplitude, plus a
non-linear term where the heavy particle M is produced, namely

[iM345←12]↷s13

?= iM†245←13 + [iM45←M ] 2πδ(−s45 +M2) [iM†M2←13] (3.11a)

= −ig3

(−s45 +M2 + iε)(−s13 +M2 + iε) +
2πδ(−s45 +M2)g3
−s13 +M2 + iε

(3.11b)

=
( 1
−s45 +M2 + iε

+ 2πiδ(−s45 +M2)
) −ig3

−s13 +M2 + iε
. (3.11c)

Using the familiar identity 1
x±iε = PV 1

x ∓ iπδ(x), this agrees precisely with (3.10)! Dia-
grammatically:

 2

3 1
4

5

↷

s13

=
2̄

3̄

1
4

5
+

2̄

3̄

1
4

5
(3.12)

Note that a cut through the s13 propagator is not allowed, because it does not fit in the
pattern (3.6).

It is easy to verify that the proposal (3.6) also works for any other 3← 2 tree diagram:
M† gives the correct continuation of the amplitude except for propagators involving s45,
which stays fixed during the rotation. Indeed, after the rotation and with z still large, the
only timelike invariants are s13, s24, s25 and s45. The first three rotate counter-clockwise
and end up below the axis, as appropriate for M†. Propagators involving s45, however, do
not get complex conjugated, and this is fixed by the S blob (which is only different from
identity where δ(−s45 +M2) has support).

We conclude that the proposed crossing relation in (3.6) is the simplest option that is
not obviously disproved by tree-level considerations. A proposal which would not get the
correct iε’s at tree level would stand no chance of landing on the correct branch for the
more intricate functions that appear at loop level.

5Strictly speaking, the pole cannot be exactly on the real axis since M must be a resonance — obviously, if
M can be kinematically produced, it can decay. However, in the narrow-width approximation this does not
affect the present calculations: the two-particle cut near resonance is proportional to

2Re
( −i

−s45 + M2 − iMΓ

)
≈ 2πδ(−s45 + M2) +O(Γ) .

A more detailed discussion can be found in [7].
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3.3 First loop-level examples

As a glimpse into how the crossing relations work at loop level, let us verify it for the massless
scalar triangle amplitude M3456←12 in four spacetime dimensions,

s45

s26

s13

6 2

13

4
5 p45

p26

p13

ℓ− p13
ℓ

ℓ+ p45
(3.13)

Here (as always in this paper) time flows from right to left and we use an all-outgoing
convention for the momenta. The amplitude is given by

iMtri =
ˆ d4ℓ

π2
1

[ℓ2 − iε][(ℓ− p13)2 − iε][(ℓ+ p45)2 − iε]
, (3.14)

where we use the conventions that vertices in the Feynman diagram corresponding to iM come
with a factor of (−i), the propagator of an edge with momentum qe is taken to be −i

q2
e+m2

e−iε
,

and we multiply by an overall factor of (−1)V where V is the total number of vertices. These
factors of i contribute i−L to M. The expression in (3.14) can easily be evaluated to be

Mtri = −2
s13(z−z̄)

[
Li2(z)−Li2(z̄)+

1
2 (logz+log z̄)(log(1−z)−log(1−z̄))

]
, (3.15)

where we have introduced two independent variables z and z̄, which relate to kinematic
variables as follows

zz̄ = s26
s13

and (1− z)(1− z̄) = s45
s13

. (3.16)

The formula (3.15) is valid in the Euclidean region RE described below. Different kinematic
regions can be obtained by continuations in z and z̄. Due to the symmetry in z ↔ z̄, we
can take z̄ < z without loss of generality. The branch points of the amplitude are at z = 0,
z = 1 and z =∞, as well as the corresponding z̄ = 0, z̄ = 1 and z̄ =∞. Moreover, there is a
branch point at z = z̄. We can separate the different kinematic regions in the space of z and
z̄ according to the signs of the invariants s26, s45 and s13, as follows:

z

z̄

R(26) R(13)

R(45)

RE

(3.17)

where the regions are labeled with a superscript of the Mandelstam invariants that are
positive. For example, R(26) is the region in (z, z̄) where s26 > 0, s45 < 0 and s13 < 0, which
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corresponds to 0 < z < 1 and z̄ < 0. We have labeled the Euclidean region, where the
invariants are either all positive or all negative, as RE. When two invariants are positive,
we have the relation R(13)(45) = R(26), and its permutations.

When computing the amplitude in any other kinematic region than the one where
0 < z, z̄ < 1, we must specify the imaginary parts of z and z̄ to land on the correct branches
of the polylogarithms in (3.15). Using that the signs of the imaginary parts of the invariants
can be implemented as sij → sij + iε, we get the following assignments of infinitesimal
imaginary parts of z and z̄ for the scattering amplitude M:

z → z + iε and z̄ → z̄ − iε in R(26) , R(45) , R(26)(45) , (3.18a)
z → z − iε and z̄ → z̄ + iε in R(13) , R(13)(45) , R(13)(26) . (3.18b)

The crossing of particles 2 and 3 starting from Mtri
3456←12 will provide a first non-trivial

example of the crossing equation at loop level. Let us start by working out the result of the
rotation via (3.2). During the crossing step, both s26 and s13 rotate in a large semicircle in
the lower half-plane to become timelike. The corresponding rotation of z and z̄ is achieved
with z rotating clockwise around 1 and z̄ fixed,

sij

s45

s13

s26

z z̄

(3.19)

After the rotation, we end up with the amplitude in the region 0 < z̄ < z < 1, in addition to
the discontinuity across the branch cut that starts at z = 1. Since the amplitude and the
complex amplitude are the same in this region, we can write the result of the crossing as[

Mtri
3456←12

]

↶

s13↶

s26

=Mtri†
2456←13 + Discz>1Mtri

3456←12 , (3.20)

where Mtri†
2456←13 is given by the expression in (3.15), and the discontinuity across the branch

cut at z > 1 is defined as Discz>1Mtri
3456←12 = Mtri

3456←12
∣∣
z+iε − M

tri
3456←12

∣∣
z−iε, which we

compute to be

Discz>1Mtri
3456←12 =

−2πi
s13(z − z̄)

log z
z̄
, (3.21)

for z > 1 and s13 < 0.
Next, we compare this result with the prediction from the crossing equation in (3.6).

After crossing, the physical channel will be the one in which 1 and 3 are incoming, with two
separate contributions that fit the blob pattern, namely

6
2

4
5

1

3

⊂M

↶

s13↶

s26

?=

6
2̄

4
5

1

3̄

⊂M†⊂ S ⊂ S

+

6
2̄

4
5

1

3̄

⊂M†⊂ S ⊂ S

(3.22)
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The prediction is therefore that the amplitude after the rotation should be equal to the
conjugated amplitude plus a cut in the s45 channel, both of which are computed in the
region 2456 ← 13: [

Mtri
3456←12

]

↶

s13↶

s26

?=Mtri†
2456←13 +Cuts45Mtri

2456←13 , (3.23)

where cut operation Cuts45Mtri
2456←13 is defined through the rightmost picture in (3.22).6

To verify this prediction, we compute the cut as

Cuts45Mtri
2456←13 = − (2π)2

ˆ d4ℓ
iπ2

δ−[ℓ2]δ+
[
(ℓ+ p45)2

]
(ℓ− p13)2 + iε

, (3.24)

where the momentum labelings were given in (3.13). We work in the center-of-mass frame
of s45, where momentum conservation and the delta functions impose

ℓ0 = ℓ0∗ = −
[s13(1− z)(1− z̄)]1/2

2 , (3.25)

as well as

p013 =
s13(z + z̄ − 2)

2[s13(1− z)(1− z̄)]1/2 and |p⃗13| =
z − z̄
2

[
s13

(1− z)(1− z̄)

]1/2
. (3.26)

Putting all this together, we get

Cuts45Mtri
2456←13 = −iπ

ˆ 1

−1

d cos θ
s13 − 2ℓ0∗(p013 − |p⃗13| cos θ)

= −2πi
s13(z − z̄)

log z
z̄
. (3.27)

Comparing the last expression with (3.20) validates (3.23), in accordance with the prediction
of the crossing equation in (3.6).

3.4 Crossing predicts individual cuts

In the triangle example above, we can compare the result with what we could have predicted
using unitarity. Unitarity would tell us that the imaginary part of the amplitude in a given
kinematic channel is equal to the sum over all cuts in that channel. For the triangle diagram
above, unitarity gives

2i ImMtri
3456←12 =Mtri

3456←12 −M
tri †
3456←12 =

∑
all allowed

i,j

CutU
sij
Mtri

3456←12 . (3.28)

We warn the reader that the definition of “Cut” here is subtly but consequentially different
from the one used before. The unitarity cuts (or “Cutkosky-rules” cuts) in (3.28) instruct us
to complex conjugate the amplitude to the right of the cut [28]. We denote this fact with a

6In general, by Cut(iM) we denote the result of replacing all cut propagators according to −i
q2

e+m2
e−iε

→
2πδ±(q2

e + m2
e) and complex-conjugating all the vertices and propagators in the S† blob, where the ± signs

are selected according to the energy flow. In the conventions explained below (3.14) and after absorbing the
overall minus sign on the right-hand side of the crossing equation (3.6), the overall factors of i in CutM work
out to be −i−LL+LM−LR−1, where LL, LM , and LR are the number of loops in the left, middle, and right
blobs respectively.
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z

unitarity path

crossing path

z̄
crossing

path
crossing

path
unitarity

path

 6
2

4
5

1

3



↶

s13↶

s26

=
6
2̄

4
5

1
3̄
+

6
2̄

4
5

1
3̄

z

unitarity path

crossing path

z̄
crossing

path
unitarity

path

 2
6

4
5

1
3



↶

s26↶s13

=
6
2̄

4
5

1

3̄

+
6
2̄

4
5

1

3̄

Figure 4. Paths of analytic continuation prescribed by unitarity and crossing. Top: the dashed
green path is the one prescribed by unitarity. Note that z̄ stays fixed both when evaluating the
unitarity equation and during the crossing path. The red path is the one prescribed by crossing,
and it immediately enters the second sheet upon the start of the analytic continuation. Bottom:
unitarity path and crossing path for the process 456 ← 123 in the region R(13)(45). In this region,
z̄ < 0, 0 < z < 1 and we take z̄ → z̄ + iε. The crossing path prescribes a rotation in z̄ to have a
positive imaginary part on the second sheet, and z rotates clockwise around 1, into a new kinematic
channel R(26)(45).

superscript “U” standing for “unitarity cut”. As can be deduced from (3.18a), the difference
between the amplitude and its conjugate in this case is simply given by the difference between
M evaluated at z + iε and z − iε. Furthermore, the only allowed cut in the 3456 ← 12
kinematics is the one in the s45 channel. That is, the left-hand side of (3.28) is simply given
by the discontinuity across the branch cut at z > 1:

Discz>1Mtri
3456←12 = CutU

s45M
tri
3456←12 (unitarity prediction) . (3.29)

Since the unitarity cut happens to agree with Cuts45Mtri
2456←13 up to a sign, this is the same

prediction as we obtained using the crossing equation in (3.20). However, the paths that
led to this are different, as we have shown in figure 4 (top). The unitarity path takes us
between the value of Mtri above and below the branch cuts, while staying entirely on the
first sheet in the z-plane. Note that z̄ remains fixed along both the unitarity and crossing
paths. On the other hand, the crossing path immediately enters the second sheet of the
z-plane at the beginning of the analytic continuation. In this example, it is easy to see that
despite the different paths, the analytic continuation of the cut is straightforward and the
crossing path can simply be extended to a full circle. As a result, (3.29) simply becomes a
consistency condition for the crossing prediction. We emphasize that, despite arriving at
this conclusion, the two paths are conceptually different.

The story changes if we instead compare crossing and unitarity in a kinematic channel
where more than one cut is allowed, as shown in figure 4 (bottom). Unitarity tells us to
compare Mtri on the first sheet, above and below the branch cut in z̄, which leads to

2iImMtri
456←123 = CutU

s45M
tri
456←123 +CutU

s13M
tri
456←123 (unitarity prediction) , (3.30)
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where, as usual, the right-hand side of the cut is given by conjugated Feynman rules. The
crossing prediction, however, is[

Mtri
245←136

]

↶

s26↶s13

=Mtri †
345←126 +Cuts45Mtri

345←126 (crossing prediction) . (3.31)

To avoid clutters, we leave implicit in this formula that Cuts45Mtri should be evaluated with
the middle part between the orange cuts in figure 4 conjugated. Note that the endpoint of
the crossing path corresponds to an iε prescription in z and z̄ that cannot be represented
by any of the choices in (3.18a) and (3.18b). This reflects rather explicitly the fact that the
object obtained through crossing is not a conventional time-ordered amplitude.

There are two things to note about the result in (3.31). First, the crossing prediction
is not equivalent to the one obtained by unitarity, and it is not obvious how to connect the
two. Second, if we can compute the amplitude in different kinematic regions, the crossing
equation gives a new way to predict the individual cut contribution Cuts45 in this channel: it
corresponds to the difference between Mtri †

345←126 (i.e., Mtri with z̄ → z̄ + iε and z → z − iε)
and Mtri with z̄ → z̄ + iε and z → z + iε. In this case, this cut is not equal to the total
discontinuity in the kinematic region R(26)(45), since the discontinuity would also include
contributions from cuts in the s26 channel. The crossing equation, therefore, yields a prediction
distinct from that of total discontinuities in a kinematic channel, underpinning some of the
recent developments regarding the relation between cuts and discontinuities [29, 30]. In this
example, it is perhaps not surprising that the Cuts45 operation is equivalent to taking the
discontinuity in z > 1, as we found in the region where 0 < z̄ < 1. The non-trivial information
we get from the crossing equation, however, is which branches we land on, since the cut
Cuts45Mtri

345←126 generally has non-vanishing real and imaginary parts.

All-loop predictions. We can extend our previous discussion to a prediction of the Cuts45

operation to the L-loop triangle ladder diagram, whose full expression is given by [31]

Mtri ladder = (−1)L

L!(z−z̄)
1

s13s
L−1
45

2L∑
j=L

(−1)j j! [log z+ log z̄]2L−j

(j−L)! (2L−j)! [Lij(z)− Lij(z̄)] , (3.32)

and the analytic continuations in z and z̄ given in (3.18a) and (3.18b).
Starting in the region R(13)(45), we cross 2 ↔ 3 and end in the region R(26)(45) with

0 < z < 1 and z̄ < 0. The prediction of the crossing equation is exactly analogous to the
one for the one-loop triangle: the analytically continued amplitude should be equal to the
conjugated amplitude plus the cuts in the s45 channel, namely

2
6

4
5

1
3



↶

s13↶

s26

crossing
prediction=

6
2̄

4
5

1

3̄

+
∑

all cuts
in s45

6
2̄

4
5

1

3̄

(3.33)

where the middle part between the orange cuts is conjugated as before.
In this case, individual cuts in the s45 channel are not straightforward to compute. Instead

of checking the crossing equation, we can use it to make a non-trivial prediction: namely that
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the sum of cuts on the right-hand side of (3.33) is equal to the discontinuity across the z > 1
branch cut of (3.32), while keeping z̄ < 0 fixed above the branch cut (i.e., taking z̄ → z̄ + iε):

∑
all cuts
in s45

Cuts45Mtri ladder ?= (−1)L (s45)1−L

L!s13(z − z̄)

2L∑
j=L

(−1)j j! (log(−zz̄) + iπ)2L−j

(j − L)! (2L− j)!
2πi logj−1 z

(j − 1)! .

(3.34)
The iπ’s in this expression represent the non-trivial prediction of the crossing equation.
More generally, the crossing equation computes Cuts45 , including taking into account which
branches we land on. Of course, the prediction (3.34) is admittedly not too surprising either
since the calculation amounted to taking an s45 discontinuity. The interesting aspect of the
method is that it explains clearly how to take the discontinuity even in situations that are
not controlled by unitarity (this cut is not equal to the imaginary part of the amplitude).

In section 5, we will further test the crossing equation in numerous additional loop-level
examples.

3.5 Conjectural extension: crossing multiple particles?

Let us now discuss our conjecture for a generalization of the crossing equation to crossing
multiple particles at the same time. For concreteness, we start with the process CD ← AB,
where each of A, B, C, and D is a non-empty set of particles. We then cross the clusters
B and C. In light-cone coordinates, the analytic continuation is described by the following
deformation of the momenta for each particle in the B and C clusters:

pµ
b (z) =

(
zp+b ,

1
zp
−
b , p

⊥
b

)
for all b ∈ B ,

pµ
c (z) =

(
zp+c ,

1
zp
−
c , p

⊥
c

)
for all c ∈ C ,

(3.35)

where p±b < 0 < p±c and −p2i = p+i p
−
i −(p⊥i )2. The on-shell conditions are preserved. Moreover,

in order for momentum conservation to remain satisfied along the deformation, we work
in any Lorentz frame in which the condition

∑
b∈B

p±b +
∑
c∈C

p±c =
∑
a∈A

p±a +
∑
d∈D

p±d = 0 , (3.36)

is satisfied. Note that, by Lorentz invariance, we could equally have deformed the momenta
for the clusters A and D, i.e., the B ↔ C and A ↔ D crossing paths are equivalent. We
perform the same deformation along a large arc in the z plane as illustrated previously
in (3.2). Only the Mandelstam invariants sI for which I and its complement Ī both contain
at least one label from B ∪C and one from A∪D get z-deformed. They behave as sI(z) ∼ z
at large z. For example, if sI starts off timelike (sI > 0), it rotates along a large arc in the
upper half-plane to being spacelike (sI < 0).

Equation (3.6) gives our main conjecture for the crossing of two elementary (stable)
particles. However, as noted above that equation, the path which crosses two stable particles
b↔ c is equivalent to one which crosses the conjugate clusters A↔ D, for any number of
legs. We can use this observation to motivate a simple candidate crossing equation valid for
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arbitrary clusters of particles A,B,C and D. We simply tack an S blob onto each cluster:

S

B

A

C

D

cross B ↔ C

− S†

SS

SS C̄

A

B̄

D

Y X

Z W

(3.37)

In terms of an equation, this translates to

[SCD←AB]↶z = −
∑̂

X,Y,Z,W

SB←ZSD←Y S
†
Y Z←XWSW←CSX←A . (3.38)

Once again, a more general version of this crossing conjecture can be obtained by embed-
ding (3.37) in a larger blob diagram. The two-particle crossing equation in (3.6) is obtained
as special case where B and C are single-particle states, so that we can ignore the S blocks
acting on them, thanks to the stability condition.

From the viewpoint of local field theory, the multi-particle extension of the crossing
equation (3.37) is somewhat mysterious, since the disconnected products of S blobs cannot
be obtained from the LSZ reduction of any correlation function (which would necessarily
involve a chain of S’s as in section 2). Nonetheless, we will find in section 4 that it passes
very non-trivial checks at tree level. However, in section 6.5, we are going to discuss a
one-loop example with massless kinematics in which the conjecture (3.37) meets an analytic
obstruction due to an anomalous threshold.

3.6 Webs of observables

At this stage, we can ask whether every observable can be related to any other using the
above crossing rules. Surprisingly, we find that the answer turns out to be no already for
n = 5. This is illustrated in the diagrams in figure 5, where a pair of observables is joined
if and only if it participates in the same crossing relation.

We recall from [7, table 1] that there are 2 and 8 measurement types for n = 4 and
5 respectively. Crossing moves for n = 4 only relate amplitudes to complex-conjugated
amplitudes. For n = 5, there are two separate families with 4 measurement types each.
For example, S2←3 turns out to be connected to S3←2 by a composition of two crossing
moves, but S2←3 and S†2←3 are not.

For n = 6 particles, there are 28 measurement types according to the classification in [7],
but the more speculative relation (3.37) adds four new objects (the two at the ends of the
middle panel top line in figure 6 and their complex conjugates), for a total of 32. They split
into four families: with 4, 8, 8, and 12 entries each, as shown in figure 6.

Notably, we find that S4←2, S2←4, and S3←3 all lie in the same family, but their complex
conjugates do not. Also, our crossing relations do not seem to relate the inclusive cross
sections (leftmost diagram in the first family) to the amplitude. We find this somewhat
surprising since some relations of this kind have been discussed in the 1970s in the context
of Regge theory (see [18, Ch. 6]). We stress that we are solely using the specific analytic
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(n = 4)

S

S†

(n = 5)

S X S†SXS†

S S

Figure 5. Crossing relations obtained from (3.6) for n = 4 and n = 5 external legs. For n = 5 there
is a disjoint family involving the complex conjugates of the shown objects.

continuation encoded by the crossing equations (3.6) and its possible extension (3.37), and
that there might exist other ones reconnecting the families.

Finally, let us note that it is also interesting to consider how crossing relates conventional
time-ordered amplitudes with different labels (not just measurement types). For example, one
may be interested in relating different channels of the same diagram. This will be discussed
and exemplified further near the end of section 5, and we anticipate that such relations between
kinematics could be useful in the context of differential equation approaches to Feynman
integrals, alleviating the need to separately compute initial conditions in each channel [32].

Crossing a single particle. Note that a single particle cannot be crossed to become its
own anti-particle with one deformation because such a deformation would violate momentum
conservation. However, we can achieve it by a composition of multiple crossing moves
described above. First, notice that because of the symmetry of (3.37), its right-hand side
can be alternatively obtained by starting with the process AD ← BC and crossing A↔ B

instead. In equations,

[SAD←BC ]↶z′ = −
∑̂

X,Y,Z,W

SB←ZSD←Y S
†
Y Z←XWSW←CSX←A , (3.39)

where the analytic continuation is obtained by deforming the momenta of particles A and
B instead of B and C with a complex parameter z′, just as in (3.35). This is a different
continuation from that used in (3.38). But by combining these two crossing moves, we obtain
a two-leg path of continuation between SCD←AB and SAD←BC . In the n = 4 case, it is the
path described in the original work of BEG [3]: it starts from the s-channel, passes through
the u-channel (from the wrong side of branch cuts) in the intermediate step, and then lands
on the t-channel. Let us introduce the following shorthand notation:

SCD←AB
cross−−−−−−−−→

(B,C); (A,B̄)
SĀD←BC̄ , (3.40)

for this analytic continuation. For later convenience, we will additionally keep track of
which labels correspond to anti-particles by adding bars. For example, B is a particle on the
right-hand side because it was crossed an even number of times, but Ā and C̄ are anti-particles
because they got crossed an odd number of times.

Let us now isolate a single particle n and divide the remaining ones into four non-empty
sets I, J , K, L, such that we are dealing with the amplitude SKLn←IJ . We then use the
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S Y S† X S

S† Y S X S†

S X S†SXS†

S S

S Y S† X S

S

S

S†

S

Y

X
S

S†

S

Y

X

S X S† SXS†

SXS†

S Y S† X S S X S†

SXS†

S X S†SXS†

S†XS

S X S† S† X S

SY XS† S†

SY XS† S†S Y S† X S

Figure 6. Webs of relations between asymptotic measurements with n = 6. The solid lines indicate
the moves that involve the two-particle relation (3.6), whereas the dashed lines display the three-
particle crossing using (3.37). The middle family is disjoint from its complex conjugate, while the
other two are self-conjugate.

following chain of the above moves [6]:

SKLn←IJ
cross−−−−−−−−→

(J,KL); (I,J̄)
SnĪ←JK̄L̄

cross−−−−−−−−→
(L̄,n); (JK̄,L)

SĪ J̄K←L̄n̄
cross−−−−−−−−→

(n̄,ĪJ̄); (L̄,n)
SKL←n̄IJ . (3.41)

The scattering amplitude on the right-hand side is SKL←n̄IJ , which differs from the starting
point of the continuation only by the fact that the outgoing particle n is now an incoming
anti-particle n̄.

For amplitudes with planar ordering (IJKLn), it is known perturbatively that there are
no anomalous thresholds in any of the six upper half-planes involved in this deformation,
which means that (3.41) can be established rigorously [6]. In other cases, (3.41) depends
on the validity of the crossing conjecture (3.38).
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4 Tree-level proof of the cluster crossing equation

In this section, we prove the crossing conjecture (3.37) for an arbitrary (potentially unstable)
scalar n-point tree-level diagram. This section is a little bit more technical and can be skipped
on first reading, though eventually we hope the proof strategy is illuminating and can serve
as a starting point for future loop-level extensions.

In our conventions, the amplitude for such a diagram in the channel CD ← AB is given by

iMCD←AB = (−ig)|E|+1 ∏
I∈E

−i
−sI +m2

I − iε
, (4.1)

where the product runs over the set E of all internal edges in the diagram, and I denotes the
set of external momenta which enter that edge of the tree. To avoid clutter, we have taken
the coupling constant for every vertex to be the same (labeled with g); the generalization to
arbitrary coupling constants is trivial. Paralleling the discussion in section 3.5, a similar proof
can be constructed diagram-by-diagram for non-scalar scattering amplitudes after gauge fixing.

Of course, since tree amplitudes are rational functions of momenta made by multiplying
simple ingredients (propagators and vertices), it is obvious that the expressions in different
kinematics all admit closely related expressions. The non-trivial thing we will check is that
the iε’s work out precisely as predicted by (3.37).

Applying the kinematic deformation from section 3.1, the set of Mandelstam invariants
sI = −p2I appearing in a given diagram partitions into those that do depend on the deformation
parameter z and those that do not. Let us call the two sets Z and N respectively. The
set Z consists of those sI such that I and its complement Ī both contain at least one label
from the crossed sets B,C and at least one from the fixed set A,D. In those situations,
p+I ∼ z and p−I ∼ 1, such that the corresponding Mandelstam invariant is deformed as
sI ∼ z. The set N contains all remaining invariants, which are z-independent since they
have either p±I ∼ z±1 or p±I ∼ 1.

