
J
H
E
P
0
4
(
2
0
2
3
)
1
3
9

Published for SISSA by Springer

Received: January 6, 2023
Revised: March 28, 2023

Accepted: April 17, 2023
Published: April 28, 2023

Negative scalar potentials and the swampland: an
Anti-Trans-Planckian Censorship Conjecture

David Andriot,a Ludwig Horera,b and George Tringasa
aLaboratoire d’Annecy-le-Vieux de Physique Théorique (LAPTh),
CNRS, Université Savoie Mont Blanc (USMB), UMR 5108,
9 Chemin de Bellevue, 74940 Annecy, France

bInstitute for Theoretical Physics, TU Wien,
Wiedner Hauptstrasse 8-10/136, A-1040 Vienna, Austria
E-mail: andriot@lapth.cnrs.fr, ludwig.horer@tuwien.ac.at,
tringas@lapth.cnrs.fr

Abstract: In this paper, we derive a characterisation of negative scalar potentials, V < 0,
in d-dimensional effective theories of quantum gravity. This is achieved thanks to an
Anti-Trans-Planckian Censorship Conjecture (ATCC), inspired by a refined version of the
TCC. The ATCC relies on the fact that in a contracting universe, modes that become
sub-Planckian in length violate the validity of the effective theory. In the asymptotics of
field space, we deduce that −V ′/V ≥ c0 when V ′ ≥ 0. The rate c0 = 2/

√
(d− 1)(d− 2)

is successfully tested in several string compactifications for d ≥ 4. In addition, a new
asymptotic condition, V ′′/V ≥ c2

0, is derived. By extrapolation to anti-de Sitter solutions
of radius l, we infer the existence of a scalar whose mass should obey m2l2 . −2. This
property is verified in many supersymmetric examples.

Keywords: Cosmology of Theories BSM, Flux Compactifications, Supergravity Models,
Superstring Vacua

ArXiv ePrint: 2212.04517

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP04(2023)139

mailto:andriot@lapth.cnrs.fr
mailto:ludwig.horer@tuwien.ac.at
mailto:tringas@lapth.cnrs.fr
https://arxiv.org/abs/2212.04517
https://doi.org/10.1007/JHEP04(2023)139


J
H
E
P
0
4
(
2
0
2
3
)
1
3
9

Contents

1 Introduction and results summary 1

2 Anti-Trans-Planckian Censorship Conjecture and consequences 7
2.1 General framework 7
2.2 ATCC statement 8
2.3 Bound on the lifetime 10
2.4 A second assumption 10
2.5 A bound on V < 0 and on V ′/V 11
2.6 Example: the anti-de Sitter solution 12

3 A bound on V ′′/V and consequences 15
3.1 Bounding V ′′/V with the (A)TCC 15
3.2 A mass bound for anti-de Sitter and holographic interpretation 17

4 Multifield extension 24

5 Scalar potentials from string theory 26
5.1 Scalar potential for (ρ, τ, σ) 27

5.1.1 Analysis of the exponential rates 28
5.1.2 No-go theorems for anti-de Sitter and specific field directions 29

5.2 DGKT-inspired scalar potentials 33
5.2.1 4d isotropic solution, potential and field directions 33
5.2.2 3d solution, potential and field directions 36

A Examples: dynamical solutions 40
A.1 Exponential potential 41
A.2 KKLT-inspired potential 43

1 Introduction and results summary

Cosmological observations have reached an unprecedented level of precision in the last
decades, putting tight constraints on cosmological models. Single field slow-roll inflation
models are strongly constrained by the latest Planck data [1], while quintessence models
should soon get restricted by the Euclid mission. In spite of this progress, many such models
remain in agreement with observations. In a d-dimensional spacetime, those are of the form

S =
∫

ddx
√
|gd|

(
M2
p

2 Rd −
1
2gij∂µϕ

i∂µϕj − V
)
, (1.1)
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with a minimal coupling of scalar fields ϕi to gravity, and a scalar potential V . In this
situation, additional theoretical input could be useful in order to distinguish between these
models. It is commonly believed that a fundamental theory of quantum gravity should
exist and provide an origin to such models (1.1), which then appear as effective theories.
The swampland program [2, 3] aims at characterising effective theories of quantum gravity,
one example being the properties of the scalar potential V in (1.1). Such a characterisation
could help in selecting (cosmological) models which are compatible with quantum gravity.
This has been the topic of many works in the swampland program, proposing criteria for
admissible positive scalar potentials, V > 0, under the name of de Sitter conjectures [4–11].
While the initial proposal was a strict condition on the ratio ∇V/V , some refinements
suggested to include the second derivative of the potential ∇∂V and others to restrict the
characterisation of V to the asymptotics of field space only. The latter was realised in
particular in the Trans-Planckian Censorship Conjecture (TCC) [10]: it led to the following
conditions on V > 0, with V ′ ≤ 0, here for a single canonically normalized field

0 < V (ϕ) ≤ e−c0 |ϕ−ϕi| ,

〈
−V

′

V

〉
ϕ→∞

≥ c0 , c0 = 2√
(d− 1)(d− 2)

, (1.2)

in Planckian units Mp = 1, for 3 ≤ d ≤ 10.
In this work, we are interested in effective theories (1.1) of quantum gravity with

negative scalar potentials, V < 0. Those may sound less relevant to cosmology, even though
we can recall the ekpyrosis and bouncing cosmological models, which require negative
potentials. Such scenarios seem able to reproduce, in a contracting phase, the early universe
observations. Difficulties may occur later, at the bounce needed to catch up with a positive
cosmological constant, where instabilities arise and are difficult to control. An incomplete
list of related works includes [12–19] (see also [20–23] for cosmological models with a negative
cosmological constant). Regardless of cosmology, negative scalar potentials include anti-de
Sitter vacua: those are among the best understood quantum gravity backgrounds thanks to
holography [24–26]. Characterising negative scalar potentials in quantum gravity effective
theories of the form (1.1) seems therefore a natural task in the swampland program.

De Sitter and anti-de Sitter solutions correspond to positive or negative critical points
of the potential in (1.1). Those solutions have however very different status in string
theory (see e.g. [27]). Nevertheless, positive and negative scalar potentials in effective
theories are a priori formally identical: they would differ by values and signs of coefficients,
depending e.g. on details of a compactification, but the functional dependence on the fields
is in principle the same. For this reason, it is reasonable to expect the characterisation of
negative potentials to be similar to that of positive ones. Such an analogous characterisation
has already been proposed in the literature, where criteria on admissible negative potentials
were inspired by the refined de Sitter conjecture [7]. Indeed, it was proposed in [28] that
V < 0 should obey, in Planckian units

|∇V |
|V |

≥ c ∼ O(1) or min∇∂V
|V |

≤ c′ ∼ O(1) , (1.3)

in line with the AdS moduli conjecture [29]. In (1.3), min∇∂V stands for the minimal
eigenvalue of the mass matrix, of coefficients gik∇k∂jV . At an anti-de Sitter critical point,
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the first condition in (1.3) is violated, thus requiring the second condition to hold. The
latter led to many recent discussions on scale separation. Let us mention in addition [30]
where the second condition in (1.3) was traded for max∇∂V/|V | ≥ −c′, reminiscent of the
Breitenlohner-Freedmann (BF) bound. Finally, the condition on the first derivative is also
discussed and used in e.g. [31].

The refined de Sitter conjecture [7], very similar to (1.3), got later weakened by the
TCC. In the latter, the condition on the first derivative is present but is only valid in the
asymptotics of field space, as indicated in (1.2). The condition on the second derivative
got relaxed, and traded for a bound on the lifetime. In the present paper, we propose
an analogous Anti-Trans-Planckian Censorship Conjecture (ATCC) which characterises
negative scalar potentials. The same differences and weakening will occur with respect
to (1.3).

Prior to introducing our ATCC, let us come back to the TCC statement and propose a
refined version of it. For both conjectures, we consider solutions of effective theories (1.1)
with a Friedmann-Lemaitre-Robertson-Walker metric, having a scale factor a(t); see sec-
tion 2.1 for more details. We discuss in particular solutions with expanding (ȧ > 0) or
contracting (ȧ < 0) spacetimes. The former is considered in our refined TCC, that we
now present.

Refined Trans-Planckian Censorship Conjecture

Consider an effective theory of quantum gravity of the form (1.1), admitting
a solution describing an expanding universe with V > 0. In this universe, let
us focus on a relativistic mode having a wavelength shorter than the Planck
length at an initial time ti, or equivalently a super-Planckian energy. Then,
via the redshift, it cannot reach at a later time t an energy smaller than the
typical energy scale of the effective theory, without violating its validity. This
gets translated into the following inequality:

a(ti)
a(t) ≥

√
V

M2
p

. (1.4)

The above inequality is derived considering the most constraining case of an initial Planckian
wavelength or energy, and the typical energy scale of the effective theory at a later time t
to be given by

√
V /Mp, where V stands for V (ϕ(t)). Trading

√
V /Mp for H, one obtains

the inequality of the original TCC [10]. Close to (quasi-) de Sitter spacetimes, H and√
V /Mp represent the same quantity and trading one for the other does not change anything

physically, nor in the general TCC reasoning allowing to derive the characterisation of the
potential (1.2). Using

√
V /Mp instead of H is motivated here by the fact that beyond

(quasi-) de Sitter spacetimes, H does not always provide a meaningful characterisation of a
typical length or a horizon of the universe. This will be even more true when turning to
V < 0. We then prefer to talk in terms of the energy scale of the effective theory, which
should also correspond to the macroscopic physics of the universe described by that theory,
if not the classical physics. It also allows us to add the question of its validity.
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Indeed, a more important difference with the original TCC statement is the notion of
validity of the effective theory. In the original statement, solutions violating the inequal-
ity (1.4) are forbidden as a matter of principle by quantum gravity, while here, they are
simply said to lie outside the regime of validity of the effective theory. This refinement is then
essentially saying that the effective theory energy cutoff has to be below the Planck scale,
which is a minimal, though crucial quantum gravity input. In other words, quantum gravity
modes of Planckian energy cannot contribute to the physics of the EFT without violating
its validity.1 Applying this idea to the typical energy scale of the effective theory (1.1),
namely the scalar potential, we get that it should remain sub-Planckian in the regime of
validity, i.e. 1 ≥

√
V /M2

p . This is consistent with 1 ≥ a(ti)/a(t) in an expanding universe
and the inequality (1.4). Note that alternative viewpoints have been proposed in [32, 33].

Inspired by this refinement, we now turn to negative potentials, and provide the ATCC
statement.

Anti-Trans-Planckian Censorship Conjecture

Consider an effective theory of quantum gravity of the form (1.1), admitting
a solution describing a contracting universe with V < 0. In this universe, let
us focus on a relativistic mode having as energy the typical energy scale of the
effective theory at an initial time ti, or the corresponding wavelength. Then, via
the blueshift, it cannot reach at a later time t an energy higher than the Planck
scale, without violating the validity of the effective theory. This gets translated
into the following inequality:

a(t)
a(ti)

≥
√
|Vi|
M2
p

. (1.5)

Here, Vi stands for V (ϕ(ti)). As above, one gets 1 ≥ a(t)/a(ti) ≥
√
|Vi|/M2

p , saying again
that the typical energy scale of the effective theory, given by the potential, and beyond
it the cutoff scale, should be sub-Planckian. We detail this statement and derivation in
section 2.2. For completeness, let us recall (see section 2.1) that V < 0 automatically leads
to a decelerating universe.

As for the TCC, the ATCC inequality (1.5) eventually leads to a characterisation of the
scalar potential. Before reaching this point, we first show in section 2.3 that one can derive
a bound on the lifetime. We interpret it as being related to the spacetime contraction, and
to the final crunch which should occur in a finite time. We then turn to the characterisation
of the potential: contrary to the TCC, reaching this characterisation requires here what we
call a second assumption, namely a condition on V and a(t). This condition is automatically
satisfied for V > 0 but not for V < 0; we discuss it in section 2.4. We test this condition as
well as the ATCC inequality (1.5) on concrete solutions describing contracting universes
with V < 0, starting with the anti-de Sitter solution in section 2.6 and then two dynamical

1For instance, one can imagine the following physical process: a quantum gravity mode of super-Planckian
mass is created, and transfers its energy to a photon or a graviton. The latter redshifts and ends-up in the
energy range where the EFT is valid; it then interacts with EFT degrees of freedom. This new input to the
EFT violates its validity. We can imagine the reverse process for the ATCC discussed below.
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Figure 1. Illustration of the ATCC bounds (1.6) and (1.7) for d = 4. The potential V (ϕ) has a
typical shape (see section 5), obtained from string theory compactifications, and |V | is small in
Planckian units. The negative part of V is bounded by the growing exponential, with the specific
rate c0.

solutions (with rolling fields) in appendix A. These solutions easily obey all these conditions,
in their regime of validity.

This leads us to derive the characterisation of a negative potential for 3 ≤ d ≤ 10.
Focusing on a single canonically normalized scalar field, we first obtain the following bound
on V < 0 with V ′ ≥ 0, in Planckian units

0 > V (ϕ) ≥ − e−c0 |ϕ−ϕi| , c0 = 2√
(d− 1)(d− 2)

, (1.6)

valid everywhere in field space. We deduce from (1.6), away from potential extrema (one
needs ϕ̇ 6= 0), the asymptotic condition on the first derivative of the potential2〈

−V
′

V

〉
ϕ→∞

≥ c0 . (1.7)

We illustrate these bounds in figure 1. The similarity of these results with those of the TCC
in (1.2) is clear, as anticipated, even though their derivation contains few subtleties. As is
well-known, the condition (1.7) gives a lower bound on exponential rates: c ≥ c0. We refer
to section 2.5 for more details.

