
J
H
E
P
0
4
(
2
0
2
4
)
0
5
4

Published for SISSA by Springer

Received: February 6, 2024
Accepted: March 14, 2024
Published: April 11, 2024

Four-dimensional N = 2 superconformal long circular
quivers

M. Beccariaa and G.P. Korchemskyb,1

aUniversità del Salento, Dipartimento di Matematica e Fisica “Ennio De Giorgi”,
and I.N.F.N. - sezione di Lecce,
Via Arnesano, I-73100 Lecce, Italy

bInstitut de Physique Théorique, Université Paris Saclay, CNRS,
91191 Gif-sur-Yvette, France

E-mail: matteo.beccaria@le.infn.it, gregory.korchemsky@ipht.fr

Abstract: We study four-dimensional N = 2 superconformal circular, cyclic symmetric
quiver theories which are planar equivalent to N = 4 super Yang-Mills. We use localization
to compute nonplanar corrections to the free energy and the circular half-BPS Wilson loop
in these theories for an arbitrary number of nodes, and examine their behaviour in the limit
of long quivers. Exploiting the relationship between the localization quiver matrix integrals
and an integrable Bessel operator, we find a closed-form expression for the leading nonplanar
correction to both observables in the limit when the number of nodes and ’t Hooft coupling
become large. We demonstrate that it has different asymptotic behaviour depending on
how the two parameters are compared, and interpret this behaviour in terms of properties
of a lattice model defined on the quiver diagram.

Keywords: AdS-CFT Correspondence, Extended Supersymmetry, Matrix Models, Scale
and Conformal Symmetries

ArXiv ePrint: 2312.03836

1Unité Mixte de Recherche 3681 du CNRS.

Open Access, © The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP04(2024)054

mailto: matteo.beccaria@le.infn.it
mailto:gregory.korchemsky@ipht.fr
https://doi.org/10.48550/arXiv.2312.03836
https://doi.org/10.1007/JHEP04(2024)054


J
H
E
P
0
4
(
2
0
2
4
)
0
5
4

Contents

1 Introduction and summary 1

2 Matrix model representation 6

3 Large N expansion of the free energy 12
3.1 Leading nonplanar correction 12
3.2 Next-to-leading nonplanar correction 13
3.3 Nonplanar corrections at weak and strong coupling 15

4 Free energy in the long quiver limit 18

5 Circular Wilson loop 21

A Strong coupling expansion 24

B Resummation 28

1 Introduction and summary

In this paper, we continue the study initiated in [1] of a special class of four-dimensional
N = 2 superconformal gauge theories which are planar equivalent to N = 4 SYM theory.
A distinguished feature of these theories is that various observables, e.g. free energy on
four-sphere and circular half-BPS Wilson loop, can be computed exactly, for arbitrary value
of the coupling constant and rank of the gauge group, in terms of matrix model integrals
using the localization technique [2, 3]. The actual evaluation of these matrix integrals turns
out to be a nontrivial task due to a complicated non-polynomial form of interaction potential.
The latter is given by an infinite sum of single and double trace terms [4–7].

In the previous work [1], we developed a technique for the systematic expansion of such
matrix integrals at large N and applied it to determine the nonplanar corrections in various
N = 2 superconformal theories including the two-nodes quiver theory with the gauge group
SU(N)× SU(N). Here we shall apply this technique to compute the free energy and circular
half-BPS Wilson loop in N = 2 superconformal circular quiver theory for an arbitrary number
of nodes L ≥ 2. In what follows we refer to this theory as QL model.

The field content of the QL model can be represented as a circular quiver diagram shown
in figure 1. This model has the SU(N)L gauge symmetry and depends in general on L

independent ’t Hooft couplings, one per each SU(N) factor. At strong coupling, it is dual to
type IIB string theory on the AdS5 × (S5/ZL) background [8]. The planar limit of the QL

model was studied both at weak and strong ’t Hooft couplings in [4, 7, 9–19]. For simplicity,
we will assume that all couplings are equal and denote them as λ. In this case, the QL model
coincides with the ZL orbifold of N = 4 SYM with the SU(LN) gauge group [20].
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Figure 1. Diagrammatic representation of the circular quiver theory. Each node represents SU(N) vec-
tor multiplet and lines connecting neighbouring nodes represent hypermultiplets in the bi-fundamental
representation of SU(N)× SU(N). In the localization matrix model representation, the same diagram
defines a lattice model with L sites equipped with a nearest neighbour interaction.

In the planar limit, the QL model is equivalent to L copies of N = 4 SYM with the
SU(N) gauge group but the two models are different beyond this limit. In particular, the
free energy of this model defined on the unit four-sphere has the following form

FQL
= LFN=4 +∆FQL

, (1.1)

where FN=4 = −1
2(N

2 − 1) log λ is the free energy of N = 4 SYM theory with the SU(N)
gauge group. The nonplanar correction to the free energy ∆FQL

admits an expansion in
powers of 1/N2

∆FQL
= F

(0)
L + 1

N2F
(1)
L +O(1/N4) . (1.2)

Our goal in this paper is to determine the dependence of the coefficient functions F (0)
L , F

(1)
L , . . .

on ’t Hooft coupling λ and the number of nodes L. For the simplest, two-nodes quiver QL=2
model, this problem was studied in [1].

Another motivation of the present work is to explore the limit of large number of nodes
in the QL model. This limit has been previously discussed in application to superconformal
theories with eight supercharges that correspond to conformal fixed points of linear quiver
gauge theories in d dimensions [21–25]. In the special case of d = 4 relevant to our discussion,
four-dimensional N = 2 superconformal long linear quiver theories were recently analyzed
at large N in [26]. Unlike the QL model, these theories differ from N = 4 SYM already
in the planar limit. The leading O(N2) contribution to the free energy in these theories is
a nontrivial function of the number of nodes L and ’t Hooft coupling. At strong coupling
and large L, its asymptotic behaviour depends on the order of limits — the free energy
of the long linear quiver grows as O(N2L) if the number of nodes is much larger than the
’t Hooft coupling and O(N2L logL) otherwise. In contrast, the free energy of the circular
quiver theory (1.1) grows as FQL

= O(N2L) at large L, independently on the value of the ’t
Hooft coupling constant. We compute below the leading nonplanar correction to the free
energy (1.1) and show that, similar to the planar contribution to the free energy of the long
linear quiver, its asymptotic behaviour at strong coupling and large L depends on how these
two parameters are compared (see eqs. (1.6) and (1.7) below).
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The localization yields the partition function of the QL−model on the unit sphere,
ZQL

= e−FQL , as an integral over the SU(N) matrices AI describing zero modes of scalar
fields in vector multiplets at all nodes I = 1, . . . , L (see (2.8) below) [2, 3]. Discussing its
dependence on the number of nodes, it is advantageous to think about the quiver diagram
shown in figure 1 as defining a one-dimensional lattice model with L sites. The degrees of
freedom at each site are described by the matrices AI subject to periodic boundary condition
AI+L = AI . They interact among themselves as well as with their nearest neighbours
at the sites I ± 1. The form of the interaction potential is fixed by the potential of the
localization matrix model. The free energy of the QL−model (1.1) coincides with the free
energy of this lattice model.

Using this identification, the free energy FQL
can be expressed as the sum over excitations

propagating across the one-dimensional lattice shown in figure 1 and interacting with each
other. The number of sites can be arbitrary 2 ≤ L < ∞, but the limit of large L is of
a special interest. In this limit, the lattice degenerates into a circle with circumference
O(L) and the free energy of the lattice model is expected to exhibit an extensive behaviour,
FQL

= O(L), provided that the effective interaction between different sites is short-range.
The last condition depends on the values of 1/N and λ.

As mentioned above, the planar contribution to the free energy (1.1) grows linearly with
L for an arbitrary coupling constant λ. The question arises whether the same property holds
for the nonplanar correction to the free energy (1.1)

∆FQL

?= Lε(λ, 1/N) +O(L0) . (1.3)

Here the energy density ε(λ, 1/N) depends on ’t Hooft coupling and has large N expansion
similar to (1.2). We show below that the relation (1.3) holds at weak coupling. At strong
coupling, the validity of (1.3) depends on how L compares to

√
λ. We find that the relation (1.3)

is verified for L ≫
√
λ ≫ 1. In the opposite limit, for

√
λ ≫ L ≫ 1, the free energy ∆FQL

receives corrections that run in powers of L/
√
λ and, therefore, violate (1.3). In this case, the

lattice model becomes strongly correlated and the above mentioned condition is not satisfied.
To verify the relation (1.3), we computed the first two terms of the large N expansion of

the free energy (1.2) for arbitrary number of nodes L. We show below that, for arbitrary
coupling λ, they can be expressed in terms of a semi-infinite matrix whose entries are the
coefficients of the double trace terms entering the potential of the localization matrix model.
The same entries can be identified as matrix elements of a certain integral operator known in
the mathematical literature as a truncated Bessel operator.1 Applying the technique of [1]
and exploiting the known properties of the Bessel operator, we computed F

(0)
L and F

(1)
L for

arbitrary number of nodes L both at weak and strong coupling.
At weak coupling, the free energy ∆FQL

is given by series in ’t Hooft coupling that starts
at order O(λ2). The expansion coefficients are given by multilinear combinations of odd
Riemann zeta values ζ(2n+ 1) accompanied by rational L-dependent coefficients (see (3.19)
and (3.20) below). Going to the limit of large L, we find that, in agreement with (1.3), the

1It is interesting to notice that the same operator previously appeared in the study of level spacing
distribution in the matrix models [27] and, more recently, in the context of the AdS/CFT correspondence [28,
29].
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free energy ∆FQL
grows linearly with the number of nodes

∆FQL
= L

[ 3ζ(3)
128π4 λ

2 − 15ζ(5)
1024π6 λ

3 +O(λ4) +O(1/N2)
]
. (1.4)

This behaviour is not surprising because the effective interaction between different sites of
the quiver diagram in figure 1 is short range at weak coupling and, as a consequence, the
free energy has an extensive behaviour.

