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1 Introduction

The irrelevant T T̄ deformation [1, 2] of two-dimensional quantum field theories has proven
to be a very exciting development in modern quantum field theory. It presents a peculiar
puzzle where despite it being irrelevant from the perspective of the renormalization group,
various observables of a given theory deformed by T T̄ can be exactly computed as functions
of the deformation parameter. The locality properties of the underlying un-deformed
theories however are drastically modified. It was first discovered in the context of integrable
models, where it was recognized as the first in a tower of deforming operators formed
from a quadratic combination of conserved currents that preserve integrability. Since it
is a quadratic combination of the energy-momentum tensor, which any relativistic (or
Euclidean invariant) two dimensional field theory possesses, the T T̄ deformation of any
two-dimensional quantum field theory can be studied.

Perspectives about what the effect of the deformation “truly” is range from seeing the
deformation as a coupling of a quantum field theory to random geometry [3], flat space
Jackiw-Teitelboim gravity [4, 5], which was later recognized to be a rewriting of ghost-free
massive gravity [6–8], all the way to performing a field-dependent change of coordinates of
the underlying theory [9], replacing point like particles with rigid rods [10], and imbuing
a material described by the undeformed theory with exotic elasticity [11]. It was also
recognized in [12] that the T T̄ deformation of holographic CFTs leads to a theory whose
holographic dual is gravity in AdS3 but with a Dirichlet wall at finite radius.
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In the following article, we provide a simpler alternative representation of the T T̄
deformation of a given two-dimensional quantum field theory. We propose that the effect
of the deformation is the same as replacing the spacetime dependence of the fields with
dependence on the indices of an infinite-sized matrix. In fact, the relationship between
Moyal deformed operator algebras and the T T̄ deformation has been anticipated already
in [13–16]. The novelty of our approach is that we do not see the Moyal ?-product as arising
from underlying spacetime non-commutativity, but as a dressing of the field interactions
on a commutative spacetime. We present an explicit prescription based on a simple
formula for the components within the product of matrices which reproduces the effects of
the deformation.

Our geometrization of matrix indices is adapted from the Wigner-Weyl transformation
of quantum operators [17, 18]. In any matrix representation, two combinations of the row
and column indices behave as conserved charges during the matrix multiplication: their
difference, and the Fourier conjugate of their sum. These combinations span a commutative
momentum space on which the matrix entries live. As two matrices are multiplied, the
entries of their product are given by a ?-convolution, rather than an ordinary convolution.
This is the origin of non-locality in matrix models, which we understand here as T T̄ -
deformations. In other words, the geometry of T T̄ -deformed theories is the geometry of
matrix indices!

Organization of the paper. In section 2 we describe the basic construction of how
geometry is seen from a re-interpretation of certain combinations of matrix indices, and
how a ?-product structure naturally emerges from the matrix product.

Section 3 shows how this insight applied to S-matrices of two-dimensional quantum
field theories allows us to recover the Castillejo-Dalitz-Dyson (CDD) phases associated to
the T T̄ deformation.

Section 4 describes how the deformation of general correlation functions in arbitrary
Euclidean quantum field theories also follows from the replacement of fields by their matrix
counterparts.

Finally, section 5 explains how our prescription applies at the level of the action of
the theory. We do a case study of the Moyal deformation of self-dual gravity and explain
how it is in fact a T T̄ deformation. We then highlight the relationship between the natural
Heisenberg algebra inherent to our matrix formalism and the W∧ algebra that features in
the study of the Moyal deformation of self-dual gravity.

