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Abstract: We consider 4d N = 1 theories arising from F-theory compactifications on
elliptically-fibered Calabi-Yau four-folds and investigate the non-perturbative structure of
their scalar field space beyond the large volume/large complex structure regime. We focus
on regimes where the F-theory field space effectively reduces to the deformation space of
the worldsheet theory of a critical string obtained from a wrapped D3-brane. In case that
this critical string is a heterotic string with a simple GLSM description, we identify new
strong coupling singularities in the interior of the F-theory field space. Whereas from the
perturbative perspective these singularities manifest themselves through a breakdown of the
perturbative α′-expansion, the dual GLSM perspective reveals that at the non-perturbative
level these singularities correspond to loci in field space along which the worldsheet theory
of the critical D3-brane string breaks down and a 7-brane gauge theory becomes strongly
coupled due to quantum effects. Therefore these singularities signal a transition to a strong
coupling phase in the F-theory field space which can be shown to arise due to the failure
of the F-theory field space to factorize between complex structure and Kähler sector at the
quantum level. Such singularities are hence a feature of a genuine N = 1 theory without
a direct counterpart in N = 2 theories in 4d. By relating our setup to recent studies of
global string solutions associated to axionic strings we argue that the D3-brane string dual
to the perturbative heterotic string leaves the spectrum of BPS strings when traversing
into the strong coupling phase. The absence of the perturbative, critical heterotic string
then provides a physical explanation for the breakdown of the perturbative expansion and
the obstruction of certain classical infinite distance limits in accordance with the Emergent
String Conjecture.
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1 Introduction

In the quest to uncover the fundamental nature of quantum gravity, string theory provides
an ideal testing ground to identify general principles that are believed to be valid in any
theory of quantum gravity. For that reason, string theory plays a key role in the so-called
Swampland program, initiated in [1], that aims to find criteria that any effective theory
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needs to satisfy in order to arise as a low-energy approximation to quantum gravity. In that
context, perturbative string theories provide the most striking evidence e.g. for the Distance
Conjecture [2] or the Weak Gravity Conjecture [3] (cf. [4–7] for reviews). However, in order
to have computational control over the string theory one typically requires the string to
be weakly coupled, the effective theory to preserve a large amount of supersymmetry and
the vevs of the scalar fields to be tuned to asymptotic regions in the scalar field space
where the effective theory can be described by a string compactification on some geometric
background. Unfortunately when aiming to understand the full nature of quantum gravity
these requirements pose severe limitations. To obtain a more complete picture, one should
hence also turn for instance to effective theories with at most N = 1 supersymmetry in four
dimensions which are not realized in strict asymptotic regions of the scalar field space in
order to avoid the existence of an infinite tower of light states in these regimes as required
by the Distance Conjecture.

Due to the lack of computational control over the corrections to N = 1 theories in four
dimensions, the interior of the scalar field space of such theories is relatively unexplored.
Still, one might hope to encounter interesting structures once moving away from the strict
asymptotic/weak coupling limits. In this paper, we want to partially address this ques-
tion for the special case of F-theory compactifications on elliptically-fibered Calabi-Yau
four-folds. Such setups give rise to four-dimensional effective theories with N = 1 super-
symmetry and thus provide an interesting setting to uncover the structure of the N = 1
scalar field spaces. The asymptotic regions of the scalar field space for these theories have
recently been investigated in the context of the flux compactifications [8–12] as well as the
Weak Gravity and Swampland Distance/Emergent String Conjecture [13–17]. The latter
conjecture [18] states that any infinite distance limit in a consistent theory of quantum
gravity is either a limit in which a critical string becomes tensionless and weakly coupled,
or a limit in which the theory effectively decompactifies. Among others this conjecture
has been shown to hold in the Kähler sector of the F-theory scalar field space [13, 15]
and the strict differentiation between emergent string and decompactification limits has
recently been stressed again in [17]. More precisely, in asymptotic limits in the Kähler field
space of N = 1 four-dimensional F-theory compactifications [17] showed that there cannot
be any tower with mass below the quantum gravity cut-off, i.e. the Planck scale or the
species scale [19], that does not arise from KK modes of a higher-dimensional theory or
the excitations of a critical string. In particular any particle-like string excitations neces-
sarily arise from weakly coupled, genuinely four-dimensional strings obtained by wrapping
D3-branes on certain curves in the base of the elliptic CY four-fold which indeed can be
shown [13, 15, 17] to be always dual to critical type II or heterotic strings.

In this work we aim to investigate the interior of the F-theory scalar field space,
MF , away from strict weak coupling points. More precisely, our goal is to uncover the
physics in corners of the scalar field space of genuine N = 1 theories in 4d where the
asymptotic, weakly-coupled description breaks down. We refer to the loci in field space
where the asymptotic description breaks down as the border of the asymptotic region. In
this context, it has already previously been noticed [15] that, for instance, certain regimes
in field space that classically look like an asymptotic emergent string region are obstructed
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due to a breakdown of the perturbative α′-expansion. One of our goals in this work is
to revisit these obstructions and give a physical explanation for the absence of emergent
strings in these regions.

As mentioned previously, asymptotic regions in the scalar field space of N = 1 theories
in 4d have the property that any tower of massive excitations with mass below the quantum
gravity cutoff is either made up by KK modes or the excitations of a critical string [17].
In this work, we want to exploit this property to find the borders of these asymptotic
regimes inMF . For definiteness, we exclusively focus on the case where the light, massive
states arise from a critical string. In the regimes of MF where this is the case, the full
F-theory effectively reduces to a critical string theory. Such regimes are obtained in the
case that a D3-brane wrapped on a curve becomes classically lighter than any other stringy
scale as the physics associated to these other scales effectively decouples. We are then left
with a theory of a single string and its excitations. Though this is similar in spirit to the
emergent string limits, unlike for emergent string limits we only require that the D3-brane
string becomes light at the classical level and at this point are agnostic about whether
it remains light and weakly coupled also at the quantum level. Still, the benefit of such
regimes is that we are left with a residual scalar field space which can be identified with
the deformation space of the string worldsheet theory.

In the cases of interest for us, the light string is a critical string and we can thus inves-
tigate the properties of the residual scalar field space by studying the deformation space of
a critical string in 4d. By the emergent string conjecture the existence of the asymptotic
region and the presence of the perturbative excitations of this string are tightly related. In
order to identify the borders of the asymptotic region in field space, the relevant question
pertinent to the analysis in this paper is whether the light, critical string remains weakly
coupled in the interior of the residual field space also at the non-perturabtive quantum
level. To answer this question, in practice we restrict to the case that the critical string is
a heterotic string whose worldsheet theory allows for a description as the low-energy limit
of a (2, 2) (or (0, 2) deformation thereof) supersymmetric Gauged Linear Sigma Model
(GLSM). This case corresponds to heterotic standard embedding and thus to a situation
with space-time gauge theory E6 × E8. Though this is certainly a strong restriction, it
enables us to explicitly study the FI-parameter space of the GLSM as a proxy for the
quantum Kähler deformation space of the heterotic string (cf. [20] and [21, 22] for the
(0, 2) case). Via heterotic/F-theory duality this then translates into a description of the
residual F-theory Kähler field space in the light string limit.

In fact, the GLSM description allows us to identify a region in the residual scalar field
space where the light string ceases to be weakly coupled. We arrive at this conclusion by
considering the singular loci in the GLSM FI-parameter space and, more precisely, identify
the principal component of the singular locus as being responsible for the light string failing
to be weakly coupled. This is due to the fact that in the heterotic theory with standard
embedding, the unbroken E8 becomes strongly coupled along this locus in field space.
Furthermore, as the correlators of the heterotic worldsheet theory become singular along
this locus, also the worldsheet theory of the perturbative heterotic string breaks down
entirely. Using heterotic/F-theory duality and employing the perturbative corrections to
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MF derived in [15, 23–25], we translate the structure of the FI-parameter space into the
structure ofMF . Thereby we are able to identify a strong coupling phase also in the latter.
By studying the perturbative corrections to MF it has already been noticed in [15] that
certain limits, in which a critical string becomes classically weakly-coupled, are obstructed
since the perturbative α′-expansion breaks down in F-theory. Our analysis shows that,
at the non-perturbative level, this obstruction is due to the strong coupling phase in MF

whose presence we infer via heterotic/F-theory duality and which is closely linked to the
failure ofMF to factorize in Kähler and complex structure sectors at the quantum level.

Going further, our analysis provides a physical explanation for why this obstruction/
break-down of the α′-expansion occurs. Though this effect is a genuine property of a N = 1
theory without a direct counterpart in N = 2 theories, we can still draw an analogy to a
similar situation in the vector multiplet moduli space of CY threefold compactifcations of
type II string theory. More precisely our approach to study the interior of the F-theory
scalar field space in regions where the full F-theory reduces to a string theory can be
viewed as the N = 1 analogue of studying point particle limits of N = 2 compactifications
of type II string theory [26]. In these setups the α′ → 0 limit of the type II moduli space
can be identified with the Coulomb branch of N = 2 SU(2) SYM theory with D-brane
states playing the role of the W±-bosons. The conifold singularity of the full type II vector
multiplet moduli space can then be identified with the singularities on the Coulomb branch
at which the gauge theory becomes strongly coupled. In our N = 1 version of this, the
relevant BPS objects are not particles but 1

2 -BPS strings. Still, in a similar spirit, the
theory associated to the 1

2 -BPS string becomes strongly coupled at the singularity in the
field space and we expect a strong coupling phase beyond that point. In fact, following
the approach of [27], we can also identify the singularity with a non-critical, non-geometric
string that becomes light along that locus replacing the D3-brane string as the fundamental
BPS object. Since the critical string fails to be weakly-coupled and to be part of the
BPS spectrum in the strong coupling phase, it also does not provide us with a tower of
perturbative string excitations. The absence of such a tower then implies that we also
reached the border of the asymptotic region in field space and any attempt to extend the
asymptotic region into the strong coupling region should be obstructed. Hence, the failure
of the critical string to be part of the BPS-string spectrum provides a physical explanation
why certain classically allowed emergent string limits inMF are obstructed [15].

This paper is structured as follows: in section 2 we introduce the general setup and
review basic properties of the scalar field space of N = 1 F-theory compactifications to 4d.
We further introduce the relevant string theory limits of F-theory and draw the analogy
to the field theory limits of N = 2 string theory compactifications. In section 3 we then
take a closer look at the deformation space of the worldsheet theory of the light string to
which the F-theory scalar field space reduces in the string theory limit. In particular, we
identify candidates for strong coupling singularities in the associated GLSM FI-parameter
space that can be responsible for obstructions to the classical light string limits. Based on
heterotic/F-theory duality, we show in section 4 that these strong coupling singularities also
arise in the F-theory scalar field space. We further discuss the physical interpretation of the
F-theory strong coupling phases in terms of the 1

2 -BPS string spectrum. We present our
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conclusions in section 5. The appendices A and B provide some background information
about heterotic/F-theory duality and GLSMs.

2 Light string limits in F-theory

In this section, we set the stage for our analysis in the rest of the paper. In particular,
we review certain light string limits in F-theory that play a central role throughout our
analysis. Such light string limits have been investigated previously in [13, 15]. Here, we
would like to revisit such limits in order to get insights into the non-perturbative structure
of the F-theory scalar field space,MF . In section 2.1 we start by giving some background
on the F-theory scalar field space and introduce the classical light string regimes pertinent
to the analysis in this paper. In section 2.2 we then discuss the analogy between these
string theory limits in four-dimensional N = 1 compactifications of F-theory and field
theory limits in four-dimensional N = 2 compactifications of type II string theory. This
analogy then serves as a guide to the general strategy to analyze the properties of the
F-theory scalar field space in such string theory limits which we summarize in section 2.3.

2.1 General setup

In this work, we are primarily interested in F-theory compactifications on elliptically-
fibered Calabi-Yau four-folds. The resulting effective four-dimensional theory has N = 1
supersymmetry and its effective action has been derived in detail in [28]. Let us review the
central aspects: the scalar fields of this effective theory are part of chiral multiplets and
can be associated to the complex structure deformations of the CY four-fold X4 and the
(complexified) Kähler deformations of the base, B3, of the elliptic fibration π : X4 → B3.
In the limit of large volume and large complex structure, the scalar field space effectively
factorizes as

MF
chiral −→MF

c.s. ×MF
cK . (2.1)

The first factor corresponds to the complex structure deformations of X4 whereas the
second factor is spanned by the complexified Kähler deformations parametrized by

Si = 1
2

∫
Di

J ∧ J +
∫
Di

C4 . (2.2)

Here Di, i = 1, . . . , h1,1(B3), are generators of the cone of effective divisors on B3, J is the
Kähler form on B3 and C4 the type IIB RR four-form. The classical factorization (2.1)
translates into a factorized form for the Kähler potential

K = − log
(∫

X4
Ω4 ∧ Ω̄4

)
− 2 log (VB3) , (2.3)

where Ω4 is the holomorphic (4, 0)-form on X4 whose variation is associated to complex
structure deformations and VB3 is the volume of the base B3 as a function of the Si. Unlike
in e.g. Calabi-Yau three-fold compactifications of type II string theory, this factorization
of the scalar field space does not necessarily survive in the interior of the scalar field space
since quantum effects can mix the Kähler and complex structure sectors. However, in
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the large volume/large complex structure limit this factorization is approximately real-
ized. Furthermore, in the large volume limit the Kähler potential enjoys a couple of shift
symmetries. Among others

Si → Si + ici , ci ∈ R , (2.4)

implying that the classical Kähler potential only depends on Re Si. This shift symmetry
allows to dualize the chiral multiplets into linear multiplets with scalar component given
by the real fields

Li = −1
2

∂K

∂ReSi
≡ 1

2
li

VB3
, (2.5)

where li are the volumes of the curves Ci ∈ H2(B3) dual to the generators, Di, of the cone
of effective divisors. Furthermore, the axion Im Si gets dualized into a two-form obtained
by reducing C4 along Ci. Instead of working with the linear multiplets, for most of the
paper we directly refer to the volumes li which can be thought of as rescaled versions of
the linear multiplets li = 2VB3L

i.
Notice that unlike for N = 2 theories, the scalar field space of N = 1 theories is not

necessarily an actual moduli space since the scalar fields can become massive due to the
presence of a non-trivial scalar potential

V = eK
(
gij̄DiWD̄j̄W̄ − 3|W |2

)
, (2.6)

where W is a superpotential and D is the Kähler covariant derivative. In general, W
receives non-perturbative contributions due to D3-brane instantons. In fact, it is ex-
pected [29] that W only vanishes identically if it is protected by supersymmetry which
is the case if the N = 1 theory is related to an N = 2 theory. Hence in general at least
some directions of MF correspond to massive scalar fields. In the following, however, we
treat MF as a quasi-moduli space and for most of the discussion are agnostic about the
presence of non-perturbative contributions to the scalar potential.

The main focus of this work is on the Kähler sector ofMF although the mixing with
the complex structure sector in the interior ofMF is going to play a crucial role later on.
There are two different parameterizations for MF

cK. On the one hand one can consider
the scalar fields Si as defined in (2.2) as the complexified volume of effective divisors. On
the other hand, in analogy to the Si we can define a different set of complex scalar fields
given by

Ti = 1
2

∫
Ji

J ∧ J +
∫
Ji

C4 . (2.7)

These can be thought of as the complexified volumes of the generators Ji of the Kähler
cone. Accordingly, we can also expand the Kähler form J of B3 in two ways

J = liDi ,

J = viJi .
(2.8)

Here li are the curve volumes appearing in (2.5) whereas vi are the volumes of the curve
classes generating the Mori cone. We are now interested in limits in the classical Kähler
cone where the effective F-theory reduces to a string theory. This is achieved if lj → 0 for
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some j ∈ {1, . . . , h1,1(B3)} while keeping li > 1 for all i 6= j. To see this, notice that a D3-
brane wrapped on a holomorphic curve C = aiC

i in B3, where {Ci} is a basis of movable
curves, gives rise to a string in 4d. The tension of this string is classically determined by
the volume of the holomorphic curve, i.e.

T

M2
IIB

= 2πVC = 2π aili . (2.9)

More precisely, we are interested in regimes where a unique D3-brane string becomes classi-
cally lighter than any other string. We call such a regime the string theory limit of F-theory
because in this case we classically have a string that is lighter than any other mass scale
in the theory.1 In such a regime, MF effectively reduces to the deformation space of the
light string which, in favorable cases, can be studied from the worldsheet perspective of
the string. A particularly interesting case for us arises if the light string obtained in the
limit lj → 0 is a critical, perturbative string since in this case we do have a worldsheet
description.2 This possibility has been investigated in detail in [13, 15] where it was shown
that the light string is indeed either a critical heterotic or a type II string.

To obtain such a situation, one needs B3 to be either a rational or a genus-one fibra-
tion [13]. For this to be the case there has to exist (at least) one Kähler cone generator J1
satisfying

J3
1 = 0 , J2

1 6= 0 . (2.10)

In this case,3 B3 can be viewed as a fibration ρ : C0 → B2 with C0 = J1.J1 the fibral class
with genus

g(C0) = 0 , if K̄B3 .C
0 = 2 ,

g(C0) = 1 , if K̄B3 .C
0 = 0 ,

(2.11)

where K̄B3 is the anti-canonical divisor of B3. For this fibration, the set of Kähler cone
generators can be split into two different sets I1 and I3 according to their intersections
with J1 [13]:

Jµ.J
2
1 6= 0 , ∀µ ∈ I1 ,

Ja.J
2
1 6= 0 , Ja.Jb.J1 = 0 , ∀a, b ∈ I3 .

(2.12)

Notice that in particular 1 ∈ I3.4 From the above we infer that the volume of C0 is given by

VC0 =
∑
µ∈I1

κ11µv
µ . (2.13)

Since C0 is the class of the generic fiber of B3 it is in fact a generator of the cone of movable
curves. The dual generator of the cone of effective divisors is given by the zero section D0

1Notice that this is related, but not equivalent to the emergent string limits defined in [18]. The difference
between our string theory limit and the emergent string limit is made more precise below.

2In fact it can be shown that this is the only possibility for lj → 0 while keeping li > 1 for all i 6= j [17].
3There is also the possibility that J2

1 = 0, dubbed J-class B in [13], but we focus on the J2
1 6= 0 situation

here.
4In general, we can interpret the Kähler cone generators Ja with a ∈ I3 as vertical divisors with respect

to ρ obtained by pulling back Kähler cone generators of B2 to the full fibration.
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of the fibration ρ. We can therefore identify

VC0 = l0 . (2.14)

The string theory limit in which we are interested corresponds to the limit l0 → 0. In order
not to spoil the F-theory description from the get-go, we need to ensure that VB3 remains
finite in this limit. Given the intersection numbers (2.12) of B3, one finds that to leading
order in the limit l0 → 0

VB3 = 1
2 l

0(v1)2 + . . . , (2.15)

where the dots stand for terms including vr for 1 6= r ∈ I3. In order to keep VB3 finite we
thus need to ensure [13]

l0 %
1

(v1)2 , (2.16)

which implies v1 → ∞ as l0 → 0.5 This, in turn, implies that the volume of the effective
divisor D0 dual to C0, given by (2.2), also blows up as ReS0 ∼ 1

2(v1)2. This ensures that,
at the classical level, the light string is also weakly coupled. Since the string is weakly-
coupled it can be treated perturbatively andMF indeed reduces to the deformation space
of the worldsheet theory on the string. In the following we restrict to the case K̄B3 .C

0 = 2
since our main goal is to capture genuine N = 1 effects in the light string limit. However, in
case K̄B3 .C

0 = 0 a D3-brane wrapped on C0 is insensitive to such genuine N = 1 effects.
To see this, recall that K̄B3 captures how the elliptic fiber of X4 varies over B3 and in
particular K̄B3 is trivial we have enhanced N = 2 supersymmetry. Therefore a string on a
curve C0 such that K̄B3 .C

0 = 0 is insensitive to the supersymmetry breaking effects. As a
consequence in the weak coupling limit of such a string all genuine N = 1 effects, that we
want to study in this work, are diluted. On the other hand for K̄B3 .C

0 6= 0 we expect at
least some N = 1 effects to survive in the weak coupling limit which is why we focus on
the case K̄B3 .C

0 = 2.
Notice that in this limit, VB3 factorizes and by (2.3) the scalar field space also factorizes

further. This factorization is a crucial property of a weakly-coupled string theory limit
of F-theory since one factor of the field space can be interpreted as the string coupling
of the light string whereas the remainder can be treated as the deformation space of the
worldsheet theory of the light string. Such a factorization is characteristic of a perturbative
string theory. Our analysis in the following is based on the fact that at the classical level
this factorization holds such that in the limit (l0, v1) → (0,∞) the full F-theory reduces
to a critical string theory and we can use the duality to a critical string theory to analyze
the non-perturbative aspects ofMF .

