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1 Introduction

A complete understanding of the strong coupling dynamics of four dimensional asymptot-
ically free (AF) non-supersymmetric gauge theory, i.e. QCD, remains elusive. To gain a
foothold we may turn to simplified toy models. One strategy is to reduce the dimensionality
of the problem considering instead two dimensional quantum field theories with similar RG
behaviour. In the special case of integrable QFTs, an infinite set of symmetries completely
determine the exact S-matrix [1] providing a powerful toolkit that can be used to tackle
non-perturbative questions. An early success of this approach was the calculation of the
exact ratio of the mass gap to cut-off of AF integrable QFTs theories [2–5].

More recently, techniques in integrable models have been used to elucidate even deeper
questions of the nature of perturbation theory. Typically, perturbation theory is asymptotic
in nature with perturbative coefficients growing factorially. The programme of resurgence
asserts that this breakdown of convergence signals the need to include non-perturbative
physics. Even more strongly, ambiguities inherent in resummations of asymptotic pertur-
bative expansions should be cancelled by compensating ambiguities in a non-perturbative
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sector. For a modern overview of resurgence from a physics view point see e.g. [6]. Again,
integrable two-dimensional models provide an ideal test bed for resurgence.

In semi-classical approaches [7–12], an adiabatic compactification of two-dimension
models is used to obtain a quantum mechanics which can be probed to large perturba-
tive orders. In these cases, two-dimensional finite Euclidean action configurations, known
as unitons1 are shown to precisely resolve the semi-classical ambiguities of the perturba-
tive sector. Whilst intriguing, such approaches intrinsically disregard degrees of freedom
in compactification restricting to the lowest KK sector. Alongside this features of renor-
malisation group are disregarded in the truncation to Quantum Mechanics. Given these
limitations, one thus prompted to ask if the resurgence paradigm can be established in a
fully two-dimensional setting.

A breakthrough was the work of Volin [13, 14], recently refined in [15, 16] (see also
the recent papers [17–25]), in addressing the Thermodynamic Bethe Ansatz (TBA) system
that determines free energy in a large chemical potential. By comparing two scaling limits,
it is possible to reduce the complicated integral TBA equation to a (complicated) set of
algebraic equations that fix unknown coefficients in an ansatz for a perturbative expansion
(in the chemical potential or other more refined coupling). This allows access to sufficient
order in perturbation theory to reveal factorial divergence of perturbative coefficients.

Although we cannot identify an instanton or other semi-classical non-perturbative
saddle in the TBA approach, we can find a matching ambiguity using a different method.
Ref. [26] showed that it is possible to solve the TBA equations using a transseries. A critical
step in their solution is an arbitrary choice of branch cut which introduces an ambiguity
of the transseries. Although this approach, due to its computational difficulty, cannot be
executed to large orders, it does exhibit a non-perturbative ambiguity that matches the
ambiguity of the large-order behaviour found in the perturbative sector.

In this note we will adopt this toolbox to study the resurgent structure of a theory that
exhibits a different renormalisation group dynamic. We consider a theory in which the UV
is not Gaussian but instead is described by a non-trivial interacting conformal fixed point.
The theory we will consider, known as the λ-model [27, 28], is realised as a flow away
from an SU(N)k Wess-Zumino-Witten (WZW) model driven at leading order by a certain
current-current bilinear. The IR of the theory is the principal chiral model, expressed
in non-Abelian T-dual coordinates, and accordingly is gapped. Whilst this marginally
relevant deformation breaks conformality and the full affine symmetry of the WZW current
algebra, it does preserve an infinite symmetry associated to integrablity. At the quantum
level the exact S-matrix is known (based on symmetry grounds pre-dating the Lagrangian
description) [29, 30] and has been shown to match the λ-model Lagrangian using a light
cone lattice discretisation and Quantum Inverse Scattering [31].

The goal of this note is to match the perturbative ambiguity to that of the transseries
the new context of a λ-model. The outline is as follows: section 2 provides a more in-
depth discussion of the λ-model as we consider its RG flow in more detail and present its
exact S-matrix. In section 3, we review the recent techniques to perturbatively solve TBA

1Unlike instantons, unitons are not topologically protected.
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equation [13–16] that determine free energy. Introducing a special coupling γ in section 3.4
results in a clean (i.e. log-free) series for the λ-model. We analyse its asymptotic behaviour
in section 4 and compute the leading ambiguity. This ambiguity is matched by a transseries
calculation in section 5. A particularly eye-catching result is that the leading UV ambiguity,
and in fact all leading factorial behaviour, disappears when N divides k disappears when
N divides k. We wrap up with ideas for future research in section 6.

2 The λ-model

In this section we outline the salient properties of the two-dimensional integrable QFT that
we are considering: the λ-deformed model. Classically, the λ-model provides a Lagrangian
interpolation between the conformal Wess-Zumino-Witten (WZW) model for a Lie-group
G [32] and the principal chiral model (PCM) (written in non-Abelian T-dual variables). Re-
markably this theory is integrable for all values of the eponymous interpolating parameter
λ related to the level, k, of WZW and the radius, r, of the PCM by

λ = k

k + r2 . (2.1)

Whilst the λ-model for the restricted case of G = SU(2) was first proposed long
ago [29, 33, 34], the pioneering work of Sfetsos [27] in constructing the general theory
has prompted extensive recent development (for reviews see [35, 36]). The λ-model has
been extended to Z2 graded symmetric spaces [27, 37] where it constitutes an interpolation
between a G/H gauged WZW (representing the coset CFT) and the (non-abelian T-dual
of) the principal chiral model on G/H and even to Z4 graded super-cosets relevant to
the construction of the AdS5 × S5 superstring [38] underpinned by an elegant quantum
group at root-of-unity symmetry structure. In this string theory context, λ-deformation is
in fact marginal, and the world sheet theory can be viewed as a σ-model in some target
space super-gravity background [39–41]. Here however we will be considering the simpler
bosonic case for which the λ-deformation does not define a CFT but rather a relevant RG
flow from a WZW fixed point in the UV to the dualised PCM the IR [28, 42, 43]. A series of
papers [44–48] have shown how the λ-model is actually part of a wide tapestry of integrable
deformed models linked by (analytically continued) Poisson-Lie T-duality transformations.

2.1 Lagrangian construction

First we sketch the construction of the non-abelian T-dual of the PCM using the Buscher
procedure [49] as it informs the construction of the λ-model. We start with the action of
the PCM for a group valued field g̃2

SPCM[g̃] = − r
2

4π

∫
d2σTr

(
g̃−1∂+g̃g̃

−1∂−g̃
)
, (2.2)

and downgrade the left symmetry g̃ → h−1g̃ to a gauge symmetry by introducing a gauge
connection transforming as A → h−1dh + h−1Ah and replacing derivatives to covariant

2We use light cone coordinates σ± = 1
2 (t ± x). Derivatives with respect to light cone coordinates are

denoted by ∂±.
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derivatives d → D = d + A. This yields the gauged PCM action which we denote as
SgPCM[g̃, A]. To ensure that the gauged theory is actually equivalent to the ungauged
theory (at least in trivial topology which we assume throughout) we enforce that the
connection is flat (i.e. the gauge field is pure gauge). This is implemented by introducing
a Lagrange-multiplier term, −Tr(νF+−), to the Lagrangian. Integrating out the field
ν enforces that the field strength F+− vanishes and we recover the original PCM after
gauge-fixing g̃ = 1. However, if instead we integrate out the gauge fields A, after gauge
fixing g̃ = 1, we obtain the non-abelian T-dual model in which the field ν becomes the
fundamental field.