The analytic continuation illustrated in (3.2) has the effect that all sI∈Z either start
spacelike and rotate to become timelike with wrong-sign −iε, or start timelike and rotate to
become spacelike in which case their iε is no longer needed. The tree-level amplitude (4.1)
therefore crosses to

[
iMCD←AB

]

↶Z = (−ig)|N |+1(ig)|Z|
∏

I∈N

−i
−sI +m2

I − iε
∏

J∈Z

i

−sJ +m2
J + iε

, (4.2)

where we have denoted with |N | and |Z| the total numbers of invariants in the sets N and Z,
respectively. To condense this expression, we have not distinguished between spacelike and
timelike edges, since ±iε can be freely added to the spacelike ones anyway with no effect.

The goal is now to prove the crossing conjecture (3.37). To this end, we have to sum
over all possible ways of placing the vertices of the tree into the form (3.37), and compare
the answer with the explicit result obtained in (4.2). Before diving into the full proof, we
start with a simple example that illustrates the intuition.
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4.1 Simple example revisited

Let us circle back to the example from section 3.2, and show how the crossing relation
works out for the diagram

iM345←12 =
2

3 1
4

5

= −ig3

(−s45 +m2
45 − iε)(−s13 +m2

13)
, (4.3)

where we start in the channel 345 ← 12, and aim to cross particles 2 and 3.
In the notation of this section, I = {1, 3} and Ī = {2, 4, 5} for s13, and the intersections of

each with both A∪D and B∪C are non-empty. Therefore, the s13-channel index belongs to Z.
Conversely, for s45, we have I = {4, 5} and Ī = {1, 2, 3}, and, in particular, I ∩ (B ∪ C) = ∅.
Hence, the s45-channel index belongs to N . As we found earlier in (3.10), the amplitude
rotates to the expression

[iM345←12] ↶

s13
= −ig3

(−s45 +m2
45 − iε)(−s13 +m2

13 + iε) , (4.4)

where we have used the rotation from (3.35) and (3.2). In the crossed channel where 1 and
3 are incoming, this tree diagram can be drawn as

2̄ 3̄

14

5
(4.5)

Here, we have the marked the internal edges that, as z →∞, have the lightcone components
p+I ∼ z in red (as well as dashed), and those with p−I ∼ 1 in blue (as well as solid). More
precisely, we have

p+13 ∼ z, p−13 ∼ 1 and p+45 ∼ 1, p−45 ∼ 1 . (4.6)

Notice that the edge with both red and blue marking is the only one that rotates since
s13 ∼ z. As we will see later, this color-coding will prove useful in the classification needed
for proving the crossing equation for any tree-level diagram.

Before we proceed, let us gain some more intuition by exploring all the ways this diagram
can fit into the blob pattern of the crossing equation in (3.37). One placement that is
clearly allowed is when all of the vertices are within the S† blob, which gives the conjugated
amplitude in this channel (with an overall minus sign out front):

iM1 =
2̄ 3̄

14

5
= −ig3

(−s45 +m2
45 + iε)(−s13 +m2

13 + iε) . (4.7)

Another obvious one is when the blue propagator is cut, i.e., when particles 4 and 5 combine
in one of the S-blobs on the left,

iM2 =
2̄ 3̄

14

5
= −2πiδ(−s45 +m2

45)
ig3

−s13 +m2
13 + iε

. (4.8)
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In fact, these two contributions add up to give the correct answer after rotation,

iM1 + iM2 =
−ig3

(−s45 +m2
45 − iε)(−s13 +m2

13 + iε) = [iM345←12] ↶

s13↶s12
. (4.9)

Here and below, we use the notation that the factor between the two vertical dashed lines
is S†, while the factors outside the dashed lines represent the S factors acting on A, B, C and
D in (3.37). A cut going through an external line does not affect it, since it is already on-shell.

One can think of other ways of sharing the vertices among the S and S† factors, for
example as

2̄ 3̄

14

5
2̄ 3̄

14
5 (4.10)

However, the left diagram is not allowed by the factorization of the blobs in (3.37) (the
S factors must separately act within A, B, C and D, and consequently, the rightmost
vertex must be on the left of the first cut). The right diagram vanishes by conservation
of momentum flow in the p− components.

In fact, there is yet another reason why neither of them is allowed: the red-blue line can
actually never be cut, as we will show in section 4.3. One can check that no placements of
vertices are allowed apart from the ones spelled out in (4.7) and (4.8). We have therefore
proven that the crossing equation (3.38) holds for this diagram.

4.2 Classification into red and blue edges

Armed with the insight from this simple example, we now turn to proving crossing for any
tree diagram. As we just saw, it is useful to look at momentum conservation for the p+ and
p− components separately, both to determine which edges can potentially go on-shell, and
also to exclude diagrams that are not allowed by momentum conservation in each component
separately. We therefore use the same red and blue labeling as in the previous example, which
gives us a simple way to exclude many of the cut diagrams that naively seem to fit into (3.37).

As before, for any tree diagram, let us label the edges that have p+I ∼ z in red, p−I ∼ 1
in blue, as z →∞. Any given edge might be red (dashed), blue (solid), red-blue, or remain
uncolored (black/dotted) if its momentum does not satisfy the aforementioned scaling. In
the absence of a black edge, an example diagram looks like

(4.11)

We notice some additional features of this classification. First, the set of red edges R must
be connected by itself thanks to momentum conservation. It also needs to be connected to
all external particles in the set B ∪ C. Likewise, the set of blue edges B is a tree connected
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to A ∪D. We have therefore established that the original tree diagram contains a connected
red tree R, and a connected blue tree B:

R = B = (4.12)

We can further ask if the red and blue trees are edge-disjoint or not. Let us consider
the first case, R ∩ B = ∅. It means that there might have been some black edges, but
by momentum conservation, they could not be connected to any of the external legs. We
conclude that there could be at most one such black edge. Let us call it e. Moreover, it needs
to be spacelike at large z, since the momentum flowing into it has p+e ∼ 1 and p−e ∼ z−1.

The remaining possibility is that R∩B ̸= ∅ with the intersection R∩B consisting of all
the red-blue edges. The set of red-blue edges needs to be a tree by itself. If it was not, it would
have at least two disconnected components. Such components could then be connected by a
combination of a purely-red path and a purely-blue path, which would necessarily form a loop:

(4.13)

Therefore, since the diagram we started with is a tree, the number of connected components
of R ∩ B needs to be one, i.e., it has to be a tree by itself.

The two possibilities of how the red and blue trees can be overlapping are therefore:

R∩ B = ∅ : e

(−p2
e < 0)

R∩ B ̸= ∅ : (4.14)

In the rest of this section, we focus on the second case, since the first one will be entirely
analogous.

4.3 Absence of cuts through red-blue edges

Next, we would like to show that cuts through red-blue edges are always disallowed by kine-
matic considerations. As the simplest non-trivial example, consider the following diagram:

d

c
c

b b
b

c

a

(4.15)

Here, a ∈ A, b ∈ B, etc. Denoting the momentum running through the red-blue edge as p,
and setting s = −p2 as the kinematic invariant and m as the mass of the edge, the amplitude
is iM = −i(−ig)2

−s+m2−iε
. Depending on the momenta, s can be either positive or negative, and

the energy flow in the red-blue edge can be either positive or negative.
The amplitude after crossing s from spacelike to timelike becomes

[iM] ↶

s = −i(−ig)2
−s+m2 + iε

. (4.16)
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To compare this result with the crossing equation, we draw and compute all diagrams that
are consistent with (3.37):

a
b̄

b̄
c̄ p c̄

c̄

b̄

d a
b̄

b̄
c̄ c̄

c̄

b̄

d
(4.17)

a
b̄

b̄
c̄ c̄

c̄

b̄

d a
b̄

b̄
c̄ c̄

c̄

b̄

d
(4.18)

Naively, it looks like the sum of all of these contributions to the crossing conjecture is

[iM] ↶

s
?= i(−ig)2

[ 1
−s+m2 + iε

+ 2πiδ(s)− 2πiδ(s) + 2πiδ(s)
]
= −i(−ig)2
−s+m2 − iε

, (4.19)

which would not agree with the answer in (4.16). When writing (4.19), we have, however,
ignored one crucial restriction: the positive-energy flow across the orange cuts. In all of the
diagrams above except the first one, the red-blue edge is forced by momentum conservation
to have a negative and large p− component. If p+ is positive, this means that s must be
spacelike, and if p+ is negative, then positive energy flow across the cuts cannot be satisfied,
since the energy of the edge is proportional to p++p−. In either case, we conclude that
the red-blue edge cannot be cut.

This argument generalizes to bigger diagrams: a spectator from the set A or C cannot
attach in any of the S blobs on the left-hand side of (3.37), and vice versa for spectators
from B and D. Say R ∩ B was contained in one of the S blobs, for example the top-left
one shown in the diagram below:

R∩ B ̸= ∅ :

S

S

S

S

Not allowed

S†

(4.20)

Then, there would need to be at least one blue line with energy flowing backwards across
the unitarity cut, as shown in the figure, since factorization forbids the red-blue tree to
contain only outgoing blue edges. This possibility is excluded by momentum conservation
in the p− components. In conclusion, the full red-blue tree R∩ B must be fully contained
inside the S† blob. By the same logic, we conclude that if the diagram instead has a black
edge, it must be within S†.
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4.4 Factorization into branches

To summarize, we now have the following classification of all edges in a general tree diagram:
they are either red, blue, red-blue or black. The red-blue ones can never be on-shell, and
hence they cannot be cut in the crossing equation. In addition, there can at most be one
black edge in the tree, and it must be spacelike by momentum conservation, so it also cannot
be cut and must be within S†. Looking back at (4.2), we see that the edges that always
remain within the S† blob in the crossing conjecture (3.37), are precisely the ones in the
set Z, and rotate to become past timelike, i.e., with a propagator −i

−sJ+m2
J+iε

. However, the
edges which are either red, blue, or black are in the set N and do not rotate under crossing.
Hence, we arrive at the following classification for a generic tree-level diagram:

red, blue, black edges ∈ N and red-blue edges ∈ Z . (4.21)

The sets R∩ B and Z are equal. Thus, the second product in (4.2) is accounted for and we
are left with explaining how to obtain the first product from the crossing conjecture.

What remains is to figure out how the red and blue edges can fit into the blob pat-
tern (3.37). To this end, let us look at the original diagram after removing all the black
and red-blue edges:

(4.22)

This procedure introduced a number of vertices (leaves of R ∩ B or e), which we denoted
with white circles. Following the previous discussion, white vertices have to belong to S†,
while the remaining vertices can be in either of the blobs.

We are going to view each of the disconnected components as a separate tree, for which
a momentum q is injected via the white vertex in S†. In fact, we can treat the red and blue
parts separately. We call each such component a branch. Since the tree diagram factorizes
into a part that always stays within S†, as well as a number of branches, the final step of the
proof involves proving crossing at the level of each branch separately.

4.5 Proof of crossing for each branch

In this last step of the proof of crossing at tree level, we consider a single branch of the tree,
where momentum is injected through a single white vertex in S†. Each individual branch
is independent of the deformation parameter z, and therefore we are left with proving an
equality between two quantities, which we will show using unitarity. We can represent the
contribution from each branch separately, i.e., the contribution where an off-shell momentum
q is injected into a part of the diagram, via a form factor F (q) in this theory. Matrix elements
of the form factor between some states X and Y are given by

iFY←X(q) = out⟨Y |iOF (q)|X⟩in = i⟨Y |SOF (q)|X⟩ , (4.23)

where OF is a local operator, see also [33]. We remind the reader that the discussion in this
section applies diagram by diagram in gauge-fixed perturbation theory.
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It is simple to work out how the Mandelstam invariants rotate for a branch: since
all the propagators in the diagram belong to either the set A ∪ D or B ∪ C, i.e., the set
N , meaning that all of the Mandelstam invariants remain fixed during crossing, and its
contribution is equal to:

iF branch
D←A = (−ig)|Ebranch|+1 ∏

I∈branch

−i
−sI +m2

I − iε
, (4.24)

where we have labeled the part of the tree amplitude originating from the branch with
F . Note that since B and C do not appear in this equation, crossing them is trivial. So,
to prove the crossing equation for a single branch, we have to show that the sum over all
contributions that fit into the blob pattern of (3.37) simply results in iF branch

DB←CA, as if the
only contribution were that from a single S blob.

To evaluate the prediction of crossing from (3.37), we consider a blue branch without
loss of generality, i.e., one whose external particles belong to either A or D. When the sets
B and C are crossed, the kinematics of the branch remain unchanged. The multi-particle
crossing proposal predicts[

iF branch
D←A

]

↶Z = i
∑̂
X,Y

⟨D|S|Y ⟩⟨Y |OF (q)S†|X⟩⟨X|S|A⟩ , (4.25)

where we have used that iF †Y←X(q) = in⟨Y |iOF (q)|X⟩out = i⟨Y |OF (q)S†|X⟩. Note that
we have incorporated the minus sign from (3.38) into the factors of i. This equation can
be evaluated straightforwardly with unitarity, using that the sum is over complete sets of
states |X⟩ and |Y ⟩, to give[

iF branch
D←A

]

↶Z = i⟨D|SOF (q)|A⟩ = iF branch
D←A . (4.26)

Diagrammatically, we can represent this equation as

iF †

SS

q

Y X

AD

q

iF

AD

(4.27)

Comparing this result with (4.24), we see that the crossing proposal and the explicit com-
putation agree for the crossing if the tree diagram contains a single branch.

It only remains to make sure that the crossing proposal for multi-particle crossing (3.37)
reproduces the correct overall sign in cases where the tree diagram contains multiple branches.
If we note that the crossing equation for branches, (4.27) does not introduce an extra sign
for the white vertex v, so we can combine the findings in this section to write the prediction
of (3.37) as

[
iMCD←AB

]

↶Z = (−ig)|N |+|Z|+1 ∏
I∈N

−i
−sI +m2

I − iε
∏

J∈Z

−i
−sJ +m2

J + iε
, (4.28)

– 31 –



J
H
E
P
0
4
(
2
0
2
4
)
0
6
0

where N is the set of invariants sI that appear in this diagram and stay fixed during crossing,
while Z is the set of those that rotate. Note that |N |+ |Z|+1 is the total number of vertices
in the diagram. The minus sign in front is the one from the right-hand side of (3.37). This
expression agrees with (4.24), thus concluding the proof.

Before concluding this section, let us make the comment that we could have proven (4.27)
at the level of individual diagrams using the largest-time equation [34, 35], which involves
summing over all possibilities of the vertices being distributed between S and F †. As an
example of how such an argument works out, we focus on the simplest diagram of a branch
with only one propagator and show how (4.27) works in perturbation theory. We have to
show that there are non-trivial cancelations between the different ways of distributing the
vertices of the branch into the crossing equation. We consider a branch with large minus
components of all momenta (a blue branch), without loss of generality. To manifest the
cancelation between different terms, we add and subtract diagrams for which q attaches
in the leftmost S-blob as follows:

q

+

q

+

q

=

q

1

+

q

2

+

q

3

+

q

4

+

q

5

+

q

6

−

q

7

−

q

8

−

q

9

(4.29)

In equations, the top line is given by

iF branch = −i
−sI +m2

I − iε
− 2πΘ(−q0)δ(−sI +m2

I)− 2πΘ(q0)δ(−sI +m2
I)

= −i
−sI +m2

I + iε
. (4.30)

Note that we only have modified the top line (4.29) by a trivial zero: we added and then
subtracted all the diagrams for which the vertex of the branch is in the S-blob on the left.
This was not a random choice. Indeed, the diagrams are now organized in a way that makes
manifest cancellations between them. In particular, the diagrams 1, 2, 4 and 6, which have
the rightmost S shaded in blue, cancel. This follows from unitarity: their sum precisely
corresponds to all ways of distributing the two vertices between the S on the left, and F †

in the middle region; in equations,

1 + 2 + 4 + 6 = −i
−sI +m2

I − iε
− 2πΘ(−q0)δ(−sI +m2

I)

+ i

−sI +m2
I + iε

− 2πΘ(q0)δ(−sI +m2
I) = 0 . (4.31)
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This type of cancellation between placements of vertices between S and S† is familiar from
perturbative proofs of the cutting rules using the largest-time equation.7 Similarly, diagrams 3
and 5 cancel, since they correspond to all ways of distributing the white vertex between S and
S†, keeping the black vertex fixed in the rightmost S blob (shaded in red with diagonal lines):

3 + 5 = −2πΘ(q0)δ(−sI +m2
I) + 2πΘ(q0)δ(−sI +m2

I) = 0 . (4.32)

Last, keeping the white vertex in the leftmost S blob, represented with the grey dotted
region, shows that diagrams 7 and 8 cancel:

7 + 8 = −2πΘ(q0)δ(−sI +m2
I) + 2πΘ(q0)δ(−sI +m2

I) = 0 . (4.33)

The only remaining contribution is diagram 9, which corresponds to placing the whole
diagram within the S blob with an extra overall minus sign, which is precisely what we
expect from (4.24), and agrees with (4.30).

As a final remark, notice that the part of the proof presented in this subsection is based
on unitarity and did not use the fact that the diagram was a tree. Thus, we have also
proven the crossing equation (3.6) in the case of diagrams in which two particles attach to
the rest of the diagram at a single vertex, and those two particles are precisely the ones
that are crossed from incoming to outgoing.

Extending the full proof to loop level would be more difficult because the red-blue
decomposition of the propagators becomes ambiguous in the presence of the loop momenta.
Furthermore, loop momenta make it much harder to track the position of singularities,
which at tree level were completely manifest. The problem becomes entangled with proving
analyticity along the considered path, which is a challenge in itself.

5 One-loop crossing for massless five-point amplitudes

In this section, we verify the crossing conjecture for all massless one-loop master integrals
relevant for (up to) five-point functions in dimensional regularization around D = 4 dimensions.
In doing so, we will employ various techniques to evaluate the master integrals and their cuts,
including Schwinger parameters, the embedding space formalism, and differential equations.

For fully massless amplitudes, non-trivial crossings start at four points, where amplitudes
simply analytically continue to complex-conjugated amplitudes using the crossing path (3.35).
Below, we will illustrate through a concrete example that this well-established conclusion
is, indeed, in perfect harmony with our crossing equation (3.6).

7These proofs often using a black-and-white-vertex notation (nothing to do with our black/white coding)
to show how diagrams, their conjugates and cuts cancel among each other, see e.g. [35]. When mapping those
proofs to our setup, the vertices in the leftmost S blob would be white, and the vertices in the middle S† blob
would be black. The sum over all configurations of black and white vertices cancel among each other.
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At five points, there is only one possibility for crossings of the process S345←12: we cross an
incoming particle with an outgoing one.8 Taking these two particles to be 2 and 3, this leads to

⟨0|b5b4b3a
†
2a
†
1|0⟩

13
4

25
S −

cross 2↔ 3

−⟨0|b5b4a2b
†
3a
†
1|0⟩

4
5

1

3̄

2̄

XS S†
(5.1)

In what follows, we will meticulously check the consistency of this statement against explicit
examples. In particular, at the end of this section, we will have checked all possible crossings
for up to five-point diagrams, and up to pentagon topology.

Note that at one loop, non-trivial crossings begin with massless bubbles. Indeed, tadpoles
either vanish (when massless) or are functions of the mass in the loop (when massive).
Consequently, they remain unchanged under crossing and are not considered here.

Finally, towards the end of this section, we will explore further applications of crossing
symmetry, such as how it can be used in practical calculations to relate time-ordered
amplitudes with different labels.

5.1 Bubbles

We start by establishing crossing for massless bubble integrals, which in D spacetime di-
mensions are given by

Mbub
345←12 =

ˆ dDℓ
iπD/2

1
[ℓ2 − iε][(ℓ+ p)2 − iε] . (5.2)

This integral is easy to perform; it evaluates to

Mbub
345←12 =

Γ
(D
2 − 1

)2Γ(2− D
2
)

Γ(D− 2) (p2 − iε)D/2−2 . (5.3)

Here, p2 corresponds to the squared momentum entering the vertices, which at five points
can be realized by four different configurations (up to permutations of indices):

1

23
4
5 1

2

3
4

5
2
1

3
4

5

3

1

24

5

(5.4)

When crossing particles 2 and 3, the relevant rotations for each of the four diagrams
above are summarized as

sij

s12

sij

s23

sij

s13

sij

s45
(5.5)

8At five point, the option of crossing an incoming particle (e.g., 2) with a cluster of two particles (e.g., 34)
is not considered separately because it is equivalent to a single particle crossing (e.g., crossing 1 and 5).
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Since each bubble amplitude depends on a single invariant sij , it is clear that in the case of
the first three diagrams, for which the relevant invariant sij either ends up negative or on the
wrong side of the cut (for s13), the amplitudes analytically continue to complex conjugated
amplitudes. There is no possible cut in the s45 channel in these cases, so this prediction is
consistent with the expectation from (5.1), since the S-blob is necessarily trivial.

In the case of the fourth diagram, the amplitude is unchanged under the rotation. The
prediction from the crossing equation in (5.1) is that we get the conjugated amplitude plus
a cut in the s45 channel, namely

3

1

24

5


nothing
rotates

?=
2̄

1

3̄4

5
†

+
2̄

1

3̄4

5

(5.6)

The right-hand side is a sum over the conjugated amplitude and the unitarity cut, so the
two contributions sum up to the amplitude Mbub

542←13. The easiest way to see this explicitly
is by noticing that the cut term in (5.6) is a unitarity cut (or Cutkosky cut), so it is equal
to twice the imaginary part of the amplitude. Therefore,

r.h.s. of (5.6) =Mbub†
345←12 + 2ImMbub

345←12 =Mbub
345←12 , (5.7)

and the direct computation agrees with the crossing prediction from (5.1).
In fact, an analogous argument also holds for crossing any clusters of particles for any

two-point Feynman diagram by unitarity. Indeed, both evaluate to the same class of functions;
by dimensional analysis, one has

Mbub
m+1...n←12...m ≡

...
...

...
...

...

...

T ∝ (−si,i+1,...,j − iε)a , (5.8)

where both a and the constant of proportionality are independent of si,i+1,...,j .

5.2 Triangles

For the next loop integral at five points, we add one more propagator and consider the
massless scalar triangle amplitude Mtri,

s45

s13

2

13

4
5 p45

p2

p13

ℓ− p13
ℓ

ℓ+ p45

(5.9)

along with all permutations of the external legs. The amplitude in loop-momentum space
is given by

Mtri =
ˆ dDℓ
iπD/2

1
[ℓ2 − iε][(ℓ− p13)2 − iε][(ℓ+ p45)2 − iε]

, (5.10)
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which evaluates to

Mtri =
Γ
(
3− D

2

)
Γ
(
D
2 − 2

)2
Γ (D− 3)

(−s13 − iε)D/2−2 − (−s45 − iε)D/2−2

s45 − s13
. (5.11)

This expression is valid in any physical kinematic region, and the iε’s are needed only if
the corresponding sij > 0. Note that this expression is invariant under placing ±iε in the
denominator since the numerator makes corrections proportional to ε at s45 = s13.

Let us check the crossing equation (5.1) when crossing particles 2 and 3 in 345 ← 12
kinematics, i.e., starting in the region where s13 < 0 < s45. The result of crossing is

[
Mtri

345←12
]
↷

s13
=

Γ
(
3− D

2

)
Γ
(
D
2 − 2

)2
Γ (D− 3)

(−s13 + iε)D/2−2 − (−s45 − iε)D/2−2

s45 − s13 + iε
. (5.12)

To check whether this result agrees with the right-hand side of (5.1), we have to compute
the conjugated amplitude and the cut in s45 channel, according to

2

13

4
5

↷
s13

⊂M

?=

2̄

1
3̄

4
5

⊂M†⊂ S ⊂ S

+

2̄

1
3̄

4
5

⊂M†⊂ S ⊂ S

(5.13)

In an equation, this reads[
Mtri

345←12
]
↷

s13

?=Mtri†
245←13 +Cuts45Mtri

245←13 , (5.14)

where the cut term on the right-hand side is defined by the rightmost picture in (5.13). The
conjugated amplitude Mtri†

245←13 is easily obtained from (5.11), and the cut is given by

Cuts45Mtri
245←13 = − (2π)2

ˆ dDℓ
iπD/2

δ−[ℓ2]δ+
[
(ℓ+ p45)2

]
(ℓ− p13)2 + iε

. (5.15)

The calculation of the cut term proceeds analogously to the s45 cut of the six-point triangle
diagram from section 3.3, with the modifications that we now take one external leg to be
massless and work in D dimensions instead of four. We define ℓ0∗ ≡ −

√
s45
2 as the value of

ℓ0 and |ℓ⃗| imposed by the delta functions. After performing the two delta functions, we
can write the cut in spherical coordinates as

Cuts45Mtri
2456←13 = −

iΩD−2
2πD/2−2

(
s45
4

)D−4
2
ˆ 1

−1

(1− cos2 θ)D−4
2 d cos θ

s13 − 2ℓ0∗(p013 − |p⃗13| cos θ)− iε
, (5.16)

where Ωd = 2πd/2

Γ(d/2) is the solid angle of a sphere in d-dimensions. In the center-of-mass
frame of s13, we have

p013 = −
s45 + s13
2√s45

and |p⃗13| = −
s45 − s13
2√s45

, (5.17)
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such that

Cuts45Mtri
2456←13 =

2πisD/2−2
45 Γ

(
D
2 − 2

)
(s45 − s13 + iε)Γ(D− 3) . (5.18)

Using the identity

(−s45 + iε)D/2−2 − (−s45 − iε)D/2−2 = 2πi
Γ
(
D
2 − 2

)
Γ
(
3− D

2

)sD/2−2
45 , (5.19)

where we have assumed that s45 > 0, we get

Mtri†
245←13+Cuts45Mtri

245←13 =
Γ
(
3−D

2
)
Γ
(D

2 −2
)2

Γ(D−3)(s45−s13+iε)

×
[
(−s13+iε)D/2−2−(−s45+iε)D/2−2+ 2πi

Γ
(D

2 −2
)
Γ
(
3−D

2
)sD/2−2

45

]

=
Γ
(
3−D

2
)
Γ
(D

2 −2
)2

Γ(D−3)
(−s13+iε)D/2−2−(−s45−iε)D/2−2

s45−s13+iε
,

(5.20)

where an iε can be freely added to Mtri†
245←13, as explained below (5.11). This result agrees

with the one obtained by crossing in (5.12), thus verifying the crossing equation for this
diagram. Other kinematic channels can be checked analogously.