2 Matrix geometry

Let Q and Q̃ be two matrices which satisfy [Q, Q̃] = i
2κ1, where κ is a constant. We will

use these matrices to parametrize the entries of any matrix with commuting arguments.
We start by noting that the Q-commutator and Q̃-commutator maps commute with

each other due to the Jacobi identity,

[Q, [Q̃, •]]− [Q̃, [Q, •]] = [[Q, Q̃], •] = 0. (2.1)
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Therefore, the space spanned by the eigenvalues of Q-commutator and Q̃-commutator is
commutative. Similarly, the Q-anticommutator and Q̃-anticommutator also commute with
each other,

{Q, {Q̃, •}} − {Q̃, {Q, •}} = [[Q, Q̃], •] = 0, (2.2)

therefore their eigenvalues span another commutative space.
We denote the aforementioned eigenvalues by p, p̃, x̃, x ∈ R. Acting on an arbitrary

matrix A, these maps have the eigenvalue equations

[Q,A](p) = pA(p) , {Q,A}(x̃) = 1
κ x̃A(x̃) ,

[Q̃, A](p̃) = p̃A(p̃) , {Q̃, A}(x) = − 1
κxA(x) .

(2.3)

The relations (2.1) and (2.2) imply two commutative sets of these parameters,

[p, p̃] = 0, [x, x̃] = 0. (2.4)

We identify (p, p̃) as the coordinates of a commutative momentum space, and (x, x̃) as the
coordinates of a commutative position space.

The definitions (2.3) are consistent with the Heisenberg uncertainty principle. From
{−κQ̃, [Q, •]} − [Q, {−κQ̃, •}] = κ{[Q, Q̃], •} = i•, we get [x, p] = i, and similarly [x̃, p̃] = i.

To be explicit, we represent all matrices in the eigenbasis of Q, such that for continuous
row and column indices a, b ∈ R, we write Qab = aδ(a − b). In this basis, the parameter
p = a− b is the index difference, while the parameter x̃ = κ(a+ b) is the index sum.

Furthermore, the doublets (x, x̃) and (p, p̃) are Fourier conjugate to each other. To see
this, we recall from quantum mechanics that the eigenvalues of the left-multiplication by Q
and by Q̃ are related by a Fourier transformation, therefore there is a unitary matrix U
with the entries Uab ∝ e2iκab such that Q̃ = UQU †. Then,

(U †AU)ab =
∑
c,d

e−2iκ(ac−bd)Acd

=
∑
c,d

e−iκ(a+b)(c−d)eiκ(c+d)(a−b)Acd (2.5)

shows that x = −κ(a + b) and p = c − d are Fourier conjugate to each other, as well as
x̃ = κ(c+ d) and p̃ = a− b.

The matrices Q and Q̃ serve here only to fix a basis for this geometric parametrization
of matrix entries. To summarize, we can start with any model of matrices with no prior
geometry, represented in an arbitrary but fixed basis. Then, for each matrix entry at
the row and column labels (a, b) ∈ R2, we identify the index difference p = a − b as a
momentum parameter in the first direction, and the index sum x̃ = κ(a+ b) as a position
parameter in the second direction. The parameters x and p̃ are then defined through
Fourier transformation.

We now check how the matrix interactions are manifested on this geometry. Given two
matrices A and B, we consider their product

(AB)ab =
∑
c

AacBcb. (2.6)
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We will exchange the row and column indices a, b, c in (2.6) by x̃ = κ(a+ b), p = a− b, and
p′ = a− c. These relations can be reversed to κ(a+ c) = x̃+κ(p−p′) and κ(c+ b) = x̃−κp′.
Therefore,

(A ? B)(p, x̃) =
∫

dp′A(p′, x̃+ κ(p− p′))B(p− p′, x̃− κp′), (2.7)

where we used ? to emphasize that this operation is still equivalent to matrix multiplication.
We note that the momentum p is conserved under the matrix multiplication, in the sense
that the total momentum is the same for each term on both sides in (2.7). This momentum
conservation is a consequence of the Leibniz rule [Q,AB] = [Q,A]B +A[Q,B].