It is interesting to notice that the kind of light string regimes in N = 1 theories
considered here are analogous to certain field theory limits in the moduli space of four-
dimensional N = 2 theories obtained from Calabi-Yau compactifications of type IIA string
theory. Since the comparison to the N = 2 field theory limits is quite illuminating we are
going to review these limits next.

5We may need to blow-up additional va with a ∈ I3. To keep the discussion simple here we focus only
on the single modulus v1.
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2.2 Comparison to N = 2 field theory limits

Let us briefly digress from our discussion of string theory limits in 4d N = 1 theories
and turn to similar limits in N = 2 type II string compactifications. In particular we
are interested in limits in which the full string theory effectively reduces to a field theory
and the stringy moduli space reduces to the Coulomb branch of an N = 2 SYM theory.
Such limits can be viewed as the analogues of the limits in MF where the theory reduces
to a string theory associated to a single, critical, 1

2 -BPS string. The field theory limits
of the string theory in question have first been studied in [26] for the case of type IIA
compactifications on K3-fibered Calabi-Yau three-folds.

We are now going to review the key features of the analysis of [26]. Therefore, consider
type IIA string theory compactified on a (suitably blown-up) degree-12 hypersurface in
the weighted projective space P1,1,2,2,6. The resulting smooth Calabi-Yau three-fold has
h1,1 = 2 and can be viewed as a one-parameter K3-fibration over P1. Let us denote the
complexified Kähler parameters by (SIIA, TIIA), where SIIA is the volume of the base P1 and
TIIA the volume of a holomorphic curve in the K3-fiber. In a certain corner of the moduli
space, this theory effectively reduces to a field theory. More precisely, this happens in the
vicinity of the large volume divisor SIIA → i∞ which effectively corresponds to the limit
α′ → 0, i.e. the point-particle limit of string theory. Of particular interest is the intersection
of this large volume divisor and the discriminant divisor given by the vanishing of

∆IIA = (1− 1728qT )2 − 4 · 17282qSq
2
T = 0 . (2.17)

Here, we introduced the exponentiated Kähler parameters qT = e2πiTIIA and qS = e2πiSIIA .
In these coordinates, there is point of tangency between the loci {∆IIA = 0} and {SIIA =
i∞} at

(qT , qS) =
( 1

1728 , 0
)
. (2.18)

In the vicinity of this point one can identify SIIA with the gauge coupling of an N = 2
SU(2) SYM theory whereas TIIA corresponds to the vev of the su(2)-adjoint scalar Φ = aσ3,
with σ3 the third Pauli matrix, via

a = TIIA − i
TIIA + i

. (2.19)

From the field theory perspective, one would classically expect the W± bosons of SU(2) to
become massless at the point a = 0, i.e. TIIA = i. In the string theory realization, these
states correspond to D4-branes wrapped on the K3-fiber with two units of D0-brane charge
(cf. [18] for a detailed discussion). However, from Seiberg-Witten theory [30] we know that
non-perturbative effects become important in the vicinity of a = 0 and that the point
a = 0 can in fact never be reached at finite coupling. Instead, once a2 ∼ Λ2, where Λ is the
dynamically generated scale of the gauge theory, the theory reaches a strong coupling phase
and the magnetic monopole becomes light and part of the BPS spectrum. In string theory,
this monopole is given by the D6-brane wrapped on the entire Calabi-Yau three-fold and
the singularity of the Coulomb branch can be identified with a point on the singular divisor
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{∆IIA = 0} given by (2.17) for some fixed SIIA. Accordingly, the Coulomb branch is a good
approximation to the local moduli space in the vicinity of TIIA = i with the presence of
the singularity {∆IIA = 0} spoiling a weak-coupling description in accordance with the
expectation from field theory. From SW theory we know that away from the classical,
perturbative limit (a→∞), the coordinate a in (2.19) should be replaced by its dual, aD.
The local moduli space around TIIA = i is thus best described by this coordinate. And
indeed, as shown in [26] one can identify the classical moduli SIIA and a as the A-periods
of the Calabi-Yau in a suitable basis

A-periods : (1, SIIA, a) , (2.20)

while the dual periods are given by

B-periods : (2F − SIIA∂SIIAF − a∂aF, ∂SIIAF , ∂aF) , (2.21)

where the prepotential F reads

F = SIIAa
2 +

∑
n

cna
2−4nΛ4n exp(−nSIIA) . (2.22)

Up to linear combinations the B-periods can be identified with the coordinates on the
SU(2) Coulomb branch

(aD, u, uSIIA) ,

where the central charge of the monopole is given by aD = ∂aF and u is the gauge invariant
Casimir u(a) = TrΦ2 = 2a2 + . . . . In fact to get the correct normalization of the Coulomb
branch one has to perform the rescaling

ũ = u

Λ2 exp(−ŜIIA)
, (2.23)

in which case the singular locus is located at ũ = 1. Here ŜIIA is related to the actual
gauge coupling SIIA as

SIIA = ŜIIA − log(Λ4α′2) . (2.24)

The coordinate ũ can then be identified with the coordinate on the blow-up P1 in the
mirror complex structure moduli space used to resolve the point of tangency (2.18). The
singularity described by (2.23) corresponds to the intersection between the blow-up P1 and
the discriminant locus {∆IIA = 0}. Notice that in the strict SIIA → i∞ limit, the entire
strong coupling phase of the Coulomb branch gets mapped to a single point as expected
for a point of tangency.

The setup just reviewed illustrates that, indeed, in the vicinity of the point (2.18) the
full string theory reduces to a field theory. In particular, the singular locus {∆IIA = 0}
reproduces the obstruction to reaching the gauge enhancement point in the SU(2) SYM
theory. We now want to compare this situation to the setup we are interested in. Instead
of the point-particle limit of string theory, we are now interested in the ‘string theory limit’
of F-theory. As described in the previous section, by this limit we mean the limit where the
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quasi-moduli space can effectively be described by the moduli space of the theory living on
the worldsheet of a weakly-coupled, critical string. More precisely, we are interested in the
non-perturbative structure of the F-theory moduli space in the vicinity of the point where
classically the string decouples from all other scales of the theory, i.e. the limit l0 → 0 in
the convention of section 2.1. This is the analogue of the limit a → 0 in the field theory
case. In particular, we may ask whether we also observe a non-perturbative obstruction
against reaching this limit at finite coupling similar to the obstruction of reaching the gauge
enhancement point in SU(2) SYM theories at finite coupling.

To make this analogy more concrete, we should think of the 1
2 -BPS string with tension

l0 in the N = 1 theory as the analogue of the BPS particle (the W-boson) with mass 2a in
the N = 2 theory. We should further think of the modulus v1 appearing in (2.15) as the
analogue of the tree-level gauge coupling of the SU(2) gauge theory, SIIA. To summarize
the analogy identifies6

(
ImSIIA, Im a = Im

(
TIIA − i
TIIA + i

))
←→ (v1, l0) . (2.25)

On the other hand, in the vicinity of the strong coupling singularity of the N = 2 gauge
theory, we are advised to use the dual coordinates aD and replace the Coulomb-branch
parameter a by u ' 2a2 + . . . . In the N = 1 case, instead of the (rescaled) linear multi-
plets we should then consider the dual coordinates T1 and S0 defined in (2.7) and (2.2),
respectively. Comparing with the N = 2 case, we can draw the analogy

(aD, u, uSIIA) ←→ (S0, T1,VB3) , (2.26)

such that the good coordinate on the residual moduli space is T1. Given the analogy to
the N = 2 case we expect S0 to vanish on a possible strong-coupling singularity.

2.3 General strategy

The goal of this work is to identify a possible strong coupling singularity in MF in the
limit Mstring/MIIB → 0, where Mstring is set by the tension of the light, critical string. This
strong coupling singularity should be thought of as the analogue of α′ → 0 in the N = 2
string theory discussed above. To that end, we first want to identify a strong coupling
singularity in the residual field space orthogonal to the weak coupling limit. As alluded to
before, this field space can be identified with the deformation space of the theory realized on
the worldsheet of the light string. In general the worldsheet theory of a D3-brane wrapped
on a curve inside the base of an elliptically-fibered CY four-fold corresponds to a Non-
Linear Sigma Model (NLSM) with (0, 2) supersymmetry in two dimensions, cf. [31] for a
detailed discussion. We are particularly interested in the case that the D3-brane string can
be identified with a heterotic string in which case the NLSM is specified by a target space
given by an elliptically-fibered CY three-fold together with a choice of gauge bundle [13].

6Notice that this identification should not be taken literally but merely to provide some intuition for the
N = 1 case. In particular, the field space on the N = 2 side is complex whereas the linear multiplet space
on the N = 1 side is real.
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Of particular interest to us is further the case that this NLSM can be viewed as the low-
energy limit of a Gauged Linear Sigma Model (GLSM) with some Abelian gauge group
U(1)n (cf. appendix B for a review of essentials of GLSMs). The benefit of this restriction
is that in this case the deformation space of the worldsheet theory can be described quite
explicitly even at the quantum level. More precisely, the quantum Kähler field spaceMH

qK
of the heterotic string can be described in terms of the FI-parameter space associated to
the U(1)n gauge group once the Kähler deformations are identified with the FI-parameters
via (a (0, 2) version of) the mirror map.

As reviewed in appendix A, F-theory/heterotic duality relates the volumes of ρ-vertical
divisors of the F-theory base B3 to the Kähler moduli, i.e. curve volumes in the base of the
elliptically-fibered CY target space of the heterotic NLSM. These can then be identified
with the GLSM FI-parameters. We thus have the chain of identifications

F-theory divisor
volumes

F/het-duality←→ Heterotic curve
volumes

(0, 2) Mirror map←→ GLSM
FI-parameters

where the F-theory divisors are ρ-vertical and the heterotic curves correspond to curves
the base B2 of the elliptically-fibered CY three-fold. From (2.26) we then conclude that
the FI parameters of the GLSM take over the role of the Coulomb branch parameter u in
the field theory limit of N = 2 string theory discussed in the previous section. In order
to infer a possible strong coupling singularity in MF we are thus advised to first study
the singularity structure of the FI-parameter space: in general this space has a number of
singular loci corresponding to the zero set of the discriminant

∆H = ∆H
1 (qH) · · ·∆H

n (qH) = 0 . (2.27)

Here qH stands for the exponentiated FI parameters of the heterotic GLSM. Via the (0, 2)
mirror map these translate into singularities on the heterotic quantum Kähler field space.
Just as the Coulomb branch singularity at u = Λ2 is related to the type IIA discriminant
locus {∆IIA = 0}, via F-theory/heterotic duality we expect the discriminant on the het-
erotic quantum Kähler field space to translate into a singularity on MF . More precisely,
for a component ∆H

i of ∆H we expect a component of the F-theory singular locus given by

∆F
i (Si) = 0 . (2.28)

Here, Si are the F-theory scalar fields defined in (2.2). In particular, some components of
∆F
i can depend on S0, i.e. on the coupling of the light string. Such a coupling-dependence

can, however, not be inferred directly from the GLSM because the GLSM description is,
strictly speaking, only valid on the S0 = ∞ locus. Still, for fixed S0 the singularity ∆F

i

should reduce to a copy of the GLSM discriminant ∆H
i . Since we cannot infer the S0

dependence from the worldsheet theory we need to calculate this directly within MF . To
that end, one can use the perturbative α′-corrections to the F-theory scalar field space
calculated in [23–25] (cf. [15] for a discussion in the present context) and match them
with perturbative corrections to the heterotic moduli space geometry. To summarize, our
strategy is to employ the GLSM description to identify the singularity of MH

qk and then
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use the perturbative corrections to the F-theory field space to first match them onto MF

and in particular to infer the dependence of the singularities on S0.
From the analogy to the N = 2 case, we are particularly interested in components of

∆H that can be interpreted as strong coupling singularities for the heterotic string, i.e. loci
in field space at which S0 vanishes. Suppose we find such a component, ∆H

P , of ∆H . Then
at the level of the relevant singularities we can summarize the analogy between the string
theory limit of N = 1 F-theory and the field theory limit of N = 2 string theory as

N = 2 field theory limit N = 1 string theory limit

Strong coupling singularity u = Λ2 GLSM singularity ∆H
P = 0

Type IIA discriminant ∆IIA = 0 F-theory singularity ∆F
P = 0

One may further ask for a physical interpretation of the singularities. Recall that in the
point-particle limit of type IIA, the singularity signals the presence of additional light states
and that the W±-bosons, i.e. the purely electrically charged particles, leave the spectrum
of BPS states. Given the analogy between the string and field theory limits, this suggests
that a strong coupling singularity in the string theory limit ofMF also signals the presence
of additional light states, which are now expected to be additional light strings spoiling the
worldsheet description. Similar to the electrically charged states leaving the BPS spectrum
in the vicinity of the strong coupling singularity one might expect that also the D3-brane
wrapped on the curve C0 itself leaves the BPS string spectrum. We come back to this
question in section 4.3.

3 Dual Description

In the previous section, we argued that, in the vicinity of the locus {l0 = 0},MF effectively
reduces to the deformation space of the worldsheet theory of the light, critical heterotic
string. In particular, we argued that the singularity and phase structure of MF in the
vicinity of this point is inherited from the structure of the dual heterotic field space. In
this section, we exclusively focus on this dual perspective before coming back to the F-
theory description in the next section. For simplicity, here we restrict to models that have
a description in terms of a GLSM. We refer to appendix B for some background on GLSMs
useful for the discussion presented in this section. More precisely, we mainly consider het-
erotic models with standard embedding on the (2, 2) locus. However, in order to exclude
that all our statements about the structure of the field space are a consequence of the en-
hanced (2, 2) worldsheet supersymmetry, we further consider deformations away from the
(2, 2) locus. The benefit of specifying to models on (deformations of) the (2, 2) locus is that
the singularity structure of the GLSM parameter space can be obtained explicitly; cf. [20]
or [21, 22] for the (0, 2) case. For these models the deformation space of the worldsheet
theory is in fact an exact moduli space as the contributions of worldsheet instantons to the
non-perturbative superpotential vanish, even though the full non-perturbative superpoten-
tial does not vanish identically due to the contribution from gauge instantons/NS5-brane
instantons.
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In section 3.1 we start by considering heterotic models with gauge bundle given by
the tangent bundle of the compactification space. Apart from discussing the structure for
general compactification manifolds that are elliptically-fibered CY three-folds, we focus on
two example with B2 = P2,F1 the first of which being the main example throughout the
rest of this paper. In section 3.2 we then consider simple deformations of the tangent bundle
in order to test whether our statements are merely a consequence of enhanced worldsheet
supersymmetry.

3.1 Heterotic string with standard embedding

Let us start with the simplest case corresponding to the heterotic E8×E8 string compact-
ified on a Calabi-Yau three-fold Z3 with gauge bundles given by

V1 = OZ3 , V2 = TZ3 , (3.1)

i.e. the trivial bundle and the tangent bundle of Z3. In this case the quantum Kähler
moduli spaceMH

qK of the heterotic string compactified on Z3 is well-known and is identical
to the vector multiplet moduli space of type IIA compactified on the same manifold Z3.
Let us denote the complexified Kähler moduli of Z3 by

ta = ba + isa =
∫
Ca

(B + iJH) , (3.2)

where {Ca} are the generators of the Mori cone, JH the Kähler form on Z3 and B the
heterotic 2-form field. As for the singularity structure of this moduli space, there exist
standard techniques to identify the singular locus [20]. The singular locus of this moduli
space is given by a complex co-dimension one hypersurface {∆ = 0} ⊂ MH

qK . In general
this locus splits into multiple components

∆ = ∆1 ·∆2 · . . . ·∆n , (3.3)

giving rise to an intricate network of singularities. For reasons becoming clear shortly, the
factor of ∆ that corresponds to the so-called principal component of the discriminant locus
is of particular interest to us. We denote the principal component of ∆ by ∆P such that

∆ = ∆P ·∆R , (3.4)

where ∆R is the remainder of the discriminant locus that can in principle factorize further.
One can give an explicit expression for ∆P using, e.g., the methods of [20]. To describe the
locus {∆P = 0}, one can employ the language of GLSMs for which we review some basics
in appendix B. This description is particularly well-suited for our case since the relation to
the quantum Kähler moduli space of the heterotic string is most direct in this case.

For simplicity, we assume that the heterotic compactification manifold Z3 is a smooth
Weierstrass model over some base B2 such that there exists a holomorphic zero section

e : B2 → P2,3,1

b 7→ [1 : 1 : 0] ,
(3.5)
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where P2,3,1 is the ambient space of the elliptic fiber. Let us denote the divisor associated
to this section by E−. The twist of the elliptic fiber over the base B2 is governed by a
holomorphic line bundle L. By supersymmetry, the first Chern class of this line bundle is
given by the anti-canonical class of B2, i.e., it satisfies c1(L) = c1(B2) . The first Chern
class of B2 can be expanded as

c1(B2) = ca1ja , (3.6)

where ja are the Kähler cone generators of B2. If Z3 is the anti-canonical hypersurface in
a d-dimensional projective toric variety Pd∗,...,∗ and since Z3 is a smooth Weierstrass model,
the generator of the Mori cone corresponding to the elliptic fiber is associated to one of
the h1,1 U(1) gauge factors of the GLSM with charges

l(0) = (−6; 2, 3, 1, 0, . . . , 0︸ ︷︷ ︸
d−2

) , (3.7)

for the matter fields Φi, i = 0, . . . , d , of the GLSM (cf. appendix B). The other generators
of the Mori cone are then associated to the remaining U(1) gauge factors with charges
given by

l(a) = (0; 0, 0,−ca1, Qa1, . . . , Qd−2
a ) , (3.8)

where the Qai are the GLSM charges of the fields matter fields Φi under the ath U(1) gauge
factor subject to the constraint

ca1 =
d−2∑
i=1

Qai . (3.9)

The precise values for the Qai depend on the details of the choice for B2.
From this data, one is able to find the principal component of the discriminant divi-

sor by searching for σ-vacua, i.e. solutions to the equations (B.14), which more generally
read [20]: ∏

i|Qai>0

(
Qbiσb

)Qai = qa
∏

i|Qai<0

(
Qbiσb

)−Qai
. (3.10)

Here the σa are the leading components of the neutral 2d chiral superfields defined in
appendix B, and

qa = e2πi(θa+ira) , (3.11)

the exponentiated FI-parameters of the GLSM. For an arbitrary number of moduli this
condition gets quite involved to solve, but in order to understand its general form let us
reduce it to a two-parameter system by picking one generator l(a0) and setting qa = 0 , ∀a 6=
a0 . In this way, we can easily find the dependence of ∆P on q0 and qa0 . The condition
qa = 0 translates to σa = 0 , ∀a 6= a0, such that we end up with the reduced system of
equations

(σ0 − ca0
1 σa0) = 432q0σ0 , (σa0)c

a0
1 = (σ0 − ca0

1 σa0)c
a0
1 qa0 , (3.12)

which for ca0
1 6= 0 can be solved to give

∆P |(qa=0 | a 6=a0) '
[ 1
ca0

1
(1− 432q0)

]ca0
1
− (432q0)c

a0
1 qa0 = 0 . (3.13)
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Here, “'” indicates that the actual principal component {∆P = 0} can contain additional
factors that are independent of qa0 . Similarly, the actual discriminant might be an integer
power of ∆P |(qa=0 | a 6=a0). The expression above shows quite clearly that for qa → 0 for
all a the singular locus asymptotes to q0 = 1/432 which corresponds to the boundary of
the classical Kähler cone at which the volume of the elliptic fiber of Z3 vanishes.7 Away
from {qa = 0} the topology of the singular locus is affected by the heterotic worldsheet
instantons. For ca0

1 > 1 the fully factorized equation at qa0 = 0 turns into a general
polynomial of degree ca0

1 . Therefore, for qa0 > 0 the singular locus generally splits into
multiple components. This can be interpreted as a non-zero quantum volume for the
elliptic fiber away from the divisor qa0 = 0 (cf. [33, 34]). For fixed qa0 , and ca0

1 > 1, the
induced quantum volume is parametrically given by

t0QM ∼ qa0 = e2πi(θa0+ira0 ) . (3.14)

Here, τa0 ≡ θa0 + ira0 is the complexified GLSM FI-parameter corresponding to the a0-th
U(1) factor which is related to the heterotic Kähler modulus ta0 via the mirror map.