5.3 Boxes (at four and five points)

Warm-up: four-point massless box. Shifting gears, we now consider the four-point
four propagators box

s

t

1

23

4

p2

p1p45

p3 p2

p1p4

p3

ℓ− p1ℓ− p123

ℓ− p12

ℓ

t

(5.21)

The corresponding amplitude is given by

Mbox
34←12 =

ˆ dDℓ
iπD/2

1
[ℓ2 − iε][(ℓ− p1)2 − iε][(ℓ− p12)2 − iε][(ℓ− p123)2 − iε]

, (5.22)

with p2i = 0, −p212 = s and −p223 = t. We also define −p213 = u. The physical s-channel
is defined using s > 0, t < 0, u < 0, and the t and u channels are defined analogously
by symmetry. Therefore, we can check the crossing relations between any two of these
kinematic regions.
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Region s t z1 z2
u > 0, s < 0, t < 0 • • ±iε ∓iε
s > 0, t < 0, u < 0 +iε • • •
t > 0, u < 0, s < 0 • +iε • •

Table 1. Signs of the imaginary parts of s and t and the arguments of the hypergeometric functions
for the amplitude M in different kinematic regions. A bullet “•” denotes that no iε is needed. The
conjugated amplitude M† is obtained by flipping the signs of all iε.

In the Euclidean region (corresponding to the u-channel where s < 0 and t < 0), the
integral in (5.22) evaluates to [36]

Mbox
34←12 = lim

ε→0+

C(ϵ)
ϵ2st

[
(−s)−ϵ

2F1 (1,−ϵ, 1− ϵ; z1 ± iε)

+ (−t)−ϵ
2F1 (1,−ϵ, 1− ϵ; z2 ∓ iε)

]
, (5.23)

in D = 4 − 2ϵ. Here, C(ϵ) = 2Γ(1−ϵ)2Γ(ϵ+1)
Γ(1−2ϵ) and the variables z1 and z2 are given in terms

of the kinematic invariants as

z1 = 1 + s

t
and z2 = 1 + t

s
. (5.24)

Note that in the kinematic regions where s
t > 0, the iε in the hypergeometric functions

are arbitrary as long as they have opposite signs, resulting in a continuous function in the
region where s < 0 and t < 0.

In the s- and t-channel kinematic regions, the amplitude is given by (5.23) after the
replacements (−s)−ϵ → (−s − iε)−ϵ and (−t)−ϵ → (−t − iε)−ϵ, respectively. Whenever
s and t have opposite signs, the iε in the hypergeometric functions are not needed. The
iε-prescriptions are summarized in table 1.

The crossing relations for the massless box are straightforward to establish. For a 2← 2
process, we are only allowed to cross two particles thanks to stability. We start by looking
at crossings starting in the u-channel region, where s < 0 and t < 0. We can, for example,
cross particles 2 and 3, which rotates s to be timelike with a negative imaginary part. During
the rotation, the hypergeometric functions in (5.23) remain on their principal sheet, and
after rotation the iε for z1 and z2 will not play any role

s
ziz1

z2
(5.25)

Moreover, the prefactor (−s)−ϵ will rotate to become (−s+ iε)−ϵ, so the u-channel amplitude
has rotated to the conjugated s-channel amplitude[

Mbox
24←13

]

↶

s
=Mbox†

34←12 . (5.26)
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Similarly, we obtain the rotations from the u-channel to the t-channel by symmetry.
We note that for purely massless 2 ← 2 scattering, there is no mass scale on which a
corner cut could depend on, resulting in the vanishing of the box p2i -cut for all i [37,
eq. (4.20)]. Thus, equation (5.26) (as well as its u- and t-channel analogues) agrees with the
crossing-equation prediction.

Next, let us check crossing when starting in the s-channel (s > 0, t < 0 and u < 0). In
this channel, the amplitude is given by (5.23) after replacing (−s)−ϵ → (−s− iε)−ϵ. After
the analytic continuation, we get z1 → z1 − iε and z2 → z2 + iε,

s
zi

z1

z2

(5.27)

According to table 1, the resulting expression is, once again, the complex-conjugated amplitude[
Mbox

34←12
]
↶s

=Mbox†
24←13 . (5.28)

All other crossing relations are obtained by symmetry.

Five-point massless boxes. Next, we verify the crossing relations for the box amplitude,

s45

s12

s23

1

23

54

p2

p1p45

p3 p2

p1p45

p3

ℓ− p1ℓ− p123

ℓ− p12

ℓ

s23

(5.29)

It is defined by the expression

Mbox
345←12 =

ˆ dDℓ
iπD/2

1
[ℓ2 − iε][(ℓ− p1)2 − iε][(ℓ− p12)2 − iε][(ℓ− p123)2 − iε]

, (5.30)

with p2i = 0, −p245 = s45, −p212 = s12 and −p223 = s23. The integral was computed exactly in
D = 4− 2ϵ spacetime dimensions in [36, 38] and can be written as a sum of hypergeometric
functions

Mbox
345←12 =

C(ϵ)
ϵ2s12s23

[
(−s12)−ϵ

2F
A
1 (1,−ϵ, 1− ϵ; z1) + (−s23)−ϵ

2F
A
1 (1,−ϵ, 1− ϵ; z2)

− (−s45)−ϵ
2F

A
1 (1,−ϵ, 1− ϵ; z3)

]
, (5.31)

with C(ϵ) defined below (5.23). Here, the variables z1, z2 and z3 are given in terms of
the kinematic invariants as

z1=1− s45−s12
s23

, z2=1− s45−s23
s12

, z3=1− (s45−s12)(s45−s23)
s12s23

. (5.32)
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Channel Region z1 z2 z3
345← 12 s23 < s45 < s12 • • •
245← 13 s12 < s23 < s45 +iε −iε •
245← 13 s23 < s12 < s45 −iε +iε •
235← 14 s12, s45 < s23 −iε • −iε
135← 24 s12, s23 < s45 < 0 ±iε ∓iε •
135← 24 s45 < s12, s23 < s12 • • •
135← 24 s12 < s45 < s23 −iε • −iε
135← 24 s23 < s45 < s12 • −iε −iε
123← 45 s12, s23 < s45, s45 > 0 • • •

Table 2. Signs of the imaginary parts of zi for the amplitude in different kinematic regions. All other
physical channels are obtained by relabeling symmetry and/or time reversal. A bullet “•” denotes
that no iε-prescription is needed. If an imaginary part is listed for a specific region, there may still be
subregions in which it is superfluous since the corresponding zi < 0, but we still include it to avoid
further subdivisions. The conjugated amplitude is obtained by flipping the signs of all iε. The entries
with ±iε mean that one can choose either, as long as one is consistent.

Note that despite the dependence on ϵ, which makes the equation more concise, (5.31) is
valid in any spacetime dimension. Above, we have used the superscript A to denote that the
branch of the hypergeometric functions must be specified and it depends on the kinematic
region, as discussed in detail below.

Kinematics and branch cuts. To get the correct expression in different kinematic regions,
we must be careful to be on the correct side of the branch cuts of the hypergeometric functions
in (5.31). In the Euclidean region carved by s12 < 0, s23 < 0 and s45 < 0, we can get the
correct form by using the real values: 2FA

1 (1,−ϵ, 1− ϵ; zi) = 1
2
∑
± 2FA

1 (1,−ϵ, 1− ϵ; zi ± iε).
Equivalently, we can assign +iε and −iε to the zi such that the discontinuities vanish, which
requires the two hypergeometric functions with zi > 1 to have opposite iε. This follows from
the formula for the discontinuity of the hypergeometric function:

Discz>1[2F1(1,−ϵ, 1− ϵ, z)] ≡ 2F1(1,−ϵ, 1− ϵ, z + iε)− 2F1(1,−ϵ, 1− ϵ, z − iε) (5.33a)
= −2πiϵzϵΘ(z − 1) , (5.33b)

which gives that the discontinuity of Mbox
345←12 in each zi is equal and given by

Disczi>1Mbox
345←12 =

2πiC(ϵ)
ϵs12s23

(
−s45
z3

)−ϵ

Θ(zi − 1) . (5.34)

In the kinematic region where s45 < s23 < 0 and s45 < s12 < 0, we can see from (5.32)
that zi < 1 for all i such that the amplitude does not have any branch cuts coming from the
hypergeometric functions. Therefore, we can unambiguously write, when s45 < s12, s23 < 0,

Mbox
345←12 =

C(ϵ)
ϵ2s12s23

[
(−s12)−ϵ

2F1 (1,−ϵ, 1− ϵ; z1) + (−s23)−ϵ
2F1 (1,−ϵ, 1− ϵ; z2)

− (−s45)−ϵ
2F1 (1,−ϵ, 1− ϵ; z3)

]
. (5.35)
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We will use this expression to analytically continue to other kinematic regions. Note
that it is not sufficient to simply take sij → sij + iε for the invariants that are positive;
the function is written in a form that requires more care to match the correct Feynman iε

prescription. A list of the iε prescriptions needed for the zi in each region is given in table 2.
The analytic continuation of the prefactors is simply (−sij)−ϵ → (−sij − iε)−ϵ for sij > 0.

Crossing prediction. To show that the crossing equation (5.1) holds, we need to check it
for the crossing of any pair of particles, between any allowed kinematic regions. While we
present only one example in detail, we have checked, using analogous computations, that
the crossing equation holds for any other crossing channels.

As an example, we start in 345 ← 12 kinematics, in the region s23 < 0 < s45 ≪ s12,
and cross particles 2 and 3. This places us in the region 245 ← 13. In the first kinematic
region, one can check that the amplitude is simply given by substituting s12 → s12 + iε

and s45 → s45 + iε into (5.35). The crossing results in s12 becoming large and negative,
while s23 and s45 stay fixed. After the analytic continuation, we end up in the region
s12 ≪ s23 < 0 < s45 with z1 → z1 − iε and z2 → z2 + iε. This is summarized below:

sij
s12

s23 s45

zi

z1

z2
z3

(5.36)

According to table 2, the expression we end up with has the same iε prescriptions for the
zi’s as Mbox†

245←13. Therefore, the analytically continued amplitude differs from Mbox†
245←13 by

a discontinuity of the prefactor (−s45)−ϵ, which is given by

Discs45>0(−s45)−ϵ = lim
ε→0+

[
(−s45 − iε)−ϵ − (−s45 + iε)−ϵ] = 2i sin(πϵ)s−ϵ

45 . (5.37)

Putting everything together, we have, after the analytic continuation in s12,[
Mbox

345←12
]
↶s12

=Mbox†
245←13 −

2iC(ϵ) sin(πϵ)
ϵ2s12s23sϵ

45
2F1 (1,−ϵ, 1− ϵ; z3)

∆M

. (5.38)

Based on the crossing equation (5.1), the continued amplitude should be equal to the
inclusive amplitude [

Mbox
345←12

]
↶s12

?=Mbox†
245←13 +Cuts45Mbox

245←13 . (5.39)

Therefore, to establish the crossing relation, we need to check whether the expression for
the inclusive amplitude obtained by analytic continuation agrees with a direct computation.
When comparing (5.38) with (5.39), one sees that this check amounts to verifying that the
cut in the s45 channel equals the difference between Mbox

245←13 and its complex-conjugate,
namely to check if

Cuts45Mbox
245←13

?= ∆M . (5.40)

We now proceed to compute the cut Cuts45Mbox
245←13 to show that this formula is indeed true.
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Cut computation. The cut integral is defined by

Cuts45Mbox
245←13 = −(2π)2

ˆ dDℓ
iπD/2

δ−(ℓ2)δ+[(ℓ− p123)2]
[(ℓ− p1)2 + iε][(ℓ− p12)2 + iε] . (5.41)

To compute this integral, we use the embedding space formalism described in [37, 39], which
allows us to rewrite the C-particle cut of a D-dimensional n-gon as an (n − |C| + 1)-gon
in (D − |C|) dimensions. We review the arguments in appendix B. In doing so, we end
up with an integral with kinematics resembling a lower-dimensional triangle integral. In
Schwinger-parameter space, it is given by

Cuts45Mbox
245←13 = −

2iC(ϵ) sin(πϵ)
s45

ˆ ∞
0

d3α
GL(1)α

−1−2ϵ
0

×
[
−α0α1

(
s12
s45
− 1

)
− α0α2

(
s23
s45
− 1

)
− α1α2

(
−s12s23

s45

)
+ 1
s45

α2
0

]ϵ−1
.

(5.42)

Its kinematic dependence resembles a triangle integral with one internal mass:

− s12s23
s45

s23
s45
− 1

s12
s45
− 1

m2
0 = 1

s45

65

12

3
4 (5.43)

We can directly evaluate the integral in (5.42) by gauge fixing the GL(1) symmetry to
set α0 = 1, before performing the remaining integrals over α1 and α2. We find

Cuts45Mbox
245←13 =−

2iC(ϵ)
ϵsϵ

45

[
π

s12s23

(
−(s12+s23−s45)s45

s12s23

)ϵ

+ sin(πϵ)
(1+ϵ)(s45−s12)(s45−s23) 2F1

(
1,1;2+ϵ; s12s23

(s45−s12)(s45−s23)
)]
.

(5.44)

In the kinematic region we end up in after crossing (s12 ≪ s23 < 0 < s45), we can
rewrite (5.44) as

Cuts45Mbox
245←13 = −

2iC(ϵ) sin(πϵ)
ϵ2s12s23sϵ

45
2F1

(
1,−ϵ; 1− ϵ; z3

)
, (5.45)

thanks to the hypergeometric identity

2F1
(
1,1;2+ϵ; s12s23

(s45−s12)(s45−s23)
)
= (s45−s12)(s45−s23)

s12s23

1+ϵ
ϵ

×
[

2F1
(
1,−ϵ;1−ϵ;z3

)
− πϵ

sin(πϵ)

(
−(s12+s23−s45)s45

s12s23

)ϵ]
.

(5.46)

The result in (5.45) matches perfectly with the crossing prediction made in (5.40).
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Other crossing channels. For completeness, we checked the crossing relation in the other
3← 2 crossing channels. To check other channels, we also needed to compute the different
cuts. The box’s s12 and s23-channel cuts are given by diagrams that resemble triangles
with the following shifted kinematics:

s12

−1

s45
s23
− 1

m2
0 = 1

s23

65

12

3
4

s23

−1

s45
s12
− 1

m2
0 = 1

s12

65

12

3
4 (5.47)

As expected, analogous computations gave label permutations of (5.45), namely

Cuts12M = 2iC(ϵ) sin(πϵ)
ϵ2sϵ

12s23s45
2F1

(
1,−ϵ; 1− ϵ; z1

)
, (5.48)

Cuts23M = 2iC(ϵ) sin(πϵ)
ϵ2s12sϵ

23s45
2F1

(
1,−ϵ; 1− ϵ; z2

)
. (5.49)

A midway summary. So far, we have checked the crossing equation for, essentially, all
massless one-loop topologies in D = 4 − 2ϵ up to boxes. Each time, we followed the same
strategy: we wrote down the crossing prediction, isolated the conjectured cut term, and
compared it explicitly with the result of a direct calculation using methods like Schwinger
parameters or the embedding space formalism. To achieve the goal of this section, it remains
to perform similar checks on the five-point pentagon topology. As we will detail shortly,
we will undertake these checks using the method of differential equations. This method is
quite general and should be suitable to rigorously test the crossing equation for higher-loop
examples or for examples that depend on more kinematic scales. At the same time, this
demonstrates how the differential equation approach can be used as a more economical
method to perform checks for all bubbles and boxes simultaneously, as these are master
integrals for the pentagon family.

5.4 Pentagon (via differential equations)

For the massless pentagon amplitude

Mpent =
ˆ dDℓ

iπD/2
1

D1D2D3D4D5
with Dn =

(
ℓ+

n∑
i=2

pj−1
)2
− iε , (5.50)

we will put crossing to the test in two ways: first, using the conventional method we just
outlined (section 5.4) in the above summary, and then using a different approach (section 5.5),
which will allow us to make a new kind of useful predictions. In the latter case, we will explore
how crossing can be used to navigate between time-ordered amplitudes in disconnected
physical channels or, equivalently, between initial conditions in different channels. The
crossing equation is then tested by comparing the results with the explicit evaluation of the
integral. In section 5.5, we will find perfect agreement between the two.
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s51 s34 s12 s45 s23

s34 s23 s12 s51 s45

5
1
2 3

4

Figure 7. The massless pentagon master topologies presented below, with the order of appearance
being from left to right. The diagrams are drawn in the 215← 34 channel.

Since the known “closed-form” expression for (5.50) has obscure analytic properties (see
e.g., [38]), we opted to use the method of canonical differential equations [40] in order to
assess crossing for the pentagon amplitude. The associated master integrals are defined by
relaxing the notation in (5.50) to include arbitrary integer-power inverse propagators

Mpent
a1a2a3a4a5 =

ˆ dDℓ

iπD/2
1

Da1
1 Da2

2 Da3
3 Da4

4 Da5
5

(ai ∈ Z) . (5.51)

Pure masters and differential equation. In this section, we record a basis pure master
integrals and discuss its differential equation. For the integral family under consideration,
there are 11 master integrals (drawn in figure 7). There are five bubbles defined by:

I1 = −ϵeγEϵs51 Mpent
02001, I2 = −ϵeγEϵs34 Mpent

00201, I3 = −ϵeγEϵs12 Mpent
20100,

I4 = −ϵeγEϵs45 Mpent
20010, I5 = −ϵeγEϵs23 Mpent

02010 ,
(5.52)

five boxes defined by:

I6= ϵ2eγEϵs12s51 Mpent
11101, I7= ϵ2eγEϵs51s45 Mpent

11011, I8= ϵ2eγEϵs45s34 Mpent
10111,

I9= ϵ2eγEϵs34s23 Mpent
01111, I10= ϵ2eγEϵs23s12 Mpent

11110 .
(5.53)

Finally, one five-propagator integral, which is taken to be proportional to the pentagon
integral near six spacetime dimensions P (6−2ε):9

I11 = −ϵ3e2γEϵ
√
∆ P (6−2ϵ) with ∆ = det(2pi · pj) |i,j=1,2,3,4 . (5.54)

We checked with FIRE6 [42] that the vector I⃗ of master integrals near four spacetime
dimensions indeed satisfies a differential equation in the canonical form

dI⃗ = ϵ dΩ · I⃗ , (5.55)

where Ω is a matrix of logarithms with rational coefficients, with arguments limited to a
subset of the planar pentagon alphabet [43], namely {Wi∈[1,5]∪[11,20]∪[26,31]}. The detailed

9An expression for P (6−2ε) in terms of its D = 4−2ϵ analogue is given in [38] and the (lengthy) decomposition
of the former in terms of Mpent

a1a2a3a4a5 ’s can be found in [41].
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1− z1− z

zz

5

1

32

4
Large

rapidity gap

Large
rapidity gap

Larger
rapidity gap

Figure 8. A pictorial representation of the multi-Regge kinematics is shown in the s34 channel. The
strong ordering of the rapidities is displayed, along with the physical interpretation of the z parameter.
Specifically, as z → 0, particles 2 and 3 become collinear, and as z → 1, particles 4 and 5 become
collinear. The precise ordering of external legs defines the 215← 34 channel multi-Regge limit. This
limit is, for example, different from the 215 ← 43 channel multi-Regge limit, which arises from a
different ordering of the rapidities.

expression can be found in appendix C. Provided we have a boundary condition, we can
solve (5.55) iteratively in ϵ and get a solution in terms of iterated integrals of logarithmic
kernels. Our numerical integration strategy is summarized in appendix D.

Multi-Regge limit and analytic boundary conditions. The multi-Regge kinematics is
defined as a scattering process where the final-state particles are strongly ordered in rapidity
and have comparable transverse momenta [44]. For example, setting s34 to be the dominating
variable in a five-point process, its leading order effect is equivalent to the parameterization

s34 =
s

x2
, s23 = −

s1s2
s
zz̄, s12 =

s1
x
, s51 =

s2
x
, s45 = −

s1s2
s

(1− z)(1− z̄) .
(5.56)

Here, s, s1, s2, z and z̄ are all fixed and of O(1) in the limit 0 < x≪ 1. The limit is shown in
figure 8. The notation z and z̄ is natural since, in the physical scattering region where ∆ ⩽ 0,
z̄ is the complex conjugate of z [45]. The simplicity of the one-loop pentagon alphabet is
greatly influenced by the multi-Regge limit rationalizing the root

√
∆, since

∆ = s21s
2
2

x4
(z − z̄)2 +O

(
x−3

)
, (5.57)

in this kinematics. This leads to significant consequences, as the differential equation reveals
that the alphabet can be factorized into three distinct and independent subalphabets [46]

{x} ∪ {s, s1, s2, s1 ± s2} ∪ {z, z̄, 1− z, 1− z̄, z − z̄, 1− z − z̄} . (5.58)

For the example considered, the multi-Regge regime is particularly advantageous for estab-
lishing a basepoint (or initial condition). Among other things, it makes the transcendental
weight structure of the master integrals manifest. A convenient point in this limit is the
collinear point (equivalent to s23 → 0)

X0 = {s = 1, s1 = 1, s2 = 1, z → 0+, z̄ → 0+} . (5.59)

At X0, we are at the boundary of the physical region (∆ = 0) and the integrals can be
computed directly to give a simple vector of constants in terms of ζ-values and powers of π.
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This can be observed by substituting s = s1 = s2 = 1 into the exact expression

I⃗215←34
−rΓ

=
(
eiπϵs−ϵ

2 , eiπϵs−ϵ, eiπϵs−ϵ
1 ,R,R,−2πϵR(cotπϵ+i),−2ϵR

(
log(− s1

s )+Ψϵ
1
)
,

− 2ϵR
(
log s1

s +Ψϵ
2
)
,−2ϵR

(
log s2

s +Ψϵ
2
)
,−2ϵR

(
log(− s2

s )+Ψϵ
2
)
, 0
)⊤

,

(5.60)

with rΓ = eϵγEC(ϵ), R =
(

s
s1s2

)ϵ and

Ψϵ
1 = 2π cotπϵ+ ψ(ϵ) + γE and Ψϵ

2 = 1
ϵ + π cotπϵ+ ψ(ϵ) + γE , (5.61)

where ψ(x) = ∂x log Γ(x) is the digamma function. Note that (5.60) is valid within the
215← 34 channel region carved by {s > 0, s1 > 0, s2 > 0, z → 0+, z̄ → 0+}. This expression
was obtained by directly expanding in the multi-Regge-collinear limit the properly normalized
bubble and box expressions in [38].

Checking crossing. From a computation similar to the one leading to (5.60), we find

I⃗ †315←24
−rΓ

=
(
e−iπϵs−ϵ

2 ,(−s)−ϵ,(−s1)−ϵ,R,R,−2ϵπR(cotπϵ−i),−2ϵR
(
log s1

s −iπ+Ψϵ
1
)
,

−2ϵR
(
log s1

s +Ψϵ
2
)
,−2ϵR

(
log( s2

−s)+iπ+Ψϵ
2
)
,−2ϵR

(
log( s2

−s)+Ψϵ
2
)
,0
)⊤

,

(5.62)

within the 315 ← 24 channel {s < 0, s1 < 0, s2 > 0, z → 0+, z̄ → 0+} multi-Regge-
collinear region.

Together, the standard amplitudes in (5.60) and (5.62) provide enough information to
predict a cut using our crossing conjecture. Starting with (5.62) in the 315 ← 24 channel,
suppose we cross particles 2 and 3. Under this crossing, both s and s1 rotate from negative
to positive in the upper half-plane (because we start with the conjugated amplitude (5.62)),
while all the other Mandelstam variables remain fixed. Substituting s → −|s|e−iϕ and
s1 → −|s1|e−iϕ into (5.62), we find (at ϕ = π)

[(5.62)]↷s↷s1
=
(
e−iπϵs−ϵ

2 , eiπϵs−ϵ, eiπϵs−ϵ
1 ,R,R,−2πϵR(cotπϵ−i),−2ϵR

(
log s1

s −iπ+Ψϵ
1
)
,

−2ϵR
(
log s1

s +Ψϵ
2
)
,−2ϵR

(
log s2

s +2πi+Ψϵ
2
)
,−2ϵR

(
log(− s2

s )+Ψϵ
2
)
, 0
)⊤

.