At strong coupling, the first two terms of the expansion of the free energy (1.2) are given by

F
(0)
L =

√
λ

(
L2 − 1

)
6L − 1

2(L− 1) log λ+O(λ0) ,

F
(1)
L = −λ3/2 (L2 − 1)(L2 + 1)

1920L3 + λ
(L2 − 1)(L2 − 9)

5760L3 +O(
√
λ) . (1.5)

The subleading corrections to both relations run in powers of 1/
√
λ, their explicit expressions

can be found in (3.30) and (3.31) below. As expected, the functions (1.5) have a nontrivial
dependence on the number of nodes 2 ≤ L < ∞. For L = 2, the relations (1.5) reproduce
the analogous expressions for the free energy in the Q2 model obtained in [1]. Notice that
the functions (1.5) vanish for an unphysical value L = 1. In this case, the quiver diagram
in figure 1 contains only one node. The corresponding localization matrix integral for FQL

becomes Gaussian and it coincides with the free energy of N = 4 SYM. As a consequence,
for L = 1 the nonplanar correction ∆FQL

has to vanish for arbitrary coupling constant.
At strong coupling, we can use (1.5) to verify that for L ≫ 1 the first few terms of

the strong coupling expansion of the free energy (1.2) grow linearly with L. However the
situation becomes more complicated when we include the subleading corrections in 1/

√
λ.

They take the following form at large L

∆FQL
= L

[
1
6
√
λ− log

√
λ

4π +
(

1
4 − 6 logA

)
− 1

4
√
λ
logL

]
+ f

(
L√
λ

)
+ . . . , (1.6)

where A is the Glaisher constant and dots denote corrections suppressed by powers of 1/N2

and 1/L. At large L and
√
λ, the subleading corrections to (1.6) run in powers of L/

√
λ.

They are described by the function f(L/
√
λ).

Remarkably, this function can be found in a closed form (see (4.6) below). It is interesting
to examine its behaviour for different values of the ratio l = L/

√
λ. At small l, or equivalently

L≪
√
λ, the function f(l) is given by a series in l that starts at order O(l2). The resulting

expression for the free energy (1.6) contains (L logL)/
√
λ term and does not satisty (1.3).

The reason why the free energy (1.6) does not grow linearly with L is that the quiver lattice
model becomes strongly correlated for

√
λ≫ L≫ 1, thus invalidating the relation (1.3).

At large l, or equivalently L ≫
√
λ, the function f(l) behaves as f(l) = l(log(4πl) −

c)/4+O(l0), where c is a constant defined in (4.7) below. Substituting this relation into (1.6)
we find that the term proportional to (L logL)/

√
λ cancels and we recover the expected

scaling behaviour (1.3)

∆FQL
= L

[
1
6
√
λ− log

√
λ

4π +
(

1
4 − 6 logA

)
− 1

4
√
λ

(
log

√
λ

4π + c

)]
+O(1/N2) +O(L0) .

(1.7)
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We would like to emphasize that this relation holds for L≫
√
λ≫ 1. As compared with (1.6),

the term proportional to logL gets replaced in (1.7) with log(
√
λ/(4π)) + c.

Another interesting quantity that can be computed in the QL model using the localization
technique is the expectation value of the half-BPS circular Wilson loop defined at one of
the nodes of the quiver. In virtue of planar equivalence of the QL model and N = 4 SYM,
the expectation value of the Wilson loops in these two theories coincide up to nonplanar
corrections. We find that the leading nonplanar correction to their ratio it is proportional
to a derivative of the free energy

WQL

WN=4
= 1− 1

4LN2λ
2∂λ∆FQL

+O(1/N4) . (1.8)

This relation is valid for arbitrary coupling λ and the number of nodes L. Similar relation
has been previously derived for other superconformal N = 2 theories including the Q2
model [1, 30].

At large L, the scaling behaviour (1.3) of the free energy implies that the nonplanar
O(1/N2) correction to (1.8) is independent of the number of nodes L. As explained above,
this property holds both at weak coupling and at strong coupling for 1 ≪

√
λ ≪ L. In

the latter case, we have

WQL

WN=4
= 1− 1

N2

[
λ3/2

48 − λ

8 +
√
λ

32

(
log

√
λ

4π + c− 1
)
+O(λ0)

]
+O(1/N4) +O(1/L) .

(1.9)

At very strong coupling, for 1 ≪ L ≪
√
λ, we find instead

WQL

WN=4
= 1− 1

N2

[
λ3/2

48 − λ

8 +
√
λ

32 logL+O(λ0)
]
+O(1/N4) +O(1/L) . (1.10)

Similar to the free energy, logL term inside the brackets is replaced with log(
√
λ/(4π))+ c−1

for
√
λ ≪ L.

It is interesting to note that the order of limit phenomenon that we described above for
the free energy and the circular Wilson loop in the long quiver limit is not a specific feature of
N = 2 superconformal theories. Analogous phenomenon has been previously observed in the
study of four-point correlation functions of infinitely heavy half-BPS operators in planar N = 4
SYM in the so-called null limit when the four operators are light-like separated in a sequential
manner, (xi − xi+1)2 ∼ e−y for y → ∞ [31]. It turns out that, at strong coupling, these
functions have different asymptotic behaviour for 1 ≪ y ≪

√
λ and 1 ≪

√
λ≪ y [28, 32, 33].

The limit of large L can be viewed as a continuum limit of the lattice model defined on
the quiver diagram shown in figure 1. The fact that the L-dependence of the free energy (1.6)
is encoded in a function of the ratio L/

√
λ suggests that interaction between excitations is

characterized in this limit by a correlation length ξ = O(
√
λ). In application to the long

circular quiver, we therefore expect that the correlation function of local (chiral primary)
operators On,I(x) = tr(φn

I (x)) placed at different nodes of the quiver |I − J | = O(L) has
to scale as

〈
On,I(x)Ōn,J(0)

〉
∼ e−|I−J |/ξ.

It would be interesting to reproduce the strong coupling expansion of the free energy of
the long circular quiver theory (1.6) using the AdS/CFT correspondence. In the holographic

– 5 –
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description, the QL theory is dual to type IIB superstrings propagating on the orbifold
AdS5 × (S5/ZL). To obtain the free energy, one has to determine higher-derivative string
corrections to the type IIB 10d effective action. For the simplest, length L = 2 quiver, this
problem was discussed in [1]. The remarkable simplicity of the obtained expression (1.6) (see
also (4.6)) suggests that the problem can be solved in the limit of long quivers. Another
interesting question is to clarify the origin of the ratio L/

√
λ on the string side.

The rest of the paper is organized as follows. In section 2 we present the matrix model
representation of the partition function of the QL model on the unit four-sphere. We then use
it to derive a Feynman diagram representation of the first few terms in the large N expansion
of the free energy (1.2). The contribution of these diagrams to the free energy is evaluated in
section 3. We show that it can be expressed in a concise way in terms of matrix elements of
the resolvent of the so-called Bessel kernel. We exploit this relation to derive the free energy
FQL

at weak and strong coupling. In section 4 we examine behaviour of the free energy of the
QL model in the limit of large number of nodes L. The expectation value of half-BPS circular
Wilson loop is computed in section 5. Some technical details are presented in two appendices.

2 Matrix model representation

Using the localization the partition function of the quiver QL model defined on the unit sphere
S4 (with equal coupling constants on all nodes) can be expressed as a matrix integral [2, 3]

ZQL
=
ˆ L∏

I=1

[ N∏
r=1

daI,r δ
(∑

r

aI,r

)
∆2(aI)

]
e−SQL

(a1,...,aL) , (2.1)

where integration goes over eigenvalues aI = {aI,1, . . . , aI,N} of hermitian traceless N ×N

matrices AI describing zero modes of a scalar field in the vector multiplet on S4 at nodes
I = 1, . . . , L. Here ∆(aI) =

∏
r<s(aI,r − aI,s) is a Vandermonde determinant depending

on the eigenvalues at the node I.
The potential in (2.1) is given by the sum of one-loop perturbative and instanton

contributions. The latter can be neglected at large N leading to

SQL
=

L∑
I=1

8π2N

λ

N∑
r=1

a2
I,r +

N∑
r,s=1

(
logH(aI,r − aI+1,s)− logH(aI,r − aI,s)

) , (2.2)

where the periodicity condition aI+L,r = aI,r is implied. This relation involves the H-function
given by the product of the Barnes G-functions

H(x) = e−(1+γE) x2
G(1 + ix)G(1− ix)

= exp
( ∞∑

n=1

(−1)n

n+ 1 ζ(2n+ 1)x2n+2
)
, (2.3)

where the second relation holds at small x and it involves odd Riemann zeta values.
It is convenient to express the potential (2.2) in terms of traces of the hermitian matrices

Oi(AI) = tr
(
AI√
N

)i

=
N∑

r=1

(
aI,r√
N

)i

, (2.4)

– 6 –
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where i ≥ 2. Expanding the H-functions in (2.2) in powers of eigenvalues ar and rescaling
them as ar → (8π2N/λ)−1/2ar, we get

SQL
=

L∑
I=1

[
trA2

I − Sint(AI , AI+1)
]
, (2.5)

where AL+1 ≡ A1 and the interaction term is given by infinite bilinear combinations of
the single traces (2.4)

Sint(AI , AI+1) =
1
8
∑

i,j≥2
Cij(λ) [Oi(AI)−Oi(AI+1)] [Oj(AI)−Oj(AI+1)] . (2.6)

The sum does not involve O1(AI) = tr(AI/
√
N) because it vanishes for the SU(N) matrices

AI . The expansion coefficients in (2.6) are different from zero only if the indices i and
j have the same parity. Nonzero coefficients C+

ij (λ) ≡ C2i,2j and C−
ij (λ) ≡ C2i+1,2j+1 are

given by [14, 18]

C−
ij (λ) = 8

(
λ

8π2

)i+j+1
(−1)i−j+1 ζ(2(i+ j) + 1) Γ(2(i+ j) + 2)

Γ(2i+ 2)Γ(2j + 2) ,

C+
ij (λ) = 8

(
λ

8π2

)i+j

(−1)i−j+1 ζ(2(i+ j)− 1) Γ(2(i+ j))
Γ(2i+ 1)Γ(2j + 1) , (2.7)

where i, j ≥ 1. They define two semi-infinite matrices whose properties play an important
role in what follows.

As mentioned in the Introduction, it proves convenient to interpret the matrix integral (2.1)
as a partition function of a lattice model defined on the quiver diagram shown in figure 12

ZQL
=
ˆ L∏

I=1
DAI exp

(
−

L∑
I=1

[
trA2

I − Sint(AI , AI+1)
])

, (2.8)

where integration goes over SU(N) matrices satisfying periodic boundary conditions AI+L =
AI . The SU(N) matrices AI (with I = 1, . . . , L) describe (N2 − 1) degrees of freedom living
at L sites of the lattice. The second term inside the brackets in the exponent of (2.8) defines
the interaction (2.6) between the nearest neighbours on the lattice.

