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Abstract: In this paper, we revisit the infrared (IR) divergences in de Sitter (dS) space
using the wavefunction method, and explicitly explore how the resummation of higher-order
loops leads to the stochastic formalism. In light of recent developments of the cosmological
bootstrap, we track the behaviour of these nontrivial IR effects from perturbation theory to
the non-perturbative regime. Specifically, we first examine the perturbative computation
of wavefunction coefficients, and show that there is a clear distinction between classical
components from tree-level diagrams and quantum ones from loop processes. Cosmological
correlators at loop level receive contributions from tree-level wavefunction coefficients, which
we dub classical loops. This distinction significantly simplifies the analysis of loop-level IR
divergences, as we find the leading contributions always come from these classical loops.
Then we compare with correlators from the perturbative stochastic computation, and find
the results there are essentially the ones from classical loops, while quantum loops are only
present as subleading corrections. This demonstrates that the leading IR effects are contained
in the semi-classical wavefunction which is a resummation of all the tree-level diagrams.
With this insight, we go beyond perturbation theory and present a new derivation of the
stochastic formalism using the saddle-point approximation. We show that the Fokker-Planck
equation follows as a consequence of two effects: the drift from the Schrödinger equation
that describes the bulk time evolution, and the diffusion from the Polchinski’s equation
which corresponds to the exact renormalization group flow of the coarse-grained theory on
the boundary. Our analysis highlights the precise and simple link between the stochastic
formalism and the semi-classical wavefunction.
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1 Introduction

In the past several decades, great efforts have been made in understanding the infrared
(IR) divergences in de Sitter (dS) space. At the conceptual level, this issue has important
implications, such as for the radiative stability of dS spacetime, the measure problem of
eternal inflation, and also the holographic description for our Universe. Furthermore, the IR
effects in dS are of phenomenological interest for inflationary cosmology. There, light scalars
are supposed to be responsible for the quantum origin of cosmic structures, and correlation
functions with nontrivial IR behaviour at the end of inflation may become primary targets
that can be tested in upcoming cosmological observations.

In our current understanding, these IR divergences arise in the perturbation theory of
interacting light scalars. For quantum field theories in a fixed dS background, it is widely
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recognized that correlators of these fields may exhibit secular growth on superhorizon scales [1–
13]. These divergences already show up at tree level, and become more and more singular for
higher-order loops, which in due course invalidate the perturbative analysis. Therefore in
order to check whether final results are IR-safe or not, in principle one needs to go beyond
perturbation theory and perform a resummation of all the higher-order loop diagrams, though
in practice this seems to be out of reach. Meanwhile, in parallel with the field-theoretic
computations, a non-perturbative approach called the stochastic formalism was proposed
by Starobinsky et al., which applies the Fokker-Planck equation to describe the probability
distribution of long wavelength perturbations during inflation [14, 15]. For scalar field theories
with potentials bounded from below, it has been shown that ultimately, an equilibrium state
will be reached for long modes on superhorizon scales. Thus final correlation functions remain
IR-finite. Since then, the stochastic formalism has been studied as a solution of the IR
divergences in dS using various methods, see [16–32] for recent examples.

In spite of the extensive analysis and various derivations in the literature, some basic
questions remain about the stochastic formalism. The first one is about the explicit connection
with the field-theoretic approaches. While the equilibrium state emerges as a solution of
the Fokker-Planck equation in the non-perturbative regime, it is interesting to see how this
description is connected to the IR divergences in field-theoretical computations. Recently it
has been shown that the original stochastic formalism is the leading approximation of strong
IR effects in de Sitter space [21, 22]. Next, we can go one step further and ask, what does
the stochastic formalism actually resum, or which part of the field-theoretical computation is
being resummed by the original Fokker-Planck equation?1 Since the computation becomes
more and more complicated as we increase the order of loops, at first sight it looks hopeless to
provide an exact answer to this question. Meanwhile, the stochastic formalism is essentially
a coarse-grained description for long wavelength modes where short wavelength ones are
being smoothed out. This recalls to the similar idea of the Wilsonian effective field theory:
integrating out high energy modes leads to a low-energy description which changes with the
ultraviolet (UV) cutoff scale as the renormalization group (RG) flow. It is very tempting to
see how the story in cosmology can be phrased in terms of this Wilsonian picture.

Another interesting question concerns the situation where we have multiple interacting
light scalars in de Sitter space. For studies of cosmic inflation, this corresponds to the
multi-field models, where the inflaton is not the only light scalar degree of freedom. Unlike
the inflaton field, the additional light scalars have less constraints and typically lead to IR
divergences with various forms [35]. Recently, a bootstrap analysis was performed within
perturbation theory, and it was shown that the conversion process in multi-field models
is actually described by the IR-singular secular growth in the field-theoretic approach [36].
This in the end provides a rigorous derivation for the well-known prediction of local non-
Gaussianity from multi-field inflation. Meanwhile a non-perturbative treatment using the
stochastic formalism is presented in ref. [37] (See also [38]). It remains to be seen how

1This is a different question from the derivation of the stochastic formalism. In the literature, the pertubative
stochastic computation was found to match 1-loop corrections from in-in formalism [33, 34], while more
recently ref. [22] showed that the leading divergences from higher-loop diagrams agree with the stochastic
results at the corresponding order. We refer the reader to the end of section 4 for detailed discussions.
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new phenomenologies of primordial non-Gaussianity would appear in the non-perturbative
regime of the multi-field system.

Motivated by these questions, the purpose of this work is less of making conceptually
new discoveries on this extensively-discussed topic, rather than trying to gain a better under-
standing using the recently developed wavefunction approach for cosmological perturbations.
Our investigation is initiated by the rapid development of the cosmological bootstrap in the
past several years, where a timeless description of cosmological observables is being con-
structed by imposing consistency requirements [36, 39–66]. A central object in the bootstrap
analysis is the wavefunction of the Universe Ψ[ϕ(x), t], which is a functional of boundary
field fluctuations [67–69]. For a quantum system, the probability distribution is famously
related to the wavefunction as

P = |Ψ|2. (1.1)

Meanwhile the Fokker-Planck equation is a description for the evolution of the probability
distribution of long wavelength perturbations. In this sense, for the purpose of building the
link between the field-theoretic and stochastic approaches, the wavefunction of the Universe
provides the most obvious object to look at. This line of thinking has been explored in
ref. [21], where a systematic derivation of the stochastic formalism is presented using the
wavefunction method.

In this paper, we adopt a similar approach to track the behaviour of IR-divergent
correlators from the perturbation theory to the non-perturbative regime. Built on previous
studies, we further identify the origin of leading IR effects, and find a precise link between the
stochastic formalism and the semi-classical piece of the wavefunction. This new understanding
helps us simplify the analysis of IR divergences with more detailed results through concrete
examples and explicit computations. In perturbation theory, we will propose the notion
of classical loops, and show that for diagrams beyond tree level, these are the leading
contributions to loop-level correlators with IR divergences. Then through explicit comparison
with the perturbative stochastic computation, we will demonstrate the stochastic formalism
as a resummation of these classical loop contributions, while the quantum loops only lead
to subleading corrections.

Beyond perturbation theory, we further explore the implications of the semi-classical wave-
function, which now by itself is a resummation of all the tree-level contributions. Considering
a coarse-grained theory on the boundary, we apply Polchinski’s RG flow techniques to derive a
non-perturbative equation for the probability distribution. This RG-type equation in the end
leads to the diffusion term in the Fokker-Planck equation, while the drift term results from the
Schrödinger equation which describes the time evolution of the semi-classical wavefunction.

The structure of the paper is organized as follows. In section 2, we first briefly review
the wavefunction method for computing cosmological correlation functions in perturbation
theory. Here, we specifically make a distinction between classical and quantum effects,
and propose the notion of quantum and classical loops for the loop-level correlators. After
this preparation, we move to look into IR divergences in de Sitter space. In section 3, we
perform the perturbative computations from various types of interacting theories of light
scalars. Through the explicit one-loop analysis and generalizations to multi-loop diagrams,
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we establish that the leading IR-divergent contributions to correlators always originate
from classical loops. In section 4, we explicitly compare the perturbative results from the
wavefunction computation and the stochastic formalism, and identify that the latter approach
is resumming classical loops. In section 5, we go beyond perturbation theory and re-derive
the Fokker-Planck equation by identifying the diffusion as a consequence of the boundary
exact renormalization group (RG) equation for the semi-classical wavefunction. We conclude
in section 6 with a summary and outlook.

More technical details are presented in the appendices. In appendix A, we perform the
in-in computation for one-loop IR-divergent correlators, which match the results from the
wavefunction formalism in section 3.3. In appendix B, we use the coarse-grained wavefunction
to reproduce the probability distributions of long wavelength fluctuations within perturbation
theory, and show that the contributions from tree-level wavefunction coefficients satisfy the
Fokker-Planck equation, which provides another justification for the relation between the
stochastic formalism and the semi-classical wavefunction. In appendix C, we extend the
derivation of the Fokker-Planck equation to a two-field system. Throughout the paper, we
mainly take the convention of natural units c= ℏ= 1, with the metric signature (−,+,+,+),
except for special cases (as in section 2) where we keep ℏ explicit for the distinction of
quantum and classical effects. The bulk fields are denoted by Φ, Σ, while ϕ and χ are
boundary fluctuations.

2 The wavefunction method: classical vs. quantum

Before delving into the resolution of the infrared divergence problem in de Sitter space, in this
section we first outline the wavefunction of the Universe formalism. Our primary goal here is
to derive the Feynman rules required for perturbative calculations by employing functional
quantization in a rigorous manner. We explicitly delineate the clear demarcation between
classical and quantum processes within this framework, with both types of processes making
contributions to the cosmological correlation functions at the level of loop diagrams.

The wavefunction method for computing correlation functions offers significant advantages,
both in terms of conceptual clarity and computational efficiency. For a quantum system,
the wavefunction contains all the information about correlations and is naturally a more
primitive object to study. In cosmology, this has been appreciated in the recent advances of
the Cosmological Bootstrap program, where we have a collection of quantum fields on a fixed
de Sitter background and the objects of interest are correlations on the late-time boundary of
the spacetime. In perturbation theory, it has been shown that the analytical structures of
the wavefunction are nicely manifested as consequences of unitarity, locality and spacetime
symmetry. Meanwhile, at the practical level, the wavefunction in many cases becomes a
much simpler object for computations. In this section, we review the wavefunction method
for computing correlation functions, and in particular we turn our attention to examining
the loop-level diagrams of the cosmological correlators, highlighting the distinctions between
classical and quantum contributions there.

In general, for the quantum-mechanical state of a given system |Ψ⟩, the wavefunction
is defined in the Heisenberg picture as its inner product with the basis of field eigenstates
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|ϕ(t0,x)⟩ at a fixed time t0

Ψ[ϕ(x)]≡⟨ϕ(t0,x)|Ψ⟩. (2.1)

Typically we are interested in the interacting vacuum state |Ψ⟩= |Ω⟩ defined at the infinite
past (ti =−∞), and thus the wavefunctional Ψ[ϕ(x)] describes the overlap between the
vacuum state and a given field profile ϕ(x) at t0. Formally, the wavefunction of this scalar
field ϕ can be presented as the following path integral

Ψ[ϕ(x)] =
∫

Φ(t0)=ϕ
Φ(−∞)=0

DΦexp
(
i

ℏ
S[Φ]

)
, (2.2)

where we assume the bulk field Φ goes to zero (vacuum) in the infinite past, and is given
by the profile ϕ(x) at the late time t0. Then the path integral sums over all the possible
field configurations with these two fixed boundary conditions. Recall that in QFT textbooks,
the path integrals normally have a final state at the infinite future (tf →+∞), the major
difference in the wavefunction formalism is the presence of a fixed future boundary. This
description applies to general FLRW spacetimes, including Minkowski and de Sitter spaces.
For the rest of this section, we shall keep the analysis formal and general, which may simply
extend to other spacetime background and field components as well.

Another thing to notice is that in (2.2) we keep ℏ explicit, for the convenience of tracking
quantum and semi-classical contributions in the wavefunction method. As is well-known, in
the path integral quantization the distinction between classical and quantum physics can
be clearly demonstrated by taking the ℏ→ 0 limit. There the path integral is dominated by
the configuration ϕ(t,x) which has an extremum with δS= 0. This configuration precisely
leads to the Euler-Lagrange equation satisfied by a classical field. In standard quantum field
theory, one common lore is that the processes that can be described by the classical equations
of motion give rise to tree-level diagrams, while loop diagrams, which are truly quantum
effects, cannot be generated in classical field theories and are only caused by higher-order
(in ℏ) corrections to the classical computation. This difference is formally demonstrated by
the Schwinger-Dyson equation where the contact terms with ℏ are responsible for generating
loop processes. In the rest of this section, we will clarify that for cosmology, this distinction
between classical and quantum effects is similarly present in the wavefunction method, and
the basic object of interest here is the wavefunction coefficients.

2.1 Classical and quantum wavefunction coefficients

In perturbation theory, one convenient way to study the wavefunction is to write it as an
expansion in powers of the field fluctuations on the boundary. After the spatial Fourier space
transformation, it can usually be expressed as

Ψ[ϕ] =exp
[

1
2

∫
k1,k2

ψ2(k1,k2) ϕk1ϕk2 +
∞∑
n=3

1
n!

∫
k1,...,kn

ψn(k1, . . . ,kn) ϕk1 ···ϕkn

]
, (2.3)

where the momentum integrals are given by∫
k
≡
∫ d3k

(2π)3 , (2.4)
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and ψ2, ψ3, . . . are the wavefunction coefficients in Fourier space. These are the central
objects in our analysis, which encode the statistics of ϕ and can also be seen as correlations
functions of boundary CFT operators. In the following we shall derive the Feynman rules for
computing ψn, and focus on the differences in the computations of tree-level and loop-level
processes. For demonstration, we mainly use the following simple scalar field theory in a
general FLRW universe as a concrete example

S[Φ] =
∫

dηd3x a(η)4
[
−1

2 (∂µΦ)2− 1
2m

2Φ2− g

3!Φ
3
]
, (2.5)

where the spacetime metric is the one with conformal time η: ds2 = a(η)2 [−dη2+dx2], and
we choose the mass and coupling to be independent of ℏ.

Tree diagrams. The derivation of Feynman rules for the tree diagrams has been well
presented in the literature. Here we briefly summarize the basic steps, and the readers may
refer to [53, 67, 69, 70] for more details. The starting point is the saddle-point approximation,
where the action is on-shell

Ψ[ϕ]≃ exp
(
i

ℏ
S[Φcl]

)
, (2.6)

with Φcl being the solution of the classical equation of motion. For the example in (2.5),
this is given by

(□−m2)Φcl = g

2Φ2
cl, (2.7)

where □= gµν∇µ∇ν is the d’Alembert operator in the curved spacetime. We refer to the
saddle-point approximation in (2.6) as the semi-classical wavefunction, which will be of
central interest in our analysis. Next we work in the Fourier space aiming to derive the
explicit expressions of wavefunction coefficients in (2.3). As we impose the boundary condition
Φcl(η0,k) =ϕk, formally the on-shell equation (2.7) can be solved as

Φcl(η,k) =ϕkK(k,η)+ i

ℏ

∫
dη′G(k;η,η′) δSint

δΦk(η′)

∣∣∣∣
Φ=Φcl

. (2.8)

Here the first term is the part that solves the free equation of motion, and K(k,η) is also
known as the bulk-to-boundary propagator given by(

□k−m2
)
K(k,η) = 0 with lim

η→η0
K(k,η) = 1 and lim

η→−∞
K(k,η) = 0, (2.9)

where □k is the spatial Fourier transformation of the d’Alembert operator. The second term
treats the interaction as a source, and introduces the Green’s function G(k;η,η′) which satisfies(

□k−m2
)
G(k;η,η′) = iℏ

a4 δ(η−η
′) with lim

η,η′→−∞
G(k;η,η′) = lim

η,η′→η0
G(k;η,η′) = 0.

(2.10)
In classical theories, the appearance of ℏ is not necessary as in the end (2.8) is ℏ-independent.
Here it has been introduced in such a way to match the one in a quantum theory as we shall
show very soon. For those familiar with bulk-to-bulk propagators in the in-in formalism,
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Figure 1. (Semi-)classical wavefunction coefficients from tree-level diagrams.

one nontrivial difference to notice is that the wavefunction G propagator has a vanishing
boundary condition as η→ η0.

Then the tree-level wavefunction coefficients can be derived by substituting the formal
solution (2.8) into the saddle-point wavefunction expression (2.6) iteratively. Explicitly, up
to g2 order for the example in (2.5), the action can be written into the following form

S[Φcl] =
∫

k1,k2

[
1
2a(η)2Φk1∂ηΦk2

∣∣∣∣
η=η0

+ 1
2

∫
dηa(η)4Φk1(□k−m2)Φk2

]
(2π)3δ(3)(k1+k2)

− g

3!

∫
k1,k2,k3

∫
dηa(η)4K(k1,η)K(k2,η)K(k3,η)ϕk1ϕk2ϕk3(2π)3δ(3)(k1+k2+k3)

+ ig2

4!ℏ

∫
k1,...,k4

∫
dη
∫

dη′a(η)4a(η′)4 [K(k1,η)K(k2,η)G(s;η,η′)K(k3,η
′)K(k4,η

′)

(2π)3δ(3)(k1+k2+s)(2π)3δ(3)(k3+k4−s)+t- and u-channels
]
ϕk1ϕk2ϕk3ϕk4

+. . . (2.11)

Putting it back into (2.6) and comparing with the notation in (2.3), we identify the tree-level
wavefunction coefficients. The first line in (2.11) comes from the free theory: the boundary
term yields the two-point wavefunction coefficient ψfree

2 = iℏ−1a(η0)2∂η0K(k1,η0)(2π)3δ(3)(k1+
k2), while the second term is proportional to the classical equation of motion and thus goes
to zero once the on-shell condition is imposed. The second line gives the 3-point function ψ3
from the contact diagram shown by the first diagram in figure 1; the third line generates the
single-exchange 4-point function ψ4 as shown by the second diagram in figure 1. Continuing
this process, we can generate the wavefunction results for all the tree-level diagrams, such
as the 5-point function from the double-exchange diagram and so on.