(5.63)

Verifying crossing in the multi-Regge-collinear regime {s > 0, s1 > 0, s2 > 0, z → 0+, z̄ → 0+}
thus amounts to checking if[

I⃗ †315←24

]
↷s↷s1

− I⃗215←34
?= Cuts15 I⃗215←34 . (5.64)

Note that the right-hand-side here is a non-trivial cut that cannot be deduced solely from
the Cutkosky rules.
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To check if (5.64) is correct, we compute the s15-cut directly and expand the result in the
multi-Regge-collinear region where (5.60) is defined. Using the embedding space formalism
outlined earlier, we obtain (in generic kinematics):

Cuts15 I⃗215←34 = 2irΓs−ϵ
51 sin(πϵ)

(
1, 0⃗4,−F

(
s34,51

s12

)
,−F

(
s23,51

s45

)
, 0,F

(
s51,23s51,34

s23s34

)
, 0, •

)⊤
with sij,kl ≡ sij − skl and F(Z) ≡ 2 2F1 (1,−ϵ; 1− ϵ; 1− Z) . (5.65)

The dot “•” indicates that the computation of the pentagon cut is omitted, since it is sufficient
to know it vanishes at ∆ = 0 for the purpose of this calculation.

Upon comparing the multi-Regge-collinear expansion of (5.65) with (5.64), we observe
a perfect match.

At this point, we would like to emphasize that there is no loss of generality in checking
crossing in just the multi-Regge-collinear regime. Indeed, since both the master integrals
and the cuts satisfy the same differential equation, checking crossing at a single point in
the kinematic space is sufficient. Checking it elsewhere (for instance, away from ∆ = 0
where the pentagon contribution does not vanish) is equivalent to integrating the differential
equation in appendix D with the initial condition determined by the data where the crossing
is already established.

5.5 Application: all time-ordered amplitudes from a single one

An interesting application of crossing symmetry involves asking if there are paths in the
kinematic space that could serve as bridges between the kℓm ← ij ordinary amplitude
and its relabelings [47], instead of relating amplitudes to generalized observables or cuts
as above. In the discussion below, we will exemplify this idea for the one-loop pentagon
amplitude, assuming knowledge of a differential equation and a single boundary condition
as our only input.

Together, ordering the external particles for a five-point process can be done in 5! = 120
different ways. The claim is that the amplitude for each ordering can be obtained from a
single one using three elementary relabeling moves of the external particles. In practice,
these moves are realized by transporting, say, the amplitude in the kℓm ← ij channel
(initial condition) along paths in the kinematic space whose endpoints are associated with
time-ordered amplitudes with permuted labels. These three moves are summarized as follows:

i

jk

m

ℓ

permutation
path

j

ik

m

ℓ

j

im

k

ℓ

i

mk

j

ℓ

relabeling
path

i

jℓ

m

k

i

jk

ℓ

m

crossing
path

S

S

S S

SSor or

(5.66)

Note that, in contrast to previous sections where the permutations were considered to have
no effect within final states, or within initial states, in the above diagrams the ordering does
matter since the placement of labels indicates the choice of a rapidity ordering, see figure 8.
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On one hand, the simplest move is realized through the relabeling path. This path lies
entirely within a given multi-Regge limit, meaning that it is fully contained into a single large
rapidity region of the kinematic space. Simple instances are paths connecting the endpoints
(z0, z̄0) to (1 − z0, 1 − z̄0) in the (z, z̄) space. A general example would be

γrel =
{
(z(θ), z̄(θ)) =

(
z0 + (1−2z0) sin θ

cos θ+sin θ , z̄0 +
(1−2z̄0) sin θ
cos θ+sin θ

)
| 0 < θ < π/2

}
. (5.67)

To better appreciate our choice of nomenclature, it is sufficient to examine the special case
of (5.67) where (z0, z̄0) = (0, 0) in the kℓm← ij channel: while particles i and m are collinear
at θ = 0 (sim ≪ sjk), particles j and k become collinear at θ = π/2 (sjk ≪ sim)

m

ℓ

k j

i

(θ = 0)
m

ℓ

k j

i

(θ = π
2 )

(5.68)

It is evident that these two limits are equivalent through an up-down reflection of the diagrams.
In fact, one can verify through direct computations that the vectors of master integrals I⃗
at θ = 0 and θ = π/2 are permutations of each other (thus justifying the name!), precisely
matching the reflection prediction.

On the other hand, the most complicated move is realized through the crossing path,
which will be our main focus below. While most of the technical details associated with
it are postponed to the next section and example, let us just say that, starting from the
kℓj ← im amplitude, this move returns the kℓm ← ij one.

Finally, even though the permutation paths are encountered as interim steps of the
crossing path (as will be discussed below), they stand as legitimate paths in their own
right: they are used to exchange either a pair of incoming or outgoing particles. Along
such paths, the sign of individual invariant remains unchanged, while the overall rapidity
ordering gets shuffled around.

To see this, it is helpful to circle back to momenta. For a generic five-point process
kℓm← ij, the multi-Regge kinematics is characterized by a fast propagation of the in states (i
and j) along the ∓ light-cone axes, and a strong ordering of the out-states (k, ℓ, and m) based
on the rapidity scale 0 < x≪ 1. In other words, while the outgoing momenta are organized as

pµ
k =

(
p+k
x
, xp−k , p

⊥
k

)
, pµ

ℓ =
(
p+ℓ , p

−
ℓ , p

⊥
ℓ

)
, pµ

m =
(
xp+m,

p−m
x
, p⊥m

)
, (5.69)

momentum conservation requires the incoming momenta to be

pµ
i = −

(
0, p

−
m

x
+ p−ℓ + xp−k , 0

⊥
)

and pµ
j = −

(
p+k
x

+ p+ℓ + xp+m, 0, 0⊥
)
, (5.70)

where p⊥k +p⊥ℓ +p⊥m = 0⊥ in the transverse direction. The on-shell condition is p⊥ ·p⊥ = p+p−,
and all “±” quantities are assumed to be non-zero. Plugging (5.69) and (5.70) into

sab = p+a p
−
b + p+b p

−
a − 2p⊥a · p⊥b for a, b ∈ {i, j, k, ℓ,m} , (5.71)
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ℓ↔ j
ℓ

jk

m

i

j ↔ m
j ↔ k

j ↔ m
j ↔ k

m

k

j
i

ℓ

k ↔ i
m↔ i

m↔ j
k ↔ j

ℓ↔ i

m

k

j
i

ℓ

m↔ ℓ
k ↔ ℓ

k ↔ m

k ↔ m

Figure 9. All crossing relations between permutations of the one-mass box. Looping arrows denote
crossing moves that result in the same configuration up to a relabeling of the Mandelstam variables.

it is not hard to see the dramatic effect on the kinematics following the label permutation in
e.g., (ii) below: some of the original scales of order 1/x2 become finite after the rotation (e.g.,
sij), and vice versa (e.g., sim and skj). In other words, the original kinematic domain and the
target kinematic domain are described by two parametrically disconnected multi-Regge limits.

Therefore, to move from one domain to the other, we first need to step out of the former
and then step into the latter, through a finite rapidity region. At the very end of this
subsection, we will illustrate this procedure through an explicit example.

Before moving on to the full master basis example, we find it instructive to pause and
discuss how crossing relates amplitudes with different labels on a single four-propagator master
integral. For instance, one may be interested in relating different channels of the same diagram.
This is shown in figure 9 in the case of the five-point one-mass box Mbox = Mpent

0ajakaℓam

(whose functional form was given and studied earlier around (5.31)).
Of particular interest is the fact that the central diagram connects with all the others.

Thus, as soon as the central diagram and all its cuts are known, one can deduce the amplitude
in all the other channels. Since the central diagram only has one cut, it can be obtained
from its imaginary part from the usual Cutkosky rules. Hence, it suffices to start with the
conventional time-ordered diagram to deduce all the others by crossing.

Crossing path between time-ordered amplitudes. The purpose of this section is to
provide the schematic instructions on how to obtain the kℓm← ij time-ordered amplitude
from the kℓj ← im one, by a composition of crossing moves and permuting labels. This
procedure is a special case of (3.39) and generalizes to arbitrary multiplicity [6]. This
section is followed by a concrete example that provides explicit equations to support what
is discussed here.
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The sequence of steps required to define the crossing path between time-ordered am-
plitudes is given by:

cross
i↔ m

cross
i↔ j

(B)

(C)

ℓ

k

m

j

i

k

ℓ

m

i

j

ℓ

k

j

m

i

k

ℓ

j

i

m

permute
j ↔ m

(D)

(A)

S S X S†

S S X S†

Crossing path between
time-ordered amplitudes: (5.72)

Above, the color code mimics the one used in the previous sections: the red lines are the
ones crossed between the two time-ordered amplitudes. In particular, we see that it is
organized into three steps. To each of them, we associate a path along which we transport
an initial condition such that:

(i) Transporting the initial condition along the first path, we cross particles i and m.

(ii) Transporting the result of (i) along the second path, we permute particles j and m.

(iii) Transporting the result of (ii) along the third path, we cross particles j and i.

At this stage, the distinction between “crossing” and “permuting” may not be clear. The key
observation is that, while (i) and (iii) only involve flipping the signs of certain Mandelstam
invariants (according to (3.35)), (ii) leaves the sign of the invariant unchanged, but significantly
alter the rapidity dependence of certain scales.

We now illustrate how to use the crossing path between time-ordered amplitudes through
an explicit example.

Example: the 514← 32 time-ordered amplitude from the 512← 34 one. From
now on, we use the explicit labeling {i, j, k, ℓ,m} = {3, 4, 5, 1, 2}. Without loss of generality,
we take our initial condition to be at the coplanar multi-Regge point A in the 512 ← 34
channel, which is defined in terms of momenta by p⊥1 = p⊥2 = p⊥5 = 0 and p±1 = p±2 = p±5 = −1.
At A, the integrals evaluate to

I⃗A
512←34 =

Row
mult.
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, (5.73)
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where Li2 = Im
(
Li2
(
e iπ

3
))

, Li3 = Im
(
Li3
(

i√
3
))

and Li4 = Im
(
Li4
(
e iπ

3
))

.10 To avoid clutters,
the boundary constants are given as (5× 11) matrices: the first index labels the weight/order
in ϵ, the second labels the master integral. Furthermore, the gray label next to each row
denotes its multiplicity. For example, the notation in (5.73) indicates that IA

1 , IA
2 and IA

3
evaluates to the same expression.

From I⃗A
512←34, our goal is to calculate the 514 ← 32 channel time-ordered amplitude.

This requires explicit prescriptions for each path in (i), (ii) and (iii).
Let us first choose our paths’ endpoints. We choose our target (final) endpoint D in the

514← 32 channel to be the multi-Regge point defined by p⃗⊥4 · p⃗⊥5 = 0 and p±1 = p±4 = p±5 = −1.
To efficiently interpolate between A and D, it will be convenient to introduce three

intermediate points lying in the kinematic region where particles 2 and 4 are incoming.
These are:

B =
{
− 1

x − x, −1 + x+ x2, − 1
x2 + 3− x2, −1− x+ x2, 1

x + x
∣∣∣ 0+} , (5.74a)

O = {−x, −x, −x, −x, x | 1} , (5.74b)

C =
{
− 1

x − 1 + x, − 1
x2 + 3− x2, −1 + x+ x2, − 1

x2 − x2, 1
x + 2 + x

∣∣∣ 0+} , (5.74c)

where the notation {s12(x), s23(x), s34(x), s45(x), s51(x)|x} is used to denote a point in the
kinematic space as a function of the rapidity variable x. Note that, while B and C are,
respectively, multi-Regge points in the 513 ← 24 and 513 ← 42 channels, O is defined
at finite rapidity.

So, in order to obtain the desired vector I⃗D
514←32, we simply transport I⃗A

512←34 successively
between the points

A
(i)−−→ B

(ii)−−→ O
(ii)−−→ C

(iii)−−−→ D . (5.75)

Here, the label above each arrow/path indicates the specific part of the crossing path (5.72)
they contribute to (e.g., two-particle crossing or label permutation). The entire path is
depicted in figure 10.

In what follows, we provide an explicit series of integration contours that connect
A,B,O,C and D in (5.75).

As indicated in (i), the first step involves crossing particles 2 and 3. We achieve this by
transporting the boundary condition I⃗A

512←34 along large counter-clockwise arcs in the s34
and s12 upper half-planes, which are parametrized from (5.56) by

γA→B =
{
s(ϕ) = eiϕ |s| , s1(ϕ) = eiϕ |s1| | 0 ⩽ ϕ ⩽ π

}
. (5.76)

Next, (ii) instructs us to permute particles 2 and 4, which is realized by transporting our
initial condition from B to C. A useful observation at this stage is that, while the processes
513← 24 and 513← 42 are different for 0 < x≪ 1, they agree at the “symmetric” point O.
Heuristically, this should be enough to ensure the existence of a (polygonal) path contained

10The transcendental numbers appearing here are, as expected, part of the set of Q-linearly independent
constants that arise in two-loop pentagon integrals in the multi-Regge kinematics at the exact same point
(see [45, table 2]).
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153← 42
351← 24

513← 42
315← 24

513← 24
315← 42

531← 24
135← 42

531← 42
135← 24

153← 24
351← 42

512← 34
215← 43

514← 32
415← 23

C

O

B
A

D

(i)

(iii)

Figure 10. The crossing path (5.72) between the (multi-Regge) time-ordered amplitudes is shown.
The original and target channels are marked in red and blue, respectively. The three intermediate
paths in (5.72) are labeled by (i), (ii) and (iii). The central blob’s spikes denote the twelve singular
multi-Regge limits accessible within the channel with incoming particles 2 and 4. Each spike is tied
to two Regge-collinear limits, which are related by a relabeling path. An incomplete selection of
spikes for blobs associated with other incoming particle pairs is also displayed. We move between
disconnected blobs via two-particle crossings.

in the kinematic region where 2 and 4 are incoming, which connects B to O and then O to
C. One simple candidate is the path γB→C connecting these points with straight lines.

Finally, as indicated in (iii), the last step involves crossing particles 3 and 4. This is done
by transporting the initial condition at C obtained above to the point D along the path

γC→D =
{
s(ϕ) = e−iϕ |s| , s1(ϕ) = e−iϕ |s1| | 0 ⩽ ϕ ⩽ π

}
, (5.77)

parametrized from (5.56) after the permutation {s34, s23, s12, s51, s45} →
{s23, s34, s41, s51, s25}, where s = s1 = −s2 = −1 and (z, z̄) = (eiπ/3, e−iπ/3).

We note that the crossing steps (i) and (iii) (or, equivalently, the integration along γA→B

and γC→D) are technically very simple and similar to (5.63). The numerically non-trivial
step is γB→C , which connects two limits of a single kinematic region.

To summarize, the 514 ← 32 time-ordered amplitude at the point D is obtained by
transporting I⃗A

512←34 along the union of contours γA→D = γC→D ◦ γB→C ◦ γA→B , namely

I⃗D
514←32 = P exp

(
ϵ

ˆ
γA→D

dΩ
)
· I⃗A

512←34
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. (5.78)

The above result for the bubble and box integrals were cross-verified by directly evaluating
the closed-form formulae in [38] at endpoint D in the multi-Regge limit. The agreement
between these quantities is yet another successful stress test for the crossing equation.

6 Analytic obstruction to crossing massive particles in gapless theories

Our conjecture for crossing described in section 3.1 and 3.5 is based on two key ingredients:
analyticity of the Green’s function in off-shell kinematics, and the existence of an extension
of this domain to scattering amplitudes on the mass shell. In this section, we show that the
second ingredient can, in principle, fail. We present a simple example where the time-ordered
amplitude cannot be analytically continued to an inclusive observable without leaving the
mass shell. This feature is closely tied to the existence of anomalous thresholds and is not
unexpected from the axiomatic point of view. Indeed, it is known that beyond 4-point
scattering, it might no longer be possible to represent S-matrix elements in terms of a single
analytic function [4]. What happens in practice is that two thresholds (here, normal and
anomalous) need to be approached from opposite directions in the complex plane, giving
rise to an analytic obstruction or a gridlock, even at high energies. We will explain this
phenomenon from several different points of view.

The key features of this example will be the presence of massive external and massless
internal lines. Physically, this creates the possibility that internal excitations travel faster
than external ones, even in the Regge limit where they are both nearly luminal.

6.1 Example: triangle and anomalous thresholds

The example we will study in detail is the following triangle diagram for the time-ordered
amplitude 1′2′3 ← 12:

m2
m1

s1

s2

s

2′

12

1′

3 ⟲p1

p2

p

ℓ+ p2
ℓ− p1

ℓ

(6.1)
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The dashed and solid lines represent particles with mass m1 and m2, while the wiggly line is
a massless particle representing a graviton. This diagram depends only on three Mandelstam
invariants, which we call s, s1, and s2, in addition to the two masses. For later convenience,
at the start of the analytic continuation we will consider the complex-conjugated amplitude:

M†tri = −
ˆ dDℓ

iπD/2
1

[(ℓ−p1)2 +m2
1 + iε][(ℓ+p2)2 +m2

2 + iε][ℓ2 + iε] , (6.2)

which amounts to reversing the signs of i and the Feynman iε (we have omitted coupling
constants for simplicity). The prediction of the crossing equation is that exchanging particles
2 ↔ 2′ leads to

1′
3

2′

2
1

†

↷s

⊂M†

?=

1′
3

2̄′

2̄
1

⊂ S†⊂M⊂ S†

+

1′
3

2̄′

2̄
1

⊂ S†⊂M⊂ S†

(6.3)

Here, s = −p2 rotates from negative to positive in the upper half-plane, with all the other
invariants fixed. The reason why the rotation is clockwise is because we started with
complex-conjugated amplitude. In equations, we have

[M†tri]↷s
?= Mtri +Cuts1Mtri ≡ Exp2 , (6.4)

where Cuts1Mtri denotes the contribution from the second diagram on the right-hand side
of (6.3). The quantity on the right-hand side is the in-in expectation value of an observable
with momentum 2′, Exp2.

The goal of this section is to explain why this equation breaks down when particle 2 is
massive and on shell with s2 = m2

2. To illustrate this point, we will start with the off-shell
configuration, say s2 < m2

2, and show that the crossing path is cut off as we tune s2 → m2
2.

Physically, this phenomenon will have an explanation originating from the triangle anomalous
threshold and that we cannot analytically continue around it when s2 is on-shell. We also
take s1 > m2

1 in order to make the problem non-trivial: if s1 were spacelike, the triangle could
be viewed as part of a 2→ 2 scattering process for which crossing is already well established.

Our interest in studying this specific configuration comes from inquiring into limitations
of crossing symmetry when crossing a massive particle in a gapless theory. This question
becomes particularly important in applications to computing gravitational waveforms, in
which potential-scattering diagrams of the form (6.1) appear. The intuition developed in
this section will help us decide about the path of analytic continuation between time-ordered
amplitudes and expectation values of gravitational radiation. In particular, we will be able
to understand why the issues described here go away when crossing a graviton instead of
a massive particle.

6.2 Analytic continuation in Schwinger parameters

While we could illustrate this idea with explicit expressions, they would not be entirely
illuminating. For example, in D = 4, the result of M†tri is written in terms of dilogarithms
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with square roots depending on the scales s, s1, s2,m1 and m2. Instead, we are going to
manipulate M†tri entirely at the level of integrals to work out under which conditions (6.4)
holds. It will also illustrate how the unitarity cuts that arise can be represented in their
Schwinger-parametric form.

Denoting Schwinger parameters of the three propagators by α1, α2 and α3, corresponding
to the internal edges of masses m1, m2 and 0, respectively, the parametric form of the
integral reads

M†tri =
ˆ ∞
0

dα1dα3
(α1 + 1 + α3) [A(α1) + α3B(α1) + iε] , (6.5)

with
A ≡ (α1 + 1)(α1m

2
1 +m2

2)− α1s and B ≡ α1(m2
1 − s1) +m2

2 − s2 . (6.6)

Recall that the αi’s are determined only up to an overall rescaling, and here we set α2 = 1,
with the other two integrated from 0 to ∞. The Feynman iε prescription can be alternatively
implemented by giving s a small negative imaginary part, i.e., by approaching the real
axis from the lower half-plane. However, the crossing equation instructs us to continue
in the upper half-plane.

It turns out that the integral representation (6.5) gives a branch cut along the whole
real s-axis. (Recall that branch points are properties of the function itself, but placements of
branch cuts are specific to a given representation.) It is the so-called external mass singularity,
see [48]. The way to understand why it arises is to think of assigning ±iε to s1 instead of
including it as a separate factor, which is entirely equivalent. Since s1 > m2

1 is above the
threshold, the two choices s1±iε clearly give different answers: they differ by a unitarity cut in
the s1-channel. But mathematically, this procedure is analogous to setting s±iε for any real s.
This is why the above representation exhibits a discontinuity across the whole s-axis. This is
not a problem by itself. We just need to analytically continue the representation through the
branch cut at s < 0 to get access to the upper half-plane, instead of blindly inserting s+ iε.

As promised, we will perform this analytic continuation at the level of the integral. Since
s < 0 and m1,m2 > 0 at the beginning of the continuation, we know that A > 0 across
the entire integration domain. On the other hand, B can change sign depending on the
value of α1. In particular, we have B < 0 for

α1 > α1∗ = −
s2 −m2

2
s1 −m2

1
> 0 . (6.7)

For any fixed α1 satisfying this inequality, the discontinuity we are looking for is given by

1
A+ α3B + iε

= 1
A+ α3B − iε

− 2πi δ(A+ α3B) . (6.8)

As such, we can rewrite the conjugated amplitude as

M†tri =Mtri − 2πi
ˆ ∞
0

dα1dα3
(α1 + 1 + α3)

δ [A(α1) + α3B(α1)] . (6.9)

The first term on the right-hand side is simply the amplitude Mtri without the complex
conjugate, for any real s when approaching from the upper half-plane. The second one gives
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a new term, which allows us to localize α3 around α3∗ = −A
B > 0 using the δ-function with

δ(A + α3B) = − 1
B δ(α3 − α3∗). This procedure is, of course, equivalent to deforming the

α3-contour and picking up an extra residue. In the end, we find that

[M†tri]↷s = Exp2 +∆ , (6.10)

where we have factored out the expected answer (6.4) and the “error” ∆ is the difference
between the continued residue and a cut:

∆ = 2πi
ˆ ∞

α1∗

dα1
(α1 + 1)B(α1)−A(α1)

C(s)

−Cuts1Mtri . (6.11)

The integral does not have any singularities in the upper half-plane of s when the remaining
kinematics is real. This is guaranteed by the fact that ImA < 0 for any Im s > 0 and hence
its denominator always stays non-zero. The remaining challenge is to show that, after taking
its limit to the real axis at large positive s, it agrees precisely with the cut term, so that

∆ ?= 0 . (6.12)

In the above, Cuts1Mtri is defined for real positive s by the on-shell cut integral in (6.3); we
will also discuss below its continuation into the upper half-plane of s.

At this stage, it is instructive to analyze the singularities that can potentially arise
from the integrals Mtri and Cuts1Mtri when approached from the upper half-plane. There
are three relevant singularities: the s-channel normal threshold, the leading second-type
singularity, and the triangle anomalous thresholds. The first one arises when

(α1 : α2 : α3) =
(
±m2

m1
: 1 : 0

)
and s = (m1 ±m2)2 . (6.13)

The second one happens for

(α1 : α2 : α3) =
(
±
√

s2√
s1

: 1 : −1∓
√

s2√
s1

)
and s = (√s1 ±

√
s2)2 . (6.14)

In both cases, only the first choice of signs gives a singularity of Mtri on the relevant sheet.
Finally, the triangle anomalous threshold occurs for

(α1 : α2 : α3) = (α1∗ : 1 : α3∗(α1∗)) and s = s∗ ≡ m2
1

(
1− s2 −m2

2
s1 −m2

1

)
+ (1↔ 2) . (6.15)

Here, crucially, α3∗(α1∗) = − limα1→α1∗
A(α1)
B(α1) is evaluated at the specific value α1 = α1∗

(defined in (6.7)) and does not have to be positive. Explicitly, it reads

α3∗(α1∗) =
m2

2
s2 −m2

2
−m2

1
s2 −m2

2
(s1 −m2

1)2
. (6.16)

Since we are interested in the kinematics with s1 > m2
1, as s2 < m2

2 approaches the threshold
s2 → m2

2, the corresponding α3∗ → −∞. In particular, the fact that α3∗ is negative means
that the singularity does not occur on the sheet of Mtri in the upper half-plane we are
exploring now. This argument does not apply to the correction term C in (6.11) nor to
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Figure 11. Left: the analytic structure of Exp2 in the complex s-plane for m1 = m2 = 1, s1 = 5, and
s2 = 0.9 + 0.01i. We observe a branch cut starting at the normal threshold at s = (m1 +m2)2 = 4
up to infinity, another extending to the triangle anomalous threshold at s = s∗ ≈ 41.6 + 4i from the
leading second-type singularity at s = (√s1 + √s2)2 ≈ 10.1 + 0.03i. The physical region in the s
channel starts at the second-type singularity s = (√s1 +

√
s2)2, and extends to s→∞. In the on-shell

limit, s2 → m2
2, the anomalous threshold behaves as s∗ → −m2

2
s1−m2

1
s2−m2

2
and hence moves to infinity,

thus cutting off the inclusive observable from the analytic continuation of M†tri. The branch cut along
the real axis is the external mass singularity. Right: a schematic figure of the analytic structure of
Exp2 in the complex s-plane. The branch cuts are marked in yellow. We observe two possible paths
of analytic continuation in the upper half-plane, marked in red and blue, which differ by how the
anomalous threshold at s∗ is traversed. The red dashed path is the one that would be reached without
deforming s∗ to be complex, and does not correspond to Exp2. The solid blue path, on the other
hand, is the one that reaches the real axis where the inclusive observable Exp2 is defined.

Cuts1Mtri, because α-positivity only holds for singularities of time-ordered amplitudes on
the first sheet. We will see that, indeed, the anomalous threshold does appear for these.