Multifield extensions of these conditions, and related ambiguities, are discussed in
section 4. This allows us to test in section 5 the ATCC and its characterisation of negative
potentials on examples obtained from string theory compactifications. The first potential is
the semi-universal one, V (ρ, τ, σ), in d dimensions, tested in section 5.1, and the second
one is obtained from compactifications towards so-called DGKT anti-de Sitter solutions in
d = 4, and extension in d = 3, tested in section 5.2. In those examples, we find no violation

2The condition (1.7) does not strictly forbid anti-de Sitter extrema in the asymptotics, neither did the
TCC for de Sitter ones; we make it clear in section 2.5. This condition rather provides a constraint on the
asymptotic shape of the potential.
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of the ATCC bounds in d ≥ 4, providing a confirmation of the above. We find several
violations in d = 3, as already noticed for the TCC in [34]: this can be understood from the
peculiarity of gravity in d = 3.

Last but not least, we derive in section 3, for both the TCC and the ATCC, a new
condition on the second derivative of the potential. This had not been achieved with the
TCC in [10], and we reach this result here thanks to a minor assumption. The condition we
obtain is the following 〈

V ′′

V

〉
ϕ→∞

≥ c2
0 , (1.8)

in Planckian units, for a single canonically normalized scalar field. We discuss the conse-
quences of this condition for V > 0 and V < 0. We then extrapolate this condition, thanks
to a possible continuity of the spectrum in field space, towards an anti-de Sitter extremum.
We reach the following condition

AdSd≥ 4 : min m2 l2 . −2 , (1.9)

where the extrapolation gives us a little flexibility in the bound, expressed by the symbol ..
The inequality (1.9) is interpreted as follows

In a d-dimensional anti-de Sitter solution with radius l and d ≥ 4, the scalar
field with lowest squared mass m2 obeys (1.9).

Since the BF bound is lower than −2 in units of l, for d ≥ 4, this statement is automatically
true for perturbatively unstable solutions. We test it upon few perturbatively stable examples
found in the literature: most supersymmetric ones strictly verify this bound, with the notable
exceptions of KKLT [35], LVS [36], and the original DGKT solution [37], that we discuss.
Non-supersymmetric ones require the mentioned flexibility, with e.g. min m2 l2 ≈ −1.5;
we also note two possible exceptions. We however keep in mind that most of these non-
supersymmetric examples suffer from non-perturbative instabilities, as conjectured in [38].
A detailed account of these examples is provided in section 3.2 with a summary in table 1
and 2, as well as a discussion on the holographic consequences of (1.9) for a dual CFT.

Similarly to the TCC versus the refined de Sitter conjecture, the ATCC weakens
the condition (1.3) of [28, 29] that characterises negative scalar potentials in quantum
gravity effective theories. The condition on the first derivative of the potential becomes
an asymptotic one, and a value c0 is given for the bound on the exponential rate (1.7).
In addition, the condition on the second derivative is relaxed, especially on anti-de Sitter
extrema. Importantly, relaxing this condition sets aside the on-going debate on scale
separation for V < 0. The ATCC also brings a physics argument behind those results,
related to the regime of validity of a quantum gravity effective theory, thanks to our
refinement of the TCC. This argument may explain why the checks of the TCC [34, 39]
have so far been so successful. Last but not least, we found the new condition (1.8) on the
second derivative, whose surprising consequences have just been mentioned. The flexible
bound (1.9) on the lowest mass at an anti-de Sitter extremum deserves more study, and we
hope to come back to it in future work.
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2 Anti-Trans-Planckian Censorship Conjecture and consequences

After recalling in section 2.1 the general cosmological formalism to be used, we introduce
the Anti-Trans-Planckian Censorship Conjecture (ATCC) in section 2.2, and discuss various
consequences, namely a bound on the lifetime in section 2.3 and a characterisation of a
negative (and climbing) potential in section 2.5, the latter requiring a second mathematical
assumption presented in section 2.4. Finally, the well-known anti-de Sitter solution is
presented and analysed in this framework in section 2.6, while two more dynamical solutions
are discussed in appendix A.

2.1 General framework

We are interested in d-dimensional effective theories of quantum gravity, 3 ≤ d ≤ 10, whose
action is of the form (1.1), that we repeat here for convenience

S =
∫

ddx
√
|gd|

(
M2
p

2 Rd −
1
2gij∂µϕ

i∂µϕj − V
)
, (2.1)

with scalar fields ϕi minimally coupled to gravity. The reduced Planck mass is Mp, gij
is the field space metric and V is the scalar potential. Such theories can admit solutions
with a d-dimensional maximally symmetric spacetime, of cosmological constant Λd. Those
solutions correspond to extrema of the potential, ∇V = 0, with no scalar kinetic energy,
and the relation Λd = V

M2
p

= d−2
2d Rd holds. Here we will also consider more dynamical

solutions, with rolling or climbing scalars on gradients of the potential.
To describe all these solutions, it is enough to restrict ourselves to d-dimensional

spacetimes whose metric is given by Friedmann-Lemaitre-Robertson-Walker (FLRW)

ds2
d = −dt2 + a(t)2

(
dr2

1− k r2 + r2dΩ2
)
, (2.2)

with k = ±1, 0 and a(t) > 0. We also consider for now a single scalar field ϕ, canonically
normalized (gij = δij), and set Mp = 1 in the rest of this subsection. The equations of
motion (e.o.m.) are then the two Friedmann equations in d dimensions and the e.o.m. of ϕ

(d− 1)(d− 2)
2

(
H2 + k

a2

)
= ρ , (2.3)

(d− 2) ä
a

+ d− 3
d− 1ρ+ p = 0 ⇔ Ḣ − k

a2 + ρ+ p

d− 2 = 0 , (2.4)

ϕ̈+ (d− 1)Hϕ̇+ V ′ = 0 , (2.5)

with the Hubble parameter, energy density and pressure given by

H = ȧ

a
, ρ = 1

2 ϕ̇
2 + V , p = 1

2 ϕ̇
2 − V , (2.6)

the dot denoting the derivative with respect to t, and we consider a homogeneous scalar
field. The equation of state parameter is given by w = p

ρ .
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In most of the paper, we will focus on negative potentials

V < 0 . (2.7)

This has some consequences, as we now recall. To start with, the second Friedmann equation
can be rewritten as

(d− 1) ä
a

= 2
d− 2V − ϕ̇

2 , (2.8)

from which we conclude that
ä < 0 , (2.9)

i.e. we face a decelerating universe.
A second observation goes as follows. We will allow ourselves to reach situations without

kinetic energy, 1
2 ϕ̇

2 = 0, and therefore cases where ρ < 0. This includes in particular anti-de
Sitter vacua. The first Friedmann equation then imposes to pick

k = −1 . (2.10)

This choice disagrees with cosmological observations (k = 0), but we do not aim here at a
realistic cosmology. However, it also differs from the situation of the TCC [10] which had
k = 0; we will then adapt our analysis to the extra related complications.

We will give in section 2.6 and appendix A explicit solutions to the above equations,
starting with the anti-de Sitter solution. Before doing so, we turn in full generality to the
ATCC statement and its consequences.

2.2 ATCC statement

As recalled in the Introduction, the TCC discussed in [10] considers a universe in expansion,
and makes a statement on the fate of modes which evolve between a sub-Planckian regime
and a classical regime (via the growth of their wavelength). A characterisation of positive
scalar potentials, V > 0, is then deduced. We consider here a contracting universe, ȧ < 0,
and discuss analogously the fate of modes which would change regime, with the aim of
deducing a characterisation of negative scalar potentials, V < 0.

Let us recall from section 2.1 that V < 0 automatically gives a decelerating universe,
ä < 0. In addition, the solution examples with V < 0 discussed in section 2.6 and appendix A,
namely the anti-de Sitter solution and more dynamical solutions, all exhibit contracting
phases. Given the existence of such solutions, we can safely discuss contracting universes.

A mode having as wavelength the typical length scale of the universe would usually be
considered as classical. However, contrary to a de Sitter universe, there is not necessarily a
horizon when V < 0, as we will see for instance in section 2.6 for an anti-de Sitter universe.
So we cannot use the concept of a mode freezing-out and becoming classical by crossing
the horizon, as is familiar in cosmology, and implicit for the TCC. We thus trade here
the notion of a classical regime for the one of the regime of validity of an effective theory,
essentially dictated by an energy cutoff. Degrees of freedom described by the effective
theory, meaning those having the relevant length or energy scale, cannot get mixed through
a physical process with gravitational quantum modes, as long as the validity of the effective

– 8 –
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theory is preserved. This is simply because the cutoff scale of an effective theory of quantum
gravity is expected to be lower than the Planck scale. This may also be viewed as an
extreme version of scale separation. Let us now provide the ATCC statement.

Anti-Trans-Planckian Censorship Conjecture

Consider an effective theory of quantum gravity of the form (1.1), admitting
a solution describing a contracting universe with V < 0. In this universe, let
us focus on a relativistic mode having as energy the typical energy scale of the
effective theory at an initial time ti, or the corresponding wavelength. Then, via
the blueshift, it cannot reach at a later time t an energy higher than the Planck
scale, without violating the validity of the effective theory.

Introducing this notion of validity of the effective theory led us to the above ATCC
statement, but also to a refined version of the TCC, as presented in (1.4) and further
commented there. Another, more technical difference with the original TCC is the trade
of H for

√
|V |/Mp. As will be made clear in the solution examples of section 2.6 and

appendix A, the Hubble parameter H or the notion of horizon are not meaningful in
defining a “typical length scale of the universe” for V < 0. Rather, the radius l in the
anti-de Sitter solution, directly related to the cosmological constant Λd = V/M2

p , seems
more relevant. Therefore, for a general contracting universe with V < 0, one could propose
to take as a typical length scale Mp/

√
|V |. As argued above, we prefer to phrase the

statement in terms of energy, given that the potential should provide the typical energy
scale in the validity range of the effective theory. The energy scale

√
|V |/Mp could of

course be multiplied by an order one factor, but such a factor will not alter the conclusion
on the potential characterisation in section 2.5, so we neglect it here. Then, the ATCC
statement gets translated as follows for a contraction between an initial time ti and a
time t: in natural units, the energy 1/(a(t)λ0) should be smaller than Mp, for an initial
energy 1/(a(ti)λ0) ∼

√
|Vi|/Mp, with Vi standing for V (ϕ(ti)). In other words, the ATCC

condition is

ATCC: a(t)
a(ti)

≥
√
|Vi|
M2
p

⇔
∫ t

ti

dt′H(t′) = ln a(t)
a(ti)

≥ ln
√
|Vi|
M2
p

(2.11)

The claim is that (2.11) should hold in the regime of validity of the effective theory.
Consistently with this, we get

√
|Vi| < M2

p , as it should. Finally, note that when Mp →∞,
the condition becomes trivial as expected from swampland criteria.

It is straightforward to see that (2.11) provides a constant lower bound to the scale
factor. In particular, as the universe is contracting, the inequality prevents a(t) to reach
zero, i.e. a big crunch. The condition makes a(t) stop before, at a Planckian scale, where
the effective theory is not valid anymore. We will illustrate this for instance in the anti-de
Sitter solution in section 2.6.

Let us finally mention that in the TCC analysis, a contracting universe was consid-
ered [10, Foot. 2], by performing a time reversal on the TCC condition: this led to the
condition a(t)

ai
≥ |Hi| in Planckian units. This condition is the same as (2.11) up to trading

– 9 –
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the scale of H for that of V . The ATCC however focuses on negative scalar potentials,
which imply having a decelerating universe. In that situation, we argued already that
H (even Hi) is not a relevant parameter to capture a typical length or energy scale of
the universe. We then prefer our condition (2.11) to that obtained from the TCC for a
contracting universe. We now turn to a first consequence of condition (2.11).

2.3 Bound on the lifetime

Analogously to the TCC, one can derive a bound on the lifetime for a decelerating, contract-
ing universe. Physically, it is conceivable to get such a bound because of the final crunch:
having deceleration and contraction forces the crunch to happen in a finite time. Indeed,
the function a(t) is concave and positive. Starting at a finite value ai = a(ti), one reaches
a(t) = 0 (or any other finite value a < ai) in a finite time. It is however difficult to derive a
lifetime bound from this reasoning. The ATCC condition will allow us to get a bound, as
we now show.

We consider here as only content the scalar field and its potential, so ρ+ p = ϕ̇2 ≥ 0.
With k = −1, we deduce from the second Friedmann equation that Ḣ < 0 (related to
deceleration), therefore Hi > Hf between an initial time ti and a final one tf . We deduce∫ tf
ti dt′H(t′) < Hi (tf − ti). Using finally the ATCC condition (2.11), we conclude

tf − ti <
1
|Hi|

ln
M2
p√
|Vi|

(2.12)

where we recall that H < 0 (encoding the contraction). This gives us an upper bound on
the lifetime of contracting and decelerating phase. More precisely, beyond this time (2.12),
we reach a Planckian regime so we cannot trust our effective theory anymore. The same
interpretation could be given to the TCC lifetime bound [10], in view the refined TCC (1.4).

It is however unclear how to evaluate this bound in general, given its dependence on H .
As can be seen in solution examples of section 2.6 and appendix A, H(t) is not bounded.
In these solutions, we see that |Hi| is typically close to zero, and M2

p /
√
|Vi| is supposed to

be large, so we get a very high upper bound. If however we push the initial time closer
to the crunch, |Hi| would then become very large, leaving a much smaller lifetime. These
observations are qualitatively consistent.

2.4 A second assumption

While a first assumption (in the mathematical sense), the ATCC condition (2.11), was
motivated by physics, a second one will be necessary to reach an interesting characterisation
of negative scalar potentials. This second assumption is the following

− k

a2
(d− 1)(d− 2)

2 + V ≥ 0 (2.13)

where we set Mp = 1, as well as in the following. Let us first note that for the TCC, where
k = 0 and V > 0, (2.13) is automatically satisfied; this explains why the assumption is
not considered explicitly in the characterisation of positive potentials. Here however with
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V < 0, this assumption imposes us to pick k = −1, a choice already discussed in section 2.1
and necessary to the anti-de Sitter solution, as well as other contracting and decelerating
solutions. This choice leads to various complications w.r.t. the TCC, and to start with, the
non-triviality of this second assumption (2.13).