Let us now explain why, from the space-time perspective, the principal component
of ∆ corresponds to a strong coupling singularity for the heterotic string and is therefore
particularly relevant for us. To that end, let us first consider type IIA string theory
compactified on the same elliptically-fibered Calabi-Yau three-fold Z3. In this case the
central charge of the BPS state obtained by wrapping a D6-brane on Z3 vanishes along
{∆P = 0}. At the perturbative level, the central charge of the D6-brane is given by

Z(OZ3) =
∫
Z3
eB+iJH

√
Td(Z3)ΓC(Z3)ch (OZ3)∨ , (3.15)

where Td(Z3) and ΓC(Z3) are the Todd- and complex Gamma-class of Z3 which can be
expanded in terms of the Chern classes of Z3 as

Td(Z3) = 1 + c2(Z3)
12 , ΓC(Z3) = 1− ζ(3)

(2πi)3 c3(Z3) . (3.16)

For the structure sheaf, OZ3 , the Chern character is simply given by

ch(OZ3) = 1 . (3.17)

We can identify the Mukai vector, µ(E), of a generic sheaf, E , as

µ(E) = ch(E)∨
√

Td(Z3) , (3.18)

such that
µ(OZ3) =

(
1, 0,− 1

24c
a
2(Z3), 0

)
. (3.19)

7This can be seen by noticing that for qa = 0, ∀a, the mirror map is encoded in the modular j-function
as [32]

j(t0) = 1
1728q0(1− 432q0) .

Therefore the moduli space at qa = 0 is a double cover of the SL(2,Z) fundamental domain with q0 = 0
corresponding to t0 → i∞ and q0 = 1/432 the S-dual t0 = 0.
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Since in the heterotic theory the space-time supersymmetry is reduced by half as compared
to the type IIA theory, there are no BPS particle states and in particular we do not have
a 6-brane state whose central charge vanishes along {∆P = 0}. For the heterotic string
we thus require a different interpretation of this singularity. To that end, recall that in
heterotic M-theory the two non-Abelian gauge factors arise from end-of-the-world branes
located at the fixed point of the compactification on S1/Z2. If we further compactify on
Z3, the complexified gauge coupling of the end-of-the-world branes is classically given by
the (complexified) volume of the end-of-the-world branes wrapped on Z3. At the quantum
level, we should thus identify the complexified gauge coupling with the central charge of
a D6-brane in type IIA. Under this identification, the gauge bundle Vi in the respective
E8 factor specifies the analogue of the induced D4-D2-D0-brane charges which can be
summarized in the Mukai-vector

µ(Vi) =
[
rk Vi,−c1(Vi),−

1
2
(
c1(Vi)2 − 2c2(Vi)

)
− 1

24c2(Z3),

−1
6
(
c1(Vi)3 − 3c1(Vi)c2(Vi) + 3c3(Vi)

)]
.

On the (2,2) locus the coupling at the perturbative level is then given by (3.15). Using (3.1)
we find the Mukai vectors

µ(V1) =
(

1, 0,− 1
24c

a
2(Z3), 0

)
, µ(V2) =

(
3, 0,

(
1− 1

24

)
ca2(Z3), 1

2χ3(V2)
)
. (3.20)

Accordingly, on the (2, 2) locus, the central charge of the physical type IIA D6-brane is
identified with the (complexified) gauge coupling of the unbroken E8 group in the heterotic
theory. As a consequence, the principal component ∆P of the singular locus in the heterotic
theory corresponds to a strong coupling singularity for the gauge coupling of the unbroken
E8 factor. On the other hand, the gauge coupling of the E6 factor of the gauge group
remains finite as does the volume of Z3. Still, the locus {∆P = 0} qualifies as a candidate
for the strong coupling singularity in the heterotic moduli space that we are after.

In principle there could be other components of {∆ = 0} that could account for a
strong coupling singularity of the heterotic string. Such additional components of ∆ are
part of ∆R in (3.4) and correspond to mixed Higgs-σ branches in the language of GLSMs.
In general there is one component of ∆ for each boundary component of the Kähler cone.
To get the full picture of the singularity structure of the quantum Kähler moduli space,
we need to take into account the singular loci associated to ∆R as well. The precise form
of these remaining singular loci, however, depends on the details of the base B2. In order
to judge whether these singular loci can play the role of strong coupling singularities for
the heterotic string, we need to understand whether the physics in the vicinity of the loci
{∆R = 0} differs significantly from the physics at {∆P = 0}. In the following, we are going
to discuss two simple examples of bases B2 for which we can analyze the full structure of
the moduli space explicitly.

3.1.1 Example I: B2 = P2

As our prime example in this and the following section, let us consider the (blow-up of) the
degree-18 hypersurface in P1,1,1,6,9 [35]. The resulting Calabi-Yau three-fold can be viewed
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as a smooth Weierstrass model over B2 = P2. The GLSM description of this example
requires the introduction of seven chiral field Φi, i = 0, . . . , 6, with charges specified by the
Mori-cone generators of the Calabi-Yau hypersurface

l(0) = (−6; 2, 3, 1, 0, 0, 0) ,
l(1) = (0; 0, 0,−3, 1, 1, 1) .

(3.21)

The phase structure of the GLSM parameter space on the (2,2) locus has been discussed
in detail in [36]. The conditions to find a σ-vacuum of the associated GLSM are

(σ0 − 3σ1) = 432q0σ0 , σ3
1 = q1(−3σ1 + σ0)3 , (3.22)

which have a solution provided

∆P ≡ (1− 432q0)3 − 4323 · 27q3
0q1 = 0 , (3.23)

which we identify as the principal component of the singular locus. In addition, there is a
mixed σ-Higgs branch given by

∆R = 1 + 27q1 = 0 . (3.24)

The singularity ∆R = 0 corresponds to the corrected Kähler cone boundary at which, for
type IIA compactified on Z3, the central charge of a D4-brane wrapped on the zero section
E− vanishes. Classically, this boundary of the Kähler cone corresponds to t1 = 0. However,
at the quantum level, this is not the case anymore. This can be seen by considering the
one-parameter system described by q1 only: since ∆R does not depend on q0, we can take
the limit q0 → 0 and study the resulting one-modulus system given by the single Mori cone
generator l(1) corresponding to the hyperplane class in P2. This system is governed by the
Picard-Fuchs operator

L(1) =
(
z
d

dz

)3
− z

(
z
d

dz

)(
z
d

dz
+ 1

3

)(
z
d

dz
+ 2

3

)
, (3.25)

where we rescaled z = −27q1. The non-trivial solution to L(1)f = 0 then specifies the
mirror map relating θ1 + ir1 = 1

2πi log q1 to the complexified volume t1 = b1 + is1 of the
curve in the hyperplane class H of P2. We can identify the one-modulus system with
O(−3) → P2, i.e. the resolved orbifold C3/Z3 for which the solutions to L(1)f = 0 were
obtained in [37]. Apart from the constant solution, a second solution for |z| < 1 is given by

f(z) = log(z) + C + 2
9z + 5

81z
2 + . . . , (3.26)

with C some constant and for |z| > 1 by

f(z) = −3
Γ
(

1
3

)
Γ2
(

2
3

)e−πi3 z−1/3
3F2

(1
3 ,

1
3 ,

1
3; 2

3 ,
4
3; z−1

)

+ 9
2

Γ
(

2
3

)
Γ2
(

1
3

)e− 2πi
3 z−1/3

3F2

(2
3 ,

2
3 ,

2
3; 4

3 ,
5
3; z−1

)
.
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We are interested in the value of s1 for ∆R = 0, i.e. at z = 1. With the above informa-
tion, [37] calculates

s1|z=1 = 0.465 6= 0 . (3.27)

Therefore, along ∆R = 0 the volume of a curve in the hyperplane class H is finite while
(in type IIA language) the central charge of a D4-brane on the zero section E− vanishes.

We may now ask whether the locus {∆R = 0} may as well correspond to a strong
coupling singularity. Therefore let us compare it to {∆P = 0}: first, we notice that
{∆P = 0} lies at the boundary between a geometric and a Landau-Ginzburg phase. By
contrast {∆R = 0} lies between two geometric phases: the Calabi-Yau phase and the C3/Z3
orbifold phase. This already indicates that the consequences of {∆R = 0} are less severe
than those associated to {∆P = 0}. In particular, notice that the presence of {∆R = 0}
itself does not constitute an obstruction against reaching the point s1 = 0, which indeed is
reached for (q0, q1)→ (0,∞), i.e. at the orbifold point [37].

To see that {∆R = 0} does indeed not correspond to a strong coupling singularity,
consider the behavior of the worldsheet theory in the vicinity of the two singularities.
To that end, let us calculate the correlators of the worldsheet theory using the GLSM
techniques developed in [20] reviewed in appendix B. Using (B.16), we find8

〈σ3
0〉Z3 = 9

∆P
,

〈σ2
0σ1〉Z3 = 3− 1296q0

∆P
,

〈σ0σ
2
1〉Z3 = (1− 432q0)2

∆P
,

〈σ3
1〉Z3 = 9(1 + 1296q0(−1 + 432q0))q1

∆P∆R
.

(3.28)

We see that all correlators are singular along the locus {∆P = 0} but only the last correlator
is singular along {∆R = 0}. Therefore only a sub-sector of the theory becomes singular
along {∆R = 0} with the singular correlator corresponding to the Yukawa coupling that
vanishes classicallly, i.e. in the qi → 0 limit. As a consequence, the singularity {∆R = 0}
is less severe than {∆P = 0} and merely indicates that we are moving from one geometric
phase, the CY phase, to another such phase, the orbifold phase. Notice also that the
heterotic gauge theory remains weakly coupled along {∆R = 0} since (3.15) does not
vanish on this component of the singularity. We can thus conclude that in the simple
example with B2 = P2 only {∆P = 0} signals the transition into a strongly-coupled phase
whereas the theory is better behaved along {∆R = 0}. Thus, {∆P = 0} is indeed the
relevant strong coupling singularity we are looking for.

As already mentioned before the boundary of the Kähler cone corresponding to small
base volume is given by {∆R = 0}. Since we identified {∆P = 0} as the strong coupling
singularity, we may now ask whether we reach this singularity within the Kähler cone.
To answer this question, we need to know the relative position of the loci {∆R = 0} and

8We thank I. Melnikov for pointing out a mistake in the expressions for the correlators in a previous
version.
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{∆P = 0}. Therefore notice that the two branches of the discriminant get exchanged under
the involution

q0 →
1

432 − q
′
0 , q1 → −

( 432q′0
1− 432q′0

)3
q′1 . (3.29)

This involution corresponds to the geometric part of the Fourier-Mukai transform discussed
in appendix A and thus amounts essentially to two T-duality transformations along the
fiber of the CY three-fold. Accordingly at the point in moduli space at which the two
branches of the discriminant intersect

q0 = 1
864 , q1 = − 1

27 , (3.30)

the volume of the fiber is given by the self-dual value, i.e. s0 = 1. For |q0| > 1
864 we hence

first enter the strong coupling region signaled by the presence of ∆P = 0 before reaching the
corrected boundary of the Kähler cone {∆R = 0}. Strictly speaking, we do not necessarily
hit the singular locus {∆P = 0} within the Kähler cone due to the dependence of the
singular locus on the phases of q0, and q1. However, since for |q0| > 1/864 the amoeba
of {∆P = 0} lies within the Kähler cone (cf. figure 3b in [27]) we know that the strong
coupling phase associated to {∆P = 0} is necessarily reached within the Kähler cone.9
For simplicity (also when performing the duality to F-theory in the next section) in the
following we may assume q0 ∈ R>0 for which we indeed always hit {∆P = 0} within the
Kähler cone. As a consequence the minimal quantum volume of the curve in P2 gets an
extra contribution for 1/432 > q0 > 1/864 due to the presence of the singularity ∆P = 0
of the order10

s1
min. ∼ log s0 . (3.31)

To summarize, for 1/432 > |q0| > 1/864 we encounter a singularity inside the corrected
Kähler cone along which the worldsheet theory of the heterotic string ceases to be pertur-
bative. On the other hand, for |q0| < 1/864 the worldsheet theory remains weakly-coupled
inside the entire corrected Kähler cone and importantly does not entirely break down at
the boundary corresponding to ∆R = 0.

3.1.2 Example II: B2 = F1

As a second example, take Z3 to be a smooth Weierstrass model over B2 = F1. Since here
the FI parameter space of the associated GLSM has higher dimension, also its singularity
structure is richer. The GLSM associated to Z3 in this case is defined by the charge vectors

l(0) = (−6; 2, 3, 1, 0, 0, 0, 0) ,
l(1) = (0; 0, 0,−2, 1, 0, 1, 0) ,
l(2) = (0; 0, 0,−1, 0, 1,−1, 1) .

(3.32)

9This can be compared with N = 2 SYM theory with gauge group SU(2) where for u /∈ R we also do
not hit the strong coupling singularity but still reach the strong coupling phase.

10To see this, notice that the mirror map identifies q0 = 1/432 with t0 = 0. Turning on 0 < |q1| � 1, we
can solve ∆P = 0 for

e−2πs0
= 1− 2πs0 +O

[
(s0)2] = 1− 3q1/3

1 +O(q2/3
1 ) ,

from which we can deduce (3.31) at leading order.
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The condition for the σ-vacua is given by

(σ0 − σ2 − 2σ1) = 432q0σ0 ,

σ1(σ1 − σ2) = q1(−2σ1 − σ2 + σ0)2 ,

σ2
2 = q2(−σ2 + σ1)(−2σ1 − σ2 + σ0) .

(3.33)

From here one can compute the principal component of the singular locus which now takes
the form

∆P = 1
16 + 27q0

{
− 4 + q2 + 432q0

[
6− 3q2 − 8q1 − 432q0

[
4− 3q2 + 4(−4 + 9q2)q1

+ 432q0(−1 + q2 + (8 + 9q2(−4 + 3q2))q1 − 16q2
1)
]]}

,

(3.34)

which is complemented by a second component of the discriminant locus given by

∆R = (1− 4q1)2 + (−1 + 36q1)q2 + (−27q1)q2
2 = 0 . (3.35)

This second component is nothing but the principal component of the discriminant locus
of the base F1 itself and accordingly describes the locus in moduli space along which the
zero section E− vanishes. As before, this locus in moduli space can be interpreted as the
corrected boundary of the Kähler cone. Since, again, the heterotic gauge coupling does
not vanish along {∆R = 0} it does not correspond to a strong coupling singularity. The
relevant singularity is thus again {∆P = 0}. In figure 1 we show the boundary of the
amoeba of the singular loci in the CY phase of the FI-parameter space.

We may now ask whether the strong coupling phase associated to {∆P = 0} lies again
inside the corrected Kähler cone associated to the base B2 and thus induces a quantum
volume for the curves in the base B2. To get some intuition for the structure of MH

qK,
consider the two extreme cases (q2 = 0, q1 6= 0) and (q2 6= 0, q1 = 0). For the first case, we
find

∆P |q2=0 =
(1

4(1− 432q0)2 − 4322q2
0q1

)2
, ∆R|q2=0 = 1− 4q1 . (3.36)

This agrees with our general expectation (3.13) up to the overall square. Accordingly, on
the locus q2 = 0 the classical singularity at q0 = 1/432 splits into two singularities for
q1 > 0. Both components correspond to double zeros of ∆P . For |q0| > 1/864 the amoeba
of the principal component {∆P = 0} lies again inside the corrected Kähler cone with
boundary determined by {∆R = 0} such that we have a strong coupling singularity within
the corrected Kähler cone as illustrated in figure 1. As in the previous case, this implies
that there is a non-zero quantum volume induced for the Mori cone generator associated
to l1 proportional to log s0, cf. (3.31).

Notice that, compared to the case B2 = P2, the locus {∆R = 1−4q1 = 0} has different
properties. In fact the one-parameter system corresponding to q1 is a Z2 orbifold of C2.
As calculated in [37] the complexified Kähler modulus associated to the exceptional divisor
for this case is given by

t1 ≡ b1 + is1 = 1
2πi log

[
1− 2q1 − 2

√
1− 4q1

2q1

]
, (3.37)
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Figure 1. This figure shows the boundary of the amoeba associated to the singular locus {∆ = 0}
for the smooth Weierstrass model over B2 = F1 projected to the real part, ri, of the GLSM FI-
parameters. Shown is only the quadrant describing the CY phase of the GLSM. The orange plane
shows the amoeba for the principal singularity {∆P = 0} whereas the blue plane corresponds to the
amoeba of {∆R = 0}. The Kähler cone corresponds to the space bounded by the {∆R = 0}-plane,
the plane spanned by the (r0, r1) axes, and the grey plane corresponding to constant r0 = log 432

2π .
We further indicated the plane r0 = log 864

2π where the boundaries of the amoebas of ∆P and ∆R

intersect.

which vanishes for q1 = 1/4. Thus for q2 = 0 a non-zero quantum volume is only introduced
through the presence of {∆P = 0}. Notice that this is only true on the locus q2 = 0 since
q2 6= 0 introduces a non-zero quantum value for t1 on the singular locus ∆R = 0 [33].

In the (q2 6= 0, q1 = 0) case, we find

∆P |q2=0 = (1− 432q0)3 [(1− 432q2) + 432q0q2] = 0 , ∆R|q1=0 = 1− q2 . (3.38)

Thus, the singular locus splits into multiple components away from the q2 = 0 locus.
However, this splitting is different from the previous limit. Now, a triple zero of ∆P

remains at q0 = 1/432 for any value of q2 whereas one root of ∆P moves to

q0 = 1
432(1− q2) >

1
432 , for |q2| < 1 . (3.39)

Since it is located at q0 >
1

432 this singularity does not lie within the classical Kähler cone.
On the other hand, the singularity at q0 = 1/432 indicates that in this case ∆P = 0 does
not induce a quantum volume for the elliptic fiber. This implies that for all values of q0
we can reach the Kähler cone boundary t2 = 0, i.e. the point at which the base P1 of F1
shrinks to zero size, without crossing into a strong coupling phase. Phrased differently,
for q1 = 0, the singularity ∆P = 0 does not induce a quantum volume for the Mori cone
generator associated to l(2).
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Coming back to the general case, i.e. q1, q2 6= 0, we notice that in this case {∆P = 0}
splits into four components giving a non-zero contribution to the minimal quantum volume
to both Mori cone generators associated to l(1,2). For |q0| > 1

864 , the strong coupling phase
associated to the singular locus {∆P = 0} lies within the Kähler cone, cf. figure 1. Due
to the presence of this strong coupling phase it is thus impossible to reach the small base
volume limit, which would require q1, q2 > 0, within the perturbative weak-coupling regime
for |q0| > 1

864 . Similar as in the previous example one can show that it is the strong coupling
singularity that is accompanied by a singularity in all correlators [20].

Before we move on and consider deformations of the tangent bundle, let us summarize
the insights we got from studying the (2, 2) locus. Though the two examples discussed
here are far from being exhaustive, they confirm our general expectation that the principal
component of the singular locus {∆P = 0} is associated to a strong coupling singular-
ity. From the space-time perspective the gauge theory of the heterotic string becomes
strongly coupled at this point whereas at the worldsheet level, the perturbative worldsheet
description breaks down. On the other hand, on the locus {∆R = 0} we do not expect
a strong coupling singularity for any of the gauge groups and also the worldsheet theory
is not necessarily singular. Accordingly, {∆R = 0} does not spoil the description of the
weakly-coupled heterotic string.