The anomalous threshold at s = s∗ manifests itself as an endpoint singularity of C at
α1 = α1∗, where the integrand denominator for C becomes

(α1∗ + 1)B(α1∗)−A(α1∗) = α1∗(s− s∗) , (6.17)

which shows that C develops a logarithmic singularity at s = s∗. The sign of α3∗ is irrelevant
since it is no longer an integration variable. This can be verified explicitly by evaluating
its integral representation in (6.11). We indeed find

C(s) = 2π√
−λ

(
log i
√
−λ+ (s− s1 − s2 − 2s1α1∗)

i
√
−λ− (s− s1 − s2 − 2s1α1∗)

− iπ
)
, (6.18)

where λ ≡ s2 + s21 + s22− 2ss1− 2ss2− 2s1s2 is the Källén/triangle function. One of its zeros
is at s = (√s1 +

√
s2)2, which is the square-root second-type singularity. This threshold is

also the lower limit of the physical region, s > (√s1 +
√
s2)2 for the 1′23← 12′ kinematics.

The branches of the square roots were carefully chosen so that the above formula is valid
in the upper half-plane of s.

The analyticity of Exp2 in the s-plane is summarized in figure 11, where we added a
small positive imaginary part to s2 to more clearly illustrate the sheet structure.
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6.3 Comparison with unitarity cuts

Let us now compare C with the cut Cuts1Mtri predicted by (6.4) and check if (6.12) is
satisfied. The latter is given by

Cuts1Mtri ≡ −(2πi)2
ˆ d4ℓ

iπ2
δ+(ℓ2) δ−[(ℓ−p1)2 +m2

1]
(ℓ+p2)2 +m2

2 − iε
. (6.19)

Our goal is to massage this expression into a form similar to C. In the s1 rest frame, the
momentum vectors can be written as

p1 =
(√
s1, 0, 0, 0

)
, (6.20a)

p2 =
( s−s1−s2

2√s1
, 0, 0,

√
λ

2√s1

)
, (6.20b)

p =
(−s−s1+s2

2√s1
, 0, 0, −

√
λ

2√s1

)
, (6.20c)

ℓ =
(
ℓ0, |ℓ⃗| cosφ sin θ, |ℓ⃗| sinφ sin θ, |ℓ⃗| cos θ

)
. (6.20d)

In this frame, the two δ-functions impose

−(ℓ0)2 + |ℓ⃗|2 = 0 and − (ℓ0 −√s1)2 + |ℓ⃗|2 +m2
1 = 0 . (6.21)

Together, they fix ℓ0∗ = |ℓ⃗|∗ =
s1−m2

1
2√s1

. Imposing positivity of the energies flowing through the
cut (ℓ0 > 0 and ℓ0 − p01 < 0) amounts to s1 > m2

1, meaning we are, as needed, above the
s1-threshold. On the support of these constraints, the leftover propagator in (6.19) is

(ℓ+p2)2 +m2
2 = −s2 − 2ℓ0∗(p02 − p32 cos θ) +m2

2 , (6.22)

where the components p02 and p32 are given in (6.20b). Hence, after going to spherical
coordinates and localizing along ℓ0 = ℓ0∗ and |ℓ⃗| = |ℓ⃗|∗ (with a Jacobian of 1

4√s1ℓ0
∗

coming
from the δ-functions) we arrive at

Cuts1Mtri = −
2πiℓ0∗√
s1

ˆ 1

−1

d cos θ
−s2 − 2ℓ0∗

(
p02 − p32 cos θ

)
+m2

2 − iε
. (6.23)

The only kinematic assumption here is that s1 > m2
1, ensuring that the cut has support. This

representation can be used for any real pµ
2 and thus real s. Its continuation to complex s will

turn out to be different depending on whether s is above or below the triangle anomalous
threshold at s = s∗.

Let us first check whether ∆ = 0 in real s-channel kinematics (i.e., for s > (√s1 +√
s2)2), by massaging the cut contribution (6.23) into a form that resembles the α1 integral

from (6.11). To this end, we start by combining the regions with ± cos θ and change variable
to x = 1

cos θ to get

Cuts1Mtri = 4πi
ˆ ∞
1

dx −s+ s1 + s2 + 2s1α1∗
λ− x2(−s+ s1 + s2 + 2s1α1∗)2 − iε

, (6.24)

where we have assumed that s > s1+s2+2s1α1∗ for the change of variables, which always holds
when s2 → m2

2. Next, we shift and rescale x by defining α1 = −s+s1+s2+2s1α1∗
2s1

x + s−s1−s2
2s1

and end up with

Cuts1Mtri = 2πi
ˆ −∞

α1∗

dα1
(α1 + 1)B(α1)−A(α1)− iε

. (6.25)
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−1 1

cos θ

cos θ∗

s > s∗

Cuts1Mtri

(a)

α1

α−

α+

α1∗

s > s∗

Cuts1Mtri C(s)

(b)

−1 1

cos θ

cos θ∗

s < s∗

Cuts1Mtri

(c)

α1

α−

α+

α1∗

s < s∗

Cuts1Mtri C(s)

(d)

Figure 12. Left: the integration contour in cos θ for Cuts1Mtri. The integral has a real part when
s > s∗ (a), but is purely imaginary when s < s∗ (c). Right: the two contributions to the integration
contour for ∆, from Cuts1Mtri (blue) and C(s) (red). The points α− and α+ correspond to the two
roots of the denominator that appear in the integrand of ∆. When s > s∗ (b), the red and blue
contours can be deformed into each other, resulting in ∆ = 0. When s < s∗ (d), the difference between
the red and blue contours can be deformed into one that encircles the root α− counter-clockwise.

Here, we have −∞ and not +∞ in the integration domain because s is taken to be large enough
such that s > s1 + s2 +2s1α1∗. Moreover, the coefficient of iε after these changes of variables
is (s1 + s2 − s+ 2s1α1)2, which we drop because it is always positive in physical kinematics.

Comparing (6.11) and (6.25) and dropping the iε’s, we see that the integrands for
Cuts1Mtri and C(s) are the same. Their integration contours are different, however, so to
find the contribution to ∆, we must first analyze which way the contour traverses around the
singularities of the integrand. The singularities are at the two roots of the denominators:

α± = s− s1 − s2 ±
√
λ

2s1
. (6.26)

One can see from this expression that in the physical region for λ > 0 we have

α1∗ < α± for s < s∗ or α− < α1∗ < α+ for s > s∗ . (6.27)

The contour for C(s) runs from α1∗ to ∞, and approaches the roots with s→ s+ iε, which
translates into the integration contour for C(s) being deformed into the upper half-plane
around α− and into the lower half-plane around α+, as shown in figure 12. The contour for
−Cuts1Mtri runs from −∞ to α1∗, and when the root α− is on the contour for s > s∗, it
must be approached by deforming the contour into the lower half-plane, as dictated by the iε
in (6.25). This is possible since the integrand in (6.25) has no residue at infinity.

We can now read the integration contour for ∆ from figure 12, as the sum of the contours
for C(s) and −Cuts1Mtri in the α plane. On one hand, when s > s∗ (see figure 12(b)), the
contributions from C(s) and −Cuts1Mtri add up to give a contour that can be deformed
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to zero, and hence ∆ = 0 when s > s∗. On the other hand, when s < s∗ (see figure 12(d)),
the two contours can be deformed around a small clockwise circle around α− (from (6.26))
in the α1-plane:

∆|s<s∗ = 2πi
ȷ

α−

dα1
(α1 + 1)B(α1)−A(α1)

= 4π2√
λ
, (6.28)

where we have evaluated the integral using the residue theorem, noting the overall minus
sign because of the orientation. To summarize,

∆ =

0 if s > s∗ ,
4π2
√

λ
if (√s1 +

√
s2)2 < s < s∗ .

(6.29)

Finally, we can ask whether it is possible to analytically continue C(s) such that it agrees
with Cuts1Mtri. Inspection of the lower-right panel of figure 12 indicates that we need to
continue in such a way that the root α− goes clockwise around α1∗. Note that the collision
α− = α1∗ occurs precisely at the anomalous threshold s = s∗. In the s-plane, this can thus
be achieved by taking s clockwise below s∗. In other words, starting from large real s > s∗,
we lower s passing at s = s∗ − iε below the threshold, as indicated by the arrows in figure 11.

This construction is not possible in the on-shell limit when s2 → m2
2, since the branch

point at s∗ moves to infinity: a crossing path exists only off-shell.
The fact that the anomalous threshold must be avoided with s − iε can also be seen

directly from the endpoint singularities in (6.23). Since ℓ0∗ > 0, the contribution near the
upper endpoint at cos θ = 1 is analytic for Im p+2 > 0, while that from the lower endpoint
cos θ = −1 is analytic for Im p−2 > 0. Since p+2 ∝ s while p−2 ∝ 1

s , these singularities lie on
opposite sides of the real s axis (this is the “gridlock” mentioned at the top of this section).
The s = s∗ branch point is caused by the lower endpoint.

To conclude this subsection, we briefly consider the consequences of analytically continuing
M†tri from (6.2) in the loop-momentum space representation of Mtri instead of in Schwinger-
parameter space. Rather than computing the discontinuity across the branch cut in s for
s < 0 as the term C(s) from (6.11), we could instead, by unitarity, evaluate Cuts1Mtri
from (6.23). For s < 0, we can, therefore, write

M†tri =Mtri +Cuts1Mtri . (6.30)

Note that although this expression looks like the crossing equation, we have not done any
analytic continuation in s, so we cannot conclude anything about crossing yet. To do so,
we have to analytically continue both the left-hand side and right-hand side in the upper
half-plane of s, and check whether[

M†tri
]
↷s

?=Mtri +Cuts1Mtri , (6.31)

where the right-hand side should now be evaluated at s > 0.
We recall that Mtri is analytic in the upper half-plane of s, so to answer the question

of whether the crossing equation (6.31) holds, it is sufficient to ask whether Cuts1Mtri
from (6.23) evaluates to the same function for s > 0 and s < 0. Let us take this opportunity
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Figure 13. Top: trajectory of the pole in the integrand of Cuts1Mtri in (6.23) as we analytically
continue along our constant-|s| crossing path. For |s| < s∗ (red spiral), the pole loops around the
integration domain (yellow thick line) and ends up on a different sheet from where the (cut of the)
inclusive observable is defined. For |s| > s∗ (dashed blue arc), it does not cross the integration domain
and therefore remains on the correct sheet. Bottom left: analytic structure of (6.23) in the s-plane for
real s2 < m2

2 and s1 > m2
1. For the plot we used m2

1 = m2
2 = 1, s1 = 5, and s2 = 0.9. In particular,

we observe that (6.23) is analytic in the upper half-plane of s when |s| > s∗; a branch cut runs along
an arc from (√s1 +√s2)2 to s∗. Bottom middle: in the on-shell limit where s2 → m2

2, the anomalous
threshold s∗ approaches infinity, causing an analytic obstruction between s ≶ (√s1 +

√
s2)2. As a

result, (6.23) is represented by at least two analytic functions (one on the left and one on the right of
the vertical cut). Bottom right: the correct integral (6.23) in the region (√s1 +

√
s2)2 < s < s∗ with s

slightly above the axis can be reached from the large-s region by analytically continuing below s = s∗.
In the plot we show this connection by adding a small positive imaginary component s2 = 0.9 + 0.01i
to open a small gap above the real axis. The analytic structure of the cut (6.23) is identical to that
of Exp2 in figure 11 in the upper half-plane; its behavior in the lower half-plane is not relevant in
that context.

to stress the important point that even though we write the same expression (6.23), for both
s < 0 and s > 0, it does not immediately follow that it evaluates to the same analytic function
in both kinematic channels. In fact, as we found previously, the function for s > 0 is the same
as the one for s < 0 if and only if s > s∗. We summarize the analytic properties of (6.23) in
figure 13, both in the s-plane and the cos θ-plane. We see from the figure that (6.23) is the
same analytic function for s > 0 as for s < 0 only if s > s∗ (figure 13 bottom left). As we found
previously using the Schwinger-parametric form of C(s), we can access the relevant sheet of
Exp2 by adding a small imaginary part to s2 (figure 13 bottom right). However, when s2 is on
shell (figure 13 bottom middle), it is not possible to reach the sheet of Exp2 starting fromM†.
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6.4 Spacetime interpretation

The presence of the triangle anomalous threshold for the Exp2 observable could have been
anticipated by thinking about the position-space support of the inclusive amplitude. In
this subsection, we show this by considering the associated trajectories of particles using
a time-folded version of the Coleman-Norton interpretation of anomalous thresholds for
exclusive scattering amplitudes [49]. This will also allow us to understand why the anomalous
threshold branch cut must be approached with an opposing kinematic s ± iε prescription
compared to the normal-threshold cut, causing a clash in the on-shell limit.

Recall that anomalous thresholds correspond to kinematic configurations where all the on-
shell internal momenta qµ

i of the diagram follow classical trajectories of particles interacting
at the vertices located at xµ

j . The spacetime displacement between two vertices (xj , xk)
connected by the momentum qi is xk−xj = αi∗qi∗ , where αi∗ and qi∗ are solutions of Landau
equations, see, e.g., [48]. Time-ordered amplitudes additionally require αi ⩾ 0 for all i, but
cuts do not have the same restriction. Since we found in (6.16) that α3∗ < 0 when s2 → m2

2,
the triangle threshold is accessible only through the cut contribution in (6.4). Let us adopt
the following labeling of vertices for the cut diagram:

1′
3

2̄′

2̄

1ℓ∗ x
x1

x2

III

(6.32)

Here, we labeled the vertices x, x1, x2, and added Schwinger-Keldysh labels I and II to
the fields on the two sides of the cut, which will be useful below. The Landau solution
corresponding to the anomalous threshold then corresponds to

x− x1 = α1∗(ℓ∗ − p1) , x2 − x = α2∗(ℓ∗ + p2) , x1 − x2 = α3∗ℓ∗ , (6.33)

where
α1∗ = σ

m2
2 − s2

s1 −m2
1
, α2∗ = σ , α3∗ = σ

(
m2

2
s2 −m2

2
−m2

1
s2 −m2

2
(s1 −m2

1)2

)
, (6.34)

as previously given in (6.7) and (6.16) and repeated here for convenience. Compared to
the previous solution, we have included a rescaling parameter σ > 0. To ensure that these
constraints are satisfied simultaneously, the loop momentum is fixed to ℓ∗ = α1∗p1−α2∗p2

α1∗+α2∗+α3∗
.

The positions of vertices are only determined up to translations and an overall rescaling by
a positive constant, which allows us to fix two of them to be

x1 = (0, 0, 0, 0) , and x2 = ρ(1, 0, 0, 1) , (6.35)

without loss of generality. Here, ρ > 0 is a dilation parameter representing the invariance
under rescaling the diagram. (Note that (6.35) is consistent with the choice of rest frame
made in (6.20), since both the position and the momentum four-vectors are confined to the
(x0, x3)-plane.) These two vertices are null-separated, which corresponds to the propagation
of the on-shell graviton between them.
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Plugging in the solution from (6.15), the loop momentum pinches at

ℓ∗ =
s1 −m2

1
2√s1

(1, 0, 0, 1) . (6.36)

This allows us to determine the shape of the triangle anomalous threshold, which has its
third corner at

x = σ
m2

2 − s2
2√s1

(
− s1+m2

1
s1−m2

1
, 0, 0, 1

)
, (6.37)

with
σ

ρ
= 2√s1

(
s1 −m2

1
) (
m2

2 − s2
)

(m2(m2
1 − s1))2 − (m1(m2

2 − s2))2
. (6.38)

Consequently, the spacetime geometry (with time flowing to the left) of the anomalous
threshold looks schematically as follows:

x3

x0
1′

3

2̄′

2̄

1x
x1

x2
x2−x

x2−x1

x1−x

(6.39)

It is the same as (6.32) folded along the cut and with the vertices x, x1, x2 placed according
to (6.35) and (6.37). This fold has a simple physical interpretation. As discussed in [7,
section 4], the in-in observable Exp2 can be computed using a Schwinger-Keldysh timefold
with two branches I and II. More precisely, it is the Fourier transform of a retarded function
that vanishes unless x and x1 are both in the past lightcone of the observation point x2. The
vertical dashed line can be visualized as the fold in the timefold, which can be put on any
spacelike surface going through x2. The dashed propagator from x to x1 represents a massive
particle propagating forward and backward in time along the fold.

The black arrows in the above picture denote the flow of energy, as dictated by the
solution in (6.36). The gray arrows point in the directions of the spacetime displacements
between the vertices. If the arrows for energy flow and the spacetime distance between two
vertices point in the same direction, the corresponding Schwinger parameter is positive, but
negative if they point in opposite directions. This is a generalization of the Coleman-Norton
picture to solutions with positive and negative Schwinger parameters. Note that α3∗ < 0
corresponds to the fact that energy flows through the graviton propagator in the direction
opposite to the spacetime displacement from x1 to x2. This is precisely what is physically
expected for the in-in observable because positive-energy particles on the second timefold
propagate backward in time.

Below, in section 7.3, we will illustrate the counterpart of this discussion in string
scattering, where the trajectories of strings can be plotted explicitly.
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What happens here is that the graviton propagates at the speed of light from x1 to x2.
In contrast, the massive particle travels from x to x2 at near-luminal speed. The fact that
the two meet at x2 allows the anomalous threshold to be physically allowed.

Let us now understand local analyticity near this threshold. As reviewed in appendix A.2,
the position space support of a diagram allows us to determine from which side to approach
the branch cuts in momentum space. The relevant quantity to study is ∑3

j=1 Im pj ·xj , where
pj is the momentum flowing out of the vertex xj . Imposing that this quantity is negative gives
an inequality on the kinematic invariants that ensures convergence of the Fourier transform.
For example, normal thresholds always require Im s > 0, see appendix A.2.

We can now apply these ideas to the triangle threshold. According to the crossing
path from (3.35), we fix p1 to be real and set pµ

2 = (zp+2 , 1zp
−
2 , p

⊥
2 ) where z can be complex.

This fixes the kinematic invariants s1 and s2 to be real, but s can be complex. (We should
technically add a small s1+ iε but this will not play a role here.) By momentum conservation,
p = −p1 − p2 is also generally complex. This prescription fixes s1 and s2 to be real, but
s becomes complex if z does. We impose

Im (p1 · x1 + p2 · x2 + p · x) < 0 =⇒ (Im p2) · (x2 − x) < 0 , (6.40)

where we used momentum conservation and the fact that x, x1 and x2 are all real. To
analyze what conditions p2 needs to satisfy, we can use the values of x, x1 and x2 at the
anomalous thresholds from (6.35) and (6.37). We can translate this condition into one on
the lightcone components of pµ

2 ,

Im (zp+2 )(x−2 − x−) + Im
(p−2
z

)
(x+2 − x+) > 0 . (6.41)

If x−2 − x− ̸= 0 (in which case it is necessarily positive due to the properties of retarded
products), we can take |z| to be sufficiently large along the crossing path so that the term
proportional to p−2

z can be dropped. This shows that for large s, the real axis must be
approached from Im (zp+2 ) > 0, or equivalently Im s > 0, in agreement with our discussion
below (6.29) and figure 11.

Let us call z∗ the value of z at the anomalous threshold, i.e., s(z∗) = s∗. To understand
what happens near this value, we can rewrite the convergence condition (6.41) as

(
Im z

) [∂p2(z)
∂z

·(x2 − x)
]

z=z∗

< 0 , (6.42)

where we assumed that z is close to the real axis. On z = z∗, we have x−2 −x− = 0, so the term
in the square brackets equals p−2

z2
∗
(x+2 − x+), which is positive. This implies Im z < 0. Near

s = s∗, (6.41) is thus primarily a constraint on Im p−2
z rather than on the Im (zp+2 ) term. This

shows that, when computing the in-in observable Exp2, the anomalous threshold singularity
must be avoided with s− iε, again in agreement with the discussion below (6.29) and figure 11.

This calculation gives additional insight into the origin of the anomalous threshold for
the Exp2 in-in observable. Physically, ∂pµ

2 (z)
∂z is a vector orthogonal to the velocity pµ

2 of
the outgoing particle. The condition that the square bracket is positive is equivalent to
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saying that the internal state (x2 − x)µ propagates faster than the external state pµ
2 . This

comparison of velocity also explains why, on the mass shell p22 + m2
2 = 0, increasing the

energy does not help: even though the external particle pµ
2 moves closer and closer to the

speed of light, the internal particle of the same mass always moves slightly faster, because it
has a larger energy due to α3∗ < 0 (see (6.39)). While this mechanism could never create
a singularity in Mtri near real momenta, it does affect Exp2.

It is instructive to repeat the above calculation for a massless external particle, where we
can choose pµ

2 = z(1, 0, 0, 1). Since all the separations (x2 − xi)µ contributing to the Fourier
integral are necessarily future timelike (by the support property of retarded products, cf.,
the argument around (A.9)), the condition (6.42) reduces to Im z > 0. We conclude that
when computing the in-in expectation value Exp2 of a massless particle p2, the obstruction
to crossing found in this section disappears.

6.5 Analytic obstruction to multi-particle crossing

In the multi-particle crossing conjecture, the obstruction to analyticity is not restricted to
crossing of massive particles. As an example, let us look at the following triangle diagram
where all particles are massless, and 1, 2 and 6 are incoming,

s45

s26

s13

6
2

13

4
5 (6.43)

We aim to cross the cluster B = {2, 6} with C = {3}. Therefore, we start with the amplitude
in the region R(26)(45), before rotating s13 in the lower half-plane. This corresponds to z̄

starting with a negative imaginary part and z starting with a positive imaginary part, and
they both rotate in the clockwise direction:

sij

s45
s26

s13

z z̄

(6.44)

The result of the analytic continuation is the conjugated amplitude, along with a (single)
discontinuity from simultaneously crossing the branch cuts at z̄ < 0 and z > 1:

[M345←126]↷s13
=M†2456←13 + Discz>1

z̄<0
M345←126 , (6.45)

where the discontinuity can be worked out from (3.15),

Discz>1
z̄<0
M345←126 =

−2πi
s13(z − z̄)

[
log z(1− z̄)

z̄(1− z) + 2πi
]
. (6.46)
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The crossing conjecture now predicts that the following diagrams, which fit the blob
pattern in (3.37), should contribute to the analytically continued amplitude,

6̄
2̄

4
5

1

3̄

6̄
2̄

4
5

1

3̄

6̄
2̄

4
5

1

3̄
(6.47)

where we have left implicit that the middle part between the orange lines should be conjugated.
To compare (6.45) with the result of the crossing conjecture, we therefore have to compute
the unitarity cuts in the s26 and s45 channels. In the kinematic region 0 < z̄ < z < 1 we
land on after crossing, we get,

Cuts26Mtri
2456←13 =

−2πi
s13(z − z̄)

log 1− z̄
1− z , (6.48)

Cuts45Mtri
2456←13 =

−2πi
s13(z − z̄)

log z
z̄
, (6.49)

from computations similar to the one that resulted in (3.27). Comparing these results
with (6.46) gives

[M345←126]↷s13
=M†2456←13 +Cuts26Mtri

2456←13 +Cuts45Mtri
2456←13

result of multi-particle crossing conjecture

+ 4π2
s13(z − z̄)

, (6.50)

which does not agree with the multi-particle crossing conjecture in (3.37).
As in the previous subsections, the difference between the analytically continued amplitude

and the result of the crossing conjecture looks like a discontinuity across a triangle anomalous
threshold. Indeed, the maximal cut of the triangle diagram where all particles are put on
shell (which is not allowed in this kinematic region) is exactly 4π2

s13(z−z̄) . Thus, this example
seems to suggest that the factorization of the blobs of (3.37) is broken when massless particles
run in the loop. We leave a more thorough study of such analytic obstructions for future
work. Since the invariants sij can be varied independently, it is still possible that a fully
on-shell crossing path exists in this example.

6.6 Inclusive massless observables are safe

In the previous subsections, we explained in two complementary ways how the branch cuts
coming from anomalous thresholds can potentially obstruct the analytic continuation between
time-ordered amplitudes and inclusive massive observables. In contrast, the purpose of this
subsection is to illustrate how crossings leading to inclusive massless observables are free
from such anomalous threshold problems.

Massless limit of (6.3). We start by exploring the massless limit of the diagram we
studied previously in this section. Looking back at the location of the anomalous threshold
s∗ from (6.15), which has a term proportional to m2

2
s1−m2

1
s2

2−m2
2
, it is not immediately clear what

the limit of s∗ is when s2 → 0 and m2
2 → 0, since the result depends on the order in which

the limits are taken. Instead, we must directly solve the Landau equations for the case
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where s2 = 0 and m2
2 = 0. When doing so, we do find singularities at s1 = m2

1 and s = m2
1,

s1 = 0 and s = 0, as well as the second-type singularity at s = s1. However, the anomalous
threshold is no longer present.