Topological expansion. Viewed as a matrix integral, the partition function (2.8) can be
expanded at large N into a sum of two-dimensional surfaces of different genus.

A somewhat unusual property of the interaction potential (2.6) is that it is given by an
infinite sum of double trace terms. Such terms are known to produce touching surfaces [34–37].
More precisely, the double-trace term of the form CijOi(AI)Oj(AJ) generates the touching
of two surfaces labelled by I and J . According to (2.8), the label J can take three different
values I − 1, I and I + 1, so that the surface with the label I = 1, . . . , L can touch surfaces
either of the same type and/or of two adjacent labels (subject to the periodicity condition).

2Going from (2.1), we changed the integration variables as AI → (8π2N/λ)−1/2AI . The Jacobian of this
transformation coincides with the partition function of L copies of N = 4 SYM. It is not displayed in (2.8).
This is the reason why (2.8) gives the difference free energy ZQL = exp (−∆FQL ).

– 7 –
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Figure 2. Surfaces arising from the topological expansion of the partition function (2.8) at large N .
They are obtained by gluing together grey spheres, each carrying the label I = 1, . . . , L. The sphere
with the label I can touch spheres with the same label and/or with label I ± 1.

As a result, the surfaces arising from large N expansion of the partition function (2.8)
take the form of necklaces connected with each other as shown in figure 2. The configuration
with h holes provides the contribution of order O(1/N2(h−1)). For instance, the leftmost
diagram in figure 2 scales as O(N0), three remaining diagrams scale as O(1/N2). Notice that
figure 2 does not contain planar diagrams with h = 0 (see footnote 2).

In the rest of this section, we develop a technique for computing the contribution of the
diagrams shown in figure 2 to the partition function (2.8).

Hubbard-stratonovich transformation. Taking an advantage of the symmetry of the
partition function (2.8) under the cyclic shift of matrices, AI → AI+1, we can simplify the
interaction term (2.6) by Fourier expanding the single-traces Oi(AI) over modes with a
definite quasimomentum pα = 2πα/L

Oi(AI) =
1√
L

L−1∑
α=0

eipαIÕα,i , (2.9)

where (Õα,i)† = Õ−α,i and i ≥ 2. As we will see in a moment, pα has the meaning of momenta
of excitations propagating across the lattice shown in figure 1. Inverse relation looks as

Õα,i =
1√
L

L∑
I=1

e−ipαIOi(AI) . (2.10)

Substituting (2.9) into (2.6) one gets [14, 18]

L∑
I=1

Sint(AI , AI+1) =
1
2

L−1∑
α=0

sαCijÕα,iÕ−α,j , (2.11)

where summation over repeated indices i, j ≥ 2 is tacitly assumed and the notation was
introduced for

sα = sin2
(
pα

2

)
= sin2

(
πα

L

)
. (2.12)

Notice that sα vanishes for α = 0. As a consequence, the corresponding Fourier mode with
zero quasimomentum Õ0,i ∼

∑L
I=1 Oi(AI) does not contribute to (2.11) and, therefore, it

is not affected by the interaction.
Following [1], we can simplify the matrix integration in (2.8) by linearizing the double-

trace interaction term in (2.11). This is achieved by introducing auxiliary fields J̃i(pα)

– 8 –
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coupled to Õ−α,i

e
∑L

I=1 Sint(AI ,AI+1) = N
ˆ
DJ̃ exp

(
L−1∑
α=1

[
J̃i(pα)Õ−α,i −

1
2sα

C−1
ij J̃i(pα)J̃j(−pα)

])
. (2.13)

Here the integration measure is DJ̃ =
∏

i,α dJ̃i(pα)dJ̃i(−pα)/(2π) and the normalization
factor is given by N = (detC)−(L−1)/2(s1 . . . sL−1)−1/2.

Substituting (2.13) into (2.8) we find that the integral over the matrices AI factorizes
into a product of L independent integrals

ˆ L∏
I=1

DAI exp
(
−

L∑
I=1

trA2
I +

L−1∑
α=1

J̃i(pα)Õ−α,i

)
= Z(J1) . . . Z(JL) , (2.14)

where Z(JI) is a partition function of a Gaussian SU(N) matrix model

Z(JI) =
ˆ
DA exp

(
− trA2 + JI,i Oi(A)

)
= exp

(
NJI,iGi +

1
2!JI,i1JI,i2Gi1i2 +

1
3!N JI,i1JI,i2JI,i3Gi1i2i3 + . . .

)
, (2.15)

and the sources Ji,I (with i ≥ 2) are given by Fourier series analogous to (2.9)

JI,i =
1√
L

L−1∑
α=1

eipαI J̃i(pα) . (2.16)

Notice that the sum in this relation does not contain the term with α = 0 and, as a
consequence, the sources satisfy the relation

∑L
I=1 Ji,I = 0.

The exponent in (2.15) is given by a linear combination of (connected part of) correlation
functions in a Gaussian matrix model

Gi1...in = Nn−2〈Oi1(A) . . .Oin(A)
〉

0,c
= G

(0)
i1...in

+ 1
N2G

(1)
i1...in

+ . . . , (2.17)

where the subscript ‘0’ in the first relation indicates that the expectation value is evaluated
with a Gaussian measure. Here the factor of Nn−2 was inserted for convenience, it ensures
that Gi1...in stays finite for N → ∞. The second relation in (2.17) yields the expansion of
the correlator at large N . We do not present here the explicit expressions for G(0)

i1...in
and

G
(1)
i1...in

, they can be found in appendix A of [1].
Combining together the relations (2.13), (2.15) and (2.14), we arrive at the following

representation of the partition function (2.8)

ZQL
= N

ˆ
DJ̃ exp

(
−

L−1∑
α=1

1
2sα

C−1
ij J̃i(pα)J̃j(−pα) +

∞∑
n=1

1
Nn−2n!Sn(J)

)
, (2.18)

where the second term in the exponent is given by a linear combination of homogenous
polynomials in J ’s with the coefficients defined by the correlators (2.17)

Sn(J) = Gi1...in

L∑
I=1

JI,i1 . . . JI,in . (2.19)

The exponent of (2.18) has large N expansion analogous to that of the correlator (2.17).
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The function Sn(J) has the meaning of an effective action for the sources JI induced
by the double trace interaction (2.6). At large N the leading contribution to the exponent
of (2.18) comes from S1(J). By definition (2.19), it is proportional to the sum of sources at
all sites and, therefore, it vanishes S1(J) = Gi

∑L
I=1 JI,i = 0 (see (2.16)). We can apply (2.16)

to express the remaining Sn(J) with n ≥ 1 in terms of the sources J̃i(pα)

S2 =
L−1∑
α=1

Gi1i2 J̃i1(pα)J̃i2(−pα) ,

Sn = 1
Ln/2−1

L−1∑
α1,...,αn=1

Gi1...in J̃i1(pα1) . . . J̃in(pαn)δ(pα1 + · · ·+ pαn) , (2.20)

where the δ−function imposes the condition of conservation of the quasimomentum

pα1 + . . .+ pαn = 0 mod(2π) . (2.21)

To simplify formulae we will use a short-hand notation for the sum over quasimomenta in (2.20)

Sn ≡ 1
Ln/2−1Gi1...in J̃i1 ⋆ · · · ⋆ J̃in . (2.22)

Finally, we substitute (2.20) into (2.18) to obtain the following representation of the
partition function

ZQL
=N

ˆ
DJ̃ exp

(
−1
2

L−1∑
α=1

( 1
sα
C−1

ij −Gij

)
J̃i(pα)J̃j(−pα)+

∞∑
n=3

Gi1...in

n!(N2L)n/2−1 J̃i1⋆· · ·⋆J̃in

)
.

(2.23)

This relation depends on two sets of semi-infinite matrices — the expansion coefficients (2.7)
and the correlation functions (2.17) in a Gaussian SU(N) matrix model.

The first sum in the exponent of (2.23) is quadratic in the sources J̃i(pα). It describes a
propagation of excitations with the quasimomentum pα along the quiver diagram in figure 1.
The second sum in (2.23) describes the interaction between these excitations. The coupling
of n excitations is proportional to the correlation functions Gi1...in and it is suppressed by the
factor of 1/Nn−2. As a consequence, in the leading large N limit the partition function (2.23)
is given by a Gaussian integral

ZQL
=

L−1∏
α=1

1√
det (1− sαCG)

+O(1/N2) , (2.24)

where the normalization factor N was replaced with its expression (2.13). Subleading
corrections in 1/N can be obtained by expanding (2.23) in powers of the interaction term.

Feynman diagram technique. The partition function (2.23) can be evaluated using a
Feynman diagram technique. The first term in the exponent of (2.23) defines a propagator
of the fields J̃i(pα) 〈

J̃i(pα)J̃j(pα′
〉
= Xij(pα)δ(pα + pα′) , (2.25)
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pα pα1pα1

pα2

pα2

pα3

(a) (b) (c) (d)

Figure 3. The diagrams contributing to the free energy up to order O(1/N2). Solid lines represent
the propagator (2.25), black dots denote the interaction vertices (2.20). The diagram (d) contains a
line with zero momentum exchange and produces a vanishing contribution.

where the δ−function imposes the condition (2.21) and semi-infinite matrix Xij (with i, j ≥ 2)
is defined as

Xij(pα) =
[
sαC(1− sαGC)−1

]
ij
. (2.26)

We recall that pα = 2πα/L is the quasimomentum of excitations (with α = 0, . . . , L − 1).
Taking into account (2.12) we note that Xij(pα) vanishes for α = 0 and, therefore, the field
J̃i(pα) with pα = 0 does not propagate.

The free energy ∆FQL
= − logZQL

is given by the sum of ‘vacuum’ Feynman diagrams
shown in figure 3. They involve the propagators (2.25) and the interaction vertices generated
by the second term in the exponent of (2.23). The contribution of a diagram with h loops
scales as O(1/N2(h−1)). The diagrams in figure 3 are in the one-to-one correspondence with
those shown in figure 2. The former diagrams can be obtained from the latter by simply
replacing the chains of touching surfaces by solid lines.

