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1 Introduction

Compactifications are ubiquitous in string theory and its low-energy limit, 10-/11-dimensional
supergravity. One of the hallmarks of the compactification is the appearance of infinitely
many massive fields in the lower-dimensional theory. From the lower-dimensional perspec-
tive, these Kaluza-Klein (KK) towers encode the information about the geometry and fluxes
of the compactification. The Kaluza-Klein modes also play an important role in applications.
For example, for non-supersymmetric backgrounds, the Kaluza-Klein masses determine
their perturbative stability. Moreover, in AdS vacua, the Kaluza-Klein masses encode the
anomalous conformal dimensions of single-trace operators in the holographically dual CFTs.

Despite their importance, computing the Kaluza-Klein masses is a formidable challenge
for most string/supergravity compactifications.Until recently, the full tower of Kaluza-Klein
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masses could only be computed for coset spaces [1]. Beyond this, there were some techniques
to access subsets of the Kaluza-Klein towers. For example, if the compactification admits
a consistent truncation to a lower-dimensional supergravity theory, then the Kaluza-Klein
masses of the (finitely many) fields kept in the truncation can be computed in the lower
dimensional theory. However, for generic compactifications, only the spin-2 tower could
be accessed [2].

A new method for computing all the Kaluza-Klein masses for a large class of string
compactification was presented in [3, 4]. This method uses the formalism of Exceptional
Field Theory (ExFT), a reformulation of 10-/11-dimensional supergravity that unifies the
gravitational and flux degrees of freedom, and as a result makes manifest an exceptional
symmetry group [5]. Using ExFT, [3, 4] showed how to compute the full Kaluza-Klein
spectrum of any vacuum that can be uplifted from a consistent truncation to N = 8 gauged
supergravity. Unlike the traditional Kaluza-Klein technology, which requires solution of the
eigenvalue spectrum of various internal Laplace operators acting on tensorial harmonics,
together with a diagonalisation of the coupled system of higher-dimensional fluctuations,
the ExFT method is exclusively based on the tower of scalar harmonics on the internal
manifold. The relevant internal vector and tensor harmonics are implicitly taken care of by
combining the scalar harmonics with the twist matrix encoding the underlying consistent
truncation. Furthermore, to a large extent, the diagonalisation problem has already been
resolved by the covariant formulation of ExFT. As a result, the D = 4 mass spectrum can
be computed separately KK level by KK level.

These techniques, for the first time, have given access fo the full Kaluza-Klein spectrum
for warped compactifications with few or no remaining (super-)symmetries [3, 4, 6–15] and
led to many interesting insights. For supersymmetric AdS vacua, the protected part of the
Kaluza-Klein spectrum can be matched with the superconformal index of the CFT, as was
done for the Pilch-Warner AdS5 vacuum in [10] and for the SU(3)×U(1)-invariant AdS4
vacuum in N = 8 SUGRA in [4, 16]. Moreover, the Kaluza-Klein spectrum can be used to
determine compactness of the conformal manifold, which may not be visible in the consistent
truncation [14, 15], see also [17]. For non-supersymmetric vacua that are perturbatively
stable within the consistent truncation, [6] showed that instabilities can be nonetheless
triggered from higher Kaluza-Klein modes. Finally, the Kaluza-Klein spectroscopy can also
be used to prove the existence of perturbatively stable non-supersymmetric AdS vacua in
10-dimensional supergravity [8, 14].

Despite these successes, one drawback of the method of [3, 4] is that it only applies to
vacua that can be uplifted from N = 8 supergravity via a consistent truncation. This means
that these vacua arise by deforming round spheres/hyperboloids by the scalar fields that
live in the lower-dimensional N = 8 supermultiplet. Yet there are many interesting vacua
that arise from deformations by scalar fields that are not part of the N = 8 truncation,
such as the AdS4× squashed S7 vacua with N = 1 and N = 0 supersymmetry [18, 19], or
AdS vacua obtained by TsT deformations [20–22].

In this paper, we show that the methods of [3, 4] can in fact be extended to compute
the full Kaluza-Klein spectrum for vacua that are generic supergravity deformations of
backgrounds of N = 8 supergravity, i.e. where the deformation does not necessarily take
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place within the N = 8 consistent truncation.1 The method applies to deformations that are
triggered by the 10- or 11-dimensional supergravity fields, as opposed to stringy deformations
(in the AdS/CFT context, we are thus considering single-trace deformations). The technical
reason underlying the success of our method is that such vacua are generalised parallelisable
in ExFT, i.e. they admit a globally well-defined generalised frame [23]. This allows us to
compute the entire Kaluza-Klein spectrum by only knowing the scalar harmonics of the
background, drastically simplifying the computations. However, unlike vacua that form part
of the N = 8 truncation, the vacua we are considering here are no longer generalised Leibniz
parallelisable, i.e. their generalised frames no longer form an algebra. This is captured by a
non-constant intrinsic torsion tensor and causes level mixing, or “space-invaders” [24], in
the Kaluza-Klein spectrum, compared to the undeformed N = 8 background. In fact, our
method can be applied to any generalised parallelisable background, even those which are
not linked by a deformation to a generalised Leibniz parallelisable one.

As an example, and a demonstration of the power of this method, we compute the full
Kaluza-Klein spectrum for the squashed S7 AdS4 vacua of 11-dimensional supergravity. The
squashed S7 is a Freund-Rubin compactification that preserves USp(4)× SU(2) ⊂ SO(8)
isometries of the round S7 and N = 1 [18] (or N = 0 in the case of the right-squashed
S7 [19]) supersymmetry. While it is a coset space, it is not a symmetric space, which
has in fact obstructed the determination of the complete Kaluza-Klein spectrum on this
background, although major parts of it have been put together over the years [24–29]. Our
method finally allows to compute the full spectrum around the squashed S7. For the N = 1
squashing, states consistently organise into N = 1 supermultiplets and we find that the
conformal dimensions of the superconformal primaries are given by the intriguing universal
formula

∆ = 1 + 5
3s+ 1

3

√
(3J + 2s2)2 + 5 C3 . (1.1)

Here, J is the spin of the primary and C3 denotes a linear combination of the USp(4) and
SU(2) Casimirs. Finally, s ∈ 1

2Z is an additional R+ charge that may be introduced to
organise the spectrum. Interestingly, for all but a few small representations, we find that
the range of s amounts to the Lz eigenvalues of fixed SL(2) representations, suggesting to
elevate this R+ to a full SL(2) group.

The outline of our paper is as follows. We begin in section 2 with a brief review of the
relevant parts of the E7(7) ExFT. In section 3, we show how to extend the methods of [3, 4]
and compute the Kaluza-Klein spectrum for vacua that do not form part of a consistent
truncation. In section 4, we review the squashed S7 and apply the new technology to
compute its full Kaluza-Klein spectrum. Finally, we conclude with a discussion of our
findings and an outlook in section 5. We round off our paper with appendix A, where we
give the mass matrices for five-dimensional compactifications, and appendices B, C, which
present further details of the squashed S7 spectra.

