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1 Introduction

In the last several decades, the standard model (SM) of particle physics has shown its
grand validity. However, the failure of discovering particles beyond the SM at the Large
Hadron Collider (LHC) implies that there is a considerable energy gap between the SM
particles and new physics. Due to the scale separation, various new physics effects below
the energy threshold of new physics particles can be characterized by the effective field
theory (EFT) framework. Pioneered by Weinberg [1], EFT has been developed to be a
systematic framework to parametrize the underlying physics at a low energy scale. In such
a bottom-up approach, the building blocks at low energy are used to construct all the
operators satisfying the specific symmetries with proper power counting. Therefore, all the
operators can be organized order by order, and in each order, the Lagrangian is the linear
combination of all the independent operators, and the coefficient of each operator is called
the Wilson coefficient, carrying information from the underlying dynamics at high energy.

Adopting the SM particles as the building blocks, and imposing the gauge symmetry
in the SM, the higher dimensional operators can be constructed and organized order by
order in terms of the canonical dimension powers. The constructed EFT is the standard
model effective field theory (SMEFT). Since the dimension-5 operators were presented by
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Weinberg [2], many progresses on the operator bases have been made [3–12]. A general algo-
rithm, implemented in a Mathematica package ABC4EFT [13], has been proposed to con-
struct the independent and complete SMEFT operator bases up to any canonical dimension.

Nowadays, the dimension-8 operators of the SMEFT [7, 8] receive more and more
attention theoretically and experimentally. Below the electroweak (EW) scale, the SM
gauge symmetry is broken down to SU(3)× U(1)em, along with the Higgs doublet broken
down to singlet. Thus below the EW scale, the SMEFT is not suitable to describe new
physics effects anymore. On the other hand, due to the approximated custodial symmetry
in the Higgs sector, the EFT can be characterized by the Coleman-Callan-Wess-Zumino
(CCWZ) formalism [14, 15], known as the electroweak chiral Lagrangian with the light
Higgs boson (H-EWChL), or the Higgs effective field theory (HEFT), see refs. [16–21] for
early developments and refs. [22–30] after the Higgs discovery. The HEFT provides a
more general realization of the EW dynamics, which includes the SMEFT as a particular
case [31–33]. The HEFT Lagrangian has been constructed up to next-to-leading order
(NLO), including the fermion sector [22–30], without considering the flavor structures.
Recently the complete and independent NLO operators are presented in ref. [34], and the
flavor structures of the operators are considered there.

If one would like to match the dimension-8 SMEFT operators to the HEFT operators
after the EW symmetry breaking, the HEFT Lagrangian should be constructed up to
the next-to-next-to-leading order (NNLO), to capture various effects only appearing at
the dimension-8 SMEFT. For example, to investigate the effective operators contributing
to the genuine quartic gauge-boson couplings, the relevant bosonic chiral Lagrangian at
O(p6) on the quartic gauge couplings has been written in ref. [35] and the connection
to the bosonic dimension-8 SMEFT operators is also discussed. In addition, the one-
loop renormalization of the LO HEFT operators has been considered [36–39], which the
NLO operators complement according to the power-counting rule. Furthermore, the two-
loop renormalization of the LO operators, as well as the one-loop renormalization of the
diagrams with exactly one NLO interaction vertex need the complete and independent
NNLO operators. However, in literature, the NNLO operators counted as the order dχ = 5
and dχ = 6 have not yet been constructed systematically.

For the first time, we construct the complete and independent NNLO operators with
the flavor structures using the Young tensor technique developed in refs. [7, 9, 11, 13] with
certain improvements on the operators involving in the Nambu-Goldstone Boson (NGB)
and the spurion field parametrizing the custodial symmetry breaking:

• For the operators involving the NGBs, the Adler zero condition implies that the
on-shell amplitudes corresponding to the Lorentz structure of the operators should
vanish in the soft limit of the NGB momentum [34, 40–48]. Thus we need to im-
pose this constraint on the Lorentz basis obtained by the Young tensor method to
obtain the reduced Lorentz structures, which are usually of a subspace of the original
Lorentz space.

• Since the spurions are frozen degrees of freedom, unlike the dynamical fields, the spu-
rion should not enter the Lorentz sector. Instead, it only plays a role in constructing
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the SU(2) invariant together with other dynamical fields. Furthermore, we should
avoid the appearance of self-contracted spurion fields, such as δIJT IT J , because they
are redundant in describing the symmetry-breaking pattern.

With these improvements on the Young tensor technique, we could obtain that there are
11506 (1927574) NNLO operators with one (three) generations of the SM fermions assuming
right-handed neutrino exists. In addition, we work out the numbers of the independent
operators without the right-handed neutrino via the Hilbert series technique developed in
refs. [49, 50], where there are 8065(1179181) operators with one (three) flavor of fermions,
without explicitly marking their explicit forms in grey color as we did for the NLO operators
in ref. [34].

The paper is organized as follows. In section 2, we briefly review the building blocks and
the leading-order Lagrangian of the HEFT and present the chiral power-counting scheme.
In section 3, we review the Young tensor method to construct the complete and independent
effective operators, focus on the Adler zero condition on the operators involving the NGBs,
and present how to deal with the spurion in the Young tensor method in section 3.3. Based
the these, we construct the complete NNLO operators of the HEFT, of which the overview
and some comments are presented in section 4, while the full operator list is so long that we
present them in the supplementary material of this paper. Finally, we draw the conclusion
in section 5.

2 Electroweak chiral Lagrangian

The Higgs sector in the SM has a larger global symmetry SU(2)L×SU(2)R than the gauge
symmetry of the SM Lagrangian, which is spontaneously broken down to the custodial
SU(2)C symmetry by the Higgs vacuum expectation value (VEV). The coset pattern G → H
with identifying G = SU(2)L × SU(2)R and H = SU(2)V can be described by the non-
linearized Nambu-Goldstone Boson fields along with the Higgs singlet using the CCWZ
formalism [14, 15], adding additional explicit breaking terms from the gauge and Yukawa
type interactions. This section will briefly review the construction of the leading order
(LO) Lagrangian, and discuss how the NLO and NNLO operators are counted based on
the chiral power-counting scheme.

2.1 Building blocks and the LO Lagrangian

The Lagrangian of the Higgs sector in the gaugeless limit (g, g′ → 0) reads

LHiggs = ∂µH
†∂µH − λ

(
H†H − v2

2

)2

, (2.1)

where H ≡ (φ+, φ0)T denotes the SU(2)L doublet Higgs and the Lagrangian is invariant
under the SU(2)L symmetry. In fact, there is another global SU(2)R symmetry hidden
in this Lagrangian if one rewrites the same Lagrangian by introducing another field H̃ ≡
(φ0, φ−)T . This enlarged symmetry SU(2)L×SU(2)R can be made explicit by re-expressing
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the Higgs field in terms of a bi-fundamental scalar field Σ that transforms under the global
symmetry

Σ ≡
(
H̃ H

)
=

 φ0∗ φ+

−φ− φ0

 −→ gL Σ g†R, (gL, gR) ∈ G . (2.2)

Then the Lagrangian in the Higgs sector becomes

LHiggs = 1
2〈∂µΣ†∂µΣ〉 − λ

4
(
〈Σ†Σ〉 − v2

)2
, (2.3)

where 〈. . .〉 represents SU(2)L matrix trace. It is more convenient to parametrize the
Goldstone fields in terms of the unitary matrix U(x) = exp(Π(x)/f):

Σ(x) ≡ h(x) + v√
2

U = h(x) + v√
2

exp [Π(x)/f ] , (2.4)

which separates the NGBs from the Higgs mode. The above Goldstone matrix contains
three NGBs,

Π(x) = ~π(x) · ~σ2 , (2.5)

originated from the global symmetry breaking pattern SU(2)L × SU(2)R/SU(2)V . Thus
the Lagrangian in eq. (2.3) takes the form that

LH = 1
2∂µh∂

µh+ v2

2 〈∂µU∂µU†〉 F(h)− λ

4

(
h2

2 + hv − v2

2

)2

, (2.6)

where the F is dimensionless polynomial

F(h) = 1 + 2h
v

+ h2

v2 . (2.7)

Recovering the gauge symmetry would introduce explicit custodial symmetry breaking.
In the above Lagrangian, promoting the group SU(2)L and the third component of the
group SU(2)R to be local, the ordinary derivatives would be replaced by the covariant
derivatives defined as

DµΣ = ∂µΣ− igŴµΣ + ig′Y ΣB̂µ , Ŵµν = ~Wµν ·
~σ

2 , B̂µν = Bµν
σ3
2 , (2.8)

where ~Wµν , Bµν are the gauge fields in the SM. The gauge fields Ŵµν transforms as the
triplet of SU(2)L,

Ŵµν → gLŴµνg
†
L, gL ∈ SU(2)L , (2.9)

while B̂µν transforms as SU(2)L singlet, and thus the explicit custodial symmetry breaking
is parametrized by the spurion field TR = σ3/2 with B̂µν = BµνTR.

Introducing the SM fermions Yukawa terms would also break the custodial symmetry
explicitly. Let us rewrite the SM fermion fields ψL/R = PL/Rψ that transform covariant
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under the global symmetry

QL =

 uL
dL

 → gLQL , QR =

 uR
dR

 → gRQR , (2.10)

LL =

 νL
eL

 → gLLL , LR =

 νR
eR

 → gRLR , (2.11)

Note that the right-handed fermions are the SU(2)R doublets and thus the U(1)Y symmetry
in the SM is promoted to the U(1)X symmetry, where X = (B−L)/2 is half of the baryon
number B minus the lepton number L. The Yukawa Lagrangian takes a more compact form

LYukawa = −vψLU(Π)YψRψR + h.c. with YψR −→ gRYψRg
†
R , (2.12)

where ψ takes Q and L and YψR is a 2× 2 matrix and takes the form

YQR = 1
2(yu + yd) + σ3

2 (yu − yd), YLR = 1
2(yν + ye) + σ3

2 (yν − ye) , (2.13)

where yν = 0 if no right-handed neutrinos. Note that the σ3
2 term above parametrizes the

custodial symmetry breaking in the Yukawa term. Therefore, the spurion in the fermion
sector takes the same form as the one in the gauge sector TR = σ3/2.

The above form of the Lagrangian can also be obtained in the CCWZ formalism [14, 15]
of the symmetry breaking pattern G → H with identifying G = SU(2)L × SU(2)R and
H = SU(2)V , which provides a systematic way to write effective Lagrangian that allows
manifesting the symmetries of the theory. The Goldstone matrix U takes the form U(x) =
exp(iΠ(x)/v), which transforms under G as bi-doublet,

U→ gLUg†R, (gL, gR) ∈ G . (2.14)

Let us collect all the building blocks that would appear in the chiral Lagrangian

h, U, ψL, ψR, Ŵµν , B̂µν , Ĝµν , TR. (2.15)

which transforms differently under the global chiral symmetry. For the convenience of
constructing higher-dimension operators, we can redefine these building blocks with U to
make them transform solely under SU(2)L [22–25, 28–30, 51–53],

Vµ(x) = iU(x)DµU(x)†, −→ gLVµg
†
L (2.16)

Ŵµν −→ gLŴµνg
†
L (2.17)

B̂µν −→ B̂µν (2.18)
Ĝµν −→ Ĝµν (2.19)

T = UTRU† −→ gLTg†L (2.20)
ψL −→ gLψL (2.21)

UψR −→ gLUψR (2.22)
h −→ h (2.23)
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We summarise these building blocks and their representations of Lorentz and gauge groups
in table 2. There are other redefinitions of the building blocks such as the refs. [26, 27, 54],
and different schemes actually give the same operators set.