From this explicit derivation, it is clear that all the tree diagrams follow from the
semi-classical wavefunction (2.6) and the formal solution of the classical equation (2.8).
Diagrammatically, we can compute these wavefunction coefficients in perturbation theory
using the following Feynman rules: i) assign ig/ℏ to each vertex; ii) assign a K propagator
to each external line and a Green’s function G to each internal line; iii) integrate over the
bulk time for all the insertions dη a(η)4. As there is an ℏ−1 with each insertion and a ℏ
for each internal line, all the tree-level ψns have a ℏ−1, which is expected from our starting
point — the saddle-point approximation (2.6).

Loop diagrams. Notably, the above derivation cannot generate loops. For flat spacetime
scattering amplitudes, it is well-known that tree-level processes can also arise in classical
field theory, while loop diagrams are only present in a quantum theory. Similar argument is
expected in cosmology as well, but has not been explicitly presented in literature yet. To
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identify the truly quantum effects, we need to go beyond the saddle-point approximation (2.6).
Now we explicitly look into the origin of loops in the wavefunction method.

Let’s first consider the functional quantization of a free theory in the wavefunction
formalism. Without imposing the on-shell condition, the path integral (2.2) can be expressed
in the following form

Ψ0[ϕ]

=
∫

Φ(t0)=ϕ
Φ(−∞)=0

DΦexp
[
i

2ℏ

∫
k,k′

(
a2 ϕk∂ηΦk′ |η=η0

+
∫

dηa(η)4Φk′(□k−m2)Φk

)
(2π)3δ(3)(k+k′)

]
,

(2.12)

The main difference with the first line in (2.11) is that now the second term is no longer zero
as the on-shell condition becomes invalid in a quantum theory. While the boundary term
is fixed as in classical theories, the integration over Φ can be solved as

Ψ0[ϕ] = exp
(1

2

∫
k,k′

ψfree
2 ϕkδϕk′

)[
det

(
−i(□k−m2)/2πℏ

)]−1/2
. (2.13)

Furthermore, using the Gaussian integral, we can compute the two-point function of the
bulk field Φ

⟨Φk(η)Φk′(η′)⟩≡
∫
DΦΦk(η)Φk′(η′)exp

(
i
ℏS0[Φ]

)
∫
DΦexp

(
i
ℏS0[Φ]

) =G(k,η,η′)(2π)3δ(3)(k+k′), (2.14)

where G(k,η,η′) is the same with the Green’s function (2.10) defined in classical theories. As
is clear from this new definition, G is also called the bulk-to-bulk propagator which takes a
bulk field from a time η′ to another time η. Now it also becomes obvious for our choice of
putting ℏ in (2.10). In the quantum theory, the G propagators carry an ℏ by definition. As
an aside, because of the boundary condition at η0 in (2.10), this bulk-to-bulk propagator
differs from the one in the in-in formalism, which will become important for our discussion
on the IR divergences later. The bulk-to-boundary propagator K can be introduced in a
similar manner by using the conjugate momentum Π = a2∂ηΦ on the boundary

⟨Πk(η0)Φk′(η)⟩= a(η′)2∂η′⟨Φk(η′)Φk′(η)⟩|η′=η0 = iℏK(k,η)(2π)3δ(3)(k+k′), (2.15)

where in the second equality we have used the identity K(k,η) = a(η′)2∂η′G(k,η′,η)|η′=η0 .
Next, we move to compute wavefunction coefficients in perturbation theory. In the path

integral formalism, they are expressed as the following matrix element

ψn(k1, . . . ,kn)≡ δnΨ[ϕ]
δϕk1 . . . δϕkn

∣∣∣∣
ϕ=0

= (i/ℏ)n
Ψ[0]

∫
DΦΠk1(η0) . . .Πkn(η0)exp

(
i

ℏ
S[Φ]

)
. (2.16)

With the presence of interactions, we can perturbatively expand the exponential function
in (2.16) into exp(iS0/ℏ)(1+iSint/ℏ+. . .) and perform the functional integral to produce
Wick contractions. This procedure leads to the Feynman rules for computing wavefunction
coefficients. The contractions between Π and Φ are given by (2.15), which simply means that
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Figure 2. Quantum wavefunction coefficients from loop-level diagrams.

the external legs are associated with the bulk-to-boundary propagators. Then we also find
time-ordered correlation functions of the bulk field Φ, whose contractions yield G propagators
in (2.14). At the tree-level, this derivation is in precise agreement with the Feynman rules in
classical theories, as it should be. However, one expects nontrivial consequences in a quantum
theory, as it also becomes possible to contract bulk fields in such a way that closed loops
can be formed using the bulk-to-bulk propagators.

As a concrete example, let’s take a look at the leading correction to the two-point
wavefunction coefficient in the quantum version of the Φ3 theory in (2.5). At the g2 order,
this correction corresponds to a one-loop process, which is explicitly given by

ψ1−loop
2

= g2

(3!)2ℏ4Ψ[0]

∫
DΦΠk(η0)Πk′(η0)

∫
x,y

dη1dη2a(η1)4a(η2)4Φ(η1,x)3Φ(η2,y)3 exp
(
i

ℏ
S0[Φ]

)
= g2

(3!)2ℏ4

∫
dη1dη2a(η1)4a(η2)4

∫
p1,p2,p3,q1,q2,q3

(2π)3δ(3)(p1+p2+p3)(2π)3δ(3)(q1+q2+q3)

×⟨Πk(η0)Πk′(η0)Φ(η1,p1)Φ(η1,p2)Φ(η1,p3)Φ(η2,q1)Φ(η2,q1)Φ(η2,q3)⟩, (2.17)

where in the second line we have performed the Fourier transformation for x and y. Next
we can apply the Wick contractions using (2.14) and (2.15). In addition to the contraction
between the bulk field and the boundary conjugate momentum, there are also two contractions
of two Φ fields which form a closed loop. In the end the wavefunction coefficient becomes

ψ′1−loop
2 =−g

2

2

∫
dη1dη2a(η1)4a(η2)4K(k,η1)K(k,η2)

∫
p
G(p,η1,η2)G(|k+p|,η1,η2), (2.18)

where the prime means the momentum conserving (2π)3δ(3)(k+k′) has been stripped. Keeping
doing this computation to higher orders in perturbation theory, we find higher-loop corrections
to ψ2, whose full expression is given by

ψ2(k,k′)≡ δ2Ψ[ϕ]
δϕkδϕk′

∣∣∣∣∣
ϕ=0

=ψfree
2 +ψ1−loop

2 +ψ2−loop
2 +. . . (2.19)

As we can see, these corrections to the two-point function cannot arise in the classical
computation using saddle-point approximations and on-shell conditions. This is because
in a classical theory one cannot contract two bulk fields within a correlator as we have
done in (2.17), while for quantum theories this is allowed through contact terms in the
Schwinger-Dyson equation [71]. Thus the loop-level wavefunction coefficients have a truly
quantum origin.
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Now we need to add one more Feynman rule for the computation of wavefunction
coefficients in quantum theories: use multiple bulk-to-bulk propagators to form loops and
integrate over the loop momentum. Another interesting way to see the quantum origin
of loop diagrams is to notice that the loop expansion in (2.19) is also an expansion in ℏ.
Since there is an ℏ for each bulk-to-bulk propagator, for wavefunction coefficients the order
of ℏ increases with the number of loops L as ℏL−1, while all the tree-level wavefunction
coefficients are order ℏ−1.

In summary, by deriving the Feynman rules from scratch for the wavefunction method,
we identify that classical and quantum effects are associated with tree-level and loop-level
wavefunction coefficients respectively.2 This is in analogy with our understanding for scat-
tering amplitudes in Minkowski spacetime. For cosmology, the distinction between classical
and quantum effects is somehow obscured in the in-in formalism computation for correlation
functions. One explanation is that, as shown by the definition (2.1), the wavefunction is an
in-out object like the S-matrix in Minkowski spacetime but with a fixed-time future boundary
(see [65, 72, 73] for elaboration of this perspective). Therefore it is more natural to discuss
quantum and classical origins in the wavefunction coefficients. While the equal-time cosmo-
logical correlators are intrinsically in-in, and thus the quantum and classical contributions are
in general mixed. Meanwhile, for cosmological observations we are interested in correlation
functions at the end of inflation, which can be related to the late-time measurement in CMB
and large-scale structure surveys. Next, we shall see for loop diagrams how the combination
of classical and quantum wavefunction coefficients lead us to these physical observables.

2.2 Classical loops in cosmological correlators

In perturbation theory, the way to compute equal-time cosmological correlators of boundary
field fluctuations from the wavefunction of the Universe is to apply the Born rule

⟨ϕk1 · · ·ϕkn⟩=
∫
Dϕ ϕk1 · · ·ϕkn |Ψ[ϕ,η0]|2∫

Dϕ |Ψ[ϕ,η0]|2
. (2.20)

With the wavefunction coefficients, we can do the Taylor expansion and then perform the
Gaussian integral over the boundary field ϕ and derive the relations with the boundary
correlators. At the tree-level, these equations are simple algebraic ones. For instance, the two-
, three- and four-point correlators of the Φ3 theory in (2.5) are related to the corresponding
wavefunction coefficients via

⟨ϕkϕ−k⟩′ = − 1
2Reψ′

2(k) , (2.21)

⟨ϕk1ϕk2ϕk3⟩
′ = − Reψ′

3(k1,k2,k3)
4Reψ′

2(k1) Reψ′
2(k2) Reψ′

2(k3) . (2.22)

⟨ϕk1ϕk2ϕk3ϕk4⟩
′ = Reψ′

4(k1,k2,k3,k4)
8∏4

a=1 Reψ′
2(ka)

−⟨ϕk1ϕk2ϕk3ϕk4⟩
′
d, (2.23)

2Strictly speaking, the tree-level wavefunction coefficients are due to semi-classical effects, as the generation
of field fluctuations in cosmology is quantum. Throughout this paper, we do not distinguish “classical” from
“semi-classical”, but just keep in mind that we are analyzing quantum field theories in curved spacetime.
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where the disconnected part has contributions from a product of two ψ3

⟨ϕk1ϕk2ϕk3ϕk4⟩
′
d = 1

8∏4
a=1 Reψ′

2(ka)

[Reψ′
3(k1,k2,s)Reψ′

3(−s,k3,k4)
Reψ′

2(s) +t- and u-channels
]
.

(2.24)
The primes on correlators and ψn mean that we stripped the momentum-conserving δ-
functions. Therefore, knowing the classical wavefunction coefficients, such as (2.11), we are
able to compute the tree-level correlation functions.

For loop diagrams, the relation between correlators and ψn becomes more complicated,
as both classical and quantum wavefunction coefficients are expected to contribute to the
final correlation functions. For the Φ3 theory, the Born rule leads to the following two-point
correlator up to g2 order

⟨ϕk1ϕk2⟩=
∫

Dϕ ϕk1ϕk2 exp
{1

2

∫
q1,q2

ϕq1ϕq2 2Re
[
ψ2+ψ1−loop

2

]
+ 1

3!

∫
q1,q2,q3

ϕq1ϕq2ϕq3 2Reψ3+ 1
4!

∫
q1,...,q4

ϕq1ϕq2ϕq3ϕq4 2Reψ4
}
, (2.25)

where ψ2, ψ3 and ψ4 are the classical ones that can be read off from the tree-level computation
in (2.11), while ψ1−loop

2 is the quantum wavefunction coefficient in (2.17). Expanding the
exponential and performing the Gaussian integral over ϕ, the one-loop correction then can
be explicitly decomposed into three contributions

⟨ϕk1ϕk2⟩1−loop =
Reψ1−loop

k1k2

2Reψ′
2(k1)Reψ′

2(k2)−
1

8Reψ′
2(k1)Reψ′

2(k2)

∫
p

Reψ4(k1,k2,p,−p)
Reψ′

2(p)

+ 1
8Reψ′

2(k1)Reψ′
2(k2)

∫
p

[Reψ′
3(k1,p,−p−k1)Reψ3(k2,−p,p+k1)

Reψ′
2(p)Reψ′

2(|p+k1|)

+Reψ′
3(k1,k2,−k1−k2)Reψ3(k1+k2,p,−p)

Reψ′
2(p)Reψ′

2(|k1+k2|)

]
. (2.26)

From the expression above we can see that the first term has a truly quantum origin, which
cannot be present in any classical field theory. However, the in-in correlation functions also
contains classical loop contributions from tree-level wavefunction coefficients. For the case
here, the two-point correlator receives contributions from the product of two contact ψ3 and
the single-exchange ψ4 at the one-loop level. These are the classical loops in cosmological
correlators, which can be computed by solving the classical equation of motion.3

This analysis applies also to higher-order loops. All in all, in this way we can always
distinguish the classical contributions from the quantum ones. In practice, however, at higher
order it becomes more complicated to derive the relation between wavefunction coefficients
and boundary correlators, as more diagrams would be involved both at the tree level and
loop level. For instance in the Φ3 theory, to compute ⟨ϕϕ⟩ at the two-loop order would also
require ψ1−loop

4 and triple-exchange ψ6, in addition to the contact ψ3 and single-exchange ψ4.
Generally speaking, the Born rule (2.20) tells us that for a given order in perturbation theory,
the correlators receive contributions from all the wavefunction coefficients and their products
at the same order. The schematic form can be found in (3.22), and also see figure 5 for a

3We acknowledge insightful discussions with Enrico Pajer and Santiago Agui Salcedo to clarify this point.

– 11 –



J
H
E
P
0
4
(
2
0
2
4
)
0
0
4

specific example of higher loop diagrams. In any case, the distinction between classical and
quantum contributions to loop diagrams can still be helpful. In the following sections, we
shall take this approach to examine the IR divergences caused by interacting massless scalars
in de Sitter space. As these divergences are associated with long wavelength modes which
become semi-classical after horizon-exit, we shall see how the distinction between classical
and quantum loops leads to simplifications and interesting insights about the IR divergences
in dS, and in particular clarifies the explicit connection with the stochastic formalism.

As a concluding remark of this section, we note that in many circumstances for cosmology,
the classical loop contributions can dominate over the quantum ones, which means that we
only need to use the classical equation of motion to capture the leading effects in the loop
computations. This has been noticed for a long time in the studies of some late-time processes,
such as the formation of large-scale structure and induced gravitational waves, though it was
not fully clear how the loop computations there were related to the ones in quantum field
theory. Using the wavefunction formalism, here we have performed a systematical analysis
to distinguish the (semi-)classical contributions from the quantum ones. For the previous
(semi-)classical approximations, it would be interesting to understand better their regime of
validity through this approach and evaluate the effects of quantum corrections.

3 IR divergences in the perturbative computation

Within the wavefunction formalism, in this section we turn our attention to examine the
infrared (IR) divergences of de Sitter boundary correlation functions in perturbation theory.
In particular, after a general review of the subject in section 3.1, we will first collect some
tree-level computation of wavefunction coefficients with nontrivial IR behaviour in section 3.2.
After that, in section 3.3 we shall examine the one-loop structure of IR-divergent correlators
via the wavefunction approach, and identify the distinct contributions from classical and
quantum loops in three types of theories. In section 3.4, we extend the one-loop analysis to
the general IR-divergent correlators in higher-order loop diagrams, and find that contributions
from classical loops are always dominant, which significantly simplifies the identification of
the leading logarithmic behaviour in perturbation theory.

3.1 Loops and IR divergences

In perturbative computations, correlation functions in de Sitter space may keep growing on
superhorizon scales. This typically happens with very light scalars whose amplitudes freeze
after horizon exit and thus can cumulatively source the growth of correlators. As a result,
these correlators become singular towards the future boundary of dS with η0 → 0, which
signals the breakdown of perturbation theory. This is famously known as the IR divergences in
dS and has been extensively discussed in the literature. The appearance of IR divergences is a
property of spacetimes with boundaries [74], and is very similar in AdS (see for instance [75]).
In the case of de Sitter the fact that the boundary is spacelike has further complications.

Meanwhile, as physical observables, cosmological correlators are supposed to be IR-safe
and stable with respect to higher order radiative corrections. Thus one may expect these IR
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divergences become finite once we go beyond the perturbative regime.4 It has been identified
as early in [14] that the theory is finite because it reaches an equilibrium state. The idea
behind this approach is that modes can be split between the long wavelength classical solution
and the short wavelength quantum noise. Heuristically this corresponds to a stochastic
Langevin equation, which can be translated into a non-perturbative Fokker-Planck equation.
By use of these equations one can compute correlation functions which are now finite, and
in particular, time independent at late times. From a field-theoretic point of view, this
approach is expected to resum all the divergent contributions, especially the higher order
loops. To understand better the resummation, we first taker a closer look at the perturbative
computations. Here let’s briefly summarize the state of the art on the topic, especially from
the boundary perspective of the bootstrap approach.

The IR divergences in dS already show up in tree-level processes. As we will show in
more detail in section 3.2, these IR divergences are the secular terms with logarithmic growth
log(−kΣη0) that come from the bulk time integration for each vertex, with kΣ normally
being the sum of energies for one vertex. In a realistic scenario, cosmic inflation must end,
thus the conformal time η0 at the end of inflation provides a natural IR cutoff to regularize
the logarithmic singularity. In this case, perturbative computations remain valid as long
as the logarithmic function multiplied by the coupling is smaller than one. Recently, a
systematical investigation on the IR behaviour of both contact and exchange diagrams has
been presented in ref. [36] by using the cosmological bootstrap (see also [54, 79–85] for
relevant works in this direction). There it has been shown that the secular growth of late-time
correlators is described by the boundary conformal field theory with anomalies, and the
IR-divergent correlators from massless exchange diagrams lead to local-type non-Gaussianities
from multi-field inflation with full singularity structure. Furthermore, it has been noticed
that in the wavefunction approach, the disconnected contributions to exchange correlators,
such as the one shown in (2.23) and (2.24), typically contain leading IR divergences, while
the connected part may be less singular [36].