Importantly, for small torus volume, i.e. q0 > 1/864, the amoeba of the singular locus
{∆P = 0} necessarily lies within the Kähler cone bounded by {∆R = 0}. Therefore,
in this regime the strong coupling singularity prevents us from reaching the Kähler cone
boundary and thereby also from reaching the small base limit at weak coupling. This
difference between {∆P = 0} and {∆R = 0} is crucial and should be reflected in the
structure of the F-theory moduli space that we are going to discuss in section 4.

3.2 Deformations of the tangent bundle

So far we exclusively discussed heterotic models for which the gauge bundle is given by the
tangent bundle. However, this is a very restrictive choice and one might wonder whether
all our findings are a consequence of the enhanced (2, 2) worldsheet supersymmetry. To
address this concern let us consider genuine (0, 2)-models. For simplicity, we restrict to
the case that the heterotic gauge bundle is a deformation of the tangent bundle since in
this case similar techniques as on the (2, 2) locus can be used. In the following, we want
to investigate whether the singularity structure of the GLSM FI-parameter space of the
deformed theory still resembles the structure on the (2, 2) locus. More precisely, we want
to see whether there are additional singularities appearing that could account for a strong
coupling singularity or whether the (deformed version of) the principal component ∆P of
the discriminant is still the relevant strong coupling singularity for the E8 gauge group and
induces a logarithmic correction to the minimal volume of a base curve as in (3.31). If this
is the case, we can still interpret the presence of {∆P = 0} as an obstruction to reaching
the small base volume limit.

Before investigating the singularity structure of the moduli space of the deformed
theory, let us give some details of the kind of bundle deformations we are considering here:
for definiteness, we focus on the case B2 = P2 and describe the deformations of the tangent
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bundle in GLSM language. We are interested in the deformation space of the bundle
E on the Calabi-Yau Z3. Our strategy here follows [21, 22] and we first want to study
deformations of the tangent bundle of the toric ambient space V defined by the charges

l̃(0) = (2, 3, 1, 0, 0, 0) ,
l̃(1) = (0, 0,−3, 1, 1, 1) ,

(3.40)

and then subsequently restrict to Z3. The tangent bundle on V can be viewed as the
quotient

0 −→ Or
Qai z

i

−→ ⊕iO(Di) −→ TV −→ 0 , (3.41)

which can be deformed to a more general (0, 2) bundle by replacing the function Qai zi by
some map E and then consider the quotient

0 −→ Or E−→ ⊕iO(Di) −→ E −→ 0 . (3.42)

By (0, 2) supersymmetry we need to ensure ∑EiJi = 0 for the J−parameters of the
GLSM (see appendix B for a review). In the GLSM associated to V we can choose Ji = 0
and consider the deformations encoded in E only. The deformation of Qai zi into a more
general E can only mix chiral field Φi that have the same charge under all U(1). In the
light of (3.40) the deformation can thus can only mix the last three fields. Grouping the
chiral fields into sets of same charge, we can have the deformations

E1 = i2
√

2Σ0Φ1 ,

E2 = i3
√

2Σ0Φ2 ,

E3 = i
√

2
[
Σ0Φ3 − 3Σ1Φ3

]
,

E4 = i
√

2
[
Σ1Φ4 + Σ0(ε1Φ4 + ε2Φ5 + ε3Φ6)

]
,

E5 = i
√

2
[
Σ1Φ5 + Σ0(γ1Φ4 + γ2Φ5 + γ3Φ6)

]
,

E6 = i
√

2
[
Σ1Φ3 + Σ0(κ1Φ4 + κ2Φ5 + κ3Φ6)

]
,

(3.43)

which we can conveniently summarize with the matrices (cf. (B.19))

M (1) = 2σ0 , M (2) = 3σ0 , M (3) = σ0 − 3σ1 .

M (4) =

σ1 + ε1σ10 ε2σ0 ε3σ0
γ1σ0 σ1 + γ0σ1 γ3σ0
κ1σ0 κ2σ0 σ1 + κ3σ0

 .
(3.44)

We then obtain the quantum cohomology relations

(σ0 − 3σ1) = 432q0σ0 , detM (4) = q1 (−3σ1 + σ0)3 . (3.45)

Using these relations one can calculate the correlators of the V -model

〈σa0σ4−a
1 〉 =

∑
σ|(3.45)

σa0σ
4−a
1

[
detJ̃ab

4∏
α=1

detM (α)
]−1

, (3.46)

– 24 –



J
H
E
P
0
4
(
2
0
2
3
)
0
8
8

where the sum is taken over all values for σa that satisfy (3.45). Given the deformation
of the bundle on the toric ambient space V , we can now restrict to the Calabi-Yau Z3
and consider the deformations of the tangent bundle of Z3 ⊂ V . Therefore, we need to
introduce an additional field Φ0 such that ∑iQ

a
iΦi = 0 for all a which, in the current case,

amounts to introducing a field Φ0 with charge (Q0
0, Q

1
0) = (−6, 0). The deformed bundle

can now be viewed as the cohomology of the short-exact sequence

0 −→ Or|X
E−→ ⊕iO(Di)|X J−→ O(

∑
i

Di)|X −→ 0 . (3.47)

Here E are the same deformation functions as for the bundle in (3.42) but we now have
the additional deformation parameters J which we cannot take to zero in the Z3-model.
In fact, prior to deformations, the Ji derive from a superpotential Ji = ∂W/∂Φi with W
on the (2, 2) locus given by the polynomial11

W = Φ0P , with P =
[(

Φ4
)18

+
(
Φ5
)18

+
(
Φ6
)18
] (

Φ3
)6

+
(
Φ1
)3

+
(
Φ2
)2

,

(3.48)
thus ensuring that ∑iE

iJi = 0. When turning on the deformations, we can ensure∑
iE

iJi = 0 by simply deforming J0 = P + ∆J0 with

∆J0 = 3
[(

Φ4
)17 3∑

i=1
εiΦi+3 +

(
Φ5
)17 3∑

i=1
γiΦi+3 +

(
Φ5
)17 3∑

i=1
κiΦi+3

]
. (3.49)

To keep the expressions manageable let us consider a simplification and set ε3 = γ2 = γ3 =
κ1 = κ2 = κ3 = 0. From (3.45) we can then compute the deformed principal component
of the discriminant to be given by

∆ε1,ε2,γ1 = (1− 432q0)3 + 3ε1 (1− 432q0)2 − 9ε2γ1 (1− 432q0)− 27q1 4323q3
0 = 0 . (3.50)

We now want to check whether this component still gives the relevant strong coupling
singularity for the heterotic string. In the deformed case, we do not have the type IIA
analogy to identify the gauge couplings with central charges of type IIA D-branes. Instead
we identify a strong coupling singularity through singularities of the correlators. Using the
quantum restriction formula for the (0, 2) case [21, 22] we find

〈σ3−a
0 σa1〉|Z3 = 〈6σ

4−a
0 σa1

1− 66σ0
〉V =

∑
z|P (z)=0

6za
(1− 3z − 432q1)H(1, z)︸ ︷︷ ︸

=:G(z)

, (3.51)

with
P (z) = z3 − ε1z2 − ε2γ1z + q2(1− 3z)3 ,

H(1, z) = −36(ε2γ1(1 + 6z)− z(2ε1 + 3(1 + ε1)z)) ,
(3.52)

11There are more general choices for the polynomial P corresponding to complex structure deformations
of the CY three-fold Z3. Since the final result does not depend on the complex structure of Z3 we restrict
here to this simple choice.
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and where we defined z = σ1/σ0 and used (3.45). We can evaluate the sum over the zeros
of P (z) as in [22] as a sum over residues

〈σ3−a
0 σa1〉|Z3 = −

[
Res

z= 1−432q0
3

+ Resz=z± + Resz=∞ + Resz=0

]
G(z)P

′(z)
P (z) , (3.53)

where we defined

z± =
−ε1 + 3εeγ1 ±

√
ε21 + 3ε2γ1 − 3ε1ε2γ1 + 9ε22γ2

1

3(1 + ε1) . (3.54)

As a result we find the following correlators

〈σ3
0〉Z3 = 9

∆ε1,ε2,γ1
,

〈σ2
0σ1〉Z3 = 3− 1296q0

∆ε1,ε2,γ1
,

〈σ0σ
2
1〉Z3 = (1− 432q0)2

∆ε1,ε2,γ1
,

〈σ3
1〉Z3 = −ε1(1− 432q0)2 + 9q1 − 3(−1 + 432q0)(ε2γ1 + 3888q0q1)

∆ε1,ε2,γ1∆R
.

(3.55)

The structure of the correlators is very similar to the undeformed case. In particular, the
deformed version of the principal component of the singular locus {∆ε1,ε2,γ1 = 0} signals
a complete break-down of the worldsheet theory and hence a strong coupling singularity.
On the other hand, as before the locus associated to ∆R = 0 only yields a singularity for
the last correlator indicating that, again, only a subsector of the heterotic theory becomes
singular.12 The locus {∆R = 0}, and hence the boundary of the corrected Kähler cone, itself
is not affected by the deformation. This can be already seen on the level of the σ-vacuum
equation (3.45). If we decouple q0 and look at the one-parameter model corresponding to
the base P2 then the second equation just reduces to

1 + 27q1 = 0 , (3.56)

which we recognize as the equation ∆R = 0. Accordingly in this example the boundary of
the Kähler cone is not sensitive to the bundle moduli considered here.13

To summarize, we identify the principal component of the discriminant as the relevant
strong coupling singularity. Furthermore, for q0 & 1/864 the strong coupling phase asso-
ciated to the singularity {∆ε1,ε2,γ1 = 0} still lies within the Kähler cone. Thus, as before,
this component of the singular locus obstructs the small base volume limit by inducing a
strong coupling singularity for the E8 group. Moreover, the worldsheet theory still breaks
down at this locus as is clear from (3.55). As in the undeformed case, the presence of this
singularity effectively induces a non-zero minimal quantum volume for the saxion s1 that,

12However, unlike in the undeformed theory the last correlator is non-zero also in the classical qi → 0
limit.

13For more general deformations or bundles that are not deformations of the tangent bundle this does
not necessarily need to be the case.
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as in (3.31), depends logarithmically on s0. This crucial property is important in section 4
when matching the perturbative corrections to the F-theory scalar field space with the
heterotic Kähler moduli space.

4 Strong Coupling Singularities in F-theory

In this section we aim to translate the structure ofMH
qK into the quantum geometry ofMF

in the string theory limits discussed in section 2.1. Due to its interpretation as a strong
coupling singularity for the heterotic string, the embedding of the principal component of
the singular locus {∆P = 0} ⊂ MH

qK intoMF is of particular relevance for us.
On the F-theory side not much is known about the properties of the scalar field space

beyond the large volume/large complex structure regime, though perturbative corrections
to the classical Kähler potential have been calculated [23–25]. The effect of these perturba-
tive corrections on classical emergent string limits has already been discussed in [15]. Since
we rely on these corrections to match the structure ofMF andMH

qK , we first give a brief
review of their effect in section 4.1. Based on the perturbative corrections and employing
heterotic/F-theory duality, we then explain in section 4.2 how a strong coupling singularity
associated to {∆P = 0} ⊂ MH

qK arises in MF . As a consistency check, we reproduce the
logarithmic quantum volume of the curves in the base B2 observed on the heterotic side.
Matching the perturbative F-theory corrections with the structure of the heterotic GLSM
parameter space, we can further infer the dependence of the singular divisor on the string
coupling. This allows us to identify a codimension one locus inMF corresponding to this
strong coupling singularity and signaling the transition into a strong coupling phase for the
N = 1 theory. In section 4.3 we then use these results to show that in the vicinity of the
strong coupling singularity, the string obtained by wrapping a D3-brane on the fibral curve
C0 of B3 leaves the spectrum of light strings which we further interpret in the context of
the emergent string conjecture and the results of [27] concerning global string solutions
associated to axionic strings.

4.1 Perturbative corrections to F-theory field space

We are interested in the structure of the F-theory scalar field space in the limit in which the
tension of a D3-brane wrapped on the generic fiber of a rationally fibered base ρ : B3 → B2
decouples from any other quantum gravity scale. From section 2.1 we recall that this
corresponds to the limit in which the volume of the fiber of B3 vanishes. As before, we
denote the fibral curve by C0 and its volume by l0 and refer to the limit as l0 → 0. In order
not to leave the supergravity regime, we need to further ensure that (2.16) is satisfied. The
crucial insight of [15] is that, even if (2.16) is fulfilled, one cannot shrink the volume l0 of
the curve C0 arbitrarily fast compared to the volume of the base of B3. More precisely,
we need to ensure that l0 % 1/va, where va is the volume of a curve in the base of B3
(cf. section 2.1). To see this [15] analyzed the corrections to the Kähler potential obtained
from higher derivative terms in the 11d M-theory action upon compactification on Y4 and
subsequent uplift to F-theory. Since this is a crucial ingredient for our analysis, let us
briefly review how perturbative effects correct the F-theory scalar field space, referring
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to [23–25] for the original derivations. First, at the perturbative (α′)2-level, the Kähler
potential K remains to be given by

K = −2 logVB3 . (4.1)

However, VB3 receives (α′)2-corrections:

VB3 = V0
B3 + α2 [(κ̃1 + κ̃2)Z + κ̃2T ] . (4.2)

Here κ̃1 and κ̃2 are constants (cf. the discussion in appendix C of [15]) and Z and T are
given by

Zi =
∫
Y4
c3(Y4) ∧ π∗(Ji) , Z = Zivi ,

Ti = −18(1 + α2) 1
ReT 0

i

(∫
Ji

c1(B3) ∧ J
)(∫

Ji

J ∧ Ji
)
, Ti = viTi ,

(4.3)

where the constant α2 remains undetermined after dimensional reduction [25]. Perturbative
control over the α′-expansion now requires that

Z
V0
B3

� 1 , and T
V0
B3

� 1 . (4.4)

This condition might be spoiled in case Z0 6= 0 or T0 6= 0 which, as analyzed in [15],
is generically the case if C0 is a rational curve. An actual breakdown of the F-theory
perturbation theory in the small fiber limit occurs whenever the relative scaling of l0 and
v1 satisfies

l0 ≺ 1
v1 , (4.5)

whereas a relative scaling of l0 ∼ 1/v1 is marginally allowed meaning that (4.4) is satisfied
but not parametrically [15]. The loss of perturbative control was interpreted in [15] as an
obstruction towards taking the limits satisfying (4.5). Still, at this point it is not clear
what exactly happens once the perturbative α′-expansion breaks down and whether losing
perturbative control over the F-theory effective action indeed corresponds to an obstruction
to taking the limit l0 → 0. Instead it could be possible that at the non-perturbative level
such a limit in fact does exist. The goal of this and the following section is to answer this
question by exploiting our findings about the heterotic dual setup of the previous section.

Recall from appendix A that the F-theory chiral multiplets defined in (2.7) and the
Kähler moduli ba + isa of the heterotic base B2 are related via

Ta = −iηab(bb + isb) , for a ∈ I3 . (4.6)

We observe that limits l0 → 0 satisfying (4.5) lead to

ReTa → 0 , for a ∈ I3 . (4.7)

Accordingly, light string limits in the F-theory scalar field space satisfying (4.5) correspond,
on the heterotic side, to limits in which the Kähler moduli of the base B2 become small.
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Given our analysis of the heterotic GLSM parameter space, this is precisely the regime of
the field space where we encounter an interesting network of singular divisors.

To relate the analysis of the structure of the heterotic GLSM parameter space to the
F-theory scalar field space, we need to ensure that we consider a region in F-theory field
space where we can trust the duality reviewed in appendix A. To that end, we first need
that both, the heterotic CY Z3 and the F-theory base B3, are adiabatic fibrations over a
common base B2 and second, we need to take the stable degeneration limit on the F-theory
side. On the heterotic side this latter condition ensures that we can encode the bundle
in terms of its spectral data, i.e. in terms of a spectral cover together with a spectral
line bundle in the limit of large torus volume (cf. appendix A). This spectral data needs
then to be translated into a Monad bundle in order to define the GLSM associated to the
heterotic compactification. The spectral cover of Monad bundles is, however, in general
degenerate [38, 39], i.e. it is given by an equation of the form

C : z3f(u, v) = 0 , (4.8)

where z is a projective coordinate on the fibral P2,3,1 and u, v are coordinates on the base
B2 of the heterotic CY Z3. In particular this is the case for standard embedding [38] and
the spectral cover for the E8 gauge group that is broken to E6 has the form

C+ : z3∆(u, v) = 0 , (4.9)

where ∆ is the discriminant divisor of the heterotic Weierstrass model. Accordingly, the
class of the two spectral covers associated to the gauge bundles inside the two E8 factors
are given by

[C−] = [E−] , and [C+] = 3[E−] + 12c1(B2) , (4.10)

where we used [∆] = 12c1(B2). Here E− is the zero section of the elliptic fibration. This
degenerate spectral cover corresponds to an F-theory Weierstrass model described by

y2 = x3 + f4ũ
4ṽ4xz4 + (∆(u, v)ũ5ṽ7 + g6ũ

6ṽ6 + g7ũ
7ṽ5)z6 , (4.11)

where ũ, ṽ are coordinates on the fibral P1 of ρ : B3 → B2, and (f4, g6,7) are functions
of (u, v). Naively one would hence expect two E8 singularities at ũ = 0 and ṽ = 0.
However, for standard embedding one of the E8’s has to be necessarily broken to E6.
On the heterotic side this breaking is achieved by a non-trivial line bundle which on the
F-theory side translates into the data of a T-brane [40].

To relate the structure of the heterotic Kähler moduli space to the F-theory field space,
we need at least to have some information about the perturbative corrections in F-theory.
To calculate these, let us perform a smoothing deformation of the Weierstrass model (4.11)
parametrized by two parameters ε, δ. The deformed Weierstrass model is now given by

y3 = x3 + f4ũ
4ṽ4xz4 + εf3ũ

3ṽ5xz4 + (δg4(u, v)ũ4ṽ8 + ∆(u, v)ũ5ṽ7 + g6ũ
6ṽ6 + g7ũ

7ṽ5)z6 .

(4.12)
This deformation breaks E8 → E6 at ũ = 0 and in the limit ε, δ → 0 correctly reduces
to the degenerate case (4.11). Since we do not expect any additional states to become
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massless at the point ε = δ = 0 in complex structure moduli space, the topology of the
Calabi-Yau does not change under the deformation.

Fortunately, at the perturbative level, the corrections in F-theory just depend on the
topology of the four-fold such that it is save to work with the deformed Weierstrass model.
That this is indeed the case can be also seen via heterotic/F-theory duality. Therefore
recall from our discussion of the heterotic side that, at the perturbative level, the gauge
coupling and the corrections to it also just depend on the topology of the bundle. In
particular, when considering the deformations of the tangent bundle as in section 3.2 we
do not change the Mukai vectors since we keep

c2(V1) = 0 , c2(V2) = c2(TV ) . (4.13)

On the other hand, the change in the discriminant locus due to the deformations of the
tangent bundle, are a consequence of the non-trivial mixing between the Kähler modu-
lus of the heterotic fiber and the bundle moduli. As we have seen in section 3.2 these
corrections do not change the singularity structure considerably such that the physics is
qualitatively the same irrespective of whether the bundle deformations are turned on or
not. Therefore also the F-theory behaviour should not significantly depend on the actual
deformation in (4.12). Accordingly, in order to calculate the topological quantities that
govern the α′-corrections we can safely work with the deformed Weierstrass model.

Let us study the perturbative corrections for the effective theory obtained by com-
pactifying F-theory on the four-fold with an E6 singularity on S+ and an E8 singularity
at S−. For definiteness, in the following we focus on the concrete example with B2 = P2

whose heterotic dual has already featured prominently in section 3.14 F-theory/heterotic
duality relates the class of the spectral covers C± to the twist of P1 over P2. In the present
case, (4.10) corresponds to a twist bundle T with

c1(T ) = 6c1(B2) = 18H . (4.14)

Here, H is the hyperplane class of P2. We denote its pull-back to a vertical divisor of
B3 by J1 = ρ∗(H). The model-dependent perturbative α′-corrections are governed by the
characteristic integral15

Z1 =
∫
Y4
c3(Ỹ4) ∧ J1 . (4.15)

For a Weierstrass model with gauge groups on non-intersecting divisors, this integral can
be evaluated using the results of [41]. In our case, the relevant gauge groups are realized on
the exceptional section S− and the section at infinity S+ = S−+ c1(T ) of the P1-fibration.
These satisfy

S− · S+ = 0 , (4.16)
14Since other bases can be obtained from this P2 through a series of blow-ups, most of the relevant features

of a general model are already present in this example which allows us to keep the discussion relatively
simple.