1Strictly speaking, the undeformed background of N = 8 supergravity does not necessarily have to be a
solution to the equations of motion.
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2 Review of E7(7) ExFT

In this section, we briefly review the relevant features of E7(7) ExFT here and refer
to [30] for details. E7(7) ExFT is a reformulation of 10-/11-dimensional supergravity that
makes an E7(7)-dimensional symmetry manifest by combining the metric and fluxes into
larger generalised tensors, which form representations of E7(7). This formulation of higher-
dimensional maximal supergravities is tailored to the description of compactifications to
four dimensions. The bosonic field content of the theory consists of{
gµν ,MMN , AµM , Bµν α, Bµν M

}
, µ, ν = 0, . . . , 3 , M = 1, . . . , 56 , α = 1, . . . , 133 ,

(2.1)
where gµν is the four-dimensional metric and the generalised metricMMN parameterises
the coset space E7(7)/SU(8). The indices M,N, . . . and α, β, . . . label fundamental and
adjoint indices of E7(7), respectively. All fields (2.1) depend on 4 external coordinates xµ
and internal coordinates ym, chosen such that the embedding of the gradient operators
∂m ↪→ ∂M satisfies the covariant section condition

ΩMK (tα)KN ∂MΦ1 ∂NΦ2 = 0 = ΩMN∂MΦ1 ∂NΦ2 , (2.2)

where Φ1 and Φ2 refer to any two fields of the theory or their products. There are
two inequivalent maximal ways to solve (2.2), with either all fields only depending on 7
internal coordinates or 6 internal coordinates, corresponding to 11-dimensional and type
IIB supergravity, respectively.

The gauge structure of E7(7) ExFT is encoded in the generalised Lie derivative, which
for a generalised vector field of weight λ, is defined as [31, 32]

LΛV
M = ΛN∂NVM − 12 ∂KΛL PKLMN V

N + λVM∂NΛN , (2.3)

in terms of the projector onto the adjoint representation of E7(7)

PKML
N = (tα)KM (tα)LN = 1

24 δ
K
Mδ

L
N + 1

12 δ
L
Mδ

K
N + (tα)MN (tα)KL − 1

24 ΩMNΩKL , (2.4)

where (tα)MN and ΩMN denote the 133 generators and the symplectic invariant of E7(7),
respectively. Throughout, we will raise and lower the fundamental E7(7) indices M,N, . . .

using the symplectic invariant ΩMN in a northwest-southeast convention, i.e. VM = ΩMNVN
and VM = V NΩNM . In particular,

ΩMKΩNK = δNM . (2.5)

As can be seen from the field content (2.1), apart from two-forms Bµν α in the adjoint
representation, E7(7) ExFT also contains two-forms Bµν M in the fundamental 56. These
Bµν M are covariantly constrained, i.e. they are subject to constraints analogous to (2.2)

0 = ΩMK (tα)KN Bµν M ∂NΦ = ΩMK (tα)KN Bµν MBρσ N . (2.6)
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The dynamics of E7(7) ExFT is described by a pseudo-action, given by

LExFT =
√
|g|
(
R̂+ 1

48 g
µνDµMMN DνMMN

− 1
8MMNFµνMFµνN +

√
|g|−1Ltop − V (g,M)

)
. (2.7)

Here, the covariant derivative involves the gauge fields AµM , i.e.

DµMMN = (∂µ − LAµ)MMN , (2.8)

with non-abelian field strengths FµνM given by

FµνM ≡ 2 ∂[µAν]
M − 2A[µ

K∂KAν]
M − 1

2
(
24 (tα)MK(tα)NL − ΩMKΩNL

)
A[µ

N ∂KAν]
L

− 12 (tα)MN∂NBµν α −
1
2 ΩMNBµν N .

(2.9)

The remaining terms in (2.7) are as follows. The Einstein-Hilbert term involves a modified
Ricci scalar R̂ of the external metric gµν , with all partial derivatives replaced by covariant
derivatives (2.8), i.e.

∂µgνρ → ∂µgνρ −AµM∂Mgνρ − gνρ ∂MAµM . (2.10)

The topological term can be most conveniently defined via its formal exterior derivative

dLtop ∝ εµνρστ FµνM DρFστ M , (2.11)

where εµνρστ is the five-dimensional alternating symbol. Finally, the potential term in (2.7)
is given by

V (g,M) = − 1
48M

MN∂MMKL ∂NMKL + 1
2M

MN∂MMKL∂LMNK

− 1
2 g
−1∂Mg ∂NMMN − 1

4M
MNg−1∂Mg g

−1∂Ng −
1
4M

MN∂Mg
µν∂Ngµν .

(2.12)

The pseudo-action (2.7) is supplemented by the twisted self-duality equation

FµνM = −1
2

√
|g| εµνρσ ΩMNMNK FρσK , (2.13)

which ensures that only 28 of the 56 vector fields correspond to independent propagating
degrees of freedom.

3 Kaluza-Klein spectrometry beyond consistent truncations

3.1 Fluctuation Ansatz

While [3, 4] showed how to obtain the full Kaluza-Klein spectrum around any vacuum
of maximal gauged supergravity that arises from a consistent truncation, here we will go
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further and treat more general deformations of vacua of N = 8 supergravity that take
us outside the consistent truncation. Any background within the consistent truncation
to N = 8 gauged supergravity is generalised Leibniz parallelisable, which consists of the
following two conditions:

• Generalised parallelisable. The generalised tangent bundle is trivial, i.e. there is a
globally well-defined generalised frame. Put differently, we can define the globally
well-defined E7(7) objects {

UM
A, ρ

}
, (3.1)

where UMA is an E7(7)-valued matrix, known as the twist matrix, and ρ is a nowhere-
vanishing scalar density of weight −1/2. Crucially, generalised parallelisability is a
topological condition.

• Leibniz. For a generalised parallelisable space to be generalised Leibniz parallelisable
requires UMA and ρ to additionally satisfy the differential condition

LUAUBM = XAB
C UCM , for UAM = ρ−1 (U−1)A

M , (3.2)

where the so-called intrinsic torsion XAB
C must be constant. In this case, there exists

a consistent truncation to maximal D = 4 supergravity, with the reduction ansatz for
the higher-dimensional fields (2.1) encoded by the twist matrix U and scalar density
ρ [23, 33]. The constant intrinsic torsion defines the embedding tensor of the maximal
gauged supergravity arising from the consistent truncation.

Let us now consider a general deformation of a background of N = 8 supergravity,
which is not triggered by the 70 scalar fields of the N = 8 supergravity. Thus, the
deformed background will no longer be part of the consistent truncation. Nonetheless,
because we are considering a continuous deformation and generalised parallelisability is
a topological condition, our deformed background is still generalised parallelisable. That
is, our background admits a globally well-defined twist matrix UMA and scalar density ρ.
However, if we compute the analogue (3.2), we find

LUAUBM = XAB
C(y)UCM , (3.3)

where the intrinsic torsion, XAB
C(y), is no longer constant. Rather, the dependence of the

intrinsic torsion, XAB
C(y), on the internal coordinates is the obstruction to the deformation

being part of the consistent truncation.
Nonetheless, we can still employ the same ideas as in [3, 4] to compute the full KK

spectrum. In the previous case with constant intrinsic torsion, the D = 4 mass matrices
can be given as algebraic expressions in terms of the intrinsic torsion tensor. In the more
general case (3.3) the D = 4 mass operators are most conveniently expressed in terms of
differential operators

∂A = UAM∂M , (3.4)

in the internal space. While the expression of the lower dimensional mass operator in terms
of differential operators on the internal manifold is of course at the heart of any Kaluza-Klein
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analysis, the E7(7) covariant formulation (2.7) together with an appropriate fluctuation
ansatz reduces the analysis to a differential problem involving exclusively the tower of scalar
harmonics. As a result, the computation of the full Kaluza-Klein spectrum can be done in
analogy to the spin-2 sector and leads to universal covariant expressions for all D = 4 mass
operators, which can be straightforwardly diagonalised in the concrete examples.

The non-constant intrinsic torsion (3.3) now generically gives rise to level-mixing, i.e.
mass eigenstates of the deformed background will come from mixing states amongst different
KK levels of the undeformed background. By contrast, when the deformation is caused by
the 70 scalars of the consistent truncation, the deformed KK mass eigenstates will be linear
combinations of states of the same KK level of the undeformed background [3, 4].