We Fourier transform the index sum x̃ to p̃ in (2.7), and obtain

(A ? B)(p, p̃) =
∫

dp′dp̃′ eiκ(p̃′p−p′p̃)A(p′, p̃′)B(p− p′, p̃− p̃′). (2.8)

We note that the Fourier conjugate of the matrix index sum, p̃, is another conserved charge
of the matrix multiplication. Since it commutes with p, writing the matrices as functions of
(p, p̃) is justified.

The operation (2.8) is known as Moyal’s ?-convolution [17]. The exponential factor
eiκ(p̃′p−p′p̃), which we will refer to as the Moyal factor, distinguishes this expression from an
ordinary convolution, and it captures the essence of how a matrix algebra differs from an
algebra of local functions.

The Moyal factor can also be understood as making a non-local deformation of the
field interactions by the parameter κ, where the locality would be recovered at κ = 0 [18].
The non-locality can be seen in (2.7) and in the similar expression written in terms of (x, p̃).
As we explain next, these deformations of the field interactions along different values of κ
are equivalent to the T T̄ deformations in a quantum field theory.

3 The S-matrix of matrix fields

The S-matrix evolves scattering states from the far past to the far future,

S|p1 · · ·pl〉in = |pl · · ·pn〉out. (3.1)

We study 2D unitary theories respecting crossing symmetry. We write the two-momentum
of the i-th particle as

pi = (pi, p̃i). (3.2)

The LSZ reduction formula implies we can write the S-matrix in terms of expectation values
of time-ordered products of field operators,

Sn(p1, . . . ,pn) =
∏
i

(p2 +m2)i 〈Ω|T
(
ϕ(p1) · · ·ϕ(pn)

)
|Ω〉
∣∣∣∣
p2
i+m

2
i=0, ∀i.

(3.3)

In two dimensions it is customary to fix the momentum ordering. In terms of rapidities,

pi = m cosh θi, p̃i = m sinh θi, (3.4)

this ordering implies that we take θ1 > θ2 > · · · > θn.
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We will now entertain the case where the momentum dependence of the fields is replaced
by dependence on combinations of matrix indices as described in section 2. Then, from
the momentum space perspective, the regular time-ordered products are replaced by the
?-products involving Moyal factors:

∏
i

(p2 +m2)i 〈Ω|T
(
ϕ(p1) · · ·ϕ(pn)

)
|Ω〉
∣∣∣∣
p2
i+m

2
i=0, ∀i

−→
∏
i

(p2 +m2)i 〈Ω|T
(
ϕ(p1) ? · · · ? ϕ(pn)

)
|Ω〉
∣∣∣∣
p2
i+m

2
i=0, ∀i

= exp

iκ l∑
i<j=1

pi × pj

 exp

−iκ n∑
i<j=l

pi × pj


·
∏
i

(p2 +m2)i 〈Ω|T
(
ϕ(p1) · · ·ϕ(pn)

)
|Ω〉
∣∣∣∣
p2
i+m

2
i=0, ∀i

(3.5)

where
pi × pj ≡ pµi pνj εµν = p̃ipj − pip̃j . (3.6)

In summary, we can summarize the above relation as

S?n(p1, · · ·,pn) = exp

iκ l∑
i<j=1

pi × pj

 exp

−iκ n∑
i<j=l

pi × pj

Sn(p1, · · ·,pn). (3.7)

In the next section, we will interpret the meaning of this phase. For now, we write these
phases in the rapidity parameterization. We take

pi = m(cosh(θi), sinh(θi)). (3.8)

Then we find that the terms in the exponent can be written as

exp
(
iκ
∑
i<j

pi × pj

)
= exp

(
iκm2∑

i<j

sinh(θij)
)

(3.9)

where θij = θi − θj .