In terms of the building blocks, the LO Lagrangian takes the form that

L2 = −1
4
(
GaµνG

aµν
)
− 1

2〈WµνW
µν〉 − 1

4BµνB
µν − g2

s

16π2 θs
(
GaµνG̃

aµν
)

+ 1
2∂µh∂

µh− V (h) + v2

4 〈VµVµ〉FC(h) + v2

4 〈TVµ〉〈TVµ〉FT (h)

+ iQ̄L /DQL + iQ̄R /DQR + iL̄L /DLL + iL̄R /DLR

− v√
2

(Q̄LUYQR (h)QR) + h.c.)− v√
2

(L̄LUYLR(h)LR + h.c.) , (2.24)

where subscript 2 indicates the chiral dimension of the leading Lagrangian is 2, which will
be discussed in the next subsection. The terms in the first line are the dynamic terms of
gauge bosons and the theta term, and the second line contains the dynamic terms of NGBs,
physical Higgs h, and its potential. The third line and the fourth line describe the dynamic
term and the mass terms of the fermions. The Yukawa coupling matrix YQ/LR takes the
form in the eq. (2.13). FC(h) and FT (h) appearing in the second lines are dimensionless
polynomials of Higgs h, which are actually arbitrary and are taken as Taylor-expansion form

F(h)C/T = 1 + b1
h

v
+ b2

h2

v2 +O

(
h3

v3

)
,

where bi are arbitrary dimensionless constants.

2.2 Power counting and higher order Lagrangian

The power-counting of the HEFT is similar to the one in the chiral perturbation theory
(ChPT) using the chiral dimension dχ [1, 55, 56], with certain improvements [22, 26, 27, 30,
52, 57–59]. Setting the LO Lagrangian be of the chiral dimension 2, the chiral dimensions
of all the building blocks should be determined as follows.

• The gauge bosons Xµν = Gµν ,Wµν , Bµν are of dχ = 1, and the derivatives D or ∂
are of dχ = 1.

• The chiral dimension of the gauge coupling constants is 1, thus the dimension of the
gauge vector fields is actually zero.

• The chiral dimension of Vµ is 1, while the NGBs matrix U carries no chiral dimension.

• Every fermion doublet is of the chiral dimension 1/2, and the Yukawa coupling con-
stants carry the chiral dimension 1.

• In particular, we make the convention that the spurion T is of no chiral dimension
since this would describe the possible non-decoupling effects at the LO, for example,
the triplet Higgs could develop a not-so-small VEV and causes custodial symmetry
breaking effects at the LO Lagrangian, while in some literature such as refs. [27, 30,
54], the spurion is taken to be dimensional, in which the custodial symmetry breaking
effects are always taking to be small.
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This power-counting scheme is also consistent with the loop expansion [22, 27, 30, 52, 58,
59]. Based on the discussion above, a general type of operator in the HEFT can be denoted
by

κkiψFiXVi
µνUhDdiTSi , (2.25)

where the number ki of the gauge or Yukawa couplings κ, Fi the fermion fields ψ, Vi the
field-strength tensor Xµν , di the covariant derivatives D, Si the spurions, and an arbitrary
number of both the NGBs U and the Higgs boson h. The total chiral dimension of such
type of operator reads

dχ + di + ki + Fi
2 + Vi (+Si) = 2Li + 2 (2.26)

where the spurion T is taken to be dimensionless (dimensional).
The above power counting on the gauge and Yukawa couplings implies that

p2

16π2v2 ∼
g2

(4π)2 ,
y2

(4π)2 ,
λ

(4π)2 � 1 . (2.27)

A similar argument applies to the cases where the fermions are weakly coupled. Thus
for higher-order operators, every fermion bilinear (ψψ) and gauge field strength tenser
Xµν X = G,W,B carries chiral dimension 2 because of the weak coupling constants, for
example, both the class ψ6Uh and ψ4XUh are of chiral dimension 6. In the constructions
of higher-dimension operators, we absorb the gauge and fermion coupling constants into
the redefinition of the gauge field strength tensor X and the fermions ψ and thus redefine
the chiral power of X and ψ as 2 and 1, respectively. Thus, the coupling constants in the
higher-dimension operators are always implicit.

We summarise the chiral dimensions of the building blocks in table 2, and the operator
classes up to dχ = 6 are listed in table 1. We identify the operators of dχ = 3, 4 as the
NLO operators and those of dχ = 5, 6 as the NNLO operators. In particular, the triple-
gauge-boson type X3 is excluded from the NNLO classes in this paper and is considered as
NLO [34]. The classes listed in this paper respect the convention that each of them contains
a factor Uh since U(x) is used to redefine the building blocks and h(x) can be used freely in
the operator constructions, as explained in section 4. Because the spurion T is of no chiral
dimension, thus we do not write them in the classes explicitly, while it should be understood
that each class in table 1 contains all possible sub-classes with different numbers of spurions.

There have been many discussions about the Lagrangian of the HEFT since the
last century [16–21, 51, 60]. Recently, the NLO operators have been constructed [22–
30, 52–54], but none of them presents the complete and independent operator set, and
the full flavor structures have never been considered. In ref. [34], the complete result
of NLO operators is presented by the Young tensor method [7, 9, 13], which is also
used in this paper. At the NLO, there are 237 (8595) operators for one (three) gener-
ation fermions without right-handed neutrinos and 295 (11307) operators for one (three)
generation fermions with right-handed neutrinos. In this work, we construct the com-
plete and independent NNLO operators for the first time. As shown in section 4, there
are 12 classes in this order, ranging from chiral dimension 5 to 6, and the numbers of
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dχ fermion sector boson sector
3 ψ2UhD

4 ψ2XUh,ψ4Uh,ψ2UhD2 X2Uh,XUhD2,UhD4

5 ψ2XUhD,ψ4UhD,ψ2UhD3

6 ψ2X2Uh,ψ4XUh,ψ6Uh,ψ2XUhD2,ψ4UhD2,ψ2UhD4 X3Uh,X2UhD2,XUhD4,UhD6

Table 1. Operator types of HEFT up to dχ = 6. The classes listed in this paper respect the
convention that each of them contains a factor Uh since U(x) is used to ‘dress’ building blocks and
h(x) can be used freely in the operator constructions, as explained in section 4. Because the spurion
T is of no chiral dimension, thus we do not write them in the classes explicitly, while it should be
understood that each class here contains all possible sub-classes with different numbers of spurions.

operators in each class are listed in the table 3, and the total number of operators is
1
9(3672 + 25547nf 2 + 420nf 3 + 56684nf 4 + 102nf 5 + 17129nf 6), corresponding to 11506
(1927574) for one (three) generations of fermions. The complete operators are present in
a separate ancillary file.

3 The strategy of the basis construction

The following difficulties are present in the task of enumerating the NNLO operator basis:

• The usual redundancy relations for operators, such as the Equation of Motion (EOM),
Integration by Part (IBP), the Covariant Derivative Commutator (CDC), and various
operator identities like the Fierz rearrangement and the Cayley-Hamilton relation.

• The non-linear symmetry for the NGB imposes constraints on the operators.

• The operators in the broken phase organized in terms of spurions need special care
regarding the group structures.

To tackle the first one, we briefly summarize the Young Tensor technique in section 3.1,
which was implemented by the Mathematica package and applied to various EFT’s [13].
The non-linear symmetry of the NGB is taken care of by imposing the Adler zero conditions
on the corresponding amplitudes, as explained in section 3.2. Finally, in section 3.3 we
elaborate on the treatment for the spurions in order to systematically organize the operators
in the symmetry-broken phase.

3.1 Review on Young tensor method

An EFT operator should be singlet under both the Lorentz and gauge groups. For a specific
field content, the independent Lorentz and gauge structures are of finite dimension, thus
span two independent linear spaces respectively, the Lorentz space and the gauge space,
in which the independent structures are called the Lorentz basis and the gauge basis. The
whole space spanned by the independent operators constructed from this field content is
the tensor product of these two spaces.
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building blocks spinor formalism Lorentz group SU(2)L SU(3)C dχ

LL LLα (1
2 , 0) Fundamental Singlet 1

LR LR
α̇ (0, 1

2) Fundamental Singlet 1
QL QLα (1

2 , 0) Fundamental Fundamental 1
QR QR

α̇ (0, 1
2) Fundamental Fundamental 1

WL WLαβ (1, 0) Adjoint Singlet 2
WR WR

α̇β̇ (0, 1) Adjoint Singlet 2
GL GLαβ (1, 0) Singlet Adjoint 2
GR GR

α̇β̇ (0, 1) Singlet Adjoint 2
BL BLαβ (1, 0) Singlet Singlet 2
BR BR

α̇β̇ (0, 1) Singlet Singlet 2
Vµ ∼ Dµφ (Dφ)α̇β (1

2 ,
1
2) Adjoint Singlet 1

Dµ Dαβ̇ (1
2 ,

1
2) Singlet Singlet 1

T T (0, 0) Adjoint Singlet 0

Table 2. The building blocks of HEFT, their representation under the Lorentz and gauge groups,
and the chiral dimension of them. To satisfy the Adler zero condition, we use Dµφ replacing Vµ.

In the Young tensor method, the Lorentz basis of operators is related to the corre-
sponding basis of local on-shell amplitudes. The on-shell solutions of the fields φi are given
by the spinor-helicity variables (λiα, λ̃α̇i ) according to their helicities hi, and thus we obtain
the correspondence

(Dri−hi)φi ∼ λri−hi
i λ̃ri+hi (3.1)

with free spinor indices. Due to the Lorentz invariance, these indices are contracted by
invariant tensors εαβ and ε̃α̇β̇ under the SU(2)l and SU(2)r subgroups of the Lorentz sym-
metry, with the numbers

n = 1
2
∑
i

(ri − hi) ≡
r − h

2 , ñ = 1
2
∑
i

(ri + hi) ≡
r + h

2 . (3.2)

where r = ∑
i ri and h = ∑

i hi are defined. The contracted spinor variables are denoted
as usual

λαi λjα = 〈ij〉, λ̃iα̇λ̃
α̇
j = [ij] . (3.3)

Therefore, any operator could be mapped to a unique (combination of) on-shell amplitude
in terms of the spinor variables which can be written as

O =
⊗
n

ε
⊗
ñ

ε̃
∏
i

(Dri−hi)φi ∼ M = 〈·〉⊗n[·]⊗ñ (3.4)

With the amplitude-operator correspondence, we start to construct the Lorentz basis.
For now, we consider the flavor-blind operators. At this stage, all the fields involved in
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the operators are taken to be different, and the basis obtained here is the so-called Lorentz
y-basis, constructed by semi-standard Young tableaux (SSYT). The SSYTs are obtained
by filling the primary Young diagram, which is completely determined by field contents.
For example, the primary Young diagram of the Lorentz space takes the form [61, 62]

N
−

2


. . .

n︷ ︸︸ ︷
. . .

...
...

︸ ︷︷ ︸
ñ

. . .

, (3.5)

where N is the number of particles involved in the operator. The numbers of indices to fill
in the primary Young diagram are determined by

#i = 1
2nD +

∑
hi>0
|hi|−2hi, i = 1, 2, . . . N , (3.6)

where nD is the number of derivatives. The primary Young diagram corresponds to the sin-
glet representation of the Lorentz group, while the non-singlet representation of the SU(N)
group. It has been proved that it is the primary Young diagram that eliminates the IBP re-
dundancies [7, 9, 13], which form the independent y-basis of the amplitudes/operators. The
explicit forms of the basis amplitudes Bi can be directly obtained by translating the Semi-
Standard Young Tableau (SSYT) of the primary Young Diagram to the spinor brackets.
Besides the simplicity of the construction, the y-basis is also convenient for the decompo-
sition of any given local amplitudes/operators, which we call the reduction to the y-basis

M =
∑
i

ciBi. (3.7)

It turns out to be crucial in the various manipulation of amplitudes and operators in the
related studies.