The diagram in figure 3(d) contains an exchange with zero quasimomentum. It produces
a vanishing contribution to ∆FQL

. The contribution of the three remaining diagrams reads

∆FQL
= 1

2

L−1∑
α1=1

log det(1− sα1CG)

− 1
8N2L

L−1∑
α1,α2=1

Gi1i2i3i4Xi1i2(pα1)Xi3i4(pα2)

− 1
12N2L

L−1∑
α1,α2=1

Gi1i2i3Gj1j2j3Xi1j1(pα1)Xi2j2(pα2)Xi3j3(−pα1 − pα2) , (2.27)

where summation over repeated indices is tacitly assumed. This relation is valid up to
O(1/N4) corrections. The first term in (2.27) comes from the diagram shown in figure 3(a).
Its contribution to ∆FQL

can be read from (2.24). The second and third terms in (2.27)
come from the diagrams shown in figure 3(b) and 3(c), respectively. They are given by the
product of the propagators (2.26) and the correlation functions (2.17) summed over the
quasimomenta propagating inside the loops.

The relation (2.27) holds for arbitrary L. As explained in the Introduction, ∆FQL
has

to vanish for L = 1 to any order in 1/N . This property holds separately for each term
in (2.27). For L = 2 the sums in (2.27) contain only one term with α1 = α2 = 1. In

– 11 –



J
H
E
P
0
4
(
2
0
2
4
)
0
5
4

addition, the last term in (2.27) vanishes because the propagator Xi3j3(−pα1 − pα2) carries
vanishing quasimomentum −pα1 − pα2 = 0 (mod 2π). The two remaining terms in (2.27)
as well as higher order corrections in 1/N were computed in [1]. In the next section, we
evaluate (2.27) for arbitrary L.

3 Large N expansion of the free energy

The relations (2.26) and (2.27) involve two sets of semi-infinite matrices, Cij and Gi1...in ,
defined in (2.7) and (2.17), respectively. The matrix Cij depends on ’t Hooft coupling λ

and is independent on N . The correlators Gi1...in are independent on λ and admit the
expansion (2.17) in powers of 1/N2.

Replacing the correlators Gi1...in in (2.27) with their large N expansion (2.17), we
match (2.27) to (1.2) and identify the first two terms of the expansion of the free energy,

F
(0)
L = 1

2

L−1∑
α=1

log det(1− sαCG
(0)) , (3.1)

F
(1)
L = − 1

2

L−1∑
α=1

G
(1)
i1i2

X
(0)
i1i2

(pα)−
1
8L

L−1∑
α1,α2=1

G
(0)
i1i2i3i4

X
(0)
i1i2

(pα1)X
(0)
i3i4

(pα2)

− 1
12L

L−1∑
α1,α2=1

G
(0)
i1i2i3

G
(0)
j1j2j3

X
(0)
i1j1

(pα1)X
(0)
i2j2

(pα2)X
(0)
i3j3

(−pα1 − pα2) . (3.2)

Here G(0)
i1i2... and G(1)

i1i2... are the first two terms of the large N expansion of the correlator (2.17).
The term proportional to G(1)

i1i2
arises in (3.2) from the expansion of the first term in (2.27)

to order O(1/N2). The propagator X(0)
i1i2

(pα) is given by (2.26) with the two-point correlator
Gi1i2 replaced by its leading large N expression G

(0)
i1i2

.

3.1 Leading nonplanar correction

We recall that the matrix elements Cij vanish for indices i and j of different parity. Being the
two-point correlator in a Gaussian matrix model, the semi-infinite matrix Gij has the same
property. In a close analogy with (2.7) we can define nonzero matrix elements Q+

ij ≡ G
(0)
2i,2j

and Q−
ij ≡ G

(0)
2i+1,2j+1 (with i, j ≥ 1). Then, the relation (3.1) can be simplified as

F
(0)
L = 1

2

L−1∑
α=1

[
log det(1− sαQ+C+) + log det(1− sαQ−C−)

]
, (3.3)

where the semi-infinite matrices C± were defined in (2.7). Notice that the dependence of
F

(0)
L on the number of nodes L enters through sα defined in (2.12).

The properties of semi-infinite matrices Q+C+ and Q−C− were discussed in [1]. Both
matrices are related by a similarity transformation to the same, universal matrix Kℓ(χ)
evaluated for ℓ = 1, 2

Q+C+ = U+Kℓ=1(χ)(U+)−1 ,

Q−C− = U−Kℓ=2(χ)(U−)−1 . (3.4)
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Its matrix elements are given by integral of the product of two Bessel functions of the first kind

(Kℓ(χ))ij = 2(−1)i+j
√
2i+ ℓ− 1

√
2j + ℓ− 1

ˆ ∞

0

dx

x
J2i+ℓ−1(x)J2j+ℓ−1(x)χ

(2πx√
λ

)
, (3.5)

where i, j ≥ 1. The function χ(x) is conventionally called the symbol of the matrix. For
the matrices (3.4) it is given by

χ(x) = − 1
sinh2(x/2)

. (3.6)

The expression on the right-hand side of (3.3) can be expressed in terms of a determinant
of the semi-infinite matrix (3.5)

Fℓ(χ) = log det(1−Kℓ(χ)) . (3.7)

Indeed, the matrices (1 − sαQ±C±) entering (3.3) are related by the similarity transfor-
mation (3.4) to the matrices (1 − sαKℓ=1,2(χ)) and, as a consequence, their determinants
coincide. Taking into account that sαKℓ(χ) = Kℓ(sαχ) we obtain from (3.3)

F
(0)
L = 1

2

L−1∑
α=1

[
Fℓ=1(sαχ) + Fℓ=2(sαχ)

]
, (3.8)

where the function Fℓ(sαχ) is given by (3.7) with the symbol χ(x) replaced with sαχ(x).
For L = 2 the relation (3.8) agrees with analogous relation obtained in [1].

3.2 Next-to-leading nonplanar correction

The next-to-leading nonplanar O(1/N2) correction to the free energy is given by (3.2). Various
terms in (3.2) involve the product of semi-infinite matrices defined in (2.26) and (2.17). They
can be efficiently computed using the technique developed in [1].

It proves convenient to introduce the so-called Bessel operator

Kℓ =
∑

i,j≥1
|ψi⟩ (Kℓ(χ))ij ⟨ψj | , (3.9)

where (Kℓ(χ))ij is given by (3.5) and the functions ψi(x) (with i ≥ 1) form an orthonor-
mal basis

ψi(x) = (−1)i
√
2i+ ℓ− 1J2i+ℓ−1(

√
x)√

x
,

〈
ψi|ψj

〉
=
ˆ ∞

0
dxψi(x)ψj(x) = δij . (3.10)

Then, the product of semi-infinite matrix (3.5) can be evaluated by taking matrix elements
of a power of the Bessel operator, e.g. (Kn

ℓ (χ))ij =
〈
ψi|Kℓ

n|ψj
〉
. This property allows us to

express (3.7) in terms of a Fredholm determinant of the Bessel operator

Fℓ(χ) = log det(1− Kℓ) . (3.11)
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In the similar manner, the infinite sums in (3.2) can be expressed in a concise form in terms
of matrix elements of the Bessel operator (3.9).

For L = 2 the infinite sums in (3.2) were computed in [1]. In this case they can be
expressed in terms of matrix elements of the resolvent of the Bessel operator

wnm(χ) =
〈
ϕn|χ

1
1− Kℓ

|ϕm
〉
, (3.12)

where the matrix element is evaluated over the states ϕn(x) (with n ≥ 0) defined as

ϕ0(x) = Jℓ(
√
x) , ϕn(x) = (x∂x)nϕ0(x) . (3.13)

The operator χ in (3.12) has a diagonal kernel and it acts on a test function as χf(x) =
χ(2π

√
x/λ)f(x).

For arbitrary L ≥ 3, the evaluation of (3.2) goes along the same lines as in [1]. In a close
analogy with (3.8), we use (3.12) to define the L-dependent matrix elements

wnm(sαχ) = sα
〈
ϕn|χ

1
1− sαKℓ

|ϕm
〉
, (3.14)

where sα is given by (2.12). Because the operators χ and Kℓ are linear in χ, the additional
factor of sα in (3.14) can be absorbed into redefinition of the symbol

χ(x) → sαχ(x) . (3.15)

Applying this transformation to (3.12), we arrive at (3.14).
Following [1], we replace the correlation functions G(0) and G(1) in (3.2) with their explicit

expressions and express infinite sums in (3.2) in terms of matrix elements (3.14) evaluated for
ℓ = 1 and ℓ = 2.3 Roughly speaking, each propagator X(0)

ij (pα) in (3.2) gives rise to a linear
combination of matrix elements wnm(sαχ) with different n and m. Then, the three sums on
the right-hand side of (3.2) become homogenous polynomials in matrix elements (3.14) of
degree 1, 2 and 3, respectively. Going through the calculation we get

F
(1)
L =

⟪w+
0,0⟫

384 +
13⟪w+

0,1⟫
96 −

⟪w+
0,2⟫
48 −

⟪w+
1,1⟫
96 +

13⟪w−
0,0⟫

96 +
5⟪w−

0,1⟫
48 −

⟪w−
0,2⟫
48 −

⟪w−
1,1⟫
96

− 2
L

[ 1
64
⟪w+

0,0+w
−
0,0⟫⟪w+

0,1+w
−
0,1⟫+

1
128
⟪w+

0,0⟫⟪w−
0,0⟫+

1
64
⟪w−

0,0⟫2+ 1
256
⟪w+

0,0⟫2
]

− 1
768L

L−1∑
α1,α2=1

(
w+

0,0(sα1χ)w+
0,0(sα2χ)+3w−

0,0(sα1χ)w−
0,0(sα2χ)

)
w+

0,0(s−α1−α2χ) ,

(3.16)

where the notation was introduced for

⟪w+
nm⟫ =

L−1∑
α=1

wnm(sαχ)
∣∣∣
ℓ=1

, ⟪w−
nm⟫ =

L−1∑
α=1

wnm(sαχ)
∣∣∣
ℓ=2

. (3.17)

3We refer the interested reader to [1] for details of the calculation.
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The first sum on the right-hand side of (3.2) is given by expression on the first line of (3.16).
In a similar manner, the two remaining sums in (3.2) give rise to the second and third
lines of (3.16).

For L = 2 the relation (3.16) coincides with the analogous expression in the Q2 model
derived in [1] (see eq. (4.16) there). In this case, the last line of (3.16) vanishes because
s−α1−α2 = 0 for α1 = α2 = 1.