3.1 Recognizing the T T̄ deformation

So far we have shown that when we trade the space dependence of our fields with matrix
index dependence, the S-matrix gets dressed by a phase. We note here that the phase of
interest is in fact the form factor of the famous T T̄ operator. In particular this operator is
defined as

T T̄ := TµνTµν − (T ρρ )2 = −1
2 det

(
Tαβ

)
. (3.10)

The matrix elements of this operator in the scattering states is given by

out〈pn · · ·pl|κ(T T̄ )|pl · · ·p1〉in =

−iκ l∑
s<r=1

(ps × pr) + iκ
n∑

i<j=l
(pi × pj)

 . (3.11)
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The dressing of the S-matrix is the result of performing the T T̄ deformation of the original
theory with a finite deformation parameter κ!

This fact was shown first in the context of integrable models in [2], then generalized to
non-integrable theories in [4].

Specializing to integrable theories (following [19] for instance), we deduce the deforma-
tion of the total energy due to T T̄ ,

E =
n∑
j=1

p̃j → Eκ, (3.12)

via the Bethe equations
eipiR

∏
l 6=i

S2(pi,pl) = 1. (3.13)

Here R is the radius of the spatial circle (taken to be large), and S2(pi,pl) is the elastic
two-body S-matrix element of the integrable theory.

The dressing under T T̄ , or alternatively the procedure of replacing the space dependence
of the fields by dependence on matrix indices, leads to the modified Bethe equation

eipiR
∏
l 6=i

eiκ(p̃ipl−p̃lpi)S2(pi,pl) = 1. (3.14)

This can be recast in the form of the original Bethe equation but with a modification of R
to R̂, i.e.,

eipiR
∏
l 6=i

eiκ(p̃ipl−p̃lpi)S2(pi,pl) = eipiR̂
∏
l 6=i

S2(pi,pl) (3.15)

where
R̂ = R+ κE . (3.16)

Then, the deformed energy is given by

Eκ(R) = E(R− κE). (3.17)

This means the deformed energy Eκ is a solution to the inviscid Burgers’ equation,

∂κEκ(R) = Eκ(R)∂REκ(R). (3.18)

This is a hallmark result for how the energy spectrum of a given theory flows under
deformation by T T̄ , featured in [1, 2].

If we look at the case with non-zero total momentum J , similar arguments to those
above show that the flow equation for the energy is

∂κEκ(R) = Eκ(R)∂REκ(R)− J2/R. (3.19)
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3.2 Free fields scatter non-trivially within matrices

Let us now look at the case where we compute the S-matrix via the LSZ reduction formula
for free fields, where we take all momenta to be incoming for simplicity,

out〈0|Sf?|p1 · · ·pn〉in ≡ Sf?n (p1 · · ·pn) (3.20)

=
∏
i

(
p2
i +m2

)
〈Ω|T

(
φ(pn) ? · · · ? φ(p1)

)
|Ω〉. (3.21)

Here, to specify that the fields are free, we denoted them as φ(pi) which have a non-trivial
two-point function

〈Ω|T (φ(−p)φ(p))|Ω〉 = GF (p), (3.22)

where the right-hand side is the Feynman propagator, the formal inverse of the kinetic
operators appearing in the S-matrix formula.

All higher-point correlators are given in terms of this two-point correlator by Wick’s
theorem. This is usually enough to show that all S-matrix elements are products of multiple
kinetic operators and Green’s functions, leaving us with S = 1 as a result. This is not
immediately true for the matrix version of the calculation laid out here. Instead we first
have to filter out the Moyal factors by expressing the ?-product in terms of the regular
product, so as to leave us finally with only the dressing,

∏
i

(p2
i +m2) 〈Ω|T

(
φ(pn) ? · · · ? φ(p1)

)
|Ω〉 = exp

(
−iκ

n∑
i<j=1

pi × pj

)
· 1. (3.23)

Note that n has to be an even integer or else the S-matrix element vanishes. As a result,
the above is a product of some power l = n/2 of two-body phases,

exp
(
−iκ

n∑
i<j=1

pi × pj

)
=

∏
j<i=1

exp
(
−iκpi × pj

)
, (3.24)

or

Sf?n=2l(p1 · · ·pn) =
n∏

i<j=1
Sf?2 (pi,pj). (3.25)