3.2 Adler zero condition on amplitude basis

Before the general effective Lagrangian of the nonlinearly realized symmetry developed
by CCWZ [14, 15], Adler [40, 41] derived that the scattering amplitude with single pion
emission vanishes in the soft limit of the pion momentum, which is called the Adler zero
condition. With the CCWZ formalism, the pseudoscalar pions are considered as the NGBs
after symmetry breaking, and the Adler zero condition is trivially fulfilled in the effective
Lagrangian in the CCWZ formalism. But the Young tensor method starts from the general
Lorentz structure, instead of the pion matrix field in the CCWZ formalism. Therefore, not
all the Lorentz structures in the Young tensor satisfy Adler zero condition. According to
the amplitude-operator correspondence, the Lorentz structures satisfying the Adler zero
condition corresponds to the amplitudes satisfying soft limit [42–47].

In practice, we adopt the scalar field φ which is the adjoint representation under the
SU(2)L, and since it is the NGBs, the Adler zero condition implies that there is at least 1
derivative applied on φ. This is always possible by using the IBP relation (for amplitude,
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it is the momentum conservation relation ∑i〈li〉[ik] = 0). Thus in this method, we use
Dµφ replacing Vµ, which can be regarded as the leading term of Vµ defined in eq. (2.16).
In the following, we will present the procedure of imposing the Adler zero condition which
is also shown in refs. [34, 48].

Let us consider a type of operator with N particles, including at least one NGB π.
Based on the Young tensor method above, the Lorentz basis can be expressed as the N -
point on-shell amplitudes {B(N)

i , i = 1, 2, . . . dN}, where dN is the dimension of this Lorentz
basis. In terms of such basis, any Lorentz structure of this type takes the form that

M(N) =
dN∑
i=1

ciB(N)
i , (3.8)

where ci are coefficients under this basis. If this amplitude satisfies the Adler zero condition,
it vanishes when the external pion momentum pπ becomes soft:

M(N)(pπ → 0) = 0 =
dN∑
i=1

ciB(N)
i (pπ → 0). (3.9)

Here B(N)
i (pπ → 0) becomes (N − 1)-point on-shell amplitudes, which are generally not

independent and can be expanded by the (N − 1)-point basis with the soft particle π
removed, {B(N−1)

i (π̄), i = 1, 2, . . . dN−1}, where dN−1 is the dimension of such (N − 1)-
point Lorentz basis, and π̄ implies that the soft particle π is removed,

B(N)
i (pπ → 0) =

dN−1∑
j=1

fijB(N−1)
j (π̄) . (3.10)

Furthermore, since the removed π is a scalar particles, all the (N − 1)-point basis
B(N−1)
i (π̄) can be expanded by the original N -point basis B(N)

i

B(N−1)
i (π̄) =

dN∑
l=1

dilB
(N)
l . (3.11)

Combining several equations above, we can obtain the expansion

0 =
dN∑
l=1

 dN∑
i=1

ciKil

B(N)
l , (3.12)

where Kil is the expansion matrix

Kil =
dN−1∑
j=1

fijdjl . (3.13)

Since the basis {B(N)
i , i = 1, 2, . . . dN} are independent, this equation holds only if all the

coefficients vanish,

0 =
dN∑
i=1

ciKij , (j = 1, 2, . . . dN ) . (3.14)

– 11 –



J
H
E
P
0
4
(
2
0
2
3
)
0
8
6

This is a system of linear equations about ci, whose solutions span the subspace satisfying
the Adler zero condition, which constitute the amplitude basis involving NGBs. If there
are more than one NGBs, there is a system of linear equations for each of them, and the
structures satisfying the Adler zero condition are their common solutions.

Let us present an explicit example of a five-particle class FLφ4D4, with the helicities
that {−1, 0, 0, 0, 0}. We suppose that there are 4 derivatives in this class, and the second
to the fourth spinless particles are NGBs. According to the Young tensor method, we can
get the complete Lorentz basis of 14 dimensions,

B1 = −[45]2〈45〉〈14〉〈15〉 , B2 = −[34][35]〈13〉2〈45〉 ,
B3 = [35][45]〈45〉〈13〉〈14〉 , B4 = −[34][45]〈45〉〈13〉〈14〉 ,
B5 = [34][45]〈14〉2〈35〉 , B6 = [45][35]〈35〉〈14〉〈15〉 ,
B7 = −[35]2〈35〉〈13〉〈15〉 , B8 = −[34]2〈34〉〈13〉〈14〉 ,
B9 = [34][35]〈35〉〈13〉〈14〉 , B10 = [35][25]〈25〉〈13〉〈15〉 ,
B11 = [34][24]〈24〉〈13〉〈14〉 , B12 = [24][35]〈13〉〈14〉〈25〉 ,
B13 = −[24][45]〈14〉2〈25〉 , B14 = −[45][25]〈25〉〈14〉〈15〉 , (3.15)

but not all of them satisfy the Adler zero condition. Since there are 3 NGB particles in
this class, their soft limits should be taken separately. For the second particle, we take the
momentum p2 → 0, which is equivalent to the condition |2〉, |2] → 0, the amplitude after
the limitation

B1 → B1(p2 → 0) = −[34]2〈34〉〈13〉〈14〉 (3.16)

should belong to the type {−1, 0, 0, 0}. Note that the 4-point Lorentz basis of the type
{−1, 0, 0, 0} contains only 2 Lorentz structures

B1(2̄) = 〈13〉〈14〉〈34〉[34]2 , B2(2̄) = −〈13〉〈14〉〈24〉[24][34] . (3.17)

Given that the two bases can be expanded in the original 5-point basis d1i = δi1, d2i = δi6,
where i = 1, · · · , 14 and the soft amplitude B1(p2 → 0) can be expanded in the two 4-point
basis f11 = 1, f12 = 0 the soft amplitude can be expanded on the original 5-point basis as

B1 → −[34]2〈34〉〈13〉〈14〉 =
14∑
i=1

2∑
j=1

f1jdjiBi

=
14∑
i=1

f11d1iBi =
14∑
i=1

1× δi1Bi = B1 , (3.18)

A similar procedure can be applied on the other 5-point basis, and finally, we can get the
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full matrix K that

K =



1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
−1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0



, (3.19)

and thus the non-trivial equations in eq. (3.14) are

 c1 + c2 + c3 + c4 − c8 = 0
c5 + c6 + c7 + c8 + c9 = 0

(3.20)

Similarly, we can get the equations for the third and forth soft particles,

 c1 = 0
c13 + c14 = 0

,

 c7 = 0
c10 = 0

. (3.21)

There are total 6 constraints, and the solution space is of dimension 8. Thus there are 8
independent Lorentz basis satisfying the Adler zero condition, we present the transforming
matrix that 

0 0 0 0 0 0 0 0 0 0 0 0 −1 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 −1 0 0 0 1 0 0 0 0 0
0 1 0 0 −1 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 1 0 0 0 0 0 0 0 0
0 −1 0 1 0 0 0 0 0 0 0 0 0 0
0 −1 1 0 0 0 0 0 0 0 0 0 0 0



. (3.22)
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Therefore, the resulting basis is usually polynomials of the original SSYT basis,

B′1 = [24][45]〈14〉2〈25〉 − [45][25]〈25〉〈14〉〈15〉 ,
B′2 = [24][35]〈13〉〈14〉〈25〉 ,
B′3 = [34][24]〈24〉〈13〉〈14〉 ,
B′4 = −[34][45]〈14〉2〈35〉+ [34][35]〈35〉〈13〉〈14〉 ,
B′5 = −[34][45]〈14〉2〈35〉+ [34]2〈34〉〈13〉〈14〉 ,
B′6 = −[34][45]〈14〉2〈35〉+ [45][35]〈35〉〈14〉〈15〉 ,
B′7 = [34][35]〈13〉2〈45〉 − [34][45]〈45〉〈13〉〈14〉 ,
B′8 = [34][35]〈13〉2〈45〉+ [35][45]〈45〉〈13〉〈14〉 . (3.23)

3.3 Spurion technique for the gauge structure

It is known in the group theory that every SU(N) irreducible representation (irrep) corre-
sponds to a Young diagram. For example, the typical irreps of the SU(2) and SU(3) groups
are

SU(2) SU(3)
ti ∈ 2 ∼ ta ∈ 3 ∼

εijt
j ∈ 2 ∼ εabct

c ∈ 3 ∼

tIτ Iki εkj ∈ 3 ∼ tAλAdaεdbc ∈ 8 ∼

where τ, λ are the generators of the SU(2), SU(3) respectively. In the EFTs with unbroken
symmetries, like the SMEFT, the effective operators belong to the singlets under the gauge
groups SU(N), represented by Young diagrams with only N -row columns,

SU(2) ∼ . . . , SU(3) ∼ . . . . (3.24)

In the Young tensor method, we construct the independent basis of gauge structures by
decomposing the tensor product of the Young diagrams of the dynamical fields following
the Littlewood-Richardson rule (LR rule) [7, 9, 13], and select all the singlet terms therein.

However, in the HEFT, we are dealing with effective operators in the broken phase
of custodial symmetry. The breaking pattern is characterized by a spurion field T under
the adjoint representation of the SU(2)L group, which enters the gauge and Yukawa in-
teractions. Typically the spurion fields are introduced in theories with broken symmetries
to parametrize the symmetry-breaking effects. In the unbroken phase, the spurion is a
dynamical degree of freedom, which makes sure the operators in the unbroken phase are
singlet under the correspondent symmetry. In the broken phase, the spurion degree of
freedom is frozen, and thus the operators in the broken phase become non-singlet under
the same symmetry. Spurions are thus the auxiliary fields that contract with the operators
to make a singlet, which is supposed to take VEV after the symmetry breaking, thus are
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frozen degrees of freedom, and do not participate in the Lorentz structures, which being
said, we should not treat them as scalar building blocks in the Lorentz sector because the
derivatives can not act on them. In practice, for a type of operator involving the spurions,
they should be deleted from the helicity list, and their generators of symmetric group are
taken to be the identity matrix.

Based on the above, the spurions are only used in constructing the group factor of the
corresponding symmetry. Multiple copies of spurions may be used to construct operators
under different non-singlet representations, and in turn, there may be different combina-
tions of spurions that constitute the same representation. For example, suppose we have a
spurion Ta under the adjoint representation 8 of SU(3), hence we have

Ta ∈ 8 , dabcTbTc ∈ 8 , (3.25)

where dabc is the total symmetric tensor. Both the 2 combinations above are capable of
contracting with an operator Oa under the adjoint representation of SU(3). It is obvious
that the first would be the dominant one, and the second is sub-leading since it takes more
spurions. Thus we do not count the second one for the fixing non-singlet operator Oa in the
broken phase, which is equivalent to the eliminations of the gauge structures like dabcTbTc

in the type with 2 spurions. Another restriction is the identity among the same kind of
spurions, which demands totally symmetric combinations, thus fabcTbTc, where fabc is the
totally anti-symmetric tensor, is zero. Furthermore, for a general type with j spurions, the
only reserved structures are those of the traceless and totally symmetric combination,

T{I1 · · ·TIj} ∈ spin j . (3.26)

Thus we need to consider the representation of spurions and other fields separately,
and both the Young diagrams of them are non-singlet, but their outer product can form
singlet Young diagram. In particular, the SSYTs of the spurions representation should be
symmetric under the permutations among the indices from different spurions. In general,
this is difficult, but in the case of the SU(2) group, it is quite straightforward to deal with,
as shown in below.