Just as in [3, 4], because our vacuum is generalised parallelisable, we can expand any
tensor fluctuations in terms of the generalised frame UMA and ρ. Thus, we can write any
deformation of a generalised parallelisable space as

gµν(x, y) = ρ−2(y) (̊gµν(x) + hµν(x, y)) ,
AµM (x, y) = ρ−1(y) (U−1)AM (y)AµA(x, y) ,
MMN (x, y) = UM

A(y)UNB(y)MAB(x, y) ,
(3.5)

where g̊µν is a given D = 4 background metric and hµν(x, y), AµA(x, y) andMAB(x, y) are
now scalars on the internal space, whose y-dependence we can further expand in a complete
basis of scalar functions, YΣ(y). Moreover, if we are interested in linearised deformations,
we can rewrite (3.5) as

gµν(x, y) = ρ−2(y)
(
g̊µν(x) +

∑
Σ
YΣ hµν

Σ(x)
)
,

AµM (x, y) = ρ−1(y) (U−1)AM (y)
∑
Σ
YΣ(y)AµA,Σ(x) ,

MMN (x, y) = UM
A(y)UNB(y)

(
δAB + δAC PI,BC

∑
Σ
YΣ(y) jI,Σ(x)

)
,

(3.6)

where the PI,AB represent the non-compact generators of e7(7), such that δAC PI,BC =
δBC PI,AC . Finally, we are ignoring the two-forms since these do not contribute to the
linearised equations of motion. In the following, we will omit the explicit summation symbol
over the harmonics Σ.

Since A, B are really SU(8) indices, we have two invariants with which we can contract:
the E7(7) symplectic invariant ΩAB and the SU(8) invariant δAB. In order to keep track
which tensor is involved in an index contraction in SU(8) language, we will use the following
conventions. All E7(7) indices, including the flattened A, B, are raised and lowered using
the E7(7) symplectic invariant ΩAB in the conventions of (2.5). Thus,

V AWA = V AWB ΩBA . (3.7)

On the other hand, we will supress the effect of raising/lowering indices with δAB , i.e. they
will simply be written in the same position. For example, repeated flattened A, B indices
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at the same position are contracted with δAB, i.e.

V A V A = V A V B δAB . (3.8)

In particular, with these conventions, the non-compact generators PI,AB satisfy

PI,AB = PI,BA . (3.9)

The benefit of the Kaluza-Klein Ansatz (3.6) is that the linearised equations of motion
of ExFT obtained from the pseudo-action (2.7), (2.13) drastically simplify. As a result, we
can read off the Kaluza-Klein mass operators, which are determined by the intrinsic torsion
XAB

C(y) from (3.3), and flattened derivative (3.4).
Before we compute the mass operators, let us comment on the applicability of the

technique developed here. Allowing for a Y -dependent X-matrix in (3.3) looks like it may
apply to any background of 10-/11-dimensional supergravity, since any such background can
be described by a generalised vielbein, akin to (3.1). However, for a generic background, the
generalised vielbein will not be globally well-defined, but only up to SU(8) transformations.
This is a problem, since the intrinsic torsion defined in (3.3) is not invariant under such SU(8)
transformations.2 Moreover, the fluctuations in (3.6) would not be globally well-defined
and instead require not just scalar harmonics but also tensor harmonics in various E7(7)
representations. As a result, the setup here does not readily apply for general backgrounds,
but only for those which are generalised parallelisable, i.e. with a globally well-defined twist
matrix. Such generalised parallelisable backgrounds include deformations of backgrounds
that can be uplifted from maximal gauged supergravity, even when the deformation does
not correspond to one of the 70 scalar fields of the N = 8 gauged supergravity. We will
discuss concrete examples below.

3.2 Quadratic constraints

By plugging the fluctuation Ansatz (3.6) into the linearised equations of motion, we will
obtain the mass operators for the full Kaluza-Klein tower. Since the equations of motion are
quadratic and involve the generalised Lie derivative, our fluctuation Ansatz (3.6) implies
that the mass operators will involve X2, ∂X, X∂ and ∂2 terms. This is just like in [3, 4]
(where the action of ∂ on harmonics was explicitly parametrised by a representation matrix
T ), with the important difference that we now also obtain ∂X terms, since the intrinsic
torsion is no longer constant.

However, the quadratic terms in X and ∂X are not all independent. Rather, some of
them are linked by quadratic constraints, generalising the quadratic constraints of gauged
supergravity, governing constant X. Just as in that case, the quadratic constraints are a
consequence of the section condition (2.2) and thus of closure of the algebra of generalised
Lie derivatives, i.e. [

LUA , LUB
]

= LJUA,UBK , (3.10)
2Put differently, the intrinsic torsion (3.3) is defined with respect the generalised identity structure given

by the generalised parallelisation of the well-defined UA
M . For more general backgrounds, we can define an

intrinsic torsion with respect to the G-structure of the background, but this will have a different algebraic
structure than XAB

C .
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where we defined the shorthand

JUA, UBK = LUAUB . (3.11)

Applying (3.10) to ρ−2 give the following relation

∂CXAB
C = ∂[AϑB] +XAB

C ϑC , (3.12)

where
ϑA = ρ2LUAρ−2 = 1

28XAB
B , (3.13)

is the analogue of the trombone tensor of N = 8 gauged supergravity. Most interesting
vacua have ϑA = 0, which will be what we restrict ourselves to in the following. Thus,
XAB

C satisfies the quadratic constraint

∂CXAB
C = 0 . (3.14)

On the other hand, applying (3.10) to UAM gives the quadratic constraint

XAC
E XBE

D−XBC
E XAE

D+XAB
E XEC

D = −2 ∂[AXB]C
D+12PFECD ∂EXAB

F . (3.15)

For constant X, with the r.h.s. vanishing, this reproduces the quadratic constraints of
gauged supergravity [34]. By tracing (3.15), we recover (3.14) as well as the relation

XAC
DXBD

C − 2XCA
DXDB

C = 0 . (3.16)

Finally, the section condition (2.2) also implies a quadratic relation linking the flat
derivatives ∂A and XAB

C . This can be deduced from the closure of the generalised Lie
derivative (3.10) when acting on scalar functions f(y). Then, we have

2 ∂[A∂B] −XAB
C ∂C = 0 . (3.17)

We will use these relations throughout the following sections in deriving the mass operators.

3.3 Mass operators

We are now ready to plug the fluctuation Ansatz (3.6) into the linearised equations of
motions resulting from (2.7) and (2.13) to obtain the mass operators. The computation
closely follows the one presented in [3, 4] with additional contributions arising from internal
derivatives acting on the intrinsic torsion which is no longer constant.

3.3.1 Spin-2

We begin with the linearised equations of motion for the spin-2 fields. The mass terms
come from the final two terms of the potential (2.12), i.e.

Lmass,g = 1
4

√
|g|
(
MMN∂Mg

µν∂Ngµν +MMNg−2∂Mg∂Ng
)
. (3.18)
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Upon computing the resulting linearised equations of motion and inserting the spin-2
fluctuation Ansatz (3.6), we obtain (upon gauge fixing in the external space)

YΣ �xhµν Σ = hµν Σ Mspin−2 YΣ + . . . , (3.19)

with �x the 4-dimensional Laplace operator and the mass operator Mspin−2 given by

Mspin−2 = −∂A∂A , (3.20)

acting on scalar harmonics YΣ. The ellipses . . . in (3.19) refer to couplings to vector and
scalar modes, which accounts for the spin-2 Higgs mechanism and do not affect the spin-2
masses. However, these effects will, of course, need to be taken into account when evaluating
the lower spin masses, by gauge fixing the appropriate unphysical fluctuations. For later
use, we just note that the minimal couplings (2.10) give rise to couplings of the type

ΠA∂(µAν)
A , ΠA = ∂A , (3.21)

on the r.h.s. of (3.19). I.e. the operator ΠA singles out the Goldstone vectors responsible
for the spin-2 Higgs mechanism.