The construction of the λ-model by Sfetsos [27] is achieved through a modification of
this Buscher procedure. Instead of adding a Lagrange multiplier term, we add a gauged
WZW term. Recall that the WZW model is given by

SWZW,k[g] = − k

2π

∫
Σ
d2σ Tr

(
g−1∂µgg

−1∂µg
)
− ik

6π

∫
M3

Tr
(
g−1dg

)3
, (2.3)

in which g is extended to a 3-manifold M3 with boundary ∂(M3) = Σ. Standard argu-
ments [32] ensure that the path integral is well-defined (independent of choice of extension)
provided that k is appropriately quantised, and in particular for G = SU(N) which we as-
sume henceforth, k ∈ Z. In this sector we gauge the diagonal symmetry g → h−1gh leading
to a gauged WZW model action SgWZW,k[g,A] [50, 51].

To construct the λ-model we combine a gauged PCM and a gauged WZW model:

Sλ,k[g, g̃, A] = SgPCM[g̃, A] + SgWZW[g,A] . (2.4)

Notice that the two models are coupled through the fact that they are gauged by the same
gauge field. The Sfetsos procedure is concluded by gauge fixing g̃ = 1 and integrating out
the gauge field A using its on-shell value

A+ = λ(1− λAdg)−1R+ , A− = −λ(1− λAdg−1)−1L− , (2.5)

where we defined R± = ∂±gg
−1 and L± = g−1∂±g and the adjoint action AdgX = gXg−1.

Integrating out the gauge field then yields the action

Sλ,k[g] = SWZW,k[g] + kλ

π

∫
Σ
d2σ Tr

(
R+(1− λAdg)−1L−

)
. (2.6)

Though not vital for what follows we note that the equation of motion can be understood
as a zero-curvature condition on the Lax connection [27, 52]

L±(z) = − 2
1 + λ

A±
1∓ z , (2.7)

in which A± are evaluated with the on-shell values eq. (2.5) and z ∈ C is a spectral
parameter. This is the starting point of establishing the classical integrability of the theory.
Further to this one requires strong integrability i.e. that the conserved charges built from the
monodromy of this Lax are in involution. This is ensured provided that the Poisson algebra
of the spatial component of the Lax has a particular r-s Maillet form as was demonstrated
for the λ-model, and its generalisations, in [47, 53, 54].
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2.2 Renormalisation

The parameter λ given by eq. (2.1) varies from 0 to 1 and we shall now discuss what
happens in each of those limits. At a quantum level the parameter λ undergoes an RG
flow [28, 42, 43] given by (to all orders in λ and leading in 1

k )

µ
dλ

dµ
= β(λ) = −2N

k

(
λ

1 + λ

)2
= −β1λ

2 − β2λ
3 +O(λ4) . (2.8)

The leading order behaviour, which shall be relevant later, is given by

β1 = 2N
k
, β2 = −4N

k
. (2.9)

There is an evident UV fixed point at λ = 0, corresponding to the undeformed WZW
model. In the vicinity of this λ ≈ 0, or k � r2, we obtain a current-current deformation
of the WZW model:

Sλ,k[g] = SWZW,k[g] + λ

∫
Σ
d2σ Tr (R+L−) +O(λ2) , (2.10)

This, however, is not an exactly marginal deformation (cf. those of [55]), but relevant as it
moves away from the WZW theory located in the UV.

To understand the IR regime as λ → 1, we can force k → ∞. If the group element
is expanded as g = 1 + i

kν
ata, the action SgWZW,k reduces to the Lagrange multiplier

term −Tr(νF+−). Thus in this limit the Sfetsos procedure reduces to the non-Abelian
T-dualisation Buscher procedure described above. Hence, in this IR limit, we recover the
non-abelian T-dual of the PCM. Further into the deep IR, one thus anticipates (as with
the PCM) that the dimensionless parameter λ is transmuted into a mass gap mediated
through a cut-off Λ.

2.3 Quantum integrability

Not only is the theory classical integrable, it remains so at the quantum level. The existence
of higher spin conserved currents ensure that the scattering matrix of the theory factorises,
and can be fully determined with the 2-to-2 particle scattering matrix the fundamental
building block. The S-matrix for the SU(N) λ-model was constructed many years ago [56]
from an algebraic perspective, and was related directly to the Lagrangian description for
the SU(2) case in [29] by matching the free energy obtained by Lagrangian perturbation
theory and by S-matrix TBA techniques. Following the introduction of the Lagrangian
description λ-model by Sfetsos [27] for SU(N) the exact S-matrix was conjectured [52] for
general ranks. This conjecture was substantiated by Appadu et al. [31] in which the form
of the S-matrix was ‘derived’ by the Quantum Inverse Scattering Method (i.e. a latticed
version of the theory that takes the form of a spin chain such from the QFT particle
states are obtained as excitations over the ground state in a continuum limit).3 Rather

3This QISM is in fact rather non-trivial as the δ′(σ) non-ultra-local terms in the fundamental Poisson
bracket preclude a simple application of QISM. Instead what is proposed is a modification of the λ-model,
that lies in the same universality class, to which QISM can be applied. This provides a description as
a spin-k XXX spin chain with alternating inhomogeneities. This idea was expanded to a two-parameter
integrable λ-type model [57] realised as a spin-k XXZ spin chain with alternating inhomogeneities.
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than present the full details of the S-matrix (for which see [52]) we can give a schematic
understanding somewhat mirroring the Sfetsos procedure.

We start with the SU(N) principal chiral model which has in particular an SU(N)L×
SU(N)R global symmetry. The fundamental particles are massive and transform in fun-
damental antisymmetric tensor representations of the global symmetry. The scattering
depends kinematically only on the rapidity difference θ of the particles.4 Reflecting this
global symmetry, the S-matrix of these fundamental excitations has a schematic tensor
form (suppressing explicit representation labels)

SPCM(θ) = X(θ)S(θ)⊗ S(θ) , (2.11)

whereX(θ) is an overall scalar dressing factor to ensure all S-matrix axioms are obeyed, and
the S(θ) factors are separately SU(N) invariant (in fact invariant under a larger Yangian
symmetry). Recalling that in the Sfetsos procedure the left acting SU(N)L symmetry was
gauged, it is natural that the left hand block of the tensor product of eq. (2.11) is modified
in the λ-theory and indeed this is the case with

Sλ(θ) = Xk(θ)Sk(θ)⊗ S(θ) . (2.12)

Here Sk(θ) is a block [56] that furnishes a quantum group symmetry at the q2(k+N) = 1
root of unity taken in Restricted-Solid-On-Solid (RSOS) picture representing the scattering
of kink degrees of freedom.

The particles of the λ-model then carry two types of quantum labels; first an SU(N)R
representation label, specifying that the particles transform in the ath fundamental (i.e.
rank a anti-symmetric tensor). We let [ω] denote a representation obtained from the
highest weight ω. With an over-complete basis ei · ej = δij = 1

2 roots are ±ei ± ej and the
ath fundamental (antisymmetric) representations has highest weight vector ωa = ∑a

i=1 ei.
Particles transforming in this [ωa] representation have a mass

Ma = m sin πa
N
.