The spurion TI in the HEFT belongs to the adjoint representation of the SU(2) group,

TIτ Ikiεkj ∈ i j , (3.27)

where the two indices are symmetric. The tensor product of the 2 spurions can be expressed
by the Young diagrams

⊗ = ⊕ ⊕ , (3.28)

and only the last one is traceless and totally symmetric,

i j m n = T{ITJ}τ I
l
iτ
Jk
mεljεkn , (3.29)

since the first two diagrams contain columns of length 2, which correspond to anti-
symmetrical tensor ε contracting with the indices of spurions to generate traces, for exam-
ple, the tensor in the first diagram

i j m
n

= TITJτ I
k
i τ

J l
mεkjεlnε

in = TITJεIJKτK
k
mεkj , (3.30)
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which is actually zero since there is only a single spurion field. The tensor of the second
diagram takes the form

i j
m n

= TITJτ I
k
i τ

J l
mεkjεlnε

imεjn = TITI , (3.31)

which is the self-contraction of spurions, and should be eliminated as well. Furthermore,
the tensor product of the 3 spurions takes the form

⊗ ⊗ = ⊕ ⊕ 3 ⊕ , (3.32)

and only the last one is traceless and totally symmetric. Generally, the traceless and totally
symmetric combinations of j spurions make a spin-j representation, which corresponds the
irreducible representation with the highest weight in the direct-product decomposition of
them, corresponding the diagram that

2j

and the compensation formed by other dynamical fields of this representation to form the
SU(2) singlet takes the form

2j

which can be obtained by the application of the Littlewood-Richardson rule reversely. To
eliminate the redundancies about the spurions mentioned above, we need to do the outer
product of the j copies of the spurions and the other dynamical fields separately to form two
SSYTs of the shape above, then combine them back to form the singlet Young diagrams
by simply binding the two SSYTs together.

3.4 Flavor structure involving Goldstone and spurion

For both the Lorentz and gauge space, the y-basis is often polynomials and we can transform
them to another basis in which all operators are monomials, the m-basis. The tensor
product of the Lorentz and gauge m-basis constitutes the full space of all the independent
flavor-blind operators, which is called the operator m-basis.

Considering the repeated fields in the operators, the operators in the m-basis obtained
above are usually redundant. In this case, a field with flavor number nf can be regarded
as a nf multiple of the flavor group SU(nf ). If an operator has n such fields, this operator
behaves as an n-rank tensor under the group SU(nf ). This flavor tensor-product space is
fully divided into several disjoint subspaces, each of which furnishes an irreducible represen-
tation of the symmetric group Sn. The operators in every irreducible representation of the
Sn have specific permutation symmetries. Thus we introduce the p-basis composed of these
operators. In the p-basis, not all the operators are physical, for example, if the repeated
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field has flavor number 1, all the operators in the p-basis are zero, except for those in the
completely symmetric representation of Sn. Besides, if the p-basis contains operators with
the mixed flavor symmetry such as , the irreducible subspace of SU(nf ) marked by this
Young diagram has multiplicity equal to the dimension of the irreducible representation of
the symmetry group Sn presented by the same Young diagram. It can be proved that these
irreducible subspaces are isomorphic to each other [13], and only one of them needs to be
reserved. After eliminating such redundancies, the remaining operators form the so-called
f-basis or p’-basis, which serves as the final result. In practice, the p-basis can be obtained
by applying the idempotent elements of group algebra S̃n on the m-basis.

Oprep = YrepOm , (3.33)

where Yrep is the idempotent element of Sn’s irreducible representation rep, which is
symbolized by Young diagrams.

Let us illustrate the procedure above by the type QLQ†RBRφ2D2 at the NNLO. There
are 5 fields in this type, and their helicities are {−1/2,−1/2, 1, 0, 0}, and the last two
NGBs, marked by indices 4 and 5, are repeated fields. There are 2 derivatives, thus
nD = 2. According to table 2, we obtain that h = 0, r = 4, and the numbers of ε, ε̃ are
n = ñ = 2. Thus the primary Young diagram takes the form that

. (3.34)

To fill this diagram and obtain SSYTs, the numbers of all indices are needed, which can
be obtained by eq. (3.6)

#1 = 3, #2 = 3, #3 = 0, #4 = 2, #5 = 2 , (3.35)

thus there are only 4 SSYTs,
1 1 1 4
2 2 2 5
4 5

,
1 1 1 2
2 2 5 5
4 4

,
1 1 1 2
2 2 4 4
5 5

,
1 1 1 2
2 2 4 5
4 5

, (3.36)

and they correspond to the Lorentz y-basis

By1 = −〈12〉〈45〉[34][35] ,
By2 = 〈15〉〈25〉[35]2 ,
By3 = 〈14〉〈24〉[34]2 ,
By4 = −〈14〉〈25〉[34][3, 5] . (3.37)

The Adler zero condition constraints that the amplitudes should be zero whenever particle
4 or 5 becomes soft. If particle 4 becomes soft, all the four bases become zero except for
the second one By2 , thus the matrix K in eq. (3.13) takes the form that

K =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , (3.38)
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thus system of the linear equations in eq. (3.14) gives the solution that c2 = 0. Similarly,
if particle 5 becomes soft, only the third basis By3 is not zero, thus there is the solution
c3 = 0. Thus only the first and the last bases satisfy the Adler zero condition, thus the
actual Lorentz y-basis is

Bay1 = By1 , Bay2 = By4 , (3.39)

with the projection matrix that

Kayy =

 1 0 0 0
0 0 0 1

 . (3.40)

According to table 2, we translate these amplitudes to the form of operators

Bay1 = ψ1
αψ2αFR3β̇γ̇(Dδβ̇φ4)(Dγ̇

δφ5)
= −4(ψ1ψ2)FR3

µν(Dµφ4)(Dνφ5) , (3.41)
Bay2 = ψ1

αψ2
βRR3γ̇δ̇(D

γ̇
αφ4)(Dδ̇

βφ5)
= −2(ψ1ψ2)FR3

µν(Dµφ4)(Dνφ5) + 2i(ψ1σµνψ2)FR3
νλ(Dλφ4)(Dµφ5) , (3.42)

from which we choose the monomials

Bm1 = (ψ1ψ2)FR3
µν(Dµφ4)(Dνφ5) , (3.43)

Bm2 = (ψ1σµνψ2)FR3
νλ(Dλφ4)(Dµφ5) , (3.44)

as the Lorentz m-basis, with the transformation matrix

Kmay =

−1
4 0
i
4 −

i
2

 . (3.45)

As for the gauge y-basis, the SU(3)C structure is simple, there is only one independent
tensor δba, and the SU(2)L tensors can be obtained by similar SSYT technics. There are 2
gauge SSYTs for this type

i1 i2 i4
j4 i5 j5

, i1 i4 j4
i2 i5 j5

. (3.46)

They correspond to the independent tensors

T (y)
SU(2)L,1 = εi1j4εi2i5εi4j5(τ I4)i4i4(τ I5)i5j5εi2j2 , (3.47)

T (y)
SU(2)L,2 = εi1i2εi4i5εj4j5(τ I4)i4j4(τ I5)i5j5εi2j2 , (3.48)

which can be further simplified to

T (y)
SU(2)L,1 = δI4I5δi1j2 − iε

I4I5J(τJ)i1j2 ,

T (y)
SU(2)L,2 = 2δI4I5δi1j2 . (3.49)

Similarly, we combine them to obtain the gauge m-basis

T (m)
SU(2)L,1 = εI4I5J(τJ)i1j2 , T (m)

SU(2)L,2 = δI4I5δi1j2 , (3.50)
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with the transformation matrix

KmySU(2)L
=

 i − i
2

0 1
2

 . (3.51)

The tensor product of the gauge m-basis and the Lorentz m-basis gives 1 × 2 × 2 = 4
operators, but they are not all physical when considering the repeated fields.

The NGB φ is the repeated field in this type, which carries no flavor number, thus
only the operators symmetric under the permutations of them are physical. In the Lorentz
space, the generator of S2 in the y-basis1 {Byi , i = 1, 2, 3, 4} takes the form

D(y)
B =


−1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 , (3.52)

which is obtained directly from manipulations of the amplitudes in the Lorentz y-basis.
When focusing on the subspace spanned {Bmi , i = 1, 2}, the generator can be obtained by
the linear transformation

D(m)
B = KmayKayy D

(y)
B K

ay
y
−1Kmay

−1 =

−1 0
i −2i

 , (3.53)

where the matrix Kayy in the expression should be understood as

Kayy →


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 , (3.54)

and the 2 × 2 generator obtained above is the 4 × 4 one with the removal of all the null
rows and columns. In the case of the SU(2)L gauge basis, it is straightforward to obtain
the generator of S2 in the m-basis is

D(m)
SU(2)L

=

−1 0
0 1

 , (3.55)

and D(m)
SU(3)C

= 1. Thus the generator of the overall operator space is the tensor product of
them,

D(m) = D(m)
SU(3)C

⊗D(m)
SU(2)L

⊗D(m)
B =


−1 0 0 0
2i 0 0 0
0 0 −1 0
0 0 2i 0

 . (3.56)

1The 2 generators of S2 are identical, thus we treat them as one here.
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The idempotent element of the subspace is symmetric under the permutations of the 2 φ’s,
which is symbolized by the young diagram

Y[ 4 5 ] = I4×4 +D(m) =


0 0 0 0
2i 1 0 0
0 0 0 0
0 0 2i 1

 , (3.57)

whose rank is 2, thus there are only 2 independent operators in this type, and we write
them as following

O1 = Y[ 4 5 ]εIJKτKij(QLaiσµνQ
†
R

aj)BRνλ(Dλφ
I)(DµφJ) ,

O2 = Y[ 4 5 ](QLaiσµνQ
†
R

ai)BRνλ(Dλφ
I)(DµφI) . (3.58)

In the rest of this work, we will always write operators with the idempotent elements to indi-
cate their flavor permutation symmetry, but for the operators with no repeated fields and/or
the repeated fields carrying flavor number 1, the idempotent elements will be omitted.

Another non-trivial example is the type BLφ
3hD4 in the bosonic sector, with the

helicity structure {−1, 0, 0, 0, 0}, where the particles 2 ∼ 4 are the NGBs, the repeated
fields, and the last one is the physical Higgs h. The SU(3)C gauge structure is trivial,
and the SU(2)L gauge space is of dimension 1, εI2I3I4 . The Lorentz basis of this type is
complicated since there are 4 derivatives. The filling of the SSYTs gives that the Lorentz
space is of dimension 14, but the Adler zero condition constrains this space to the one
of dimension 8, which has been discussed previously, and the 8 bases are presented in
eq. (3.23). Combining the Lorentz and gauge structures together, we can obtain the f-basis
is of dimension 1, and thus there is only 1 operator in this type

εIJKBL
λν(Dµh)(Dµφ

I)(Dνφ
J)(Dλφ

K) . (3.59)

To be consistent with the building blocks of the HEFT, we replace the fields such as (Dµφ
I)

in the operators obtained by the Young tensor method by the VI
µ. Thus the only operator

in this type is written as

εIJKBL
λν(Dµh)(VI

µ)(VJ
ν )(VK

λ ) . (3.60)

This convention is respected in section 4.
Next, let us provide some examples involving the spurions. Let us consider the type

WLLLQLL
†
LQ
†
LT2 from the class ψ4XUh. There are 2 spurions in this type because

they do not participate in the Lorentz structures, only the particles {WL, LL, QL, L
†
L, Q

†
L},

corresponding to helicities {−1,−1
2 ,−

1
2 ,

1
2 ,

1
2} are considered in the Lorentz basis. The

Lorentz basis of this type is simple, and there is only one y-basis

B(y)
1 = 〈12〉〈13〉[45] (3.61)

corresponding to the m-basis

WLµν(LLσνL†L)(QLσµQ†L) (3.62)

with the trivial transformation matrix.
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For the gauge basis, the SU(3)C gauge basis is just δab , contracting with the quarks
QL , Q