3.3.2 Spin-1

The vector masses arise from the standard Higgs mechanism and thus from the couplings
between vectors and scalar fields in the scalar kinetic of (2.7). Thus, let us consider the
linearised covariant derivatives of the scalar fields

DµMMN = UM
A UN

B
[
PI,AB ∂µjI,Σ YΣ − (Aµ • j)A B − PI,AB ΠI

C

(
AµC

)]
, (3.22)

where we defined

(Aµ • j)A B ≡ PI,CD jI,Σ UA(M UB
N) LAµ

(
UM

C UN
D YΣ

)
,

ΠI
A

(
AµA

)
≡ 2PICB UCM LAµUMB

= −2
(
XA

I − 12PIAB ∂B
)
AµA ,

XA
I ≡ XAB

C PI,BC ,

(3.23)

and AµA = AµAΣ YΣ. Coset indices I, J are raised and lowered with the non-compact part
of the Cartan-Killing form. From (3.22), (3.23), we obtain the operator

ΠI
A = −2

(
XA

I − 12PIAB ∂B
)
, (3.24)

which will be responsible for the vector masses. To express the mass operator, we will also
need the adjoint operator, ΠA

I , of (3.24), defined as∫
dY jI ΠI

A

(
AµA

)
=
∫
dY ΠA

I (jI)AµA , (3.25)

where jI = jI ΣYΣ. Evaluating (3.25) explicitly, we get

ΠA,I = −2
(
XAI + 12PI,AB ∂B

)
. (3.26)
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From the linearised equation of motion following from (2.7), upon usual gauge fixing in
the external space

�xAµA =
(
Mspin−1

)
A
B AµB + . . . , (3.27)

we find the mass operator given by the self-adjoint combination(
Mspin−1

)
A
B = 1

24 ΠA,I ΠI
B . (3.28)

Using (3.24) and (3.26), the mass operator takes the explicit form(
Mspin−1

)
A
B = 1

6XA
I XBI + 2PI,AC ∂CXB

I + 4PI,[ACXB]
I ∂C − 24PI,AC PIBD ∂C ∂D .

(3.29)
The mass operator (3.29) contains not only the physical spin-1 fields, but also the Goldstone
vectors for the massive gravitons, as well as massless magnetic duals to all these. Thus, in
evaluating the mass spectrum from (3.29), care must be taken to remove all these unphysical
modes, e.g. by proper gauge fixing in the internal space.

However, we can further simplify the structure of the mass operator (3.29) by shifting
the masses assigned to these unphysical modes. In particular, consider the magnetic dual
of the mass operator (3.29) given by(

M̂spin−1
)
A
B ≡ ΩAC ΩBD

(
Mspin−1

)
C
D

= 1
6X

B
I X

AI + 2PIAC ∂CXBI + 4PIC[AXB]I ∂C − 24PIAC PI,BD ∂C ∂D ,
(3.30)

which carries the same eigenvalues as (3.29) while satisfying the orthogonality condition(
Mspin−1

)
A
B

(
M̂spin−1

)
B
C = 0 . (3.31)

Using (3.30) and (3.21), we can then deduce the relation(
Mspin−1

)
A
B +

(
M̂spin−1

)
A
B =

(
M(0)

spin−1

)
A
B +

(
NABC − NBAC

)
∂C + ∂CNABC

+ δ
A
BMspin−2 + 2

(
ΠAΠB + ΠAΠB

)
, (3.32)

with (
M(0)

spin−1

)
A
B = 1

6
(
XAI XB

I +XB
I X

AI
)
,

NABC = 2
(
PI,AC XB

I + PIAC XB,I
)
.

(3.33)

The second line in (3.32) acts only on the unphysical Goldstone fields, and can thus
be ignored when computing the masses of the propagating degrees of freedom. Moreover,
relations (3.30) and (3.31) imply that the first line of (3.32) carries as eigenvalues all the
masses of the physical vector fields with an (unphysical) multiplicity of two, which has to
be divided out. Equation (3.32) turns out to be very useful for the concrete computations
as in particular the quadratic action on the scalar harmonics is exactly given by the spin-2
mass operator Mspin−2 (3.20).
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3.3.3 Spin-0

The scalar masses arise from the scalar potential (2.12) in the action (2.7). Let us first
rewrite the equations of motion coming from the scalar potential (2.12) in terms of the
intrinsic torsion. We find that a vacuum must satisfy the equation

0 =
[
2∂CXCA

B−XAC
DXBD

C− 1
7
(
XAC

DXBC
D+XCA

DXCB
D−XCD

AXCD
B
)]
PI,AB .
(3.34)

When the intrinsic torsion XAB
C is constant, this precisely matches the variation of the

N = 8 gauged supergravity potential.
Similar to the computation presented in [3, 4], we can plug in the fluctuation Ansatz (3.6)

and compute the variation of the potential (2.12) with respect to the scalar fluctuations
jI = jI,ΣYΣ to obtain the equation of motions

�xj
I =

(
Mspin−0

)
I
Jj
J + . . . , (3.35)

where we can obtain the explicit form of the mass operator as

(
Mspin−0

)
I
J = XAE

FXBF
E (PIPJ)AB

+ 1
7
(
XAE

FXBE
F +XEA

FXEB
F +XEF

AXEF
B
)

(PIPJ)AB

+ 2
7
(
XAC

EXBD
E −XAE

CXBE
D −XEA

CXEB
D
)

(PI)AB (PJ)CD

− 2 (PJ)CD ∂CXD
I − [PI ,PJ ]AB ∂CXCB

A

+ 2
(
(PI)ABXAJ − (PJ)ABXA

I
)
∂B − 2

[PI ,PJ ]AB XCB
A ∂C

− δIJ ∂A∂A + 24 (PIPJ)AB ∂B∂A .

(3.36)

It is straightforward to verify that (3.36) is self-adjoint and thus has real eigenvalues. Once
again, this operator yields mass eigenvalues not just for the physical scalars but also for
the Goldstone scalars that are eaten by the massive spin-1 and spin-2 fields. Since we
are not interested in these unphysical fields, and can gauge fix them away, we are free to
shift their mass eigenvalues in a way that simplifies the structure of (3.36). Thanks to the
Higgs mechanism, the operators (3.24), (3.26) provide us with projection matrices onto the
Goldstone scalars, which we can therefore use to add to (3.29) terms of the form ΠI

A ΠA
J

which only affect the eigenvalues of the non-physical Goldstone modes.
This allows us to rewrite (3.36) as

(
Mspin−0

)
I
J =

(
M(0)

spin−0

)
I
J +

(
NIJC − NJ IC

)
∂C + ∂CNIJC + δIJ Mspin−2

− 1
24ΠI

A ΠA
J ,

(3.37)
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which is easily verified to be self-adjoint. The operators in (3.37) consist of(
M(0)

spin−0

)
I
J = XAE

FXBF
E (PIPJ)AB

+ 1
7
(
XAE

FXBE
F +XEA

FXEB
F +XEF

AXEF
B
)

(PIPJ)AB

+ 2
7
(
XAC

EXBD
E −XAE

CXBE
D −XEA

CXEB
D
)

(PI)AB (PJ)CD

+ 1
6 XA

I XA,J ,

(3.38)

which is quadratic in the intrinsic torsion XAB
C and does not act on the scalar harmonics,

and the combination

NIJC = −2XA
IPJ,CA − 2XAJPICA − [PI , PJ ]AB

(
XCB

A + 7
2XAB

C
)
, (3.39)

which multiplies a linear differential operator on the scalar harmonics. Just as in the vector
mass matrix (3.32), the quadratic differential operator on the scalar harmonics in (3.37)
is simply given by the graviton mass operator (3.20). For the case of constant intrinsic
torsion, the formula (3.37) consistently reduces to the expression derived in [8].