15As shown in [15] the leading correction Ti is model independent and in general non-vanishing.
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such that we can directly apply the results of [41] to evaluate (4.15): we first get a generic
contribution depending only on the geometry of B3

Zgen
1 = −60

∫
B3
c1(B3)2 ∧ J1 = −60

∫
B3

(2S− + 21J1)2 ∧ J1 = −720 . (4.17)

From the E8 gauge group on S− we get a contribution given by

Z−1 =
∫
B3

[
120(2S− + 21J1) ∧ S− − 60S2

−

]
∧ J1 = −720 , (4.18)

and the contribution from the E6 gauge group on S+

Z+
1 =

∫
B3

[
90(2S+ + 21J1) ∧ S+ − 36S2

+

]
∧ J1 = 1242 , (4.19)

such that in total we find

Z1 = Zgen.
1 + Z+

1 + Z−1 = −198 . (4.20)

We notice that this correction is negative.16 As a consequence for the current model, close
to the point l0 = 0 and, depending on the scaling of the other linear multiplets, we indeed
expect to reach a region in moduli space where we lose perturbative control once we try to
reach the locus ReTa = 0.

4.2 F-theory singularity structure

Let us now explain the obstruction to reach the locus Re Ta = 1
2
∫
Ja
J∧J = 0 ⊂MF from a

non-perturbative perspective. To that end, we exploit the full non-perturbative structure
of the GLSM parameter space, MH

qK, associated to the dual heterotic compactification
analyzed in section 3. More precisely, we use the perturbative F-theory corrections dis-
cussed in the previous section as a guideline to match the structure of the heterotic GLSM
parameter space ontoMF . We will show how this matching works in five steps which we
first summarize briefly:

1. At first sight, one may identify the locus inMF at which the perturbative expansion
breaks down with the corrected boundary of the Kähler cone at finite Re Ta replacing
the locus ReTa = 1

2
∫
Ja
J ∧ J = 0 ⊂MF . In analogy to the locus {∆R = 0} ⊂ MH

qK
describing the corrected Kähler cone boundary in the heterotic GLSM parameter
space, we denote the corrected Kähler cone boundary inMF by {∆F

R = 0}.
16Note that in case we had worked with the undeformed Weierstrass model (4.11) we would have had two

E8 groups on S±. In this case the topological term Z1 would vanish identically. However, in this case we
would have to deal with the T-brane data which is not captured by the known perturbative α′-corrections.
We avoided dealing with the T-brane data by considering the deformed Weierstrass model. If we completely
ignored the T-brane and had not deformed the Weierstrass model, our F-theory model would be dual to
the heterotic string with a bundle corresponding to point-like instantons on the heterotic side. Since these
point-like instantons can be thought of as stacks of NS5-branes wrapping the class 18H ⊂ P2, we would
have additional degrees of freedom corresponding on the F-theory side to blowing up curves in the base B2

which changes the topology of the four-fold Y4 and hence Z1.
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2. Recalling from section 3 that the heterotic gauge coupling remains unaffected by the
presence of {∆R = 0} one realizes that this identification cannot be quite correct: the
perturbative corrections toMF also affect the gauge coupling on the 7-branes in the
vicinity of {∆F

R = 0} indicating that the breakdown of the perturbative expansion
cannot just be a consequence of reaching the corrected boundary of the Kähler cone
inMF .

3. Using heterotic/F-theory duality we show that the regime of MF where we have a
light, perturabtive heterotic string gets mapped to a region in the GLSM parameter
space where the locus {∆P = 0} lies within the corrected Kähler cone bounded
by {∆R = 0}. On the F-theory side this implies the existence of a singular locus
{∆F

P = 0} inside the corrected Kähler cone along which the 7-brane gauge coupling
diverges. Before reaching {∆F

R = 0} one hence enters a strong coupling phase of
F-theory. Therefore the breakdown of the perturbative expansion is in fact triggered
by the singularity {∆F

P = 0} and the presence of the strong coupling phase.

4. As a consistency check we use the perturbative corrections toMF to calculate the cor-
rections to the minimal value of Re Ta induced by the presence of the strong coupling
singularity in {∆F

P = 0} ⊂ MF . This in fact reproduces the logarithmic correction to
the minimal quantum volume of heterotic base curves observed in section 3, cf. (3.31).

5. Finally, we use the perturbative corrections to MF to infer the dependence of the
location of the singular locus {∆F

P = 0} on the perturbative coupling, S0, of the
7-brane gauge theory. This dependence leads to a singularity structure of MF in
the string theory limit that is very reminiscent of the structure of the N = 2 moduli
space in the field theory limits of type II Calabi-Yau compactifications as anticipated
in section 2.2.

With this summary, let us now explain the above steps in some more detail:

4.2.1 Corrected Kähler cone boundary

To start, let us examine how the boundary of the classical Kähler cone Re Ta = 0 gets
affected by the perturbative quantum corrections. From the discussion of the heterotic
dual in section 3 we recall that at the actual boundary of the Kähler cone, corresponding
to {∆R = 0}, the central charge of the zero section E− of the heterotic CY Z3 vanishes.
As a consequence of the non-perturbative corrections, this locus in moduli space does not
correspond to the point sa = 0 but is shifted to finite sa as is clear from (3.27). Via duality
we hence expect also the point Re Ta = 0 not to lie within the corrected Kähler cone on
the F-theory side.

To see this notice that the corrections proportional to Zi and Ti only become relevant
in case the classical volumes of all vertical divisors ρ∗(Ca) are taken to small values. The
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corrected volume of a ρ-vertical divisor is given by [23–25]

ReTa = ReT (0)
a

1 + α2

(κ3 + κ5) Z
V(0)
B3

+ κ5
T
V(0)
B3

+ α2
(
Z̃a logV(0)

B3
+ κ6Ta + κ7Za

)
.

(4.21)
Perturbative control requires∣∣∣∣∣∣α2

(κ3 + κ5) Z
V(0)
B3

+ κ5
T
V(0)
B3

∣∣∣∣∣∣ !
< 1 . (4.22)

Since Za < 0 and κ3 + κ5 > 0, perturbative control is lost once the term proportional
to ReT (0)

a in (4.21) vanishes. As a consequence, the actual volume of Ja at the corrected
boundary of the Kähler cone is given by

ReT ∗a = α2
(
Z̃a logV(0)

B3
+ κ6Ta + κ7Za

)
, (4.23)

up to higher order and non-perturbative corrections. By matching the F-theory α′-correc-
tions to heterotic loop corrections, [15] showed that heterotic/F-theory duality constrains
Z̃a = 0. Accordingly, the value of ReT ∗a is determined by the constants Ta and Za. From
the perturbative perspective we expect ReT ∗a > 0, since κ7 = −(κ3 +κ5) and Z < 0. Thus,
indeed, the corrections shift the Kähler cone boundary and we can identify Re T ∗a > 0 as
the volume of Ja along this boundary which we denote by {∆F

R = 0}. This matches with
the heterotic result where the corrected Kähler cone boundary, {∆R = 0}, also corresponds
to sa > 0, though the precise value depends on non-perturbative effects and possibly higher
order corrections in α′ that we did not take into account in our F-theory analysis. Notice
that both the value of Re T ∗a and the value of sa along {∆R = 0} are independent of the
value of the other moduli in the theory including the deformations discussed in section 3.2.
Thus, at this level, the perturbative analysis of the F-theory moduli space is consistent
with the analysis of the heterotic quantum Kähler moduli space to the extend that in both
cases the boundary of the Kähler cone is shifted at the quantum level.

4.2.2 Perturbative corrections to string coupling

From the dual heterotic perspective we expect that the corrections shifting the boundary
of the Kähler cone only affect the moduli Ta since the component ∆R of the discriminant
is independent of e.g. q0. In particular in the heterotic theory we can still freely tune the
heterotic gauge couplings along {∆R = 0}. By contrast, on the F-theory side this is not
the case as can be seen by considering the corrections to the volume of the exceptional
divisor D0 ≡ S−:

ReS0 = ReS(0)
0

1 + α2

(κ3 + κ5) Z
V(0)
B3

+ κ5
T
V(0)
B3

+ α2
(
Z̃0 logV(0)

B3
+ κ6T0 + κ7Z0

)
,

(4.24)
where S0 is defined in (2.2). As reviewed in appendix A, we can interpret ReS0 as the
gauge coupling of the unbroken E8 gauge group. Classically, one can choose Re T (0)

a and
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ReS(0)
0 independently such that one can tune the gauge coupling for the E8 gauge group

on S− to arbitrarily small values while keeping Re T (0)
a finite. In the vicinity of the locus

ReTa = ReT ∗a , i.e. {∆F
R = 0}, this is obviously not the case anymore as we have

ReS∗0 = α2
(
Z̃0 logV(0)

B3
+ κ6T0 + κ7Z0

)
, (4.25)

which is not proportional to the tree-level value Re S(0)
0 . We are thus unable to tune the

gauge coupling to arbitrarily small values at that point. Let us stress again that this should
be contrasted to the situation along the locus {∆R = 0} in the heterotic GLSM parameter
space at which the perturbative heterotic gauge theories remain weakly coupled. We thus
conclude that the break-down of the perturbative expansion in F-theory cannot merely
be a consequence of the shift of the Kähler cone encoded in {∆R = 0}. Instead, as we
show in the following, this perturbative obstruction is in fact associated to the singularity
{∆P = 0} in the heterotic GLSM parameter space.

4.2.3 Strong coupling via heterotic/F-theory duality

To see the relevance of {∆P = 0}, let us first notice that in order for the field space around
l0 = 0 to be identified with the stringy moduli space of a weakly-coupled heterotic string,
we need to ensure that we can express the heterotic bundle data in terms of the spectral
cover plus spectral line bundle as required for standard F-theory/heterotic duality. As
reviewed in appendix A this requires us to take the stable degeneration limit for the four-
fold Y4 on the F-theory side. To take this limit, we should replace the Weierstrass model
in (4.11) by17

y2 = x3 + f4ũ
4ṽ4xz4 + g6ũ

6ṽ6z6 + ξ (∆(u, v)ũ5ṽ7 + g7ũ
7ṽ5)z6 , (4.26)

and consider the regime ξ � 1. Notice that we are not taking the strict ξ → 0 limit which
would be another infinite distance limit but just consider fixed ξ � 1 in order to trust the
duality to the heterotic string.

On the heterotic side of the duality the stable degeneration parameter ξ corresponds to
the volume modulus, s0, of the elliptic fiber of the heterotic CY three-fold Z3. The regime
ξ � 1 on the F-theory side now translates into the limit s0 →∞ for the heterotic string on
Z3 equipped with spectral cover and spectral line bundle. To trust the F-theory/heterotic
duality we further have to impose

s0 � volBH
2 , (4.27)

which ensures an adiabatic limit. At the classical level, this hierarchy ensures that the
heterotic Kähler potential factorizes as

K = − log(s0)− log
(1

2VB2

)
+ . . . . (4.28)

However, we cannot directly apply the GLSM analysis of section 3 to the heterotic string
with spectral cover and line bundle. Instead, we first need to translate the spectral data

17Here we work with the undeformed Weierstrass model in order to keep the expressions simple.
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obtained from F-theory in the stable degeneration limit into the bundle data that enters
the GLSM description. As we review in appendix A the bundle data can be obtained from
the spectral data by means of a Fourier-Mukai transform. This transform acts as a double
T-duality on the elliptic fiber of Z3. Hence, when applying the GLSM description, the
stable degeneration limit ξ � 1 on the F-theory complex structure moduli space should in
fact be viewed as the regime s0 � O(1), or q0 � 1/864. From our discussion of the GLSM
parameter space in section 3, we recall that in this regime of the heterotic GLSM parameter
space, the amoeba of the singularity {∆P = 0} necessarily lies within the boundary of the
corrected Kähler cone set by ∆R = 0. Therefore, in the light string limit of F-theory we
also expect to first reach a singularity associated to ∆P = 0 before we reach the Kähler
cone boundary {∆F

R = 0}. Let us denote the singular locus inMF by {∆F
P = 0}

Recall from section 3 that along the singularity ∆P = 0 the gauge coupling of the
unbroken E8 diverges. This implies that on the F-theory side the gauge theory on S−
becomes strongly coupled along {∆F

P = 0}. The fact that the perturbative corrections
also affect the gauge coupling can be seen as a remnant of this strong coupling singularity
at the perturbative level. The upshot is thus that, from heterotic/F-theory duality, the
obstruction to reach ReTa = 0 is due to a strong coupling singularity for the gauge theory
on S−.

4.2.4 Logarithmic quantum volume

In fact, we can give further support for this observation by considering the contribution
to the quantum volume for ρ-vertical divisors Ja induced by the presence of {∆F

P = 0}.
Therefore recall that on the heterotic side the contribution to the minimal quantum volume
of a curve in the base B2 due to {∆P = 0} is roughly given by

sa ∼ − log s0 + . . . , (4.29)

up to details encoded in the mirror map and the choice of bundle deformations. Since
on the F-theory side s0 has to be identified with ξ introduced in (4.26), we also expect
that the minimal quantum volume for Re Ta depends logarithmically on the complex struc-
ture parameter ξ. To see this, we notice that the s0-dependence of the minimal volume
of the curves in B2 given by samin ∝ log(s0) can be interpreted as arising from a 1-loop
correction to the worldsheet instanton action. Thus this should be an effect already visible
at the perturbative level in F-theory. By duality, ReTa = ηabs

b is the (real part of the)
action of a D3-brane instanton in F-theory and we therefore expect to also observe a loga-
rithmic dependence on the stable degeneration parameter from studying the perturbative
α′-corrections to ReTa.

Given the expression (4.21), it is not immediately clear where such a dependence on
the complex structure modulus ξ dual to s0 comes from. To identify such a dependence,
let us exploit the vanishing of the gauge coupling of the unbroken E8 on the singular locus
given by ∆F

P = 0, as argued for above. Imposing the strong coupling condition, ReS0 = 0,
yields a condition similar to (4.22) up to loop corrections that are encoded in

Ξ1−loop = α2
(
Z̃0 logV(0)

B3
+ κ6T0 + κ7Z0

)
. (4.30)
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Since we argued that the logarithmic correction to ReT ∗a should be a one-loop effect, we
need to understand these loop terms. To that end, we can use the result of [15] interpreting
the logarithmic term in Ξ1−loop as a one-loop term in the heterotic theory which fixes

Z̃0 = b

8π , (4.31)

with b the β-function coefficient of the gauge group realized on S−. One obtains this result
by noticing that the non-holomorphic threshold corrections to the heterotic gauge coupling
are given by

∆̃P = c

8πKH + . . . , (4.32)

where KH is the Kähler potential for the heterotic Kähler moduli and c another one-loop
coefficient. In the present case the relevant contribution to KH is classically given by
(cf. (4.28))

KH ⊃ − log(VZ3) = − log
[1

2ηabs
asb
]
− log s0 . (4.33)

On the other hand one finds

logV(0)
B3

= log
(
M2

het
M2
S

VFB2

)
= log

(
M2
S

M2
het

)
+ log

[1
2ηabs

asb
]
, (4.34)

where in the last step we re-expressed all curve volumes in terms of the heterotic string
scale. Comparing (4.34) with (4.32) and using (4.33) we find that the non-holomorphic
threshold corrections evaluated at M2

het agree with the F-theory correction proportional
to logVB3 up to a term proportional to log s0 which can be identified with log ξ upon
F-theory/heterotic duality. Let us denote the renormalized gauge coupling of the gauge
theory on S− by ReS(1)

0 . Using that the singularity corresponds to strong coupling, i.e.
ReS0 = 0, we find from (4.24)1 + α2(κ3 + κ5) Z

V(0)
B3

+ κ5
T
V(0)
B3

∣∣∣∣∣∣
sing.

= − α2

ReS(1)
0

(
b

8π log ξ + κ6T0 + κ7Z0

)
. (4.35)

We can insert this into (4.21) to obtain

1
α2 ReTa

∣∣∣∣
sing.

= −ReT (0)
a

ReS(1)
0

[
b

8π log ξ + κ6T0 + κ7Z0

]
+ κ6Ta + κ7Za . (4.36)

This expression agrees with ReT ∗a given in (4.23) up to the first term which logarithmically
depends on ξ. Hence, for ReS(1)

0 → ∞, the value of ReTa
∣∣
sing asymptotes to a constant

that at the perturbative level is determined by κ6Ta + κ7Za, but in general is sensitive
to the logarithmic corrections. We can extract the information about this correction by
considering

ua ≡ ReTa − ReT ∗a . (4.37)

At the singularity we find

ua

∣∣∣∣
sing.

= −ReT (0)
a

ReS(1)
0

b

8π log ξ

exp (Ξ′) , (4.38)
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where we absorbed Ξ′ = Ξ − α2Z̃0 logV(0)
B3

into the logarithm. The coordinates ua thus
parametrize the effect of the singularity ∆F

P = 0 on the quantum volume of the vertical
divisor Ja. The perturbative F-theory results therefore reproduce perturbative information
encoded in the heterotic singular locus ∆P = 0, such as the log ξ dependence reflected
in (4.38).

4.2.5 Coupling dependence

Using duality, so far we have established the existence of a strong coupling singularity in
MF which we identify as the source for the breakdown of the perturbative expansion. We
further explained how to match the perturbative corrections to the F-theory effective action
with the heterotic expectation. We now use these results to further investigate the structure
of MF in the light string limit. In general the strong coupling singularity is expected to
correspond to a complex co-dimension one locus {∆F

P = 0} inMF whose position is encoded
in ua

∣∣
sing via (4.38). And indeed, from (4.38) we can extract important information about

∆F
P : first, as alluded to before, it is sensitive to the complex structure sector of the F-

theory compactification. This reflects that in an N = 1 compactification of F-theory the
Kähler and complex structure deformation spaces do not factorize at the quantum level.
Notice that in the F-theory effective theory this complex structure dependence is crucial
to differentiate between ∆P = 0 and ∆R = 0 and therefore for the interpretation of the
obstruction to reach the classical light string limit as a consequence of a strong coupling
singularity. Second, the location of the singularity in the ua-hyperplane depends on the
value of the perturbative string coupling Re S(1)

0 . Accordingly, the locus {∆F
P = 0} ⊂

MF also has such a coupling dependence. Notice that this coupling dependence cannot
be inferred from the heterotic GLSM analysis directly, though the perturbative F-theory
corrections allow us to uncover this dependence.18 However, at this point, we only have
access to the dependence of the singular locus on Re S0. In general there is an additional
dependence on ImS0 which we do not discuss here. Still, the projection to the real part
of ReS0 provides us with important information about the singularity structure of the
scalar field space. This was already the case in the heterotic FI-parameter space where the
projection of the singular loci to the real plane gave rise to the amoeba of the singularity
from which the location of the strong coupling phases can be read off (cf. figure 1). For
real S0 the location of {∆F

P = 0} and the strong coupling phase in the string theory limit
ofMF are illustrated schematically in figure 2 for the simple case B2 = P2.