Let us trace what happens to the derivation in section 6.3, which previously, when
s2 < m2

2, led us to a condition on how large we needed to take s for the crossing path to
exist. When s2 = 0 and m2

2 = 0, the integrands for Cuts1Mtri and C have singularities at
the two roots α− = 0 and α+ = s−s1

s1
, and the integration region now has an endpoint at

α1∗ = 0. The vanishing of the triangle singularity is reflected in the fact that the integrals
for C and Cuts1Mtri are now infrared divergent in D = 4 spacetime dimensions, and we
must regulate them to obtain sensible expressions. In dimensional regularization, the triangle
integral from (6.5) is given by

M†tri = Γ(1 + ϵ)
ˆ ∞
0

dα1dα3

(α1 + 1 + α3)1−2ϵ [A(α1) + α3B(α1) + iε]1+ϵ , (6.51)

with A(α1) = (α1 + 1)α1m2
1 − α1s and B(α1) = α1(m2

1 − s1).
For the kinematics with Im(s1) = −iε, s < 0 and |s| > s1 the conjugated amplitude can

be computed using Feynman parameters and is given by

M†tri = −
Γ(1 + ϵ)(m2

1)1−ϵ

ϵ2(s−s1)

F( s1
s1−m2

1
+ iε

)
s1−m2

1
−
F
(

s
s−m2

1

)
s−m2

1

 , (6.52)

where F(z) ≡ 2F1
(
1, 1−2ϵ, 1−ϵ, z

)
. The last expression for M†tri is analytic in the upper

half-plane of s, and unlike in the case where m2 ̸= 0, there is no branch cut on the negative
s-axis. We can therefore easily analytically continue (6.52) in the upper half-plane of s to get

[
M†tri

]
↷s

= −Γ(1 + ϵ)(m2
1)1−ϵ

ϵ2(s−s1)

F( s1
s1−m2

1
+ iε

)
s1−m2

1
−
F
(

s
s−m2

1
− iε

)
s−m2

1

 . (6.53)

In the new kinematic channel where s > 0, the second term on the right-hand side has the
right iε prescription forMtri, but the first term does not. Subtracting Mtri from (6.53) gives

[
M†tri

]
↷s

=Mtri +
2iπ2 csc(πϵ)sϵ

1(s1 −m2
1)−2ϵ

Γ(1− 2ϵ)Γ(1 + ϵ)(s1 − s)
C̃(s)

. (6.54)

The result for C̃(s) is clearly analytic in the s-plane (recall that |s| ̸= s1).
The last thing we need to do to check that the crossing equation holds is to compare

C̃(s) against the direct evaluation of the cut in the s1-channel. Using a strategy similar to
that leading to (6.25), we find (in generic kinematics)

Cuts1Mtri = −(2πi)2
ˆ dDℓ

iπD/2
δ+(ℓ2)δ−((ℓ− p1)2 +m2

1)
(ℓ+ p2)2 +m2

2 − iε

= 2πi cos(πϵ)(ℓ0∗)−2ϵ

Γ(1− ϵ)

ˆ α1∗

−∞
dα1

(1−X2(α1))−ϵ

(α1 + 1)B(α1)−A(α1)
,

(6.55)

– 67 –



J
H
E
P
0
4
(
2
0
2
4
)
0
6
0

where ℓ0∗, A and B are as before and X(α1) satisfies α1 = −s+s1+s2+2s1α1∗
2s1

X(α1) + s−s1−s2
2s1

.
Setting s2 = m2 = 0 in (6.55) and integrating leads to

Cuts1Mtri =
2πi cos(πϵ)
Γ(1− ϵ)

1
s1+ϵ
1

(
s− s1
s1 −m2

1

)2ϵ ˆ 0

−∞

dα1[
α1
(
α1 − s−s1

s1

)]1+ϵ (ϵ < 0)

= C̃(s) .
(6.56)

Crossing for gravitational waveforms. Another massless limit we can look at is one
obtained when changing the diagram to still have four massive legs, and analytically continue
from a conjugated amplitude to an inclusive measurement of a massless particle. As a
physically relevant example where such continuations may be useful, let us consider the
inclusive expectation value of a graviton in the background of black-hole scattering. It is
computed by the expression

Exp3 ≡ in⟨2′1′|S†a3S|12⟩in = ⟨0|a2′a1′ b3 a†2a
†
1|0⟩ , (6.57)

and is related to the gravitational waveform according to the KMOC formalism [8]. This
inclusive observable is precisely the one discussed earlier in section 2, and is related by
analytic continuation to a conventional scattering amplitude:

⟨0|a2′a1′a1b
†
3b
†
2|0⟩

2

1
1′

3

2′
S†

cross 1↔ 3

⟨0|a2′a1′b3a
†
2a
†
1|0⟩

1′

2′
1̄
2

3̄

XS† S

(6.58)

The observable in (6.57) was recently computed at one-loop in the classical limit by various
authors (see [13–16]) in the eikonal or heavy-mass effective field theory (HEFT) expansion.
In a recent work [7], we showed how to efficiently compute the master integrals for inclusive
observables such as (6.57) using differential equations and imposing boundary conditions
where the observable is expressed as a sum of time-ordered amplitudes and cuts. In this section,
we will illustrate on some of the relevant master integrals how to alternatively compute (6.57)
using crossing symmetry. Unlike in the previous subsections, we find that the observable
computed here corresponds to an inclusive measurement of a massless particle. As such,
crossing works as expected from (6.58), with no issues arising from anomalous thresholds.

A feature of the analytic continuation in (6.58) is that it passes through a kinematic
region in which the external graviton is hard. This kinematic region is far outside the validity
of the HEFT expansion, i.e., it is incompatible with the eikonal approximation for the heavy
objects labeled by 1, 1′ and 2, 2′ in (6.58). For crossing to work, we have to keep at least
one of the heavy objects to be non-eikonal in the intermediate steps and take the eikonal
limit only after the analytic continuation. The fact that crossing and the HEFT limit do
not commute is not surprising. In general, such non-commutativity of limits and analytic
continuations is an expected feature of analytic functions. In this section, we therefore do
not expand any propagators in the eikonal limit. Despite having to work beyond the eikonal
expansion, our hope is that this continuation will prove valuable in computing higher-order
corrections to these kinds of observables in the future.
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To illustrate why there is no anomalous threshold obstruction to crossing for massless
inclusive variables, we focus, for simplicity, on triangle Feynman integrals. These contribute
as master integrals to the computation of the observable Exp3. For most triangle topologies,
we can easily check that crossing is satisfied. An example of such check is given by the
following topology,

3
2 1′

1 2′
†

↶

s1

?=

3̄2 1′

1 2̄′

+

3̄2 1′

1 2̄′

(6.59)

We use analogous momentum labelings as in the previous subsections, so that s = −(p1+p2)2,
s1 = −(p1′ + p3)2 and s2 = −p22′ . In equations, we write (6.59) such that

[M†tri]↶s1
?= Mtri +CutsMtri ≡ Exp3 . (6.60)

Clearly, the diagram on the right-hand side of (6.59) admits a s-channel cut after crossing.
However, even though it may seem that this topology could have a potentially problematic
anomalous threshold branch cut obstructing the path of analytic continuation, we find that
the continuation remains safe, even when particle 2 is on-shell (s2 = m2

2). This is what
we show now.

Analogously to the previous subsections, we begin by taking s2 off-shell with s2 < m2
2,

and show that no issues arise as we approach s2 → m2
2. Additionally, we assume that

s ⩾ (m1 +m2)2 such that the s-channel cut is allowed, making the problem is non-trivial.
The crossing path from (3.1) and (3.2) specifies that s > 0 and s2 > 0 remain fixed during
the analytic continuation, while s1 rotates from positive to negative in the lower half-plane.
As before, we work with the Schwinger-parametrized form of this diagram, which was given
in (6.5), and repeated here for convenience,

M†tri =
ˆ ∞
0

dα1dα3
(α1 + 1 + α3) [A(α1) + α3B(α1) + iε] , (6.61)

with
A ≡ (α1 + 1)(α1m

2
1 +m2

2)− α1s and B ≡ α1(m2
1 − s1) +m2

2 − s2 . (6.62)

Notice that the analytic continuation of this integral in the lower half-plane of s1 is straightfor-
ward: the required +iε in the denominator is obtained directly by taking s1 to be in the lower
half-plane. So, after continuing from positive to negative values of s1, (6.61) still computes
M†tri in the new kinematic channel. Whether s2 is on-shell or not, the crossing equation
in (6.59) is straightforward to verify by unitarity: this is because Mtri and M†tri for s1 < 0
differ only by the cut in the s-channel, which is the only one allowed in these kinematics.

We can contrast this with the conclusion from section 6.1 where we found that to match
with the Feynman iε, we had to take s−iε, but the crossing equation instructed us to continue
in the upper half-plane of s. Thus, (6.61) was not well-suited for analytic continuation in s,
so we rewrote it using the discontinuity across the branch cut on the real s channel, given
by C(s), before continuing in the upper half-plane.
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As a last check, we look at a different triangle topology contributing to Exp3 from (6.57), 31
†

2

1′

2′


↷s↷s1

?=

3̄

1
2̄

1′

2′ (6.63)

Here, we have used the labelings s = −(p1 + p2)2, s1 = −(p1′ + p3)2 and s2 = −p22′ . The
crossing path given in (3.1) and (3.2) now instructs us to start with s < 0 and s1 < 0, followed
by rotating both s and s1 in the upper half-plane. We have also used that for this topology,
the crossing equation does not predict any cuts on the right-hand side of (6.63) (stability
forbids a cut in the s2-channel). Thus, we simply want to check that

[M†tri]↷s↷s1

?= Mtri ≡ Exp3 . (6.64)

This equation is easy to check using the Schwinger-parametrized form from (6.61). The
correct iε prescription for M†tri is obtained by taking either s→ s+ iε or s1 → s1 + iε. After
the analytic continuation, both s and s1 are taken to have a positive imaginary part, which
is precisely the prescription that agrees with the iε for Mtri.

The examples above support the argument provided below (6.42), stating that there
is no analytic obstruction to obtain the quantity Exp3 by continuing a standard on-shell
time-ordered amplitude when particle 3 is a massless particle.

7 Crossing between observables in string theory

In this section, we provide another stress-test of the crossing conjecture (3.6). We will
consider scattering in open string theory at tree level. This analysis will also allow us to
compute the inclusive measurement Expk in string theory and illustrate what happens to
the string geometry for this processes.

7.1 Spirals and anti-spirals

As a warm-up, let us consider 4-point scattering, which will illustrate the general strategy
for analytic continuation. For example, we can take the Veneziano amplitude

Mstring
34←12 =

ˆ 1

0
z−s−1(1− z)−t−1 dz , (7.1)

where we work in the units α′ = 1. Different choices of external states would only multiply
the integrand by a Laurent polynomial in z, which is not going to affect the analysis. We
can therefore stick with (7.1) without loss of generality. The result is always proportional
to the Euler beta function B(−s,−t).

In the s-channel, s > 0 and t < 0, which means that the integral (7.1) is not convergent
as z → 0. At tree-level, string amplitudes are meromorphic functions of kinematic invariants,
just like field-theory amplitudes, so one can in principle evaluate the integral in the Euclidean
region s, t < 0 and then analytically continue back to the s-channel. However, the purpose

– 70 –



J
H
E
P
0
4
(
2
0
2
4
)
0
6
0

τ

τ∗

spiral

anti-spiral

cut

z

e−τ∗

Figure 14. Building blocks for contours of integration in string theory. Left: in the τ -plane we
plotted the spiral (red), anti-spiral (blue), and cut (orange) contours. Right: the shape of the contours
in the z-plane after using z = e−τ .

of the discussion is to understand more precisely what happens to the contour as we work
directly in the physical kinematics and then analytically continue in s and t between different
channels. We refer readers to [50–52] for more detailed discussions of Lorentzian integration
contour and unitarity cuts of string amplitudes.

Since the divergence comes from z → 0, it is going to be useful to parameterize the
integral according to z = e−τ . Here, τ can be thought of as the Schwinger proper time along
the neck of the worldsheet responsible for the s-channel Feynman diagram degeneration. The
divergence comes from τ → ∞, so we can expand the integrand as

Mstring
34←12 =

ˆ ∞
0

esτ
[
1 + (1 + t)e−τ + 1

2(1 + t)(2 + t)e−2τ +O(e−3τ )
]
dτ . (7.2)

Each term is a Schwinger-parametric version of a propagator. The leading term formally
integrates to a pole in s = 0, the subleading to a pole in s = 1, and so on. The integration
is only formal because it actually does not converge as τ → ∞ where the integrand has
an essential singularity.

The above problem can be traced back to the fact that the Riemann surface (in this case
a disk with four punctures) is an Euclidean manifold, while the target space is Lorentzian.
The appropriate thing to do would therefore be to integrate over Lorentzian worldsheets close
to the dangerous parts of the moduli space. Since we already identified the relevant Euclidean
Schwinger parameter in (7.2), we simply switch to its Lorentzian version where it is needed:

ˆ ∞
0
→
ˆ τ∗

0
+
ˆ τ∗+i∞

τ∗

. (7.3)

Here, τ∗ ≫ 1 is an arbitrary cutoff after which the Wick rotation is done. To understand why
running the contour in the upper half-plane was the correct choice, it is enough to look at
the behavior of the integrand. Approaching the s-channel from the upper half-plane s+ iε, it
goes as e(s+iε)(τ∗+i∞), so at infinity it gives the exponential suppression ∼ e−ε∞.

The situation flips, quite literally, if we chose to approach the s-channel from the lower
half-plane with s − iε, where the final piece of the contour in (7.3) should go from τ∗ to
τ∗ − i∞. Finally, this also allows us to define the discontinuity across the s-channel, which is
the difference between the two choices of ±iε. In that case, the contour simply goes from
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τ∗ − i∞ to τ∗ + i∞. The discontinuity computes the unitarity cut in the s-channel.11 Back
in the original z variable, the three types of contours take the form of a spiral, an anti-spiral,
and their difference, as illustrated in figure 14. The identity

(spiral)− (anti-spiral) = (cut) , (7.4)

is a direct analogue of the distributional identity

1
s+ iε

− 1
s− iε

= −2πiδ(s) , (7.5)

at the level of worldsheets. Note that we could have also added spirals on the other endpoint
z → 1. However, in this case they would not have any effect because t < 0 and the two contours
can be deformed into each other. Equivalently, there is no t-cut allowed in the s-channel.

We are now ready to discuss the analytic continuation in the Mandelstam invariants. On
one hand, the u-channel (s, t < 0) is boring because neither s- nor t-channel poles can happen
there. On the other hand, the t-channel (s < 0, t > 0) has t-poles but not s. Therefore, let
us perform an analytic continuation from s- to t-channel, which is equivalent to crossing
particles 1 ↔ 3. It corresponds to the simultaneous rotation of s and t as follows:

s t

(7.6)

The dots denote string resonances at s, t ∈ Z⩾0. The only thing that matters is that analytic
continuation is performed in the upper half-plane in s and lower half-plane in t. This selects
a spiral in the s-channel degeneration (z → 0) and anti-spiral in the t-channel degeneration
(z → 1). In other words, we land on the t-channel amplitude complex-conjugated. This fact
is consistent with the crossing equation, which in this case says

[M34←12] ↶

t↶s
=M†14←23 . (7.7)

One can repeat similar arguments for other color orderings without any trouble.
Similarly, one can treat the closed-string case, where divergent parts of the integral look

like I =
´
|z|<ϵ |z|

−2s−2d2z instead of
´ ϵ
0 z
−s−1dz. Changing variables to (z, z̄) = (reiθ, re−iθ),

the angular coordinate can be integrated out giving I = 4π
´ ϵ
0 r
−2s−1dr. At this stage, we

can study the Lorentzian contour in r using the same technology as described above for
open strings. In other words, when a worldsheet develops a long neck, only its length (not
the angular direction) needs to be Wick rotated.

11In contrast with Cutkosky cuts, the part of the amplitude to the right of the cut is not complex-conjugated.
Positivity of the energy of the particle going across the cut is fixed by the external kinematics.
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7.2 Example of inclusive measurement

Let us illustrate how crossing looks like at higher multiplicity. One of the simplest case
which contains a new measurement is the is the 5-point amplitude M245←13. We fix the
color ordering to be (12345) in which case the amplitude only depends on the Mandelstam
invariants (s12, s23, s34, s45, s51). After crossing particles 2 ↔ 3, only the s12 and s34 are
rotated in the lower half-plane and we should arrive at

[M245←13] ↶

s12↶

s34
= Exp3 (7.8a)

=M†345←12 +Cuts45M345←12 . (7.8b)

The goal is to reproduce this identity from the moduli space geometry.
Fixing the positions of three vertex operators to (z1, z4, z5) = (0, 1,∞), we have

Mstring
245←13 = −

ˆ
0<z2<z3<1

dz2 dz3 z−s12−1
2 z−s13

3 (1− z2)−s24(1− z3)−s34−1(z3 − z2)−s23−1 . (7.9)

The result can be expressed in terms of a 3F2 hypergeometric function [53]. Originally, the
only positive planar Mandelstam invariant is s45. In the above parametrization of the moduli
space, the corresponding degeneration comes from the corner where both z2 and z3 approach
z1 = 0 both at once. To see this more clearly, it is necessary to blow-up the space. In practice,
it amounts to the change of variables (z2, z3) = (xy, x), where x, y ∈ [0, 1]. The result is

Mstring
245←13 = −

ˆ
0<x,y<1

dx dy x−s45−1y−s12−1(1− x)−s34−1(1− y)−s23−1(1− xy)−s24 . (7.10)

The s45 poles come from the degeneration x→ 0. The integration contour in the neighborhood
of this boundary should therefore look like a product of a spiral in the x-plane times an
interval y ∈ [0, 1], with the remainder of the contour unchanged.

Upon crossing 2↔ 3, the two Mandelstam invariants we have to analytically continue
are s12 and s34, both in the lower half-plane:

s12 s34

(7.11)

The resulting contour therefore has to have an anti-spiral around the boundary at y → 0 and
another at x → 1, responsible for poles in s12 and s34 respectively (on top of the spiral at
x→ 0 that stays there). The resulting contour is schematically depicted in figure 15.

After analytic continuation, the contour in figure 15 is the precise analogue of the crossing
formula (7.8a). To see this, we expressed the spiral at x = 0 as an anti-spiral plus a cut
according to the identity (7.4). Recall that close to boundaries, the worldsheets limit to
worldlines resembling Feynman diagrams. For example, close to (x, y) = (0, 0), the have
poles in s12 and s45. The identity then implies

1
(s12−n12−iε)(s45−n45+iε)

= 1
s12−n12−iε

( 1
s45−n45−iε

− 2πiδ(s45−n45)
)
, (7.12)

where n12, n45 ∈ Z⩾0 are masses of the exchanged states.
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x
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+

x

y

0
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0 1

Figure 15. Schematic illustration of the integration contours for 5-point string observables, encoding
the crossing identity (7.8a). The original integration domain after crossing (gray) is modified by
attaching respectively a spiral (red), anti-spiral (blue), or cut (orange) on the x = 0 boundary; the
other Lorentzian boundaries are both anti-spirals.

Interestingly, taking the integration contour from the last panel in figure 15 allows us
to compute the inclusive measurement Exp3 in string theory directly. According to (7.8a),
there are two contributions: conjugated amplitude and the cut. The latter is given by

Cuts45M
string
345←12 = −

˛
cut
dx
ˆ 1

0
dy

× x−s45−1y−s12−1(1− x)−s34−1(1− y)−s23−1(1− xy)−s24 ,

(7.13)

which can be performed by expanding the integrand in x and using the identity
¸
cut dxx

−s−1 =
2πiδ(s) for every term. Explicitly, the first couple of contributions read

Cuts45M
string
345←12 = −2πi

[
δ(s45) + δ(s45−1)

(
1 + s34 +

s12s24
s12 + s23

)
+ . . .

]
(7.14)

×Γ(−s12 + iε)Γ(−s23)
Γ(−s12−s23)

.

Analogously, the full observable Exp3 can be computed in terms of 3F2 and gives

Exp3 = −B(−s12 + iε,−s23)B(−s34 + iε,−s45 − iε) (7.15)
× 3F2(−s12 + iε, s24,−s45 − iε; −s12 − s23,−s34 − s45; 1) ,

where B is the Euler beta function.
Generalizations to other planar orderings, higher multiplicity, and closed strings are

straightforward and essentially use the same combinatorics as for tree-level Feynman diagrams.
Blow-ups of the boundaries responsible for each degeneration can be conveniently studied
using dihedral coordinates [54], leading to explicit formulae for inclusive measurements in
string theory at tree level.

7.3 Spacetime geometry

In order to get more intuition for the objects discussed above, let us visualize the spacetime
geometry of the worldsheet that they correspond to. Recall that the classical solution of
the worldsheet field Xµ is obtained by taking the α′ →∞ limit. For tree-level open-string
scattering, the answer is

Xµ(z) = i
n∑

j=1
pµ

j log |z − z∗j | , (7.16)
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for every z in the upper half-plane, where z∗j are the positions of the vertex operators on
the relevant α′ →∞ saddle point. Note that this solution is purely imaginary. This fact is
precisely the consequence of the worldsheet being Euclidean, which naively leads to strings
propagating in the imaginary spacetime, interpreted as quantum tunnelling.

The solution (7.16) can be used to understand string geometries even if they are not
evaluated on the saddle. We will use it to visualize the type of worldsheets close to the (x, y) =
(0, 0) corner of the moduli space illustrated in figure 15, after a certain number of windings.
As explained in previous sections, windings give rise to Lorentzian worldsheet evolution.

As the first step in analytic continuation, we promote (7.16) to a holomorphic function
of z by replacing log |z − z∗j | → log(z − z∗j ). The branch of the logarithm does not matter
because it drops out from Xµ by momentum conservation. We now focus on the real part of
the solution, ReXµ(z). The Euclidean part corresponds to the interior of a polygonal Wilson
loop constructed out of the momenta pµ

j . Let us first consider what happens if we simply
treat asymptotic states as Lorentzian. This corresponds to taking a semi-circle |z − z∗j | ⩽ ε

for every puncture z∗j and rotating it a large number of times w clockwise. Locally, we
can make the change of variables

z = z∗j + εreiθ+2πiw(1−r) , (7.17)

with r ∈ [0, 1] and θ ∈ [0, π]. The solution (7.16) looks like

Xµ(r, θ) = ipµ
j

[
log(εr) + iθ + 2πiw(1−r)

]
+ . . . (7.18)

The real part therefore looks like ReXµ ∼ −pµ
j [θ + 2πw(1− r)] for small ε. In other words,

the worldsheet turns asymptotically into a collection of worldlines aligned along the momenta
of the external particles. The minus sign difference between ReXµ and pµ

j arises because,
e.g., the momentum vector of an incoming particle with p0j > 0 points to the future, while
the corresponding part of the string worldsheet stretches towards the past.

Let us now get a better approximation to the worldline picture by expanding to subleading
orders in ε. Taking into account the remaining vertex operators, we have

ReXµ(r, θ) = −pµ
j

[
θ + 2πw(1− r)

]
+Re

i∑
k ̸=j

pµ
k log

(
z∗j − z∗k + εreiθ+2πiw(1−r)

) . (7.19)

Recalling that all z∗k are real, the leading term in the sum does not contribute since it does
not have any real part. The most leading correction is therefore

ReXµ(r, θ) = −pµ
j

[
θ + 2πw(1− r)

]
− ε sin(θ − 2πwr)

∑
k ̸=j

pµ
k

z∗j − z∗k
+O(ε2) . (7.20)

It means that the worldsheet oscillates w times around the worldline. The size and direction
of this oscillation is set by those pµ

k whose punctures z∗k are the closest to z∗j .
The corresponding worldsheet geometry is illustrated in figure 16 (left), where five

ribbon-like strands attach to the inside of a pentagon, corresponding to the mostly-Lorentzian
and mostly-Euclidean worldsheet evolution respectively.
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Figure 16. Worldsheet geometries before and after applying the crossing relation to M13→245. The
plots are 3-dimensional slices through the real Minkowski space with the time component going up.
The blue ribbons are Lorentzian and the red polyhedra are Euclidean. For illustration purposes, we
used w = 2 windings for all Lorentzian segments. Left: M345←12 at a generic point in the moduli space.
Middle: M345←12 close to the s12 and s45 resonances. Right: Exp3 close to the same resonances.

In the next step, let us illustrate how the spirals and anti-spirals from section 7.1 affect
the geometry. The situation can be modelled by introducing arc-like regions illustrated in
figure 17. For concreteness, let us focus on the one surrounding the first two punctures. We
pick the radii to be r1 < r2 and assume that the two punctures z∗1 and z∗2 are contained inside
the smaller radius. The corresponding worldsheet parametrization is

z = z∗1 + z∗2
2 + reiθ+2πiw(r−r1)/(r2−r1) , (7.21)

with r ∈ [r1, r2] and θ ∈ [0, π]. We can repeat an analysis similar to the one above. The
bottom line is that this region corresponds to a Lorentzian evolution along the direction
of pµ

12 with w windings. After attaching another copy of the region around punctures z∗4
and z∗5 we obtain the a typical worldsheet contributing corresponding to the (x, y) ≈ (0, 0)
corner of the moduli space pictured in figure 15.

The corresponding worldsheet trajectory for M345←12 close to the resonance s12 and s45
is plotted in figure 16 (middle). Here, the additional blue ribbons stretching between the
pairs of Euclidean regions are consequences of adding the Lorentzian evolution described
above. In figure 16 (right), we illustrate the same configuration but for Exp3. The difference
is reversing the orientation of the Lorentzian segments around the punctures 4 and 5. This
plot illustrates a generic worldsheet trajectory for this in-in observable. It agrees with the
idea that the target space of this string worldsheet is the same Schwinger-Keldysh timefold
as that which defines this observable in field theory [7, section 4], where all sources 1, 2, 4, 5
are in the past of the observation point 3.
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Figure 17. The decomposition of the worldsheet for a fixed configuration of vertex operators points
(z∗1 , z∗2 , . . . , z∗5) in the upper half-plane z, responsible for Exp3 close to the resonances s12 and s45. The
blue regions are Lorentzian and the red are Euclidean. The way the Lorentzian regions are sheared
and glued to the Euclidean ones is illustrated by the blue curves. For readability we used only w = 2
windings in all cases.

8 Conclusion

In this work, we found that crossing symmetry is much richer than previously believed:
it relates together not only scattering amplitudes, but also a larger family of asymptotic
observables. The focus of this paper was to motivate, explain, and test crossing rules
summarized in section 3. These developments open up a number of new directions, some
of which are outlined below.