4 KK spectrum of squashed S7

As an application of the presented methods, we will now apply the mass formulas to compute
the Kaluza-Klein spectrum of the squashed S7 in 11-dimensional supergravity. The sphere
S7 admits two Einstein metrics: the round metric with SO(8) isometry, and the “squashed
metric” which only preserves USp(4) × SU(2) ⊂ SO(8) isometry. These give rise to two
supersymmetric Freund-Rubin AdS4 × S7 vacua of 11-dimensional supergravity: the N = 8
vacuum, when the S7 is round and an N = 1 vacuum for the squashed S7 [18]. For the
squashed S7, the isometry group USp(4)× SU(2) is embedded into SO(8) such that

8v → (4,2) , 8s → (4,2) , 8c → (5,1)⊕ (1,3) , (4.1)

often also referred to as the left-squashed S7.3 Note that there are two other embeddings
of USp(4)× SU(2) ⊂ SO(8), related to (4.1) by triality. The embedding

8s → (5,1)⊕ (1,3) , (4.2)

gives rise to the right-squashed S7, with the same metric as (4.1), but different sign of flux,
yielding a non-supersymmetric AdS4 vacuum [19]. Finally, the embedding

8v → (5,1)⊕ (1,3) , (4.3)

does not give rise to an Einstein space, and hence no AdS4 vacuum. Here we will mostly
focus on the supersymmetric, left-squashed AdS4 × S7 vacuum (4.1), but the results also
allow to fully determine the non-supersymmetric spectrum on the right-squashed S7.

3Here, we use standard triality conventions, in which the N = 8 gravitinos transform in the 8s and the
round S7 sphere harmonics in symmetric tensor products of the 8v.
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4.1 The squashed S7 in ExFT

The round S7 has already been extensively studied in the ExFT framework. It is a generalised
Leibniz parallelisable background, whose twist matrix U consists of an SL(8) ⊂ E7(7)
matrix [23, 33]. As a Freund-Rubin solution, the generalised vielbein of the S7 solution
lives on the coset space

SL(8)
SO(8) ⊂

E7(7)
SU(8) , (4.4)

which contains precisely the right degrees of freedom to capture a 7-dimensional internal
metric and 6-form potential. Explicitly, a general Freund-Rubin solution is described a
generalised vielbein of the form

VFR = exp[−6α ω̊ ζnTn]
(
ω̊3/4 0

0 ω̊−1/4 e̊mi

)
∈ SL(8) , (4.5)

where e̊mi is the vielbein on the internal seven-dimensional space, ω̊ ≡ det e̊mi, and ζn is a
vector field with ∇̊nζn = 1 . The Tn are the generators which extend gl(7) to sl(8), and α is
a constant related to the seven-form flux of the solution. In our conventions, the round S7

solution corresponds to a sphere of radius 1, and α = 1 . Upon embedding SL(8) ↪→ E7(7),
the generalised vielbein is related to the generalised metric of (2.7) as M = VVT . The
twist matrix describing the consistent truncation around the S7 background is explicitly
given by [23, 33]

Ům
a(Y) =

(
ω̊3/4 (Ya − 6α ζn∂nYa)

ω̊−1/4 ∂mYa
) ∣∣∣∣∣

α=1

∈ SL(8) , m = {0,m} , a = {1, . . . , 8} ,

(4.6)
in terms of the fundamental sphere harmonics YaYa = 1. It differs from (4.5) by an SO(8)
rotation from the right, such that consistently Ů ŮT =M = VVT . The scale factor ρ is
given by ρ = ω̊−1/2 . This twist matrix satisfies (3.2) with constant intrinsic torsion.

We will now give a similar ExFT description of the squashed S7. First of all, since the
topology is the same as the round S7, the squashed S7 is also a generalised parallelisable
background, i.e. it can be described by a globally defined E7(7) twist matrix. Moreover,
since the squashed S7 is a Freund-Rubin vacuum, by the argument above, the twist matrix
should again be an SL(8) ⊂ E7(7) element. Finally, the twist matrix must be a continuous
deformation of the one corresponding to the round S7, and the deformation must preserve
USp(4)× SU(2), see (4.1).

Let us thus consider the decomposition E7(7) → SL(5) × SL(3) × R+, such that the
isometry of the squashed S7 is embedded as the compact subgroup USp(4) × SU(2) ⊂
SL(5) × SL(3). Under this decomposition, the E7(7) adjoint representation branches as
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follows

+3 (5,1) [0, 1, 0]
+2 (5,3) [0, 1, 2]
+1 (10,3) [2, 0, 2]

0 (1,1)⊕ sl(5)⊕ sl(3) [0, 0, 0]⊕ [2, 0, 0]⊕ [0, 2, 0]⊕ [0, 0, 2]⊕ [0, 0, 4] , (4.7)
−1 (10,3) [2, 0, 2]
−2 (5,3) [0, 1, 2]
−3 (5,1) [0, 1, 0]

where the vertical axis labels the R+ charge of the representations. The last column
collects the USp(4)× SU(2) representation content described by their Dynkin labels. To
construct USp(4)× SU(2)-invariant deformations, we consider linear combinations of the
E7(7) generators which depend on the S7 coordinates

c(y)α tα =
∑
Σ
cα,Σ YΣ tα , (4.8)

with the scalar harmonics YΣ on the round S7. These harmonics combine into the tower of
representations ∑

n

[n, 0, 0, 0]SO(8) →
∑
n,q

[n− 2q, q, n− 2q]USp(4)×SU(2) , (4.9)

under SO(8) and USp(4)× SU(2), respectively. Combining this expansion with the decom-
position (4.7) shows four USp(4)× SU(2) invariant combinations in (4.8): one at KK level
n = 0, coming from the [0, 0, 0] generator, two at KK level n = 2, coming from the non-
compact generators in the [2, 0, 2] and [0, 1, 0], and one at KK level four from the generator
in the [0, 2, 0]. Closer inspection shows that only the generators in the [2, 0, 2] and [0, 1, 0]
belong to the sl(8) subalgebra of (4.4) corresponding to Freund-Rubin configurations.4 We
can thus construct a two-parameter family of SL(8) twist matrices, interpolating between
the round S7 and the squashed S7. We choose to parametrise them as

U(α, η) = Ů(α) eη T(5,1)(Y) , (4.10)

with Ů(α) from (4.6), however with free flux parameter α, and T(5,1)(Y) denotes the
USp(4) × SU(2) invariant contraction of non-compact generators in the [0, 1, 0] in (4.7)
with the round S7 harmonics. Apart from the twist matrix for the round sphere U(1, 0),
the intrinsic torsion (3.3) associated to (4.10) depends on the S7 coordinates. The field
equations of D = 11 supergravity for this background can be expressed in terms of the
intrinsic torsion as (3.34) and turn out to be identically satisfied for the values

{η = 0 , α = ±1} ,
{
η = −1

2 log 5 , α = ±3
5

}
. (4.11)

4It is important to note that this Freund-Rubin sl(8) does not fully contain the sl(5)⊕ sl(3) subgroup
appearing at zero charge in (4.7).
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It is straightforward to verify that the internal seven-dimensional metric obtained from (4.10)
is an Einstein metric precisely for these values of the parameters. The first solution in (4.11)
describes the round sphere and its skew-whiffed counterpart, obtained by flipping the sign
of the seven-form flux. The second solution in (4.11) describes the left- and right-squashed
spheres. With the Killing vector fields on the round sphere given by Kab

m = 2Y[a∂
mYb]

(where the vector index on the r.h.s. is raised with the round S7 metric), the above
generalised vielbein induces the following explicit metric

gmn(η) = 1
2 Kab

mKabn + 1
8 (e−2η − 1) Γabij Γcdij KabmKcdn , (4.12)

on the squashed sphere. Here, the Γab are the SO(8) Γ matrices, with spinor indices i, j
running over the range {1, 2, 3}, in accordance with the breaking (4.1).