This structure is very reminiscent of the N = 2 point-particle limit of type IIA string
theory reviewed in section 2.2. There the relevant singularity corresponds to the Coulomb

18Let us stress that this is very different from the GLSM for Type IIA on the same CY. In this case we
do not have a hidden dependence of {∆P = 0} on the 4d string coupling of type IIA. This is due to the fact
that for Type IIA on CY three-folds the 4d string coupling resides in a hypermultiplet which is independent
from the vector multiplet moduli space described by the Type IIA Kähler moduli. On the other hand for
Calabi-Yau compactifications of Type IIB, the Kähler moduli and the 4d string coupling are part of the
same hypermultiplet moduli space which does not factorize at the quantum level. This non-factorization
then leads to the obstruction of certain infinite distance limits as discussed in [42, 43]. Similarly, the fact
that for the heterotic string there is a coupling dependence of ∆P reflects the fact that in N = 1 theories
there is no factorization between the different parts of the scalar field space.
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Figure 2. This figure shows a sketch of the F-theory Kähler moduli space projected to the real part
of the chiral fields for the example of B2 = P2. Shown are the two directions corresponding to the
(exponentiated) volume ReS0 of the exceptional divisor S− and the volume ReT1 of pull-back of the
hyperplane H in P2 to B3. We also show the singularities whose existence we inferred from duality
to the heterotic GLSM parameter space. The projection of ∆F

P = 0 to this plane is indicated by the
green solid line and corresponds to a strong coupling singularity for the E8 gauge group realized on
the exceptional divisor S− whereas the singularity ∆F

R = 0 (blue, dashed line) corresponds to the
boundary of the Kähler cone. The region shaded in green corresponds to a strong coupling phase.
In this figure, the Calabi-Yau phase of the perturbative heterotic string corresponds to the lower
left corner. The intersection of ∆F

R = 0 and S0 = ∞ is a point of tangency between ∆F
P = 0 and

S0 =∞. The arrows indicate the different types of classical infinite distance limits as in (4.43) (see
also [15]) originating from a common point in the geometric phase.

branch singularities of the N = 2 SYM theory at

u
∣∣
sing. = ±Λ4 exp(−ŜIIA) . (4.39)

Here u is the SU(2) Coulomb branch parameter. Notice that u |sing. depends on ŜIIA, i.e.
the tree-level gauge coupling of the SU(2) gauge theory and the dynamically generated 1-
loop scale Λ of the field theory. Both are related to the actual gauge coupling as in (2.24).
The analogy between the N = 2 field theory limit and the N = 1 string theory limit
identifies

u
∣∣
sing. ←→ ua

∣∣
sing. . (4.40)

In the same way as {∆IIA = 0} can be generated from u |sing. = ±Λ4 exp(−ŜIIA) by varying
the modulus SIIA, we obtain the F-theory singular locus {∆F

P = 0} ⊂ MF by varying
ReS(1)

0 . In addition to the locus {∆F
P = 0} ⊂ MF we also have the locus {∆F

R = 0}. From
our analysis around (4.23) we recall that {∆F

R = 0} is located at ReTa = ReT ∗a and is
therefore independent of ReS(1)

0 . Hence {∆F
R = 0} is given by a locus orthogonal to the

weak-coupling divisor ReS(1)
0 = ∞. Importantly, we observe a point of tangency between

the large volume/weak coupling divisor ReS0 →∞ and the singular locus {∆F
P = 0}: for

ReS(1)
0 →∞ we find ua|sing. → 0 such that the two loci {∆F

P = 0} and {∆F
R = 0} coincide
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asymptotically. Equivalently, the entire strong coupling phase, i.e. the shaded region in
figure 2, reduces to a single point. This is precisely what happens in the N = 2 setup as
well, where in the vicinity of SIIA → i∞ the entire strong coupling phase of the N = 2
SYM theory gets mapped to TIIA = i. Notice that for this to happen it is crucial that
∆F
P depends on the coupling S0. This effect is therefore not visible in the heterotic GLSM

parameter space that does not take into account any coupling dependence. To retrieve the
structure of the heterotic GLSM one needs to compensate for this coupling dependence by
rescaling ua → ũa as

ũa =

8π
b

ReS(1)
−

ReT (0)
a

 ua (4.41)

Using this rescaling we can then identify ũa ↔ ηab
(
sb − sb0

)
where sb0 is the quantum

volume of the curve H ∈ H2(B2) on the corrected Kähler cone boundary induced by
non-perturbative effects (cf. e.g. (3.27)). At the singularity we then find

ũa
∣∣
sing. ∼ − log ξ

exp (Ξ′) . (4.42)

The rescaling ua → ũa can be viewed as the analogue of the rescaling u→ ũ in the N = 2
field theory limit of type IIA string theory as in (2.23) where ũ is the coordinate on the P1

used to resolve the point of tangency in moduli space.
Thus, as anticipated in section 2.3, at the level of the field space structure, we see a

clear analogy between the point-particle limit of type IIA string theory studied in [26] and
the string theory limit of F-theory. We can further exploit this analogy when searching
for an interpretation of ∆F

P in terms of the light string spectrum. Therefore, recall that
in the N = 2 case the W± bosons, which classically become massless at T = i, leave the
BPS spectrum at the field theory singularity. On the other hand, the magnetic monopole
becomes massless at u = Λ4 exp(−ŜIIA). Similarly, in the F-theory setup we expect the
D3-brane wrapped on C0 to leave the spectrum of BPS strings at the singularity ∆F

P and
to be replaced by some other BPS string. In the next section we are going to discuss this
perspective in more detail.

Before discussing the spectrum of BPS strings, let us put the structure of the field
space into the context of the obstruction to certain classical emergent string limits observed
in [15]. In that work classical infinite distance limits were classified according to the relative
asymptotic scaling between the tension M2

string of the emergent string and the KK-scale
leading to the three possibilities

M2
string �M2

KK , M2
string ∼MKK , or M2

string ≺M2
KK . (4.43)

The first case was identified as a decompactification limit whereas both, the second and
the third case, are classically emergent string limits. However, as shown in [15], the latter
limits are obstructed at the perturbative limit such that only the second case survives
as actual emergent string limits at the quantum level. In figure 2 limits of this second
kind correspond to trajectories orthogonal to the horizontal axis. On the other hand,
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decompactification limits asymptote towards the origin in figure 2. Finally, those classical
emergent string limits, that are obstructed at the quantum level, intersect the horizontal
axis at exp(−ReT1) = 1, i.e. to the right of the {∆F

R = 0}. Therefore any classical limit that
asymptotically leads toMstring ≺MKK necessarily intersects the singular divisor {∆F

P = 0}
such that this singularity can indeed be interpreted as obstructing the unphysical limits
where the tension of a 4d critical string decouples parametrically from the geometric KK-
scale. Notice that the locus along whichMhet = MKK may in fact lie to the left of {∆F

R = 0}
such that Mstring . MKK can in principle be achieved though not parametrically. This is,
however, not a problem since we only need an obstruction to parametrically separate the
scales Mstring and MKK which is indeed the consequence of the presence of {∆F

P = 0}.

4.3 Singularities and the string spectrum

We now want to interpret the structure of MF and in particular the strong coupling sin-
gularity in terms of the BPS string spectrum. We do this from two different persepctives:
first from the perspective of the worldsheet of the string and second by relating the struc-
ture of the scalar field space directly to the spectrum of BPS strings, following the ideas
of [27]. In addition, we compare our results to the perhaps more familiar setups of F-theory
compactifications to 6d.

4.3.1 Worldsheet perspective

Starting with the worldsheet perspective, we would like to argue that in the vicinity of
the strong coupling singularity ∆F

P = 0 the string obtained from the D3-brane wrapped
on C0 leaves the spectrum of light BPS strings. To that end, we want to show that the
supersymmetric worldvolume theory on the D3-brane string breaks down at ∆F

P = 0. To
that end, we first recall from [13] that on the worldsheet level the identification between the
D3-string and the heterotic string can be achieved by first reducing the worldvolume theory
on a D3-brane, i.e. N = 4 SYM theory with varying gauge coupling, along the curve C0.
Using the results of [31] one finds the following spectrum of fields on the worldsheet [13]:19

• First there are two chiral multiplets (φi, µi+), i = 1, 2, from the reduction of the
scalar and the gaugino in the N = 4 gauge multiplet. The two scalars φi describe the
motion of the D3-brane in the internal directions transverse to C0, i.e. the complex
coordinates on the base B2.

• In addition one has a chiral multiplet (g, γ+) also arising from the reduction of the
N = 4 multiplet scalar. The scalar in this multiplet describes the motion of the
string in the two extended directions transverse to the string.

• Moreover, one finds a chiral multiplet (a, ψ+) for which the scalar is identified with
the Wilson line of the N = 4 vector field over C0. On the heterotic side this scalar
can be identified with the coordinates of the torus fibered over B2 in the CY Z3 that
is the compactification manifold of the heterotic string.

19In [44] the worldsheet theories of more general D3-brane strings in 4d N = 1 F-theory have been
discussed in order to derive quantum gravity constraints from anomaly inflow on these strings.
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• Finally there are 16 Fermi multiplets λ− associated to the bundle degrees of freedom
of the heterotic string.

Summarizing the spectrum as

(g, γ+)︸ ︷︷ ︸
2d extended

, 2× (φ, µ+)︸ ︷︷ ︸
B2

, (a, ψ+)︸ ︷︷ ︸
T 2

, λ−︸︷︷︸
bundle

, (4.44)

the worldsheet theory of the D3-brane wrapped on C0 can then be identified with a non-
linear sigma model (NLSM) with target space Z3 : T 2 → B2 describing a CY compactifica-
tion of the critical heterotic string in the large volume phase. This NLSM preserves (0, 2)
supersymmetry in 2d and thus (at least in the large volume limit) the D3-brane string with
this NLSM as its worldsheet theory can be viewed as a genuine BPS object of the N = 1
EFT. In order for this to be the case also away from the large volume limit, we need to
ensure that the worldsheet theory on the D3-brane string remains well-defined. To that
end we can consider correlators of the form

〈Oi1 . . .Oin〉 , (4.45)

of the worldsheet theory and check whether these remain finite. Here the Oi are some opera-
tors on the worldsheet and singular correlators would imply that the underlying worldsheet
theory is ill-behaved. Since we identified the worldsheet theory with the heterotic NLSM
we can use the heterotic theory to calculate these correlators explicitly. The relevant scalar
field space is spanned by

Mstring = 〈S0, Ta〉 , (4.46)

which, via heterotic/F-theory duality, are identified as the gauge coupling of the unbroken
E8 heterotic gauge theory and the heterotic Kähler moduli ta of the base B2. For the
heterotic NLSM the Oi appearing in the correlators are associated to elements of H2(Z3).
In section 3 we discussed the GLSM correlators, see (3.28) for the example B2 = P2 . These
GLSM correlators can be expanded in terms of the exponentiated FI-parameters qi which
should be interpreted as GLSM gauge instantons. In the geometric phase of the GLSM,
the correlators of the A(A/2)-twisted heterotic NLSM agree with these GLSM correlators
and the gauge instanton expansion can be rephrased as a worldsheet instanton expansion
upon applying the mirror map

2πi ta = log qa +O(qa) , (4.47)

relating the Kähler moduli of the NLSM target space to the GLSM FI-parameters. Im-
portantly, irrespective of the details of this map the singularities of the GLSM correlators
translate into singularities for those of the NLSM. In general one finds that the GLSM
correlators have the form

〈σa1σa2σa3〉Z3 ∼
f(q0, qa)

∆P
, (4.48)

implying that, as was already anticipated in section 3, the heterotic NLSM becomes singular
along {∆P = 0} when identifying the GLSM operators σa with the corresponding operators
Oa of the NLSM.
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As argued in this section, the singularity {∆P = 0} in the heterotic Kähler moduli
space has a counterpart {∆F

P = 0} in the F-theory scalar field space. Since we can iden-
tify the worldsheet theory on the D3-brane wrapped on C0 with the heterotic NLSM we
conclude from our discussion above that the worldsheet theory on this D3-brane string
becomes singular along {∆F

P = 0}. At and beyond the locus {∆F
P = 0} reducing the D3-

brane action on C0 hence does not yield a consistent supersymmetric worldsheet theory
anymore signaling that the D3-brane wrapped on C0 leaves the spectrum of BPS strings.
This is to be contrasted to the geometric phase, where the NLSM living on the wrapped
D3-brane is a well-defined (0, 2) supersymmetric theory confirming that the D3-brane on
C0 is a BPS object in this regime. Thus, from the worldsheet perspective we expect a
string other than the D3-brane on C0 to be the fundamental BPS state once we move into
the phase beyond {∆F

P = 0}. To summarize, the worldsheet perspective thus provides us
with a physical interpretation of the singularity ∆F

P = 0 as the point in field space where
the critical D3-brane string leaves the spectrum of BPS strings. In the following, we want
to present further support for this picture from a space-time point of view.

4.3.2 4d EFT string perspective

Apart from the worldsheet perspective, we can directly relate the structure of MF to the
BPS string spectrum following [27]. In there the fate of strings in 4d EFTs at strong
coupling is analyzed. Most importantly, [27] relates the singularity structure of the moduli
space to the existence of strings in the 4d EFT and identifies a way to estimate the tension
of 1

2 -BPS strings away from weak coupling limits. Before we apply the discussion of [27]
to our F-theory setup, let us review their main setup and results.

Therefore consider a four-dimensional N = 2 or N = 1 supersymmetric EFT. The
scalar field space M of this theory is spanned in general by complex scalar fields ti for
which the effective action is given by

S4d = M2
P

∫ (1
2R ∗ 1 + gab̄dt

a ∧ ∗dt̄b
)
. (4.49)

Here gab̄ is the field space metric and for the moment we assume that any contribution to
the scalar potential is negligible such that we can treat the scalar field space spanned by
the ta as an actual moduli space. In N = 2 theories this is ensured by supersymmetry
whereas in a genuine N = 1 theory this is generically not the case as e.g. in string theory
constructions fluxes or non-perturbative effects can generate a scalar potential.

The scalar fields ta are periodic such that

ta ∼ ta + i , (4.50)

In certain regions of the scalar field space a continuous version of this shift symmetry can
be approximately realized. In this case the imaginary part of ta can be treated as an axion.
The objects magnetically charged under these axions are 4d strings. To these 4d strings
one can associate cosmic string solutions in the spirit of [45] that describe the backreaction
of the strings in the extended four-dimensional space-time. Such string theory solutions
have been investigated in detail in [14, 16, 17, 27, 44, 46, 47]. As such string solutions
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should preserve 2d Poincaré invariance along the directions parallel to the string an ansatz
for the metric is given by

ds2 = −dt2 + dx2 + e2Ddzdz̄ , (4.51)

where z ∈ C is the coordinate transverse to the string. Supersymmetric solutions to
Einsteins equations have to satisfy [14, 16]

∂z̄t
a = 0 , e2D = |f(z)|e−K , (4.52)

for a holomorphic function f(z) and K the Kähler potential. The profile for ta(z) should
reflect the shift (4.50)when encircling the core of the cosmic string. In the vicinity of the
string core located at z = 0, the local holomorphic profile for a cosmic string with magnetic
charge vector e = (e1, . . . , en) then needs to have to form

ta(z) = ta0 −
ea

2π log z

z0
, (4.53)

for |z| � |z0|. Here ta0 are background values for the complex scalar fields and z0 parame-
trizes the coarseness of the solution. In general this solution receives polynomial corrections
in z corresponding to non-perturbative effects. Of particular relevance are therefore the
solutions that in the limit z → 0 flow to regions in the field space where the continuous
shift symmetry is approximately unbroken and all instantons charged under the shift sym-
metry (4.50) are suppressed. The strings leading to such solutions have been dubbed EFT
strings in [16]. The tension of such an EFT string can be estimated by the energy of the
backreaction of the string stored in a disk with radius R around the string [16]

Eback(R) = M2
pl

∫
D(R)

d2z t∗(JM) . (4.54)

Here, JM = gab̄dt
adt̄b̄ is the Kähler form on the moduli spaceM and t∗ denotes the pull-

back fromM to the space-time transverse to the string using (4.53). In the vicinity of the
string core, one can exploit the shift symmetry (4.50) to calculate the tension explicitly to
be

Eback(R) = M2
pl [La(R)− La(0)] , (4.55)

where La are the dual linear multiplets that are related to the ta via

La = −1
2

∂K

∂Re ta , (4.56)

cf. (2.7). However, once the shift-symmetry (4.50) is broken by non-perturbative effects,
it is not possible to dualize the chiral superfields to linear multiplets anymore. In these
regimes, the naive profile (4.53) does in general get corrections due to the non-perturbative
effects. Moreover, the tension of the string solution cannot be calculated via (4.55) and it
is not even clear how to calculate the tension of a probe string in a background determined
by ta0. As argued in [27] it is still possible to extend the local solution (4.53) to a global
one precisely by taking into account these non-perturbative effects. In fact [27] conjectured
that for elementary strings, i.e. strings with charge vector e = (δab) for some b, it should
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always be possible to extend the local solution in a unique way such that the tension of
the full solution remains sub-Planckian, Eback(∞) < 2πM2

pl.
The global solution then gives rise to a profile ta(z) yielding a map defined on the entire

space C transverse to the string (or its one-point compactification P1) to M. The image
of this map is a two-cycle Σ ⊂ M. This two-cycle in general intersects singular divisors
{∆ = 0} ⊂ M which, following [27], can be interpreted as additional strings present in the
global solution that regulate the backreaction of the EFT string. Thus, to each component
of the singular locus {∆ = 0} one can associate a string. Encircling this string gives rise to
a monodromy M similar to the monodromy (4.50) induced by the EFT string. Borrowing
the results from [48], it is argued in [27] that the order of this monodromy can be associate
to the tension localized at the location of the respective string, i.e. to the minimal tension
of the string. To get a supersymmetric solution, one has to require that all strings present
in the global solution have unipotent monodromy matrices associated to them [27]. On
the other hand, the tension associated to the full solution is measured by the order of
the monodromy at spatial infinity. The condition that the solution has finite tension then
requires the combined monodromies to give rise to a finite order monodromy obtained when
encircling the point at infinity, i.e.

MEFT

∏
α

Mα = M−1
z=∞ , with Mn

z=∞ = Id , (4.57)

for some n ∈ N>0. Here α scans over all regulator strings present in the solution and MEFT

denotes the monodromy around the axionic string at z = 0. The tension of the full solution
is then given by Eback = 2π

n M
2
pl.

Similarly to the calculation of the tension of a global string solution, the picture put
forward in [27] can also be used to infer the tension of a probe string in a background
determined by a point ta0 ∈M: instead of considering an infinitely extended axionic string,
one considers the same string wrapped on a loop of radius R. From far away, this string
now looks like a point-particle and its backreaction dies off quickly converging towards a
constant value which determines a point in the scalar field space ta0 ∈ M. We can thus
view this configuration as describing a probe string in a background characterized by ta0.
The tension of this probe string is then given by the energy Eback stored in its backreaction.
Since the circular string is self-regulating we have Eback ≤ 2π

n M
2
pl. As long as we choose

ta0 close to the point in moduli space where we have an approximate shift symmetry as
in (4.50), Eback indeed calculates the tension of the probe axionic string. However, as we
tune ta0 towards the interior of the moduli space, at some point additional strings nucleate
corresponding to the regulator strings associated to the singular divisors of M. Once this
happens, Eback in fact calculates the tension of the bound state of the axionic string and
the regulator strings. The tension of the bound state of strings remains sub-Planckian
while the tension of the axionic string alone can become super-Planckian. Thus, in case
we choose ta0 to be too far in the interior ofM away from the point with the approximate
axionic shift symmetry, the axionic string, once nucleated, forms a black holes since it is
not BPS protected anymore. On the other hand, the bound state of axionic and regulator
strings does not form a black hole. This bound state can never be tensionless itself since its
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associated monodromy corresponds to Mz=∞ which is of finite order. Thus, the singularity
signals that the probe axionic string ceases to be BPS but instead the relevant BPS object
is the bound string.

With this preparation, we can now come back to our F-theory setup. For simplicity, let
us consider the example with B2 = P2 and discuss the fate of the D3-brane wrapped on C0

in the vicinity of the singular locus {∆F
P = 0}. Let us denote the D3-brane string by H and

consider the EFT string solution associated to the string H. Consider the string H wrapped
on a loop in a background determined by a point in the (S0, T1)-plane (cf. figure 2). If we
choose a point in the vicinity of the locus Re S0 =∞, the tension of the string H is simply
given by

TH

M2
pl

= 1
ReS0

. (4.58)

Instead, we can also consider a point away from the weak coupling locus and ask about
the tension of the D3-brane on C0. As long as we stay below the green line in figure 2
the string tension is given by the energy stored in the backreaction of the single string.
However, if we choose a background determined by a point within the shaded region in
figure 2, the backreaction of the D3-brane on C0 requires the nucleation of a regulator
string P associated to {∆F

P = 0} which itself is tensionless on the singular locus since the
monodromy around the singular locus is unipotent. Notice that since the strong coupling
singularity is at finite distance, the string P is a non-critical string with a finite number of
particle-like excitations. Once nucleated, the tension stored in the backreaction should be
identified with the tension of the bound state of H and P. On the other hand, the tension of
the string H can be super-Planckian in the strong coupling phase and this string is therefore
not part of the BPS spectrum as it becomes unstable against collapsing into a black hole
as described in [49]. Instead it has to be replaced by the finite-tension string corresponding
to the bound state

H→ H + P . (4.59)

Notice that in order for this to happen, it is important that the discriminant ∆F
P depends

on S0 because otherwise the backreaction of the string H would not intersect {∆F
P = 0}.