3.3 Nonplanar corrections at weak and strong coupling

The relations (3.8) and (3.16) provide the expressions for the nonplanar corrections to the
free energy in terms of the Fredholm determinant of the Bessel operator and the matrix
elements of its resolvent, defined in (3.7) and (3.12), respectively. We would like to emphasize
that these relations hold for an arbitrary ’t Hooft coupling.

Weak coupling. At weak coupling, the calculation of (3.8) and (3.16) simplifies significantly
by noticing that the matrix elements (3.5) vanish for λ → 0. To see this, one changes the
integration variable in (3.5) as x→

√
λx and replaces the Bessel functions with their small

λ expansion to find that (Kℓ(χ))ij = O(λℓ+i+j−1). This property allows us to expand (3.7)
in powers of Kℓ

Fℓ(χ) = − trKℓ(χ)−
1
2 trK2

ℓ (χ)−
1
3 trK3

ℓ (χ) +O(λ4(ℓ+1)) (3.18)

and, then, replace the semi-infinite matrix (3.5) with its finite-dimensional minor. For the
matrix elements (3.12), the analogous expansion is worked out in appendix A (see (A.10)).

Substituting the resulting expressions of Fℓ(χ) and wnm(χ) into (3.8) and (3.16), we
find after some algebra

F
(0)
L = 3ζ(3)

64π4 σ2(L)λ2 − 15ζ(5)
512π6 σ2(L)λ3 +

( 315ζ(7)
16384π8σ2(L)−

9ζ(3)2

4096π8σ4(L)
)
λ4

+
(
− 441ζ(9)

32768π10σ2(L) +
15ζ(3)ζ(5)
4096π10 σ4(L)

)
λ5 +O(λ6) , (3.19)

F
(1)
L = − 3ζ(3)

64π4 σ2(L)λ2 + 25ζ(5)
512π6 σ2(L)λ3

+
(
− 735ζ(7)
16384π8σ2(L) +

9ζ(3)2

2048π8

(
σ4(L)−

3
L
σ2

2(L)
))

λ4 +O(λ5) , (3.20)

where the dependence on the number of nodes L enters through the functions

σ2n(L) =
L−1∑
α=1

sn
α =

L−1∑
α=1

sin2n
(
πα

L

)
. (3.21)

Being combined together, the relations (3.19) and (3.20) yield the weak coupling expansion
of the free energy (1.2).

The following comments are in order.
The terms proportional to σ2n(L) arise in (3.19) and (3.20) from the expansion of the

determinants and matrix elements in powers of Kℓ(sαχ) = sαKℓ(χ). The odd Riemann
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zeta values come from the integrals
´∞

0 dxx2n+1χ(x) = −4(2n+ 1)!ζ(2n+ 1) that arise in
the small λ expansion of (3.5).

To high orders in the coupling constant, the leading function F (0)
L is given by multi-linear

combinations of odd zeta values multiplied by σ2n(L) (see (4.1) below). As compared with
the leading large N contribution (3.19), the function F

(1)
L contains terms like σ2

2(L)/L that
are bilinear in σ. They come from the diagrams shown in figure 3(b) and (c).

Let us examine the dependence of (3.21) on L. For lowest values of n, it is straightforward
to check that σ2(L) = L/2 for L ≥ 2, σ4(L) equals 1 for L = 2 and 3L/8 for L ≥ 3, and
so on. The general expression of σ2n(L) reads [38]

σ2n(L) =


21−2n L

[(2n− 1
n− 1

)
+

⌊n/L⌋∑
p=1

(−1)pL

(
2n

n− pL

)]
, n ≥ L,

21−2n L

(
2n− 1
n− 1

)
, n < L.

(3.22)

Notice that σ2n(L) is a linear function of L for n < L. This property plays an important role
in the next section where we discuss the asymptotic behaviour of the free energy at large L.

For arbitrary n, the function σ2n(L) has different L-dependence for L ≤ n and L > n.
The change of the behaviour occurs at n = L and the corresponding function σ2L(L) first
appears in the weak coupling expansion of the free energy (3.19) at order O(λ2L). We show
in section 4 that this fact has an interesting interpretation in terms of wrapping corrections
in the quiver lattice model.

Strong coupling. To derive the strong coupling expansion of the free energy (3.8) and (3.16),
we make use of the known properties of the Bessel operator (3.9).

We recall that the leading nonplanar correction to the free energy (3.8) involves the
Fredholm determinant of this operator (3.11). The strong coupling expansion of Fℓ(χ) for
generic symbol χ(x) was derived in [28, 29]. The first few terms of the expansion are given by

Fℓ(χ) = − 2gI0(χ)−
1
2(2ℓ− 1) log g +Bℓ(χ)

− 1
16g (2ℓ− 1)(2ℓ− 3)I1(χ)−

1
64g2 (2ℓ− 1)(2ℓ− 3)I2

1 (χ)

− 1
3072g3 (2ℓ− 1)(2ℓ− 3)

[
(2ℓ− 5)(2ℓ+ 1)I2(χ) + 16I3

1 (χ)
]
+O(1/g4) , (3.23)

where the notation was introduced for

g =
√
λ

4π . (3.24)

The constant term Bℓ(χ) is conventionally called the Widom-Dyson constant. Its explicit
expression can be found in appendix A (see (A.4)). The functions In(χ) (with n ≥ 0)
are defined as

In(χ) =
1

(2n− 1)!!

ˆ ∞

0

dx

π
(x−1∂x)nx∂x log (1− χ(x)) . (3.25)

High order corrections to (3.23) are given by multi-linear combinations of In(χ).
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Substituting (3.23) into (3.8) we encounter the functions In(sαχ). Replacing χ(x) and
sα in (3.25) with their expressions, (3.6) and (2.12), respectively, and going through the
calculation we find

I0(sαχ) = −2πα(L− α)
L2 ,

I1(sαχ) = − 1
2π

[
ψ

(
α

L

)
+ ψ

(
1− α

L

)
− 2ψ(1)

]
, (3.26)

where ψ(x) = d log Γ(x)/dx is the Euler ψ−function. For arbitrary n ≥ 1 we have

In(sαχ) =
(−1)n

(2π)2n−1(2n− 2)!

[
ψ(2n−2)

(
α

L

)
+ ψ(2n−2)

(
1− α

L

)
− 2ψ(2n−2)(1)

]
, (3.27)

where ψ(n)(x) = (d/dx)nψ(x).
To find the nonplanar correction to the free energy (3.16), we use the strong coupling

expansion of the matrix elements (3.12) derived in [1]. The matrix element w00(χ) is given
by a derivative of the function (3.7) with respect to the coupling constant

w00(χ) = −4λ∂λFℓ(χ) . (3.28)

The remaining matrix elements can be found by taking into account functional relations

wnm = wmn ,

(1
2g∂g − 1

)
wnm = 1

4w0nw0m + wn+1,m + wn,m+1 . (3.29)

Note that the relations (3.28) and (3.29) hold for arbitrary ’t Hooft coupling λ. The
relations (3.29) allow us to express wnm(χ) for any n and m in terms of independent
quantities w0,2n (with n = 0, 1, . . . ). The strong coupling expansion of w00, w01, w11 and
w02 is given in appendix A, see (A.12).

Substituting the obtained expressions for Fℓ(sαχ) and wnm(sαχ) into (3.8) and (3.16), we
find after some algebra the following expression for the nonplanar corrections to the free energy

F
(0)
L = 2

(
L2 − 1

)
3L gπ − (L− 1) log g + 1

2C
(0)
L − L logL

16πg +O(1/g2) , (3.30)

F
(1)
L = − (πg)3 (L2 − 1)(L2 + 1)

30L3 + (πg)2 (L2 − 1)(L2 − 9)
360L3

+ (πg)5(L
2 − 1)

384L + (πg)C
(1)
L

48 +O(g0) , (3.31)

where g is defined in (3.24). The details of the calculation can be found in appendix A.
The coefficient function C

(0)
L in (3.30) is given by a linear combination of the Widon-

Dyson constant Bℓ(sαχ) entering (3.23). Its explicit expression can be found in appendix A,
see (A.6). For lowest values of L it looks as

C
(0)
L=2 = −12 logA + 1− 8

3 log 2 ,

C
(0)
L=3 = −16 logA + 4

3 − 17
6 log(3) + 2 log

Γ
(

2
3

)
Γ
(

1
3

) , (3.32)
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where A is the Glaisher constant. At large L we find that CL grows linearly with L

C
(0)
L = L

(1
2 − 12 logA

)
− 2 logL+ log(4π) +O(1/L) . (3.33)

The coefficient function C
(1)
L in (3.31) is given by

C
(1)
L =

L−1∑
α=1

α

L

(
1− α

L

)[
ψ

(
α

L

)
+ ψ

(
1− α

L

)
− 2ψ(1)

]
. (3.34)

At large L it behaves as

C
(1)
L = −L

(
4 logA − γ

3

)
+ 1 +O(1/L) , (3.35)

where γ is the Euler constant.
The relations (3.30) and (3.31) hold for arbitrary number of nodes L. As expected,

the functions F (0)
L and F

(1)
L vanish for L = 1. For L = 2 they are in agreement with the

expressions derived in [1].
The relations (3.30) and (3.31) were derived at strong coupling and fixed L and, therefore,

they are valid for
√
λ > L. We observe that at large L all terms in the strong coupling

expansion (3.30) and (3.31) except the O(1/g) term in (3.30) scale linearly with L. The
asymptotic behaviour of the free energy in the opposite limit, for L≫

√
λ≫ 1 is discussed

in the next section.

4 Free energy in the long quiver limit

In this section, we examine asymptotic behaviour of the free energy (1.2) in the limit of
large number of nodes L at weak and strong coupling.

Weak coupling. At weak coupling, the dependence of the free energy (1.2) on the number
of nodes L can be obtained from (3.19) and (3.20). The expansion coefficients in these
relations depend on L through the function σ2n(L) given by (3.22).