This is a signature of an integrable theory. Furthermore, if we put the phases into the
rapidity basis,

Sf?2 (θ1, θ2) = exp
(
−m2κ sinh(θ12)

)
(3.26)

and then take a scaled limit of the mass to zero as we perform an ultra-relativistic boost of
the particles in opposite directions, we obtain the phase

Sf?2 (θ1, θ2)|m→0 = exp
(
−κ pL,1 pR,2

)
, (3.27)

where pL, pR are the light cone momenta of the particles. This is the phase shift experienced
by excitations scattering along an infinitely long, free bosonic string in Minkowski space! [20]
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4 General correlation functions

The phases in the previous section arose as a general consequence of the spacetime depen-
dence of two-dimensional fields being replaced by matrix index dependence. This begs
the question of what happens when we make this replacement within general correlation
functions of two-dimensional Euclidean field theories:

〈Φ1(x1) · · ·Φn(xn)〉 → 〈Φ1(x1) ? · · · ? Φn(xn)〉, (4.1)

where x = (x̃, x) and the Φai(xi) are some arbitrary operators. It will help to look at this
correlation function after making partial Fourier transformations. First in the x-space,
following (2.7),〈

Φa1(p1, x̃1) ? · · · ? Φan(pn, x̃n)
〉

=
〈

Φa1

(
p1, x̃1 − κ

∑n
j=2 pj

)
Φa2 (p2, x̃2 − κ (

∑n
k=3 pk − p1)) ·

· Φa3

(
p3, x̃3 − κ

(∑n
k=4 pk −

∑2
k=1 pk

))
· · ·Φan

(
pn, x̃n + κ

∑n−1
k=1 pk

)〉
(4.2)

We can summarise this as

〈
Φai(p1, x̃1) ? · · · ? Φan(pn, x̃n)

〉
=
〈

n∏
i=1

Φai

(
pi, x̃i − κ(J> − J<)i

)〉
(4.3)

subject to momentum conservation
∑n
i=1 pi = 0. Similarly, we can do a partial Fourier

transform in the other direction and find

〈
Φai(x1, p̃1) ? · · · ? Φan(xn, p̃n)

〉
=
〈

n∏
i=1

Φai

(
xi + κ(E> − E<)i, p̃i

)〉
(4.4)

Here we denote

(J> − J<)i =
n∑

k=i+1
pk −

i−1∑
k=1

pk (4.5)

and

(E> − E<)i =
n∑

k=i+1
p̃k −

i−1∑
k=1

p̃k. (4.6)

They denote the integrated momentum and energy density to the right of the operator
inserted at xi. More precisely, they are defined through the stress tensor as

2π
(∫ ∞

xi+ε
−
∫ xi−ε

−∞

)
T00
(
x1′, 0

)
dx′1 = (E> − E<)i (4.7)

and
2π
(∫ ∞

xi+ε
−
∫ xi−ε

−∞

)
T01
(
x1′, 0

)
dx′1 = (J> − J<)i (4.8)

if we take the x̃ = 0 surface as being space.
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Then, taking the derivative of the deformed correlation functions with respect to the
deformation parameter κ, we obtain

∂κ〈Φa1(x1) ? · · · ? Φan(xn)〉

=
n∑
i=1

2πεµνερσ
(∫ ∞

xi+ε
−
∫ xi−ε

−∞

)
dx′σT

µ
ρ

(
x′ + ε

)
∂xν

〈
Φa1(x1) ? · · · ? Φan(xn)

〉
. (4.9)

This is exactly the formula derived in [21] and reproduced in [22] for the T T̄ deformation
of correlation functions in general Euclidean field theories! We recovered it here as a simple
consequence of the matrix reformulation of the theory.