In addition particles carry a second label corresponding to a kink structure defined by
two weight vectors λ, λ′ corresponding to highest weights of representations of level k (i.e.
(e1 − eN ) · λ ≤ k). A kink is allowed to connect two “vacua” provided that [λ′] is found in
the tensor product of [λ]× [ωa].

Given knowledge of the exact S-matrix, the Thermodynamic Bethe Ansatz yields a set
of rather complicated coupled-integral equations can be used to determine the free-energy
of the theory. Solving these is quite formidable especially as the S-matrix is non-diagonal.
A powerful simplification is achieved by exposing the system to a chemical potential h for
a U(1) charge such that only certain particles condense and contribute to the ground state.
More precisely we define the charge corresponding to an SU(N) weight ω to be

Qω = ω · ~H
4The mass shell is related to rapidity by p0 = m cosh θ and p1 = m sinh θ.
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for ~H lying in the Cartan acting on the SU(N)R quantum label. Above threshold, only
states of the largest mass to charge ratio contribute to the ground state. Following [31]
we choose the charge QωN

2
corresponding to the rank N/2 antisymmetric representation

defined by highest weight ωN
2

= ∑N
2
i=1 en. This ensures that only a single the state corre-

sponding to the highest weight ωN
2
condenses in the ground state, and the e TBA system

simplifies to a single integral equation determined by the identical scattering of this particle
(as was demonstrated first in the case of SU(2) in [29]).

In this case, the scattering “matrix” reduces to a simple phase factor S(θ) that governs
transmission and reflection. It shall prove useful in this case to define the scattering kernel
of this reduced S-matrix by

K(θ) = 1
2πi

d

dθ
logS(θ) , (2.13)

and its Fourier transform
K(ω) =

∫ ∞
−∞

dθ eiωθK(θ) . (2.14)

As a consequence of Hermitian analyticity on the reduced S-matrix, both K(θ) and its
Fourier transform are symmetric functions. Explicitly we have that the relevant kernel is
given by [57]

1−K(ω) = sinh2(πω/2)
sinh(πω) sinh(πκω) exp(πκω) , (2.15)

where κ = k
N . In what follows, it shall prove useful to write the Fourier transform of the

scattering kernel as a Wiener-Hopf (WH) decomposition

1−K(ω) = 1
G+(ω)G−(ω) , (2.16)

where G−(ω) = G+(−ω), and G+(ω) is analytic in the Upper Half Plane (UHP) and

normalised such that G+(2is) = 1 +O
(

1
s

)
. Explicitly G+(ω) is given by

G+(ω) =
√

4κ Γ(1− iω/2)2

Γ(1− iω)Γ(1− iκω) exp (ibω − iκω log(−iω)) , (2.17)

with
b = κ(1− log(κ))− log(2) . (2.18)

3 TBA techniques

Polyakov and Wiegmann [58–60] showed in the 80s that it is possible to compute the free
energy of an integrable system with a chemical potential h turned on using a thermody-
namic Bethe ansatz (TBA) technique. Using these techniques, Hasenfratz, Niedermayer
and Maggiore [2, 3] showed in 19905 that it is possible to calculate the mass gap in integrable

5This computation was intially performed for the O(N) model, but was later also completed for Gross-
Neveu models [4, 5] and PCM models [61, 62] and further examples as surveyed in the review article [30].
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models by comparing the result from TBA with conventional Lagrangian pertubation the-
ory. Building from this we will apply, in section 3.4, the techniques pioneered by [13–16]
to extract an expansion for the free energy of λ-model in 1

h the large order behaviour of
which we will study extensively in section 4.

3.1 Free energy

To present the TBA equations we will specialise to the case described above in which we
introduce a chemical potential h such that only a single particle dominates the ensemble
at large h.6 With K(θ) the appropriate scattering kernel, the TBA equations determine
the density distribution of states, χ(θ), via

m cosh(θ) = χ(θ)−
∫ B

−B
K(θ − θ′)χ(θ′)dθ′ , θ2 < B2 , (3.1)

from which the charge and energy density follow

e = m

∫ −B
B

χ(θ) cosh(θ)dθ2π , ρ =
∫ −B
B

χ(θ)dθ2π . (3.2)

A critical complexity of this system is that the occupied states lie within a Fermi surface
specified by B, which is however a function of h (with large B corresponding to large h).
Supposing that we have calculated the energy density, thought of as a function of the charge
density e = e(ρ), then we can reconstruct a free energy density, F(h), from a Legendre
transform:

ρ = −F ′(h) , F(h)−F(0) = e(ρ)− ρh . (3.3)

3.2 Resolvent approach

It will prove useful to recast the integral equation that determines χ(θ) in terms of a
resolvent function defined by

R(θ) =
∫ B

−B

χ(θ′)
θ − θ′

dθ′. (3.4)

The resolvent is analytical everywhere except around the interval [−B,B] where it has an
ambiguity given by

χ(θ) = − 1
2πi

(
R+(θ)−R−(θ)

)
, (3.5)

where we use the short hand notation R±(θ) = R(θ ± iε). Suppose that the kernel can be
cast in terms of some operator O as K(θ) = 1

2πiO
1
θ , then the eq. (3.1) is equivalent to a

Riemann-Hilbert problem

R+(θ)−R−(θ) + OR(θ) = −2πim cosh θ . (3.6)
6That we can reduce the TBA system to involve just one species of particle from the fundamental

representation singled out by the applied chemical potential is of course an assumption that makes the
problem readily tractable. One anticipates that states of higher mass and higher charge are energetically
disfavoured, but properly speaking this assumption ought to be proven starting from a complete nested
TBA system (which we do not attempt here).
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A determination of R(θ) is then equivalent to solving the TBA system and once known the
charge density is immediately extracted as

ρ = − 1
2πResθ=∞R(θ) . (3.7)

We briefly now review the approach of [13–15] which does so by considering ansatz solutions
for the resolvent in two limits (the edge and bulk) and matching them to fix all undetermined
coefficients.

3.2.1 Edge ansatz

We begin first with the edge limit in which the weak coupling limit B →∞ is taken whilst
keeping an edge coordinate z = 2(θ − B) fixed and small. This evidently scales to large θ
and hence probes the properties of χ(θ) around the vicinity of the Fermi energy, B. This
limit is best studied by considering the Laplace transform of the resolvent (3.4) given by

R(z) =
∫ ∞

0
R̂(s)e−szds , R̂(s) = 1

2πi

∫ i∞+δ

−i∞+δ
eszR(z)dz . (3.8)

Note at large B the energy density is related to this Laplace transformation by

e = meB

4π R̂(1/2) . (3.9)

The key result of [15, 16] is that in the edge limit the Laplace transformed resolvent
has the following form

R̂(s) = meBΦ(s)
Φ
(

1
2

)
2

( 1
s+ 1/2 +Q(s)

)
, Φ(s) = G+(2is) , (3.10)

where G+(s) is the WH decomposition (2.16) of the (Fourier transformed) scattering kernel
and Q(s) is a series in large s and a perturbative expansion in 1

B of the form

Q(s) = 1
Bs

∞∑
m,n=0

Qn,m
Bm+nsn

. (3.11)

It should be noted that the coefficients Qn,m may still depend on logB.