Beyond tree-level diagrams, higher order IR divergences are expected from loops. In
addition to secular divergences from time integrals, there is another type of IR divergences that
arise from loop momentum integration. This has long been noticed in the in-in computation [86–
90]. Typically we may encounter the following loop integral

∫
p

1
p3 = 1

2π2

∫ Λ

1/LIR

dp

p
= 1

2π2 log(ΛLIR) , (3.1)

where we have introduced two cutoff scales for regularization. The UV cutoff Λ becomes
essential when we screen out the short wavelength modes to study the coarse-grained pertur-
bations at large scales. We will elaborate on this in sections 4 and 5. Here let’s take a closer
look at the IR cutoff, which is given by the comoving size of the Universe LIR here. This
scale defines the size of the box for the system that we are interested in. For instance, at late
time t, the physical size of the Universe is given by a(t)LIR. One way to interpret it is to

4In this paper, we restrict our analysis to quantum field theories in a fixed dS background, and thus neglect
the backreaction effects with dynamical gravity which might become important for the stability of the dS
spacetime [5–7, 76–78].
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consider a minimum Fourier mode kIR which exits the horizon at some initial time ti, such
that kIR = a(ti)H ≃L−1

IR . This initial time may be seen as the beginning of inflation. Then all
the long wavelength perturbations we are interested in are generated after ti and have k >kIR.

As both momentum integration and nested time integration are involved, in general in-in
computations for loop-level correlators are notoriously difficult. For cases with IR divergences,
one can perform computations from one-loop corrections (see [8, 33, 87, 91] for previous
literature and appendix A for several examples), but it becomes much more complicated if
we consider the computation of higher loops.5 Meanwhile, one can also tackle the problem
using the wavefunction formalism. Recently it has been realized that loop computations
become simpler in the wavefunction fortmalism, and one can even derive the general form
of the wavefunction coefficients with IR loops at any order in perturbation theory [21]. In
the following we shall go one step further and show that, the computation for IR-divergent
correlators can also be greatly simplified by using the wavefunction method, and the leading
contributions always come from classical loops.

Setup for computation. Our basic object of interest is the wavefunction coefficients
ψn and we will apply the Feynman rules derived in section 2. For massless scalars, the
bulk-to-boundary propagator is given by solving (2.9)

K(k,η) = (1−ikη)eikη. (3.2)

Then for a free theory, its two-point wavefunction coefficient can be directly read off from
the boundary term in (2.11)

ψfree
2 (k,k′) = ik2

ℏH2η0(1−ikη0)(2π)3δ(k+k′), (3.3)

whose real part gives Reψ′free
2 =−k3/H2ℏ and thus generates the standard power spectrum

of massless scalars by using (2.21). The bulk-to-bulk propagator follows from (2.10)

G(k,η,η′) = ℏH2

2k3

[
(1+ikη)(1−ikη′)eik(η′−η)Θ(η−η′)+(1−ikη)(1+ikη′)eik(η−η′)Θ(η′−η)

−(1−ikη)(1−ikη′)eik(η′+η)
]
. (3.4)

Here as we approach the boundary with η→ 0 this propagator scales as

lim
η→0

G(k,η,η′)→− i

3H
2η3 (1−ikη′)eikη′ . (3.5)

Thus, even for massless scalars the wavefunction G propagator quickly decays on super-horizon
scales, instead of becoming constant. This property becomes important for the analysis of
IR divergences in wavefunction coefficients.

As in section 2 we have clarified the quantum and classical contributions in the calculation,
now we set ℏ= 1 to avoid clutter. Particularly the computation will be performed for
two massless scalars Φ, Σ in the bulk, with ϕ and χ being their boundary fluctuations
correspondingly. Our analysis mainly focuses on three types of bulk interactions:

λ

4!Φ
4,

g

3!Φ
3,

α

2 Φ̇Σ2. (3.6)

5Some efforts in this direction have been made in [22].
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Let us give a few more words about the choice of these vertices before moving to particular
computations. The first two are commonly expected for interacting scalars and have been
extensively discussed for the studies of IR divergences in dS. For inflation the scalar field ϕ

can be the inflaton itself, and then normally the two couplings λ and g are suppressed by
slow-roll parameters. The third interaction may not be so familiar as it breaks the boost
symmetry. Usually this is seen in many multi-field inflation models where we have a rolling
background of the inflaton field, and the coupling α is typically associated with the field-space
curvature [92]. Moreover, as the inflaton here is protected by a shift symmetry, this coupling
may not be necessarily slow-roll suppressed. We shall see later that the time derivative in this
vertex simplifies the analysis of IR divergences, and thus this type of interaction provides a
working example for us to go from perturbative computation to the non-perturbative regime.

3.2 IR divergences at tree level

The tree-level wavefunction coefficients of interacting massless scalars have already been
computed in the literature. Especially for the ones with IR divergences, the recent analysis
using the cosmological bootstrap provides a systematic classification for their full analytical
forms [36], which can be derived by solving a set of interesting differential equations from
anomalous conformal Ward identities (see also the corresponding analysis of CFT correlators
in momentum space in [79–84]). Here we mainly collect the result of tree-level wavefunction
coefficients of interacting massless scalars, from both contact and exchange diagrams.

• Φ4 interaction: the four-point contact diagram leads to

ψ′
4 = iλ

∫ η0

−∞
dηa(η)4K(k1,η)K(k2,η)K(k3,η)K(k4,η)

= − λ

H4

[
i

3η3
0

+ i

2η0

4∑
a=1

k2
a+ 1

3

( 4∑
a=1

k3
a

)
log(−kT η0)

]
, (3.7)

where kT = k1+k2+k3+k4. Then the corresponding correlation function is given by
the first term in (2.23), while there is no disconnected terms from ϕ4 interaction. As
the imaginary parts do not contribute, here the logarithmic term with secular growth
gives rise to the IR divergence in the correlator.

• Φ3 interaction: we first have a three-point contact diagram (see the first one in
figure 1)

ψ′
3 = ig

∫ η0

−∞
dηa(η)4K(k1,η)K(k2,η)K(k3,η)

= − g

H4

[
i

3η3
0

+ i

2η0

3∑
a=1

k2
a+ 1

3

( 3∑
a=1

k3
a

)
log(−ktη0)

]
, (3.8)

where kt = k1+k2+k3. The correlator follows from (2.22). Similarly the IR divergence
is caused by the logarithmic secular term. Let’s also consider the exchange diagram (see
the second one in figure 1) from this interaction, which leads to the following four-point
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Figure 3. Tree diagrams from the two-field interaction Φ̇Σ2. The solid lines are for Φ fields, while
the dashed lines represent Σ propagators.

wavefunction coefficient

ψ′
4 = −g2

∫ η0

−∞
dηdη′a(η)4K(k1,η)K(k2,η)G(s,η,η′)K(k3,η

′)K(k4,η
′)+perms.

= − g2

18H6

[
(k3

1 +k3
2 +s3) log2 (−ELη0)+(k3

3 +k3
4 +s3) log2 (−ERη0)

+t- and u-channels+imaginary part
]
, (3.9)

where s= |k1+k2|, t= |k1+k3|, u= |k1+k4|, and EL = k1+k2+s, ER = k3+k4+s. In
this case, to derive the corresponding correlator, in to addition the exchange ψ4 above,
there is also the disconnected piece in (2.23) with the product of two ψ3 in (3.8). Notice
that here these two parts both contribute at the log2 order, thus one needs to take
into account connected and disconnected terms to capture the leading IR-divergent
behaviour in the correlator.

• Φ̇Σ2 interaction: we first have the three-point contact diagram with one ϕ and two χ
fields (see figure 3)

ψ′
3 = iα

∫ η0

−∞
dηa(η)3∂ηK(k1,η)K(k2,η)K(k3,η) = α

H3

[
ik2

1
η0

+k3
1 log(−ktη0)

]
, (3.10)

which again contributes to a logarithmic IR divergent term in the corresponding
correlator. Next we also compute the four-point exchange diagram with two ϕ and two
χ fields as shown in figure 3

ψ′
4 = −α2

∫ η0

−∞
dηdη′a(η)3a(η′)3∂ηK(k1,η)K(k2,η)G(s,η,η′)∂ηK(k3,η)K(k4,η)

= −α
2k3

1k
3
3

2H4s3

[
log
(
EL
kT

)
log
(
ER
kT

)
+Li2

(
k1+k2−s

kT

)
+Li2

(
k3+k4−s

kT

)
+2s(s2−k3(k3+k4))
k3(k3+k4−s)ER

log
(
EL
kT

)
+ 2s(s2−k1(k1+k2))

k1(k1+k2−s)EL
log
(
ER
kT

)
+ 2s2

ELER

(
1+ (kT−k2)(kT−k4)s

k1k3kT
+ s2

k1k3

)
−π2

6

]
+t- and u-channels. (3.11)

This wavefunction is actually IR-finite with no secular term depending on η0.6 Tech-
nically, it can be understood by looking at the late-time limit of the bulk-to-bulk

6Naively it seems there are folded singularities at s= k1+k2 and s= k3+k4, but one can easily check that
they are absent in the folded limit of the above result. A simple way to derive this is to use weight-shifting
operators and four-point scalar seed of massless exchange as shown in ref. [36].
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propagator in (3.5): G decays as η3 thus the integrand in this case does not lead to
significant contribution in the late-time part of the bulk integration. However, the IR
behaviour of the four-point correlator ⟨ϕχϕχ⟩ is not simply related to the ψ4 above. As
now the disconnected part with the product of two Re ψ3 gives log2 divergent terms,
the IR-finite term from the connected part becomes sub-dominant. Thus from this
example, one can see the difference between wavefunction coefficients and correlators.
Especially their IR behaviours may differ when we look at exchange diagrams. See [36]
for more discussions about the distinction.

There are several lessons that we can learn from the tree-level computation of wavefunction
coefficients. First, for interacting massless scalars, logarithmic IR divergences arise when the
number of derivatives is less than 2. For higher-derivative interactions one finds the ψns are
in term of IR-finite rational polynomials [62]. Second, while the order of the divergence is
one for contact diagrams, it would depend on the type of interactions for exchange diagrams.
For the examples above, the exchange ψ4 from two Φ3 vertices has log2 divergence, since the
super-horizon decay of the G propagator does not stop the growth of the integrand in (3.9).
Meanwhile the one from Φ̇Σ2 is IR-finite because of the time derivative in the vertex. But
when we compute the corresponding correlators, both exchange diagrams are IR-divergent,
as the disconnected parts always lead to log2-type contributions. Thus, in general we expect
derivative interactions lead to simpler IR-singular structure than the non-derivative ones
do. Technically this is because derivatives (either spatial or time ones) increase the power
of η in the integrand and make it less likely to cause late-time singular behaviour. Later
we will show that this is also the case for loop diagrams.

3.3 One-loop structure of IR-divergent correlators

Next we consider IR divergences in loop corrections to massless scalar correlators using
the wavefunction method. The analysis is rather technical and it is better to gain some
intuition from simple working examples. Thus after a general discussion on loop integrals,
we first focus on the one-loop diagrams, and then look into higher-order loops in section 3.4.
Some of the loop analysis have been sketched in ref. [21], while in this paper we perform
a more explicit computation with concrete examples. All in all, the key takeaway is a
simplification: the infrared (IR) divergences in loop-level correlation functions are consistently
subdominant with respect dominant classical loop contributions stemming from the tree-
level wavefunction coefficients. Consequently, the quantum contributions can be effectively
neglected in this context.

Let’s begin with a generic form of the loop wavefunction coefficients. By using the
Feynman rule we derived for quantum theories, we can quickly write down the L-loop
correction to a n-point wavefunction coefficient with m vertices

ψL−loop
n ∼

∫
dη1 . . .dηma(η1)4 . . .a(ηm)4K(k1,η1) . . .K(kn,ηm)∫

p1,...,pL

G(p1,ηa,ηb) . . .G(pL,ηc,ηd)G(|px+ky|,ηe,ηf ) . . . (3.12)

where px and ky represent various combinations of internal and external momenta. One
needs to be careful about the bulk time of each insertion and the momentum conservation
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Figure 4. One-loop diagrams of two-point functions from three types of interactions with IR
divergences. The solid lines are for Φ fields, while the dashed lines represent Σ propagators.

conditions for particular types of interactions. Schematically we see that, in addition to
the bulk time integral for each vertex, there are also integrations for internal momenta.
These two types of integrations also arise in the in-in computation: the former generates
secular logarithmic terms (as for tree-level diagrams); while the latter leads to IR divergences
regularized by the cutoff L. In general one would expect to see both types of divergences in
the final correlator. Although the computation looks similar in the wavefunction approach,
it turns out to be simpler for the above ψL−loop

n .
To see this explicitly, let us briefly review an important observation in [21] that, in the

computation of loop-level wavefunction coefficients momentum integrations do not become
divergent at IR. We know that momentum integrals can be regularized by the UV cutoff Λ and
the IR cutoff 1/LIR. UV divergences are usually renormalized by introducing counterterms.
The IR divergences are manifested in the LIR →∞ limit, and we can use the following
results of the loop integrations

∫
p

1
pn

= 1
(2π)3

∫ Λ

1/LIR
4πp2−ndp

LIR→∞−−−−−→


IR-finite, n< 3

1
2π2 log(kLIR), n= 3.

Then it is easy to see that all the momentum integrals in (3.12) are IR-finite by noticing
the soft behaviour of the bulk-to-bulk propagator

lim
p→0

G(p,η,η′) =− i

6H
2(η3+η′3)+O(p). (3.13)

Thus in the loop-level calculation of ψn one can safely take the LIR →∞ limit and the
momentum integrals never become singular at IR. As a result, the wavefunction coefficients
can only have secular IR divergences log(−kη0) from bulk time integration.

Next, we consider the computation of IR-divergent correlators using the corresponding
wavefunction coefficients. As explicit demonstrations, we derive the two-point correlation
functions of ϕ at one-loop level from three different types of interactions in (3.6).

• One Φ4 vertex: this one-loop wavefunction coefficient has a single internal line. Using
the Feynman rules we derived in section 2, we find

ψ′1−loop
2 = iλ

2

∫ η0

−∞
dηa(η)4K(k,η)K(k,η)

∫
p
G(p,η,η) (3.14)

= λ

6H2

∫
p

[
log(−2(k+p)η0)+ k3

p3 log
(
k+p
k

)
+γE−

iπ

2 − 12k3+6k2p+13kp2+28p3

12p2(k+p)

]
,
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where there is a 1/2 as the symmetric factor, and in the second line we performed the
time integral. As argued above, this loop correction to ψ2 has only secular divergence
from bulk time integration. However, to compute the loop correction to correlators
from wavefunction coefficients, we also need to take into account the classical loops
from tree-level wavefunction coefficients. For Φ4 interaction, this corresponds to the
second term in (2.26) which requires the ψ4 in (3.7) from the contact diagram. Then
unlike the quantum loop from ψ1−loop

2 , the momentum integral here leads to the IR
divergence regularized by the cutoff LIR. As a result, at λ order the classical loop
contribution dominates over the quantum one, and the leading IR divergence in this
correlator is given by

⟨ϕkϕ−k⟩′1−loop

≃− 1
8Reψ′

2(k)Reψ′
2(k)

∫
p

Reψ′
4(k,k,p,p)

Reψ′
2(p) = H2

2k3
λ

12π2 log(kLIR) log(−2kη0)+. . .

(3.15)

This result agrees with the in-in computation as shown in appendix A. From this
example, we see for the first time that the main contribution of the IR divergence of a
loop correlator is due to the classical wavefunction coefficient.

• Two Φ3 vertices: the one-loop correction here corresponds to the second diagram
in figure 4, the expression of the wavefunction coefficient is explicitly given in (2.18).
Using the massless scalar propagators and performing the time integral, we find

ψ′1−loop
kk′ =− g2

27H4

∫
p

log(−(2k+p)η0) , (3.16)

which again only contains secular-type IR divergence, as the loop integration is IR-
finite. To compute the two-point correlator at one-loop (g2) order, we need to use
the relation (2.26) derived by the Born rule, and all three terms there are present for
the Φ3 theory. As the first term with ψ1−loop

2 has no loop IR divergences, the leading
contributions come from the second and third terms, which are explicitly given by

2nd term =
(
H2

2k3

)2 ∫
p

H2

2p3 Reψ′
4(k,k′,p,−p) = g2

8k3
−5

18π2 log(kLIR) log(−2kη0)2,

(3.17)

3rd term =
(
H2

2k3

)2 ∫
p

H2

2p3

[
H2

2|k+p|3
2Reψ′

3(k,p,−p−k)Reψ′
3(k′,−p,p+k)

+ H2

2|k+k′|3
2Reψ′

3(k,k′,−k−k′)Reψ′
3(k+k′,p,−p)

]

= g2

8k3
1

3π2 log(kLIR) log(−2kη0)2, (3.18)

where ψ3 and ψ4 are the tree-level wavefunction coefficients (3.8) and (3.9) from contact
and exchange diagrams. As both of them have log2 order secular divergences, the
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two-point correlator in the end is a sum of two contributions

⟨ϕkϕ−k⟩′1−loop ≃
g2

8k3
1

18π2 log(kLIR) log(−2kη0)2, (3.19)

which again reproduces the in-in result shown in appendix A. This example also shows
that the leading IR divergence of the correlator is given by classical loops from tree-level
wavefunction coefficients, although in this case both the contact ψ3 and exchange ψ4
contribute at the same order.

• Two Φ̇Σ2 vertices: here the one-loop process also corresponds to the third diagram in
figure 4, though the two internal lines are for Σ field and there is one time derivative
on Φ for each vertex

ψ′1−loop
kk′ =−α

2

2

∫
dηdη′a(η)3a(η′)3∂ηK(k,η)∂η′K(k,η′)

∫
p
G(p,η,η′)G(|k+p|,η,η′).

(3.20)
Then because of the time derivative, this wavefunction coefficient is actually IR-finite,
even without secular logarithms from time integrations, as we found for the exchange
ψ4 in (3.11). However, since the contact ψ3 in (3.10) has a secular term, we still get
IR-divergent contributions from the third term in (2.26).