Restoring an Mp dependence would give V/M2
p , thus making this second assumption

trivial in the limit Mp →∞ with k = −1 or 0. We further check (2.13) on the anti-de Sitter
solution of section 2.6 and the two dynamical solutions of appendix A: this condition is
always easily verified. It could be automatically satisfied, given appropriate initial conditions,
and it would then boil down to a constraint on initial conditions. To be safe, we treat for
now (2.13) as an independent assumption, but there could be some rationale behind it.

2.5 A bound on V < 0 and on V ′/V

We now have all ingredients to proceed to a characterisation of negative scalar potentials
V < 0 in effective theories of quantum gravity. Combining the ATCC condition (2.11)
together with the second assumption (2.13), we will proceed analogously to [10] to derive
this characterisation. As for the TCC, we will consider a potential slope of definite sign:
while TCC was considering rolling down a positive potential, we focus here on a field
climbing up a negative potential. Picking one direction, we then take for simplicity ϕ̇ ≥ 0
and V ′ ≥ 0; we could equivalently move along the opposite direction with ϕ̇ ≤ 0 and V ′ ≤ 0.
All we eventually need is V (ϕ) ≥ Vi.

To start with, the second assumption (2.13) can be rewritten thanks to the first
Friedmann equation as

H2 ≥ ϕ̇2

(d− 1)(d− 2) ⇔ H dt ≤ − dϕ√
(d− 1)(d− 2)

, (2.14)

where we recall that we consider a contracting universe, i.e. H ≤ 0, and that ϕ̇ ≥ 0. We
then integrate the above from an initial time ti to any later time t∫ t

ti

H dt′ ≤ − ϕ− ϕi√
(d− 1)(d− 2)

, (2.15)

and recall that ϕ− ϕi ≥ 0; in the following, we write |ϕ− ϕi| to be more general with the
field direction. Using finally the ATCC condition (2.11), we get

ln
√
|Vi| ≤ −

|ϕ− ϕi|√
(d− 1)(d− 2)

. (2.16)

Since we consider V ′ ≥ 0, i.e. V (ϕ) ≥ Vi, and V < 0, we conclude

V (ϕ) ≥ − e
− 2 |ϕ−ϕi|√

(d−1)(d−2) (2.17)

The potential is bounded from below by a growing exponential. The amplitude here is 1 in
Planckian units, and could be adjusted by some order one factor mentioned in section 2.2,
but this does not change the exponential and its rate. We illustrate (2.17) as well as its
TCC counterpart in figure 2.
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Let us make a few comments on this exponential lower bound (2.17). First, (2.17)
is certainly verified initially: for ϕ = ϕi, this becomes Vi ≥ −1, which was implicitly
considered above to distinguish the initial typical energy scale from the Planck scale (see
around (2.11)). The bound (2.17) is then valid at any further time t and corresponding field
value ϕ, as long as the two conditions (2.11) and (2.13) are verified (in particular as long as
we are in the regime of validity of the effective theory); this is remarkable, in contrast to
the asymptotic claim to be made below. Note that the same holds for the TCC analogous
exponential bound depicted in figure 2.

Proceeding as for the TCC, we deduce a condition on the slope of the potential at large
field values. This requires to consider ∆ϕ = |ϕ− ϕi| 6= 0; as a consequence, the following
cannot apply to an anti-de Sitter solution; we come back to this important point below. We
consider the following average with V < 0〈

−V
′

V

〉
= 1

∆ϕ

∫ ϕ

ϕi

V ′

−V
dϕ̃ = ln|Vi|

∆ϕ −
ln|V |
∆ϕ ≥ ln|Vi|

∆ϕ + 2√
(d− 1)(d− 2)

, (2.18)

where the last inequality comes from (2.17). We conclude with the large field limit〈
−V

′

V

〉
ϕ→±∞

≥ 2√
(d− 1)(d− 2)

(2.19)

where the sign in ϕ→ ±∞ is the same as that of V ′ and corresponds to the direction in
which the field climbs up the potential.3 Taking for instance V ′ ≥ 0 and ϕ→∞, we can
apply this bound to an exponential potential with rate c > 0, meaning V (ϕ) ∼ V0 e

−c ϕ

with V0 < 0, as occurs typically in large field limits in string compactifications. Then the
bound (2.19), as well as (2.17), become

V (ϕ) = V0 e
−c ϕ : c ≥ 2√

(d− 1)(d− 2)
. (2.20)

This ATCC bound on the rate c is actually the same as the TCC bound obtained in the
original paper [10], and further tested for instance in supergravity potentials in [34, 39].

As mentioned above, the bound (2.19) does not apply to an anti-de Sitter solution,
which verifies ϕ̇ = 0, while one requires ∆ϕ 6= 0 to get the bound. This has the important
conceptual consequence that the bound (2.19) on the slope does not forbid anti-de Sitter
extrema of the potential. The same is actually true for the TCC and de Sitter: the bound
on the slope does not forbid de Sitter extrema at large field values, it simply does not apply
to them. This should be put in contrast with the swampland de Sitter conjectures. On the
other hand, the exponential bound (2.17), also present for the TCC, indicates that there is
“less room” at large field values for (anti-) de Sitter extrema.

2.6 Example: the anti-de Sitter solution

We finally provide a first example of solution in a contracting and decelerating phase, with
V < 0, and test it upon the various conditions discussed previously. The solution is the

3Note that in any case, climbing up the potential means V ′dϕ̃ ≥ 0, making the average positive, in
agreement with the positive bound (2.19).
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ATCC

TCC

φ

V(φ)

Figure 2. Illustration of the TCC and ATCC exponential bounds (in dashed red) on scalar potentials
(in blue), as in (2.17) for the ATCC. We display here exponential potentials V (ϕ) = ±e−c ϕ in
Planckian units, bounded by the (A)TCC exponentials for ϕ ≥ ϕi = 0.

well-known anti-de Sitter solution, phrased in the formalism introduced in section 2.1 (in
particular with a FLRW metric). Two more dynamical solutions are provided and studied
in appendix A.

An anti-de Sitter spacetime is best known as a maximally symmetric d-dimensional
spacetime with cosmological constant Λd < 0. Following [40], this spacetime can be viewed
as a d-dimensional hyperboloid of radius l (related to Λd as in (2.23)). The corresponding
metric is obtained by embedding it in a (d+ 1)-dimensional flat spacetime. This way, one
obtains the following anti-de Sitter metric

ds2
d = l2

(
−dψ2 + sin2(ψ)

(
dχ2 + sinh2(χ) dΩ2

))
. (2.21)

This formulation corresponds to a FLRW metric (2.2) with

k = −1 , a(t) = l sin
(
t

l

)
, (2.22)

given that
∫ dr√

1+r2 = arcsinh(r).
This can be reproduced by solving the equations (2.3)–(2.5) of section 2.1. In that

formalism, we consider the anti-de Sitter solution as an extremum of the potential with
Λd = V < 0 in Planckian units, and without kinetic energy, ϕ̇ = 0. As mentioned in
section 2.1, the latter requires to have k = −1. While (2.5) is satisfied, the two Friedmann
equations can be rewritten as

ȧ2 + 1
l2
a2 = 1 , ä+ 1

l2
a = 0 , with 1

l
≡
√

−2Λd
(d− 1)(d− 2) , (2.23)

in terms of the anti-de Sitter radius l, and the solution is (2.22), when imposing the standard
initial condition a(0) = 0.
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a(t)

(a) a(t)

0.5 1.0 1.5 2.0 2.5 3.0
t

-6

-4

-2

2

4

6

H(t)

(b) H(t)

Figure 3. a(t) and H(t) for the anti-de Sitter solution, with l = 1.

Let us now depict a(t) and H(t) in figure 3 and comment on them. As expected, the
anti-de Sitter solution corresponds to a decelerating universe, with an expanding and a
contracting phase. The latter starts at t = π

2 l, and the big crunch occurs at tf = π l. The
Hubble parameter is given by

H(t) = 1
l

cot
(
t

l

)
. (2.24)

It is not constant, contrary to a de Sitter solution. In addition, neither H(t) nor 1/H(t) is
bounded. It is thus very different from the cosmological constant.

Related to this, an anti-de Sitter universe does not admit any horizon: its particle and
event horizons are given by

dp = a(t)
∫ t

ti=0

dt′
a(t′) = l sin

(
t

l

)
× ln tan

(
t′

2 l

)∣∣∣∣t
ti=0
→∞ , (2.25)

de = a(t)
∫ tf =π l

t

dt′
a(t′) = l sin

(
t

l

)
× ln tan

(
t′

2 l

)∣∣∣∣tf =π l

t
→∞ . (2.26)

This is again different from a de Sitter universe, admitting an event horizon. We conclude
that neither H(t) nor the notion of horizon provides any sensible characteristic length for
anti-de Sitter, contrary to de Sitter. This was the motivation for using, in the ATCC as well
as the refined TCC (1.4), the scalar potential (here related to Λd or l) to define a typical
length or energy scale.

Let us now test this solution against the various conditions and quantities discussed for
the ATCC.

• ATCC condition (2.11). Applied to the anti-de Sitter solution, this inequality becomes

sin
(
t

l

)
≥ lp

l
×

√
(d− 1)(d− 2)

2 sin
(
ti
l

)
, (2.27)

where lp
l is a priori a small number. Let us take an initial time close to the maximal size

of anti-de Sitter, to be sure to be in a valid initial regime, i.e. sin
(
ti
l

)
. 1: we take for

simplicity
√

(d−1)(d−2)
2 sin

(
ti
l

)
= 1. We also introduce a time t̃ that measures the difference
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to the final time tf = πl, namely t̃ = tf − t. Close to the big crunch, when t̃ → 0, one
obtains

sin
(
π − t̃

l

)
= sin

(
t̃

l

)
∼ t̃

l
≥ lp

l
. (2.28)

The ATCC condition then indicates that a Planckian time away from the big crunch, we
run out of validity of the theory, which is consistent.

• Bound on the lifetime (2.12). For anti-de Sitter in the contracting phase (ti > π
2 l),

we get the following lifetime bound

tf − ti < l

∣∣∣∣tan( til
)∣∣∣∣ ln

(
l

lp
×
√

2
(d− 1)(d− 2)

)
, (2.29)

where the relation between Λd and the radius l is given in (2.23). As discussed below (2.12), it
is difficult to evaluate in general this bound, depending on the initial time. We also note that
it should be contrasted with the complete contraction time, π2 l, of the anti-de Sitter solution.

• Second assumption (2.13). Remarkably, the second assumption (2.13) is perfectly
verified for the anti-de Sitter solution (with a > 0): indeed, this inequality becomes

1
a2 −

1
l2
≥ 0 ⇔ sin2

(
t

l

)
≤ 1 , (2.30)

which certainly holds.

• Potential bound (2.17). Since both the ATCC condition and the second assumption
are satisfied, it is without surprise that we get the bound on the potential (2.17) verified. It
remains interesting to see how. Since in the anti-de Sitter solution ϕ̇ = 0, one has ϕ = ϕi.
Therefore, the bound becomes

Λd = V ≥ −1 , (2.31)

in Planckian units. This is certainly true, given our initial assumption that the typical scale
|Λd| of a solution described by the effective theory should be smaller than Mp. We finally
recall from section 2.2 that the bound on the slope (2.19) does not apply to the anti-de
Sitter solution.

Given that anti-de Sitter vacua are among the best established solutions of string theory,
it is rather satisfying to verify that this solution agrees with the ATCC and its consequences.

3 A bound on V ′′/V and consequences

3.1 Bounding V ′′/V with the (A)TCC

In this section, we derive an asymptotic bound involving the second derivative of the scalar
potential, V ′′, for V 6= 0. It is valid for both the TCC (V > 0, V ′ ≤ 0, rolling-down) and
the ATCC (V < 0, V ′ ≥ 0, climbing-up), where the specified field direction is chosen for
simplicity. Let us emphasize that no bound on V ′′ had been found locally (i.e. pointlike in
field space) in [10]. We achieve this here thanks to an extra minor assumption detailed below;
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this assumption holds in particular for potentials which are asymptotically exponential, a
common situation in string compactifications.

For simplicity of the derivation, we consider ϕ− ϕi ≥ 0, and the large field limit to be
ϕ→∞. We start with the following equalities for V 6= 0∫ ϕ

ϕi

V ′′

V
dϕ̃ =

∫ ϕ

ϕi

V ′′V − V ′V ′

V 2 dϕ̃+
∫ ϕ

ϕi

(
V ′

V

)2
dϕ̃ =

∫ ϕ

ϕi

(
V ′

V

)′
dϕ̃+

∫ ϕ

ϕi

∣∣∣∣V ′V
∣∣∣∣2 dϕ̃ . (3.1)

Using the Cauchy-Schwarz inequality for definite Riemann integrals(∫
f(ϕ̃)g(ϕ̃)dϕ̃

)2
≤
∫
f(ϕ̃)2dϕ̃

∫
g(ϕ̃)2dϕ̃ , (3.2)

with f(ϕ̃) =
∣∣∣V ′V ∣∣∣ , g(ϕ̃) = 1, yields

∫ ϕ

ϕi

V ′′

V
dϕ̃ ≥

∫ ϕ

ϕi

(
V ′

V

)′
dϕ̃+ 1

∆ϕ

(∫ ϕ

ϕi

|V ′|
|V |

dϕ̃
)2

= V ′

V

∣∣∣∣ϕ
ϕi

+ ∆ϕ
〈 |V ′|
|V |

〉2
, (3.3)

with the average introduced in section 2.5. We deduce the following inequality〈
V ′′

V

〉
≥ 1

∆ϕ
V ′

V

∣∣∣∣ϕ
ϕi

+
〈 |V ′|
|V |

〉2
. (3.4)

This is where we introduce the extra assumption on the potential: we simply require that
|V ′/V | at ϕ is bounded from above in the large field limit ϕ → ∞. This holds in the
prototypical example of an (asymptotic) exponential potential. This assumption could even
be relaxed, the only requirement being that the first term in the right-hand side of (3.4)
vanishes in this limit.