3.2.2 Bulk ansatz

In the bulk limit we let B → ∞ and θ → ∞ but we keep u = θ/B fixed, we are hence
studying the regime where θ is in the bulk, between 0 and B. The precise form of the Bulk
ansatz depends on the model. For the λ-model, we shall take the same bulk ansatz for the
Gross-Neveu model [15], which is given by

R(u) =
∞∑
n=1

∞∑
m=0

n+m∑
k=0

cn,m,k
ue(k+1)

Bm+n(u2 − 1)n
[
log u− 1

1 + u

]k
, (3.12)

where e(k) is 0 if k is even and 1 if k is odd.The bulk ansatz can be motivated by con-
structing it using functions that are analytic outside the interval [−B,B], where they have
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a logarithmic branch cut.7 This is precisely the analytic structure demanded by eqs. (3.4)
and (3.5).

3.3 Matching

If we re-expand the bulk ansatz (3.12) in an edge regime where z = 2(θ − B) is fixed, we
should recover the expansion in the edge regime given by (3.10). Here a miraculous feature
occurs: upon comparing expansions order by order in large B, then order by order in large
z (which is small s) and then in log(z), we can solve for all the coefficients cn,m,k and Qn,m.
One peculiarity of the procedure is that we perform this matching only for the regular
terms of the expansion z−n (n ≥ 0), while we disregard all divergent terms zn (n > 0).
Using a desktop PC, over the course of a week, we solved the system up to 38 orders. Once
this calculation is completed, we compute e and ρ. Using equations (3.10) and (3.7) we
can express ρ and e in terms of the coefficients by

e = m2e2BΦ(1/2)2

8π

[
1 +

∞∑
m=1

1
Bm

m−1∑
n=0

2n+1Qn,m−1−n

]
,

ρ = 2π
∞∑
m=0

c1,m,0
Bm

.

(3.13)

Explicitly the first few coefficients required to determine up to order B−2 are given by

c1,0,0 = 4
√
κ , c1,1,0 = −2κ3/2 ,

c1,2,0 = 1
2κ

3/2(2− κ− 4 log 2 + 4κ log(2B/κ)) ,

Q0,0 = 0 , Q1,0 = 0 , Q0,1 = κ

4 . (3.14)

The last step is to calculate the quantity e
ρ2 as an expansion in B the first terms of which

are 8κ
π

e

ρ2 = 1 + κ

B
+ κ

B2

(
1− log(2) + κ

2 + κ log(2B/κ)
)

+O(B−3) . (3.15)

As this result depends on log(B), it is convenient to define a new effective coupling γ in
terms of which the perturbative expansion is free from logarithms as we shall do in the
next section.

3.4 Perturbative result

Before introducing the log-free coupling, we show our results are consistent with those
of [31], which determines the mass gap of this theory. Using standard TBA techniques,
they find an expansion for the free energy given by

F(h)−F(0) =−2h2κ

π

{
1−2κα+2κα2[2+κ+log4++2κ logκ+2κ logα

]
(3.16)

−8κ2α3 log(α)
[
(−2+2κ+log4+2κ log(κ)+κ log(α)

]
+O(α3)

}
.

7This is different from the PCM bulk ansatz which also has a square root branch cut along the interval
[−B,B].
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The coupling α is here defined by
1
α

= 2 log
(

2h
m

√
8κ
π

)
. (3.17)

By using the Legendre transformation (3.3) we can compute the total energy e from
eq. (3.16). Doing so, we obtain the expression

8κ
π

e

ρ2 = 1 + 2ακ− 2κα2(2κ log(ακ)− κ− 2 + log(4))

+ 8κ2α3[κ log2(α) + (log(α)− 1)(−2 log(4) + 2κ log(κ))
]

+O
(
α4
)
.

(3.18)

From eq. (3.15), it follows that e
ρ2 = χ0 +O(α) where χ0 = π

8κ . Therefore to leading order
we have h = ∂e

∂ρ = 2χ0ρ, which leads to ρ = 4hκ
π . Looking at eq. (3.17), we should thus

define a coupling by
1
α

= 2 log
(
ρ

m

√
2π
κ

)
. (3.19)

This defines α in terms of B. Inverting the relation and substituting into the series (3.15)
recovers precisely the expansion (3.18), providing an important consistency check for our
programme.

We now take inspiration from the Gross-Neveu treatment of [15] to create a series
expansions for e

ρ2 that is log-free. This is appropriate because we have that to leading
order ∆F ∼ −h2 +O(α), which leads to a coupling defined by8

1
γ

+ ξ log γ = log 2πρ
m/c

, ξ = β2
β2

1
= − k

N
= −κ . (3.20)

One could demand that the right hand side be log 2πρ
ΛMS

, where ΛMS is the cut-off in the
minimal subtraction scheme. To achieve this one has to tune the constant c = cMS such
that cMSΛMS = m. A key outcome of [31] determines that cMS = e3/2N−1/2. However,
we shall exercise the freedom to pick a c of our own choosing,

c = 2−κΓ(κ)
π

, (3.21)

such that resulting expressions appear considerably simplified. This leads to an expansion
that is log-free in the coupling, given by

8κ
π

e

ρ2 =
∞∑
n=0

anγ
n = 1 + κγ + κ

2 [2− κ]γ2

+ κ

2
[
3− 5κ+ 2κ2

]
γ3 + κ

8
[
3(8− ζ(3))− 61κ+ 52κ2 − 15κ3

]
γ4

+ κ

12
[
90− 18ζ(3) + κ(33ζ(3)− 288) + 355κ2 − 203κ3 + 46κ4

]
γ5

+ κ

32

[
45(16− 4ζ(3)− ζ(5)) + 2κ(259ζ(3)− 1338) + 1

3κ
2(12274− 1329ζ(3))

− 3285κ3 + 1412κ4 − 787κ5

3

]
γ6 +O(γ7) . (3.22)

8This is in contrast to the PCM calculation where the free energy has a structure ∆F ∼ −h
2

α
+O(α0),

which leads to a coupling 1
γ

+ (ξ − 1) log γ ∝ log ρ.
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Figure 1. Left to right, for κ = 0.98, 1 and 1.02, the Borel-Padé-poles in the ζ-plane. Evident are
singularities at ζ = ±2, with the positive pole removed for κ = 1.

In the next section we shall explore this perturbative expansion further.

4 Asymptotic analysis

In this section, we will quantitatively analyse the 38 orders of the perturbative series
obtained in the previous section. The goal shall be to compute an asymptotic formula
for the growth of the coefficients as a function of κ. After obtaining such a formula, we
can compute its Borel ambiguity, which can later be compared against an ambiguity of a
transseries.

As the perturbative series can readily be seen to exhibit factorial growth, as a first
step to resummation we introduce the Borel transform

B
[8κ
π

e

ρ

2]
≡
∞∑
n=0

an
n! ζ

n . (4.1)

This series has a finite radius of convergence but typically has either, or both, poles and
branch cuts. The pole/branch point closest to the origin in the ζ plane is governed by the
leading asymptotic behaviour. Of course, numerically one does not have all orders with
which to establish this Borel transformation, rather only a finite number of coefficients an
for n < N say. Here the Borel-Padé method can be employed: we compute BN [8κ

π
e
ρ

2] =∑N
n=0

an
n! ζ

n = P (ζ)
Q(ζ) +O(ζ)N+1 in which P and Q are polynomials in ζ of degree N/2. This

results in a picture in which an accumulation of poles (i.e. zeros of Q) is indicative of a
branch point. We perform this numerically for various values of κ and generically we find
evidence of branch points at ζ = ±2 whose location is independent of κ except that for
κ ∈ Z>0 the pole in the positive axis is removed - see figure 1. Pole/ branch points in
the negative real axis of the Borel plane indicate contributions to an of alternating sign
whereas the contributions to an that result in poles on the positive axis would have the
same sign. Here the analysis indicates that we have both. With 38 perturbative coefficients
this analysis should only be regarded as indicative but is sufficient to inform an educated
guess as to the asymptotic behaviour of the an which we will robustly verify below.