⟨ϕkϕ−k⟩′1−loop ≃ 1
8Reψ′

2(k)Reψ′
2(k)

∫
p

Reψ′
3(k,p,−p−k)Reψ′

3(−k,−p,p+k)
Reψ′

2(p)Reψ′
2(|p+k|)

= H2

2k3
α2

8π2 log(kLIR) log(−2kη0)2, (3.21)

which also reproduces the in-in result in appendix A. Again, we find the correlator
is dominated by the contribution from classical loops. This time the computation is
further simplified, as the exchange wavefunction coefficient does not contribute and one
only needs to consider the term from the product of two contact ψ3.

Summary. From these three examples, we see that leading IR divergences of correlators
come from classical loops, which means only tree-level wavefunction coefficients are needed.
While the explicit computations above are for two-point functions, it is straightforward to
extend the analysis to any higher-point functions with IR-divergent one-loop corrections.
In general, the momentum integrations in loop-level wavefunction coefficients do not lead
to IR divergences, and thus the quantum loops only contain secular divergences, as we see
below (3.12). Meanwhile, at the same order of the couplings, the classical loops contain
both IR divergences from momentum integrals and also secular terms from time integrals,
thus giving rise to the leading logarithms in correlators. In general, to explicitly compute
the classical loops for higher-point functions, we need wavefunction coefficients of more
complicated tree-level exchange diagrams with multiple internal lines. The integration over
the internal momentum p is IR-divergent as there is always a ψ2(p)∝ p3 in the denominator
of the integrand. As a result, the classical loops always give the dominant contribution
to the final correlators.
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Figure 5. A diagrammatic illustration of a multi-loop relation: the correlator on the left (the diagram
with a ragged black line as the late-time boundary) receives various contributions from both loop-level
(the first and second lines) and tree-level (the third line) wavefunction coefficients on the right (the
diagrams with grey late-time boundaries). In this example one needs to incorporate all the ψn’s and
their products at the g7 order, as required by the Born rule (2.20) in perturbation theory.

3.4 Multi-Loop diagrams and leading logarithms

Although the explicit computation becomes complicated once we consider multi-loop processes,
the notion of classical loops can still help us easily identify the leading logarithms in IR-
divergent correlators. Let’s take gΦ3 interaction as an explicit example. At the gV order,
the n-point correlator of L-loop diagram can be computed by using all the wavefunction
coefficients and their products with V vertices. Schematically, the relation is

⟨ϕn⟩L−loop

∼ 1
(Reψ2)n

[
Re ψL−loop

n +
∫

p1

Reψ(L−1)−loop
n+2

Reψ2(p1) +. . .+
∫

p1,...,pL−1

Reψ1−loop
n+2(L−1)

(Reψ2(p1) . . .Reψ2(pL−1))

+
∫

p1,...,pL

1
Reψ2(p1) . . .Reψ2(pL)

(
Reψex

n+2L+
Reψex

n+2L−1Re ψ3

Re ψ2
+. . .+ (Re ψ3)V

(Re ψ2)3V−2L−n

)]
,

(3.22)

where all the numerical coefficients are dropped. In the first line we collect all the wavefunction
coefficients containing loops, and the tree-level contributions are listed in the second line,
which are the classical loops. One example is shown in figure 5. As we have argued in the
one-loop case, the momentum integration in wavefunction coefficients does not lead to IR
divergences, while each momentum integration explicitly shown in (3.22) contributes one
log(kELIR).7 Thus the second line leads to more divergent contributions than the ones from
loop-level wavefunction coefficient. In other words, the classical loops always dominate over
the quantum ones for IR-divergent correlators.

7Here kE represents the magnitude for one combination of various external momenta. The same notation
applies for the discussion in the rest of the section.
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This analysis in the end leads us to a simple conclusion: the saddle-point approximation of
the wave function (2.6), which contains all the tree-level information, captures the leading IR
behaviour. Intuitively, it is easy to understand: IR divergences are generated on superhorizon
scales, which are normally due to semi-classical effects. As we have shown in section 2, the
wavefunction of the Universe provides a clear distinction for quantum and classical effects,
which helps us here to confirm the intuitive understanding with concrete computations. This
interesting conclusion provides simplifications for the analysis of IR divergences in dS, and
will play an important role for our discussion of the stochastic formalism in the following
sections. The same results can be found for the λΦ4 and αΦ̇Σ2 interactions.

As one example of the simplifications, now let us show that in the perturbative computa-
tion how we can directly identify the leading IR logarithms. The trick here is to simply look
at the last term in the second line in (3.22), which is the contribution from the product of V
three-point wavefunction coefficient. As contact diagrams are simple, the IR divergence of
Reψ3 is known in (3.8), with each of them contributing a secular term log(−kΣη0). Meanwhile,
each classical loop integral contains a log(kELIR). As a result, we find the leading logarithmic
divergence for this L-loop n-point correlator is given by

⟨ϕn⟩L−loop ∝ gV log(kELIR)L log(−kΣη0)V . (3.23)

One can quickly check that the above result also works for other interactions with IR
divergences. In general, considering an m-point vertex, we have the relation L= 1+

(
m
2 −1

)
V −

n
2 for diagrams with n external legs, V vertices and L loops. Then for the two-point
functions from a given interaction, the order of leading divergences depends on the number
of vertices only

⟨ϕkϕ−k⟩′L−loop ∝

λV log(kELIR)V log(−kΣη0)V , for Φ4

gV log(kELIR)V/2 log(−kΣη0)V , for Φ3 and Φ̇Σ2.
(3.24)

Thus the order of divergences and the power of the couplings are uniquely related for classical
loops. This fact plays an important role in the following analysis about resummation.
Meanwhile the IR divergences from quantum loops for the same diagram are suppressed, as
they have the same power of the coupling, but lower power of logarithmic functions. In the
next section we will show that when we go to the coordinate space, this leading-log behaviour
agrees with the result in ref. [22] by using the retarded in-in formalism.

Finally, let’s comment on the differences for the various interactions. For gΦ3 and λΦ4,
the leading divergent piece may also receive classical loop contributions from wavefunction
coefficients of exchange diagrams, which have the same order of logs with the products of
contact ψns, as we have seen in the previous analysis of the one-loop correlator from Φ3

interaction. The situation for Φ̇Σ2 can be further simplified, since the only IR-divergent
tree-level wavefunction coefficient is the contact ψ3 in (3.10). As a result, the last term with
the product of Reψ3s in (3.22) gives us all the contribution to the leading logarithms of
IR-divergent correlators. This means for this special two-field theory, all the higher-order
ψns in the semi-classical wavefunction are IR-safe, and we only need the simplest tree-level
term ψ3 to capture its IR-singular behaviour. This simple toy model example provides
an interesting playground for studying IR divergences, which even allows us to go beyond
perturbation theory as we shall discuss in appendix B.
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4 What does the stochastic formalism resum?

The stochastic formalism provides another framework to study IR effects of quantum field
theories in dS, which is supposed to work even in the non-perturbative regime. In this
approach, the Fokker-Planck equation is applied to study the probability distribution P of
long wavelength perturbations. It has been argued for a long time that by doing so, there
is an equilibrium state which resums the IR-divergences arising from all the higher loop
contributions, and thus in the end no IR divergences remain for interacting massless scalars
in dS. However, it is still unclear how this resummation was achieved, and how this formalism
connects with the perturbation theory. Meanwhile, for any quantum system, it is well-known
that the probability distribution is simply given by P = |Ψ|2. Therefore the wavefunction
of the Universe provides an obviously natural setup to look into this remaining issue. With
results of IR-divergent correlators from field-theoretic computations in perturbation theory,
now we explore the connection with the stochastic formalism.

In this section, we work in the perturbative regime, and explicitly compare the calculation
of IR-divergent correlators from the coarse-grained wavefunction (section 4.1) with the results
from the stochastic formalism (section 4.2). Interestingly, this analysis in the end provides a
simple answer to the question proposed in the title of the section:

The stochastic formalism is a resummation of classical loops.

In addition to comparing perturbative correlators in this section, we shall provide more
supportive evidence in appendix B by computing the probability distribution directly from
the wavefunction. Then in section 5 we further justify this conclusion in the non-perturbative
regime.

4.1 Long modes correlations from the wavefunction

To make the comparison, there is one more step for the computation of correlators in the wave-
function approach. Since the stochastic formalism describes long wavelength perturbations,
we need to coarse grain the system by integrating over the short wavelength modes. Let’s
first define the long wavelength perturbations in coordinate space by using a window function

ϕl(x) =
∫

k
ΩΛ(k)eik·xϕk, χl(x) =

∫
k

ΩΛ(k)eik·xχk. (4.1)

This window function ΩΛ(k) vanishes for k >Λ and approaches 1 for k <Λ, with Λ being the
UV cutoff. One simple example of the window function is the Heaviside step ΩΛ(k) = Θ(Λ−k),
and there are also smooth versions of the window function which preserve the locality of
short-scale interactions [21]. The role of the UV cutoff is to define a fixed physical length
LUV = a(t)/Λ such that perturbations with shorter wavelengths are smoothed out. This
means the comoving scale Λ should be time-dependent. Meanwhile, as argued in [93], the
minimum length scale for smoothing should be larger than the Hubble radius such that the
quantum nature of fields can be neglected. We choose Λ(t) = ϵa(t)H with ϵ≪ 1. As this UV
cutoff is artificial, it should not appear in physical observables at the end of the computation.

With this window function, we will look into the coarse-grained description in section 5,
and derive the probability distribution of the long wavelength perturbations in appendix B.
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Here in this section we compute correlators of long wavelength modes using the results
of perturbative wavefunction. In order to compare with the stochastic formalism, we are
interested in the correlators at the coincident point x, which can be expressed in terms of
the following Fourier transformation

⟨ϕl(x)n⟩≡
∫

k1,...,kn

n∏
i=1

ΩΛ(ki)⟨ϕk1 . . .ϕkn⟩ei(k1+···+kn)·x, (4.2)

where ⟨ϕk1 . . .ϕkn⟩ are the correlators computed in section 3.
Let’s begin with the free theory in order to explain our choice for regularization. In

this simplest case, the wavefunction is fully determined by ψ2 in (3.3), and the two-point
function at x = 0 is just the variance of Gaussian distribution

σ2 ≡⟨ϕl(x = 0)2⟩=
∫

k

ΩΛ(k)
2Reψ2(k) = H2

4π2

∫ Λ

1/LIR

dk

k
= H2

4π2 log(ΛLIR). (4.3)

Naively, this two-point correlator in real space seems to depend on both the IR and UV
cutoff scales, which should not be the case for physical observables. However, the important
part of the above logarithmic function is its time-dependence, while the rest can be seen
as regularization-dependent constants. Recall that the comoving size of the Universe can
be associated with some initial time L−1

IR = a(ti)H, and we are free to pick a scale factor
normalization a(ti) = ϵ. As a result, we get

⟨ϕ2
l ⟩= H2

4π2 loga(t), (4.4)

which reproduces the famous result for the stochastic behaviour of a free massless scalar in
de Sitter, σ2 =H3t/(4π2) by using a(t) = eHt. Physically, this secular growth with time can
be explained as follows: the physical size of the box is expanding with a(t)LIR while the
smallest scale for screening is fixed to be LUV = a(t)/Λ(t) = 1/(ϵH). Therefore, there are
more and more comoving modes entering the coarse-grained system that we are looking at,
while no long wavelength perturbations are leaving the box.

Higher order correlation functions will follow the same logic, ie. when integrating
over momenta we will consider the same integration limits. Notice that the presence of
IR divergence translates into higher powers of loga. For instance, whereas the four point
function in λϕ4 contains a single power of log(−kT η0) the correlator ⟨ϕ4

l ⟩ goes as λH4 loga4.
The reason behind this is because there are now four different momenta entering the horizon,
each adding a factor of loga. Notice that the number of IR divergences is crucial, as it clearly
indicates the larger terms. In this section we will make use of this fact to understand how
the semi-classical solution is always the dominant one.

We can make more explicit the relation between perturbative computations and the
stochastic formalism. To do so let us start by considering a collection of fields ϕa where
a labels the field. The probability distribution functions for the long wavelength part of
ϕal can be written as,

P [ϕal ] =
∫ [∏

a

Dϕak δ
(
ϕal −

∫
k

ΩΛ(k)ϕak
)]

|Ψ[ϕak]|2. (4.5)
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where ΩΛ(k) is the window function defined earlier. As has been proven for a single scalar
field in [21], the time evolution of P [ϕal ] is given by the Fokker-Planck equation (We show
how this is extended to two fields in appendix C). If we write the wavefunction Ψ[ϕa] on
perturbation theory, the path integral will contains all long wavelength correlation functions.
To see this fact, in detail it is instructive to write the δ function in (4.5) as an exponential,

P [ϕal , t] =
∫

Dϕak
∫
dJa exp

[
i
∑
a

(
ϕal −

∫
k

Ωkϕ
a
k

)
Ja
]
|Ψ(ϕak)|2. (4.6)

Upon closer examination, the path integral over the short modes can be viewed as two
successive Legendre transforms. The first transform introduces a current that only has
support on the long-wavelength modes, while the second transform focuses on the long-
wavelength part of the fields.

Let’s delve into the first transformation. By introducing a current with restricted support
over the square of the wavefunction, we effectively generate all connected correlators. This
process is analogous to the creation of a linear interaction term, ϕJ , in quantum field theory.
After integrating over ϕk, we obtain all correlators with an arbitrary number of external
J currents. The number of external legs, denoted as J , encompasses all possible ways of
connecting these legs using the available wavefunction coefficients. This includes not only tree-
level diagrams but also all loops (up to the order specified by the wavefunction coefficients).
This object corresponds to a partition function for the long wavelength correlators, denoted as
Z[J ], whose expression is left in appendix B. As usual, we can compute correlation functions
by taking functional derivatives of lnZ[J ] and setting J to 0. This operation effectively
eliminates all external legs, leaving us with the connected correlations. In this sense the
partition function computes the same quantities as the perturbative solution to the Fokker-
Planck equation. Moreover, one of the advantages of solving the path integral is that we can
understand how the semi-classical part dominates over all quantum corrections.

Next, we use this approach to derive the long modes correlators from the perturbative
wavefunction. Our analysis again covers three types of interactions shown in (3.6).

• λΦ4/4! interaction: let us start by considering the quartic vertex. Either using the
partition function or the relation (4.2) , we can write down the two-point function of
long modes as

⟨ϕ2⟩≡ δ2 logZ[J ]
δJ2

∣∣∣∣∣
J=0

= 1
Z[0]

∫
k

Ω(k)
2Reψ2(k)

[
1+
∫

Dϕk|Ψ|2
(∫

p

2Reψ4(k,−k,p,−p)
2Reψ2(p)

)
ϕ2
k+. . .

]
, (4.7)

where dots represent terms higher order in λ. Here we focus solely on the tree-
level wavefunction coefficients, and the contribution from the first term alone yields
the conventional two-point function in the free theory. The window function ΩΛ(k)
effectively eliminates all short-wavelength modes. Then the second term with the tree-
level wavefunction coefficient ψ4 gives the leading one-loop correction to the correlation
function, as we have found in (3.15). Performing the k integration of the smeared
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Fourier transformation, we find

⟨ϕ2
l (x = 0)⟩=

∫
k

Ω(k)H
2

2k3

[
1+ λ

12π2 log(kLIR) log(−2kη0)+O(g4)
]

= H2

4π2 loga− λH2

144π2 (loga)3+O(λ2(loga)5). (4.8)

The leading logarithmic divergences from two-loop and arbitrarily higher-loop terms
can be estimated in a similar way, though the numerical coefficients may become very
difficult to compute. For the Φ4 theory, the L-loop correction to the power spectrum
from classical loops is given in (3.24), which lead to the following correction to the
two-point function in coordinate space

⟨ϕ2
l ⟩L−loop ∝λV (loga)2V+1, (4.9)

where the number of vertices satisfies V =L for the two-point function from quartic
interactions. This result of the leading logarithms is in agreement with the analysis in
ref. [22].8 Basically, it shows that if we go to higher order in perturbation theory, the
corrections come as a power of the combination λ(loga)2.

Let us now consider the corrections from quantum loops. At the linear order in λ, we find
a contribution from ψ1−loop

2 in (3.14). After integrating over the external momentum
k, we find a term proportional to λ log2a. This contribution is clearly subdominant
compared to the loop correction from the tree-level wavefunction coefficient. To isolate
the semi-classical contributions, we may define an effective coupling λ̃=λ(loga)2 and
consider the limit λ→ 0 and loga→∞ with λ̃ being constant. Then the quantum loops
are suppressed by a factor of λ̃/ loga at least. This analysis can be simply extended to
higher order terms.

• gΦ3/3! interaction: the cubic vertex follows the same logic as the quartic case. After
a straightforward computation the two-point function is given by

⟨ϕ2
l ⟩≡

δ2 logZ[J ]
δJ2

∣∣∣∣∣
J=0

= 1
Z[0]

∫
k

Ω(k)
2Reψ2(k)

×
[
1+
∫

Dϕk|Ψ|2
(∫

p

Reψ4(k,k′,p,−p)
2Reψ2(p)

+
∫

p

2Reψ3(k,p,−p,−k)Reψ3(k′,p,−p,p+k)
2Reψ2(p)2Reψ2(|k+p|)

)
ϕ2

k+. . .
]
. (4.10)

Within the parentheses, the path integral in the second term corresponds to a 1-loop
correction arising from the exchange diagram ψ4 as well as from the product of two ψ3

8To make the explicit comparison, we notice that the number of internal lines for a Feynman diagram
satisfies I =L+V −1. In ref. [22], the leading order is given by λV logP a, with P =n+I being the total
number of propagators. For the two-point function in Φ4 theory, we simply have P = 2V +1.
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functions, as derived in (3.19). Consequently, the expression becomes

⟨ϕ2
l (x = 0)⟩=

∫
k

Ω(k)H
2

2k3

[
1+ g2

72π2 log(kLIR) log(−2kη0)2+O(g4)
]

= H3

4π2 loga
[
1+ g2

288π2 (loga)3+O(g4(loga)6)
]
. (4.11)

Similarly, we can also include the quantum loop corrections to this correlator. At the
leading (g2) order, we find a contribution from ψ1−loop

2 in (3.16) which results in a term
proportional to g2 loga3 and is subdominant compared to the classical loops. To isolate
the semi-classical contributions, again we may introduce the coupling g̃= g loga3 and
consider the limit as g→ 0, loga→∞, while g̃ remains finite. For instance, in the given
example, the quantum correction from ψ1−loop

2 is suppressed by a factor of g̃/ loga.