Provided this minor assumption holds, we are left to use the TCC or ATCC bound on〈
|V ′|
|V |

〉
when ϕ→∞. In either case, the absolute value is only needed in the numerator or

denominator and amounts to a sign. The resulting bounds are the same and given by (2.19).
We conclude, for a single canonically normalized field,〈

V ′′

V

〉
ϕ→∞

≥ 4
(d− 1)(d− 2) (3.5)

This new bound is actually no surprise: once the potential is bounded by an exponential,
as in the TCC and ATCC (2.17), one deduces a bound on its (averaged) first derivative
but also second derivative. We naturally get in (3.5) the square of the exponential rate
of (2.19).

The consequences of this new bound are interesting. Let us investigate them while
dropping the average, as for instance in the case of an exponential potential. We take V ′′
to be a mass square, V ′′ = m2, which holds for a single canonical field as here. The new
bound (3.5) is valid in the asymptotics, and to derive it, we have used the (A)TCC bound
on V ′/V , so strictly speaking, (3.5) is not meant to be applied at an (anti)-de Sitter critical
point. By continuity in field space, one may still wonder about its consequences at such an
extremum, as we will discuss.
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Consequences for V > 0. For V > 0, we get a positive lower bound on m2

V > 0 : m2 ≥ 4
(d− 1)(d− 2) V . (3.6)

This should be contrasted with the tachyon commonly observed in de Sitter solutions [41, 42]
and conjectured within the swampland program [5–7]. As mentioned, the bound (3.6) does
not apply a priori to critical points of the potential, so this observation does not appear
inconsistent. But this bound may also be interpreted as the prediction of a state with a
positive m2. Looking at the complete mass spectrum obtained by consistent truncation
for a database of de Sitter solutions in [43], we see that most of the states actually obey
this bound. So predicting the existence of a state with positive m2, at an extremum or not,
seems reasonably true.

Let us now view m as the typical mass scale of a tower of states, in the asymptotics of a
positive potential. In that case, the bound indicates the possibility of scale separation. This
is reminiscent of the statement that classical de Sitter string backgrounds, if they exist (and
then correspond to some large field limit, as here), are very likely to be scale separated [41,
(5.12)]. Note that such a scale separation is then probably local, i.e. numerical [44, 45], and
not parametrically controlled [46]

Consequences for V < 0. For V < 0, we get a negative upper bound on m2

V < 0 : m2 ≤ 4
(d− 1)(d− 2) V . (3.7)

The new bound is then (as for V > 0) different than those of the swampland literature [28, 29]
reported around (1.3) (see also [30]), which typically have to do with m2 > 0, the question
of scale separation or light modes. Here, one may again interpret the new bound (3.7) as
the prediction of a state with negative m2. Let us now test this idea in more details.

3.2 A mass bound for anti-de Sitter and holographic interpretation

Using a possible continuity in field space towards a potential extremum, let us rewrite (3.7)
at a d-dimensional anti-de Sitter critical point for d ≥ 4.4 To that end, we trade the
potential for the cosmological constant, and further for the anti-de Sitter radius l (2.23).
The bound (3.7) becomes the mass bound

AdSd : m2 l2 . −2 (3.8)

While a strict rewriting of (3.7) would lead to (3.8) with a symbol ≤, we prefer to use here
an approximate ., as we now explain. The reason is that the bound (3.7) is meant to be
applied away from critical points, in the asymptotics. We therefore draw the bound (3.8) at
an anti-de Sitter extremum invoking a possible continuity of the spectrum from the point

4Given that d = 3 provides several examples of violations of the ATCC, as we will show in section 5, as
well as a violation of the TCC [34], we do not consider the mass bound (3.8) for d = 3. The peculiarity
of gravity in d = 3 may justify this exception. Indeed, gravitational fluctuations, invoked to derive the
(A)TCC, are absent in d = 3.
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in field space where (3.7) applies towards a potential extremum. Moving this way in field
space, the spectrum may get a little deformed. Such a deformation is the reason why we
allow ourselves for a little flexibility with the symbol .. We will also discuss whether bigger
modifications of the spectrum can occur while moving in field space, when considering
possible counter-examples to this bound.

The interpretation of the bound (3.8) is the following

In a d-dimensional anti-de Sitter solution with radius l and d ≥ 4, there is a
scalar field whose mass m obeys (3.8).

Let us recall that the BF bound is given by m2 l2 ≥ −(d − 1)2/4. Our new bound (3.8)
is then greater than the BF bound for d ≥ 4. This implies that for d ≥ 4, perturbatively
unstable anti-de Sitter solutions automatically satisfy our bound (3.8). In the following,
we then test (3.8) for perturbatively stable anti-de Sitter solutions in d ≥ 4, by looking at
their mass spectrum in various examples; we summarize them in table 1 and 2, and detail
them below. Many other examples could certainly be considered, and we do not aim for
completeness here. However, our set of examples already displays interesting features that
we now summarize.

After testing the bound (3.8) on examples of perturbatively stable anti-de Sitter
solutions in d ≥ 4 (with quantum gravity uplifts), the result is twofold. First, we get that
most supersymmetric solutions verify our bound, the only exceptions being KKLT, LVS,
and DGKT detailed below. Second, most non-supersymmetric solutions also verify the
bound (3.8) in the flexible sense, meaning that the lowest m2 l2 is slightly above −2; we
find two exceptions that admit no negative m2. Interestingly, many non-supersymmetric
solutions, including the two exceptions, are non-perturbatively unstable as conjectured
in [38]. Depending on the interpretation of that conjecture, this may put them in the
swampland. In case the (non)-supersymmetric counter-examples to our bound rather fall
in the landscape, another interpretation is that the mass spectrum has been drastically
modified when moving in field space from the point where (3.5) or (3.7) applies to the
anti-de Sitter critical point. It would be interesting to study such an evolution of the
spectrum in field space. Given our tests on solutions, it seems as well that the spectrum is
better preserved in supersymmetric cases, and more deformed in non-supersymmetric ones.
We hope to come back to these questions in future work.

We summarize our set of examples in table 1 and 2, and detail them in the following.

Examples of anti-de Sitter solutions and their spectrum, compared to (3.8)

• We start with the AdS4× S7 solution in M-theory. Its Kaluza-Klein spectrum can
be found in [47, table 4] (see also [63] or [64, table 1]).5 The lowest scalar squared
mass is obtained at level n = 1, and is given by m2 l2 = −9/4 (the BF bound). The
level n = 0 gives m2 l2 = −2, and corresponds to a gauged supergravity mode [48].

5The spectrum in [47, table 4] should be understood as follows, using the relation (3.9): one has
∆ = E0 (there) and also m2 l2 = −2 + (Mass)2

(there)/4, where “there” refers to the notations of [47]. We thank
N. Bobev and H. Samtleben for related discussions.
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AdSd N Specification Spectrum Scalar lowest
reference m2 l2

d = 4

AdS4, M-th., with:

8 SO(8) [47, table 4] −9/4
2 SU(3)×U(1)

[48]

−2.222
1 G2 −2.242
1 U(1)×U(1) −2.25
1 SO(3) −2.245

AdS4× S6, IIA, with:

1 G2 −2.24158
2 SU(3)×U(1) −20/9
3 SO(3)× SO(3) [49, appendix B] −9/4
1 SU(3) [50, appendix A] −20/9
1 U(1) −2.23969
1 ∅ −2.24943
1 U(1) −2.24908

1 DGKT, IIA [37, 51] > 0
1 DGKT-like Branch A1-S1, IIA [52, table 2] −2

1 KKLT, IIB [35, 53] ≥ 0
1 LVS, IIB [54, section 2] ≥ 0

S-fold, IIB, with:

[55]1 U(1)2 −2
2 U(1)2 −2
4 SO(4) −2

d = 5
AdS5× S5, IIB, with:

8 SO(6) [56] −4
2 SU(2)×U(1) [57, table D.4] −4

d = 7 1 AdS7× S3, IIA [58] −8

Table 1. Sample of d-dimensional supersymmetric anti-de Sitter solutions with a quantum gravity
uplift, together with their number of preserved supersymmetries N , and further specifications
including symmetry groups. In order to compare to the bound (3.8), we give the lowest mass squared
for a scalar in units of the radius l, as can be found in the reference indicated. Details are provided
in the main text.
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AdSd Specification Spectrum Scalar lowest Non-pert.
reference m2 l2 instability ref.

d = 4

M-th., SO(3)× SO(3) [59, table 2] −12/7 [60]

AdS4× S6, IIA, with:

G2 −1 [61]
SU(3) −1.58174

SO(3)×U(1) −1.71379
SO(3) [49, appendix B] −1.71663
SU(3) [50, appendix A] −1.70679

SO(3)×U(1) −1.70677
SO(3)× SO(3) −1.96422

U(1) −2.18141
∅ −2.24727

DGKT-like, IIA, with:

Branch A1-S1 [52, table 2] −2 [62]?
Branch A2-S1 0 [62]

d = 7
AdS7× S3, IIA, with:

d = 2 [58, table 1] −9 [58]

Table 2. Sample of d-dimensional non-supersymmetric perturbatively stable solutions with a
quantum gravity uplift, together with further specifications including symmetry groups. In order to
compare to the bound (3.8), we give the lowest mass squared for a scalar in units of the radius l,
as can be found in the reference indicated. We also provide a reference where a non-perturbative
instability of the solution has been pointed-out. Details are provided in the main text.

These two lowest squared masses are found within the states 0±(1), and verify our
mass bound (3.8).6

• A systematic search for AdS4 solutions from M-theory was performed in [48], using
maximal gauged supergravity. In addition to the above solution, 4 supersymmetric
solutions are indicated, one of which is new; we refer to [48] for the original references.
All these solutions satisfy our bound (3.8).

• Many non-supersymmetric solutions are also found in [48]. All of them are perturba-
tively unstable (see also [60] and references therein) except one AdS4 solution [66, 67]

6In [65, table 7], one can find AdS4× S7 supersymmetric solutions with a spectrum verifying m2 ≥ 0.
This is because of a specific truncation considered in that work, that differs from the one leading to SO(8)
4d supergravity. The previously mentioned Kaluza-Klein spectrum remains valid, thus providing once again
a mode verifying our bound.
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with G = SO(3)× SO(3). The scalar spectrum of that solution can be found in [59,
table 2]: the lowest mass is m2 = −12/7 ≈ −1.714, which appears compatible with
the flexible bound (3.8). That solution was also found to have a non-perturbative
brane-jet instability [60].

• Perturbatively stable AdS4× S6 solutions of massive type IIA supergravity offer an
interesting set of examples, summarized in [49, table 4.1] (see also the older [50,
table 2]). These solutions can be found as critical points of 4d N = 8 dyonic ISO(7)
supergravity, as first shown in [68]. They differ from one another by the number of
preserved supersymmetry and a residual symmetry group G. Let us first focus on
supersymmetric solutions: there are 7 of them. One can verify in [49, appendix B]
that all of them admit a scalar satisfying m2 l2 ≤ −2.

• Let us now consider the perturbatively stable non-supersymmetric AdS4× S6 solutions:
there are 9 of them [49, table 4.1]. Their spectrum is given in [49, appendix C] and we
can read from there that their lowest mass is close to −2, if not lower. The furthest
away from −2 is the solution with G = G2 that has m2 = −1, and then G = SU(3)
with m2 = −1.582. One may wonder whether Kaluza-Klein modes at higher levels
could have lower masses as e.g. in [69]. The study of the Kaluza-Klein spectrum for
these solutions shows however that it is not the case [70] (see figure 1 there for all but
G = G2). It also confirms the perturbative stability of these solutions. We may then
consider that m2 = −1 or −1.582 are in agreement with the flexible bound (3.8).
One may also express doubts on these solutions because they are not supersymmetric,
following the conjecture of [38]. While these solutions are perturbatively stable and do
not have brane-jet instabilities [50], the solution with G = G2 admits another kind of
non-perturbative instability, in the form of a bubble of nothing [61], in line with [38].

• Three well-known supersymmetric AdS4 solutions seem to provide counter-examples
to our bound: the one from KKLT [35], from LVS [36], and the original DGKT
solution [37]. Indeed, the three solutions have light scalars whose masses squared
verify m2 ≥ 0. We start with KKLT, a construction which requires non-perturvative
contributions. The Calabi-Yau complex structure moduli and the dilaton are stabilized
there by the tree-level potential. Thanks to its no-scale structure and supersymmetry,
one verifies that their masses satisfy m2 ≥ 0 [35]. The spectrum of the Kähler moduli
can be found e.g. in [53, section 4.3.3], where one verifies that the corresponding
conformal weights are such that ∆ > 3, i.e. m2 > 0 with (3.9). We then turn to
LVS, which requires perturbative corrections. Its light spectrum can be found in [54,
section 2], from which we read again m2 ≥ 0, the axion being massless. Finally,
we turn to the DGKT solution: as can be read in [37, section 3.4], the metric and
dilaton fluctuations have positive definite mass squared. Regarding the other, axionic
fields, the spectrum depends on flux signs, related to supersymmetry. Picking the
supersymmetric choice (corresponding to case 4 in [51, appendix C.2.1]), we get again
m2 > 0 for those fields. Last but not least, the blow-up modes coming from the
resolution of the orbifold singularity are there Kähler moduli, and those are also
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stabilized with m2 > 0. Let us also mention that a dual version of this original DGKT
solution and its spectrum has been discussed recently in [71]: this type IIB solution is
obtained from a Landau-Ginzburg model without Kähler moduli, the mirror situation
of the original DGKT solution which has no complex structure moduli. The spectrum
obtained is the same.
These three solutions and their quantum gravity origin are highly debated in the
literature. One question is the control on the (non)-perturbative contributions just
mentioned, as well as the smearing of the sources. We refrain from entering this
debate here. In case these solutions are in the landscape, a possible explanation for a
violation of our bound (3.8) is a drastic modification of the spectrum when moving in
field space; we refer to the above summary for a discussion of this idea.