†
L, but the SU(2)L structures are complicated. There are 13 independent tensors in

the SU(2)L gauge m-basis, but most of them are redundant. To eliminate those, we consider
the spurions and the other fields separately. The 2 spurions take the representation that

i6 j6 i7 j7 (3.63)

according to the discussion around eq. (3.26), where all the indices are symmetric. Its
compensation takes the form that

, (3.64)

thus we need to construct all the Young diagrams of such shape by the outer product from
the dynamical fields except the spurions, whose representations are related to the SU(2)
irreps

W I1
L τ

I1k
i1εkj1 ∼ i1 j1

LLi2 ∼ i2

QLi3 ∼ i3

L†L
l
εli4 ∼ i4

Q†L
m
εmi5 ∼ i5 , (3.65)

and the outer product of them can be determined by the LR rule,

i1 j1 ⊗ i2 ⊗ i3 ⊗ i4 ⊗ i5

=
(
i1 j1 i2 ⊕

i1 j1
j2

)
⊗ i3 ⊗ i4 ⊗ i5

=
(
i1 j1 i2 i3 ⊕

i1 j1 i2
i3

⊕ i1 j1 i3
j2

)
⊗ i4 ⊗ i5

=
(
i1 j1 i2 i3 i4 ⊕

i1 j1 i2 i3
i4

⊕ i1 j1 i2 i4
i3

⊕ i1 j1 i3 i4
j2

)
⊗ i5

= i1 j1 i2 i3 i4
i5

⊕ i1 j1 i2 i3 i5
i4

⊕ i1 j1 i2 i4 i5
i3

⊕ i1 j1 i3 i4 i5
j2

, (3.66)

where only the Young diagrams as the same as the one in eq. (3.64) is reserved. Combining
the diagrams (3.63) and (3.66) together, we obtain the gauge singlet representations with
all the redundancies of the spurions eliminated:

B(y)
SU(2)L,1 = i1 j1 i2 i3 i4

i5 i6 j6 i7 j7
= τ I1i6

i1ε
i1i5(TI6τ I6i2

i6)(TI7τ I7i4
i7ε

i3i7) ,

B(y)
SU(2)L,2 = i1 j1 i2 i3 i5

i4 i6 j6 i7 j7
= τ I1i6

i1ε
i1i4(TI6τ I6i2

i6)(TI7τ I7i5
i7ε

i3i7) ,

B(y)
SU(2)L,3 = i1 j1 i2 i4 i5

i3 i6 j6 i7 j7
= τ I1i6

i1ε
i1i3(TI6τ I6i2

i6)(TI7τ I7i5
i7ε

i4i7) ,

B(y)
SU(2)L,4 = i1 j1 i3 i4 i5

i2 i6 j6 i7 j7
= τ I1i6

i1ε
i1i2(TI6τ I6i3

i6)(TI7τ I7i5
i7ε

i4i7) . (3.67)
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It should be emphasized that each tensor above can be further simplified, for example, the
first tensor takes the form

B(y)
SU(2)L,1 = TI6TI7τ I1i6

i1τ
I6i2

i6τ
I7i4

i7ε
i1i5εi3i7

= TI6TI7τ I1i6
i1τ

I6i2
i6τ

I7i4
i7(δi1i3δi5i7 − δi1i7δi5i3)

= TI6TI7τ I1i6
i3τ

I6i2
i6τ

I7i4
i5 −TI6TI7τ I1i6

i7τ
I6i2

i6τ
I7i4

i7δ
i3
i5

= TI6TI7εI6I1KτKi2 i3τ
I7i4

i5 −
1
2TI6TI6τ I1i2

i4δ
i3
i5

+ 1
2TI1TI6τ I6i2

i4δ
i3
i5
, (3.68)

thus all the SU(2)L structures are usually polynomials, consistent with the method in the
ref. [34], which use the gauge j-basis techniques instead.

Thus there are 4 operators in this type, and we choose them as

iτK
i
lτ
Mj
kε
IJMTJTKWL

I
µν(LLpiσ

νL†Ls
k)(QLrajσµQ

†
Lt

al) ,

iτJ
j
lTITJWL

I
µν(LLpiσ

νL†Ls
i)(QLrajσµQ

†
Lt

al) ,

iτJ
i
kTITJWL

I
µν(LLpiσ

νL†Ls
k)(QLrajσµQ

†
Lt

aj) ,

iτJ
i
lTITJWL

I
µν(LLpiσ

νL†Ls
j)(QLrajσµQ

†
Lt

al) , (3.69)

where the idempotent elements are omitted since the repeated fields T have the flavor
number 1 and are symmetric under permutations.

Furthermore, if we consider the type with one more spurion, WLLLQLL
†
LQ
†
LT3, the

Lorentz basis is unchanged while the SU(2)L gauge space become dimension-30. The 3
spurions form the totally symmetric representation

, (3.70)

and the compensation takes the same shape

. (3.71)

According to the LR rule, there is only one way to form such a diagram from the outer
product of the other fields, thus there is only one operator, though there are many spurions
in this type,

τJ
i
kτ

Kj
lTITJTKWL

I
µν(LLpiσ

νL†Ls
k)(QLrajσµQ

†
Lt

al) . (3.72)

If the number of spurions in this type is more than 3, it is impossible to combine the totally
symmetric combinations of spurions and other building blocks to form the gauge singlet,
and thus there are no independent operators for this type.

Still, there are cases in that we have to consider many spurions in some types such as
φ6D6T6. Though the SU(2)L gauge basis of this type is of high dimension, there is only
one independent operator according to the similar argument with the previous example,
where the Young diagrams of the spurions are of the same shape with its compensation.

Finally, it should be emphasized again that, the SU(2)L is special and simple. If the
spurions belong to the adjoint representation under the SU(N) , N > 2 group, it is more
difficult to deal with, since the corresponding Young diagrams are complicated.
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Class Nterm Noperator

UhD6 114 114
X2UhD2 130 130
XUhD4 164 164
ψ2XUhD 184 184nf 2

ψ2UhX2 192 192nf 2

ψ4UhD 1224 4
3nf

2(−2 + 3nf + 575nf 2)
ψ4XUh 1988 2nf 2(−9 + 4nf + 519nf 2)
ψ2UhD3 272 272nf 2

ψ2XUhD2 1044 1044nf 2

ψ4UhD2 8260 1
3nf

2(155 + 78nf + 13525nf 2)
ψ6Uh 7112 1

9nf
2(32 + 78nf − 133nf 2 + 102nf3 + 17129nf 4)

ψ2UhD4 1112 1112nf 2

Total 21796
1
9(3672 + 25547nf 2 + 420nf 3 + 56684nf 4 + 102nf 5 + 17129nf 6)

nf = 1: 11506, nf = 3: 1927574

Table 3. The numbers of the NNLO operators in each class.

4 Next-to-next-to-leading-order Lagrangian

There are 12 classes of operators in the NNLO Lagrangian, ranging from chiral dimen-
sion dχ = 5 and dχ = 6, and numbers of the NNLO operators are listed in the table 3.
For cross-check, the Hilbert series result for the NNLO HEFT operators is presented in
appendix A [49, 50]. The explicit operators are presented in an extra file, with several
comments in order.

• We adopt the weyl spinors ψL/R and ψ†L/R representing the SM fermions. The rela-
tions between the Weyl and the Dirac spinors ΨL/R are

ΨL =

ψL
0

 , ΨR =

 0
ψR

 , Ψ̄L =

 0
ψ†L

 , Ψ̄R =

ψ†R
0

 . (4.1)

The detailed transformation between these two different notations can be found in
ref. [9]. Besides, the fermions contain the following SU(3), SU(2) and flavor indices.
We adopt the indices set of them as

SU(3)color ∼ {a, b, c, d, e, f}
SU(2)L ∼ {i, j, k, l,m, n}

SU(3)flavor ∼ {p, r, s, t, u, v} , (4.2)

Under this convention, the quark doublet field is denoted as

QLpai , Q†Lr
ai
, QRpai , Q†Rr

ai
, (4.3)
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since the left- and right-handed spinors belong to fundamental representations while
their hermitian conjugates belong to anti-fundamental representations, as shown in
table 2. In particular, the spinor indices of the spinor fields are not written explicitly
and are regarded as contracted with the neighbor spinor fields. For example, the
bilinears should be understood as

(QLQ†R) = (QLαQ†Rα)

(QLσµQ†L) = (QLασµαβ̇Q
†
L

β̇) . (4.4)

• The operators listed assume there are right-handed neutrinos in the right-handed
fermion doublet. If one removes the right-handed neutrinos in the fermion doublet,
some operators would disappear, because the combination of the spurion T and the
identity matrix would become the projector that picks up the right-handed neutrinos
and the right-handed electrons. In this case, let us redefine the building blocks of the
HEFT as the combination of the spurion T and the identity matrix

T+ = I

2 + T = U
(
I

2 + TR
)

U† = U

 1 0
0 0

U† ,

T− = I

2 −T = U
(
I

2 − TR
)

U† = U

 0 0
0 1

U† , (4.5)

which can be regarded as another choice of the building blocks to characterize the
custodial symmetry breaking. The operators T+ and T− apply to the right-handed
leptons would project out the right-handed neutrino νR and right-handed electron eR

T+LR = U

 1 0
0 0

 νR
eR

 = UνR ,

T−LR = U

 0 0
0 1

 νR
eR

 = UeR . (4.6)

Thus in the case where the right-handed neutrinos are absent, the operators with
T+ acting on the right-handed lepton doublets should be eliminated. This becomes
clear only when the operators presented below are re-expressed using the T+ and
T−, which are usually combinations of the original operators. For example, there are
3 operators (not all operators)

O1 = (LLpiL
†
Rr

i)VI
µVIµVK

νVKν ,

O2 = τO
i
jTO(LLpiL

†
Rr

j)VI
µVIµVJ

νVJν ,

O3 = εJKOTO(LLpiσ
λνL†Rr

i)VI
λVI

µVJµVK
ν (4.7)

in the NNLO class ψ2UhD4. The combination of the first two operators O1/2 +O2
involves the right-handed neutrinos νR according to eq. (4.6) and should be elimi-
nated if the νR’s are absent. While the third operator O3 should be reserved since
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the spurion T is contracted with the NGBs rather than the right-handed leptons.
Thus in these 3 operators, there are only 2 of them are independent if the right-
handed neutrinos are absent. As the number of fermions increases, the fermions in
a bilinear may not form SU(2) singlet, and the expansion structures may be com-
plicated. In such cases, the projection may be not explicit. For an example of the
type LL2L†R

2
L†LLR in the 6-fermion class, if right-handed neutrino exists, there are

2nf 4(5nf 2 + 1) independent operators, which can be justified by the Hilbert series
result in appendix A. One of the operators in this type is

Y[ p r , s t ](L†Lu
m
σ̄µLLpi)(LRvmσ̄

µLLrj)(L
†
Rs

i
L†Rt

j) , (4.8)

where none of fermion bilinear is SU(2) singlet. We can express such operators in
trace form

Tr[(L†LσµLL)(L†RL
†
R)(LLσµLR)T ] , (4.9)

where the flavor indices and the idempotent are dropped for convenience. In terms of
trace form, if the right-handed neutrino does not exist, we can substitute the SU(2)
doublet form of the fermions into it and expand it to a polynomial of the operators
composed by SU(2) singlet fermions. After doing the same manipulation to all the
operators in this type, it can be expected the condition νR = ν†R = 0 would eliminate
some of them, and the complete set of independent operators without right-handed
neutrinos in this type can be obtained. In this way, we can enumerate nf 4(3nf 2 + 1)
operators in the type LL2L†R