Focusing on classical loop contributions, we can simply write down higher order cor-
rections from L-loop processes by using the leading logarithmic divergences that we
identified in (3.24). For two-point correlators of long modes in coordinate space, we
find

⟨ϕ2
l ⟩L−loop ∝ g2L(loga)3L+1, (4.12)

where we have used the relation for the number of vertices V = 2L for two-point functions
from cubic interactions. This tells us at each order in perturbation theory, the leading
contributions to IR divergences come with the combination g2 log3a. Quantum loops
only lead to subdominant contributions suppressed by lower powers of loga.

• αΦ̇Σ2/2 interaction: this two-field case is actually simpler, as in the semi-classical
wavefunction only the contact ψ3 in (3.10) contains secular growth term. Therefore, we
are allowed to neglect ψn>3 from exchange diagrams, and the semi-classical wavefunction
with ψ2 and ψ3 captures the leading IR divergences in this theory. Furthermore, we can
explicitly perform the integration over the fields and obtain the following generator9

Z[Jϕ,Jχ] = exp

−⟨ϕ2⟩
2 J2

ϕ+ ⟨χ2⟩
1−i ⟨ϕχ2⟩

⟨ϕ2⟩ Jϕ

J2
χ

2

 . (4.13)

It’s worth noting that the cubic interaction introduces a non-local term, which corre-
sponds to a resummation of diagrams with two legs of χ and an arbitrary number of
legs of ϕ. It can be readily verified that the two-point function is given by

⟨ϕ2⟩= H2

4π2 loga+α2H2

16π2 (loga)4. (4.14)

Notice that integrating over Jχ yields a collection of classical one-loop diagrams with
an arbitrary number of external ϕ legs. This result is similar to the one obtained in [94]

9We leave further details of this computation in appendix B. There, we also present the computation for
the probability distribution and confirm that the result from this simplified semi-classical wavefunction is a
solution of the Fokker-Planck equation. This provides another support for our conclusion that the stochastic
formalism is resumming classical loops.
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using a different technique but with a similar coupling. The consequences of this will
be explored elsewhere.
For this interaction, the contributions from quantum loops are IR-finite and thus absent,
as we have seen in (3.20). Meanwhile, the leading logarithms for arbitrary higher order
loop diagrams have the same behaviour as in (4.12), as the classical loops here are
similar with the ones from the Φ3 interaction.

This concludes our perturbative analysis using the wavefunction method. After identifying
the leading IR divergences from classical loops, now we are ready to make the comparison
with perturbative computations of the stochastic formalism.

4.2 Correlators in the perturbative stochastic formalism

Now we consider the stochastic formalism and try to establish the link with the field-theoretic
computations. This approach is supposed to be an effective description for the stochastic
behaviour on superhorizon scales while the short wavelength perturbations are smoothed out.
In order to make the explicit comparison with the wavefunction calculation of three types of
interactions in (3.6), here we look at the following two-field system for the stochastic analysis

Ll =
1
2 ϕ̇

2+ 1
2 χ̇

2−f(χ)ϕ̇−V (ϕ,χ). (4.15)

where the gradients of fields have been neglected. Strictly speaking, the two scalars here
ϕ(t) and χ(t) correspond to boundary fluctuations ϕl and χl in the field-theoretic approach.
Then (4.15) can be seen as an approximate Lagrangian around the future boundary with
time t where we perform the bootstrap analysis. We keep the time dependence of these
long wavelength modes as the system may still evolve. The three types of interactions
can be achieved by choosing different forms of the potential function V (ϕ,χ) and the f(χ)
function for the kinetic coupling.

The starting point of the stochastic approach is the Fokker-Planck equation for the
probability distribution of long wavelength perturbations. Here we consider an extended
version of the Fokker-Planck equation that also works for the long-wavelength system in (4.15)

dP

dt
= ∂

∂ϕ

[(
Vϕ
3H +f(χ)

)
P

]
+ ∂

∂χ

[(
Vχ
3H

)
P

]
+ H3

8π2

(
∂2P

∂ϕ2 + ∂2P

∂χ2

)
. (4.16)

We leave the details of its derivation in appendix C, and here focus on its implications for
correlators. As is well-known, the Fokker-Planck equation describes the time evolution of the
probability distribution P [ϕ,χ; t] with two physical effects: drift, which is given by the first
two terms on the right-hand side of (4.16) above and comes from the background equation of
motion; diffusion, which is the last term caused by quantum noise. In the non-perturbative
regime, these two effects are supposed to compete with each other and in the end lead to
an equilibrium state with dP/dt= 0.

With a given probability distribution function, correlation functions can be computed
using the Born rule:

⟨ϕnχm⟩=
∫

DϕDχϕnχmP [ϕ,χ; t]. (4.17)
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By substituting (4.17) into the Fokker-Planck equation, we derive a system of differential
equations governing the evolution behavior of the correlation functions. Assuming that
V (ϕ,χ) are polynomial in the fields, we can write these equations into the following form

d

dt
⟨ϕnχm⟩=

∫
dϕdχϕnχm

P (ϕ,χ,t)
dt

=− n

3H
〈
ϕn−1Vϕχ

m
〉
−n⟨ϕn−1χmf(χ)⟩− m

3H
〈
ϕnχm−1Vχ

〉
+n(n−1)H3

8π2 ⟨ϕn−2χm⟩+m(m−1)H3

8π2 ⟨ϕnχm−2⟩, (4.18)

where the second line comes from the drift and the third line is due to the diffusion. This is
an infinite set of differential equations for all the correlators in the theory. For a free theory,
the equations are decoupled and only the diffusion terms remain on the right-hand side. Then
it is easy to get ⟨ϕ2⟩= ⟨χ2⟩=H3t/(2π)2, which is just the Gaussian variance we computed
in (4.4). However, for interesting theories, this set of equations are not solvable in general.
One needs to know all of the equations even for computing lower-point correlation functions
like ⟨ϕ2⟩. Next, let’s try to make progress by treating the drift terms perturbatively, and
explicitly show the results for the three types of interactions.

• V =λϕ4/4! and f(χ) = 0: this simply corresponds to the Φ4 interaction in the field-
theoretic computation. For the single scalar, the equations for non-vanishing correlation
functions of ϕ are given by

d

dt
⟨ϕ2⟩=− 1λ

9H ⟨ϕ4⟩+ H3

4π2

d

dt
⟨ϕ4⟩=− 2λ

9H ⟨ϕ6⟩+ 3H3

4π2 ⟨ϕ2⟩
...

d

dt
⟨ϕn⟩=− nλ

18H ⟨ϕn+2⟩+n(n−1)H3

8π2 ⟨ϕn−2⟩. (4.19)

Now we solve for the lower-point correlation functions order by order in λ. The key
point to note is that if we set λ= 0, then the solution for the correlation functions
is approximately given by ⟨ϕn⟩∼Hn(loga)n/2. Turning on λ introduces corrections
of λ(loga)n/2+1 to each n-point correlator at the leading order. Then iteratively, the
lower-point functions get corrections from higher-point ones. For instance, truncating
at λ3 is equivalent to setting λ= 0 in the equation for ϕ6. Doing so, we find that the
two-point function becomes:

⟨ϕ2⟩= H2

4π2 loga− λH2

144π4 (loga)3+ λ2H2

2880π6 (loga)3+O(λ3(loga)7a). (4.20)

One can show that for corrections to the variance the expansion parameter is λ log2a,
and the mth order correction is proportional to λm(loga)2m+1. This exactly agrees
with what we have found in field-theoretic computation for leading logarithms from
classical loops. Explicitly, we can check the result at one-loop level as it was obtained
in eq. (4.8).
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This calculation confirms that the contributions from classical loops are incorporated
within the stochastic formalism. One can further check that the subleading terms from
quantum loops, e.g. ψ1−loop

2 , can be associated with the corrections to the Fokker-Planck
equation identified in ref. [21]. It is easy to see that these terms are subdominant in
perturbative expansions, as at the same order in λ the quantum loops always contribute
fewer powers of logarithmic functions. We explicitly check this in appendix D where we
perturbatively solve the noise term in the Fokker-Planck equation. We get a contribution
to the two point function that scales as λ(loga)2 in accordance with the result obtained
using the perturbative wavefunction.

• V = gϕ3/3! and f(χ) = 0: this example is supposed to be related to the Φ3 interaction.
However, the potential is unbounded from below, and the stochastic computation
cannot be consistently applied. Thus we do not make the explicit comparison with the
field-theoretic computation from Φ3 interaction here.

• f(χ) =αχ2/2 and V = 0. This corresponds to the two-field example with the derivative
interaction Φ̇Σ2. The differential equations for correlators are given by

d

dt
⟨ϕ2⟩=−α⟨ϕχ2⟩+ H3

4π2

d

dt
⟨χ2⟩= H3

4π2

d

dt
⟨ϕχ2⟩=−α2 ⟨χ

4⟩+ H3

4π2 ⟨ϕ⟩

d

dt
⟨χ4⟩= 3H3

2π2 ⟨χ2⟩

d

dt
⟨ϕ⟩=−α2 ⟨χ

2⟩.

Solving these equations, we find the first-order correction to the two-point function

⟨ϕ2⟩= H2

4π2 loga+ α2H2

128π4 (loga)4, (4.21)

which again matches the result from classical loops obtained using the wavefunction
method as in eq. (4.14). This case is actually simpler than the ϕ4 and ϕ3 interactions.
One way to see it is to notice that there is a conserved current for interactions with one
time derivative

j0 = ϕ̇− 1
2f(χ) = πϕ

a3 , (4.22)

which is a generalisation of the usual momentum conservation in the single field case. So
in the long wavelength limit ϕ̇ is no longer conserved, but the more general combination
given by j0 is required to be constant. Thus intuitively the massless scalar χ on the
superhorizon scales sources the growth of ϕ, with ϕ∼αχ2 loga, as is normally seen in
multi-field inflation models.
In the above solution, there seems to be no corrections at higher order in α. However,
we should notice that when constructing the Hamiltonian due to an interaction term
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like ϕ̇f(χ), additional terms involving self-interactions of χ will inevitably appear.
This is a consequence of χ depending on momentum, as given by a−3πϕ = ϕ̇− 1

2f(χ).
Consequently, the interacting Hamiltonian will contain a term proportional to f(χ)2/4,
which can be conceptualized as an effective potential term, denoted as Veff(ϕ) = f(χ)2/4.
The influence of this term is subdominant, at most manifesting at the next-to-leading
order of the couplings represented by f(χ). Including this term perturbs the Fokker-
Planck equation in a manner akin to the situation when a potential like V (ϕ) =λϕ4 is
considered. In the aforementioned example, the presence of the self-interactions of χ
alters the equation for ⟨χ2⟩, consequently introducing corrections that begin at order α4

to the two-point function ⟨ϕ2⟩. In this way we could derive the higher order corrections
systematically. It will be possible to show that the result will scale as (α2 log3a)m for
the mth order, which is in agreement with a similar estimate for the wavefunction
computation of classical loops from eq. (3.24).

Now we are in the position to establish the connection between the wavefunction approach
and the stochastic formalism in perturbation theory. From the above examples, we have
seen that the correlation functions computed through perturbation theory are the same as
those computed by solving the Fokker-Planck equation perturbatively. While we explicitly
checked the matches of results for the variance, the same analysis can be extended to
higher-point functions.

In general, at each order in perturbation theory, the stochastic computation always
leads to the same power of loga as that found from classical loops in the wavefunction
method. Meanwhile, the quantum loop contributions are suppressed because they have less
powers of logarithmic functions. This observation provides a simple answer about what the
stochastic formalism is resumming: classical loops from tree-level wavefunction coefficients. It
confirms our intuitive understanding that IR divergences in dS are governed by semi-classical
physics on superhorizon scales.

Interestingly, it also explains why the Fokker-Planck equation may not be a good
description for IR-finite theories, such as the ones with higher-derivative interaction: there
the quantum loops are not always suppressed and can be equally important as the classical
loop contributions, while they are beyond the scope of a stochastic description.

In the end, we would like to comment on the differences with ref. [22] where similar results
about leading IR divergences at any loop order were derived. There the authors applied the
retarded in-in formalism to identify the leading logarithms in perturbaton theory, and in the
end “the resummation of time” reproduces results from the Fokker-Planck equation. Here
with the wavefunction method, we further point out that the these leading logarithms have
an origin as classical loops. This new understanding helps us to simplify the perturbative
computation for IR divergences at the loop level. Meanwhile, it indicates that the leading
IR effects should be captured by the saddle-point approximation of the wavefunction (2.6),
as all the tree-level information has been included there. With this insight, we shall go
beyond the perturbation theory in the next section and directly study the implications of
the semi-classical wavefunction for IR divergences in dS.
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5 Beyond perturbation theory

In this section, we go beyond the perturbative regime of IR divergences in dS. We will show
that, for the semi-classical piece of the wavefunction, the Fokker-Planck equation follows as a
consequence of the Schrödinger equation and Polchinski’s exact renormalization group (RG)
equation from a boundary perspective. We note that our major focus here is to explore the link
between the stochastic formalism and the semi-classical wavefunction in the non-perturbative
regime. While we apply the exact RG techniques to perform the computation, the precise
analogy of Polchinski’s equation in cosmology is beyond the scope of the current work.

As we noticed in the previous sections, when we have IR divergences in de Sitter, the
semi-classical wavefunction always provides the dominant contributions to correlators in
perturbation theory, which match the perturbative computation in the stochastic formalism.
This interesting observation suggests that the stochastic formalism, which is also expected to
be valid in the non-perturbative regime, actually resums the classical loops from all the tree-
level wavefunction coefficients. In this section we shall show that indeed the Fokker-Planck
equation can be derived from the saddle-point approximation of the wavefunction.

Our focus lies in the coarse-grained theory at the late-time boundary, where we can
effectively “integrate out” the short-wavelength modes. This process results in an effective
description for the long-wavelength modes. Explicitly, we regularize the theory by requiring
that only momentum modes up to the UV cutoff scale Λ are allowed. Then in analogy
with (2.3), here we start with the coarse-grained probability distribution of field fluctuations
ϕ(x) at the late-time boundary of time t10

PΛ[ϕ,t] = |ΨΛ[ϕ,t]|2 = eW0[ϕ]+WI [ϕ], (5.1)

with the free and interacting parts given by

W0 =
∫

k
Re ψ2(k)Ω−1

Λ (k) ϕkϕ−k,

WI =
∞∑
n=3

1
n!

∫
k1,...,kn

2Re ψΛ
n (k1, . . . ,kn, t) ϕk1 ···ϕkn . (5.2)

In the free theory part ψ2, we have used the window function ΩΛ(k) introduced below (4.1)
for the blocking. Now we see this window function fixes the Λ-dependence of the quadratic
term in ΨΛ, while the concrete forms of ψΛ

n≥3 remain unclear, especially when we go beyond
perturbation theory. This is an important question that will be analyzed in the following
derivation using the RG flow techniques. In the end we recall that this cutoff scale depends
on the time of the boundary slice Λ(t) = ϵa(t)H with ϵ≪ 1.

To derive the Fokker-Planck equation, we notice that the time dependence of PΛ comes
from two different terms. The first one is from the wavefunction itself: as we have seen in the

10We choose to consider the coarse-grained probability distribution instead of the wavefunction because
of a theoretical subtlety. In general the coarse-grained wavefunction is not a well-defined object, as its time
evolution may no longer be described by the Schrödinger equation. More precisely, when we integrate out
short modes, we find a density matrix (or probability distribution) for long modes. Since PΛ is the object
of interest here, we shall directly look at it in the following analysis. We thank the anonymous referee for
pointing this out.
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perturbative computation with IR divergences, the wavefunction coefficients in general contain
secular terms with logarithmic growth. The second one comes from the time dependence
of the cutoff Λ(t). Thus we find

d

dt
PΛ[ϕ,t] = ∂

∂t
PΛ[ϕ,t]+Λ̇ ∂

∂ΛPΛ[ϕ,t]. (5.3)

In the rest of the section, we shall look into these two contributions and focus on their
physical origins. Before going into the details of the derivation, the upshot is that the first
term gives the classical drift from the Schrödinger equation, while the second term comes as
a RG flow on the boundary which in the end leads to the diffusion. Some of our derivation
share similarities with the one presented in ref. [21], especially for the derivation of the drift
term. The novelty in our approach is to notice that in the semi-classical regime the diffusion
term comes as a consequence of Polchinski’s equation of RG flow on the boundary. We shall
comment on the differences with ref. [21] in more detail at the end of this section.

5.1 Diffusion as the RG flow on the boundary

Let’s first briefly review Polchinski’s derivation of the exact renormalization equation for
a general quantum field theory in d-dimensional space. The basic idea of the exact RG
flow starts from the requirement that physics should be independent of the artificial cutoff
scale that we imposed in the theory, thus the partition function remains invariant with
respect to the change of Λ

Λ d

dΛZΛ = 0, with ZΛ ≡
∫

Dφ e−S
Λ
eff , (5.4)

where SΛ
eff is the effective action below the scale Λ with UV degrees of freedom being integrated

out. Then as we change the UV cutoff, the overall partition function should be unaffected,
which basically means that, the low-energy effective action would vary correspondingly to
account for the change in the short-wavelength modes (k >Λ) that are being integrated out.
Specifically, Polchinski’s idea is to cut off the theory with a smooth window function ΩΛ
as the one introduced in (5.1). Then the effective action can be written as the free theory
part and the interacting part SΛ

eff =SΛ
0 +SΛ

int, with

SΛ
0 = 1

2

∫
ddk

(2π)d
1

ΩΛ
φkG

−1
k φ−k. (5.5)

Here Gk is the propagator in momentum space, and in the above expression we see that it
has been regularized by the smooth window function ΩΛ(k). Then the condition (5.4) in the
end leads to a non-perturbative functional differential equation for the Λ-dependence of SΛ

int

Λ d

dΛe
−SΛ

int =−1
2

∫
ddk

(2π)d
dΩΛ
d lnΛGk

δ2

δφkδφ−k
e−Sint . (5.6)

By substituting (5.6) into (5.4) and performing integration by parts twice, one can check that
the Λ-dependence of SΛ

int cancels out the Λ-dependence of SΛ
0 , and thus the partition function

remains independent of Λ. Equation (5.6) is known as Polchinski’s exact renormalization
group [95], which provides a general and non-perturbative description for the running of
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couplings in the low-energy effective theory. See [96–100] for recent reviews and discussions.
It is worth mentioning that, Polchinski’s equation (5.6) is not the only option to satisfy the
condition in (5.4). As integrations by parts are included, we are left with the freedom to
add boundary terms in (5.6) without affecting the Λ-independence of ZΛ. These boundary
terms correspond to different choices of RG schemes.