A natural direction is to do further explicit checks of the crossing equation on multi-loop
Feynman integrals and understand to what extent analytic obstructions affect it. Alternatively,
assuming the crossing relations, one could deduce and test relations between amplitudes and
discontinuities in various kinematic channels, as done in section 3.4 and 5.5.

More ambitiously, one could attempt to extend the tree-level proof given in section 4 to
multi-loop processes. The fact that the path of analytic continuation is expressed in lightcone
coordinates suggests that looking into lightcone-ordered perturbation theory [55] might be
worthwhile. We do not expect such a proof to be a walk in the park, as it would have to address
issues with local analyticity and anomalous thresholds already encountered in section 6.

In the process of understanding the crossing equation better, more theoretical data is
needed. As with the time-ordered amplitudes, a natural place to start with is the N = 4
super Yang-Mills theory. It would be interesting to see if the asymptotic observables can
be “bootstrapped” in the same way as the amplitudes (as reviewed in [56]). We expect
that they would also inherit many analytic properties of time-ordered amplitudes such as
cluster adjacency. The relation between our crossing moves and those based on the analytic
(dispersive) representation of [57] would also be worth exploring.

As reviewed in section 3.6, the specific crossing moves we proposed lead to disjoint families
of observables. However, there could of course also exist other ways of deforming the energies
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and momenta of external particles that lead to other forms of crossing symmetry reconnecting
the families. More work is required in this direction. For example, for massless particles, one
natural idea is to continue through the (2, 2)-signature kinematics as an intermediate step,
which sounds particularly appealing in the view of the importance of the split signature in the
on-shell recursion relations. However, to date, there is no concrete understanding for how to
do such an analytic continuation systematically in practice (see, e.g., [58] for partial progress
for off-shell Green’s functions). Our work highlights the importance of revisiting this problem.

Beyond field theory, it might prove useful to study crossing symmetry in string pertur-
bation theory, which provides a yet another starting point distinct from Feynman integrals
and the LSZ reduction formulae. Progress in proving it in 2 → 2 scattering includes [59],
which using string field theory to show that string amplitudes are analytic in the primitive
domain (see (A.2)) provided massless states are ignored. Using worldsheet methods, the
immediate challenge is that analytic properties are not yet fully understood beyond genus-one
four-point functions [52, 60].

On the more conceptual side, it is crucial to further understand the interplay between
crossing and local analyticity. Recall that axiomatic field theory points to the fact that
S-matrix elements may in general not be expressible in terms of a single analytic function [4].
Concrete examples are given in section 6 and [48]. We have seen that whenever such a
local analyticity clash happens, the crossing equation is no longer valid. Nevertheless, as
reviewed in appendix A.2, there still exists a (non-canonical) decomposition of S-matrix
elements into a sum of analytic functions. Can we characterise physically when such problems
with analyticity occur, and how to then think of crossing symmetry? When is the S-matrix
analytic? We leave these foundational questions to future work.
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A Why are scattering amplitudes analytic?
Review of the axiomatic approach to crossing

As emphasized in the main text, there are two separate steps that go into establishing crossing
relations for a general scattering process. The first one involves proving analyticity in certain
regions of the on-shell kinematics within which analytic continuation can be performed
without encountering any singularities or crossing branch cuts. The second step consists
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in identifying the result of this analytic continuation as another observable. In this paper,
we explored the rich structure of this second problem and found that crossing can relate
scattering amplitudes to more general asymptotic measurements in quantum field theories.
However, we assumed that analyticity along the crossing path holds.

Our formal manipulations seem easy to make rigorous if one were allowed to go off-shell,
and the main subtle question is whether our crossing paths continue to exist when restricting
to the mass shell. The purpose of this appendix is to review the axiomatic arguments for
analyticity that make this assumption plausible.

A.1 Proof of crossing for 2→ 2 scattering

Crossing symmetry for 2→ 2 scattering in mass-gapped theories was established by Bros,
Epstein, and Glaser (BEG) in [2, 3]. Here we offer a slightly streamlined version of their
proof that we hope to be more accessible to physicists.

A.1.1 Overview

The proof consists of three main steps:

• Sufficiently off shell, crossing is trivial: analyticity of off-shell Green’s functions for
complex energies and off-shell masses “below all thresholds” follows from analyzing
convergence of Fourier transforms. Crossing paths are contained within the so-called
primitive domain of analyticity, out of which we only need a subregion called D1,
see (A.6).

• Specializing to real energies, one proves that the off-shell Green’s functions depend
smoothly on an off-shellness parameter ξ. This is summarized by the analyticity domain
D2, see (A.7).

• Using complex analysis in two variables, the two regions D1 and D2 are extended into
a larger domain of analyticity in which energies can be complex and masses on shell
(ξ = 0) simultaneously, see figure 19.

Let us now formulate these facts more precisely and elaborate on how they are proven in
the following subsections.

The starting point is reduction formulas of the LSZ type for amputated Green’s n-point
functions (off-shell versions of scattering amplitudes):

Gn(p) =
ˆ n∏

j=1
dDxj e−ipj ·xj ⟨0|T {j(x1)j(x2) · · · j(xn)} |0⟩ , (A.1)

where j(xi) = (−∂2xi
+m2)ϕ(xi) are the currents. As in the main text, we focus here on a real

scalar theory with a single field ϕ of mass m. The generalization to scattering amplitudes
with unequal masses would complicate some formulas but does not pose any real challenge.

The immediate difficulty is that (A.1) does not define an analytic function of the momenta
pj : for the factor e−ipj ·xj not to diverge as x→∞, one needs Im pj ·xj ⩽ 0 for all xj . However,
xj can be timelike or spacelike and hence a fixed complex Lorentz vector pj cannot satisfy
the above inequality.
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There are two natural solutions to this problem. One is to show that the position-
space correlator Gn(x) ≡ ⟨0|T {j(x1)j(x2) · · · j(xn)} |0⟩ itself decays exponentially in some
directions, such that a certain amount of exponential growth can be tolerated in e−ipj ·xj .
This leads to the concept of essential support pursued in section A.2. The other solution,
which will suffice for 2→ 2 scattering, is to express Gn(x) in terms of retarded (as opposed to
time-ordered) products. After an analysis of exponentials similar to the one sketched above,
one arrives at the so-called primitive domain of analyticity [61–65]:⋂

S

{
Im pS timelike} ∪ {Im pS = 0 and − p2S < m2

S

}
, (A.2)

for every proper subset of external labels S, where pS = ∑
i∈S pi and mS is the mass of

the lightest threshold allowed in each channel. To be technically precise, we should say
that correlators are analytic in some open neighborhood of (A.2) (a domain is always an
open set). Similar levels of analyticity can be proven more easily in perturbation theory,
see for example [59] and [66, Note 32].

The domain (A.2) implies an off-shell version of crossing. To see this explicitly, let us
introduce coordinates which we will also use throughout this appendix. We fix the momentum
transfer and take it to be transverse and real:

pµ
2 + pµ

3 = (0, 0, 2q⊥) , (A.3)

in lightcone notation pµ
i = (p+i , p−i , p⊥i ) with −p2i = p+i p

−
i − (p⊥i )2. Recall that p±1 , p±2 < 0

are incoming and p±3 , p
±
4 > 0 are outgoing. We can then parametrize the two projectile

momenta as (recall that we take m2 = m3 = m):

pµ
2 =

(
−p+, −m

2 + q2⊥ + ξ

p+
, q⊥

)
, pµ

3 =
(
p+,

m2 + q2⊥ + ξ

p+
, q⊥

)
. (A.4)

On the one hand, we will keep p1 and p4 fixed and on-shell, and we take p+ to be large
and positive (ultra-relativistic kinematics) such that s = −(p3 + p4)2 ≈ p+p−4 . On the
other hand, t = −(p2 + p3)2 < 0 remains constant. To describe crossing, we must take
p+ along a large arc in the upper half-plane. The essential variables will be the energy
p+ and off-shellness parameter ξ. The variable p+ plays the same role as z in section 3
and ξ = 0 is the on-shell point.

The off-shell crossing path in the primitive domain (A.2) can be described as follows. Since
the imaginary part of p3 is non-zero, the domain requires it to be timelike, i.e., Im p3 ∈ V +.
Thus, Im p+3 and Im p−3 must have the same sign. This can be satisfied for Im p+ > 0 and
constant real ξ if it is sufficiently negative:

Im m2 + q2⊥ + ξ

p+
> 0 for 0 < arg(p+) < π ⇒ ξ < −m2 − q2⊥ ≡ ξ0 . (A.5)

All the other conditions in (A.2) are then satisfied: the imaginary parts of pµ
2 , pµ

3 , pµ
1 + pµ

2
and pµ

1 + pµ
3 channels are timelike by the same condition, while pµ

1 , pµ
4 and pµ

1 + pµ
4 are

real and below threshold. It is important here that we consider correlators of currents, e.g.
amputated correlation functions, so that the mass shell is strictly below the first singularity
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Figure 18. The origin in the ξ-plane represents the on-shell point. The primitive domain of analyticity
D1 ensures the existence of a complex-s crossing path when Re ξ < ξ0. The BEG argument leverages
the fact that for real s, |s| > s0, the nearest ξ-singularity is strictly to the right of the origin, to extend
crossing to a circular region (green) that contains the on-shell point at the origin.

at −p2i = m2
i : m2

i < m2
i . The primitive domain (A.2) thus contains a neighborhood of the

following subset, which enables off-shell crossing:

D1 = {(p+, ξ) | Im p+ > 0 and ξ < ξ0 < 0} . (A.6)

This is not yet what we want. The crux to obtain on-shell crossing will be to show that
the correlator depends on the small lightcone momentum p−3 sufficiently mildly that we can
relax the constraint Im p−3 > 0 in (A.5).

Physically, since p−3 ∝ 1/p+ is small, most invariants are largely insensitive to its precise
value except for the single-momentum invariants p22 and p23. Naively, one may thus expect
analytic properties in ξ to be controlled by the thresholds in these channels, which is at
ξ = m2 −m2. Below, we will show that this is indeed the case and review why the correlator
is analytic in a neighborhood of:

D2 = {(p+, ξ) |Re ξ < m2 −m2 and |p+| > p0, p
+ real} , (A.7)

for some sufficiently large constant p0. Important loci in the ξ-plane are summarized in
figure 18.

The domains D1 and D2 control respectively the dependence of correlators on complex
p+ and ξ, with the other variable kept fixed and real. At face value, the union D1 ∪D2 allows
one to start from an on-shell s-channel configuration, go off-shell, cross to the u-channel,
and then return on-shell. It turns out that the magic of complex analysis implies a stronger
result: analyticity in a neighborhood of D1 ∪D2 automatically implies analyticity in a larger
domain in which crossing paths can remain on-shell at all times.

In section A.1.2 we elaborate on the proof of analyticity in D1 and D2, while the extension
of D1 ∪D2 is reviewed in section A.1.3. Compared with the original proof of crossing in [3]
(expanded upon in [20, section 5.3] and [21, section 16.3]), our presentation is simplified
in two ways. First, our off-shell deformation −p2i → m2

i + ξ only affects the two particles
i = 2, 3, whereas in the original proof it affected all particles democratically. Second, we
focus on high-energy (Regge) kinematics. Together, these two choices greatly simplify the
derivation of the D2 domain since our ξ is trivially related to a lightcone coordinate p−3 .
In addition, the application of the tube theorem will be simplified since the complicated
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almond-shaped regions of [3] reduce to circles in the Regge limit, see also [67] for a similar
approach. Despite these simplifications, we believe that our abridged presentation remains
rigorous and at the same time more accessible to physicists.

A.1.2 Global and local domains D1 and D2

Instead of relying on (A.2), we find it instructive to establish analyticity in D1 and D2 directly
by exploiting the support properties of various retarded products. The product relevant for
D1 was discussed in (2.9) in the main text. For 2 → 2 scattering it simplifies to

R34←12(p3, p2) =
ˆ

dDx3 dDx2 e−ip2·x2−ip3·x3 out⟨4| [j(x3), j(x2)]R |1⟩in . (A.8)

Importantly, the integral only has support when x3 is in the future lightcone of x2. If we
perform the change of variable x3 7→ x2 + y, we obtain

R34←12(p3, p2) =
ˆ

y∈V̄ +
dDy e−ip3·y

ˆ
dDx2 e−i(p2+p3)·x2out⟨4| [j(x2 + y), j(x2)]R |1⟩in . (A.9)

The integration range is y in the future lightcone V̄ +, since otherwise the retarded commutator
vanishes. This implies that (A.9) is analytic for Im p3 ∈ V + when p2+p3 is kept real (meaning
that equal and opposite imaginary parts are added to p2 and p3). This is precisely the condition
on p3 discussed in (A.5), and hence we conclude that R34←12 with pi(p+, ξ), now viewed as
a function of p+ and ξ only, is analytic in D1 in (A.6).

To establish the domain D2 in the off-shell parameter ξ, we use a different reduction
formula. We now fix the s-channel momentum p3 + p4 to be real and study analyticity in
p3 of the following two products:

δ4 × iM34←12 = ⟨0| [j3, j4]R |21⟩in = ⟨0| [j4, j3]R |21⟩in . (A.10)

That both correlators compute the same amplitude can be verified using reduction formulas
in the same way as (2.14), see [7]. The first representation is analytic for Im p3 ∈ V +, while
the second is analytic in the opposite cone Im p3 ∈ −V +. They agree for real momenta
below the single-current threshold −p2i < m2 by spectral considerations, since the difference
is a commutator [j3, j4] without the step function. In this situation, the celebrated edge-
of-the-wedge theorem (see, e.g., [68]) states that iM34←12 is actually analytic in some open
neighborhood of the real axis below the cut, which includes Im pµ

3 that can be spacelike
as long as it is small enough.

This is not quite sufficient for our purposes since we will need some uniformity in that
the size of the open neighborhood does not shrink at large p+. To analyze the situation
at large p+ (or equivalently large s), the following parametrization in lightcone coordinates
will be useful (again we set m1 = m2 = m for simplicity):

pµ
3 =

(
σ,

m2 + ξ′

σ
, 0⊥

)
, pµ

4 =
(
m2

σ
, σ − ξ′

σ
, 0⊥

)
, (A.11)

where we fix σ (which grows as σ ≈
√
s at high energy) and vary the single complex variable

ξ′. The two forms in (A.10) are then respectively analytic for Im ξ′ > 0 and Im ξ′ < 0 and
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they agree for Re ξ′ < m2 − m2. Thus, by single-variable complex analysis, iM34←12 is
analytic for ξ′ in the cut plane C \ [m2 −m2,∞) similar to that in figure 18.

To complete the proof, it remains to show that the ξ′ and ξ planes are essentially
equivalent. More precisely, at large s, the parameter ξ′ is effectively just the off-shellness
in p23, since that of p24 is suppressed by σ−2 ≈ s−1:

−p23 = m2 + ξ′, −p24 = m2 − m2

σ2
ξ′ . (A.12)

Neglecting the change in p24 at large s, we have effectively established analyticity in p23 at fixed
s and p24. More rigorously, for sufficiently large s, the change in p24 could be cancelled by a small
deformation of p+i within the neighborhood guaranteed by the edge-of-the-wedge theorem
(while not explicitly computed by the theorem, it is clear from various of its proofs [19, 21]
that the size of the neighborhood can only depend on the distance to singularities in the
considered four momenta, i.e., on m2 −m2 but not on s). To obtain the desired region D2
in (A.7), we can apply an argument similar to a simultaneous shift of all four momenta in
such a way that p1 + p2 and p2 + p3 remain constant, resulting in −p22 = −p23 = m2 + ξ

acquiring the same off-shellness ξ.
We note that the original BEG argument [3, section 4] did not assume large s. Con-

sequently, they had to control spacelike shifts in Im pi. This was achieved using the Jost-
Lehmann-Dyson representation, which is a different way of leveraging the vanishing of
commutators at spacelike separations. Their geometry was somewhat more complicated since
they shifted all four masses by the same amount. Nonetheless, at large s, their resulting
domain [3, figure 6] simplifies and contains the large disk that we will use below.

A.1.3 Tube theorem and domain extension

In order to state crossing as an intrinsic property of the on-shell amplitude iM(s, t), we
need to extend the domain D1 ∪ D2 in such a way that we can find a crossing path that
remains on-shell at all times. While the derivation so far relied on physical principles such
as microcausality and stability, the final step of “interpolating” between the two regions
will be purely mathematical.

Functions in several complex variables have a peculiar property that if they are analytic
in a certain domain D, they can be extended to a possibly larger region called its envelope
of holomorphy H(D). The envelope does not depend on the function itself, but rather only
on the geometry of D. This aspect does not have an analogue in one complex dimension,
where always D = H(D). For example, if we only knew a function f(z) is analytic in a unit
disk |z| < 1, we cannot say anything about its analyticity properties in |z| ⩾ 1. We will see
that these changes in two and higher complex dimensions.

Bochner’s tube theorem. While the computation of H(D) is in general a complicated
problem [69–71], in some situations it can be solved exactly. Among the simplest examples
are tubes, which are generalizations of strips to several complex variables. A tube in m

dimensions is a domain of the form

TB = B + iRm , (A.13)
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where the base B is connected and the imaginary parts remain unconstrained. Bochner’s
tube theorem asserts that its envelope of holomorphy is

H(TB) = Tch(B) , (A.14)

where ch(B) is the convex hull of B.
A simple way to understand this theorem is to consider functions f̂(q) that originate as

the Laplace transform of some f(x). Suppose f̂(q) is analytic for q ∈ TB. Then Bochner’s
theorem is simply the statement that set of Re q for which the Laplace transform converges
is convex. In more details, for the purposes of this explanation let us additionally assume
that the function f̂(q) does not grow too fast at large imaginary q, such that the inverse
transform makes sense (this property can be verified directly in the applications below):

f(x) =
ˆ

b+iRm

dmq

(2πi)m
eq·xf̂(q) . (A.15)

Convergence in a neighborhood of some b ∈ B means that |f(x)/eb·x| does not grow exponen-
tially as |x| → ∞ in any direction. Now, since the contour can be deformed to any b ∈ B, we
conclude that the direct transform converges at large |x| for any point q in the interior of TB :

f̂(q) =
ˆ

dmx e−q·xf(x) for Re q ∈ B . (A.16)

One may say that the Laplace transform and its inverse manifest the assumed analyticity of
f̂(q). Now, if q1 and q2 are any two points in the interior of TB , then the transform will also
converge anywhere on the line connecting them, because the exponential function is convex:∣∣∣e−[λq1+(1−λ)q2]·x

∣∣∣ ⩽ λ
∣∣e−q1·x∣∣+ (1− λ)

∣∣e−q2·x∣∣ for 0 ⩽ λ ⩽ 1 . (A.17)

This line of thought is made into a rigorous mathematical proof in [19, section 2], where
the authors then proceed to generalize it to a local version.

Let us mention that the same arguments also apply to so-called flattened tubes, which
are lower-dimensional tubes, i.e., not open sets in Cm [72]. Technically speaking, this is the
version of the tube theorem used in the final step of the proof of crossing below.

Implication: analyticity at large energy. We are now well-equipped to complete the
proof of crossing symmetry for 2→ 2 scattering with a mass gap (we will use that m > m

so that the mass shell is isolated from other cuts). While the full details of the last step
become incredibly technical [2, 3], their essence can be explained on a simplified toy model
we consider now. Below we will argue that the model is actually justified for sufficiently
large |s|. We closely follow [73, appendix A.2].

Since tube theorems become useful only starting in two complex dimensions, the simplest
setup in which we can get some mileage is a two-dimensional subspace of the off-shell kinematic
space. The (ξ, p+)-plane in (A.4) is precisely what we need. Since p+ ∝ s at large s (we hold
p−4 fixed), we will refer to it in this section as the (ξ, s)-plane for better readability. We wish
to show analyticity in the neighborhood of the on-shell kinematic point ξ = 0 and a subset
of the upper half-plane in s connecting the physical region in the s-channel (say, located in
s > s2) to that of the u-channel from the unphysical side (located in s < s1 < s2).
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Figure 19. Application of the tube theorem to proving analyticity of gapped on-shell 2→ 2 scattering
amplitudes needed for crossing symmetry. Top: the global but off-shell region is a topological product
of a disk in ξ and the upper half-plane in s (blue). Middle: the on-shell but local region is a disk
times an infinitesimal neighborhood of the physical regions (red). The change of variables to (ξ′, s′)
converts both of them into tubes. Bottom: the tube theorem allows us to interpolate between the two
regions to one that can be simultaneously on-shell and analytic in the asymptotic region of s in the
upper half-plane connecting the s-channel to the u-channel from the wrong side.

The toy model starts by assuming that the domain D1 in (A.6) contains a neighborhood
of size r1 around some off-shell point ξ = ξ1 < ξ0, times the whole upper half-plane in s. It
is illustrated in figure 19 (top). We also use the domain D2, which contains the product of
a disk of radius r2 around ξ1, times a neighborhood of the real s axis for sufficiently large
s. This is shown in the middle row of figure 19. The disk of radius r2 only needs to be
sufficiently large that it contains the origin. Note that the first assumption goes beyond what
we have shown so far: it does not follow from the above discussion that D1 contains a circle
of uniform radius r1. This is the only assumption that we will need to address below.

The above regions are not yet tubes. However, we can convert them into ones using
the following change of variables

ξ′ = log(ξ − ξ1) and s′ = i log
(
s− s1
s− s2

)
. (A.18)
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They are chosen carefully such that lines of constant Re ξ′ are circles around the point ξ1
within the ξ-plane. Likewise, lines of constant Re s′ are arcs connecting s1 and s2 in the
upper half-plane of s. For both D1 and D2, they remain unconstrained. Therefore, in these
variables both regions are tubes of the form Dj = Bj + iR2 with the bases illustrated in
figure 19 (right). More concretely, they are given by (the neighborhoods of)

B1 = {Re ξ′ |Re ξ′ < log r1} × {Re s′ | 0 < Re s′ < π} , (A.19a)
B2 = {Re ξ′ |Re ξ′ < log r2} × {Re s′ |Re s′ = 0} . (A.19b)

Since the base B2 is one-dimensional, D2 is an example of a flattened tube.
We can now apply the (flattened) tube theorem, which amounts to taking the convex

hull of the two bases. That is,

ch(B1 ∪B2) =
⋃

0⩽λ⩽1
{Re ξ′ |Re ξ′ < log(rλ

1 r
1−λ
2 )} × {Re s′ | 0 < Re s′ < λπ} . (A.20)

The result is illustrated in green in figure 19 (bottom right). Finally, mapping the result back
to the original variables (ξ, s), we obtain the green regions illustrated in figure 19 (bottom).
They effectively provide an interpolation between the blue and red regions across both variables
simultaneously, thereby enabling us to attain our final goal: connecting the s- and u-channel
kinematics. To summarize, we found the domain (A.20) which contains a neighborhood of
the on-shell point ξ′ = log |ξ1| times the region 0 < arg s−s2

s−s1
< λ∗ = log r2/|ξ1|

log r2/r1
, which links the

s and u channels. If λ∗ is small, the highest point of the “bridge” is at s ≈ s1+s2
2 + i s2−s1

λ∗
.

It is instructive to estimate the size of the s-region obtained by this method. At large
|t| ≫ m2, we have ξ1 ∼ t

4 large, and r2 ≈ |ξ1|+m2 −m2 nearby. On the other hand, r1 does
not have to shrink and we can take r1 ∼ m2. Thus λ∗ ∼ m2−m2

|t| log(−t/m2) ≪ 1. At the same time,
we expect s2 − s1 ∼ |t| since the separation between the physical s- and u-channel regions is
linear in t. Thus, the highest point of the bridge is asymptotically at

Im s ∼ t2 log(−t/m2)
m2 −m2 . (A.21)

(Ref. [20] states without a proof the bound ∼ |t|3+ε for any ε > 0 which appears less optimal
than ours.) Note that this bound diverges as the gap between single-particle poles and
multi-particle cuts shrinks, m2 → m2, which is as expected since the method leverages this
gap. This is reminiscent of the analytic obstructions encountered in section 6 when internal
massless particles are involved. On the other hand, it remains unclear whether for 2 → 2
scattering there really can be s-plane singularities (anomalous thresholds) in this region or
if the method is simply being too conservative.

Justifying a technical assumption. Let us finally address the technical question of
uniformity of the ξ neighborhood inside D1, which we assumed above to contain a disk of fixed
radius r1 around ξ = ξ1 < ξ0. Away from real s there is nothing to do, since the primitive
domain of analyticity (A.5) already contains such a region which is somewhat larger than D1:

D′1 = {(p+, ξ) | 0< arg p+<π and −π+arg p+< arg(ξ0−ξ)< arg p+} . (A.22)
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Thus, if we stay away from the real p+ (or s) axis by a finite angle, ϵ < arg s < π−ϵ, then for
large enough s, D′1 uniformly contains a wedge | arg(ξ0 − ξ)| < ε to the left of ξ = ξ0, which
certainly contains finite-radius balls centered around some point ξ1 < ξ0. What we need to
prove is that this ball does not shrink as arg s→ 0 for any Re s > s2. This is plausible because
when arg s = 0, the domain D2 tells us that the correlator is analytic in a full ξ half-plane
(Re ξ < m2 −m2): it would be surprising for a ξ-plane singularity to appear as arg s → 0,
and yet to remain invisible in some open neighborhood of a two-variable region containing
the real axis Im s = 0. Mathematically, we believe that this follows simply by combining D′1
and D2 using the local version of the tube theorem proved by Bros and Iagolnitzer [19].