4.2 The Kaluza-Klein spectrum on the left-squashed sphere

We can now use the methods outlined in section 3 to compute the full Kaluza-Klein spectrum
of the squashed S7. Since the squashed S7 can also be described as the coset space

USp(4)× SU(2)
SU(2)× SU(2) , (4.13)

the KK spectrum can also, in principle, be computed using group theory techniques [1].
However, because the squashed S7 is not a symmetric space, the resulting procedure is still
rather intricate, although many partial results have been collected over the years [24–29]. In
particular, while the set of potential mass eigenvalues of all different bosonic KK towers has
been analysed to some extent (and is complete as we shall show), the traditional Kaluza-
Klein computational scheme struggles to assign the eigenvalues with possible multiplicities
to the correct eigenstates.

Here, we will determine the full KK spectrum on both, left- and right-squashed S7 by
evaluating the ExFT mass formulas. This straightforwardly provides not only the mass
eigenvalues but also the corresponding eigenstates and multiplicities. In order to diagonalise
the differential operators (3.20), (3.29), (3.36), we evaluate them on general polynomials
in the fundamental round harmonics Ya. In contrast to previous ExFT computations
based on [3, 4], the y-dependence of the intrinsic torsion computed from (4.10), thus of the
coefficients in the mass operators, induces a level mixing for the mass eigenstates. I.e. the
action of the mass operators on a given polynomial of harmonics does not preserve the order
of the polynomial. However, the symmetry group USp(4)× SU(2) is still large enough to
keep the problem manageable. In particular, the fact that the tower of harmonics (4.9) does
not carry any non-trivial multiplicities implies that any given representation appears only a
finite number of times in the full KK spectrum. In order to determine its mass eigenvalues,
it is thus sufficient to evaluate the corresponding mass operator on a sufficiently large
polynomial of harmonics after projection onto the relevant representation. The computation
can be further reduced by further projecting the polynomial onto highest weight states
of USp(4) × SU(2). Concretely, we have pushed the computation up to Kaluza-Klein
level n = 8 which together with the underlying supersymmetry is sufficient to extract the
generic structure.
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In the following, we summarise our results. In appendix B, we give more details
allowing us to match the results of [24–29]. We start with the left-squashed sphere, for
which the states organise into long N = 1 supermultiplets. A generic long multiplet L[J,∆]
is identified by the (space-time) spin J and the conformal dimension ∆ of its superconformal
primary. The conformal dimension of the primary is bounded by ∆ > J + 1. The long
multiplets with fields of spin no higher than 2 consist of the following supergravity fields:

L[3
2 ,∆] : ψµ

Q−−→ gµν ⊕Aµ Q−−→ ψµ ,

L[1,∆] : Aµ
Q−−→ ψµ ⊕ λ Q−−→ Aµ ,

L[1
2 ,∆] : λ Q−−→ Aµ ⊕ φ Q−−→ λ ,

L[0,∆] : φ Q−−→ λ
Q−−→ φ ,

(4.14)

where gµν denotes a spin-2 field, ψµ denotes a spin-3/2 field, Aµ denotes a spin-1 field, λ
denotes a spin-1/2 field and φ a scalar. In addition, the spectrum contains short multiplets
A1[J ] with ∆ = 1 + J , which carry the gauge fields. These are

A1[3
2 ] : ψµ

Q−−→ gµν ,

A1[1
2 ] : λ Q−−→ Aµ .

(4.15)

The entire masse spectrum organises into a sum of long multiplets⊕
L[J,∆]⊗ [p, q, r] , (4.16)

in the different USp(4)× SU(2) representations [p, q, r]. Each such multiplet comes with
a certain multiplicity. Remarkably, we find that the conformal dimensions of all these
multiplets are captured by the universal formula

∆J,s = 1 + 5
3s+ 1

3

√
(3J + 2s2)2 + 5 C3 , (4.17)

in terms of the spin J and the combination

C3 = C(p, q) + 3 C(r) , (4.18)

of the USp(4) and the SU(2) Casimir operators

C(p, q) = 1
2
(
p2 + 2 q2 + 4 p+ 6 q + 2 p q

)
, C(r) = 1

4r(r + 2) . (4.19)

The parameter s ∈ 1
2Z in (4.17) is an additional label that organises the spectrum and

counts the multiplicities. To present the spectrum in compact form, we use the following
notation

L[J ]⊗{s1, s2, . . . , sp} ≡
p⊕
i=1

L[J,∆J,si ] , (4.20)

with conformal dimensions ∆J,s given by (4.17). Remarkably, for all but a handful of small
representations, s in fact appears like the R+ ⊂ SL(2) charge of a full SL(2) representation.
Accordingly, we use the notation

L[J ]⊗[S] ≡ L[J ]⊗{−S,−S + 1, . . . , S} . (4.21)
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Let us take as an example the states in a [k, q, k] of USp(4)× SU(2) for generic values of
k, q (i.e. k > 1, q > 1). The KK spectrum exhibits one spin-2 state, 9 vectors and 16 scalar
fields in this representation. They turn out to fall into 13 N = 1 supermultiplets which in
the notation (4.21) take the form

[k, q, k]k>1,q>1 : L[3
2 ]⊗[0] ⊕ L[1]⊗[1

2 ] ⊕ L[1
2 ]⊗[1

2 ⊗ 1
2 ] ⊕ L[0]⊗[1

2 ⊗1] . (4.22)

Similarly, the supermultiplets in the other generic towers of USp(4)× SU(2) representations
can be summarised as

[k, q, k + 2]k>0,q>1 & [k + 2, q, k]k>0,q>0 : L[0]⊗[1
2 ] ⊕ L[1]⊗[1

2 ] ⊕ L[1
2 ]⊗[1

2 ⊗ 1
2 ] ,

[k, q, k + 4]q>1 & [k + 4, q, k] : L[1
2 ]⊗[0] ⊕ L[0]⊗[1

2 ] .
(4.23)

In appendix C, we collect all the remaining supermultiplets in representations with small
Dynkin labels, for which some of the generic structures (4.22), (4.23) degenerate. Together
with the universal expression (4.17) for the conformal dimensions, this provides the full KK
spectrum on the left-squashed sphere.

Translating the conformal dimensions into supergravity masses, we find that all mass
eigenvalues fit into the list of potential eigenvalues identified in [24–29]. Seemingly missing
eigenvalues on that list are explained by non-trivial multiplicities arising in the expansion
of (4.22), (4.23). For vector fields, and sufficiently large values of k and q, the masses found
in (4.22), (4.23) span the entire list of [26, 28]. For scalar fields, the masses realised in
the KK spectrum (4.22), (4.23) fix all potential sign ambiguities in the general analysis.
For small values of k and q, the general structure of the spectrum degenerates, as spelled
out in (C.1), such that only a subset of the potential mass eigenvalues are realised. We
illustrate this comparison in more detail in appendix B.

4.3 The right-squashed sphere

The right-squashed sphere is obtained by flipping the sign of the seven-form flux of the
solution. The precise relation between the spectra on the left-squashed sphere and its
“skew-whiffed” right-squashed counterpart can be inferred from the general results of [19, 24].
Combining this with the explicit form of the left-squashed spectrum (4.22), (4.23), we may
describe the passage from the left-squashed to the right-squashed spectrum multiplet by
multiplet (of course the right-squashed sphere breaks all supersymmetries, such that the
resulting structure is no longer a supermultiplet). In the following, we give the bosonic part
of the spectrum for the right-squashed sphere. The complete result including fermions can
be found in appendix D.