Similarly, for theories with IR divergences in dS, an effective description for long wave-
length modes is given by the coarse-grained probablity distribution (5.1). For now let us
forget about the time evolution in the bulk, and consider this 3-dimensional Euclidean field
theory on the boundary. As the object of interest here is the probability distribution (5.1),
we start with the requirement that the conservation of probability

∫
Dϕ PΛ = 1 should be

unaffected by changing the cutoff scale

d

d lnΛ

∫
Dϕ PΛ[ϕ,t] =

∫
Dϕ

[
dW0
d lnΛe

WI + deWI

d lnΛ

]
eW0 = 0. (5.7)

This means that the Λ-dependence of the free theory part should be cancelled out by the
Λ-dependence of the interacting part. For W0, it depends on the cutoff scale through the
window function

dW0
d lnΛ =

∫
k

Re ψ2(k) ϕkϕ−k
d

d lnΛΩ−1
Λ (k). (5.8)

For the Λ-dependence of WI , there are also various choices that can ensure the probability
conservation with varying cutoff scales. In analogy with (5.6), we propose the following
version of Polchinski’s equation

eW0 de
WI

d lnΛ = 1
4

∫
k

dΩΛ
d lnΛ

1
Reψ2

[(
δ2

δϕkδϕ−k
eWI

)
eW0−2 δ

δϕk

(
eW0 δe

WI

δϕ−k

)]
, (5.9)

which has an extra boundary term. This is supposed to be the exact RG equation on
the late-time boundary for the semi-classical wavefunction. Let us justify it step by step.
First of all, it is straightforward to check that with this ansatz indeed (5.7) is satisfied. By
substituting (5.9) into (5.7), we find

d

d lnΛ

∫
Dϕ PΛ[ϕ,t] = 1

4

∫
k

1
Reψ2

dΩΛ
d lnΛ

∫
Dϕ

[
− δ2eW0

δϕkδϕ−k
eWI

+
(

δ2

δϕkδϕ−k
eWI

)
eW0−2 δ

δϕk

(
eW0 δe

WI

δϕ−k

)]
, (5.10)

where the first term comes from rewriting (5.8). The last term is a total functional derivative
and thus can be neglected. Then doing integration by parts twice for the second term in the
bracket, we move the δ

δϕ derivatives on eWI onto eW0 . Neglecting the boundary terms, we see
that the remaining piece just cancels out the first term from the Λ-dependence of W0.

Next, we need to justify the appearance of the last term in (5.9). In general, we have
the freedom to add arbitrary boundary terms in Polchinski’s equation, which correspond to
different RG schemes. The choice in (5.9) corresponds to the semi-classical scheme that will
be spelled out below. As we shall see soon after, this particular form of the boundary term
in (5.9) becomes important for deriving the diffusion term in the Fokker-Planck equation.
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The semi-classical scheme. So far we have kept our analysis fully non-perturbative,
while the RG flow equation (5.9) is also expected to be valid in the perturbative regime.
Equivalently, we can write it as the following flow equation satisfied by the interacting
part of the wavefunction

dWI

d lnΛ =−1
4

∫
k

1
Reψ2

dΩΛ
d lnΛ

[
δ2WI

δϕkδϕ−k
+ δWI

δϕk

δWI

δϕ−k
+2δW0

δϕk

δWI

δϕ−k

]
, (5.11)

which tells us the running of wavefunction coefficients with the cutoff scale in interacting
theories.11 Now we explicitly show that the flow equation has to be the one above in order to
match the perturbation theory computation with the semi-classical wavefunction.

For concreteness, we take the gΦ3 interaction as an example. At the g and g2 orders,
we have the following components in the semi-classical wavefunction

W
(1)
I = 1

3

∫
k1,k2,k3

ReψΛ
3 ϕk1ϕk2ϕk3 , W

(2)
I = 1

12

∫
k1,k2,k3

ReψΛ
4 ϕk1ϕk2ϕk3ϕk4 , (5.12)

which correspond to the three-point contact and four-point single-exchange diagrams. Mean-
while, there is also a quantum wavefunction coefficient ψ1−loop

2 at the g2 order

W̃
(2)
I =

∫
k1,k2

Reψ1−loop
2 ϕk1ϕk2 . (5.13)

Let’s first consider the semi-classical wavefunction from tree-level processes. In perturbation
theory, their Λ-dependence can be derived by requiring that the corresponding correlators
are independent of the cutoff scales. As correlators of long wavelength modes are physical
observables, at the leading order of the coupling constant, the final results should not be
affected by the artificial UV cutoff scale that we choose for smoothing out the short wavelength
modes.12 At the linear order in g, the three-point correlator is given by

⟨ϕ3
l ⟩=

∫
Dϕϕ3PΛ =−

∫
k1,k2,k3

ΩΛ(k1)ΩΛ(k2)ΩΛ(k3)
8Reψ2(k1)Reψ2(k2)Reψ2(k3)2ReψΛ

3 . (5.14)

Then up to the g order, its Λ-independence leads to

d

d lnΛ⟨ϕ3
l ⟩= 0 ⇒ dReψΛ

3
d lnΛ =− d

d lnΛ
(
ln [ΩΛ(k1)ΩΛ(k2)ΩΛ(k3)]

)
ReψΛ

3 +O(g2), (5.15)

which can be written as

dW
(1)
I

d lnΛ =−1
2

∫
k

1
Reψ2

dΩΛ
d lnΛ

δW0
δϕk

δWI
(1)

δϕ−k
+O(g2). (5.16)

This is the last term in (5.11). At this order, the first two terms in the flow equation do
not contribute, thus (5.11) is satisfied. Likewise, we can check the g2 order result using

11It is an analogue to the running of couplings in the standard quantum field theory. Here we choose
the couplings, like g and λ, to be constant, and the Λ-dependence comes from the logarithmic terms in the
coarse-grained wavefunction coefficients. Therefore, one way to think about this running is to consider the
effective couplings that absorb the logarithmic Λ-dependence in ψn.

12This argument also applies for tree-level processes only. Beyond the leading order, it is the correlator of
the full field ϕ=ϕl+ϕs that is cutoff independent, but individually ⟨ϕnl ⟩s are still cutoff dependent [21].
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both the contact ψΛ
3 and the single exchange ψΛ

4 . Now by requiring that the four-point
function of long wavelength perturbations order g2 is invariant with respect to the change
of the cutoff scale, we find

d

d lnΛ⟨ϕ4
l ⟩= 0 ⇒ dReψΛ

4
d lnΛ = − d

d lnΛ

(
ln [ΩΛ(k1)ΩΛ(k2)ΩΛ(k3)ΩΛ(k4)]

)
ReψΛ

4

−dΩΛ(s)
d lnΛ

ReψΛ
3 ReψΛ

3
Reψ2(s) +perms. (5.17)

where we have used the result in (5.15) for ψΛ
3 ’s cutoff dependence. Thus at this order, we find

dW
(2)
I

d lnΛ =−1
4

∫
k

1
Reψ2

dΩΛ
d lnΛ

[
δW

(1)
I

δϕk

δW
(1)
I

δϕ−k
+2δW0

δϕk

δW
(2)
I

δϕ−k

]
+O(g3), (5.18)

which is the last two terms in (5.11), while the first term there comes at higher order in g.
We can continue with this computation to check that the higher-point tree-level wavefunction
coefficients also satisfy this flow equation, and thus the extra boundary term in (5.9) is justified.

However, the flow equation does not hold for loop-level wavefunction coefficients. Let’s
take a look at W̃ (2)

I in (5.13) for instance. Its Λ-dependence can be derived from the
requirement that ⟨ϕ2

l ⟩1−loop is independent of the cutoff scale

d

d lnΛ⟨ϕ2
l ⟩= 0 ⇒ d

d lnΛReψ1−loop
2 = −2d lnΩΛ

d lnΛ Reψ1−loop
2 − 1

2

∫
p

dΩΛ(p)
d lnΛ

1
Reψ2(p)

[
ReψΛ

4

−ΩΛ
ReψΛ

3 ReψΛ
3

ReψΛ
2 (|p+k1|)

−perm.
]

(5.19)

which differs from the result of the flow equation at the g2 order

dW̃
(2)
I

d lnΛ =−1
4

∫
k

1
Reψ2

dΩΛ
d lnΛ

[
δ2W

(2)
I

δϕkδϕ−k
+2δW0

δϕk

δW̃
(2)
I

δϕ−k

]
, (5.20)

Notice that the second term in (5.11) does not contribute because it contains higher powers
of ϕ at the g2 order. This suggests that the modified version of the Polchinski equation
in (5.9) works for the semi-classical wavefunction, but cannot capture the cutoff-dependence
of loop-level ψn. It remains interesting to see if there is a universal form of the boundary
term that works for loop-level wavefunction coefficients. In the end, we notice that the above
computation for gΦ3 can be easily extended to other types of interactions, like λΦ4.

Let’s summarize the logic of justifying the extra boundary term in (5.9). Going back to
the perturbation theory, we require that correlators of long wavelength perturbations ⟨ϕnl ⟩
should be independent of the cutoff scale, which allows us to fix the Λ-dependence of ψΛ

n

order by order. Then by explicitly comparing with (5.11), we see that tree-level wavefunction
coefficients satisfy the flow equation, while loop-level ones do not. Thus in Polchinski’s
equation (5.9), our choice of the extra boundary term reflects the cutoff-dependence of the
semi-classical piece of the wavefunction. Accordingly we dub it the semi-classical scheme.

Therefore, corrections to (5.9) are expected to be higher order in ℏ from quantum loops.
As we have seen, for theories with IR divergences in dS, the quantum loop effects are always
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subdominant, and thus (5.9) gives us the leading Λ-dependence of WI . However, this may
not be the case for IR-finite theories where the quantum wavefunction can become equally
important at the loop order. It remains unclear if there is a flow equation that works for
loop-level wavefunction coefficients. Meanwhile, although the current computation using
the leading order perturbation theory is complete on its own, the precise analogy to the
Polchinski’s equation in cosmology is not fully developed. It would be more satisfying to find
a systematic derivation that takes care of all the corrections and to understand better the
physics of different schemes. We leave these interesting open questions for future exploration.

Diffusion from RG flow. Now we are ready to derive the diffusion term in the Fokker-
Planck equation. Using the exact RG equation (5.9), we find the running of the probability
distribution with the cutoff scale

d

d lnΛPΛ = deW0

d lnΛe
WI + deWI

d lnΛe
W0 =−1

4

∫
k

1
Reψ2

dΩΛ
d lnΛ

δ2

δϕkδϕ−k
PΛ. (5.21)

This already has the form of the diffusion equation, though it is in the Fourier space and
the functional derivatives on the right hand side are for the Fourier mode ϕk. To make the
connection with the stochastic formalism more explicitly, we need to use the long wavelength
perturbation in coordinate space ϕl introduced in (4.1). Then the Fourier transformation
of the functional derivatives is given by

δ

δϕk
=
∫
d3xeik·xΩΛ

δ

δϕl(x) . (5.22)

By doing so, we rewrite (5.21) in the coordinate space

d

d lnΛPΛ =
∫
d3x1

∫
d3x2

(
−1

4

∫
k
eik·(x1−x2) 1

Reψ2

dΩΛ
d lnΛ

)
δ2

δϕl(x1)δϕl(x2)PΛ, (5.23)

where k is left in the bracket. By using Reψ2 =−k3/H2 and dΩΛ/d lnΛ≃Λδ(k−Λ), we find
this momentum integration part becomes

−1
4

∫
k
eik·(x1−x2) 1

Reψ2

dΩΛ
d lnΛ = H2

8π2 j0(Λ|x1−x2|), (5.24)

with j0(x) = sin(x)/x. Finally we restore the time-dependence of the cutoff scale via dΛ =
ϵaH2dt= ΛHdt. Then the second term in (5.3) becomes

Λ̇ ∂

∂ΛPΛ[ϕ,t] =H
dPΛ
d lnΛ =

∫
d3x1

∫
d3x2

H3

8π2 j0(Λ|x1−x2|)
δ2

δϕl(x1)δϕl(x2)PΛ. (5.25)

Notice that j0(x) has a maximum at the origin and decays for x> 1. Thus only points with
short separations Λ|x1−x2|< 1 contribute to the spatial integrals on the right hand side.
This concludes our derivation of the diffusion term from the boundary RG flow. Interestingly,
with no input from the bulk, we find that the Polchinski equation for a boundary quantum
field theory at a fixed time t is enough to deduce the diffusion effects of long wavelength
fluctuations. This derivation works for quantum field theories in de Sitter beyond the
perturbative regime, while the only nontrivial assumption is that the semi-classical piece
dominates the wavefunction.
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5.2 Fokker-Planck = Schrödinger + Polchinski

With the above derivation for the diffusion, now we look into the drift which is supposed to
be given by the first term in (5.3). The explicit time derivative of the probability distribution
is due to the bulk time flow of the wavefunction. Using the Schrödinger equation, it is
straightforward to show that in the semi-classical regime we get the drift term in the Fokker-
Planck equation [21]. Here we recap the derivation.

We start with the Schrödinger equation at the late-time boundary with cosmic time t

i
∂

∂t
ΨΛ[ϕ(x), t] =HΨΛ[ϕ(x), t]. (5.26)

The form of the Hamiltonian H depends on the theory. In this section, we shall just focus
on the simplest single field case with interactions in the potential V (Φ). The extension
to the two-field scenario with derivative interactions is presented in appendix C. More
precisely, here we use

H=
∫
d3x

[
1

2a(t)3 Π2
ϕ+ a(t)

2 (∂iϕ)2+ a(t)3

2 V (ϕ)
]
, (5.27)

where the momentum operator is given as Πϕ(x) =−i δ
δϕ(x) . Notice that everything is evaluated

at the boundary time t, and we have used Φ(x, t) =ϕ(x). Since the Hamiltonian is Hermitian,
i.e. unitary, we can use the Schrödinger equation to show that the probability distribution
satisfies a continuity equation

∂PΛ[ϕ,t]
∂t

=− i

2a3

∫
k

[
δ

δϕ−k

(
Ψ∗

Λ
δ

δϕk
ΨΛ−ΨΛ

δ

δϕk
Ψ∗

Λ

)]
(5.28)

where we have performed the Fourier transformation on the right hand side. Then to derive
a closed equation for PΛ, we notice that the functional derivative of the wavefunction can
be explicitly computed using the saddle-point approximation (2.6)

−i δ

δϕk
ΨΛ ≃ δSΛ[Φcl]

δϕk
ΨΛ =

∫
d3xeik·xΩΛ(k)δSΛ[Φcl]

δϕl(x) ΨΛ =−
∫
d3xeik·xΩΛ(k)Πl(x, t)ΨΛ

(5.29)
where we have used the Fourier transformation of functional derivatives in (5.22) to introduce
the derivative with respect to ϕl in coordinate space. This simply shows that we can express
δΨ/δϕl using the corresponding field momentum at the boundary Πl≡ a3Φ̇l, and then (5.28)
becomes an equation for PΛ only. After performing the Fourier transformation for another
functional derivative, (5.28) becomes

∂PΛ
∂t

=− 1
a3

∫
d3xd3x′

∫
k
eik·(x−x′)ΩΛ(k) δ

δϕl(x)Πl(x, t)PΛ =−
∫
d3x

δ

δϕl(x)
(
Φ̇l(x, t)PΛ

)
,

(5.30)

which is the drift term. Up to this point, again we have only used the saddle-point approx-
imation of the wavefunction. If we neglect the gradient terms, the field momentum can
be further expressed as Φ̇l≃V ′(ϕl)/(3H) by using the approximated equation of motion
for perturbations on superhorizon scales. Then the drift term becomes the one that we
normally see in the stochastic formalism.
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Now we can join two pieces of derivation together and describe the full time evolution of
the probability distribution. Then (5.3) becomes the Fokker-Plank equation

dPΛ
dt

=−
∫
d3x1

δ

δϕ(x1)
(
Φ̇lΛPΛ

)
+
∫
d3x1

∫
d3x2

H3

8π2 j0(Λ|x1−x2|)
δ2

δϕl(x1)δϕl(x2)PΛ.

(5.31)

In summary, here the drift term corresponds to the bulk time flow given by the Schrödinger
equation, while the diffusion comes from the boundary RG flow described by the Polchinski
equation. This aligns with the equations derived in previous works [15, 21], although we
have arrived at this equation exclusively through the consideration of boundary terms. It’s
worth noting that in interacting theories characterized by shift symmetries, the momentum
effectively becomes zero at the boundary, and the time evolution is exclusively dictated by
the diffusion term. In such cases, higher-order terms in the action may become directly
linked to higher-order derivatives in the (RG) equation. If we are interested in the probability
distribution of ϕl at one spatial location PΛ[ϕl(x)], we get δ-functions from functional
derivatives: δϕl(x)/δϕl(x1) = δ(3)(x1−x), which remove the spatial integrals. In the end, the
above equation simplifies to the usual Fokker-Planck equation

dPΛ
dt

= ∂

∂ϕl

(
V ′

3HPΛ

)
+ H3

8π2
∂2PΛ
∂ϕ2

l

(5.32)

where we have used that limx→0 j0(x) = 1.
We close the non-perturbative analysis with some concluding remarks. First of all, the

semi-classical wavefunction plays an important role in the above derivation of the stochastic
formalism. For the diffusion term, we used the tree-level computation in perturbation theory
to justify a modified version of the Polchinski equation for the boundary field theory. For
the drift term, we simply applied the saddle-point approximation in the derivation. The
final equation (5.31) describes the evolution of the probability distribution that comes from
the semi-classical wavefunction, and thus can be seen as the resummation of classical loops.
This simplification works for theories with IR divergences where the quantum corrections
are always subdominant. However, we may expect this semi-classical approximation breaks
down for IR-finte theories.