Historically, this theorem was not available at the time of the original Bros-Epstein-Glaser
proof [3]. Unfortunately, a simplified account of the proof incorporating these later ideas
does not seem to have been published. The historical alternative was instead to combine the
global tube theorem with a clever change of variables of the sort leading to [3, Lem. 4],

ξ′′ = 2 sin−1
(

m2 −m2 − ξ
m2 −m2 − ξ0

)
and s′′ = −i log(s− s2) . (A.23)

In these variables, ξ = ξ0 maps to ξ′′ = π. The domain D′1∪D2 then contains a neighborhood
of the (flattened) tubes

(
{Re ξ′′ = π} × {0 < Re s′′ < π}

)
∪
(
{0 < Re ξ′′ < π} × {Re s′′ = 0}

)
, (A.24)

whose convex hull contains the so-far missing wedge 0 < arg(s − s2) < ϵ, times the region
ϵ < Re ξ′′ < π. The latter differs by ϵ from the original D2 half-plane Re ξ < m2−m2 and thus
it certainly contains constant-radius balls near ξ0. A similar argument with s′′ = i log(s1 − s)
takes care of the ϵ-wedge near the negative s axis, thus concluding this technical aside.

A.2 Local analyticity near the mass shell for m→ n scattering

The generalization of the above global arguments is not known for higher-multiplicity scattering
(with the exception of the 2 → 3 case [5]), however a lot is known about local analyticity
near the mass shell, which has been studied in [4] exploiting Bros and Iagolnitzer’s powerful
“local Fourier transform” [19]. This provides the starting point of crossing paths, and, at the
same time, a rigorous foundation for the LSZ reduction formula. Here we review the basic
constructions of [4]; other useful reference are the proceedings [74] and the book [75]. The
basic question is: why are amplitudes analytic functions of on-shell momenta? The answer,
it turns out, is that amplitudes are often not analytic!

Essential support. The manipulations in section A.1.2 use retarded functions to define
functions with good global analyticity properties. Here we will exploit that, around some
given real kinematic point p = (p1, p2, . . . , pn), many such representations agree. The analysis
will be best done in position space by studying convergence of the Fourier integral (A.1).

To simplify the discussion, let us introduce the notation

T (S) = T {j(xS1)j(xS2) · · · } , (A.25)
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for a multi-particle label S, such that the original LSZ formula in (A.1) contains T (12 · · ·n).
The trick, then, is to study more general chains of time-ordered products of the form

⟨0|T (I)T (J) · · · T (K)|0⟩ , (A.26)

where the labels {1, 2, . . . , n} have been partitioned into disjoint sets I, J, . . . ,K. To illustrate
why these objects are useful, let us consider the simplest example, namely T (12 · · ·n−1)T (n).
Inserting a complete basis of states between the two operators T , we have

⟨0|T (12 · · ·n−1)T (n)|0⟩ =
∑̂
X

⟨0|T (12 · · ·n−1)|X⟩ ⟨X|j(xn)|0⟩ . (A.27)

After integrating over xn, the second expectation value vanishes unless −p2n > m2
n. Hence,

if the n-th particle is stable, (A.27) always integrates to zero.
The key idea is to subtract such quantities, which vanish in the kinematics of interest,

from the integrand of (A.1) in order to improve its convergence. For example, we can write

Gn(p) =
ˆ n∏

j=1
dDxj e−ipj ·xj ⟨0|T (123 · · ·n)− T (12 · · ·n−1)T (n)|0⟩ , (A.28)

which computes the same function as (A.1) in a neighborhood of the mass shell. Written
this way, the integrand has a smaller support in position space: it vanishes if xn is in the
past of, or is spacelike from, each x1, x2, . . . , xn−1. This implies more analyticity in the
momentum (Fourier dual) space.

Repeating the same logic for different choices of sprinkling particles among time-ordered
products results in a collection of support regions R1, R2, . . . , Rq. Just as in the above
example, we have to commit to specific kinematic conditions of the type −p2S < m2

S in various
channels and hence the collection of regions Ra that can be used to compute the same
amplitude depends on the kinematic point p. The essential support is then the intersection
of all these regions, namely

ESp =
q⋂

a=1
Ra . (A.29)

Another way to understand ESp is as describing the coordinate-space region in which the
correlator does not decay exponentially. More precisely, for x /∈ ESp, the correlator either
decays exponentially at large |x| or oscillates at frequencies that are distinct from p (and
therefore decay exponentially after applying a suitable smearing function).

The following theorem [4] lies at the heart of establishing local analyticity using this
concept. The theorem requires that we first reorganize the essential support as a union of
convex pointed12 cones C1, C2, . . . , Cr:

ESp =
r⋃

b=1
Cb . (A.30)

12A cone is pointed if it does not contain any complete line. That is, it is not possible to find two points
that define an infinite line which lies entirely within the pointed cone. The future light-cone V + defined earlier
in the text is an example of such cone. The dual of a pointed cone is an open cone.
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The theorem then states that the Fourier transform Gn can be written as the sum

Gn(p) =
r∑

b=1
Gb(p) , (A.31)

where each Gb is an analytic function in a complex neighborhood of p intersected with
the dual cone

Čb =
{

p
∣∣∣∣− n∑

j=1
Im pj · xj > 0 for all x ∈ Cb

}
. (A.32)

In effect, the theorem states that Gn enjoys the same analyticity properties as the Fourier
transform of a function which decays exponentially for x outside ESp. The “neighborhood”
part means that the theorem is about the directions in Im pj along which small imaginary
parts can be added; the overall magnitude of allowed imaginary parts is not computed
(although the proof gives some insight, as discussed below).

When r = 1 in (A.31) we say that the correlator is the boundary value of an analytic
function of momenta near p. This is the familiar situation where for example the 4-point
scattering amplitude in s-channel kinematics is analytic upon adding the correct infinitesimal
shift: M34←12 ≡ limε→0+M34←12(s + iε, t).

Situations that require r > 1 mean that the correlator is a sum of boundary values of
analytic functions Gb’s whose iε directions are mutually incompatible. A familiar example is
the discontinuity Discs>s2M34←12(s, t), which (again in real s-channel kinematics, s > s2) is
the difference between a function analytic with s+ iε and one with s− iε. While each piece
can be separately analytically continued, in general their sum cannot: for example, knowing
Discs>s2M34←12(s, t) for pion scattering below the four-particle threshold does not determine
the discontinuity above that threshold.13 A surprising fact is that, at higher multiplicity, this
phenomenon can affect even the conventional time-ordered amplitude M! Explicit examples
have been found in perturbation theory [48, 76–80].

A simple example. To illustrate this construction more clearly, let us focus on the simplest
case of 34← 12 (or s-channel) scattering, in which p3 and p4 have positive energies, while
p1 and p2 have negative energies, all of them being close to the mass shell. We wish to
determine the essential support.

We already saw that T (1234) − T (123)T (4) is supported in the region

R1 = {(x1, x2, x3) ⩽ x4} , (A.33)

where {x ⩽ y} means that x is in the past lightcone of y, and the parentheses are or
statements: R1 is the region where x1, x2 or x3 is in the last lightcone of x4. There is a
similar region from T (4)T (123), which reverses the time ordering leading to

R2 = {x4 ⩽ (x1, x2, x3)} . (A.34)

Permuting the labels, we obtain 2×
(4
1
)
= 8 similar regions if all external particles are stable.

In addition, we could subtract two-particle products like T (12)T (34), whose integral vanishes
13In practice, it is only when p is directly on a singularity, like s = 16m2

π here, that we expect the essential
support (A.30) to require more than one component.
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provided that p3 + p4 is below all the particle-production thresholds. Since both p3 and p4
absorb particles, this is certainly the case and gives the next support region

R9 = {(x1, x2) ⩽ (x3, x4)} . (A.35)

We can permute the labels in all
(4
2
)
= 6 ways. The only possibility we have to exclude is

T (34)T (12), which does not give rise to a vanishing contribution. This is because p1 + p2
can be above a production threshold, by definition of the s-channel.

All in all, we found 13 regions, whose intersection ES34←12 = ⋂13
a=1Ra upper-bounds

the essential support at any kinematic point in the s-channel. The intersection turns out
to be quite simple

ES34←12 = {x1 ≍ x2 ⩽ x3 ≍ x4} ≡ R =
4
3

1
2
. (A.36)

Here, the relation x1 ≍ x2 means that the two points must coincide in spacetime and similarly
for x3 ≍ x4; the first pair has to be in the past of the second. The set R is simply the
support of an (amputated) tree-level s-channel exchange diagram where the exchanged
particle could propagate along any future timelike direction. Adding identities from more
general products of three time-ordered products (a simple algorithm to produce combinations
with restricted support is described in [75, 81]) does not lead to a stronger result: the set
R is the smallest support that can be derived using generic causality arguments that apply
uniformly throughout the s-channel.

We stress that the above calculation, being uniform throughout the s-channel, only
provides an upper bound for ESp at a particular momentum p. Physically, we expect from
the Landau-Coleman-Norton picture of singularities that vertices can only separate along
the (positive) line (x3 − x2)µ ∝ (p3 + p4)µ rather than along an arbitrary future-timelike
direction. Furthermore, this should only be possible exactly on a Landau singularity: for a
generic kinematical point p we expect ESp = {x1 ≍ x2 ≍ x3 ≍ x4} to be a simple contact
diagram, synonymous with the amplitude being analytic in a complex neighborhood of p.

The cone R is pointed and therefore we only need a single term in the decomposi-
tion (A.30). The dual cone of R can be computed by imposing∑4

j=1Im pj ·xj < 0 ∀x ∈ R (A.37a)
⇔ Im(p1+p2)·x1 + Im(p3+p4)·x3 < 0 ∀ x1 ⩽ x3 (A.37b)
⇔ Im(p3+p4)·(x3−x1) < 0 ∀ 0 ⩽ (x3−x1) (A.37c)
⇔ Im(pµ

3+p
µ
4 ) ∈ V + . (A.37d)

In the third line we used momentum conservation. This shows that the amputated correlator
is analytic in a neighborhood of the mass shell for arbitrary (but sufficiently small) Im pµ

i ,
as long as Im(pµ

3 + pµ
4 ) > 0. Note that this condition implies

Im s = −2Re (p3 + p4) · Im (p3 + p4) > 0 . (A.38)

Hence, the off-shell Green’s function G4 is analytic in the s-channel approached from the
s+ iε direction, thus defining the scattering amplitude in this channel. However there are
no constraints on the imaginary part of t (as long as it is sufficiently small).
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We stress that the domain (A.37d) is much larger than the primitive domain (A.2)
obtained from generic considerations of retarded products. In particular, the method directly
explains why the Fourier transform (A.1) makes sense even when spacelike imaginary parts
are added to individual external momenta pµ

i , as is required to realize complex on-shell
momenta. Instead of repeatedly applying the edge-of-the-wedge theorem as done in the
early proofs of analyticity near the mass shell [2] (exemplified below (A.10)), one now has
to calculate intersections of physically-transparent causal sets.

Higher points and outlook. Following a similar logic, some explicit results on the shape
of the essential support of some n-point correlation functions have been obtained in [4]. For
example, for 2 → 3 scattering one finds r = 1 in the decomposition (A.30) at sufficiently
high energies, however in nonrelativistic kinematics the calculation leads to r = 3. See
also [75] for a review.

This phenomenon should be related to the examples [48, 76–80], but the precise connection
is not entirely clear to us. More generally, calculations based on generic causality considerations
can only provide an upper bound on the essential support and it would be useful to be
able to calculate the actual (minimal) essential support around a given point p, equivalent
to its “wave front set” [82, 83]. Adding some dynamical information (like the notion that
scattering slow particles in a gapped theory cannot produce intermediate states that propagate
ultra-relativistically over macroscopic distances) could conceivably lead to stronger rigorous
results, perhaps of the sort conjectured in [76].

Let us conclude with two comments on the decomposition (A.31). First, it is generally not
unique when r > 1. The ambiguities correspond roughly to the choice of a partition of unity
when integrating over the union of regions (A.30) [4]. In fact, the theorem could be proved
rather straightforwardly by inserting a partition of unity in the Fourier transform, if the real
neighborhood of p on which the different representations (eqs. (A.1), (A.28) etc.) agree were
replaced by the full Rn. The non-trivial feature of the theorem is its local nature near p.

Second, its proof uses Bros and Iagolnitzer’s local Fourier transform [19] mentioned above,
which is constructive and leads to concrete estimates on the size of the complex neighborhood
in which (A.31) holds. If the different representations all agree in a real ball |p − p0| < r

around p0, then (as far as we understand) the resulting complex domain is guaranteed to
contain the points p = p0 + iq with |p− p0|+ |q| < r. The local Fourier transform suppresses
“wrong-frequency” components simply by convolving the correlator Gn(x) against a Gaussian
with position-dependent width ∆x ∼

√
|x|. The transform remains largely unexplored and

it is interesting to ask whether the same idea could lead to stronger results for the regions
−p2S < m2

S that appear in physics.

B Cuts of one-loop integrals in embedding space

In this section, we review the embedding space formalism and how it can be used to compute
cuts [37], as was done in section 5.3. We warn the reader that the cuts computed in this way do
not necessarily land on the right sides of the branch cuts, as explained in [37], but this was not
a concern for us since the branch of the box cut in section 5.3 was unambiguous. For a given
Feynman integral, the parameterization to embedding space is achieved by first associating
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to each inverse propagator (momenta labelled with the subscript E are Wick-rotated),

Di = (ℓE + pE,Ii)2 +m2
Ii
, (B.1)

a point in CPD+1 defined by

Xi =

 pµ
E,i

p2E,Ii
+m2

Ii

1

 . (B.2)

Given the two extra lightlike coordinates

Y =

ℓ
µ
E
ℓ2E
1

 and X∞ =

0
µ

1
0

 , (B.3)

together with the bilinear form on CPD+1

(ZW ) = −zµwµ −
1
2Z

+W− − 1
2Z
−W+, (B.4)

where we have used the notation

Z =

 z
µ

Z+

Z−

 , (B.5)

a one-loop integral in our conventions takes the following form

Mn-gon = 1
πD/2

ˆ
γ

dD+2Y δ[(Y Y )]
GL(1)

[−2(X∞Y )]n−D
[−2(X1Y )] · · · [−2(XnY )] . (B.6)

Here, the integration contour γ runs over the real quadric defined by (Y Y ) = 0 in CPD+1

as indicated with the delta function, and n is the number of internal edges in the diagram.
One can demonstrate that all one-loop integrals, whether cut or uncut, can be expressed
using the same type of functions QD

n , defined according to

QD
n (X1, . . . , Xn, X0) =

1
πD/2

ˆ
γ

dD+2Y δ[(Y Y )]
GL(1)

[−2(X0Y )]n−D
[−2(X1Y )] . . . [−2(XnY )] . (B.7)

Note that the normalization of this integral differs from the one in [37] to match our conventions.
On one hand, if X0 = X∞, then (B.7) simplifies to a standard one-loop integral, namely

Mn-gon = QD
n (X1, . . . , Xn, X∞) . (B.8)

On the other hand, the cut integral CutCMn-gon, where C comprises a subset of the prop-
agators in (B.6), takes the form

CutCMn-gon = (−πi)c

πc/2√YC
QD−c

n−c (X ′C,c+1, . . . , X
′
C,n, X

′
C,∞) , (B.9)
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where c = |C| and where YC is a (modified) Cayley determinant, which has a simple
expression in terms of the Xi’s

YC = (−1)c det(XiXj)i,j∈C (assuming ∞ /∈ C) . (B.10)

In practice, it is often useful to write the scalar products (X ′C,iX
′
C,j) in terms of the Xi:

(X ′C,iX
′
C,j) =

1
(−1)c YC

det


(X1X1) . . . (XcX1) (XiX1)

...
...

...
(X1Xc) . . . (XcXc) (XiXc)
(X1Xj) . . . (XcXj) (XiXj)

 . (B.11)

Furthermore, the integral QD
n is easily written as a parametric integral in Feynman parameter

space [84]. The result is

QD
n (X1, . . . , Xn, X0) =

Γ(D/2)
Γ(D− n)

ˆ da0 · · · dan

GL(1) aD−n−1
0 [−(ξξ)]−D/2 , (B.12)

where ξ =∑n
i=0 aiXi. Plugging this result in (B.9) gives a Schwinger-parameter representation

for the cut integral.

C Massless pentagon differential equation

In this appendix, we provide additional details regarding the differential equation that we
derived for the massless pentagon. The (transpose of) the differential equation is given by

dΩ⊤ =
(

A B

06×5 C

)
, (C.1)

where

A = −diag ([W5], [W3], [W1], [W4], [W2]) ,

B = −2



[
W15
W20

] [
W12
W19

]
0

[
W5W17
W12W15

]
0 − 1

32

[
W28W29

W26

][
W3W20
W13W15

]
0

[
W13
W18

] [
W15
W17

]
0 − 1

32

[
W26W27

W29

][
W13
W20

]
0

[
W1W18
W11W13

]
0

[
W11
W16

]
− 1

32

[
W29W30

W27

]
0

[
W14
W19

] [
W11
W18

]
0

[
W4W16
W11W14

]
− 1

32

[
W27W28

W30

]
0

[
W2W19
W12W14

]
0

[
W12
W17

] [
W14
W16

]
− 1

32

[
W26W30

W28

]


,

C =



[
W20

W1W5

]
0 0 0 0 1

32 [W29]
0

[
W19

W4W5

]
0 0 0 1

32 [W28]
0 0

[
W18

W3W4

]
0 0 1

32 [W27]
0 0 0

[
W17

W2W3

]
0 1

32 [W26]
0 0 0 0

[
W16

W1W2

]
1
32 [W30]

0 0 0 0 0 2[W31]− [W1W2W3W4W5]


,
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and where the symbol [X] is a shorthand for d log(X). The differential equation alphabet con-
sists of a proper subset of the planar pentagon alphabet denoted as AP = {W1, . . . ,W31} [43].
Setting {s12, s23, s34, s45, s51} = {v1, v2, v3, v4, v5}, these are explicitly given by

W1 = v1 ,

W6 = v3 + v4 ,

W11 = v1 − v4 ,

W16 = v4 − v1 − v2 , (C.2)

W21 = v3 + v4 − v1 − v2 ,

W26 =
v1v2 − v2v3 + v3v4 − v1v5 − v4v5 −

√
∆

v1v2 − v2v3 + v3v4 − v1v5 − v4v5 +
√
∆
,

W31 =
√
∆ ,

with W1+i,W6+i,W11+i,W16+i,W21+i,W26+i, with i = 1 . . . 5, defined by cyclic symmetry. It
is worth noting that the symbols Wi, where i ranges from 26 to 30, are of parity-odd nature.
Specifically, these symbols transform to their inverse under the transformation ∆ → −∆,
while all other symbols are of parity-even nature under the same transformation.

D Numerical method for solving differential equations

In this section, we present details on a simple numerical method for solving canonical
differential equation satisfied by a set of (polylogarithmic) master integrals. While the
approach is discussed with more details in [45] (see also [85, 86]), this section will focus on
a specific example to illustrate the practical implementation of the method.

We will focus on the massless pentagon family, which is introduced in section 5.4. The
differential equation satisfied by the pure master integrals is provided in (C.1) for generic
kinematics. To keep things simple, we will limit our discussion to the multi-Regge regime,
although this is not necessary for the method outlined below to work (for example, we used
it to move between disconnected multi-Regge limits in section 5.4).

We will use (5.60) as the boundary condition and further set s = s1 = s2 = 1. We will
be referring to it as I⃗0. Our goal is to transport I⃗0 (defined at the singular point z = z̄ = 0)
to z = z̄ = 1 by solving

dI⃗ = ϵ dΩ(z, z̄) · I⃗ , (D.1)

along the straight line z = z̄.
As a first step, we set a sequence of paths in the (z, z̄) plane, each starting at a singularity

of the differential equation and ending at a regular point that is approximately equidistant to
the nearest singularity (this choice ensures a better numerical convergence of the algorithm).
On the line z = z̄, the singularities are located at (0, 0), (1/2, 1/2), and (1, 1). A natural
set of paths is

γ1(t) = {(z, z̄) = (t, t) | 0 ⩽ t ⩽ 1/3} ,

γ2(t) = {(z, z̄) = (1/2− t, 1/2− t) | 0 ⩽ t ⩽ 1/6} ,
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γ3(t) = {(z, z̄) = (1/2 + t, 1/2 + t) | 0 ⩽ t ⩽ 1/6} ,

γ4(t) = {(z, z̄) = (1− t, 1− t) | 0 ⩽ t ⩽ 1/3} . (D.2)

Transporting along these paths, the solution is formally given by

I⃗1 = P exp
(
ϵ

ˆ
γ−1

4

dΩ(t)
)
· P exp

(
ϵ

ˆ
γ3

dΩ(t)
)

· P exp
(
ϵ

ˆ
γ−1

2

dΩ(t)
)
· P exp

(
ϵ

ˆ
γ1

dΩ(t)
)
· I⃗0 .

(D.3)

Subsequently, we evaluate the path-ordered exponential using a series expansion. The method
relies on the fact that the differential equation has, at worst, simple poles. In particular,
the pullback of dΩ(t) along the path γi(t) takes the form

dΩ(t) =

A
(i)
0
t

+
∑
k⩾0

tkA
(i)
k+1

 dt , (D.4)

where the matrices A
(i)
• are purely numerical. Note that if square roots were present, (D.4)

would contain half-integer powers of t. Moreover, if the expansion is done near a regular
point, it is understood that A

(i)
0 = 0.

Next, the gauge transformation I⃗ = T (i) · I⃗(i) isolating the pole at t = 0
(
T (i)

)−1
·
(
ϵ∂tΩ(t) · T (i) − ∂tT

(i)
)
= ϵ

A
(i)
0
t

, (D.5)

can be recursively constructed as the double series

T (i)(t, ϵ) = 1+
∞∑

k=1

∞∑
m=1

tkϵmT
(i)
k,m , (D.6)

where
T

(i)
k,1 =

1
k

A
(i)
k ,

T
(i)
k,m = 1

k

[A(i)
0 ,T

(i)
k,m−1

]
+

k−1∑
j=1

A
(i)
k−j · T

(i)
j,m−1

 , ∀m > 1 .
(D.7)

The recurrence relations are derived at the very end of this section. The equation can therefore
be solved systematically in terms of t and ϵ order by order (we will in general truncate the
series in ϵ to O(ϵ4)), yielding an explicit expression for T (i). The gauge transformed differential
equation in (D.5) is easily solved as a power-law in t

(i)
e.p., where t(i)e.p. labels the endpoint of

the ith-contour. Inverting the gauge transformation gives us the solution to the original
set of master integrals. In particular,

P exp
(
ϵ

ˆ
γi

dΩ(t)
)

= T (i)(t(i)e.p., ϵ) · exp
(
ϵ log(t(i)e.p.)A

(i)
0

)
, (D.8)

and similarly

P exp
(
ϵ

ˆ
γ−1

i

dΩ(t)
)

= exp
(
−ϵ log(t(i)e.p.)A

(i)
0

)
· (T (i)(t(i)e.p., ϵ))−1 . (D.9)
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Note that the matrix T (i) is typically defined as an infinite series. However, since the (regular)
endpoint of each integration contour γi in (D.2) is roughly equidistant to its nearest singularity
(which is the starting point of γi+1), the series T (i) converges quickly at a finite order in t,
providing an accurate approximation of the initial condition on which either T (i+1) acts.

By substituting (D.8) and (D.9) into (D.3), we can achieve an approximation of the
solution at z = z̄ = 1 with a desired level of numerical accuracy. In this specific calculation,
we limited each series in t to O(t1500), which provides confidence in the result up to roughly
∼ 265 digits.

To conclude this section, we obtain the recursive relationships stated in (D.7) by sub-
stituting the ansatz

T (i) = 1+
∑
k⩾1

tkT
(i)
k , (D.10)

and equation (D.4) into (D.5) and organizing the resulting terms according to their powers
of t. It can be shown through a straightforward computation that

ϵ∂tΩ(t) · T (i) − ∂tT
(i) − ϵT (i) · A

(i)
0
t

= 0 , (D.11)

⇐⇒

∑
k⩾1

tk−1

ϵ [A(i)
0 ,T

(i)
k

]
+ ϵA

(i)
k + ϵ

∑
j⩾1

tjA
(i)
k · T

(i)
j − kT

(i)
k

 = 0 . (D.12)

To factor the t-dependence completely from the third term, we use

∑
k⩾1
j⩾1

tk−1+jA
(i)
k · T

(i)
j =

 ∞∑
k=1+j

tk−1−jA
(i)
k−j

 · ( ∞∑
k=1

tjT
(i)
j

)
(D.13a)

=
∞∑

k=1

∞∑
j=1

tk−1A
(i)
k−j · T

(i)
j −

∞∑
j=1

j∑
k=1

tk−1A
(i)
k−j · T

(i)
j (D.13b)

=
∞∑

k=1

k−1∑
j=1

tk−1A
(i)
k−j · T

(i)
j . (D.13c)

To derive the final term from the third term, we made use of the fact that A
(i)
k−j is non-zero

only for k ⩾ j, and that the double series initially begins at order t1 to exclude the case
where k = j. By combining these observations, we arrive at the contiguous relation

T
(i)
k = ϵ

k

A
(i)
k +

[
A

(i)
0 ,T

(i)
k

]
+

k−1∑
j=1

A
(i)
k−j · T

(i)
j

 . (D.14)

In particular, we see that T
(i)
k = O(ϵ). This instructs us to expand T

(i)
k further in ϵ

T
(i)
k =

∑
m⩾1

ϵmT
(i)
k,m . (D.15)

Plugging (D.15) into (D.14) and collecting powers of ϵ, we recover (D.7).
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