• Let us also mention DGKT-like solutions in d = 4 classified in [52], generalizing the
original ones [37, 72]. The spectrum of the various solution branches is discussed
there: the modes with lowest mass can be found in [52, table 2]. We see that for two
of the three branches, one gets precisely a state with m2 l2 = −2, obeying (3.8). The
last branch (A2-S1) however admits no state with negative m2. Those solutions could
then provide again a counter-example to our mass bound (3.8). Note however that
they are non-supersymmetric, and suffer from a non-perturbative instability [62].

• Finally, some AdS4 solutions were shown to uplift to type IIB string theory as S-folds:
see [55, 73–75] and references therein. In [55], one can find 3 supersymmetric solutions
and their spectra. The lowest scalar mass verifies m2 l2 = −2, thus satisfying our
bound. There is also one perturbatively unstable non-supersymmetric solution.

• We turn to d = 5 and start with the mass spectrum of AdS5× S5 [56] (see also [76]).
The lowest masses of the scalars are m2 l2 = −4,−3, at and above the BF bound.
Our mass bound (3.8) is then satisfied.

• A systematic search for AdS5 solutions of N = 8 SO(6) gauged supergravity (con-
sistent truncation of type IIB string theory on S5) was conducted in [57]. All
non-supersymmetric solutions that were found are perturbatively unstable. The only
two stable, supersymmetric solutions are the previous one (SO(6), N = 8), and the
one of [77] (SU(2)×U(1), N = 2) whose spectrum was first given in [78] (see also [57,
table D.4]). Its lowest mass squared is m2 l2 = −4.

• Last but not least, AdS7 solutions of type IIA string theory and their stability are
discussed in [58]. The supersymmetric solutions have been classified, and they are
considered in [58] together with non-supersymmetric counterparts. The BF bound
in d = 7 is given by m2

BF l
2 = −9. Supersymmetric solutions have a dilaton of mass

m2 l2 = −8, so they always satisfy our bound. For non-supersymmetric solutions, the
dilaton mass is m2 l2 = 12. In addition to the dilaton, the spectrum for some sets of
scalars was studied for these solutions. Those sets are related to representations of an
SU(2) R-symmetry (see [58, table 1]), as well as to a number of D8-branes present in
the solution. Within those sets of scalars, the non-supersymmetric solutions are either
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Δ -
0 Δ +

0

m2 l2 = -2

BF bound

Δ

m² l² = Δ (Δ - (d - 1))

Figure 4. m2 l2 as a function of the conformal dimension ∆, with the mass bound m2 l2 ≤ −2 (3.8)
and the corresponding dimensions ∆0

±. The masses allowed by this upper bound and above the BF
bound, can be found in the red region at the bottom of the curve. The graph is displayed here for
d = 5, but it is qualitatively similar for any d ≥ 4.

found perturbatively unstable, or they admit scalars with m2 l2 = −9 (representation
d = 2, shown in table 2), or m2 l2 ≥ 0 (representation d = 3). We cannot conclude
from the latter on a violation of our bound, because many other scalars and their
spectrum are not studied. We also note that these seemingly perturbatively stable
non-supersymmetric solutions are shown to exhibit a non-perturbative instability,
related to NS5-brane bubbles. Finally, let us also mention an analogous situation for
AdS6 solutions [79].

Holographic consequences of (3.8). Let us now investigate the consequences of the
mass bound (3.8) for holography with d ≥ 4. Given the standard relation to the conformal
dimension ∆ of an operator in a dual CFT

∆(∆− (d− 1)) = m2l2 , ∆± = d− 1
2 ± 1

2

√
(d− 1)2 + 4m2l2 , (3.9)

the mass bound (3.8) gets translated into

∆0
− ≤ ∆ ≤ ∆0

+ , ∆0
± = d− 1

2 ± 1
2

√
(d− 1)2 − 8 , (3.10)

as illustrated in figure 4. Predicting the existence of a state with such a mass correspond to
having a systematic relevant operator whose dimension obeys (3.10).

One may also compare (3.10) to the unitary bound for CFT scalar fields: ∆ ≥ (d−3)/2.
For d > 4, we get ∆0

− ≤ (d− 3)/2 ≤ ∆0
+. For d = 4 however, we get ∆0

− ≥ (d− 3)/2 so the
mass bound guarantees there the scalar unitarity bound.

Last but not least, for d = 4, the bound becomes 1 ≤ ∆ ≤ 2. This is the only dimension
for which one gets integer values for ∆0

±. In other words, saturating the bound m2 l2 = −2
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gives ∆ = 1 or 2. Getting these integers in this way is remarkable enough to be mentioned.
Indeed, these integers were argued to play an important role in scale separated anti-de
Sitter solutions and their holographic dual CFT [51, 80–83], where m2 l2 = −2 was shown
to correspond to saxions [51, 52]. The peculiarity of having a CFT with integer conformal
dimensions was there associated to the peculiarity of having scale separation. The mass
bound (3.8) may then also play a role in these arguments.

4 Multifield extension

The ATCC and its consequences, in particular the characterisation of the scalar potential V ,
have so far been studied for a single canonical scalar field. Typical string compactifications
however lead to multifield effective theories (1.1). This situation requires a multifield
extension of section 2 and 3. We briefly discuss in this section several multifield extensions,
leaving a more thorough study to future work.

A first natural extension is to trade the single canonical field for a one-dimensional
path in field space with canonical parameter ŝ; we will also refer to it in section 5 as a
canonical field direction t̂. As for the TCC in [10, section 3.2], the reasoning pursued here
in section 2.5 to characterise the scalar potential can be adapted, using the path in field
space. Then, one reaches similar bounds: schematically, one gets

V < 0 : V (ϕi(ŝ)) ≥ − e
− 2 |ŝ−ŝi|√

(d−1)(d−2) ,

〈∇ŝV
|V |

〉
ŝ→±∞

≥ 2√
(d− 1)(d− 2)

, (4.1)

considering V < 0, ∇ŝV ≥ 0, and where the gradient along the path and corresponding
average are defined as

∇ŝV = ∂ϕi

∂ŝ
∂iV ,

〈∇ŝV
V

〉
= 1

∆ŝ

∫ ŝ

ŝi

∇sV
V

ds . (4.2)

Note that the distance along the path |ŝ− ŝi| = ∆ŝ could be replaced, in the lower bound
on V , by a shorter distance: the geodesic distance between the two points considered. This
brief derivation shows that considering the gradient of the potential along one field direction,
∇ŝV , the ATCC bound on the first derivative of the potential (2.19) and the corresponding
rate are unchanged, as given in (4.1).

A different gradient has however been considered in the literature: ∇V =
√
gij∂iV ∂jV .

It captures derivatives of the potential along all fields at any point in field space. One
necessarily has ∇V ≥ |∇ŝV |, as can be seen with a canonical field basis. This gradient
played a crucial role in the Strong de Sitter Conjecture [11, 84], stating that the following
holds in asymptotics of field space

V > 0 : ∇V
V

∣∣∣∣
∞
≥ 2√

d− 2
. (4.3)

The main point is that the rate appearing in (4.3) is greater than the TCC one, but both
can be compatible since ∇V ≥ |∇ŝV |. Let us recall that the precise value of the bound rate
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has been obtained by requiring it to be preserved under dimensional reduction. Here with
V < 0, a second possible multifield extension for the ATCC is then

V < 0 : ∇V
|V |

∣∣∣∣
∞
≥ 2√

d− 2
, (4.4)

also possibly compatible with the first one (4.1).
The first extension above, involving a single field direction, raises several questions

that we now discuss. We will face these questions again in section 5 when considering
explicit potentials from string compactifications. To start with, we see that different paths
or field directions can a priori be chosen. In order to test the ATCC, the ideal situation
is to have a field direction along which the potential is a negative, growing exponential,
but it is not always the case. Put differently, finding a specific field direction with such an
asymptotic behaviour that allows comparing the exponential rate to the ATCC bound (4.1),
is actually non-trivial. The freedom in field directions and asymptotic behaviours complicates
the analysis.

A second question is whether it is meaningful to focus on a single field direction and its
asymptotics in a (multi)field space. In section 5, we will do so and simply “freeze” the other
fields, by setting them to a finite value. But one could ask for a mechanism realising this,
such as having them stabilized. Note that stabilizing the other fields, or at least placing
them at a potential extremum, brings ∇V closer, if not equal, to |∇ŝV |, therefore confusing
the two extensions (4.1) and (4.4).

An interesting example found recently in [85] provides a good illustration of these
various points for V > 0 and the TCC. Certain Calabi-Yau compactifications of string
theory to d = 4 were found there to provide a field direction, in the large complex structure
and weak string coupling limit, having an exponential rate lower than the TCC one, namely√

2/7 <
√

2/3. This illustrates that while the TCC has been tested among many field
directions, especially combinations of (sub)volumes and dilaton, [34, 39], one may still
find other field directions having a different potential asymptotic behaviour and rate. In
addition, these compactifications exhibit further fields, the Kähler moduli, appearing in the
scalar potential through the Kähler potential, and those cannot be stabilized perturbatively.
That situation illustrates the question of the appropriate gradient, or more generally for us,
whether the multifield extension (4.1) or (4.4) is preferred.

Last but not least, one may wonder about the multifield extension of the new bound (3.5)
on the second derivative of the potential. While this would deserve a more thorough analysis,
we propose for now the following natural extensions, valid in the asymptotics of field space

V > 0 : max∇∂V
V

∣∣∣∣
∞
≥ 4

(d− 1)(d− 2) , (4.5)

V < 0 : min∇∂V
|V |

∣∣∣∣
∞
≤ − 4

(d− 1)(d− 2) , (4.6)

where we use the same notations as around (1.3), ∇∂V standing for the mass matrix. The
difference between (4.6), and (1.3) from [28] for V < 0 is interesting. The condition (4.6) is
actually the same as the one of the refined de Sitter conjecture [3] for V > 0, up to the
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constant in the right-hand side that we specify here. While the condition (1.3) was meant
in [28] to extend the refined de Sitter conjecture to negative potentials, we rather obtain
that the condition does not need to be modified for negative potentials.

However, we recall that (4.5) and (4.6) are not meant to be applied at potential extrema.
They may though be extrapolated there by continuity in field space, as already discussed
and tested in section 3.2. For V < 0, this leads to the anti-de Sitter mass bound

AdSd : min m2 l2 . −2 , (4.7)

predicting the existence of at least one scalar whose mass obeys this bound. We refer to
the discussion around (3.8) for more details.

5 Scalar potentials from string theory

In this section, we consider examples of scalar potentials obtained from string theory
compactifications, and compare their behaviour to the one predicted by the ATCC, namely
that a negative potential is bounded from below by a growing exponential (2.17), and that
it obeys the asymptotic bound (2.19) (see also (4.1)).

In the asymptotics, potentials of string effective theories typically have three possible
behaviours: either the potential diverges positively (the field can then be stabilized), or
it converges to zero positively, or negatively. Indeed, having a potential diverging to −∞
would be suspicious in terms of physics, and having an asymptotic positive or negative
constant potential would also be unusual, since cosmological constants are typically rather
obtained as local extrema of the potential than actual constant potentials. Therefore,
sticking to the first three asymptotic behaviours, only the potential converging to zero
negatively is relevant to test the ATCC.

When expressed in terms of canonically normalized fields, the potentials considered
here are given as sums of exponentials. Relevant potentials are then those which are
asymptotically negative, but growing exponentially to zero. In this situation, the comparison
to the ATCC predictions for one field becomes straightforward. If for V (ϕ) < 0 at ϕ→∞
the dominant term is V0 e−c ϕ (V0 < 0, c > 0), which means that c is the minimum
rate among the different terms, then one checks (2.17) and (2.19) (or (4.1)) essentially by
verifying

ATCC bound: c ≥ 2√
(d− 1)(d− 2)

, (5.1)

as in (2.20). For this reason, we mostly focus in the following on the rates of the exponentials.
The potentials to be considered are multifield. As discussed in section 4, this complicates

the analysis on several aspects. In particular, there is no guarantee that the potentials
exhibit the desired behaviour (negative and growing exponential) along the fields on which
the potential depends. Most of the time, such a behaviour only appears along one specific
field direction, which is a combination of the appearing fields. For each of the following
potentials, we will make such specific field directions appear, in various manners.

We will also ignore the orthonormal field directions; in other words we just freeze the
other fields to some finite value. This point was discussed in section 4, where we explained
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that including other fields could increase the gradient |∇V |. Here we only test single field
direction gradients (2.19) or (4.1), with the lower bound (5.1), so we allow ourselves to
ignore the other, orthonormal fields.

We start in section 5.1 with a semi-universal potential V (ρ, τ, σ) in classical string
compactifications to d dimensions, 3 ≤ d ≤ 10, and turn in section 5.2 to potentials obtained
by compactifications to d = 3, 4 DGKT-like anti-de Sitter solutions [37, 72, 86].

5.1 Scalar potential for (ρ, τ, σ)

We first consider the scalar potential V (ρ, τ, σ), motivated in [87, 88] and derived (as well
as the kinetic terms) in arbitrary dimension d in [34, 89]. The fields ρ (the (10 − d)-
dimensional volume) and τ (the d-dimensional dilaton) are universal fields in classical string
compactifications. We consider such compactifications here, using 10d supergravity. The
field σ depends on a set of parallel Dp-branes and orientifold Op-planes: it is related to the
internal volume wrapped by these Op/Dp sources, or equivalently, to the volume of their
transverse space. We consider for now only one such set of sources. In the case of several
intersecting sets, the potential (and kinetic terms) have been derived in [41, 90, 91]; see
also one example below in (5.15). Note that we do not consider other types of sources, in
particular no Dp-brane.