2
L†LLR, which is consistent with the Hilbert series result

in appendix B, and the original 40 operator terms in this type listed below are reduced
to 12,

Y[ p r , s t ](L†Lu
m
σ̄µLLpi)(LRvmσ̄

µLLrj)(L
†
Rs

i
L†Rt

j)

Y[ p r , s t ](L†Lu
m
σ̄µLLpi)(LRvmσ̄νLLrj)(L

†
Rs

i
σνµL†Rt

j)

Y[ p r , s t ](L†Lu
j
σ̄µLLpi)(LRvlσ̄

µLLrj)(L
†
Rs

i
L†Rt

l)

Y[ p r , s

t
](L†Lu

j
σ̄µLLpi)(LRvlσ̄

µLLrj)(L
†
Rs

i
L†Rt

l)

Y[ p r , s

t
](L†Lu

j
σ̄µLLpi)(LRvlσ̄νLLrj)(L

†
Rs

i
σνµL†Rt

l)

Y[ p

r
, s t ](L†Lu

j
σ̄µLLpi)(LRvlσ̄

µLLrj)(L
†
Rs

i
L†Rt

l)

Y[ p

r
, s t ](L†Lu

j
σ̄µLLpi)(LRvlσ̄νLLrj)(L

†
Rs

i
σνµL†Rt

l)

Y[ p

r
, s

t
](L†Lu

m
σ̄µLLpi)(LRvmσ̄

µLLrj)(L
†
Rs

i
L†Rt

j)

Y[ p

r
, s

t
](L†Lu

m
σ̄µLLpi)(LRvmσ̄νLLrj)(L

†
Rs

i
σνµL†Rt

j)

Y[ p

r
, s

t
](L†Lu

j
σ̄µLLpi)(LRvlσ̄νLLrj)(L

†
Rs

i
σνµL†Rt

l)

Y[ p r , s t ]τ I ilτJ
j
kτ

Kn
mTITJTK(L†Lu

m
σ̄µLLpi)(LRvnσ̄

µLLrj)(L
†
Rs

k
L†Rt

l)

Y[ p

r
, s

t
]τ I ilτJ

j
kτ

Kn
mTITJTK(L†Lu

m
σ̄µLLpi)(LRvnσ̄νLLrj)(L

†
Rs

k
σνµL†Rt

l) (4.10)
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Class Noperator

UhD6 114
X2UhD2 130
XUhD4 164
ψ2XUhD 156nf 2

ψ2UhX2 156nf 2

ψ4UhD 2nf 2(−1 + 2nf + 259nf 2)
ψ4XUh nf

2(−16 + 9nf + 727nf 2)
ψ2UhD3 224nf 2

ψ2XUhD2 816nf 2

ψ4UhD2 1
2nf

2(91 + 56nf + 6059nf 2)
ψ6Uh 1

9nf
2(28− 24nf + 73nf 2 + 15nf3 + 10006nf 4)

ψ2UhD4 834nf 2

Total
1
18(7452 + 39899nf 2 + 690nf 3 + 77087nf 4 + 30nf 5 + 20012nf 6)

nf = 1: 8065, nf = 3: 1179181

Table 4. The numbers of the NNLO operators in each class without right-handed neutrino.

Because of the huge number of operators at NNLO, we can not make the explicit
classification for all the types here, but all the operators without right-handed neu-
trinos can be obtained in a similar way above in principle. For cross-check, we also
present the Hilbert series result for the HEFT NNLO operators in the appendix and
make a brief overview in table 4.

• Every building block Vµ in the class corresponds to a pairing of the φ and D in such
type, while in the operators, the building block Vµ instead of Dµφ is adopted.

• The flavor structures of the operators are indicated by the idempotent elements before
that, and the indices in the Young diagram are the flavor indices of the repeated fields,
just like

Y[ p

r
, s t ]τKilεIJK(LLpiσλ

µLLrj)(L
†
Rs

j
σλνL†Rt

l)VI
µVJ

ν . (4.11)

• The triple gauge bosons class X3Uh, though carrying the chiral dimension 6, is
attributed to the NLO operators, and is presented in the ref. [34], for the convenience
of comparing with other literature.

• The spurion is of the chiral dimension dχ = 0 to capture the possible custodial
symmetry breaking effects at the LO Lagrangian, while in some literature [27, 30, 54],
the spurion is taken to be of chiral dimension 1, then the NNLO Lagrangian would
be the combination of the NLO operators listed in ref. [34] and the NNLO operators
listed below.
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• In each class of operators, the physical Higgs singlet h(x) could take an arbitrary
number in every operator, and thus we neglect the dimensionless Higgs function in
each operator

F(h) = 1 + a
h

v
+ b

h2

v2 + · · · . (4.12)

• In some cases, certain powers of the Higgs field in the operator needs to be kept to be
consistent with the derivatives on the Higgs field. In this case, there is a minimum
of the h(x) fields for the independent operators. We utilize the convention that the
number of Higgs h in such type of operators keeps to be minimal to construct the
complete and independent operators in this type.

Let us take the first type of operator UhD6 as an example to illustrate the above
convention. In this type UhD6, composed purely by Higgs h and derivatives, the operators
are listed as

h2(DλDµDνh)(DλDµDνh), h3(DµDνh)(DλD
µh)(DλDνh). (4.13)

where the first operator can be constructed by 4 and 5 Higgses and 6 derivatives, but
the second one can not be constructed until the number of Higgses is 6. This should be
understood as the following.

• Suppose there are only 4 Higgses in the operator, we can only construct one single
operator

h2(DλDµDνh)(DλDµDνh). (4.14)

• Suppose there are 5 Higgses in the operator, similarly, we can construct one single
operator

h3(DλDµDνh)(DλDµDνh). (4.15)

• Suppose the number of the Higgses is 6 and more, there are two kinds of operators
with dimensionless Higgs function

h2(DλDµDνh)(DλDµDνh)F(h) , h3(DµDνh)(DλD
µh)(DλDνh)F(h) , (4.16)

Since there are more than 6 Higgses, there is no more independent operator in this type,
thus we write this type with the exact 6 Higgs and 6 derivatives, h6D6.

Because of the huge amounts of the NNLO operators, instead of listing them all here,
we present them in the supplementary material of this paper. Note that the operators
without sterile neutrino is also contained in the list of operators, although we do not pick
those out from the list as we did for the NLO operators in ref. [34].
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5 Conclusion

In this work, we present the independent and complete NNLO operators of HEFT involving
the right-handed neutrino for the first time, by means of the Young tensor technique on
the Lorentz, gauge, and flavor structures, giving rise to the on-shell amplitude basis for
each type of operators. For the operators involved in the Nambu-Goldstone bosons, the
on-shell amplitude basis is further reduced to the subspace satisfying Adler zero condition
in the soft momentum limit. The spurion field in the HEFT is carefully treated: they
behave like ordinary building blocks with certain representation in the gauge sector, while
we avoided the appearance of self-contractions among them. Thus the spurions can be
implemented into the gauge structure by utilizing the Littlewood-Richardson rule on the
symmetric Young diagram of the spurions and the ones of other dynamical fields. These new
improvements on the NGBs and spurions in the Young tensor method are quite general
and can thus be applied to other chiral effective field theories. In the case of no right-
handed neutrino, we enumerate 8065(1179181) independent operators via the Hilbert series
technique without picking them out from the listed operators in a separate ancillary file.

In the HEFT, we treat the power counting rules similar to the chiral Lagrangian, with
the spurion field of no chiral dimension. We obtain that there are 11506 (1927574) NNLO
operators, corresponding to the order O(p5) and O(p6), with one (three) generation fermion
flavors. If the power counting rules treat the spurion field of chiral dimension one, then
only a subset of the NNLO operators and partially the NLO operators with the spurion
field consist of the complete and independent operators at the NNLO order.

Finally we expect the NNLO operators would be comparable with the two-loop correc-
tions of the LO operators and the one-loop corrections with exactly one NLO vertex in the
HEFT. It also benefits the phenomenological studies of the dimension-8 standard model
effective field theory in the broken phase. Especially when one performs the matching
between the dimension-8 SMEFT and the NNLO HEFT operators, it is necessary to list
the complete sets of the SMEFT and HEFT operators.
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A Hilbert series result with right-handed neutrino

In this appendix we present the Hilbert series result for the NNLO HEFT operators
with flavor number nf , assuming the right-handed neutrino exists, the result of the NLO
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operators has been given in refs. [49, 50]. We follow the convention that, the polyno-
mial of physical Higgs h is represented by F , the derivative is represented by D, the
3 gauge bosons are represented by B,W,G, the leptons, and quarks are represented by
LL, L

†
L, LR, L

†
R, QL, Q

†
L, QR, Q

†
R, and the NGB is represented by u.

dχ = 5.

hs = 4n2
f BDLLL†LF + 4n2

f D3LLL†LF + 4n2
f BDLRL†RF + 4n2

f D3LRL†RF + n3
f (9nf − 1)DLLL†L

2
LRF

+ n3
f (9nf − 1)DLL

2L†LL†RF + n3
f (9nf − 1)DL†LLR

2L†RF + n3
f (9nf − 1)DLLLRL†R

2F

+n3
f (3nf +1)DLRQL

3F+4n2
f BDQLQ†LF+4n2

f D3QLQ†LF+4n2
f DGQLQ†LF+18n4

f DL†LLRQLQ†LF

+ 18n4
f DLLL†RQLQ†LF + n3

f (3nf + 1)DL†RQ†L
3F + n3

f (9nf + 1)DLLQL
2QRF + 18n4

f DLLL†LQ†LQRF

+ 18n4
f DLRL†RQ†LQRF + 18n4

f DQLQ†L
2
QRF + n3

f (9nf + 1)DLRQLQR
2F + n3

f (3nf + 1)DLLQR
3F

+ 18n4
f DLLL†LQLQ†RF + 18n4

f DLRL†RQLQ†RF + 18n4
f DQL

2Q†LQ†RF + n3
f (9nf + 1)DL†LQ†L

2
Q†RF

+4n2
f BDQRQ†RF+4n2

f D3QRQ†RF+4n2
f DGQRQ†RF+18n4

f DL†LLRQRQ†RF+18n4
f DLLL†RQRQ†RF

+ 18n4
f DQ†LQR

2Q†RF + n3
f (9nf + 1)DL†RQ†LQ†R

2F + 18n4
f DQLQRQ†R

2F + n3
f (3nf + 1)DL†LQ†R

3F

+ 8n2
f BLLL†LuF + 16n2

f D2LLL†LuF + 8n2
f BLRL†RuF + 16n2

f D2LRL†RuF + 14n4
f LLL†L

2
LRuF

+ 14n4
f LL

2L†LL†RuF + 14n4
f L†LLR

2L†RuF + 14n4
f LLLRL†R

2
uF + 2

3n2
f (7n2

f − 1)LRQL
3uF

+ 8n2
f BQLQ†LuF + 16n2

f D2QLQ†LuF + 8n2
f GQLQ†LuF + 28n4

f L†LLRQLQ†LuF + 28n4
f LLL†RQLQ†LuF

+ 2
3n2

f (7n2
f − 1)L†RQ†L

3
uF + 14n4

f LLQL
2QRuF + 28n4

f LLL†LQ†LQRuF + 28n4
f LRL†RQ†LQRuF

+ 28n4
f QLQ†L

2
QRuF + 14n4

f LRQLQR
2uF + 2

3n2
f (7n2

f − 1)LLQR
3uF + 28n4

f LLL†LQLQ†RuF

+28n4
f LRL†RQLQ†RuF+28n4

f QL
2Q†LQ†RuF+14n4

f L†LQ†L
2
Q†RuF+8n2

f BQRQ†RuF+16n2
f D2QRQ†RuF

+ 8n2
f GQRQ†RuF + 28n4

f L†LLRQRQ†RuF + 28n4
f LLL†RQRQ†RuF + 28n4

f Q†LQR
2Q†RuF

+ 14n4
f L†RQ†LQ†R

2
uF + 28n4

f QLQRQ†R
2
uF + 2

3n2
f (7n2

f − 1)L†LQ†R
3
uF + 30n2

f DLLL†Lu2F

+ 30n2
f DLRL†Ru2F + 30n2

f DQLQ†Lu2F + 30n2
f DQRQ†Ru2F + 18n2

f LLL†Lu3F + 18n2
f LRL†Ru3F

+ 18n2
f QLQ†Lu3F + 18n2

f QRQ†Ru3F + 8n2
f DLLL†LWF + 8n2

f DLRL†RWF + 8n2
f DQLQ†LWF

+ 8n2
f DQRQ†RWF + 20n2

f LLL†LuWF + 20n2
f LRL†RuWF + 20n2

f QLQ†LuWF + 20n2
f QRQ†RuWF
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dχ = 6. The Hilbert series at this order is so long that it is divided into 3 parts hs1,2,3.