To see this notice that the image of the backreaction of H inMF are two-cycles Σ which,
when projected to the real (ReS0,ReT1) plane, yield vertical lines in figure 2. If ∆F

P was
independent of S0 it would just correspond to another vertical line (just as {∆F

R = 0} in
that figure) which would in general not intersect any other vertical line associated to the
backreaction of the string H.

So far, we ignored any contribution to S4d coming from a non-trivial scalar potential.
In [27] this was justified by considering either N = 2 theories or heterotic compactifications
with standard embedding in the Kähler sector described in terms of a GLSM FI-parameter
space for which the scalar potential vanishes identically. In our case of interest, the full F-
theory field space is, however, not an actual moduli space due to a non-trivial superpotential
induced by the E8 gauge instantons which does not play a role in the GLSM analysis of [27].
Strictly speaking in the heterotic case, the analysis of [27] is valid along the locus S0 =∞
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where, indeed, the scalar potential vanishes identically. Away from this locus, the heterotic
Kähler field space is subject to corrections that are not captured by the GLSM analysis
as is clear from our analysis in this section. Here we are interested in describing the
backreaction of a D3-brane on the curve C0. In this case we cannot rely on a pure GLSM
description since the backreaction of this brane necessarily leads away from the S0 = ∞
locus. Most strikingly, along the singular locus {∆F

P = 0} the gauge instanton contribution
is unsuppressed. Therefore, unlike in the discussion of [27], we would have to take into
account the effect of the non-trivial scalar potential induced by the superpotential on Eback
and thus the tension of the string H.

Close to the core of the string H, the contribution to the scalar potential is still negligi-
ble. Hence the 4d action can still be considered to be of the form as in (4.49) leading to the
supersymmetry condition (4.52). Therefore the profile for S0 induced by the backreaction
of the string H is still locally given by (4.53) for |z| � |z0|. However for |z| ∼ |z0, the efffect
of the non-vanishing scalar potential becomes non-negligible. This in principle affects the
supersymmetry condition (4.52) and hence we might get a deviation from a holomorphic
profile. In addition, the energy stored in the backreaction (4.54) is not simply given by
the pull-back of the Kähler form since this only captures the effect of instantons correcting
the Kähler potential, but not those correcting the scalar potential. Therefore, we expect
that the regulation of the local string solution is sensitive to the non-perturbative con-
tributions to the superpotential. Calculating the full backreaction for the string would
be beyond the scope of this paper. We notice, however, that in the spirit of the analysis
in [33] one expects that the unsuppressed contributions to the superpotential on singular
loci are precisely due to strings that become tensionless along the singular locus. Along
these lines we then expect that the string P, that becomes light at {∆F

P = 0}, regulates the
backreaction precisely by taking into account also the superpotential. In other words, the
regulation of the backreaction in this case should be achieved partially through the scalar
potential. It would be interesting to confirm this explicitly and to check whether the full
backreaction still has finite tension. For our discussion here the relevant point is that the
singular locus {∆F

P = 0} yields an additional string present in the backreaction of the EFT
string obtained from the D3-brane on C0.

One might wonder whether the string P associated to the singular locus {∆F
P = 0} has

a simple geometric origin. A candidate would be for instance the non-critical D3-brane
wrapped on a curve in the hyperplane class of the P2 base. This string carries charge
(−18, 1) under the axions (ImS0, ImT1). To see this we notice that the two generators of
the movable cone of B3 can be written as

C0 = J1 · J1 C1 = S+ · J1 , (4.60)

where J1 is the pull-back of the hyperplane class to the rational fibration. D3-branes on
C0 and C1 are thus the primitive EFT strings of B3 [16, 17]. On the other hand, the
hyperplane class of P2 can be written as

C = C1 − 18C0 , (4.61)
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from which we can read off the charges under the axions. The associated monodromy when
encircling the D3-brane on C is

M(1,−18) = MT1=∞ (MS0=∞)−18 , (4.62)

where MS0=∞ and MT1=∞ are the monodromies around the large volume divisors, i.e. the
horizontal and vertical axis in figure 2. This is not the monodromy we would expect from
the string asscoiated to {∆F

P = 0}. Indeed, the D3-brane on C leads to a non-EFT string
in the language of [16] for which the profile induced by the backreaction is naively given by

S0 = S0
0 + 12

2π log z

z0
, T1 = T 0

1 −
1

2π log z

z0
, (4.63)

for some background values S0
0 and T 0

1 and some parameter z0. As we approach the core of
the string we thus classically reach the locus (ReS0,ReT1) = (−∞,∞) which, as expected
for a non-EFT string, is well outside the controlled regime. On the other hand this also
does not correspond to the locus {∆F

P = 0} such that we can rule out the possibility that
the string P is simply describable as a D3-brane on C. After all, it is not surprising that
the string P does not have a geometric interpretation since we know that at {∆F

P = 0}
the geometric description of the N = 1 EFT breaks down. At this point, we do not have
a clear microscopic description of this string though it would still be interesting to find a
worldsheet description for this string. We leave this task, however, for future work.

To summarize, the picture of [27] suggests that, indeed, the singularity ∆F
P = 0 signals

a change in the BPS-string spectrum as H gets replaced by H+P. This is reminiscent of the
situation in the N = 2 field theory where at the strong coupling singularity also the W±
bosons leave the BPS particle spectrum which now consists of the magnetic monopole and
the dyon, that is the bound state of W± boson and magnetic monopole. As mentioned
above the monodromy around {∆F

P = 0} is unipotent such that the string P becomes
tensionless on the singular locus. It can therefore indeed be viewed a the analogue of the
SW monopole which becomes massless at the strong coupling singularity. The worldsheet
perspective and the 4d EFT string analysis of the strings and their backreaction therefore
consistently point towards the following interpretation of the strong coupling singularity
{∆F

P = 0}: the singular locus {∆F
P = 0} gives an obstruction to a classical light string limit

since the string itself ceases to be BPS in the new strong coupling phase.

4.3.3 Comparison to 6d

It is instructive to compare the 4d case discussed here to an analogue situation in six dimen-
sions, cf. e.g. [50, 51] for discussions of string theory limits of F-theory compactifications to
6d. Therefore consider F-theory compactified on a Calabi-Yau three-fold that is a smooth
Weierstrass model over the Hirzebruch surface F1. We already discussed this geometry
in the context of heterotic compactifications to four dimension in section 3. In 6d we do
not have to fear any corrections to the moduli space geometry. Thus, when it comes to
tensions of solitonic strings, the tension is completely determined by the geometry of the
Calabi-Yau. In the case at hand, the base B2 is a rational fibration over P1. The Kähler
form of the base is given by

JF1 = t1h+ t2(s− + h) , (4.64)
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where h is the class associated to the fibral P1 and s− the class of the zero section associated
to the base P1. The intersection numbers are given by

s− · h = 1 , s− · s− = −1 , h · h = 0 , (4.65)

The tension of strings (h, s) obtained from D3-branes wrapped on the respective curves are

Th

M2
IIB

= 2π Vh = 2πt2 , Ts

M2
IIB

= 2π Vs− = 2πt1 . (4.66)

The string h can be identified with the perturbative heterotic string (compactified on K3).
The analogue of the strong coupling singularity in 4d now arises at the point at which the
zero section s− vanishes, i.e. at t1 = 0. At this point the string s becomes tensionless as
is clear from (4.66). For B2 = F1 this string is a non-critical E-string. Also in 6d the
point t1 = 0 is a strong coupling singularity since any D7-brane gauge theory that we
could engineer on s− would become strongly coupled.20 At this point in moduli space, the
tension of the heterotic string is given by(

Th

M2
pl

)2

= π(t2)2

(t1t2 + 1
2(t2)2)

t1=0−→ 2π . (4.67)

Thus also in 6d the perturbative heterotic string has a tension of order of the Planck scale
in the vicinity of the strong coupling singularity. In fact the analogy to 4d goes even
further: since the strong coupling singularity corresponds to the blow-down F1 → P2 the
string h is not part of the BPS spectrum beyond that point since the single divisor class
of P2 corresponds to the class s− + h. Thus, again the perturbative heterotic string gets
replaced by a bound state of itself with a non-critical E-string that is the relevant BPS
state beyond strong coupling. Notice that the string h+s can never become tensionless but
always has a tension of order of the Planck scale. In [52] such strings are called supergravity
strings that exist throughout the entire moduli space. On the other hand, strings like the
E-string that become tensionless at finite distance can be considered field theory strings
since they only give rise to finite number of light degrees of freedom. The middle-ground
between these two classes of strings are strings like the heterotic strings obtained from
D3-branes wrapping curves with vanishing self-intersection. These can become tensionless
in Planck units but only at infinite distance. In 4d the analogue of these strings are given
by the axionic strings [53].21 On the other hand, the non-critical string P associated to
the singularities such as {∆F

P = 0} can be thought of as the analogues of the field theory
strings in 6d. Finally, the supergravity strings can be identified in 4d with the bound states
of axionic strings and regulator strings. Similar to their 6d cousins, these strings can never
become tensionless in Planck units. Following the analysis of [27] this is due to the fact
that these latter 4d strings correspond to monodromies in field space with finite order.

20Notice that unlike in the 4d case, we do not assume standard embedding for the dual heterotic string
in the 6d case. Hence, here the perturbative heterotic gauge theory can, in principle, be broken completely.

21Replacing the Planck scale by the 4d species scale allows for a refined classification of the axionic strings
in analogy with the 5d supergravity strings [17].
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One might have expected that in 4d the relevant object is the D3-brane instanton on
S− that takes over the role the E-string in 6d. The relevant instanton in this case is the
gauge instanton obtained by wrapping a D3-brane on S− which gives a non-perturbative
contribution to the superpotential

W = M3
het exp

(
− 2π
bE8

S0

)
, (4.68)

where we subtracted a 1-loop term relating the heterotic and the type IIB string scale.
Since S0 = 0 along the singular locus, the scale of the gaugino condensate is of the order of
the (naive) heterotic string scale. This is yet another indication that on the singular locus,
we are leaving the perturbative heterotic regime. In fact the presence of this unsuppressed
D3-brane instanton effect merely indicates that we reach the border of the geometric phase
of the theory, but the instanton itself does not give any degrees of freedom associated to
this singularity. As discussed already in [33] these additional states instead come from a
string-like object associated to the singular locus which in our case is the string P that
becomes tensionless along {∆F

P = 0}. The fact that this singularity is associated to a locus
where the action of an instanton vanishes tells us that this string is of non-geometric origin.
Notice that at the classical level the contribution to the superpotential coming from D3-
brane instantons on S− might have been thought to be negligibly small since Re S0 →∞.
However, our analysis revealed that due to the interplay between the F-theory Kähler and
complex structure sector this conclusion does not persist at the quantum level since in fact
the action of the D3-instanton vanishes along {∆F

P = 0} due to quantum effects.

4.3.4 Relation to emergent string conjecture

We argued that at the strong coupling singularity in the F-theory scalar field space, the D3-
brane on C0 leaves the BPS spectrum whereas another, non-geometric, non-critical string
becomes tensionless forming a BPS bound state with the critical string. This behavior is
interesting from the perspective of the emergent string conjecture [18]. This conjecture
states that any infinite distance limit in the scalar field space of a consistent theory of
gravity either corresponds to a limit in which a critical string becomes weakly coupled or
to a decompactification limit. Phrased differently, at infinite distance the theory either
reduces to a weakly coupled, perturbative string theory, or lifts to a higher dimensional
theory.

The string theory limits of F-theory considered in this work correspond to the former
case with the critical string corresponding to the D3-brane on C0. In order for the emergent
string conjecture to be realized it is important that the critical string is actually part of the
light string spectrum since its perturbative excitations need to furnish the tower of light
states required by the Swampland Distance Conjecture. This is indeed the case as long as
we are far away from the locus {∆F

P = 0}, i.e. as long as we are below the green, solid line
and to the left of the blue, dashed line in figure 2. This is the phase of the N = 1 EFT
that can effectively be described as a heterotic NLSM with the D3-brane identified with
the heterotic string. However, once we move across the singularity {∆F

P = 0} this string
ceases to be BPS. Classically, one would have expected to still find emergent string limits
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in the green region [13, 15]. However, the presence of {∆F
P = 0} obstructs such would-

be emergent string limits. The observation that the obstruction of an infinite distance
limit and the absence of a critical string go hand-in-hand can in fact be viewed as further
evidence for the relation between perturbative strings and infinite distances also in the
context of the Distant Axionic String Conjecture [16]: if there is no light, perturbative
string, there should be no infinite distance and, on the other hand, if there is no infinite
distance there should be also no light perturbative string. The analysis of [27] suggests
that we can associate boundary divisors of MF with strings. Therefore, also the shaded
region in figure 2 should be associated with a string. This string corresponds to the H + P
string which we expect to have a mass of order of the Planck scale throughout moduli
space. Therefore, there is no infinite distance limit in the green region, i.e. no limit where
the string H + P becomes light and weakly-coupled. Let us mention that this is consistent
with the anti-emergence discussed in [54]. The infinite distance behavior of the field space
metric is related to the light states arising in these limits. Once we go away from such limits,
the description used in the vicinity of the infinite distance locus in field space eventually
breaks down and quantum corrections remove any infinite distance. This is precisely what
happens in our case where the infinite distance is linked to the tower of light excitations
of the perturbative heterotic string. In regimes of the field space where the description
in terms of the perturbative heterotic string breaks down, due to quantum corrections we
hence should not encounter an infinite distance. This is essentially what we observe in the
F-theory scalar field space.

Notice that there is an infinite distance limit also to the right of the blue, vertical line
in figure 2. This infinite distance corresponds to the Re S0 →∞ divisor for ReT1 < ReT ∗1 .
In this phase, we thus also expect a perturbative string becoming light and weakly-coupled.
Again, the string in question is a weakly-coupled heterotic string. This time, however, this
heterotic string does not have a worldsheet description in terms of an NLSM with CY target
space, but corresponds to a string with a Landau-Ginzburg worldsheet theory. Accordingly,
this string does not have a dual description in terms of a D3-brane in F-theory wrapping
some curve. Due to the tangency between ReS0 = ∞ and ∆F

P = 0 the two phases of the
EFT moduli space describable by a critical, perturbative string are separated by a strong
coupling region. In particular it is not possible to traverse from the NLSM phase to the
LG phase of the N = 1 EFT while keeping the D3-brane on C0 part of the light string
spectrum.

5 Conclusions

In this paper we have investigated the structure of the F-theory scalar field space away
from the strict large volume/large complex structure limit. More precisely, we aimed to
identify the border of asymptotic regimes where the asymptotic expansions break down
and investigated the physical origin of obstructions [15] to classically allowed emergent
string limits. To facilitate our analysis, we did not attempt to uncover the full interior of
the scalar field space, but focused on regimes where the full F-theory is dominated by the
physics of a light string. Most importantly, by exploiting the relation to the theory of the
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light string, we were able to identify a new kind of strong coupling singularity in F-theory
that signals the transition to a strong coupling phase of the N = 1 EFT.

In our analysis we focused on regimes in the F-theory scalar field space, MF , in
which a critical string, obtained from wrapping a D3-brane on a certain curve in B3, is
classically lighter than any other quantum gravity scale in the theory. More precisely, we
imposed the decoupling limit Mstring/MIIB → 0. In this limit the full F-theory reduces
to the theory of the string and we can identify the residual field space orthogonal to the
Mstring/MIIB → 0 direction with the deformation space of the theory realized on the light
string’s worldsheet. The analysis presented in this work focused on the case that the light
string is a heterotic string and that its worldsheet theory allows a description in terms of
the IR limit of a simple GLSM. Thus, our analysis certainly lacks generality but this choice
allowed us to make concrete statements about the structure of MF in the string theory
limit. In particular, we were able to use the language of GLSMs to identify singular loci in
the residual moduli space that, by duality, also have to be present in the full F-theory field
space. We argued that, for the heterotic string with standard embedding, the principal
component of the discriminant locus corresponds to a strong coupling singularity for the
unbroken E8 gauge group. This statement remains true even when considering gauge
bundles that are deformations of the CY tangent bundle. This could be seen most clearly
by analyzing the correlators which all become singular along the principal component of the
singularity reflecting the strong coupling singularity for the heterotic string. In contrast
to that, the heterotic analysis further showed that along the other components of the
singular locus (not corresponding to the principal component) only a subset of correlators
are singular indicating that only a subsector of the theory is singular.

To translate the strong coupling singularities and phases into the F-theory language,
we used the perturbative corrections to the F-theory scalar field space as guideline. More
precisely, we showed that from the analysis of these perturbative corrections the presence of
a strong coupling singularity for the unbroken E8 gauge group inside the classical Kähler
cone of MF can be inferred. Using the perturbative F-theory analysis we were able to
deduce the dependence of the singular locus on the tree-level string coupling of the light
string. This allowed us to infer the structure of the scalar field space away from the
strict weak-coupling limit. Finally, in the spirit of [27] we gave an interpretation of the
strong coupling phase in terms of the light BPS-string spectrum. Namely, the strong
coupling singularity signals that the D3-brane wrapped on the fiber of B3 leaves the BPS-
spectrum and gets replaced by a bound state including a non-critical string associated
to the singularity. This non-critical string itself becomes light at the singularity. In this
paper, we did not attempt to explicitly describe the full backreaction of the critical D3-
brane string. This would require to supplement the analysis of [27] to include a non-trivial
scalar potential. We leave this task for future work. However, in the light of the analysis
of [33], we argued that the string associated to the strong coupling singularity is closely
linked to the presence of unsuppressed contributions to the superpotential and therefore it
can indeed serve as a regulator string for the backreaction of the critical string once non-
perturbative corrections to the superpotential are taken into account. As we described, this
string can be viewed as the 4d avatar of the E-string in 6d F-theory. Let us stress, however,
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that the kind of strong coupling discussed here do not simply correspond to a geometric
strong coupling point where the classical volume of some divisor hosting a 7-brane gauge
theory vanishes. Instead, this strong coupling behavior is indeed “quantum” since it is
induced by quantum effects and not visible from a purely geometric analysis. In fact, from
the geometric point of view one would have not expected to see such a strong coupling
behavior in our limit of field space as the classical volume of the divisor hosting the gauge
theory becomes large in this limit.

The analysis presented in this paper certainly constitutes just a first step towards
uncovering the general structure of the F-theory scalar field space. In particular, since we
wanted to have computational control over the residual field space in the string theory limit,
we restricted to cases with E6×E8 gauge group. It would be interesting to investigate other
models with different gauge groups along the lines of the analysis presented here. Another
simplification arose due to the fact that the residual field space in our case is an actual
moduli space and hence we did not need to care about non-perturbative superpotentials
other than the E8 gaugino condensate. As a natural generalization one could investigate
how our results extend to cases where the residual field space also has a non-vanishing
superpotential due to heterotic worldsheet instantons.