As we mentioned in the beginning of this section, our derivation of the Fokker-Planck
equation shares similarities with the approach in [21]. Now let us clarify the differences. The
starting point of ref. [21] is the probability distribution of the long modes defined in (4.5),
while for us it is the coarse-grained version in (5.1). They are supposed to be equivalent, and
do not lead to much difference in the derivation of the drift term. But for the diffusion, (5.1)
allows us to apply the techniques of the non-perturbative RG equation. This new attempt
provides an interesting perspective for the effective description of the superhorizon physics
and the origin of the diffusion effects, though the precise analogy to Polchinski’s equation
is still missing. In addition, ref. [21] presented a quite systematical derivation, with all the
corrections carefully taken into account. Our approach is more based on the insight from
perturbation theory that the semi-classical wavefunction and the Fokker-Planck equation
are equivalent to each other. Therefore, we used the saddle-point approximation as our
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starting point and focus on showing the stochastic formalism as a consequence of that. It
will be interesting to understand how corrections to the Fokker-Planck equation arise from
first order corrections to the leading saddle-point.

Finally, we would like to briefly discuss possible connections with the holographic RG
in AdS/CFT, as a speculative comment. There it has been shown that the RG flow of the
boundary CFT is dual to the Hamilton-Jacobi equation in the bulk, and the cutoff scale
on the boundary is suspected to be related to the bulk radial coordinate [101–104]. Our
computation suggests that something different happened in dS. Here the “radial” direction
becomes time, and its evolution is governed by the Schrödinger equation, or equivalently the
Hamilton-Jacobi equation in the semi-classical regime. However, as we have shown, the bulk
time flow and the boundary RG flow lead to two distinct physical effects for the probability
distribution: the former is responsible for the drift, and the later generates the diffusion.
This distinction may have nontrivial implications for the holographic description of de Sitter
space, which may deserve future exploration.

6 Summary and outlook

Understanding the structure of the IR divergences in de Sitter not only has conceptual
interests in theoretical considerations but also can lead to new phenomenological consequences
of cosmic inflation. In many previous works, the problem was investigated through two
approaches: the conventional cosmological perturbation theory, which demonstrate the IR-
singular behaviour of tree-level and loop-level correlators, and the stochastic formalism that
describes an equilibrium state in the non-perturbative regime. Recently, the connection
between the two is being established, and in particular it has been shown that the stochastic
formalism is a resummation of IR divergences from higher order loops [21, 22], though it
remained less clear which part of the field-theoretical computation is being resummed.

The main focus of this paper is to find an answer to the above question. Built on previous
studies, we have built a precise link between the semi-classical piece of the wavefunction
and the stochastic formalism, by exploiting the wavefunction of the Universe and recent
developments of the cosmological bootstrap. Our analysis first made the explicit comparison
between two approaches in the perturbative regime, and then presented a non-perturbative
derivation of the Fokker-Planck equation with minimal assumptions. More precisely, the
main results are summarized as follows:

• Within perturbation theory, we look into the loop-level cosmological correlators with
IR divergences using the wavefunction method and the stochastic formalism.

– Our starting point is to identify that in the perturbative computation of wave-
function coefficients, while tree-level processes can be produced in semi-classical
approximations, loop diagrams there have a truly quantum origin. As both of them
contribute to the cosmological correlators, in general the loop-level correlators are
given by combinations of classical loops from tree-level wavefunction coefficients,
and quantum ones that cannot be generated in classical theories.

– The notion of classical loops becomes especially important for IR-divergences in
dS. We find loop-level correlators there are always dominated by the classical loop

– 40 –



J
H
E
P
0
4
(
2
0
2
4
)
0
0
4

contributions. This observation helps us to significantly simplify the computation
of leading IR-divergences in loop diagrams at any order. Furthermore, it indicates
that the leading IR behaviour of the system is captured by the semi-classical
wavefunction which contains all the tree-level information.

– Then we made the comparison with cosmological correlators from the stochastic
formalism. By solving the Fokker-Planck equation perturbatively, we identify
that at each order of coupling constants, the late-time divergent behaviour of
correlators matches the results from classical loops. Quantum loop contributions
are absent in the original stochastic computation, but can be incorporated by
considering the next-to-leading order corrections to the Fokker-Planck equation.
This simply shows that the stochastic formalism is resumming classical loops from
the perturbative wavefunction.

• Beyond perturbation theory, we explore the direct consequence of the semi-classical
approximation. In particular, we look into the coarse-grained probability distribution
and study its time evolution. We show that the Fokker-Planck equation can be
understood as a combination of two distinct components: i) a drift term from the
bulk time evolution that is governed by the Schrödinger equation of the semi-classical
wavefunction; ii) a diffusion term that is associated with the boundary RG flow and given
by a revised version of the Polchinski equation. As our analysis is based on the minimal
assumption of the saddle-point approximation, this non-perturbative derivation further
demonstrates the relation between the semi-classical wavefunction and the stochastic
formalism.

This work also initiates many future directions for explorations. Here we list several
obvious questions that would be interesting for further considerations.

First, it will be interesting to explore the phenomenological consequences of IR divergences
in cosmological correlators. For theories of cosmic inflation, it has been shown that the
perturbative treatment of IR divergences leads to local-type non-Gaussianities from multi-
field models [36]. Meanwhile, in past several years, there has been a significant interest in
extending the analysis of inflationary fluctuations to the non-perturbative regime, which
may generate novel behaviour at the tail of the probability distribution [37, 38, 105–107]. In
particular, ref. [108] showed that rare events on the tail can also be captured by the semi-
classical wavefunction in IR-finite theories. Possible connections with our approach would be
appealing, which might lead to a systematical new understanding about non-Gaussian tails.

Second, the current analysis has been mainly focused on the semi-classical wavefunction
and the resulting classical loops, which capture the leading IR divergences, while quantum
corrections may become important at the next-to-leading order, or in IR-finite theories. It will
be interesting to compute these corrections to the Fokker-Planck equation from our approach,
and check if a resummation of quantum loops is possible. Another possible correction
comes from gravitational interactions. The current analysis has been performed in a fixed dS
background, and ideally we also wish to consider a more realistic setup with dynamical gravity.

Third, the renormalization group analysis for quantum field theories in de Sitter is another
new topic that needs to be better understood, and the analogy to Polchinski’s equation is
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far from complete. In this work, we have just focused on the semi-classical wavefunction
and performed the derivation for the Polchinski equation on the boundary, which can be
seen as the RG flow of an Euclidean classical field theory. In our current derivation, there is
an extra boundary term in addition to Polchinski’s original equation, which we justify by
returning to the leading order perturbation theory. It would be more satisfying to perform a
systematic analysis and understand better the physics of this particular choice. Meanwhile,
there could be other derivations of the RG flow from a bulk perspective, and it remains
curious to see how the bulk version and the boundary one are related to each other. Last
but not least, it is tempting to explore possible connections with the holographic RG in
AdS/CFT. Excitingly, new insights along this direction may shed light on the holographic
description of de Sitter spacetime.
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A In-in computation of one-loop corrections

In this section we apply the in-in formalism to compute the one-loop corrections to the
IR-divergent two-point correlators. The results here confirm our computation in section 3
using the wavefunction method. As we can see, the classical and quantum contributions are
mixed up in the in-in computation. Although one can derive the leading IR divergences at
one-loop level, it is hard to identify their classical origin.

For the in-in computation of massless scalar correlators, we introduce the bulk-to-
boundary propagators as

K+(k,η) =ϕk(η0)ϕ∗k(η), K−(k,η) =ϕ∗k(η0)ϕk(η), (A.1)

and the bulk-to-bulk propagators as

G++(k,η,η′) = ϕk(η)ϕ∗k(η′)θ(η−η′)+ϕ∗k(η)ϕk(η′)θ(η′−η)
G+−(k,η,η′) = ϕ∗k(η)ϕk(η′)
G−+(k,η,η′) = ϕk(η)ϕ∗k(η′)
G−−(k,η,η′) = ϕk(η)ϕ∗k(η′)θ(η′−η)+ϕ∗k(η)ϕk(η′)θ(η−η′), (A.2)

where the mode function of massless scalars is given by

ϕk(η) =χk(η) = H√
2k3

(1+ikη)e−ikη. (A.3)

In the following we perform the in-in computation for the three types of interactions that
were considered in section 3.
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One-loop two-point function with one Φ4 vertex. We start with the one-loop correction
to the two-point correlation function ⟨ϕϕ⟩ from the quartic self-interaction λΦ4/4!. This is
a well-studied example of the in-in computation for IR divergent correlators.

⟨ϕkϕ−k⟩′1−loop = − iλ2

∫
dηa(η)4

∫
p

[
K+(k,η)K+(k,η)G++(p,η,η)−c.c.

]
,

where we have a symmetry factor 2 in the denominator of the overall coefficient. Next,
we put the momentum integrals outside and perform the time integrals first and then the
IR-divergent part of the correlator is given by

⟨ϕkϕ−k⟩′1−loop = λH2

12k3

∫
p

1
p3 log(−2kη0) = H2

2k3
λ

12π2 log(ΛL) log(−2kη0). (A.4)

One-loop two-point function with two Φ3 vertices. Next, similarly let’s compute the
one-loop correction to the ⟨ϕϕ⟩ correlator from the cubic vertex gΦ3/3!

⟨ϕkϕ−k⟩′1−loop = −g
2

2

∫
dηdη′a(η)4a(η′)4

∫
p,q

[
K+(k,η)K+(k,η′)G++(p,η,η′)G++(q,η,η′)

−K+(k,η)K−(k,η′)G+−(p,η,η′)G+−(q,η,η′) (A.5)
−K−(k,η)K+(k,η′)G−+(p,η,η′)G−+(q,η,η′)
+K−(k,η)K−(k,η′)G−−(p,η,η′)G−−(q,η,η′)

]
(2π)3δ(p+q−k).

Again, we put the momentum integrals outside and perform the time integrals first

⟨ϕkϕ−k⟩′1−loop =−g
2

2

∫
p,q

(2π)3δ(p+q−k)I. (A.6)

As we are mainly interested in the IR-divergent part, the secular growth piece from bulk
time integration is given by

lim
η0→0

I =− 1
36p3q3

(
log(−(k+p+q)η0)

)2
+. . . (A.7)

Performing the loop integration, we find the IR-divergent correction to the two-point function

⟨ϕkϕ−k⟩′1−loop = g2

2

∫
p

H2

36p3k3

(
log(−(2k+p)η0)

)2
= H2

2k3
g2

72π2H2 log(kL) log(−2kη0)2.

(A.8)

One-loop two-point function with two Φ̇Σ2 vertices. Now we compute the one-loop
correction to ⟨ϕϕ⟩ from the cubic vertex αΦ̇Σ2/2

⟨ϕkϕ−k⟩′1−loop

=−α
2

2

∫
dηdη′a(η)3a(η′)3

∫
p,q

[
∂ηK+(k,η)∂η′K+(k,η′)G++(p,η,η′)G++(q,η,η′)

−∂ηK+(k,η)∂η′K−(k,η′)G+−(p,η,η′)G+−(q,η,η′) (A.9)
−∂ηK−(k,η)∂η′K+(k,η′)G−+(p,η,η′)G−+(q,η,η′)

+∂ηK−(k,η)∂η′K−(k,η′)G−−(p,η,η′)G−−(q,η,η′)
]
(2π)3δ(p+q−k).
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Next, we put the momentum integrals outside and perform the time integrals first

⟨ϕkϕ−k⟩′1−loop =−α
2

2

∫
p,q

(2π)3δ(p+q−k)I, (A.10)

with
lim
η0→0

I =− H2

4p3q3

(
log(−(k+p+q)η0)

)2
. . . . (A.11)

Then at one-loop level, the IR-divergent correction to the two-point correlator becomes

⟨ϕkϕ−k⟩′1−loop = g2

2

∫
p

H2

4p3k3

(
log(−2kη0)

)2
= H2

2k3
α2

8π2 log(kL) log(−2kη0)2. (A.12)

While we can still perform the one-loop computation using in-in formalism here, it becomes
more complicated once we go beyond the lowest order for loop corrections. Meanwhile, the IR-
singular piece of the correlators in the end look quite simple, with only two types of logarithmic
functions: one from the time integration; the other from the momentum integration. This
indicates that some simplification may be achieved if one is mainly interested in the leading
IR-divergent contributions. As we discussed in section 3.4, the wavefunction method provides
a more intuitive understanding that identifies the origin of dominant IR divergences as
classical loops. Meanwhile, by looking at one particular contribution from the product of
contact wavefunction coefficients, we can easily derive the leading logarithmic singularities.

B Probability distribution from the wavefunction

In this appendix, we compute the probability distribution of long wavelength fluctuations
from the coarse-grained wavefunction in perturbation theory. We show that contributions
from the saddle-point approximation satisfy the Fokker-Planck equation, while the ones from
loop-level wavefunction coefficients are subdominant. This provides another justification for
our major conclusion that the stochastic formalism is resuming the classical loops and thus
is equivalently described by the semi-classical wavefunction.

This method, with a particular choice of Ωk is similar to the path integral used in [21] to
derive the Fokker-Planck. Our approach will be different: instead of finding an equation for
P [ϕl] we will do the path integral show how the long wavelength physics appears and which
diagrams are considered. To be able to do this we will rely on knowing the perturbative
wavefunction Ψ, hence our results will be valid only while perturbation theory is valid. Still
these computations will be instructive when comparing with the solutions of the Fokker-
Planck equation.

We start by defining the probability for the long wavelength part of a scalar fields as
a functional integral

P [ϕl(x)] =
∫

Dϕ δ
(
ϕl(x)−

∫
k

Ωke
ik·xϕk

)
|Ψ[ϕk]|2. (B.1)

The idea is to use the already found wavefunction Ψ[ϕk] and then compute the path integral
at leading order in a given coupling. The path integral can be thought of as two consecutive
Legendre transform. The first is analogous to plugging a current with support only for
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the long modes. In the end it computes a partition function composed only of connected
correlators of the long modes of the fields. The second Legendre transform rewrites the
partition function as a function of the long mode fields ϕl similarly as the wavefunction.

Free Theory. To be more concrete let us start our discussion with an example. If the
field is free then we can write the probability as

P [ϕk] =N
√

Reψ2(k)exp
(
−1

2

∫
k

2Reψ2(k)ϕ2
k

)
, (B.2)

where N is a real number such that the probability is normalized. We want to now compute
the probability of finding the long wavelength part of the field ϕl. As discussed previously
this can be done through the path integral,

P [ϕl(x)] =N
√

Reψ2(k)
∫
Dϕk δ

(
ϕl(x)−

∫
k
eik·xΩ(k)ϕk

)
exp

(
−1

2

∫
k

2Reψ2(k)ϕ2
k

)
.

(B.3)

Let us consider the case when we pick a point x, by momentum invariance the field ϕl has to
have the same value on all space so it can depends only on time ϕl(x, t) =ϕl(t). Secondly, we
can see that the role of the δ function is to integrate over all modes such that the average
of the field ϕk corresponds to a fixed value ϕl. The path integral can be done analytically
by writing the δ function as an integral over a current J

P (ϕl) =N
√

Reψ2(k)
∫
dJ

∫
Dϕk exp

(
+iJϕl−

∫
k

(
Reψ2(k)ϕ2

k−iΩ(k)Jϕk
))

=
∫
dJ exp

(
iJϕl−

1
2

∫
k

Ωk

2Reψ2(k)J
2
)

=
√√√√ 2π∫

k
Ωk

2Reψ2(k)
exp

−1
2

ϕ2
l∫

k
Ωk

2Reψ2(k)

 . (B.4)

Now using that 1/2Reψ2(k) = ⟨ϕ2
k⟩′ we notice that the integral over the two point function

is nothing more than the variance of the field

σ2
ϕ≡

∫
k

Ωk

2Reψ2(k) =
∫

k
Θ(k−aH)⟨ϕ2

k⟩= H2

4π2 loga, (B.5)

and so we can write that

P (ϕl) =
√

2π
σ2
ϕ

exp
(
− ϕ2

l

2σ2
ϕ

)
, (B.6)

which is the usual result obtained by solving the Fokker-Planck equation for a free field. It is
possible to extend this results to higher order by using the Born approximation.

For interacting theories, before doing this in detail let us understand what is the role of
the path integral. Given an action S[ϕ] for a interacting scalar field ϕ, let us call Scl[ϕ] the
semi-classical action, on-shell Scl[ϕ] is a polynomial in ϕk that contains all possible tree-level
interactions. Then we can write the generator of connected correlators as [86]

Z[J ] = eW [J ] =
∫
Dϕe−i

∫
kϕJΩk−2iImScl[ϕk]. (B.7)

With this preparation, now let us take a look at some examples.
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λΦ4/4! interaction. Let us generalise the free theory to the case with a quartic interaction.
Up to first order in λ there are only two terms in the tree-level wavefunction

Ψ(ϕ)∼ exp
[1

2

∫
k
ψ2(k)ϕ2

k+ 1
4!

∫
k1,k2,k3,k4

ψ4(k1,k2,k3,k4) ϕk1ϕk2ϕk3ϕk4

]
, (B.8)

where ψ2 and ψ4 are derived in section 3. The generating functional for the connected
correlators of long modes is

eW [J ]l

= 1
Z[0]

∫
Dϕexp

[
−i
∫

k
ΩkϕkJ−

1
2

∫
k

2Reψ2(k)ϕ2
k−

1
12

∫
k1...k4

2Reψ4(k1, . . . ,k4)ϕk1 . . .ϕk4

]
.