For instance, the weak coupling expansion of the leading nonplanar correction F
(0)
L takes

the general form (see (3.19))

F
(0)
L =

∑
n≥1

∑
k1,...,kn≥2

ck1...kn

(
λ

16π2

)k1+...+kn

σ2n(L) ζ2k1−1 . . . ζ2kn−1 , (4.1)

where ck1...kn are rational numbers. According to (3.22), the function σ2n(L) is linear in L for
n < L but this behaviour changes starting from n = L.4 The function σ2n(L) first appears
in the expansion (4.1) at n = L and k1 = · · · = kL = 2. As a result, at weak coupling, the
free energy has the asymptotic behaviour (1.3) only up to order O(λ2L)

∆FQL
= Lε(λ, 1/N) +O(λ2L) . (4.2)

4The relation (4.1) holds for L ≥ 2. For L = 2 it follows from (3.21) that σ2n(2) = 1. In the L → ∞ limit,
σ2n(L) is replaced with the expression on the second line in (3.22) leading to (1.4).
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We apply (3.19) and (3.20) to obtain the energy density at weak coupling as

ε(λ, 1/N) = 3ζ(3)
128π4 λ

2 − 15ζ(5)
1024π6 λ

3 +O(λ4)

+ 1
N2

(
− 3ζ(3)
128π4λ

2 + 25ζ(5)
1024π6λ

3 +O(λ4)
)
+O(1/N4) . (4.3)

The breaking of the scaling behaviour (1.3) at order O(λ2L) is not surprising and has the
following interpretation in terms of wrapping, or finite size, effects in the lattice model (2.8).

The partition function (2.8) describes the propagation of excitations across the lattice
with L sites. Due to the form of the interaction potential (2.6), excitations at site I can jump
to the nearest sites I ± 1. At weak coupling, this produces the O(λ2) contribution to the free
energy. The propagation of the excitations across n consecutive sites on the lattice generates
correction to the free energy of order O(λ2n).5 For n < L the propagation range is smaller
than the circumference of the circle and the corrections to the free energy due to finite size
of the system are expected to be small at large L. Starting from n = L the excitations can
wrap around the lattice and the finite size effects become important. This explains why the
L-dependence of the free energy gets modified at order O(λ2L).

Strong coupling. At strong coupling, the free energy ∆FQL
has different dependence on

the number of nodes L depending on the ratio L/
√
λ.

For L/
√
λ ≪ 1, it follows from (3.30) that the free energy receives O(L logL/

√
λ)

corrections that do not respect the scaling behaviour (1.3). Moreover, examining high order
corrections to (3.30), we found that the coefficients of 1/λn/2 (with n ≥ 2) are given by
polynomials in L of degree n. Retaining the terms with the maximal power of L to each
order in 1/

√
λ, we get

F
(0)
L = L

[
1
6
√
λ− log

√
λ

4π +
(

1
4 − 6 logA

)
− logL

4
√
λ

]
−

√
λ

6L + f

(
L√
λ

)
+ . . . , (4.4)

where dots denote terms suppressed by powers of 1/L. As compared with the strong coupling
expansion (3.30), we replaced in (4.4) the coefficients by their leading behaviour at large
L and added the subleading corrections in L/

√
λ.

These corrections are described by the function f(l) with l = L/
√
λ. It is given by6

f(l) = − 1
8 l

2ζ(2)− 19
192 l

3ζ(3)− 7
64 l

4ζ(4)− 413
2560 l

5ζ(5)− 59
192 l

6ζ(6)

− 83875
114688 l

7ζ(7)− 4315
2048 l

8ζ(8)− 8433167
1179648 l

9ζ(9)− 286081
10240 l

10ζ(10) + . . . , (4.5)

where dots denote corrections suppressed by 1/g as well as exponentially small, nonperturba-
tive corrections. One can show following [39] that the leading nonperturbative correction
to (4.5) scales as O(e−2

√
λ/L).

The relation (4.5) is well-defined for l < 1, or equivalently 1 ≪ L <
√
λ. Substitut-

ing (4.5) into (4.4) we find that the free energy does not satisfy (1.3) and has a complicated
5See [15] for a diagrammatic interpretation of this property.
6To obtain this relation, we used the strong coupling expansion of (3.23) obtained in [29] up to order

O(1/λ15).
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Figure 4. Graphical representation of the function f(l)/l defined in (4.6). At small and large l its
behaviour is described by (4.5) and (4.7), respectively.

dependence on the number of nodes L. Namely, F (0)
L contains logarithmically enhanced term

−L logL/(4
√
λ) and a nontrivial function f(L/

√
λ).

To find the free energy for 1 ≪
√
λ≪ L using the strong coupling expansion (4.4), one

has to perform a resummation of the series (4.5). This is done in appendix B. As we show
there, the function f(l) admits a closed form representation

f(l) =
∞∑

α=1

[
log

(
I0

(
α

l

)
I1

(
α

l

))
− 2α

l
+ log

(2πα
l

)
+ l

4α

]
, (4.6)

where I0(α/l) and I1(α/l) are the modified Bessel functions (not to be confused with the
functions In(χ) defined in (3.25)). The last three terms inside the brackets ensure that
the sum converges at large α. It is straightforward to verify that the expansion of (4.6)
at small l reproduces the relation (4.5). To see this, it is sufficient to replace the Bessel
functions in (4.6) by their asymptotic behaviour at infinity and took into account that∑

α≥1 1/αn = ζ(n). Notice that the small l expansion of (4.6) also contains exponentially
small O(e−2/l) corrections.

The dependence of the function (4.6) on log l is shown in figure 4. We observe that f(l)/l
grows linearly with log l. Indeed, for l ≫ 1 the dominant contribution to the sum in (4.6)
comes from α≪ l. Keeping the last, leading term inside the brackets in (4.6) we get for l ≫ 1

f(l) ∼
c′l∑

α=1

l

4α = l

4(log(4πl)− c) +O(l0) , (4.7)

where c = −γ − log(c′/(4π)) = 9.714744.7

Substituting (4.7) into (4.4) we observe that troublesome O(L logL/
√
λ) term on the

right-hand side of (4.4) cancels against the analogous term coming from (4.7). As a result,
the free energy takes the form (1.7) and exhibits the expected scaling behaviour (1.3). The

7The constant c was determined by applying the Euler-Maclaurin summation formula to (4.6) at large l.
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corresponding expression for the energy density (1.3) looks as

ε(λ, 1/N) = 1
6
√
λ− log

√
λ

4π +
(

1
4 − 6 logA

)
− 1

4
√
λ

(
log

√
λ

4π + c

)
+O(1/N2) . (4.8)

We would like to emphasize that this relation holds for 1 ≪
√
λ ≪ L.

5 Circular Wilson loop

In this section, we compute the expectation value of the circular half-BPS Wilson loop in
the QL model. It is defined as

WQL =
〈
trP exp

(
gYM

˛
ds

[
iAµ

I (x)ẋµ(s) +
1√
2
(φI(x) + φ∗

I(x))
])〉

, (5.1)

where the gauge field Aµ
I and complex scalar field φI(x) are integrated along a circle of unit

radius. These fields belong to the SU(N) N = 2 vector multiplet at node I. The Wilson
loop (5.1) does not depend on the choice of the node. In what follows we choose I = 1.

For L = 2 the Wilson loop (5.1) was computed in the Q2 model in [1]. The subsequent
analysis of (5.1) goes along the same lines as in that paper. The localization gives the
representation of (5.1) as the ratio of expectation values

WQL =

〈
tr
(
e
√

λ
2N

A1

)
e
∑

I
Sint(AI ,AI+1)

〉
0〈

e
∑

I
Sint(AI ,AI+1)

〉
0

, (5.2)

where the interaction potential Sint(AI , AI+1) is given by (2.6). As before, the subscript
‘0’ indicates that the average is evaluated with the Gaussian measure for the matrices AI

with I = 1, . . . , L.
We recall that the interaction potential Sint(AI , AI+1) describes the coupling of the

matrices in the adjacent nodes. Neglecting this potential in (5.2) we recover the expectation
value of the circular Wilson loop in N = 4 SYM theory

WN=4 =
〈
tr
(
e
√

λ
2N

A1

)〉
0
= 2N√

λ
I1(

√
λ) +O(1/N) . (5.3)

The difference between the Wilson loop in the two models WQL −WN=4 arises due to the
interaction between the matrices in the different nodes described by (2.6). Due to a peculiar
form of the potential (2.6), the interaction does not affect the leading O(N) contribution
to (5.2). As a consequence, the Wilson loops WQL and WN=4 coincide in the planar limit.
In a close analogy with the free energy (1.1), this suggests to define the difference function

∆WQL =WQL −WN=4 . (5.4)

At large N its expansion starts at order O(1/N).
Expanding (5.2) in powers of A1 we can express WQL as an infinite sum over expectation

value of single traces (2.4)

WQL = N + 1
ZQL

∑
n≥1

1
(2n)!

(
λ

2

)n〈
O2n(A1) e

∑
I

Sint(AI ,AI+1)
〉

0
, (5.5)
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where ZQL
=
〈
e
∑

I
Sint(AI ,AI+1)

〉
0

is the partition function of the model defined in (2.8). In
the absence of the interaction, for Sint(AI , AI+1) = 0, the expectation value

〈
O2n(A1)

〉
can

be obtained by differentiating the generating function (2.15) with respect to the source,
∂Z(J1)/∂J1,2n. According to (2.13), the interaction term can be generated by averaging this
derivative over the source fields with the measure (2.23).

In application to (5.5) this leads to the following representation

WQL = N +
∑
n≥1

1
(2n)!

(
λ

2

)n [
NG2n + 1

2N
〈
J1,iJ1,j

〉
G2n,ij +O(1/N3)

]
, (5.6)

where G2n,ij... are connected correlation functions in the Gaussian matrix model (2.17) and〈
J1,iJ1,j

〉
denotes an average with respect to the measure (2.23). At large N , we use (2.16)

and (2.25) to get

〈
J1,iJ1,j

〉
= 1
L

L−1∑
α,α′=1

ei(pα+pα′ )〈J̃i(pα)J̃j(pα′)
〉
= 1
L

L−1∑
α=1

Xij(pα) , (5.7)

where the semi-infinite matrix Xij(pα) is defined in (2.26). Notice that it is proportional
to the interaction matrix C.

In the special case of N = 4 SYM, for Sint(AI , AI+1) = 0, only the first term inside
the brackets in (5.6) survives and WN=4 is given by the sum over G2n. Together with (5.4)
this leads to

∆WQL = 1
2NL

∑
n≥1

1
(2n)!