The potential V (ρ, τ, σ) in arbitrary dimension d is given in [34, (4.20)]. We consider
in the following the simplified notation where we drop the volume integral, and set Mp = 1.
Trading the fields for their canonically normalized counterparts

τ = e
1√

d−2 τ̂ , ρ = e

√
4

10−d
ρ̂
, σ = e

√
−4

AB(B−A) σ̂ , (5.2)

with A = p− 9, B = p+ 1− d, we rewrite the potential as follows

2 V (ρ̂, τ̂ , σ̂) (5.3)

= e
−2√
d−2 τ̂

(
− e
−
√

4
10−d

ρ̂
R10−d(σ̂) + 1

2e
−3
√

4
10−d

ρ̂∑
n

e
(−An−B(3−n))

√
−4

AB(B−A) σ̂|H(n)|2
)

+ 1
2e

2−2d√
d−2 τ̂e

(3−d)
√

4
10−d

ρ̂∑
n

e
(−An−B(7−n))

√
−4

AB(B−A) σ̂|H(n)
7 |

2

− e−
d+2

2
√

d−2 τ̂ e
2p−8−d

4

√
4

10−d
ρ̂
e

1
2B(p−9)

√
−4

AB(B−A) σ̂ gs
T10
p+ 1

+ 1
2g

2
s e

−d√
d−2 τ̂

10−d∑
q=0

e
10−d−2q

2

√
4

10−d
ρ̂∑

n

e
(−An−B(q−n))

√
−4

AB(B−A) σ̂|F (n)
q |2 ,

and we refer to [34] for more details on notations. In the case where the (internal) 10− d
dimensions form a group manifold, then one has

R10−d(σ̂) =− e
−
√

−4B
A(B−A) σ̂ (δcdf b⊥a||c⊥f

a||
b⊥d⊥)0 + e

√
−4A

B(B−A) σ̂
(
R|| +R⊥||

)0

− 1
2e

(−2B+A)
√

−4
AB(B−A) σ̂|f ||0⊥⊥ |

2 . (5.4)
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Let us make use of this semi-universal scalar potential to test the ATCC bound (5.1), first
along (ρ̂, τ̂ , σ̂) and then along specific field directions.

5.1.1 Analysis of the exponential rates

In the potential V (ρ̂, τ̂ , σ̂) given in (5.3), all flux terms are positive. The only terms that
have a chance to be negative are the source term depending on T10, and some of the
curvature terms in (5.4). In order to test the ATCC, especially the bound (5.1), let us then
look at the exponential rates there. As for the asymptotics, we consider τ̂ , ρ̂→∞ which
correspond to the large volume and small string coupling limits; the opposite limits would
invalidate the supergravity approximation of the classical string regime. Regarding the last
field, we can however consider both σ̂ → ±∞.

In the source and curvature term, it is straightforward to verify for d ≥ 3 that the rates
for τ̂ verify the ATCC bound (5.1). Turning to ρ̂, we first consider the curvature term: we
obtain that the ATCC bound (5.1) is satisfied for d ≥ 4, and is violated for d = 3. This is
not a surprise: as discussed already in [34], a violation of the TCC has also been noticed for
d = 3 and can be interpreted as being due to the peculiarity of gravity in d = 3.7 We now
turn to the source term, which is more subtle. We focus on the case where 2p− 8− d < 0
to get the right asymptotics, and then consider the square of the rate minus the ATCC
bound squared, giving the quantity

(2p− 8− d)2

4(10− d) − 4
(d− 1)(d− 2) . (5.5)

Up to d = 3 cases (p = 2, . . . , 5) and two more exceptions, we get this difference to be
positive or zero whenever 2p − 8 − d < 0. This means that the ATCC bound (5.1) is
again satisfied.

The two exceptions are d = 7, p = 7 and d = 4, p = 5, and their analysis is interesting.
It is worth noting that it is not possible to get a non-zero T10 as considered here without
flux, in a meaningful compactification, because of the 10d Bianchi identities (or tadpole
cancellation). For d = 7, p = 7, one must have F1 6= 0, magnetically sourced by O7/D7.
In turn, an F1 in d = 7 leads to a positive and growing exponential in the potential, thus
dominating the source term in the asymptotics, so this first exception is not relevant. In the
case of d = 4, p = 5, an F3 flux is magnetically sourced, but the tadpole cancellation can
also be verified with a combination of H and F1: the Bianchi identity is dF3−H ∧F1 ∝ T10.
Having an F1 would lead to the same conclusion as for the previous exception. However,
in absence of F1, one must have a non-zero F3. Surprisingly, there is then no contribution
to the ρ̂ dependence from the F3 flux term. Still, as far as ρ̂ is concerned, this flux term
adds a constant positive contribution to the potential, so in the asymptotics the potential
stops being negative; then again, this exception is not relevant. It is remarkable that the
two possible exceptions, beyond d = 3, are removed thanks to the requirement of Bianchi

7It remains legitimate to ask whether a d = 3 compactification can indeed be found with a background
where the dominant contribution comes from the curvature term: for instance, is it possible to satisfy the
Einstein equations with internal curvature but without flux? Since we will get further violations in d = 3,
we leave this question aside.
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identities or tadpole cancellation, which from the point of view the effective theory come
as a quantum gravity input. To conclude, there is no violation of the ATCC bound for ρ̂
with d ≥ 4.

We finally turn to σ̂. Considering this field is only meaningful for AB 6= 0, which means
d ≤ p ≤ 8. We start with the source term and the limit σ̂ → ∞, given the negative sign
in the exponential. We consider the square of the rate minus the ATCC bound squared,
giving the quantity

(9− p)(p+ 1− d)
10− d − 4

(d− 1)(d− 2) . (5.6)

We verify that this is strictly positive for d ≤ p ≤ 8 and d ≥ 4, and strictly negative for
d = 3. This shows again a verification of the ATCC bound (5.1) for d ≥ 4, and a violation
at d = 3. The curvature terms are more tricky. The last term in (5.4) gives a positive
contribution to the potential, so we are rather interested in the first two terms: those have
indefinite signs. In those two terms, one has competing exponentials: one grows when the
other one diminishes. Therefore, while one might get a violation of the ATCC bound from
one of the exponential, the other one could diverge and thus dominate. Without a more
thorough analysis of the possible signs of these terms and details of the compactification, it
is difficult to conclude.

This ends our general analysis of the exponential rates appearing explicitly in
V (ρ̂, τ̂ , σ̂) (5.3), seeing no violation of the ATCC bound (5.1) for d ≥ 4 but several at
d = 3. This provides an interesting confirmation of the ATCC for d ≥ 4. We now turn to
specific field directions, encoded in no-go theorems.

5.1.2 No-go theorems for anti-de Sitter and specific field directions

Standard no-go theorems on (quasi) de Sitter solutions can be recast as follows, with a > 0

a V +
∑
i

bi ∂ϕ̂iV ≤ 0 ⇔ V + 1
c
∂t̂ 1V ≤ 0 , with c = a√∑

i b
2
i

, (5.7)

as pointed-out in [39, 41] and formally clarified in [42]. This allows to rewrite the obstruction
carried by the no-go theorem into a swampland format, and then compare the no-go theorem
to corresponding conjectures, testing for instance the TCC bound on c [10]. In addition,
this rewriting indicates a (canonically normalized) field direction t̂ 1 through

∑
i

bi ∂ϕ̂i =
√∑

i

b2i ∂t̂ 1 . (5.8)

The reformulation (5.7) then shows that c is not a random constant, but it can correspond to
the lowest exponential rate for t̂ 1 in the scalar potential [39, 42], provided the assumptions
of the no-go theorem hold. This interpretation will be made explicit in an example below.
This point of view is interesting as it relates no-go theorems to specific field directions,
having specific exponential rates; those can then be compared to the TCC bound [34, 39].
In the following, we make use of this idea on (rare) no-go theorems against (quasi) anti-de
Sitter solutions in d = 4. We will compare this way the corresponding rates for specific field
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directions to our ATCC bound (5.1). To reach this result, a first step is to reproduce the
10d no-go theorems in terms of the potential of a 4d effective theory.

We start with the no-go theorem obtained in [92, (3.15)] for the solution class s555.
Specifying to this class amounts to an assumption for the no-go, since it determines the
orientifolds and projects-out various fields; in particular, one has F1 = F5 = H = 0. To
rewrite it in a 4d fashion, we simply follow [34, (4.39)]; the 10d derivation via [92, (3.14)],
matching [34, (2.19)], indicates that the 4d version is indeed given by [34, (4.39)]. We use
the latter with d = 4, p = 5 and obtain

2V (ρ̂, τ̂) + 1√
2
∂τ̂V +

√
3
2 ∂ρ̂V = 0 , (5.9)

where the right-hand side vanishes because of s555; the no-go theorem actually forbids both
de Sitter and anti-de Sitter solutions. Note that the potential V (ρ̂, τ̂) is the same as (5.3)
with σ̂ = 0, even with multiple sets of O5/D5. From (5.9) and (5.7), we deduce the value

c =
√

2 , (5.10)

which in d = 4 is in agreement with the ATCC bound (5.1).
Let us now illustrate the fact that this no-go theorem defines a specific canonically

normalized field direction with a corresponding rate c. Following [42], we can introduce the
field space diffeomorphism as a matrix P

P =
(
∂ϕ̂

∂t̂

)
, P T (∂ϕ̂) = (∂t̂) , P−1(dϕ̂)T = (dt̂)T , (5.11)

where we gave the usual diffeomorphism relations for vectors (here (∂ϕ̂) is a column matrix)
and for one-forms (here (dϕ̂) is a row matrix). Having here ϕ̂i and t̂i canonically normalized
imposes that P is an orthonormal matrix; one can verify that (dϕ̂)δ(dϕ̂)T is then preserved.
The relation (5.8) provides us with the first line of P T . Since P T = P−1, we deduce the
first line of P−1, and that the same relation as (5.8) holds for the one-forms. We infer, up
to a constant, a relation between the fields: for two fields, we obtain

t̂ 1 = b1√
b21 + b22

ϕ̂1 + b2√
b21 + b22

ϕ̂2 , t̂ 2 = − b2√
b21 + b22

ϕ̂1 + b1√
b21 + b22

ϕ̂2 , (5.12)

as also mentioned in [39].
Applying this formalism to ϕ̂1 = ρ̂, ϕ̂2 = τ̂ , with t̂ 1 = t̂, t̂ 2 = t̂⊥, we obtain from the

no-go theorem (5.9) the fields

t̂ =
√

3
2 ρ̂+ 1

2 τ̂ , t̂⊥ = −1
2 ρ̂+

√
3

2 τ̂ . (5.13)

We now rewrite the potential V (ρ̂, τ̂) from (5.3) in terms of the new specific fields, for s555,
and get

2V (t̂, t̂⊥) = e−
√

2 t̂
(
−e−

√
2
3 t̂⊥R6 − gs

T10
6 e−

√
8
3 t̂⊥ + 1

2g
2
s |F3|2e−

√
6 t̂⊥
)
. (5.14)
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As predicted, we see that c =
√

2 appears as the exponential rate of t̂. A fair comparison
to the ATCC bound would require the overall sign of the terms in the brackets to be
negative; this however depends on the details of the compactification. We also verify that
the exponential rates for t̂⊥ satisfy the ATCC bound in d = 4.

We turn to the no-go theorem obtained in [92, section 3.3.3] for the solution class m466
in d = 4. Although it seems to correspond to the T-dual situation of the previous no-go
theorem (and we thus expect the same final c value), its 10d derivation requires different
equations. As a consequence, a 4d derivation has not been provided. We work it out here,
using a different scalar potential, V (ρ, τ, σ1, σ2, σ3), where σ1 corresponds to the set of
O4/D4 along internal direction 4 and σI=2,3 to sets of O6/D6 along directions 123 and 156.
Explicitly, the scalar potential is obtained thanks to the code MSSSp [91] and reads

2V =−τ−2ρ−1R6(σ1, σ2, σ3)+ 1
2τ
−2ρ−3σ−3

1 σ3
2σ

3
3 |H|2 + 1

2τ
−4ρσ−2

1 |F2|2 + 1
2τ
−4ρ−1σ2

1 |F4|2

−τ−3ρ−1σ
−5
2

1 σ
3
2
2 σ

3
2
3
T

(4)
10
5 −τ−3σ

3
2
1 σ
− 9

2
2 σ

− 9
2

3

(
σ6

3
T

(6)2
10
7 +σ6

2
T

(6)3
10
7

)
, (5.15)

where

R6(σ1, σ2, σ3) = R1 σ
5
1σ
−9
2 σ3

3 +R2 σ
−7
1 σ3

2σ
3
3 +R3 σ

5
1σ

3
2σ
−9
3 (5.16)

+R4 σ
−1
1 σ−3

2 σ3
3 +R5 σ

5
1σ
−3
2 σ−3

3 +R6 σ
−1
1 σ3

2σ
−3
3 ,

with

−2R1 = f2
45

2 + f2
46

2 + f3
45

2 + f3
46

2
,

−2R2 = f4
25

2 + f4
26

2 + f4
35

2 + f4
36

2
,

−2R3 = f5
24

2 + f5
34

2 + f6
24

2 + f6
34

2
, (5.17)

−R4 = f2
45f

4
25 + f2

46f
4

26 + f3
45f

4
35 + f3

46f
4

36 ,

R5 = f2
45f

5
24 + f3

45f
5

34 + f2
46f

6
24 + f3

46f
6

34 ,

−R6 = f4
25f

5
24 + f4

35f
5

34 + f4
26f

6
24 + f4

36f
6

34 .

We then reproduce the 10d no-go theorem by finding the following combination

V (ρ, τ, σ1, σ2, σ3) + 1
3ρ∂ρV + 1

4τ∂τV + 1
6

3∑
I=1

σI∂σIV = 0 , (5.18)

which is vanishing for m466. This no-go theorem, as the previous one, is excluding both de
Sitter and anti-de Sitter solutions.