5 Deforming the actions

So far, our treatment has focused on the deformation of observables like the S-matrix ele-
ments and correlation functions. It is also interesting to see how to track these prescriptions
back to the level of the classical action, when such a notion is available. In this section,
we will start by describing how to write the action of the two-dimensional free scalar field
so as to reproduce the deformed S-matrix we describe above. Then we will look at a
peculiar Lagrangian which describes the self-dual gravity in 4D where the interactions of
the theory are effectively two-dimensional. We will then show that our matrix prescription
can in fact be used to define the T T̄ deformation of this model along the directions where
the interactions occur, and furthermore, we will recognise this deformed theory to be the
so-called Moyal deformed self-dual gravity theory.

5.1 The action for T T̄ deformed free field theory

In our prescription for deforming the S-matrix, we showed that we only needed to replace
the free field operator with a matrix-valued field operator so that the regular product is
replaced by the star product. The original action

S =
∫

d2xφ�φ (5.1)

is now replaced by

ST T̄ = Tr
(
ηµνφ [Qµ, [Qν , φ]]

)
. (5.2)

The fields now being matrices means that the action involves a trace operation and the
kinetic term is replaced by a double commutator with the matrices Q0 ≡ Q and Q1 ≡ Q̃.
The commutator-action of these matrices define the momentum eigenvalues,

[Q0, φ] = pφ, [Q1, φ] = p̃φ, (5.3)

i.e. [Qµ, φ](p) = pµφ(p), where φ is an infinite matrix and φ(p) is its degree of freedom
at p (section 2). Now, the action (5.2) is still quadratic in its fields, and the Green’s
function we extract from this action is exactly the same as the one we would obtain from it’s
un-deformed counterpart (5.1). However, the key difference lies in the way in which Wick’s
theorem applies to the products of field operators, as explained in the previous section.
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This remedial example gives us the recipe for deforming the classical action of a general
two-dimensional theory: We write the kinetic term of the matrix theory just as (5.2) and
we write a trace of a product of field matrices replacing every interaction term.

To exhibit the flexibility of our prescription, we will take a look at a non-covariant
four-dimensional model whose interactions occur only along two dimensions. This theory
describes the self-dual part of four-dimensional general relativity [23].

5.2 Self-dual gravity

The linearized action for self-dual gravity can be written in terms of the fields (φ, φ̄) which
are related to the left and right-handed components of the graviton fluctuation through the
relation:

(h, h̄) =
(
∂2
uφ, ∂

−2
u φ̄

)
. (5.4)

Here u is a light-cone coordinate: (u, v, w, w̄) = (t + z, t − z, x + iy, x − iy). In terms of
these fields, the action for self-dual gravity reads (see also [24, 25])

Ssdg[φ, φ̄] =
∫

d4x φ̄
(
�φ+ {∂uφ, ∂wφ}Poisson

u-w

)
, (5.5)

where the Poisson bracket is defined as

{·, ·}Poisson
u-w = ∂u(·)∂w(·)− ∂w(·)∂u(·). (5.6)

The variation of (5.5) returns Plebanski’s second heavenly equation [26] for the 4D graviton.
The Moyal deformation of the self-dual gravity action was recently studied in [27, 28],

Sm-sdg[φ, φ̄] =
∫

d4x φ̄
(
�φ+ {∂uφ, ∂wφ}Moyal

u-w

)
, (5.7)

where the Moyal bracket is defined as

{A,B}Moyal
u−w ≡

1
2iκ [A,B] = 1

κ
A(u,w) sin

(
κ( ~∂u~∂w − ~∂w~∂u)

)
B(u,w) . (5.8)

Here, we will write (5.7) as a matrix model, and argue that it is in fact the T T̄ deformation
of self-dual gravity.

5.3 Matrix version of Moyal deformed SDG

We make a Wick rotation on the y-coordinate to get signature (2, 2) and treat w, w̄ as real
coordinates. We rename the coordinates more suggestively as (u, v, w, w̄) = (x1, x2, x̃1, x̃3).