Still, we believe that our analysis provides an interesting insight in the structure of
N = 1 field spaces beyond the weak coupling/large volume regime. It illustrates that for
scalar field spaces of N = 1, one has to be careful when applying the intuition of N = 2
moduli spaces to them. Not only does one have to worry about the presence of a non-
trivial scalar potential that can render some directions massive, but one also has to take
into account Kähler potential corrections not present in N = 2 theories. In our particular
example these corrections spoil the factorization of the scalar field space into Kähler and
complex structure sector. Therefore regions in the Kähler quasi-moduli space that seem to
be well under control from our N = 2 intuition can be outside the regime of perturbative
control due to the mixing of the complex structure and Kähler sector. In our analysis
this feature is most striking for the heterotic string coupling (ReS0)−1 which classically is
tuned to very small values thus naively allowing for a perturbative description. However,
due to the mixing between complex structure and Kähler sector this is not the case at the
quantum level and we encounter a strong coupling singularity. If we followed our N = 2
moduli space intuition we would have missed such a strong coupling singularity and the
associated unsuppressed D3-brane instanton contribution to the scalar potential and would
have declared the would-be emergent string limit a perturbatively controlled regime (cf.
also the discussion in appendix E of [15]). This observation can be viewed as an N = 1
analogue of the obstruction observed in the N = 2 hypermultiplet moduli space in [42, 43].
In the case of type IIB CY threefold compactifications, it was shown that large volume
limits in the hypermultiplet moduli space are obstructed at finite 4d string coupling due
to quantum corrections. From the perspective of the Kähler moduli space of type IIA
on the same CY threefold such limits seem to be perfectly valid infinite distance limits.
However, in type IIB the Kähler moduli space and the moduli space of the 4d dilaton do
not factorize thus leading to an obstruction against reaching the classical infinite distance
limits. In the 4d N = 1 setting analyzed in this work, we see a similar pattern caused by
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the additional complication that also the complex structure sector does not factorize from
the Kähler sector.

Finally, our results show a very interesting interplay between the spectrum of light,
weakly-coupled strings and strong coupling singularities in field space. To be precise, we
found that the borders of asymptotic regions associated to an emergent strings are precisely
those loci at which the emergent string ceases to be part of the light BPS string spectrum.
This observation can be viewed as supporting the Distance Conjecture/Emergent String
Conjecture since it clearly shows that if there is no emergent string there is no infinite
distance limit and vice versa. It would be very interesting to extend this analysis to asymp-
totic limits that do not qualify as emergent string limits but are genuine decompactification
limits to perhaps uncover more of the interior structure of MF .
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A Essentials of heterotic/F-theory duality

Consider F-theory on an elliptically-fibered Calabi-Yau four-fold over some base B3 that
has a compatible K3-fibration over some base B2, i.e. the base B3 has itself to be a rational
fibration over B2, ρ : B3 → B2. By heterotic/F-theory duality [55, 56] this can be dual to
the heterotic string on a Calabi-Yau manifold Z3 that itself is elliptically-fibered over the
same base B2:

p : T 2 → B2 . (A.1)

Under heterotic/F-theory duality, the complexified volumes, ta, of the curves inside B2 (in
heterotic string units) are identified with the volumes (in type IIB units) of divisors on
the F-theory base B3 that are vertical w.r.t. the projection ρ. We thus have the classical
dictionary between chiral scalar fields in the effective N = 1 action:

Ta = −iηabtb . (A.2)

Here ηab is the intersection form on B2 and the chiral fields Ta are defined in (2.7). On
the other hand, the volume of the base B2 on the F-theoretic side is classically identified
with the heterotic string coupling. The duality requires that if on the F-theory side the
gauge group is a subgroup of E8 ×E8 the first factor is realized on the exceptional section
D0 ≡ S− of B3 and the second factor on S+ = S− + ρ∗c1(T ). Here T is the bundle that
describes the twist of the P1 over B2 leading to the rationally fibered B3. We can then
identify

1
g2

YM,1
= 2πVS− ,

1
g2

YM,2
= 2πVS+ ,

1
g2

het
= 2π

(
VS− + 1

2Vρ∗c1(T )

)
, (A.3)
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where gYM,i is the gauge coupling of the gauge theory of the i-th factor, and ghet is the het-
erotic string coupling. If we take VS− to be large, these three couplings agree asymptotically
up to 1-loop terms as analyzed in [15].

In the main part of the paper we are interested in regions of the F-theory scalar fields
space in whichMF effectively reduces to the deformation space of the heterotic worldsheet
theory. In order to be in such a regime, we need to ensure that the D3-brane wrapped on
the generic fiber, C0, of B3 indeed corresponds to a perturbative heterotic string that is
weakly coupled and has a stable gauge bundle. The first condition is classically ensured
if we take the limit of large base B2 as is clear from (A.3). The second condition is
more subtle. In section 4.2, this second condition is crucial to correctly identify the non-
perturbative singularity structure in the F-theory moduli space. Therefore let us review
in some detail how this is achieved in the context of heterotic/F-theory duality. To that
end, we start by recalling that the heterotic bundle data can be mapped to the F-theory
compactification data via the so-called spectral cover construction [57, 58] (for reviews
cf. [59, 60]). Therefore take the heterotic string compactified on the elliptically-fibered
Calabi-Yau three-fold Z3. A gauge bundle V1, V2 inside the E8 ×E8 gauge group needs to
satisfy the Hermitian Yang-Mills equations

F 0,2 = F 2,0 = 0 , gij̄F
ij̄ = 0 . (A.4)

If restricted to the torus fibers of Z3 these equations imply that a bundle V is flat along
the T 2 fibers. The moduli space of flat bundles on a T 2 is just the torus itself. Hence,
for instance a bundle with structure group U(n) can be characterized by a selection of n
points on the T 2. For an SU(n) bundle one further needs to ensure that the n points sum
to zero in the group law of the torus. Fibering these points holomorphically over the base
B2 we then get a curve Cn which is an n-fold cover of the base B2.

For the bundle moduli along the torus to decouple from the geometric moduli one in
fact needs to ensure that the torus is large. Thus, we are considering Z3 with an elliptic
fibration in the limit of large fiber volume with a selection of n points describing an n-fold
cover, Cn, of the base B2. Let us assume that Z3 is a Weierstrass model with zero section
E− described by the hypersurface given by

y2 = x3 + fxz4 + gz6 , (A.5)

where {x, y, z; f, g} are sections of {K−2
B2
,K−3

B2
,O;K−4

B2
,K−6

B2
}. The spectral cover Cn is

described by an equation

a0z
n + a2xz

n−2 + a3yz
n−3 + · · ·+ anx

n/2 = 0 . (A.6)

Here the ai ∈ Γ(Z3,K
i
B2

). To define Cn as we fiber the torus over B2, we need to introduce
a line bundle L such that the ai are lifted to sections of L⊗Ki

B2
. The class of the spectral

cover is then given by
[Cn] = n[E−] + p∗ c1(L) ∈ H2(Z̃3,Z) . (A.7)

In order to describe how the bundle V varies over the base B2 we need a second ingredient,
the spectral line bundle N on Cn. This line bundle has the property

pn,∗N = V |B2 , (A.8)
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where pn : Cn → B2 is the natural projection of the spectral cover to the base. In particular,
the first Chern class of this line bundle is given by

c1(N ) = −1
2 (c1(Cn)− p∗nc1(B2)) + λ (n [E− · Cn]− p∗n[c1(L)− nc1(B2)]) , (A.9)

where λ is a half-integer. The spectral line bundle is thus specified by a choice for λ.
Given the spectral data specified by (Cn,N ) one can recover the heterotic gauge bundle

V via a Fourier-Mukai transform. To that end, let us consider the Jacobian fibration Z̃3
associated to Z3. The Fourier-Mukai transform can now be defined with respect to the
product fibration

Z3 ×B2 Z̃3

Z3 B2 Z̃3

π1 % π2 (A.10)

where π1(2) are the projections on the first (second) factor and % is the projection on the
common base B2. One can further define the space Ĉn = Cn × Z3. The bundle V is now
given by the Fourier-Mukai transform of N :

V = π1∗
(
p∗Ĉn
N ⊗P

)
, (A.11)

where the kernel of the transform is given by the Poincaré sheaf P on Ĉn

P = O
(
∆− σ1 × Z̃3 − Z3 × σ2

)
⊗ %∗c1(B2)|Cn , (A.12)

with ∆ the diagonal divisor in Z3×B2 Z̃3 and σ1,2 sections of the first and second factor in
Z3×B2 Z̃3, respectively. Calculating the first Chern class of this bundle one confirms (A.9).

Apart from being flat along the torus fiber, there is a second condition on the het-
erotic Kähler moduli that needs to be ensured for the bundle to be stable. The bundles
constructed via the spectral cover are holomorphic and flat along the elliptic fibers. To
get a stable bundle one needs to ensure that gij̄F ij̄ = 0 on the entire three-fold Z3. This
condition can be ensured if we work in the adiabatic limit [58, 61]:

VB2 � VHT 2 . (A.13)

A consequence of this hierarchy is that the volume of Z3, and hence the Kähler potential
on the heterotic Kähler moduli space, factorizes. Denoting the volume of the heterotic
fiber by s0 and the volume of the curves Ca ⊂ B2 by sa we indeed find

KH = − log
[1

2s
0ηabs

asb +O
[
(s0)2, sa

]]
. (A.14)

To translate the heterotic spectral data into the geometric data of the F-theory com-
pactification, we have to take the so-called stable degeneration limit in the complex struc-
ture moduli space on the F-theory side. In this limit, the K3-fiber of the F-theory four-fold
splits into a union of two dP9 surfaces W1,W2. Since the stable degeneration limit plays
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an important role in the main text, let us briefly review how this limit is obtained (cf.
e.g. [62, 63]). Therefore consider a family of elliptic four-folds with Weierstrass equation

y2 = x3 + fξxz
4 + gξz

6 , (A.15)

where fξ, gξ are polynomials of the coordinates on the base of degree 8 and 12, respectively.
Moreover, ξ is parametrizing the family of four-folds and ξ → 0 corresponds to the stable
degeneration limit. Let v denote the projective coordinate on the fibral P1 of the F-theory
base B3 and consider e.g. the family of Weierstrass models

y2 = x3 + f4v
4xz4 +

(
g5ξv

5 + g6v
6 + g7ηξv

7
)
z6 , (A.16)

where fi, gj are polynomials in the coordinates of B2. In the limit η → 0 one now obtains
a degenerate four-fold with non-minimal singularities at v = 0,∞. These singularities can
made minimal by blowing up e.g. the point ξ = v = 0 by substituting

v → vξ′ , ξ → ξ′ , (A.17)

and performing the coordinate change x = ξ′2x′ , y = ξ′3y. As a consequence, at ξ = 0
the fibral P1 of B3 splits as into a chain of three rational curves. The two curves at the
end now host an II∗ singularity together with two I1 singularities such that the elliptic
fibration over them gives rise to elliptic rational surfaces, i.e. dP9 surfaces. On the other
hand there are no singularities on the middle curve such that the elliptic fibration is just
a product over this curve. Blowing down the middle curve one eventually arrives at the
stable degeneration limit in which the K3-fiber of Y4 degenerates into the union of two dP9
surfaces intersecting along an elliptic curve E which can be identified with the heterotic
elliptic fiber. Notice that the complex structure of E is determined by the functions f4 and
g6. From here one can extract the data of the spectral cover by considering the defining
equation for the dP9 surfaces in Tate form

0 = y2 + x3 + α1xyz + α2x
2z2 + α3yz

3 + α4xz
4 + α6z

6 +
∑
i

pi(x, y, z)ξi . (A.18)

Here the pi are polynomials of degree 6− i. For SU(n)-bundles we require pi = 0 for all i
except for

p1 = z5−n(a0z
n + a2xz

n−2 + a3yz
n−3 + anx

n/2) , (A.19)

which can be recognized as the equation determining the points on the heterotic torus
that gave rise to the spectral cover Cn. This illustrates how the spectral cover data can
be obtained from the geometric F-theory data in the stable degeneration limit ξ → 0. On
the other hand, the data of the spectral line bundle N is mapped to flux on the F-theory
compactification which we are not discussing here.

Importantly, the large fiber limit on the heterotic side maps to the stable degeneration
limit in F-theory where we can trust the duality between the heterotic string and F-theory.
The stable degeneration limit in F-theory is a limit in complex structure moduli space
and hence the factorization of the classical heterotic Kähler potential is reflected on the
F-theory side by the classical factorization between complex structure and Kähler moduli
space.
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B Review of GLSMs

In this appendix, we want to review some basic aspects of (2, 2) and (0, 2) Gauged Linear
Sigma Models (GLSMs) that might be useful to understand the analysis of the heterotic
moduli space in section 3, see [64] for a more extensive review. Let us start with the (2, 2)
Abelian GLSM [65] which is a two-dimensional U(1)d gauge theory with (2, 2) supersym-
metry. Its field content consist of m matter fields (Φi,Γi), i = 1, . . . ,m, that are coupled
to vector multiplets Va,± with charges Qai , a = 1, . . . , d. The field strength for these gauge
field is part of twisted chiral multiplets (Σa,Υa). In (0, 2) language, the charged matter Φi

and the neutral matter Σa are chiral bosonic multiplets, i.e. satisfy

D̄+Φi = 0 , D̄+Σa = 0 (B.1)

where D+, D̄+ are the (0, 2) superspace derivatives. On the other hand, Γi are Fermi
multiplets satisfying

D̄+Γi =
√

2Ei(Φi,Σa) , (B.2)

for some coupling functions Ei, whereas Υa are chiral fermionic mulitplets. To preserve
(2, 2) supersymmetry, the coupling functions Ei have to satisfy

Ei = i
√

2Φi
∑
a

QaiΣa . (B.3)

One can now write down a supersymmetric action for these fields which can be split in
three components.

Skin =
∫
d2zd2θ

[
− 1

8e2
0
ῩaΥa −

i

2e2
0
Σ̄a∂−Σa −

i

2Φ̄i (∂− + iQai Va,−) Φi − 1
2Γ̄iΓi

]
,

S F-I = 1
8πi

∫
d2zdθ+Υaτ

a|θ̄+=0 + h.c. ,

SJ =
∫
d2zdθ+ΓiJi(Φ)|θ̄+=0 + h.c. .

(B.4)

Here, we introduced the complex Fayet-Iliopulos terms τa = θa + ira and the couplings
Ji(Φ) are polynomials in Φi of charge −Qai . To preserve (2, 2) supersymmetry these cou-
plings need to derive from a superpotential W (Φi) as

Ji = ∂W

∂Φi
. (B.5)

Furthermore, (0, 2) supersymmetry requires E ·J = 0. One now obtains the scalar potential
by integrating out all auxiliary fields

Ubos = 2
n∑
i=1
|φi|2

∣∣∣∣∣
d∑
a=1

Qai σa

∣∣∣∣∣
2

+
n∑
i=1
|Ji|2 + e2

0
2

d∑
a=1

D2
a , (B.6)

where the D-term is given by

Da =
n∑
i=1

Qai |φi|2 − ra . (B.7)
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In the above expressions φi and σa are the leading bosonic components of Φi and Σa,
respectively. For large values of the FI-terms, i.e. ra � 1, the solution to the low-energy
theory is well-approximated by the non-linear sigma model (NLSM) with target space

M(r) = {D−1
a (0)}/U(1)d . (B.8)

This is obtained by integrating out the σa fields that become massive as a consequence
of solving the D-term constraint giving a vev for the φi fields. For general choices of the
charges Qai , we have an anomalous U(1) symmetry which prevents us from introducing a
superpotential W (φi), such that the Ji = 0 in this case. In this case, the target space of
the NLSM is a toric variety V and the GLSM is also referred to as the V-model.

Given such a V-model, we can consider introducing an additional matter field Φ0 with
charge Qa0 = −∑n

i=1Q
a
i that cancels the anomaly and allows for the introduction of a

superpotential
W = Φ0P (Φi) , (B.9)

where P is a polynomial of multi-degree ∑iQ
a
i . The vacuum conditions are now supple-

mented by
P = 0 , φ0 ∂

∂φi
P = 0 . (B.10)

For generic choices of the parameters of P , the hypersurface {P = 0} ⊂ V is smooth (up to
orbifold singularities) such that we need to set φ0 = 0. In this case the low-energy theory
is a NLSM with target space the Calabi-Yau hypersurface X ⊂ V defined by P = 0, the
so-called X-model.

Apart from the vacua corresponding to the NLSM with target space V there exist
additional vacua characterized by large vevs for the σa fields. These vevs in turn give mass
to the charged matter fields. To find these vacua, one considers the effective action

Seff =
∫
dzdθ+Υa

∂W̃

∂Σa
|θ̄+=0 + h.c. , (B.11)

for some twisted effective superpotential W̃ . This superpotential is one-loop exact and can
be calculated from the D-term tadpole:

J̃a = ∂W̃

∂Σa
= − 1

8πi log

q−1
a

∏
i

(
Qbiσb
µ

)Qai  , (B.12)

where µ is the one-loop scale. The σa-vacua are obtained whenever J̃a = 0 for all a =
1, . . . d.

If we consider the X-model, the scale µ drops out due to the condition Qa0 = −∑iQ
a
i .

In this case there are also no isolated σ vacua — there are either Higgs-σ vacua or flat
σ-directions. In this case, we have

J̃a = − 1
8πi log

[
q−1
a (Qa0σa)Q

a
0
∏
i

(Qbiσb)Q
a
i

]
, (B.13)
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and the condition to find a σ vacuum reads∏
i

(Qbiσb)Q
a
i = qa(Qa0σa)−Q

a
0 (B.14)

For generic values of q this equation has no solution. However, for special values of qa the
above equation is satisfied and corresponds to a flat σ direction and hence to a singularity
of the theory. The singular locus in the q-plane obtained from J̃a = 0 corresponds to the
principal component of the singular divisor that we discuss in detail in the main text.

One may now consider the standard A-twist of the GLSM which gives a topological
field theory for which we want to calculate the correlators of the σa-fields. In the A-twisted
model, these correlators localize on the σ-vacua and are given by [20]

〈σa1 . . . σak〉V =
∑

σ|dW̃=0

σa1 . . . σak

[
det

(
Hess W̃ (σ)

)∏
i

(Qbiσb)
]−1

. (B.15)

The quantum restriction formula [20] then relates these correlators to the correlators in
the related X-model via

〈σa1 . . . σak〉X = 〈σa1 . . . σak
−K

1−K−
∑

a
Qa0
〉V , (B.16)

where K = −∑i>0Q
a
i σa is the operator associated to the anti-canonical class on V . This

correlator becomes singular whenever 1 + K is not invertible. One can show that this is
the case when q is on the singular locus defined by (B.14).

One can now identify σa with classes ηa ∈ H1,1(X) such that the GLSM correlators
defined above in fact calculate the correlators of the NLSM on X. In particular, the GLSM
gives a simple way to compute the loci where the NLSM becomes singular. Notice however,
that the GLSM expansion in q corresponding to gauge instanton is not the same as the
NLSM instanton expansion corresponding to worldsheet instantons. To match these both
one needs to know the precise mirror map. In the particular examples that we consider at
least some information about the mirror map is known allowing to match the singular loci
in the GLSM FI-parameter space to singularities in heterotic Kähler moduli space.

So far we only considered the GLSM on the (2, 2) locus. In the main text, we also
consider deformations away from this locus. The general picture remains the same since
for this (0, 2) case analogous expressions exist [21, 66]. First, to obtain deformations of the
tangent bundle, we can deform the couplings E away from their (2, 2) expression (B.3). To
do that, let us split the matter fields Φi into sets of equal charge

{Φ1, . . . ,Φn} → ∪α{ΦIα
(α), Iα = 1, . . . , nα} , (B.17)

such that ∑α nα = n and QaIα = QaJα = Qa(α) for all a. One can then consider the deformed
E couplings

EIα(α) = i
√

2
d∑
a=1

Σa

[
Aa(α)

]Iα
Jα

ΦIα
(α) . (B.18)
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One can think of the deformations as being parameterized by the matrices Aa(α). Notice
that in order to preserve (0, 2) supersymmetry the condition E · J = 0 still has to be
satisfied. One can summarize the deformations into the matrices

M(α) =
∑
a

ΣaA
a
(α) , (B.19)

which are the matrices appearing in (3.44). In terms of these the deformed J̃α (for the
X-model) reads [66]

J̃a = − 1
8πi log

[
q−1
a (Qa0σa)Q

a
0
∏
α

(det M(α))
Qa(α)

]
, (B.20)

and the correlators (B.15) become

〈σa1 . . . σak〉V =
∑

σ|dW̃=0

σa1 . . . σak

[
det

(
Hess W̃ (σ)

)∏
α

det M(α)

]−1

, (B.21)

from which one can derive the X-model correlators via the quantum restriction
formula (B.16).
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