To extract the corresponding value for c, we need to express (5.18) in terms of canonical
fields. While we have them for ρ, τ in (5.2), we need to determine them for σI=1,2,3. To
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that end, we recall the field space metric [91, (3.15)]

gij =



3
2ρ2 0 0 0 0

0 2
τ2 0 0 0

0 0 15
2σ2

1
− 9

2σ1σ2
− 9

2σ1σ3

0 0 − 9
2σ1σ2

27
2σ2

2
− 9

2σ2σ3

0 0 − 9
2σ1σ3

− 9
2σ2σ3

27
2σ2

3



. (5.19)

Focusing on the metric block of sigma fields, one determines a basis of 3 orthonormal
eigenvectors. Scaling them with the square root of the eigenvalues, it is straightforward to
find the canonical field directions σ̂I such that gIJ∂σI∂σJ = ∑

I(∂σ̂I)2. We obtain

σ̂1 = 3 ln
(
σ2
σ3

)
, σ̂2 =

√
β2 ln (σα2

1 σ2σ3) , σ̂3 =
√
β3 ln (σα3

1 σ2σ3) , (5.20)

α2 = 1
6
(
1−
√

73
)
, α3 = 1

6
(
1+
√

73
)
, β2 = 9

4

(
1+ 7√

73

)
, β3 = 9

4

(
1− 7√

73

)
.

We then determine the field space diffeomorphism, as a matrix
(
∂σ̂
∂σ

)
of elements (i, j) given

by ∂σ̂i
∂σj (

∂σ̂

∂σ

)
=


0 3

σ2
− 3
σ3

α2
√
β2

σ1

√
β2
σ2

√
β2
σ3

α3
√
β3

σ1

√
β3
σ2

√
β3
σ3

 . (5.21)

As explained in (5.11) and in [42], this allows us to compute the relation∂σ1

∂σ2

∂σ3

 =
(
∂σ̂

∂σ

)T ∂σ̂1

∂σ̂2

∂σ̂3

 =


1
σ1

(
α2
√
β2 ∂σ̂2 + α3

√
β3 ∂σ̂3

)
1
σ2

(
3 ∂σ̂1 +

√
β2 ∂σ̂2 +

√
β3 ∂σ̂3

)
1
σ3

(
−3 ∂σ̂1 +

√
β2 ∂σ̂2 +

√
β3 ∂σ̂3

)
 , (5.22)

from which we finally rewrite the no-go theorem (5.18) with canonical fields

V + 1
4τ∂τV + 1

3ρ∂ρV + 1
6

3∑
I=1

σI∂σIV = 0 (5.23)

⇒ V + 1
2
√

2
∂τ̂V + 1√

6
∂ρ̂V + 2 + α2

6
√
β2 ∂σ̂2V + 2 + α3

6
√
β3 ∂σ̂3V = 0 .

It is then straightforward with (5.7) to compute for this no-go theorem the value

c =
√

2 , (5.24)

which as expected, though non-trivially, matches the one obtained for the previous no-go
theorem on the class s555. This value for c once again satisfies the ATCC bound (5.1).
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5.2 DGKT-inspired scalar potentials

In this section, we study string effective theories (1.1) and their scalar potentials, obtained
by a compactification towards a d = 4 anti-de Sitter solution [37, 72], the so-called DGKT
solution. Such a solution is part of a larger d = 4 family [52] leading to various 4d theories,
and similar solutions have been obtained in d = 3 [86, 93]. We first consider in section 5.2.1
the simplest d = 4 solution and theory, and turn to d = 3 in section 5.2.2.

5.2.1 4d isotropic solution, potential and field directions

We study here a theory obtained by a compactification of 10d type IIA supergravity with
orientifold O6-planes on a torus orbifold T 6/Z2

3. It leads to a d = 4 classical anti-de Sitter
solution with parametric control and scale separation [37]. The 4d effective theory is an
N = 1 supergravity. The discrete symmetries of the internal space reduce supersymmetry,
but also truncate degrees of freedom, eventually leading to only few moduli that get all
stabilized thanks to fluxes.

A first task is to obtain the kinetic terms of the scalar fields, in order to reach a
canonical basis. To that end, we use the N = 1 supergravity formalism, deduced from a
Calabi-Yau compactification in type IIA [94]. We also follow [51, 81]. The moduli content
of the effective theory is expressed by the following superfields

ti = bi + i υi , S = e−D + i ξ√
2
, i = 1, 2, 3 , (5.25)

where bi stand for the moduli of the B-field for each T 2, υi are the Kähler moduli related
to the volumes of the T 2, D is the 4d dilaton and ξ is the axion arising from C3. These
scalar fields are also related to the internal volume vol and the 10d dilaton φ as follows

vol = κυ1υ2υ3 , eD = eφ√
vol

, (5.26)

with the constant κ = κ123 corresponding to an intersection number. Complex structure
moduli are projected out by the internal space discrete symmetries, and ξ, bi are stabi-
lized [37]. The kinetic terms for the remaining fields, D and υi, can be obtained from the
Kähler potential

K = −ln
(4

3 × 6 vol
)
− 4 ln

(
S + S

)
. (5.27)

They are given as follows for superfields ΦI , standing here for S, ti

e−1Lkin = KIJ̄ ∂ΦI∂ΦJ̄ = (∂D)2 + 1
4

3∑
i=1

1
υ2
i

(∂υi)2 , (5.28)

with e the 4d volume and KIJ̄ = ∂2K
∂ΦI∂ΦJ̄

the Kähler metric; we also recall that ∂ti
∂υi

= 2i.
The setting considered here is isotropic, meaning actually that the three geometric

moduli are related υi = υ/|ei| up to a constant ei, leaving us effectively with only one
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Kähler modulus υ. For future convenience in the scalar potential, the two scalar fields are
redefined in [37] towards g, r as follows

eD = |p|

√
|m0|
E

g , υ =
√

E

|m0|
r2 . (5.29)

The constants m0, p and ei are related to flux quantas of F0, H3 and F4 respectively, while
E = υ3/vol = |e1e2e3|/κ. In terms of the new fields, the kinetic terms are given by

e−1Lkin = 1
2

( 2
g2 (∂g)2 + 6

r2 (∂r)2
)
. (5.30)

It is then straightforward to obtain the canonical fields r̂, ĝ as

r = e
1√
6
r̂
, g = e

1√
2
ĝ
. (5.31)

Next, we turn to the scalar potential. It has been derived in [37] starting from 10d
supergravity,8 and is given by

1
λ
V (g, r) = 1

2g
4r6 −

√
2 g3 + 1

4g
2r−6 + 3

2g
4r−2 , (5.32)

where λ = p4|m0|5/2E−3/2. In terms of the canonical fields, the potential gets rewritten as

1
λ
V (ĝ, r̂) = 1

2e
2
√

2 ĝe
√

6 r̂ −
√

2 e
3√
2
ĝ + 1

4e
√

2 ĝe−
√

6 r̂ + 3
2e

2
√

2 ĝe−
√

2
3 r̂ . (5.33)

Note that a comparison of (5.32) to the potential (5.3), or that of the kinetic terms (5.30)
to the canonical fields (5.2), allows us to identify the following relations between fields

ρ ∝ r2, υ , τ ∝ g−1, e−D , (5.34)

up to proportionality constants. Given our analysis of the exponential rates for ρ̂, τ̂ made
in section 5.1.1, it is without surprise that we see here in the DGKT potential (5.33) no
violation of the ATCC bound (5.1).

In [37], however, a different field direction is exhibited which possesses the desired
asymptotic behaviour to test the ATCC, as can be seen in figure 5. This field direction is
obtained by considering an extremization condition, g∂gV + 2r∂rV = 0, corresponding to

8This scalar potential has three terms due to fluxes, and one due to the O6-planes. The latter tension µ6

has been traded for flux numbers after using the tadpole cancellation condition phrased as∫
dF2 = m0p+ 2

√
2κ2

10µ6 = 0 ,

where the integral is performed over the imaginary component of the holomorphic Calabi-Yau three-form.
This way, coefficients in the potential are only flux dependent, and those got absorbed in the redefined
fields, up to the overall factor λ. Let us also note a slight difference in conventions of 10d supergravity with
ours, possibly leading small changes in the numerical coefficients in the potential. This does not affect our
analysis since we only care about the field powers or the exponential rates.
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Figure 5. Potentials V (r̂) of (5.35) and V (ĝ) of (5.36).

the direction g r6 = 5/(4
√

2). The potential along this direction is given by either of the
following expressions, in terms of the field r̂ or ĝ

1
λ
V (r̂) = 1875

2048e
−13
√

2
3 r̂ − 975

2048e
−3
√

6 r̂ , (5.35)
1
λ
V (ĝ) = 3

2 1
6 × 5 1

3
e

13
3
√

2
ĝ − 39

40
√

2
e

3√
2
ĝ
, (5.36)

and those are displayed in figure 5. However, r̂ and ĝ are now related along this field
direction, so we need to introduce a new canonically normalized field for this direction.
The relation g r6 = 5/(4

√
2) leads to ∂µĝ = −2

√
3 ∂µr̂. We then get for the kinetic terms

(∂ĝ)2 + (∂r̂)2 = 13(∂r̂)2. We then introduce a new canonically normalized field t̂, such that

−
√

13
2
√

3
∂µĝ =

√
13 ∂µr̂ = ∂µt̂ . (5.37)

Note that proceeding this way, we simply ignore an orthonormal direction t̂⊥, meaning we
consider ∂µt̂⊥ = 0. The relation (5.37) does not fix the relative constant between the fields.
Choosing for simplicity

√
13 r̂ = t̂, we then get from g r6 = 5/(4

√
2) the following relation

−
√

13
2
√

3
ĝ +

√
13
6 ln

( 5
4
√

2

)
= t̂ =

√
13 r̂ . (5.38)

Both expressions (5.35) and (5.36) of the potential finally get rewritten as a single one,
given by

1
λ
V (t̂) = 1875

2048e
−
√

26
3 t̂ − 975

2048e
−3
√

6
13 t̂ . (5.39)

Its graph is analogous to that of V (r̂). To test the ATCC, the relevant asymptotics is
t̂→∞, where the potential is negative. The exponential rate for this specific field direction
is then higher than the ATCC bound (5.1) in d = 4

3
√

6
13 >

√
2
3 . (5.40)

The ATCC is then again satisfied.
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5.2.2 3d solution, potential and field directions

We study here an analogous solution and theory to the one of d = 4 DGKT, obtained in
d = 3 in [86]. The setup is a compactification of 10d type IIA supergravity on a G2-holonomy
internal space, leading to a d = 3 effective theory with (non)-supersymmetric anti-de Sitter
vacua. The presence of O2 and O6-planes, together with Z2 orbifold involutions on a torus,
T 7/Z3

2, leads to supergravity with minimal supersymmetry in d = 3. As for DGKT in d = 4,
the anti-de Sitter solution has here interesting features such as parametric scale separation,
full moduli stabilization, and a parametric control on the classical regime.

The effective theory contains 8 scalar fields. The first 2 are the universal ones, x and y,
related to the 10d dilaton φ and the internal volume υ. The internal part of the 10d metric
in Einstein frame [86, (3.22)] scales as e2βυ with β = −1/(4

√
7). From there one defines

x√
7

= −3
8φ+ β

2 υ , y = −1
4φ−

21β
2 υ . (5.41)

In addition, one introduces 7 volumes of 3-cycles, si=1,...,7. The 7d internal volume then
scales as

vol7 ∼
( 7∏
i=1

si
) 1

3

∼
(
eβυ
)7

. (5.42)

One defines the corresponding unit volume fluctuations s̃i, such that

si = s̃i e3βυ ,
7∏
i=1

s̃i = 1 . (5.43)

In the following, we will only consider the 6 independent fields s̃a=1,...,6.
Let us discuss the kinetic terms and the canonically normalized fields. The kinetic

terms are given in [86] as follows

e−1Lkin = −1
4(∂x)2 − 1

4(∂y)2 − δij
4s̃is̃j ∂µs̃

i∂µs̃j , (5.44)

with e the 3d volume, together with a 1
2R3 term in the effective action. Expressing s̃7 in

terms of the 6 independent fields s̃a thanks to (5.43), one rewrites the kinetic terms as

e−1Lkin = −1
4(∂x)2 − 1

4(∂y)2 − G̃ab ∂µs̃a∂µs̃b , G̃ab = δab + 1
4s̃as̃b , (5.45)

where this field space metric also appeared in [95]. Let us now work-out the canonically
normalized fields. For the first 2 fields, we consider

x̂ = 1√
2
x , ŷ = 1√

2
y . (5.46)

The 6 other fields require more work. For them, one should first find an orthonormal basis
of 6 eigenvectors of the field space metric 2 G̃ab. Rescaling those with the square root of
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the corresponding eigenvalues, one then obtains the canonical fields ŝa. One verifies that
2 G̃ab ∂µs̃a∂µs̃b = δab ∂µŝ

a∂µŝb. The fields are related as follows

ln s̃1 = 1√
21
ŝ1 − ŝ2 − 1√

3
ŝ3 − 1√

6
ŝ4 − 1√

10
ŝ5 − 1√

15
ŝ6 , (5.47)

ln s̃2 = 1√
21
ŝ1 +

√
5
3 ŝ

6 , (5.48)

ln s̃3 = 1√
21
ŝ1 + 2

√
2
5 ŝ

5 − 1√
15
ŝ6 , (5.49)

ln s̃4 = 1√
21
ŝ1 +

√
3
2 ŝ

4 − 1√
10
ŝ5 − 1√

15
ŝ6 , (5.50)

ln s̃5 = 1√
21
ŝ1 + 2√

3
ŝ3 − 1√

6
ŝ4 − 1√

10
ŝ5 − 1√

15
ŝ6 , (5.51)

ln s̃6 = 1√
21
ŝ1 + ŝ2 − 1√

3
ŝ3 − 1√

6
ŝ4 − 1√

10
ŝ5 − 1√

15
ŝ6 . (5.52)

We now turn to the scalar potential. It is given as follows [86], in terms of x̂, ŷ and s̃a

V (x̂, ŷ, s̃a) =F (s̃a) e2
√

2 ŷ−2
√

2
7 x̂ +H(s̃a) e2

√
2 ŷ+2

√
2
7 x̂ (5.53)

+C e
√

2 ŷ−
√

14 x̂ − T (s̃a) e
3
2
√

2 ŷ− 5
2

√
2
7 x̂ ,

with

F (s̃a) = f2

16

(∑
a

(s̃a)2 + 36
∏
a

(s̃a)−2
)
, H(s̃a) = h2

16

(∑
a

(s̃a)−2 +
∏
a

(s̃a)2
)
, (5.54)

C = m2

16 , T (ŝa) = hm

8

(∑
a

(s̃a)−1 +
∏
a

s̃a
)
.