Motivated by the Borel-Padé analysis we assume the coefficients grow, to leading ap-
proximation, as

an ≈ A+Γ(n+ 1)/Sn +A−Γ(n+ 1)/(−S)n +O(n−1) . (4.2)
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Figure 2. The series g+,n (left) and g−,n (right) given by eq. (4.3) displayed for κ = 0.6. Circle
markers indicate the raw data, square markers the second Richardson transformation with acceler-
ated convergence. The final values of the second Richardson transform differ by 0.11% and 0.05%
respectively from the expected value 1

4 .

A first verification is to establish the factor S which can be done noting that

g+,n := a2n
2n(2n− 1)a2n−2

≈ 1
S2 , g−,n := a2n+1

2n(2n− 1)a2n−1
≈ 1
S2 . (4.3)

We find, see figure 2, that the series g±,n converge to 1
4 , independent of κ thus establishing

S = 2 in accordance with the expectation from the Borel-Padé analysis.
Having established the factorially growing character of the perturbative series, we now

propose a more refined ansatz for the an. Our central claim can be summarised by stating
that the perturbative series has coefficients that have a leading large order behaviour as

an ≈
A+
2n

∞∑
l=0

β+
l Γ(n+ a+ − l) + A−

(−2)n
∞∑
l=0

β−l Γ(n+ a− − l) , (4.4)

where we normalise β±0 = 1 and the first few coefficients are

a± = ∓2κ ,

A± = 8±1

π
sin(∓κ)Γ(±κ)

Γ(∓κ) = − 8±1

Γ(∓κ)Γ(1∓ κ) ,

β−1 = −β−2 = −4κ .

(4.5)

To support these claims, we shall define the auxiliary series

cn = 2n
Γ(n+ 1)an , (4.6)

to take care of the leading factorial and geometric growth. We project to the alternating
and non-alternating parts of the series by considering

f±k = c2k ± c2k−1 , (4.7)

which have asymptotics

f±n = 2A±(2n)a±−1
(

1 +O
( 1
n

))
, (4.8)
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Figure 3. The series σ−
n (left) converges to a− using (4.9). Using eq. (4.8) we display (right) the

sequence that converges to A−. Circle markers indicate the raw data, square markers the second
Richardson transformation. For both, we display results for κ = 0.9. The second Richardson
transform converge to the expected results given by eq (4.5) up to errors of 0.011% and 0.00068%
respectively.

such that the sequences

σ±n = 1 + n log
f±n+1
f±n

, (4.9)

converge to a±. With a± determined one can then directly consider the asymptotics of f±
to establish A±. Figure 3 illustrates the convergence of this procedure for a fixed value of
κ, and figure 4 establishes the functional form of these coefficients for various values of κ.

A methodological subtlety is that, from empirical observation, the contributions from
the alternating sector, i.e. A− (and associated subleading terms), are dominant for κ > 0
over those of the non-alternating A+ sector. Thus to extract the non-alternating contri-
butions we first establish the leading alternating contribution as described above and then
repeat the process working instead with a new series in which the leading alternating con-
tribution has been subtracted. However, when κ becomes sufficiently large, the sub-leading
alternating contribution becomes comparable to that of the leading non-alternating contri-
bution. This limits the reliability of determination numerically of the A+, a+ coefficients
to small values of κ. However, these coefficients can be more readily verified by continuing
to the κ < 0 regime where they are more dominant.

Having determined in this fashion the leading contributions to an, these can then be
subtracted from the data, the analysis repeated mutatis mutandis, to determine the sub-
leading βk coefficients (and again for similar reasons to the above the β−k coefficients are
more readily extracted). Figure 5 gives the numerical form of β−1 and β−2 as a function of
κ indicating a linear relationship.

It becomes somewhat challenging to extract further subleading contributions from the
data available. However, one can consider defining a new series, ãn, comprised by taking
the data set and subtracting the already established asymptotic form of eq. (4.5). Using
the Borel-Padé again to this subtracted series produces some evidence, see figure 6, of a
compelling feature. Instead of poles accumulating at ζ = ±2, as would be anticipated
should the ansatz (4.4), one finds that leading positive poles appears to accumulate at
ζ = +4. The interpretation here is that the subtraction has removed the entire non-
alternating terms with behaviour 2−n, suggesting that all fluctuations β+

n>0 = 0 That the
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Figure 4. The second Richardson transformation of the sequences (4.9) (left) and (4.8) (right) to
determine a± and A± as functions of κ. a+, A+ are indicated by red crosses and a−, A+ by blue
points with solid lines showing the analytic formula of eq. (4.5).

Figure 5. The sub-leading coefficient β−
1 (left) and β−

2 (right) for various values of κ. Shown is the
terminal value of the third Richardson Transformation of the sequence that gives β−

n constructed
from fn after subtraction of leading alternating and non-alternating asymptotics. Grey lines cor-
respond to β−

1 = −4κ and β−
2 = +4κ. A noticeable drift in β−

2 for larger values of κ suggests
pollution from further sub-dominant terms contributing at this order of perturbation theory.

coefficients β+
n>0 = 0 is a numerical prediction that we shall verify analytically in the

sequel. That the next contribution comes with twice the “action” 4−n is in accordance
with the Parisi-’t Hooft conjecture [63–65]; the leading poles in the Borel plane at ζ = ±2
lie at integer values and the values of a± = ∓2κ = ±2ξ are as expected (see [15]).9
The accumulation of poles at ζ = +2 is accordingly interpreted as an IR renormalon. A
similar procedure of subtraction (removing the IR renormalon) used above (in figure 6) was
performed in [26] to expose new Borel renormalon singularities that were not in accordance
with Parisi-’t Hooft in cases including e.g. the Gross-Neveu model. Here however, figure 6
indicates that the next most proximate IR renormalon branch-point singularity is found in
a location that are consistent with Parisi-’t Hooft.

5 Transseries and ambiguity cancellation

In this section we compute the leading ambiguity of e
ρ2 in two different ways. First, we

calculate the Borel ambiguity of the large order behaviour of the perturbative sector estab-
lished in 4. This is compared against an approach which solves the TBA system in terms
of a transseries.

9We thank M Mariño and T Reis for illuminating us on this point.
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Figure 6. After subtracting the leading alternating and non-alternating contributions, we again
perform a Borel-Padé computation for κ = −0.75 (left) and κ = 0.4 (right). This seems to suggest
that there is no longer a Borel singularity at ζ = 2, but instead finding one at ζ = 4.