(
λ

2

)n L−1∑
α=1

Xij(pα)G2n,ij +O(1/N3) . (5.8)

For L = 2 the sum over α contains only one term with the quasimomentum p = π. In this
case, replacing the three-point function G2n,ij with its leading large N expression, one gets [1]

∆WQ2 = 1
16N ρ

[
w+

00(χ) + w−
00(χ)

]
+O(1/N3) , (5.9)

where the matrix elements w±
00(χ) are given by (3.17) for L = 2 and the notation was

introduced for

ρ =
∑
n≥1

1
(2n)!

(
λ

2

)n

n(n+ 1)G2n = λ

4NWN=4 +O(1/N2) . (5.10)

Here in the second relation we used (5.3).
Going from (5.9) to (5.8), it is sufficient to multiply (5.9) by the factor of 2/L and replace

the symbol inside the matrix elements w±
00(χ) according to (3.15). This leads to

∆WQL = λ

32LN2W
N=4

[
⟪w+

00⟫+ ⟪w−
00⟫
]
+O(1/N3) , (5.11)

where ⟪w±
00⟫ are given by (3.17). Taking into account (3.8) and (3.28) we observe that the

sum of matrix elements ⟪w+
00⟫+⟪w−

00⟫ is equal to a derivative of the free energy (−4g∂gF
(0)
L ).

As a consequence, the relation (5.11) can be written as

∆WQL = − λ2

4LN2W
N=4∂λF

(0)
L +O(1/N3) . (5.12)
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Figure 5. Graphical representation of the function ϕ(l) defined in (5.16).

Being combined with (5.4) it leads to the following remarkably simple relation between the
ratio of the Wilson loops in the two theories and the free energy

WQL

WN=4 = 1− 1
4LN2λ

2∂λF
(0)
L +O(1/N4) . (5.13)

We would like to emphasize that this relation is valid for an arbitrary coupling λ. As expected,
the Wilson loops WQL and WN=4 coincide in the leading large N limit. It is interesting to
note that the nonplanar O(1/N2) correction to (5.13) is negative for arbitrary coupling.8

Let us examine the ratio of Wilson loops (5.13) at large L. At weak coupling we
apply (1.3) and (4.3) to find

WQL

WN=4 = 1− 1
4N2λ

2∂λε+O(1/N4)

= 1− 1
N2

[
3λ3ζ(3)
256π4 − 45λ4ζ(5)

4096π6 +O(λ5)
]
+O(1/N4) . (5.14)

Note that the ratio is independent on L and it approaches a finite value for L → ∞.
At strong coupling, we use (4.4) to obtain from (5.13)

WQL

WN=4 =1− 1
N2

[
λ3/2

48 −λ

8 +
1
32

√
λ

(
log

√
λ

4π +ϕ
(
L√
λ

))]
+O(1/N4)+O(1/L) , (5.15)

where the notation was introduced for

ϕ(l) = log(4πl)− 4df(l)
dl

. (5.16)

The dependence of this function on log l is shown in figure 5. It grows at small l as
ϕ(l) = log(4πl) + ζ(2) l +O(l2) and for l → ∞ it approaches a constant ϕ(l) = c− 1 where
c is defined in (4.7).

The relation (5.15) holds for large
√
λ and L. Similar to the free energy, the expression on

the right-hand side of (5.15) has different dependence on the number of nodes depending on
8Notice that (−∂λ log ZQL ) is given by an expectation value of a positive definite function, as follows

from (2.1) and (2.2).
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how L compares with
√
λ. For L/

√
λ≪ 1 and L/

√
λ≫ 1, the ratio (5.15) is given by (1.10)

and (1.9), respectively. Like the energy density (4.8), it ceases to depend on the number of
nodes for 1 ≪

√
λ ≪ L. This property requires an explanation.
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A Strong coupling expansion

In this appendix, we present some details of derivation of the strong coupling expansion of
the free energy (3.30). The expression for F (0)

L can be obtained from (3.8) by replacing the
function Fℓ(sαχ) with its asymptotic expression (3.23). This leads to

F
(0)
L = −2g⟪I0⟫− log g + 1

2
⟪Bℓ=1 +Bℓ=2⟫− 1

16g
⟪I1⟫− 1

64g2⟪I2
1⟫+O(1/g3) , (A.1)

where the expansion parameter g is defined in (3.24) and ⟪f⟫ denotes the sum of the functions
f(sαχ) evaluated for possible values of the quasimomentum

⟪f⟫ =
L−1∑
α=1

f(sαχ) , sα = sin2
(
πα

L

)
. (A.2)

Taking into account (3.26) and going through the calculation, we get

⟪I0⟫ = −π
(
L2 − 1

)
3L ,

⟪I1⟫ = L logL
π

,

⟪I2
1⟫ =

L(L− 1)
π2

[
L−1∑
α=1

log2
(
sin
(
πα

L

))
− L log2(2) + log2(2L)

]
. (A.3)

Higher order corrections to (A.1) involve sums of the form ⟪In1
1 In2

2 . . .⟫ which can be
computed in the similar manner.

Widom-Dyson constant. The constant O(g0) term in (A.1) involves the Widom-Dyson
constant Bℓ(sαχ). It is given by [28, 29]

Bℓ(sαχ) =W (α/L)− 1
2 log(2π)− ℓ

2 log(4sα) + log Γ(ℓ) ,

W (α/L) = 1
2

ˆ ∞

0
dk

[
k
(
ψ̃(k)

)2
− 1− e−k

k

]
,

ψ̃(k) =
ˆ ∞

0

dx

π
cos(kx) log(1− sαχ(x)) , (A.4)
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where sα = sin2(πα/L) and χ(x) = −1/ sinh2(x/2). Performing integration we find

ψ̃(k) =
2 sinh

(
πk α

L

)
sinh

(
πk(1− α

L)
)

k sinh(πk) ,

W (r) = 1
2 log

[
4π2(2r − 1)[G(1− r)G(r)]4 cot(πr)

G(1− 2r)G(2r − 1)

]
, (A.5)

where r = α/L and G(x) is Barnes function. It is easy to check that W (r) = W (1 − r).
In this way, we obtain the O(g0) term in (A.1) as

CL ≡ ⟪Bℓ=1 +Bℓ=2⟫ = 2
L−1∑
α=1

W (α/L)− (L− 1) log(2π)− 3 logL . (A.6)

The explicit expressions for CL for the few lowest values of L are given by (3.32).
Combining together the above relations we arrive at (3.30).

Matrix elements. The nonplanar correction (3.16) to the free energy F
(1)
L depends on

the matrix elements of the resolvent of the Bessel operator (3.14).
At weak coupling, we can expand (3.14) in powers of the Bessel operator (3.9) to get

wnm(sαχ) = sα
〈
ϕn|χ|ϕm

〉
+ s2

α

〈
ϕn|χKℓ|ϕm

〉
+ . . . . (A.7)

The matrix elements on the right-hand side are given by

〈
ϕn|χ|ϕm

〉
=
ˆ ∞

0
dxϕn(x)ϕm(x)χ

(√
x

2g

)

= (2g)2
ˆ ∞

0
dxϕn((2g)2x)ϕm((2g)2x)χ

(√
x
)

(A.8)

where in the second relation we changed the integration variable x→ (2g)2x. Replacing the
function ϕn(x) with its expressions (3.13), one can expand (A.8) in powers of g2. In a similar
manner, the second term on the right-hand side of (A.7) can be evaluated as

〈
ϕn|χKℓ|ϕm

〉
=
∑
i≥1

〈
ϕn|χ|ψi

〉〈
ψi|χ|ϕm

〉
, (A.9)

where we took into account that Kℓ =
∑

i≥1 |ψi⟩⟨ψi|χ. Here the matrix elements
〈
ϕn|χ|ψi

〉
are given by (A.8) with ϕm replaced by the function ψi defined in (3.10). The resulting
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expressions for the matrix elements at weak coupling are

w+
00(sαχ) = 4g4q1 − 4g6q2 + g8

(
2q2

1 + 5q3
3

)
+ . . . ,

w−
00(sαχ) = g6q2 −

2g8q3
3 + 7g10q4

36 + . . . ,

w+
01(sαχ) = 2g4q1 − 4g6q2 + g8

(
q2

1 + 5q3
2

)
+ . . . ,

w−
01(sαχ) = g6q2 − g8q3 +

7g10q4
18 + . . . ,

w+
11(sαχ) = g4q1 − 3g6q2 + g8

(
q2

1
2 + 37q3

12

)
+ . . . ,

w−
11(sαχ) = g6q2 −

4g8q3
3 + 25g10q4

36 + . . . ,

w+
02(sαχ) = g4q1 − 5g6q2 + g8

(
q2

1
2 + 53q3

12

)
+ . . . ,

w−
02(sαχ) = g6q2 −

5g8q3
3 + 31g10q4

36 + . . . , (A.10)

where the superscripts ‘+’ and ‘−’ correspond to ℓ = 1 and ℓ = 2, respectively. Here the
notation was introduced for

qn = 2sα

ˆ ∞

0
dxx2n+1χ(x) = −8sα(2n+ 1)!ζ(2n+ 1) , (A.11)

where χ(x) is given by (3.6). Substituting the relations (A.10) into (3.16) and (3.17), we
arrive at (3.20). It is straightforward to verify that the matrix elements (A.10) satisfy the
functional relations (3.29).