The action (5.7) describes a 4D theory, but the Moyal bracket in its interaction
term lives only on 2D. In a generic matrix model, for every momentum direction set
by the Q-commutator eigenvalues, there is a dual direction set by the Fourier conjugate
of Q-anticommutator eigenvalues, such that these dual directions generate a Moyal-type
interaction (2.8) for the fields. The action (5.7) lacks a dual direction for v and w̄. Therefore,
we can only write it as a constrained matrix model [29]. We introduce

Q1 = Q⊗ 1⊗ 1 , Q2 = 1⊗Q⊗ 1 , Q3 = 1⊗ 1⊗Q ,
Q̃1 = Q̃⊗ 1⊗ 1 , Q̃2 = 1⊗ Q̃⊗ 1 , Q̃3 = 1⊗ 1⊗ Q̃ ,

(5.9)
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so that [Qi, Qj ] = [Q̃i, Q̃j ] = 0 and [Qi, Q̃j ] = i
2κδij1

⊗3. Let Φ and Φ̄ be hermitian matrices
which are constrained as

[Q̃2,Φ] = [Q̃2, Φ̄] = 0 , [Q3,Φ] = [Q3, Φ̄] = 0. (5.10)

When represented in the common eigenbasis of Qi, these constraints imply that Φ, Φ̄
are Toeplitz in the 2-direction, and diagonal in the 3-direction. Then, we can write the
Moyal-deformed self-dual gravity action (5.7) as a constrained matrix model in 6 dimensions
by

Sm-sdg[Φ, Φ̄] = Tr
(
Φ̄
(
[Q1, [Q2,Φ]]− [Q̃1, [Q̃3,Φ]] + i

2κ
[
[Q1,Φ], [Q̃1,Φ]

]))
. (5.11)

From the case we laid out in the bulk of this article, this matrix version of the self-dual
gravity action is the T T̄ deformation of the theory described by the Chalmers-Siegel action!

The scattering amplitudes of self-dual gravity are dressed in exactly the way as those
of a two-dimensional theory deformed by T T̄ would be. Let’s take a look at the 3-point
vertex, i.e., the tree-level S-matrix element of the Chalmers-Siegel theory,

V (p1,p2) = (p1 × p2)2 . (5.12)

This structure comes from the interaction term∫
d4x φ̄ {∂uφ, ∂wφ}Poisson

u-w (5.13)

in the action. Then, replacing the regular product with the matrix product, this term is
replaced by

i
2κ Tr

(
Φ̄ [[Q1,Φ], [Q̃1,Φ]]

)
, (5.14)

which leads to a dressing of the vertex by CDD-like factors in the two-dimensional u-w
plane,

V (p1,p2)→ VM (p1,p2) = (p1 × p2)
2κ

(
eiκ(p1×p2) − e−iκ(p1×p2)

)
. (5.15)

Here the momenta are all along the u-w plane. The difference between the two phases is a
consequence of the commutator structure of the interaction.

5.4 From Heisenberg to W∧ algebra

In this subsection we will study the symmetries of the Moyal deformed self-dual gravity
action. Note that the relevant symmetry transformations are those that preserve the
Poisson structure in the interaction term. The Moyal bracket is a deformation of the Poisson
bracket, and it satisfies the Jacobi identity. The diffeomorphisms which preserve the Poisson
structure of a 2D space are generated by Hamiltonian vector fields. Following [27], we will
consider a basis of plane waves for the Hamiltonian functions.