5.1 Borel resummation and large order perturbative ambiguity

Naively, one could try to resum the original asymptotic series by performing a Laplace
transform on the Borel transform (4.1)

1
γ

∫ ∞
0
B
[8κ
π

e

ρ2

]
e−ζ/γdζ = 1

γ

∫ ∞
0

∞∑
n=0

an
n! ζ

ne−ζ/γ '
∞∑
n=0

anγ
n = 8κ

π

e

ρ2 . (5.1)

However, as we have seen, the Borel transform B
[

8κ
π

e
ρ2

]
generically has singularities along

the positive real axis obstructing the contour of this integral. Therefore, we shall introduce
a directional Borel resummation given by

Sθ

[8κ
π

e

ρ2

]
= 1
γ

∫ eiθ∞

0
B
[8κ
π

e

ρ2

]
e−ζ/γdζ . (5.2)

This procedure results, when integrating along a line without singularities, in a finite an-
swer, which however, depends on the sign of θ, i.e. there is an ambiguity in the resummation
of the perturbative series. This ambiguity, which is a Stokes phenomenon, is studied by
considering S+ε − S−ε. This can be done analytically by using, instead of the numerically
obtained results, a series whose coefficients are exactly the asymptotic form an given by
eq. (4.4) for all values of n:

(S+ε − S−ε)
[8κ
π

e

ρ2

]
(γ) = 2πiA+

(2
γ

)a+

e−2/γ
∞∑
k=0

β+
k

(
γ

2

)k

= − 16πi
Γ(−κ)Γ(1− κ)

(
γ

2

)2κ
e−2/γ [1 +O(γ)] .

(5.3)

Similarly, across the negative real axis we find a leading ambiguity given by

(Sπ+ε − Sπ−ε)
[8κ
π

e

ρ2

]
(γ) = 2πiA−

(
− 2
γ

)a−
e2/γ

∞∑
k=0

β−k

(
− z

2

)k

= − πi

4Γ(κ)Γ(1 + κ)

(
−γ2

)−2κ
e2/γ [1 +O(γ)] .

(5.4)
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In these expressions we note the presence of an exponentially small parameter, √qγ =(
2
γ

)2κ
e−2/κ (the square root is for convenience later) characteristic of non-perturbative

physics. The main thrust of the modern resurgence paradigm is that physical quantities,
here e/ρ2, should be understood as a transseries, i.e. an expansion in √qγ whose terms
are each formal (asymptotic) series in γ. It is critical that whilst resummation may be
ambiguous when applied to any individual term in this (here the perturbative √qγ0 sec-
tor), taken altogether the final result is non-ambiguous. In particular, and this goes back
to the pioneering work of Bogomol’nyi and Zinn-Justin [66–69], the ambiguity of this per-
turbative sector should be compensated by a leading order ambiguity in an appropriate
non-perturbative sector. In the next section we shall verify that such an ambiguity cancel-
lation does take place.

5.2 Transseries and leading non-perturbative ambiguity

In this series we shall apply a different type of analysis to the TBA equations which results
in a transseries solution. The starting point shall be a reformulation of the TBA system
as an integral equation for an auxiliary function u(ω),

u(ω) = i

ω
+ 1

2πi

∫ ∞
−∞

dω′
e2iBω′%(ω′)u(ω′)
ω′ + ω + iδ

, (5.5)

where
%(ω) = 1− iω

1 + iω

G−(ω)
G+(ω) , (5.6)

together with the boundary condition

u(i) = m

2he
B G+(i)
G+(0) . (5.7)

Having established the function u, the free energy is given by

∆F (h) = − 1
2πh

2u(i)G−(0)2
(

1− 1
2πi

∫ ∞
−∞

dω
e2iωBu(ω)%(ω)

ω − i

)
. (5.8)

We will now apply to the λ-model the techniques pioneered by [26] to solve this recur-
sively order by order in a perturbative parameter and a non-perturbative parameter. The
idea is to move the integration contour of the integral equation (5.5) into the UHP so that
it envelops all the branch cuts and poles in the UHP. The Sine-Gordon model is special as
it only has poles but no branch cut. This was studied in [70] and gives rise to a convergent
rather than asymptotic expansion. However, in the case of the λ-deformed model, we are
dealing with both poles and a branch cut along the imagine axis of ρ(ω).

To separate it from the poles, we slightly move the cut away from the imaginary axis
to the ray C± = {ξeiθ|θ = π

2 ± δ}. By deforming the integration contour we isolate the
contributions coming from the discontinuity over the cut and the residues at the poles
(see figure 7). As explained in [26] the choice of moving the branch cut to C+ or C−
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ω C−

C

%−1

%−2

%−3
ω C+

C

%+
1

%+
2

%+
3

Figure 7. The contour C = (−∞,∞) is deformed into either of two ways. The branch cut,
represented by the curvy line is moved to either the ray C+ or C−. In those cases respectively, the
contour is deformed into C+ or C−. In both cases we pick up residues %±

n , but their values differ by
the branch cut discontinuity.

is arbitrary and gives rise to a leading non-perturbative ambiguity. Letting %n,± be the
residues at x = xn with the cut moved to C±, after this contour pulling eq. (5.5) becomes

u(ix) = 1
x

+ 1
2πi

∫ ∞e±iε
0

dx′
e−2Bx′u(ix′)δ%(ix′)

x′ + x
+
∑
n

e−2Bxnun%n,±
xn + x

, (5.9)

where un ≡ u(ixn) and δ% is the discontinuity over the cut.10

From the WH-decomposition (2.17), we evaluate %(ω) using (5.6) as

%(ω) = −ω + i

ω − i
Γ
(
iω
2 + 1

)2
Γ(1− iω)Γ(1− iκω)

Γ
(
1− iω

2

)2
Γ(iω + 1)Γ(iκω + 1)

e−2ibωeiκω(log(iω)+log(−iω)) . (5.10)

For generic values of κ, this has poles on the positive real axis at ω = ixn = iµn with µ = 2
with residues given by

%n,± = Res
x=xn±iε

%(ix) = −2ie2n(2b±iπκ−2κ log(2n))n
2n+ 1
2n− 1

((2n)!)2

(n!)4
Γ(1 + 2nκ)
Γ(1− 2nκ) . (5.11)

However, when κ is rational some of these poles are removed. Suppose we express κ ≡ k
N =

p/q as a reduced fraction with p, q coprime integers (i.e. q = N/gcd(N, k)), then the set of
poles are located at x ∈ 2N\qN (rather than x ∈ 2N). Hence, the residue %n,± evaluates to
zero if 2n ∈ 2N∩ qN, i.e. 2n is a multiple of q. In particular, when k is an integer multiple
of a half, i.e. q = 1 or q = 2, all poles are removed entirely. If %1 = 0, then %n = 0 for all
n; in what follows we shall consider only the case where %1 6= 0 which is most relevant to
our discussion.