At strong coupling, we use the expressions for the matrix elements (3.12) derived in [1]

w00(χ) = 4gI0 + (2ℓ− 1)− (2ℓ− 3)(2ℓ− 1)I1
8g − (2ℓ− 3)(2ℓ− 1)I2

1
16g2 + . . .

w01(χ) = −2g2I2
0 − 2gℓI0 +

1
8(2ℓ− 1) ((2ℓ− 3)I0I1 − 2ℓ− 3)

+ (2ℓ− 3)(2ℓ− 1)
16g I1 (I0I1 + ℓ+ 1) + . . .

w02(χ) =
2
3g

3
(
I3

0 − 2I−1
)
+ 1

2g
2(2ℓ− 1)I2

0 + g

(
ℓ2I0 −

1
16(2ℓ− 3)(2ℓ− 1)I2

0I1

)
− 1

32(2ℓ− 1)
(
I2

0I
2
1 (2ℓ− 3) + I0I1(2ℓ− 3)(2ℓ+ 1)− 4ℓ2 − 4ℓ− 3

)
+ . . .

w11(χ) =
4
3g

3
(
I3

0 + I−1
)
+ 2g2ℓI2

0 + 1
8gI0

(
−(2ℓ− 3)(2ℓ− 1)I0I1 + 4ℓ2 + 8ℓ− 3

)
− 1

16(2ℓ− 1)
(
I2

0I
2
1 (2ℓ− 3) + 2I0I1(ℓ+ 1)(2ℓ− 3)− 4ℓ− 3

)
+ . . . (A.12)

These relations involve the functions In = In(χ). For n ≥ 0 they are given by (3.25). For
n < 0 we have instead

In(χ) =
ˆ ∞

0

dx

π
x1−2n∂x log (1− χ(x)) . (A.13)
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To obtain the strong coupling expansion of the matrix elements (3.14), it is sufficient to
replace In(χ) with In(sαχ) in (A.12) and apply (3.26) together with

I−1(sαχ) = −4π3 (α(L− α))2

L4 . (A.14)

The contribution of diagram in figure 3(c). The relations (A.12) allow us to compute
expressions on the first two lines of (3.16). The last line of (3.16) describes the contribution
of the diagram shown in figure 3(c). It contains a sum over the quasimomenta propagating
inside the loops. It is convenient to rewrite this sum as

− 1
768L

∑
p1,p2,p3

δp1+p2+p3w
+
0,0(p1)

(
w+

0,0(p2)w+
0,0(p3) + 3w−

0,0(p2)w−
0,0(p3)

)
, (A.15)

where w±
0,0(pi) ≡ w±

0,0(sαiχ) and pi = 2παi/L (with 1 ≤ αi ≤ L − 1).
The δ−function in (A.15) imposes the momentum conservation (2.21). Replacing

δp1+p2+p3 = 1
L

L∑
n=1

e−in(p1+p2+p3) , w̃±
n =

L−1∑
α=1

e−inpαw±
0,0(sαiχ) (A.16)

we can rewrite (A.15) as

− 1
768L2

L∑
n=1

[
(w̃+

n )3 + 3w̃+
n (w̃−

n )2
]
. (A.17)

This sum can be thought of as a discretized version of the integral
´
dx [D(x)]3 involving a

power of the propagator. By definition, w̃+
n and w̃−

n are given by the function

w̃n =
L−1∑
α=1

e−inpαw00(sαχ) (A.18)

evaluated for ℓ = 1 and ℓ = 2, respectively.
Taking into account the first relation in (A.12), we get

w̃n =
L−1∑
α=1

e−inpα

[
4gI0(sαχ) + (2ℓ− 1)− (2ℓ− 3)(2ℓ− 1)

8g I1(sαχ) +O(1/g2)
]
,

where I0(sαχ) and I1(sαχ) are given by (3.26). Notice that
∑L

n=1 w̃n = 0. Explicit expression
for w̃n is different for 1 ≤ n ≤ L − 1 and n = L. In the former case we have

w̃n = 4πg
Lsin2(nπ/L)

−(2ℓ−1)− (2ℓ−3)(2ℓ−1)
8g

L−1∑
α=1

e−inpαI1(sαχ)+O(1/g2) . (A.19)

For n = L we have instead

w̃L =−4πg(L−1)(L+1)
3L +(2ℓ−1)(L−1)− (2ℓ−3)(2ℓ−1)

8g
L

π
logL+O(1/g2) . (A.20)

These expressions are valid for arbitrary L ≥ 1.
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The functions w̃+
n and w̃−

n are given by (A.19) and (A.20) for ℓ = 1 and ℓ = 2, respectively.
Their substitution into (A.17) leads to

(gπ)3
( 52
945L5 − 1

45L3 + 11L
945 − 2

45L

)
+ (gπ)2

(
− 1
15L4 − 1

18L3 − L

18 + 1
9L + 1

15

)
+ (gπ)

(⟪I0I1⟫
48L2 −

⟪I2
0I1⟫

192π − logL
240L3 + 1

6L2 + L

12 − 1
12L + 1

240L log(L)− 1
6

)
+O(g0) ,

(A.21)

where ⟪In
0 I1⟫ is defined according to (A.2). One can verify that the expression (A.21)

vanishes at L = 2 as it should be.
The relation (A.21) yields the sum on the last line in (3.16). Adding the contribution of

the first two lines in (3.16), we arrive at the relation (3.31). Notice that terms containing
logL and ⟪I2

0I1⟫ cancel in F
(1)
L .

B Resummation

In this appendix, we derive the relation (4.6). We recall that the function f(L/
√
λ) defines

the subleading correction to the free energy (4.4) in the double scaling limit

λ≫ 1 , L≫ 1 , L/
√
λ = fixed . (B.1)

Leading behaviour. For arbitrary L the free energy (3.8) is given by the sum over possible
values of the quasimomentum pα = 2πα/L. At large L, the quasimomentum takes continuous
values 0 ≤ p ≤ 2π. This suggests to rewrite the free energy (3.8) as an integral over p

F
(0)
L = L

2
∑

ℓ=1,2

ˆ 2π

0
dp ρ(p)Fℓ(sin2(p/2)χ) . (B.2)

Here we replaced sα with its expression (2.12) and introduced notation for the density function

ρ(p) = 1
L

L−1∑
α=0

δ(p− 2πα/L) . (B.3)

It satisfies the normalization condition
´ 2π

0 dp ρ(p) = 1 and admits the large L expansion9

ρ(p) = 1
2π − 1

2L(δ(p− 2π)− δ(p))− π

6L2
(
δ′(p− 2π)− δ′(p)

)
+O(1/L3) , (B.4)

where prime denote a derivative over p.
At strong coupling, we can replace the function Fℓ(χ) in (B.2) by its leading behaviour

Fℓ(χ) = −2gI0(χ) +O(g0) (see (3.23)). Taking into account (3.25) and (3.6), we obtain the
contribution of the first term in (B.4) to (B.2) as

−2Lg
ˆ 2π

0

dp

2π

ˆ ∞

0

dx

π
x∂x log

(
1 + sin2(p/2)

sinh2(x/2)

)
= L

2gπ
3 . (B.5)

9This relation follows from the Euler-Maclaurin summation formula for
∑L−1

α=0 Φ(2πα/L) =
L
´ 2π

0 dp ρ(p)Φ(p) where Φ(p) is a generic test function.
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Repeating the calculation using the O(1/L) term in (B.4), one finds that it yields a vanishing
contribution to (B.2). The contribution of the O(1/L2) term in (B.4) to (B.2) is10

−gπ6L

ˆ 2π

0
dp ∂p

ˆ ∞

0

dx

π
x∂x log

(
1 + sin2(p/2)

sinh2(x/2)

)
= −2gπ

3L . (B.6)

Adding together (B.5) and (B.6), we reproduce the first term in the expression (3.30) for F (0)
L .

Notice that the integrals (B.5) and (B.6) have different behaviour in the double scaling
limit (B.1). Both integrals receive a dominant contribution from x ∼ | sin(p/2)| but the
corresponding values of the quasimomentum are different. The leading contribution to (B.5)
comes from the region 0 < p < 2π whereas for (B.6) it only comes from the end-points,
p → 0 and p → 2π, or equivalently sin(p/2) → 0.

Subleading corrections to the density function (B.4) give rise to the function f defined
in (4.4). An important observation is that, similar to (B.6), it arises from the integration
in (B.2) over the end-point region x ∼ | sin(p/2)| and p → 0 (mod 2π). In application
to (3.23) this implies that, computing the subleading corrections to (B.2), we can replace
the symbol χ(x) in the definition of the function (3.25) with its asymptotic behaviour at
small x. According to (3.6), the corresponding symbol is

χ0(x) = − 4
x2 . (B.7)

We would like to emphasize that, substituting χ(x) with χ0(x) in (B.2), we only expect to
recover the subleading correction to F (0)

L but not the leading one. The latter correction comes
from the integration in (B.5) over finite x in which case such substitution is not justified.

Replacing χ(x) with χ0(x) in (B.2) leads to a significant simplification. The main
reason is that the function (3.7) can be found in a closed form for the symbol (B.7) (see
appendix D in [1])

Fℓ(χ0) = log
(
Γ(ℓ)Iℓ−1(4g)

(2g)ℓ−1

)
, (B.8)

where Iℓ−1(4g) is a modified Bessel function of the first kind. To obtain Fℓ(sαχ0) = log det(1−
Kℓ(sαχ0)) from (B.8), we take into account that the semi-infinite matrix Kℓ(sαχ0) defined
in (3.5) involves the product sαχ0(x/(2g)) = −4g2 sin2(pα/2)/x2. Because the coupling
constant is accompanied by sin(pα/2), the dependence of Fℓ(sαχ0) on sα can be restored by
replacing g → g sin(pα/2) on the right-hand side of (B.8). In addition, in the end-point region,
for pα → 0, we can replace sin(pα/2) with pα/2. Applying the transformations outlined
above, we get from (3.8) and (B.8)

F
(0)
L ∼

∑
1≤α≪L

log
( 1
gpα

I0(2gpα)I1(2gpα)
)
. (B.9)

Here we took into account that terms with α ≪ L and (L − α) ≪ L provide the same
contribution to the sum.

10Here the integral over x gives 2| sin(p/2)|/ sin(p/2) and it approaches opposite values ±2 for p → 0
and p → 2π.
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By construction, the relation (B.9) captures the contribution to (B.2) from the end-point
region sin(p/2) → 0. As explained above, we expect that it will generate the function f in
the relation (4.4). Indeed, expanding (B.9) at large g we obtain

F
(0)
L ∼

∑
1≤α≪L

(
4gpα − log

(
4πg2p2

α

)
− 1

8gpα
− 1

32g2p2
α

− 19
1536g3p3

α

− 7
1024g4p4

α

+ . . .

)
,

(B.10)

where pα = 2πα/L. We observe that the first three terms inside the brackets provide a
contribution that diverges in the double scaling limit (B.1). The contribution of the remaining
terms remains finite in this limit. Moreover, replacing

∑
α 1/pn

α = Lnζ(n)/(2π)n as L→ ∞,
we find that it correctly reproduces the expansion (4.5) of the function f(l) with l = L/(4πg).
Subtracting from (B.9) the contribution of the first three terms in (B.10), we arrive at
the following relation

f =
∞∑

α=1
log

(
4πgpαI0(2gpα)I1(2gpα)e

1
8gpα

−4gpα
)
. (B.11)

It is straightforward to verify that the large g expansion of (B.11) coincides with (4.5) up
to exponentially small O(e−8πg/L) corrections. Replacing pα = 2πα/L and g =

√
λ/(4π)

in (B.11), we finally arrive at (4.6) with l = L/
√
λ.
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