(B.9)

We can remove the linear term in ϕk by shifting the field ϕk→ϕk−i Ωk
2Reψ2

J . Doing this
the measure does not change and we get,

eW [J ]l = 1
Z[0] exp

(
−
σ2
ϕ

2 J2− 1
16

∫
k1...k4

4∏
i=1

Ω(ki)
Reψ2(ki)

Reψ4(k1, . . . ,k4)J4
)

×
∫
Dϕk exp

(
−1

2

∫
k

2Reψ2(k)ϕ2
k−

1
12

∫
k1...k4

2Reψ4(k1, . . . ,k4)φk1 . . .φk4

+1
4

∫
k1...k2

Reψ4(k1, . . . ,k4) Ω(k3)Ω(k4)
Reψ2(k3)Reψ2(k4)ϕk1ϕk2J

2+5 perm.
)
. (B.10)

Notice that the second line corresponds to Z[0] so the path integral in the second lines
computes the correlation function of the term in the exponential. Since the integral is still
Gaussian in the fields it can be computed at first order in λ yielding,〈

e
1
4

∫
k1...k4

Ω(k3)Ω(k4)Reψ4(k1,...k4)
Reψ2(k3)Reψ2(k4) ϕk1ϕk2J

2+5 perm.
〉

=
(

1−J2

8

∫
k,p,q

Reψ2(k)Reψ4(k,p,q,−k)Ω(p)Ω(q)
Reψ2(p)Reψ2(q)

)−1/2

.

(B.11)

It is easy to see that is related to the loop correction we computed on the first part. Indeed
it appears as a loop correction to the determinant, which is expected since we are truncating
at first order in λ.

Using the notation from eq. (4.2) we can write that∫
k1...k4

4∏
i=1

Ω(ki)
Reψ2(ki)

Reψ4(k1,k2,k3,k4) = ⟨ϕ4
l ⟩. (B.12)

We then have that,

P [ϕl] =
∫
dJ

exp
(
iJϕl+

⟨ϕ2
l ⟩0
2 J2− ⟨ϕ4

l ⟩0
16 J4

)
√

1+J2⟨ϕ2⟩1−loop
. (B.13)

and so we have checked explicitly that exp(W [J ]l) is the generator of connected correlator at
long wavelengths. We can compute correlation functions by taking functional derivatives of
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exp(W [J ]l) and setting the current to 0 at the end of the computation. For the two-point
function we get

⟨ϕ2⟩= δ2W [J ]
δJ2

∣∣∣∣∣
J=0

= ⟨ϕ2
l ⟩0+⟨ϕ2

l ⟩1−loop. (B.14)

Two-field model. The two-field interaction αΦ̇Σ2/2 can lead to further simplifications
in the computation of the probability distribution from the perturbative wavefunction.
Explicitly, we have

P [ϕl,χl, t]

= 1
Z[0]

∫
DϕDχ δ

(
ϕl(x)−

∫
k

ΩΛe
ik·xϕk

)
δ

(
χl(x)−

∫
k

ΩΛe
ik·xχk

)
P [ϕ,χ,t]

= 1
Z[0]

∫
dJϕdJχ

∫
DϕkDχk exp(iJϕϕl+iJχχl)

×exp
[
−
∫

k

(
Reψϕ2 (k)ϕ2

k−ieik·xΩ(k)Jϕϕk
)
−
∫

k

(
Reψχ2 (k)χ2

k−ieik·xΩ(k)Jχχk
)

−1
2

∫
k1,k2,k3

Reψ3(k1,k2,k3)ϕk1χk2χk3

]
= 1

Z[0]
√

Reψϕ2 (k)

∫
dJϕdJχ

∫
Dϕk exp

[
+iJϕϕl+iJχχl−

⟨ϕ2⟩
2 J2

ϕ+i
∫

k,s

Reψ3(k,−k,s)
2Reψϕ2 (s)

χ2
kJϕ

+i
∫

k
Reψχ2 (k)χ2

k+ 1
4

∫
k1...k4

Reψ3(k1,k2,s)Reψ2(k3,k4,s)
Reψ2(s) χk1χk2χk3χk4 +perms.

]

=
∫
dJϕdJχ exp

−⟨ϕ2⟩
2 J2

ϕ+ ⟨χ2⟩
1−i ⟨ϕχ2⟩

⟨ϕ2⟩ Jϕ

J2
χ

2 +O(J4
χ)

 , (B.15)

To get the last line we have neglected the quartic term in χ. We also know the long
wavelength limit of the three-point function

⟨ϕχ2⟩=−
∫

k1,k2,k3

Reψ3(k1,k2,k3)Ω(k1)Ω(k2)Ω(k3)
Reψϕ2 (k1)Rek2)Reψχ2 (k3)

+perm. (B.16)

Notice that W [Jϕ,Jχ] is non-local in Jϕ. This effect comes from integrating out Jχ and it
will be suppressed when χ has a large mass. Expanding in small α there will be a series of
terms quadratic in Jχ accounting for all possible exchange diagrams with two external χ legs
connecting internal χ propagators with external ϕ legs. For the purpose of computing the
probability we can expand in α and solve the integrals over Jχ and Jϕ. We get

P [ϕl,χl] =
∫
dJϕdJχ exp

[
iJϕϕl+iJχχl−

⟨ϕ2⟩
2 J2

ϕ+ ⟨χ2⟩
2 J2

χ−i
⟨ϕχ2⟩

2 JϕJ
2
χ

]

=
∫
dJϕ

exp
[
iJϕϕl− ⟨ϕ2⟩

2 J2
ϕ−

1
1+i ⟨ϕχ

2⟩
⟨χ2⟩

Jϕ

χ2
l

2⟨χ2⟩

]
√
⟨χ2⟩+i ⟨ϕχ2⟩

⟨ϕ2⟩ Jϕ

≈
√

2π
⟨χ2⟩⟨ϕ2⟩

exp

− χ2
l

2⟨χ2⟩
− 1

2⟨ϕ2⟩

(
ϕl−

⟨ϕχ2⟩
2⟨χ2⟩2χ

2
l

)2
 , (B.17)
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where, in the second line, we have expanded in α. This is the probability distribution which
was obtained in [37] as a solution of the Fokker-Planck equation. The two-point functions
⟨ϕ2⟩ and ⟨χ2⟩ are given by the variance in (4.4). For the three-point function, we have

⟨ϕχ2⟩=−λH3
∫

k1,k2,k3

log(−(k1+k2+k3)η0)
k3

1k
3
2k

3
3

Ω(k1)Ω(k2)Ω(k3)(2π)3δ(3)(k1+k2+k3)

=−λH3
∫

k1,k2

log(−2(k1+k2)η0)
k3

1k
3
2(k1+k2)3 Ω(k1)Ω(k2).

=− λH3

2(4π2)2 log(a)3, (B.18)

where we have used the delta function in the first line to eliminate the k3 integral. We can
compute correlation functions by taking derivatives from Wl[Jϕ,Jχ] and setting the currents
to zero. Let us check the 1-loop corrections. First, integrating over Jχ, we obtain

Wl[Jϕ] =−⟨ϕ2⟩
2 J2

ϕ−
1
2 log

(
1

⟨χ2⟩
+ i⟨ϕχ2⟩

⟨χ2⟩
Jϕ

)
. (B.19)

Then the 1-loop correction to the two-point function is given by

⟨ϕ2⟩1−loop = ⟨ϕ2⟩− ⟨ϕ2χ⟩2

2⟨χ2⟩2 = H2

4π2 loga+ λ2H2

128π4 log(a)4, (B.20)

which matches the perturbative computation we did in section 3.

C Stochastic formalism with two fields

In this appendix, we present another version of the derivation for the Fokker-Planck equation,
especially focusing on the situation with two interacting massless scalars.

To proceed let us first study the long wavelength dynamics. One of the advantages of using
wavefunctions is that it allow us to define a probability through the relation P [ϕ,χ; t]∼ |Ψ|2.
The dynamics of this probability distribution is given by the Schrodinger equation,

d

dt
Ψ = iHΨ, (C.1)

which is strictly valid in the decoupling limit of the EFT (otherwise the Hamiltonian is a
constraint). Of course the equation for the probability distribution is just the usual continuity
equation from quantum mechanics. A difference between our derivation and the analysis of
ref. [21] is that we will include derivative interactions. Their main effect will on modifying
the classical dynamics. For this reason let us keep discussing the two field scenario and let
us consider the following interaction Lagrangian,

Sint =
∫
d4x

√
−g
(
V (χ)+ϕ̇f(χ)

)
, (C.2)

where V (ϕ) and f(χ) are polynomial in χ. The effect of the derivative interactions is twofold.
Besides the usual interaction it modifies the momenta which is now a−3πϕ = ϕ̇− 1

2f(χ) which
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in turns implies an extra term in the interaction Hamiltonian f(χ)2/8. The Hamiltonian
is given by,

H = πϕ
2a3 + πχ

2a3 + a2

2 ((∇χ2)−m2a2χ2)+ a2

2 (∇ϕ)2− 1
2πϕf(χ)+ a3

8 (f(χ)2−4V (χ)). (C.3)

Notice that by Noether theorem the shift symmetry of ϕ implies a conserved current in
the continuity equation,

j0 = ϕ̇− 1
2f(χ) = πϕ

a3 , (C.4)

which is just a generalisation of the usual momentum conservation in models with a single
field. All this equation is saying is that in the long wavelength limit ϕ̇ is not conserved, as
in single field inflation, but the more general combination given by j0.

Assuming unitarity we can write a continuity equation for the probability density by
taking the time derivative of P and using the Schrodinger equation. Using this we can
write the continuity equation as,

∂P [ϕ,χ,t]
∂t

= [H,P ]

=−
∫
d3x

[
i

2a3
δ

δϕ(x)

(
Ψ∗ δ

δϕ(x)Ψ−Ψ δ

δϕ(x)Ψ∗
)

+ i

2a3
δ

δχ(x)

(
Ψ∗ δ

δχ(x)Ψ−Ψ δ

δϕ(x)Ψ∗
)

−f(χ) δ

δχ(x)ΨΨ∗

]
=−

∫
d3x

δ

δϕ(x) ((Πϕ+f(χ))P [ϕ,χ,t])+ δ

δχ(x)(ΠχP [ϕ,χ,t]), (C.5)

where we have used that πϕ→−i δδϕ . If we apply this definition over the wavefunction
coefficients we can define a classical momentum as,

Πϕi [ϕ,x, t] =− δ

δϕi(x)Imlogψ= δS(ζ, t)
δϕi(x) , (C.6)

where by S we mean that it is evaluated over the classical part of the wavefunction. In this
sense this definition can be thought of as the on-shell long wavelength limit of the momentum.
By using this we can write the continuity equation as,

∂P [ϕ,χ,t]
∂t

=−
∫
d3x

δ

δϕ(x)

((Πϕ

a3 +f(χ)
)
P [ϕ,χ,t]

)
+ δ

δχ(x)

(Πχ

a3 P [ϕ,χ,t]
)
. (C.7)

The advantage of writing the equation in this form relies on the fact that we can make use of
the long wavelength limit of the equations of motion. In our case, the shift symmetry of ϕ
implies that the classical momentum vanishes at late times. For the second field we can use
the equations of motion to get that Πχ→−(V ′(χ)−f ′(χ)/8)/3H.
In order to incorporate the effect of short wavelengths we first coarse grain the fields into
long and short wavelength modes. This is achieved by writing,

ϕ(x) =
∫ Λ

0

d3k

(2π)3 e
ik·xϕ(x)+

∫ ∞

Λ(t)

d3k

(2π)3 e
ik·xϕ(x)≡ϕL(k)+ϕS(k), (C.8)
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where Λ(t) is a time dependent cut-off given by Λ = ϵa(t)H with ϵ a small number (not to
be confused with the slow roll parameter). In order to circumvent problems with the fact
that the cut-off is sharp let us define the smoothed window function,

ΩΛ(k) =

1 for k≤Λ(t)
0 for k≥ (1+δ)Λ(t).

(C.9)

such that in the limit δ→ 0, the window function becomes a Heavyside step-function, ΩΛ =
Θ(k−Λ(t)). An example of such function is given in [95]. With the help of the window
function (C.9) we can define the smeared field as,

ϕΩ(x) =
∫

k
ΩΛ(k)eik·xϕ(k), (C.10)

and similarly for χ. Notice that at leading order in δ, ϕΩ is just the long wavelength part
of the curvature modes. In other words, expanding in δ we find that, ϕΩ = ζl(1+O(δ)). At
the same time we can define the PDF for the long wavelength modes as a path integral
using the window function,

PΩ[ϕΩ,χΩ, t] =
∫

DϕDχ δ
(
ϕΩ(x)−

∫
d3k

(2π)3 ΩΛe
ik·xϕ(k)

)

×δ
(
χΩ(x)−

∫
d3k

(2π)3 ΩΛe
ik·xχ(k)

)
P [ϕ,χ,t]. (C.11)

This expression generalises the notion of the long wavelength limit probability we have
discussed before. Notice that because the window function also has a time dependence
there will be another term when taking the derivative of PΩ. One will be given by the
classical solution whereas the new one will take into account the short wavelength fluctuations.
Schematically we can write,

∂PΩ
∂t

= Drift +Diff. (C.12)

In analogy with the usual Fokker-Planck equation. Let us unpack this. For the drift term we
have already found an expression for the derivative of P in (C.5). Replacing it we find,

Drift =
∫

DζDχ δ[. . . ]
(
−
∫
d3x

∂

∂ϕ(x) (Πϕ(x)−f(χ))P [ϕ,χ,t]

−
∫
d3x

∂

∂χ(x)(Πχ(x)P [ϕ,χ,t]
)
. (C.13)

Integrating by parts we find at leading order in δ that,

Drift =
∫
d3x

∫ Λ(t)

0

d3k′

(2π)3×
(

∂

∂ϕ(x)

∫
DϕDχδ[. . . ] (Πϕ(k)+f(χ))P [ϕ,χ,t]

+ ∂

∂χ(x)

∫
DϕDχδ[. . . ]Πχ(k)P [ϕ,χ,t]

)
(1+δ), (C.14)

where Πϕ,χ(k) are the Fourier transform of the momenta (C.6). After swapping the momentum
integral inside the functional derivative we see that we are basically taking the Fourier
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transform of the momenta until Λ(t). At leading order this, of course, corresponds to
considering only the long wavelength modes. Moreover the path integral considers only the
long wavelength probability. Hence we can write,

Drift =
∫
d3x

(
∂

∂ϕ(x)
(
(Πϕ(x)+f(χ))Λ(t)PΩ(t)

)
+ ∂

∂χ(x)(Πχ(x)Λ(t)PΩ(t))
)
, (C.15)

where the subscript in the momentum indicates that we are considering the long wavelength
part field.

The computation for the diffusion follows the same steps as in [21] which we review in
the appendix. After a straightforward computation we arrive at the following,

Diff = 1
2
∂2

∂ϕ2

(
⟨∆̇ϕ∆ϕ⟩P

)
+ 1

2
∂2

∂χ2

(
⟨∆̇χ∆χ⟩P

)
+. . . , (C.16)

where the ∆ϕ is defined as,

∆ϕ(k) =
∫ (1+δ)Λ(t))

Λ(t)

d3k

(2π)3 e
ikxΩΛ(k)ϕ(k) (C.17)

such that we integrate over a thin layer of width δ. The cross term ∂2

∂ϕ∂χ

(
⟨∆̇ϕ∆χ⟩P

)
gives

a subdominant contribution. There will be higher order correlations contributing to the
diffusion terms. Notice that the time derivative over ∆ϕ only acts over the window function
ΩΛ. Our task then reduces to compute a regulated Fourier transform of a two point function.
Using the results from the previous section we find

⟨∆̇ζ∆ζ⟩= H3

4π2

⟨∆̇χ∆χ⟩= H3

4π2 , (C.18)

Finally, the quadratic Fokker-Planck equation is,

∂P

∂t
= ∂

∂ϕ
((f(χ))P )+ H3

8π2
∂2P

∂ϕ2 − ∂

∂χ

(
m2

3HχP

)
+ H3

8π2
∂2

∂χ2P. (C.19)

Notice that this equation generalises the results found in [37], where the Fokker-Planck
equation was obtained from a set of Langevin equations. In this case with a minimal set
of assumptions we have arrived to the same equation.

D Corrections to the Fokker-Planck equation

In this appendix we show how to compute some corrections to the Fokker-Planck equa-
tion (C.19). The effect from a quartic interaction can generate a mass term on long distances
λϕ2

l . To compute how this changes the diffusion term let us consider the wavefunction
coefficient of a massive scalar field

ψ2(k) = H

(−Hη)d
(
−d−2ν

2 + kηHν−1(−kη)
Hν(−kη)

)
, (D.1)
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where ν=
√
d2/4−m2/H2. If we expand for small m2 and take the real part we get that,

2Reψ2(k) = 2k3

H2

(
1−(logk−ψ(3/2))2m2

3H2

)
, (D.2)

where ψ(x) is the digamma function. As we mentioned, the mass term is generated by the
long modes and so we identify m2 =λϕ2

l If we plug this result back into the formula for the
diffusion term eq. (5.23) we find the coefficient gets shifted to,

Diff = H3

8π2
∂2

∂ϕ2

((
1+ 2λ

H2 (logΛ−ψ(3/2))ϕ2
)
P (ϕ)

)
, (D.3)

which coincides with other results [21, 24, 27]. This new terms adds a subleading correction
to the correlation function computed using the Fokker-Planck equation. Indeed we have
that the recursion relations are now,

d⟨ϕn⟩
dt

=− n

3H ⟨ϕn−1Vϕ⟩+
n(n−1)H2

8π2

(
⟨ϕn−2⟩+ 2λ

H2a⟨ϕ
n⟩
)
, (D.4)

where a= (log ϵ−ψ(3/2)). If we solve for the variance up to first order in λ we get

⟨ϕ2⟩= H2

4π2 loga− λH2

144π4 (loga)3+ aλH2

32π4 (loga)2. (D.5)

Notice that the third term is a subleading loop contribution. Since it contains less IR
divergences we can trace it back to the 1-loop correction to the wave function coefficient,

Reψ1−loop
2 (k)∼ λk3

H2 log(−kη), (D.6)

which leads to a similar contribution to the two point function as the third term of eq. (D.5).
Notice that the precise coefficient will depend on the regularisation scheme. It will be
interesting to explore this further.
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