hs1 = 3B2D2F + 2D6F + 3D2G2F + 2G3F + n2
f (3n2

f − 1)BLL
2L†L

2F

+ 1
2n2

f (27n2
f − 2nf + 5)D2LL

2L†L
2F + 4n2

f B2L†LLRF + 10n2
f BD2L†LLRF

+ 10n2
f D4L†LLRF + 4n2

f G2L†LLRF + 1
2n2

f (9n2
f − 2nf − 1)BL†L

2
LR

2F

+ 2(9n4
f + n2

f )D2L†L
2
LR

2F + 1
9n2

f (25n4
f − 12n3

f + 7n2
f − 6nf + 4)L†L

3
LR

3F + 4n2
f B2LLL†RF

+ 10n2
f BD2LLL†RF + 10n2

f D4LLL†RF + 4n2
f G2LLL†RF + 1

2n2
f (9n2

f − 2nf − 1)BLL
2L†R

2F

+ 2(9n4
f + n2

f )D2LL
2L†R

2F + n2
f (3n2

f − 1)BLR
2L†R

2F + 1
2n2

f (27n2
f − 2nf + 5)D2LR

2L†R
2F

+ 1
9n2

f (25n4
f − 12n3

f + 7n2
f − 6nf + 4)LL

3L†R
3F + 1

3n3
f (10n3

f + 4n2
f − nf − 1)LL

2L†L
3
LRF

+ 1
3n3

f (10n3
f + 4n2

f − nf − 1)LL
3L†L

2
L†RF + 1

3n3
f (10n3

f + 4n2
f − nf − 1)L†LLR

3L†R
2F

+ 1
3n3

f (10n3
f + 4n2

f − nf − 1)LLLR
2L†R

3F + 12n4
f BLLL†LLRL†RF + 54n4

f D2LLL†LLRL†RF

+ 2(5n6
f + n4

f )LLL†L
2
LR

2L†RF + 2(5n6
f + n4

f )LL
2L†LLRL†R

2F + n3
f (3nf + 1)BLLQL

3F

+ 1
3n3

f (25n3
f + 4n2

f − 4nf − 1)LL
2L†RQL

3F + 1
3n3

f (10n3
f + 4n2

f − nf − 1)LR
2L†RQL

3F

+ 12n4
f D2LLQL

3F + 6n4
f GLLQL

3F + 2
3n4

f (10n2
f − 1)LLL†LLRQL

3F + 12n4
f BLLL†LQLQ†LF

+ 54n4
f D2LLL†LQLQ†LF + 12n4

f GLLL†LQLQ†LF + 12n4
f BLRL†RQLQ†LF + 54n4

f D2LRL†RQLQ†LF

+ 12n4
f GLRL†RQLQ†LF + 20n6

f LLL†L
2
LRQLQ†LF + 20n6

f LL
2L†LL†RQLQ†LF

+ 20n6
f L†LLR

2L†RQLQ†LF + 20n6
f LLLRL†R

2
QLQ†LF + n4

f (5n2
f − 1)LRQL

4Q†LF + 6n4
f

− 2n2
f BQL

2Q†L
2F + n2

f (27n2
f + 5)D2QL

2Q†L
2F + 12n4

f GQL
2Q†L

2F + 20n6
f L†LLRQL

2Q†L
2F

+ 20n6
f LLL†RQL

2Q†L
2F + n3

f (3nf + 1)BL†LQ†L
3F + 1

3n3
f (25n3

f + 4n2
f − 4nf − 1)L†L

2
LRQ†L

3F

+ 1
3n3

f (10n3
f + 4n2

f − nf − 1)LRL†R
2
Q†L

3F + 12n4
f D2L†LQ†L

3F + 6n4
f GL†LQ†L

3F

+ 2
3n4

f (10n2
f − 1)LLL†LL†RQ†L

3F + n4
f (5n2

f − 1)L†RQLQ†L
4F + n3

f (27nf + 1)D2LRQL
2QRF

+ 2n4
f (5n2

f − 1)LL
2L†LQL

2QRF + 6n4
f BLRQL

2QRF + 12n4
f GLRQL

2QRF

+ 2n5
f (5nf − 2)L†LLR

2QL
2QRF + 20n6

f LLLRL†RQL
2QRF + 4n2

f B2Q†LQRF + 10n2
f BD2Q†LQRF

+ 10n2
f D4Q†LQRF + 6n2

f BGQ†LQRF + 10n2
f D2GQ†LQRF + 10n2

f G2Q†LQRF + 18n4
f BL†LLRQ†LQRF

+ 72n4
f D2L†LLRQ†LQRF + 18n4

f GL†LLRQ†LQRF + n4
f (25n2

f − 4nf + 1)L†L
2
LR

2Q†LQRF

+12n4
f BLLL†RQ†LQRF+54n4

f D2LLL†RQ†LQRF+12n4
f GLLL†RQ†LQRF+2(5n6

f +n4
f )LL

2L†R
2
Q†LQRF

+ 2n5
f (5nf + 2)LL

2L†L
2
Q†LQRF + 2n5

f (5nf + 2)LR
2L†R

2
Q†LQRF + 40n6

f LLL†LLRL†RQ†LQRF

+ 20n6
f LLQL

3Q†LQRF + 40n6
f LLL†LQLQ†L

2
QRF + 40n6

f LRL†RQLQ†L
2
QRF + 20n6

f QL
2Q†L

3
QRF

+ 1
2n4

f (25n2
f + 4nf − 1)L†LQ†L

4
QRF + n3

f (27nf + 1)D2LLQLQR
2F + 6n4

f BLLQLQR
2F

+ 12n4
f GLLQLQR

2F + 2n4
f (5n2

f − 1)LR
2L†RQLQR

2F + 2n5
f (5nf − 2)LL

2L†RQLQR
2F

+ 20n6
f LLL†LLRQLQR

2F + 2n5
f (15nf − 2)LRQL

2Q†LQR
2F + n2

f (9n2
f − 1)BQ†L

2
QR

2F

+ 4(9n4
f + n2

f )D2Q†L
2
QR

2F + 18n4
f GQ†L

2
QR

2F + 2(25n6
f + n4

f )L†LLRQ†L
2
QR

2F

+ 4(5n6
f + n4

f )LLL†RQ†L
2
QR

2F + 1
3n3

f (10n3
f + 4n2

f − nf − 1)LL
2L†LQR

3F + n3
f (3nf + 1)BLRQR

3F
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hs2 = 1
3n3

f (25n3
f + 4n2

f − 4nf − 1)L†LLR
2QR

3F + 12n4
f D2LRQR

3F + 6n4
f GLRQR

3F

+ 2
3n4

f (10n2
f − 1)LLLRL†RQR

3F + 20n6
f LLQLQ†LQR

3F + 2
3n2

f (25n4
f + 3n2

f + 2)Q†L
3
QR

3F

+ 1
2n4

f (25n2
f + 4nf − 1)LRQ†LQR

4F + 4n2
f B2QLQ†RF + 10n2

f BD2QLQ†RF

+ 10n2
f D4QLQ†RF + 6n2

f BGQLQ†RF + 10n2
f D2GQLQ†RF + 10n2

f G2QLQ†RF

+ 12n4
f BL†LLRQLQ†RF + 54n4

f D2L†LLRQLQ†RF + 12n4
f GL†LLRQLQ†RFF

+ 2(5n6
f + n4

f )L†L
2
LR

2QLQ†RF + 18n4
f BLLL†RQLQ†RF + 72n4

f D2LLL†RQLQ†RF

+ 18n4
f GLLL†RQLQ†RF + n4

f (25n2
f − 4nf + 1)LL

2L†R
2
QLQ†RF + 2n5

f (5nf + 2)LL
2L†L

2
QLQ†RF

+ 2n5
f (5nf + 2)LR

2L†R
2
QLQ†RF + 40n6

f LLL†LLRL†RQLQ†RF + 1
2n4

f (25n2
f + 4nf − 1)LLQL

4Q†RF

+ 40n6
f LLL†LQL

2Q†LQ†RF + 40n6
f LRL†RQL

2Q†LQ†RF + n3
f (27nf + 1)D2L†RQ†L

2
Q†RF

+ 2n4
f (5n2

f − 1)LLL†L
2
Q†L

2
Q†RF + 6n4

f BL†RQ†L
2
Q†RF + 12n4

f GL†RQ†L
2
Q†RF

+ 2n5
f (5nf − 2)LLL†R

2
Q†L

2
Q†RF + 20n6

f L†LLRL†RQ†L
2
Q†RF + 20n6

f QL
3Q†L

2
Q†R + 20n6

f L†LQLQ†L
3
Q†RF

+ 12n4
f BLLL†LQRQ†RF + 54n4

f D2LLL†LQRQ†RF + 12n4
f GLLL†LQRQ†RF + 12n4

f BLRL†RQRQ†RF

+ 54n4
f D2LRL†RQRQ†RF + 12n4

f GLRL†RQRQ†RF + 20n6
f LLL†L

2
LRQRQ†RF + 20n6

f LL
2L†LL†RQRQ†RF

+ 20n6
f L†LLR

2L†RQRQ†RF + 20n6
f LLLRL†R

2
QRQ†RF + 20n6

f LRQL
3QRQ†RF + 24n4

f BQLQ†LQRQ†RF

+ 108n4
f D2QLQ†LQRQ†RF + 48n4

f GQLQ†LQRQ†RF + 80n6
f L†LLRQLQ†LQRQ†RF

+ 80n6
f LLL†RQLQ†LQRQ†RF + 20n6

f L†RQ†L
3
QRQ†RF + 2n5

f (15nf − 2)LLQL
2QR

2Q†RF

+ 40n6
f LLL†LQ†LQR

2Q†RF + 40n6
f LRL†RQ†LQR

2Q†RF + 4(15n6
f + n4

f )QLQ†L
2
QR

2Q†RF

+ 20n6
f LRQLQR

3Q†RF + n4
f (5n2

f − 1)LLQR
4Q†RF + n2

f (9n2
f − 1)BQL

2Q†R
2F

+ 4(9n4
f + n2

f )D2QL
2Q†R

2F + 18n4
f GQL

2Q†R
2F + 4(5n6

f + n4
f )L†LLRQL

2Q†R
2F

+ 2(25n6
f + n4

f )LLL†RQL
2Q†R

2F + n3
f (27nf + 1)D2L†LQ†LQ†R

2F + 6n4
f BL†LQ†LQ†R

2F

+ 12n4
f GL†LQ†LQ†R

2F + 2n4
f (5n2

f − 1)LRL†R
2
Q†LQ†R

2F + 2n5
f (5nf − 2)L†L

2
LRQ†LQ†R

2F

+ 20n6
f LLL†LL†RQ†LQ†R

2F + 2n5
f (15nf − 2)L†RQLQ†L

2
Q†R

2F + 40n6
f LLL†LQLQRQ†R

2F

+ 40n6
f LRL†RQLQRQ†R

2F + 4(15n6
f + n4

f )QL
2Q†LQRQ†R

2F + 2n5
f (15nf − 2)L†LQ†L

2
QRQ†R

2F

+ 6n4
f − 2n2

f BQR
2Q†R

2F + n2
f (27n2

f + 5)D2QR
2Q†R

2F + 12n4
f GQR

2Q†R
2F + 20n6

f L†LLRQR
2Q†R

2F

+ 20n6
f LLL†RQR

2Q†R
2F + 20n6

f Q†LQR
3Q†R

2F + 1
3n3

f (10n3
f + 4n2

f − nf − 1)LLL†L
2
Q†R

3F

+ n3
f (3nf + 1)BL†RQ†R

3F + 1
3n3

f (25n3
f + 4n2

f − 4nf − 1)LLL†R
2
Q†R