For all multiplets, we find the following picture. First of all, the bosonic masses in
all spin-2 multiplets as well as in vector multiplets, i.e. L[3

2 ] and L[1] multiplets, remain
unchanged. For the bosonic states of the L[1

2 ] multiplets, the transition works as follows

L[1
2 ]⊗{−1} :

 vector : ∆RS = ∆LS ,

scalar : ∆RS = ∆LS + 2|s|+ 1 ,

L[1
2 ]⊗{1} :

 vector : ∆RS = ∆LS ,

scalar : ∆RS = ∆LS − 2|s| − 1 ,

(4.24)
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L[1
2 ]⊗{−1} L[1

2 ]⊗{1}

LS RS LS RS

{Aµ, φ} Aµ

φ

{Aµ, φ}

φ

Aµ

+3

-3
•

•

• • •

•

Figure 1. Shift patterns of the conformal dimensions of the bosonic states within L[ 1
2 ], as we go

from the left- to the right-squashed S7.

L[0]⊗{−3
2} L[0]⊗{−1

2} L[0]⊗{1
2} L[0]⊗{3

2}

LS RS

φ1

φ2
φ1

φ2

LS RS

φ1
φ2

φ1

φ2

LS RS

φ1

φ2
φ1

φ2

LS RS

φ1
φ2

φ1

φ2

+3 +4

+3 +2

-3 -2

-3 -4

•
• •

•

•

•
•

•

•
•

•
•

•

•
•

•
• •

•

•

Figure 2. Shift patterns of the conformal dimensions of the bosonic states within L[0], as we go
from the left- to the right-squashed S7.

while the bosonic states of L[1
2 ]⊗{0} remain unchanged. This is illustrated in figure 1.

Between the left and right squashing, the scalar is shifted by ±3 in the direction of sign(−s) .
As a result, in the case of the right squashing, the scalar and vector states which used to
have the same conformal dimension are now separated by ±3 in the right-squashed sphere,
again depending on the sign of s.

The L[0] multiplets behave similarly. First, there is always a scalar state, whose
conformal dimension is unchanged between the left and the right squashing. The other
scalar state gets shifted by ±3 depending on the sign of s. In order to identify which of the
states gets shifted, one notes that for the right squashing, the difference in the conformal
dimension between bosonic states is no longer 1 but changes to 2|s| + 1 as for the L[1

2 ]
multiplets. This can be summed up as in figure 2. Again, the conformal dimensions of
half of the states are shifted by ±3 between the right and left squashing, such that the
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conformal dimensions of the bosonic states from the same multiplet now differ by an s

dependent shift.

4.4 Rational conformal dimensions and marginal deformations

Since the AdS4 vacuum only preserves N = 1 supersymmetry, all multiplets are unprotected,
i.e. they are either long or sit at the unitarity bound where they can recombine into long
multiplets. Still, we observe infinitely many rational conformal dimensions in the KK
spectrum. In particular, these arise from the following towers (in the notation of (4.20))

L[0]⊗{−1
2 ,

1
2} ⊗ [k, 1, k]k>1 :

∆ = 10+5k
6 ,

∆ = 20+5k
6 ,

L[1]⊗{−1
2} ⊗ [k, 0, k]k>1 : ∆ = 8 + 5k

6 ,

L[1
2 ]⊗{1} ⊗ [k, 0, k]k>1 : ∆ = 23 + 5k

6 ,

L[1]⊗{1
2} ⊗ [k, 0, k + 2] : ∆ = 24 + 5k

6 ,

L[1
2 ]⊗{−1} ⊗ [k, 0, k + 2] : ∆ = 9 + 5k

6 ,

L[0]⊗{1
2} ⊗ [k + 2, 0, k] : ∆ = 22 + 5k

6 ,

L[0]⊗{−1
2} ⊗ [k, 1, k + 4] : ∆ = 22 + 5k

6 ,

L[0]⊗{−1
2} ⊗ [k, 0, k + 4] : ∆ = 20 + 5k

6 ,

(4.25)

whose conformal dimensions are manifestly rational. More general, we can study rational
solutions of (4.17). In order for the conformal dimension to be rational, this requires√

A+ 70k + 25k2 + 60q + 20kq + 20q2 ∈ N , (4.26)

with A ∈ {1, 9, 49, 81}. In other words, we need to solve the following order two diophantine
equation5

A+ 70k + 25k2 + 60q + 20kq + 20q2 −N2 = 0 . (4.27)

In order to get a feeling on general rational solutions of (4.26), we may numerically plot
integer solutions of (4.26) in the (k, q) plane. The results are shown in figure 3. We can
see for the values A = 1 and A = 49 lines emerging from the graph, whereas there are no
such lines on the graph A = 9 (and similarly for A = 81). As a consequence, we look for
solutions of the form q = ak + b, (a, b) ∈ Q2. Plugging this into (4.26) we find an order
two polynomial in k, whose discriminant ∆ must vanish. As ∆ is a function of a and b,
we can solve the equation ∆ = 0 for a. In order to have a ∈ Q we must find b such that√
−(A− 65)(A+ 20b(3 + b)) ∈ Q. For A = 81, the number in the square root is always

a negative number, which explains why we do not see any line in the A = 81 plot. For
5Similar structures have been revealed by Gubser [35] in the KK spectrum on type IIB supergravity on

AdS5 × T 1,1, see also [36].
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Figure 3. In the first row of figures, the blue points give integer solutions to (4.26) for the special
values A = 1, 9, 49. In the second row, we superpose these plots with orange lines corresponding to
analytical solutions to the Pell equation (4.28) as discussed in the text.

A = 1 and A = 49, the first factor (A − 65) gives an exact square number and we must
find b such that

√
A+ 20b(3 + b) ∈ Q. The problem finally reduces to finding b such that

A+ 60b+ 20b2 = y2, y ∈ Q, and substituting x = b− 3
2 , we must solve

A− 45 + 20x2 − y2 = 0 . (4.28)

This is a Pell equation, whose integers solutions can be found using Mathematica. However,
we are not only interested in integer solutions, but also in rational solutions of this equation.
We must solve y2 − 20x2 = A− 45. In order to find solutions, we first solve what we will
call the homogeneous Pell equation y2 −Dx2 = 1. It can be shown that rational solutions
of the homogeneous Pell equation can be written as (x, y) = ( t2+1

t2−1 ,
2t
t2−1), t ∈ Q, t2 6= D.

Solutions to the original Pell equation can eventually be found using a particular solution,
and multiplying it by the homogeneous solutions. Indeed, let (x0, y0) be a particular solution
and (x, y) a solution to the homogeneous Pell equation, then A−45 = (y2

0−Dx2
0)(y2−Dx2) =

(x0x±y0y)2−D(x0y±y0x)2, allowing us to generate families of solutions of the Pell equation.
This method works as long as D is not a square number. We also want to emphasise that
this may not be all solutions of the Pell equation, as a different particular solution may
lead to a different family of solutions. We illustrate our findings with the orange lines in
figure 3 for the case A = 1 and A = 49.
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Particularly interesting are the multiplets with marginal deformations. For the N = 1
left-squashed sphere these are

L[0]⊗{−3
2} ⊗ [0, 3, 0] , L[0]⊗{−3

2} ⊗ [2, 1, 2] . (4.29)

These are D-terms and preserve the N = 1 supersymmetry. We note that one of the
massless scalars preserves the USp(4) × SU(2) symmetry, while the second one breaks
USp(4) to SU(2)× SU(2) and preserves SU(2). For the right-squashed sphere, all massless
scalars in (4.29) turn massive. However, massive scalars from the following multiplets of
the left-squashed sphere

L[1
2 ]⊗{1} ⊗ [2, 1, 0] , L[1

2 ]⊗{1} ⊗ [2, 0, 2] , (4.30)

become massless for the right-squashed sphere by the pattern displayed in figure 6 above. It
would be very interesting to study whether any of these massless scalars for the left-/right-
squashed sphere can be integrated up to finite moduli.