The discontinuity function is given by

δ%(ix) = 2ix+ 1
x− 1e

2bxe−2κx log x sin(κπx)Γ(1− x/2)2Γ(1 + x)Γ(1 + κx)
Γ(1 + x/2)2Γ(1− x)Γ(1− κx) . (5.12)

10For the discontinuity function, we use the convention δρ(ω) = ρ(ω(1− iε)− ρ(ω(1 + iε)).
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Notice this has simple poles at x = 2n, which have residues that vanish for κ half-integer.
Lastly we shall need11

%(i± 0) = 8e2b∓iπκΓ(1 + κ)
Γ(1− κ) = 8

πκ
e2b∓iπκΓ(1 + κ)2 sin(πκ) . (5.13)

Following again [26], the integral equation (5.9) is simplified by the introduction of
P (η, v) given by

e−2Bxδ%(ix) = −2ive−ηP (η, v) , (5.14)

with a change of variables (x,B)→ (η, v):

1
v

+ a log v = 2B , x = vη . (5.15)

Here, a is a constant determined by demanding that P (η, v) is regular in v with, in par-
ticular, no log(v) terms. From eq. (5.12), we have that δ%(ix) ∝ eãx log x∑ dnx

n, where
ã = −2κ, therefore this determines ã = a. This yields an expansion of P (η, v) given by

P (η, v) = d1,0η + vη2(d2,0 + d2,1 log(η)) +O(v2) ,
d1,0 = πκ , d2,0 = 2πκ(1 + (1− γE − log(κ))κ− log(2)) , d2,1 = −2πκ2 .

(5.16)

With the introduction of an integral operator

I[f ](η) = − v
π

∫ ∞
0

dη′
e−η

′
P (η′, v)f(η′)
η + η′

, (5.17)

after this change of variables, eq. (5.9) can be written as

u(η) = u(η) + I[u](η) , (5.18)

in which the ‘seed’ solution is given as

u(η) = 1
vη

+ 1
v

∑
n

e−2Bvηnun%n,±
ηn + η

. (5.19)

The formal solution obtained by iteration is thus presented as

u(η) =
∞∑
l=0
I l[u](η) ≡ J [u](η) . (5.20)

To determine the unknown coefficients un = u(ηn) we evaluate eq. (5.18) at η = ηn =
µn/v and define In[f ] ≡ I[f ](η = ηn) to obtain

un = 1
µn

+ In[u] + 1
µ

∑
m

e−2Bvηnum%m,±
m+ n

. (5.21)

Here we have made a slight adaptation compared to [26] to suit the locations of the poles
at xn = µn (with µ = 2) (cf. the Gross-Neveu model for which xn = 2n+1

Υ for some
11Because we are assuming that κ is not integer, %(i± 0) is non-zero. If κ < 0, then %(i± 0) generically

has a finite ambiguity.
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constant Υ). To treat the exponentially small contributions coming from the residue term
we introduce the small parameter

q = e−2Bµ = e−µ/vv−µa . (5.22)

Both the seed and formal solution, and the unkown values un, admit expansion in q

u(η) =
∑
s=1

u(s)(η)qs , u(η) =
∑

u(s)(η)qs , un =
∑
s=0

u(s)
n qs . (5.23)

As the operator J does not introduce factors of q we can construct the full solution
order by order in q noting u(s)(η) = J [u(s)](η). Using (5.19) one finds that the first few
terms12 of the seed solution are given by

u(0) = 1
vη

, u(1) = %1,±u
(0)
1

vη + µ
, u(2) = %1,±u

(1)
1

vη + µ
+ %2,±u

(0)
2

vη + 2µ . (5.25)

Applying the q-expansion to eq. (5.21) we have that

u(0)
n = J [u(0)](ηn) = 1

µn
+ In

[
J
[ 1
vη

]]
, u(1)

n = In[J [u(1)]] + 1
µ

%1,±u
(0)
1

1 + n
. (5.26)

Let us assume that %1,± 6= 0 (i.e. κ is not half-integer), such that these two expressions are
governing the leading behaviour. Suppose now we work formally13 to leading order in v

and leading order in q . Because each application of I carries a factor v, to leading order
it is sufficient to consider only the identity operator J = 1 + . . . which results in14

u(0)
n = 1

µn
− v

nπµ
d1,0 +O(v2) , u(1)

n = %1,±
µ2(n+ 1) −

d1,0%1,±
µ2π(n+ 1)v +O(v2) . (5.27)

The leading orders of u(η) are obtained by

u(η) =
[
u(0) + I[u(0)] +O(v)

]
+ q

[
u(1) + I[u(1)] +O(v2)

]
+O(q2) . (5.28)

To implement the boundary condition that relates the chemical potential h to q, v, we
will need

u(i) = u

(
η = 1

v

)
=
[
1− d1,0

π
v +O(v2)

]
+ q%1,±
µ(1 + µ)

[
1− d1,0v

π
+O(v2)

]
+O(q2) . (5.29)

12For n ≥ 1, we have in general

u(n)(η) =
n∑

m=1

%m,±u
(n−m)
m

vη + µm
. (5.24)

13I.e. ignoring that q is exponentially smaller than higher order polynomial terms in v.
14The small v limit can be taken also in the integral:

I
[

1
vη

]
(ηn) = − v

π

∫ ∞
0

eη
′
d1,0η

vη′ + nµ
= − v

π

∫ ∞
0

(
eη

′
d1,0

nµ
+O(v)

)
= −vd1,0

nπµ
+O(v2) .
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The next step is to do the Legendre transform and calculate e
ρ2 from ∆F . This can then

be used to compare against the perturbative calculation. The same procedure of resolving
the cut away from the poles of ρ and deforming the contour appropriately yields

∆F (h) = −h
2

2πu(i)G+(0)2
(

1 + v2

π

∫
e−ηP (η, v)u(η)

ηv − 1 dη −
∑
n≥1

qn%n,±un
µn− 1

)

+ 1
8πm

2G+(i)2ρ(i± ε) ,
(5.30)

in which we have made use of the boundary condition of eq. (5.7) to simplify the (h-
independent) contribution proportional to ρ(i ± ε). The leading orders of eq. (5.30) are
given by15

∆F (h) = −G+(0)2h

2π

(
1− 2d10

π
v +O(v2)

)
×
(

1 + 2ρ1,±
µ(1− µ2)q +O(q2)

)
+ 1

8πm
2G+(i)2ρ(i± ε)

(5.31)

The first step of the Legendre transform is to relate h to the parameters q and v. This is
done by substituting the expansion (5.29) for u(i) into the boundary condition (5.7) which,
for µ = 2, gives

h = mG+(i)
12πG+(0)q

−1/4(π + d1,0v +O(v2)
)(

6− ρ1,±q +O(q2)
)
. (5.32)

As a consequence ρ = −d∆F
dh is given by

ρ = G+(i)G+(0)m
12π2

(
π − d1,0v +O(v2)

)(
6q−1/4 + ρ1,±q

3/4 +O(q7/4)
)
, (5.33)

from which we obtain e
ρ2 as a series in v and q:

e

ρ2 = 1
6G+(0)2

(
π + 2d1,0v +O(v2)

)(
3 + ρ1,±q +O(q3/2)

)
+ 1

8π
m2

ρ2 G+(i)2ρ(i± ε) . (5.34)

We will now write this expansion in terms of the coupling (3.20) used in the previous
sections. Let us introduce a parameter exponentially small in γ, analogous to q being
exponentially small in v, given by qγ = e−4/γ(γ/2)4κ. Notice that in particular that m =
2ρΓ(κ)q

1
4
γ ; this will allow us to exactly evaluate the h-independent contribution proportional

to ρ(i± ε) in eq. (5.34). For the remaining terms in eq. (5.34) we use (3.20) to write v as
a series in γ and qγ . Upon substitution of this series for v (and q = q(v)) into (5.34), we
arrive at

8κ
π

e

ρ2 =
(
1 + κγ +O(γ2)

)
− 8e∓iπκ Γ(κ)

Γ(−κ)q
1/2
γ

+ 23−4κe∓2iπκ Γ(2κ)
Γ(−2κ)qγ(1 +O(γ)) .