The first term in the potential is the contribution from F4, the second one from H3, while
the Romans mass is C. The last term is the O6-plane contribution, where the tension has
been expressed in terms of fluxes using the tadpole cancellation. The O2 contribution is
cancelled by an appropriate number of D2, and the corresponding magnetic F6 flux vanishes
in the smeared limit. A comparison of this potential to V (ρ̂, τ̂) in (5.3) for d = 3 gives the
relations

ρ̂ = − 1
4
√

2

(√
7ŷ + 5x̂

)
, τ̂ = − 1

4
√

2

(
5ŷ −

√
7x̂
)
, (5.55)

up to possible constants. The canonical normalization is also cross-checked from (5.55).
In order to study the potential, and depict it in figure 6, let us fix the remaining

constants, namely the flux numbers, following [86]. Flux quantization gives

h = (2π)2K , m = (2π)−1M , f = (2π)3N , KM = 16 , (5.56)

where N,K,M are integers, N is unbounded, and the last condition comes from the tadpole
cancellation. In the following, we choose K = 16,M = 1, N = 1. The potential then admits
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Figure 6. Potential (5.53) depicted along one canonical field direction, x̂, ŷ or ŝa respectively,
while fixing the other fields to their vacuum value. To get the dependence on ŝa in figure 6(c), we
use the relations (5.47)–(5.52), from which we also deduce the vacuum values of the canonical fields:
ŝ1

0 = 1.29619, ŝa=2,...,6
0 = 0.

an anti-de Sitter vacuum. It can be determined by extremizing the superpotential. The
fields are then stabilized at values that can be read from the corresponding conditions

0.515696 = h

f
e2
√

2
7 x̂0 , 3.43111 = m

f
e−
√

2
2 ŷ0− 5

2

√
2
7 x̂0 , s̃a0 = 1.32691 . (5.57)

We obtain the values x̂0 = −1.49381 and ŷ0 = −9.31713.
We now have all needed elements to test the ATCC. As can be seen in figure 6, the

potential does not have the appropriate behaviour among these field directions to challenge
the ATCC. This is confirmed by a close look at the rates in (5.53). The only term that has
a chance to be negative is the O6 term. The exponential rates there are however higher in
the asymptotics than that of the F4 term for x̂, and that of C for ŷ. The negative term is
then dominated by positive terms in what would have been the appropriate asymptotics to
challenge the ATCC, so the potential turns positive. The analysis for ŝa is more involved
but we verify graphically that the potential is asymptotically positive along those directions.
We conclude that we do not observe here any violation of the ATCC, despite being in d = 3.
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In section 5.2.1, we did not observe either a violation of the ATCC bound along the
2 universal moduli, but a specific direction among them eventually offered a chance to
challenge it, by providing the appropriate asymptotic behaviour. A property of this specific
direction is that it led to the same field dependence (in these 2 moduli) in the H3, F0 and O6
term, while the F4 term behaved differently. With the same requirement here, we identify a
direction obeying this property, up to a constant A > 0: it is given by the relation

x̂ = −
√

7
9 ŷ +

√
14
9 lnA . (5.58)

The potential (5.3) then gets rewritten along this direction as

V (ŷ) = F (s̃a0)A−
4
9 e

20
√

2
9 ŷ +A−

14
9
(
H(s̃a0)A2 − T (s̃a0)A+ C

)
e

16
√

2
9 ŷ , (5.59)

where we also fix s̃a = s̃a0 to focus on this single direction. As in d = 4 with (5.35) and (5.36),
the term with the lowest rate is the one without F4. This term would dominate in the
asymptotics ŷ → −∞. This term is found negative, as required to test the ATCC, in the
following tight range

H(s̃a0)A2 − T (s̃a0)A+ C ≤ 0 ⇔ 1.38988 ≤ 105 ×A ≤ 13.7585 . (5.60)

Mimicking the d = 4 situation, we can obtain the field direction (5.58) by considering the
following extremization condition on the potential V (x̂, ŷ, s̃a0) given in (5.3)

∂x̂V + 1√
7
∂ŷV = 0 ⇔ (5.58) and A =

−T (s̃a0) +
√

96C H(s̃a0) + T (s̃a0)2

8H(s̃a0) , (5.61)

where the latter solves 4A2H(s̃a0) +AT (s̃a0)− 6C = 0. Requiring an extremization condition
then fixes the constant A. Remarkably, the corresponding value is A = 3.78707 . 10−5,
which allows to get the second term in the potential negative (5.60).

As long as (5.60) is obeyed, the potential has the desired asymptotic behaviour, as can
be seen in figure 7. As in d = 4, we note however that this specific field direction is not
canonically normalized anymore. Proceeding as before, we find the normalized direction to
be along t̂ with

∂µt̂ = 2
√

22
9 ∂µŷ . (5.62)

This eventually gives an exponential rate along this specific, normalized direction to be
16
√

2
9 × 9

2
√

22
= 8√

11
>
√

2 , (5.63)

where
√

2 corresponds to the ATCC bound (5.1) in d = 3. Therefore, we see once again no
violation of the ATCC.
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A Examples: dynamical solutions

We provide in this appendix two solutions to equations (2.3)–(2.5) for negative potentials,
V < 0, thus decelerating, and with |V | < 1 in Planckian units. Those solutions are “more”
dynamical than the anti-de Sitter solution discussed in section 2.6, in the sense that both
a(t) and ϕ(t) now vary. These solutions are contracting, ȧ < 0, and we find it easy to get
such solutions with V < 0, justifying the relevance of the ATCC. We then test (successfully)
these solutions upon the various conditions and quantities introduced in section 2.

Let us first indicate a point related to the resolution of equations (2.3)–(2.5). The
latter can be rewritten as F1 = F2 = E = 0, with the quantities

F1 = (d− 1)(d− 2)
2

(
H2 + k

a2

)
− 1

2 ϕ̇
2 − V , F2 = ä

a
− 2

(d− 1)(d− 2)V + 1
d− 1 ϕ̇

2 ,

E = ϕ̈+ (d− 1)Hϕ̇+ V ′ , (A.1)

where we set Mp = 1. One can show in full generality that the following relation holds

Ḟ1 + 2H F1 = −ϕ̇ E + (d− 1)(d− 2)H F2 . (A.2)

We deduce in particular

F1 = 0 , E = 0 ⇒ F2 = 0 for H 6= 0 . (A.3)

In other words, we do not have to solve the second Friedmann equation as long as we have
H 6= 0, i.e. sticking to an expansion or contracting phase. We will stick to this resolution
scheme. When solving the first Friedmann equation, one is typically led to choose between
an expanding or a contracting solution, and we pick the latter.

Let us now say a word on initial conditions. The potentials considered often have a
positive part. We however only want to probe the physics of V < 0, so we choose initial
conditions accordingly: we take in particular an initial ρi < 0. The field ϕ then first
rolls-down or climbs-up the potential, depending on the sign of the initial ϕ̇i. The two

– 40 –



J
H
E
P
0
4
(
2
0
2
3
)
1
3
9

-2 2 4 6 8
φ

-0.02

-0.01

0.01

0.02

0.03

V(φ)

(a) Potential V (ϕ)

2 4 6 8
t

19.0

20.0

20.5

21.0

21.5

22.0

φ(t)

(b) ϕ(t)

2 4 6 8
t0

2

4

6

8

10

a(t)

(c) a(t)

2 4 6 8
t

-2.0

-1.5

-1.0

-0.5

H(t)

(d) H(t)

Figure 8. Dynamical contracting solution ϕ(t), a(t), as well as H(t), in the negative part of the
exponential potential (A.4).

solutions below only display the first option, but as far as we could test, no result changes
with the second option.

Finally, we set d = 4, k = −1, and obtain the solutions numerically. As argued in
section 2.3, a contracting and decelerating solution can only exist for a finite time: it starts
with ai = a(ti) until a final crunch where a(tc) = 0. In practice, the numerics stop slightly
before due to related divergences, at a final time tf where a(tf ) is very close to zero as we
will indicate. We now present and analyse each solution in appendix A.1 and A.2.

A.1 Exponential potential

We consider the following potential

V (ϕ) = 0.04 e−1.74ϕ − 0.05 e−0.87ϕ , (A.4)

displayed in figure 8(a). Its minimum is at ϕmin = 0.540234, Vmin = −0.015625. We choose
the following initial conditions at ti = 0

ϕ(0) = 22 , ϕ̇(0) = −0.01 , a(0) = 10 . (A.5)

The numerical solution ϕ(t), a(t), as well as H(t), are given in figure 8. We obtain the final
time tf ≈ 8.29096 for which a(tf ) = 0.00035871. The final values are given by

ϕ(tf ) = 0.0463959 , V (ϕ(tf )) = −0.0111242 , (A.6)
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Figure 9. 3
a(t)2 + V (ϕ(t)) with the exponential potential (A.4).

where ϕ(tf ) is not displayed in figure 8(b). These values indicate that the field has rolled-
down to the minimum and passed it, climbing-up a little to the left. This did not seem to
affect a(t). We note that for this solution, as well as the next one and the anti-de Sitter
solution, H(t) displayed in figure 8(d) varies a lot, contrary to a de Sitter universe.

We now test the solution upon the various conditions discussed in section 2.

• ATCC condition (2.11). This condition, rephrased as

M2
p a(t)−

√
|Vi| a(ti) ≥ 0 , (A.7)

is verified here at all times by the solution, until the final time tf when numerics stop. We
obtain there a(tf )−

√
|Vi|ai = 0.000202651.

• Second assumption (2.13). The second assumption is easily verified by this solution,
as displayed in figure 9.

• Potential bound (2.17). Since both conditions above are satisfied by the solution, it is
without surprise that the potential bound (2.17) is also satisfied.9 Since the potential (A.4)
is made only of exponential terms, satisfying this bound essentially amounts to the bound on
the rate (2.20), given here in d = 4 by

√
2
3 ≈ 0.82. This is indeed verified by the dominant

term of the potential (A.4) in the large field limit, whose rate is 0.87.

9One may complain that the two dynamical solutions presented in this appendix are not climbing
potentials but rolling down (with a little climbing for the case of the exponential potential). We believe this
still allows to probe the physics in the negative potential, and does not affect our results. In addition, we
obtained as well climbing solutions by simply changing the sign of ϕ̇(0): those exhibited exactly the same
behaviour, in terms of the contraction and the verification of the two mathematical assumptions.
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Figure 10. Dynamical contracting solution ϕ(t), a(t), as well as H(t), in the negative part of the
KKLT-inspired potential (A.8).

A.2 KKLT-inspired potential

We turn to the following “KKLT-inspired” potential, whose expression is close to the one
of [35]

V (ϕ) = 1012 e−0.2ϕ (−3× 10−4 e0.1ϕ + 3 + 0.1ϕ
)

6ϕ2 . (A.8)

Its graph is displayed in figure 10(a). Its minimum is at ϕmin = 113.589, Vmin = −0.0199658.
We choose the following initial conditions at ti = 0

ϕ(0) = 140 , ϕ̇(0) = −0.082 , a(0) = 10 . (A.9)

The numerical solution ϕ(t), a(t), as well as H(t), are given in figure 10. We obtain the
final time tf ≈ 5.3379 for which a(tf ) = 0.000627402. The final values are given by

ϕ(tf ) = 117.175 , V (ϕ(tf )) = −0.0178131 , (A.10)

where ϕ(tf ) is not displayed in figure 10(b). This time, the field rolls-down but does not
pass the minimum.

We now test the solution upon the various conditions discussed in section 2.

• ATCC condition (2.11). This condition, rephrased as (A.7), is verified by the solution
at all times, except very close to the final time tf , itself close to the final crunch. This
seems consistent with the regime of validity of the effective theory, as already discussed
around (2.28) for the anti-de Sitter solution.
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a(t)2 + V (ϕ(t)) with the KKLT-inspired potential (A.8).
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Figure 12. Comparison of the KKLT-inspired potential (A.8) in blue and the growing exponential
of the bound (2.17) in orange, with ϕi = 140. The two curves intersect at ϕ = 148.79.

• Second assumption (2.13). The second assumption (2.13) is easily verified by the
solution, as displayed in figure 11.

• Potential bound (2.17). Contrary to the previous solution and potential, the KKLT-
inspired potential (A.8) does not satisfy the potential bound (2.17), as can be seen on
figure 12. More precisely, the bound (2.17) is verified as long as ϕ ≤ 148.79. At ϕmin, the
exponential bound gets evaluated to be −2.31897 × 109, much lower than the minimum
of the potential V (ϕmin), while at ϕi = 140, it gets evaluated at −1 which is again lower
than Vi.

Given that the two above conditions are satisfied by our solution up to times very close
to the crunch, it may look surprising to get a violation of the potential bound (2.17). The
resolution of this puzzle is simply that our solution did not probe ϕ ≥ 148.79, but only
lower values; this is why we did not notice any significant violation of the two mathematical
assumptions. In the probed region of field space, everything is then consistent and satisfied.
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The violation of the potential bound in the large field region can also be seen through the
asymptotic condition (2.19), which also gets violated: we obtain here 〈−V ′/V 〉ϕ→∞ = 0.1
which smaller than the bound rate 0.82. Our dynamical solution does not indicate any issue
because it does not probe large enough field values. One may also interpret this by saying
that this potential at low field values is admissible in a quantum gravity effective theory,
but not its part at large field values.
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