For any α, β ∈ R, the matrix eiκ(βQ−αQ̃) has entries that form a plane wave when
written in the (x, x̃)-parameters [18],(

eiκ(βQ−αQ̃))(x, x̃) = eiαx+iβx̃. (5.16)
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We define Q′ ≡ −κQ and Q̃′ ≡ κQ̃, and expand this matrix,

e−i(βQ
′+αQ̃′) =

∞∑
a,b=0

(iα)a

a!
(iβ)b

b! ea,b , ea,b ≡ (Q̃′aQ′b)sym., (5.17)

where ea,b is a matrix with the symmetrized ordering of its factors Q′ and Q̃′, for example,
e1,2 = (Q′Q̃′2 + Q̃′Q′Q̃′ + Q̃′Q′2)/3 etc. These matrices satisfy the algebra

{ea,b, ec,d}Moyal

=
∑
s≥0

(−1)sκ2s

42s+1(2s+ 1)!

2s+1∑
j=0

(−1)j
(

2s+ 1
j

)
[a]2s+1−j [b]j [c]j [d]2s+1−jea+c−1−2s,b+d−1−2s,

(5.18)

where [a]n = a!/(a − n)! is the descending Pochhammer symbol. Note that Q̃′ and Q′

satisfy the Heisenberg algebra [Q̃′, Q′] = iκ/2, whereas (5.18) is the W∧ algebra of Poisson-
preserving diffeomorphisms [27]. We showed here through the matrix formalism that the
W∧ algebra follows from symmetrized monomials of Heisenberg matrices.

The W∧ algebra itself is a deformation of the w∧ algebra, which is its limit κ→ 0,

{ea,b, ec,d}Poisson = (ad− bc) ea+c−1,b+d−1. (5.19)

For a theory whose interactions follow a Poisson structure on a 2D space, the deformation
of this Poisson bracket into a Moyal bracket is precisely the T T̄ deformation of the theory.
This is particularly the case for self-dual gravity.

6 Outlook

We have shown that replacing the spacetime dependence of a two-dimensional field theory
with matrix index dependence leads to a very interesting set of non-localizing effects that
are equivalent to those generated by the T T̄ deformation. Our notion of deformation of
Lagrangian theories differs from that of say [30] where instead of finding a Lagrangian
written in terms of the original fields that solves the recursive T T̄ flow equation, we replace
fields as functions of space by matrices. It would help to have a proper argument for why
these two procedures should lead to the same results. There are some effects observed in
the deformed Lagrangian that we cannot easily replicate in our proposal. For instance, it
was argued in [31] that tuning the T T̄ deformation of a free boson tuned to an infinite value
of the deformation parameter should leave us with the Lagrangian for a chiral boson. This
is something we cannot straightforwardly see from the CDD phase.

This notion is very much in keeping with the various gravitational dressing perspec-
tives [3–6, 8, 32], or those involving dynamical changes of coordinates [9, 33, 34], yet
somehow it is even closer to the expectation that the T T̄ deformation does something to
the states of the original theory very much akin to what a tensor network representation of
such a state would do [22, 35]. It would be very interesting to pursue this connection.

An object that we haven’t touched upon at all in this article is the T T̄ deformed
partition function [36, 37]. In order to see how the energy levels are deformed, we relied
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on the Bethe equations of integrable models. An important next step for solidifying our
proposed connection would be to compute the partition function and the deformed energy
levels for non-integrable theories.

An important generalization of the T T̄ deformation is the so called T T̄ + Λ2 deforma-
tion [38, 39]. It has recently played a key role in understanding the microstates of the cosmic
horizon in three-dimensional dS space [40, 41]. Capturing the additional Λ2 deformation in
our approach would provide a matrix representation for said de Sitter microstates!

Among other notable cousins of the T T̄ deformation is the so called JT̄ deformation [42].
This deformation also has a geometric interpretation [6, 43] and perhaps it has a matrix
realisation. It would be interesting to see if such a deformation could be applied to self-dual
Yang-Mills theory.

It is also worth mentioning [44] where a color version of the clock and shift matrices
featured above were studied, and were used to construct gravitational scattering amplitudes.
It would be very interesting to see if we can make contact with that construction.
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