(5.35)

15For aesthetic purposes we have displayed this equation, and those following, as a factored product of
perturbative and non-perturbative parts. This factorisation however is coincidental to the order of expansion
displayed here and not a general feature.
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We see that the first two coefficient of the perturbative series match precisely with eq. (3.22).
The presence of transseries parameters qγ = e−4/γ(γ/2)4κ provides concrete predictions of
the resurgent structure of the perturbative series. In particular, we compute the ambiguity
of the transseries (5.35) due to the difference in result if the branch cut is left or right of
the poles. To leading order in qγ and γ, it is given by

8κ
π

[(
e

ρ2

)
−
−
(
e

ρ2

)
+

]
= 16πi

Γ(−κ)Γ(1− κ)

(
γ

2

)2κ
e−2/γ . (5.36)

This is exactly the same ambiguity as obtained through the asymptotic analysis of our
perturbative calculation - see eq. (5.3). We thus observe that the Borel-ambiguity of
the perturbative series can be cancelled precisely by an ambiguity of a transmonomial.
Therefore, the large order non-perturbative behaviour is unambiguous up to the order
considered. This mirrors the fabled BZJJ ambiguity cancellation [66–69] in a field theory
context. Further we emphasise that the q1/2

γ contribution above recieves no polynomial
corrections in γ; this is exactly in accordance with the numerical non-alternating large
order behaviour which pointed towards the vanishing of subleading corrections β+

n>0 (recall
that for BZJJ cancellation to hold subleading large order behaviour must match against
perturbative fluctuations about the corresponding non-perturbative saddle and in the case
at hand both are absent).

Beyond this leading ambiguity on the positive real axis of the Borel plane we can see
that there is an non-perturbative ambiguity in the coefficient of qγ which when translated
back corresponds to the branch point singularity at ζ = +4 observed in figure 6. Moreover,
since the TBA kernel %(ω) has poles in the positive imaginary axis at regular (twice integer)
spacing ω = 2in, all non perturbative-contributions will come with integer powers of qγ .
Since q

1
4
γ ∝ m/ρ this implies that all non perturbative-corrections are proportional to

integer powers of the dynamically generated scale, and this is in accordance with the
Parisi-’t Hooft conjecture [63–65].

We can do a similar analysis to recover the Borel branch singularity on the negative
real axis. The critical modification of the programme, as realised by [15], is to deform the
contour of the integral equation (5.5) into the lower half plane, instead of the upper half
plan. The critical analytic data is then given by the branch cut and residues at the negative
imaginary axis. In the lower half plane, %(−ix) has residues at xn = 2n+1 and at x̃n := n

κ .
However, as the latter set of residues is unambiguous with respect to the branch cut, they
do not contribute.16 One subtlety when using this approach arises when computing u(i).
Deforming the contour of eq. (5.5) to an envelopment of the negative imaginary axis picks
up a residue at ω = −i, which introduces a contribution of u(−i)ρ(−i ± ε)q not present
in the analysis above. We will not present a detailed derivation as it is similar to the one
above. Rather, we can report that the final result is a transseries with a leading ambiguity

16They would be part of a transseries solution, but as they are unambiguous, they are not of interest to
us currently. As a further side remark, when choosing κ < 0, along the positive imaginary axis %(ix) also
has such unambiguous residues at x = n

κ
.
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given by
8κ
π

[(
e

ρ2

)
−
−
(
e

ρ2

)
+

]
= − πi

4Γ(κ)Γ(1 + κ)

(
−γ2

)−2κ
e2/γ . (5.37)

This precisely matches the ambiguity of the perturbative sector around the negative real
axis found in eq. (5.4).

6 Discussion

In this note, we have studied the λ-model and brought it into the fold of resurgent analysis
of [13–15, 26]. The model is particularly interesting, because, distinct from previously
considered models, it has a interacting CFT fixed point in the UV.

We have found a perturbative series for the energy density at finite chemical potential
of the λ-model in section 3.4 and identified with numerical techniques its asymptotic form
in section 4. A key feature is that the Borel resummation of the large order behaviour is
ambiguous when taken along either the positive or negative real axis. These ambiguities
are exactly compensated/cancelled by a further ambiguity in a non-perturbative sector of
a transseries solution in section 5. These cancellations provide the λ-model with a robustly
defined foundation which may serve as a paradigmatic example for other theories with
asymptotic CFT behaviour.

Of particular note is that the leading ambiguity on the positive axis (and associated
features in the Borel plane) vanishes for κ ∈ Z>0, i.e. when the WZW level k divides the
rank N of the gauge group SU(N). This is reminiscent of Cheshire-cat resurgence [71–
74] in which the full glory of resurgence only becomes apparent as you deform away from
certain special points at which it truncates, here however the feature is more acute in that
at the special values of κ where this happens both factorial large order growth and the
non-perturbative contribution disappear entirely.

Let us finish with some broader questions to ponder following the analysis of the λ-
model that we hope might stimulate further investigations on the topic:

• An interesting feature of the WZW CFT that defines the UV of the λ model is that
it exhibits level-rank duality [75]. It would be valuable to understand the extent to
which this property constrains, or is encapsulated, in the form of the transseries that
defines the λ-model.

• In a QFT it is sometimes possible to directly link poles/branch points in the Borel
plane to finite action non-pertubative saddle configurations. Remarkably, this can be
done even in theories without instantons. In a series of paper [9, 11, 12] finite action
‘uniton’ configurations of 1+1d integrable QFTs were matched to Borel poles of a
quantum mechanics that followed by dimensional reduction with twisted boundary
conditions (akin to a chemical potential as deployed here). This poses a natural
question: can the features of the Borel plane we have found here via TBA methods
be related to some finite action saddles? Conversely, given the knowledge of such
uniton configurations, what do they imply for the TBA method? Achieving this
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would serve to put the semi-classical approaches of [9, 11, 12] on a surer-footing in
quantum field theory.

• On the other hand there are a class of ambiguities which don’t (yet at least) have
an interpretation as semi-classical saddles. Instead they are renormalon ambiguities
associated to certain classes of Feynman diagrams. In [18, 76] it was shown how
to construct such a series of diagrams which source the renormalon ambiguities in
1/N expansion of the O(N) vector model, the Gross-Neveu and the SU(N) PCM. It
would be interesting to investigate if there are diagrams that are responsible for the
ambiguities in the λ-models.

• The landscape of integrable models in two dimensions has been vastly expanded in
recent years through variants of this λ-model, and the related Yang-Baxter σ-models.
It could be rewarding to deploy similar technique across this landscape included e.g.
to models with multiple deformation parameters or theories based on cosets rather
than group manifolds.

• In [57] the Quantum Inverse Scattering Method was applied to give a direct quanti-
sation of the λ-models as a continuum limit of a spin k Heisenberg spin-chain with
inhomogeneities. The parameter that governs the in-homogeneity becomes a mass.
Although the ground state of the system is quite a complicated Fermi sea, one can
identify holes as certain particle excitations. After taking the continuum limit, one
can obtain a TBA system for these excitations matching that of the QFT. An exciting
question is if the above resurgent structure can be given a similar ab initio derivation
within the QISM framework.
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