3F

+ 12n4
f D2L†RQ†R

3F + 6n4
f GL†RQ†R

3F + 2
3n4

f (10n2
f − 1)L†LLRL†RQ†R

3F

+ 2
3n2

f (25n4
f + 3n2

f + 2)QL
3Q†R

3F + 20n6
f L†LQLQ†LQ†R

3F + 20n6
f L†RQ†LQRQ†R

3F

+ 20n6
f QLQR

2Q†R
3F + 1

2n4
f (25n2

f + 4nf − 1)L†RQLQ†R
4F + n4

f (5n2
f − 1)L†LQRQ†R

4F

+ 3B2DuF + 4BD3uF + 3D5uF + 3DG2uF + 1
2n2

f (63n2
f − 6nf + 1)DLL

2L†L
2
uF

+ 32n2
f BDL†LLRuF + 44n2

f D3L†LLRuF + 32n2
f BDLLL†RuF + 44n2

f D3LLL†RuF

+ 1
2n2

f (63n2
f − 6nf + 1)DLR

2L†R
2
uF + 6n3

f (7nf − 1)DL†L
2
LR

2uF + 6n3
f (7nf − 1)DLL

2L†R
2
uF

+ 126n4
f DLLL†LLRL†RuF + 2n3

f (14nf + 3)DLLQL
3uF + 126n4

f DLLL†LQLQ†LuF

+ 126n4
f DLRL†RQLQ†LuF + 63n4

f + n2
f DQL

2Q†L
2
uF + 2n3

f (14nf + 3)DL†LQ†L
3
uF
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hs3 = 3n3
f (21nf + 1)DLRQL

2QRuF + 32n2
f BDQ†LQRuF + 44n2

f D3Q†LQRuF + 32n2
f DGQ†LQRuF

+ 168n4
f DL†LLRQ†LQRuF + 126n4

f DLLL†RQ†LQRuF + 3n3
f (21nf + 1)DLLQLQR

2uF

+ 84n4
f DQ†L

2
QR

2uF + 2n3
f (14nf + 3)DLRQR

3uF + 32n2
f BDQLQ†RuF + 44n2

f D3QLQ†RuF

+ 32n2
f DGQLQ†RuF + 126n4

f DL†LLRQLQ†RuF + 168n4
f DLLL†RQLQ†RuF

+ 3n3
f (21nf + 1)DL†RQ†L

2
Q†RuF + 126n4

f DLLL†LQRQ†RuF + 126n4
f DLRL†RQRQ†RuF

+ 252n4
f DQLQ†LQRQ†RuF + 84n4

f DQL
2Q†R

2
uF + 3n3

f (21nf + 1)DL†LQ†LQ†R
2
uF + 63n4

f

+ n2
f DQR

2Q†R
2
uF + 2n3

f (14nf + 3)DL†RQ†R
3
uF + 6B2u2F + 14BD2u2F + 14D4u2F + 6G2u2F

+2(9n4
f +n2

f )LL
2L†L

2
u2F+24n2

f BL†LLRu2F+98n2
f D2L†LLRu2F+ 1

2n2
f (43n2

f −6nf +5)L†L
2
LR

2u2F

+24n2
f BLLL†Ru2F+98n2

f D2LLL†Ru2F+ 1
2n2

f (43n2
f−6nf +5)LL

2L†R
2
u2F+2(9n4

f +n2
f )LR

2L†R
2
u2F

+ 72n4
f LLL†LLRL†Ru2F + 1

3n2
f (43n2

f + 9nf − 4)LLQL
3u2F + 72n4

f LLL†LQLQ†Lu2F

+ 72n4
f LRL†RQLQ†Lu2F + 4(9n4

f + n2
f )QL

2Q†L
2
u2F + 1

3n2
f (43n2

f + 9nf − 4)L†LQ†L
3
u2F

+ 36n4
f LRQL

2QRu2F + 24n2
f BQ†LQRu2F + 98n2

f D2Q†LQRu2F + 24n2
f GQ†LQRu2F

+ 86n4
f L†LLRQ†LQRu2F + 72n4

f LLL†RQ†LQRu2F + 36n4
f LLQLQR

2u2F + n2
f (43n2

f + 5)Q†L
2
QR

2u2F

+ 1
3n2

f (43n2
f + 9nf − 4)LRQR

3u2F + 24n2
f BQLQ†Ru2F + 98n2

f D2QLQ†Ru2F + 24n2
f GQLQ†Ru2F

+ 72n4
f L†LLRQLQ†Ru2F + 86n4

f LLL†RQLQ†Ru2F + 36n4
f L†RQ†L

2
Q†Ru2F + 72n4

f LLL†LQRQ†Ru2F

+ 72n4
f LRL†RQRQ†Ru2F + 144n4

f QLQ†LQRQ†Ru2F + n2
f (43n2

f + 5)QL
2Q†R

2
u2F + 36n4

f L†LQ†LQ†R
2
u2F

+ 4(9n4
f + n2

f )QR
2Q†R

2
u2F + 1

3n2
f (43n2

f + 9nf − 4)L†RQ†R
3
u2F + 18BDu3F + 25D3u3F

+ 94n2
f DL†LLRu3F + 94n2

f DLLL†Ru3F + 94n2
f DQ†LQRu3F + 94n2

f DQLQ†Ru3F + 8Bu4F

+ 37D2u4F + 32n2
f L†LLRu4F + 32n2

f LLL†Ru4F + 32n2
f Q†LQRu4F + 32n2

f QLQ†Ru4F

+ 23Du5F + 10u6F + 4BD2WF + n2
f (7n2

f − 1)LL
2L†L

2
WF + 12n2

f BL†LLRWF

+ 20n2
f D2L†LLRWF + 1

2n2
f (21n2

f − 6nf − 1)L†L
2
LR

2WF + 12n2
f BLLL†RWF + 20n2

f D2LLL†RWF

+ 1
2n2

f (21n2
f − 6nf − 1)LL

2L†R
2
WF + n2

f (7n2
f − 1)LR

2L†R
2
WF + 28n4

f LLL†LLRL†RWF

+n3
f (7nf +3)LLQL

3WF+28n4
f LLL†LQLQ†LWF+28n4

f LRL†RQLQ†LWF+2n2
f (7n2

f−1)QL
2Q†L

2
WF

+ n3
f (7nf + 3)L†LQ†L

3
WF + 14n4

f LRQL
2QRWF + 12n2

f BQ†LQRWF + 20n2
f D2Q†LQRWF

+ 12n2
f GQ†LQRWF + 42n4

f L†LLRQ†LQRWF + 28n4
f LLL†RQ†LQRWF + 14n4

f LLQLQR
2WF

+ n2
f (21n2

f − 1)Q†L
2
QR

2WF + n3
f (7nf + 3)LRQR

3WF + 12n2
f BQLQ†RWF + 20n2

f D2QLQ†RWF

+ 12n2
f GQLQ†RWF + 28n4

f L†LLRQLQ†RWF + 42n4
f LLL†RQLQ†RWF + 14n4

f L†RQ†L
2
Q†RWF

+28n4
f LLL†LQRQ†RWF+28n4

f LRL†RQRQ†RWF+56n4
f QLQ†LQRQ†RWF+n2

f (21n2
f−1)QL

2Q†R
2
WF

+ 14n4
f L†LQ†LQ†R

2
WF + 2n2

f (7n2
f − 1)QR

2Q†R
2
WF + n3

f (7nf + 3)L†RQ†R
3
WF + 18BDuWF

+ 12D3uWF + 80n2
f DL†LLRuWF + 80n2

f DLLL†RuWF + 80n2
f DQ†LQRuWF + 80n2

f DQLQ†RuWF

+ 22Bu2WF + 34D2u2WF + 62n2
f L†LLRu2WF + 62n2

f LLL†Ru2WF + 62n2
f Q†LQRu2WF

+ 62n2
f QLQ†Ru2WF + 50Du3WF + 24u4WF + 2BW 2F + 7D2W 2F + 16n2

f L†LLRW 2F

+ 16n2
f LLL†RW 2F + 16n2

f Q†LQRW 2F + 16n2
f QLQ†RW 2F + 21DuW 2F + 34u2W 2F + 2W 3F
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B Hilbert series result without right-handed neutrino

For the purpose of cross-checking with the result without the right-handed neutrino dis-
cussed in the section 4, we present the Hilbert series result for the NNLO HEFT operators
with flavor number nf , assuming the right-handed neutrino does not exist. The convention
is consistent with that in appendix A.

dχ = 5.

hs = 4n2
f BDLLL†LF + 4n2

f D3LLL†LF + 2n2
f BDLRL†RF + 2n2

f D3LRL†RF + n3
f (9nf − 1)DLL

2L†LL†RF

+ n3
f (3nf − 1)DLLLRL†R

2F + 4n2
f BDQLQ†LF + 4n2

f D3QLQ†LF + 4n2
f DGQLQ†LF

+ 18n4
f DLLL†RQLQ†LF + n3

f (3nf + 1)DL†RQ†L
3F + n3

f (9nf + 1)DLLQL
2QRF + 18n4

f DLLL†LQ†LQRF

+ 6n4
f DLRL†RQ†LQRF + 18n4

f DQLQ†L
2
QRF + n3

f (3nf + 1)DLLQR
3F + 18n4

f DLLL†LQLQ†RF

+ 6n4
f DLRL†RQLQ†RF + 18n4

f DQL
2Q†LQ†RF + n3

f (9nf + 1)DL†LQ†L
2
Q†RF + 4n2

f BDQRQ†RF

+ 4n2
f D3QRQ†RF + 4n2

f DGQRQ†RF + 18n4
f DLLL†RQRQ†RF + 18n4

f DQ†LQR
2Q†RF

+ n3
f (9nf + 1)DL†RQ†LQ†R

2F + 18n4
f DQLQRQ†R

2F + n3
f (3nf + 1)DL†LQ†R

3F + 8n2
f BLLL†LuF

+ 16n2
f D2LLL†LuF + 2n2

f BLRL†RuF + 4n2
f D2LRL†RuF + 14n4

f LL
2L†LL†RuF + 4n4

f LLLRL†R
2
uF

+ 8n2
f BQLQ†LuF + 16n2

f D2QLQ†LuF + 8n2
f GQLQ†LuF + 28n4

f LLL†RQLQ†LuF

+ 2
3n2

f (7n2
f − 1)L†RQ†L

3
uF + 14n4

f LLQL
2QRuF + 28n4

f LLL†LQ†LQRuF + 8n4
f LRL†RQ†LQRuF

+ 28n4
f QLQ†L

2
QRuF + 2
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dχ = 6. The Hilbert series at this order is so long that it is divided into 3 parts hs1,2,3.
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hs2 = 6n4
f BL†RQ†L
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