5 Conclusions

In this paper, we showed how to compute the full Kaluza-Klein spectrum of supergravity
compactifications which are not part of a consistent truncation, but are still generalised
parallelisable. Examples of such vacua are deformations of compactifications within N = 8
supergravity by scalar fields which are not part of the N = 8 truncations. This includes the
supergravity duals of RG flows of N = 4 SYM or N = 8 ABJM triggered by single-trace
operators. Thus, our formalism can be used to compute the Kaluza-Klein spectrum for the
end-point of such flows or even along such flows.

As an application of our method, we computed the full spectrum of the AdS4× squashed
S7 solution of 11-dimensional supergravity. This preserves only N = 1 supersymmetry (or
N = 0 in the case of the right-squashed S7), and thus has no protected operators. This
background is a coset space, so that traditional techniques [1] can in principle be used.
However, because the squashed S7 is not a symmetric space, this is still rather difficult
and had not been completed until now, despite however many explicit results [24–28].
Using our technology, we were able to straightforwardly compute the full Kaluza-Klein
spectrum, which is captured by the remarkably simple formula (4.17), which depends only
on the USp(4) × SU(2) representation of the multiplet, the spin of the superconformal
primary and the charge under an additional R+ factor. Intriguingly, for all but the smallest
representations, this R+ charge appears to descend from representations of a bonus SL(2),
whose origin is mysterious.

The method we describe here opens up the possibility of computing the Kaluza-Klein
spectrum of many more interesting string compactifications which do not reside in a N = 8
consistent truncation. This includes TsT transformations of vacua in N = 8 supergravity,
such as the marginal deformations of AdS5 × S5, AdS4 × S7 or N = 1 AdS4 vacua of IIB
string theory [22]. Our method might also apply to the cubic deformation of AdS5 × S5,
which has recently been described implicitly in generalised geometry [37]. It would be
interesting to see if this implicit description may still be sufficient to apply our method here.
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Finally, it would be interesting to better understand our results from a CFT perspective.
It is remarkable that the spectrum of the squashed S7, which only preserves N = 1
supersymmetry and thus has no protected multiplets, displays such a simple structure. A
particularly interesting questions is the origin of the additional s charge (and its enhancement
to a bonus SL(2) group) which appears to organise the spectrum. Perhaps computing the
spectrum along the RG flow from the round S7 to the squashed one may shed some light
into this.
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A Mass operators for E6(6) ExFT

Here we also give the mass operators applicable to generalised parallelisable (but not
necessarily Leibniz) compactifications to five dimensions. We do this using the E6(6)
ExFT [38], which has the bosonic field content{

gµν ,MMN , AµM , Bµν M
}
, µ, ν = 0, . . . , 4 , M = 1, . . . , 27 , (A.1)

where gµν is now the five-dimensional metric, the generalised metricMMN parameterises
the coset space E6(6)/USp(8) and the indices M,N = 1, . . . 27 label the fundamental of
E6(6). Just as in the E7(7) case we consider a generalised parallelisable background, i.e.
admitting a globally well-defined E6(6) twist matrix UAM and nowhere-vanishing scalar
density ρ−1. In terms of these, we have the fluctuation Ansatz

gµν(x, y) = ρ−2(y)
(
g̊µν(x) +

∑
Σ
YΣ hµν

Σ(x)
)
,

AµM (x, y) = ρ−1(y) (U−1)AM (y)
∑
Σ
YΣ(y)AµA,Σ(x) ,

Bµν M (x, y) = ρ−2(y)UMA(y)
∑
Σ
YΣ(y)Bµν AΣ(x) ,

MMN (x, y) = UM
A(y)UNB(y)

(
δAB + PI,AB

∑
Σ
YΣ(y) jI,Σ(x)

)
,

(A.2)

with PI,AB corresponding to the non-compact generators of E6(6), with I = 1, . . . , 42, which
we raise and lower with the non-compact part of the E6(6) Cartan-Killing metric.

The mass operators can be computed completely analogously to the E7(7) case and we
give them here without re-iterating the derivation. The spin-2 mass operator takes exactly
the same form as (3.20)

Mspin−2 = −∂A∂A , (A.3)
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acting on scalar harmonics YΣ. The vector mass matrix is given by(
Mspin−1

)
A
B = 1

12 ΠA,I ΠI
B , (A.4)

with
ΠI

A = −2
(
XA

I − 6PIAB ∂B
)
, (A.5)

and its adjoint
ΠA,I = −2

(
XAI + 6PI,AB ∂B

)
. (A.6)

The scalar mass matrix is given by(
Mspin−0

)
I
J = XAE

FXBF
E (PIPJ)AB

+ 1
5
(
XAE

FXBE
F +XEA

FXEB
F +XEF

AXEF
B
)

(PIPJ)AB

+ 2
5
(
XAC

EXBD
E −XAE

CXBE
D −XEA

CXEB
D
)

(PI)AB (PJ)CD

− 2 (PJ)CD ∂CXD
I − [PI ,PJ ]AB ∂CXCB

A

+ 2
(
(PI)ABXAJ − (PJ)ABXA

I
)
∂B − 2

[PI ,PJ ]AB XCB
A ∂C

− δIJ ∂A∂A + 12 (PIPJ)AB ∂B∂A .

(A.7)

Finally, the mass matrix for the 2-form can be computed from its first-order equation of
motion, to obtain (

Mtensor
)
A
B = 1√

10

(
−ZAB + 10 dABC ∂C

)
. (A.8)

Here, dABC is the symmetric cubic invariant of E6(6), normalised as in [4], and we used the
antisymmetric combination of the intrinsic torsion given by

ZAB = 2 dCDAXCD
B = −ZBA . (A.9)
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B Details of the squashed S7 spectrum

It is instructive to compare the above results for the KK spectrum on the squashed spheres
to the results obtained in the traditional computational scheme [24–29]. In that approach,
the eigenvalue spectra of the different internal Laplacian operators on the squashed sphere
are determined by the coset space techniques based on the representation (4.13) of the
internal space. These spectra are then combined with the universal formulas for mass
operators appearing in Freund-Rubin compactifications [24]. While extensive knowledge of
the Laplacian eigenvalue spectra has been accumulated in [24–29], the assignment of these
eigenvalues and their multiplicities to specific mass eigenstates appears less straightforward
in that approach.

Let us consider as an example the KK states in the [k, q, k] representation (for generic
values k > 1, q > 1) for the N = 1 left-squashed sphere. From (4.22), we find the multiplet
structure

[k, q, k]k>1,q>1 : L[3
2 ]⊗[0] ⊕ L[3

2 ]⊗[1
2 ] ⊕ L[1

2 ]⊗[1
2 ⊗ 1

2 ] ⊕ L[0]⊗[1
2 ⊗1] . (B.1)

Formula (4.17) yields the conformal dimensions of all fields. We may translate them into
supergravity masses by the standard D = 4 formulas

spin-0, 2 : ∆(∆− 3) = m2 `2 ,

spin-1 : (∆− 1)(∆− 2) = m2 `2 .
(B.2)

In our conventions, and with the twist matrix from (4.10) the AdS length ` for the squashed
S7 is given by `2 = 5

72 . Evaluating the field content of the various supermultiplets in (B.1),
we obtain the following masses for the different spin-2 and spin-1 modes

∆ m2 L[J ] #

gµν
3
2 + 1

6
√

81 + 20 C3 8 C3 L[3
2 ] 1

Aµ
3
2 + 1

6
√

81 + 20 C3 8 C3 + 144
5 L[3

2 ] 1
1
6 + 1

6
√

49 + 20 C3 8 C3 + 208
5 − 32

5
√

49 + 20 C3 L[1]⊗{−1
2} 1

7
6 + 1

6
√

49 + 20 C3 8 C3 + 88
5 − 8

5
√

49 + 20 C3 L[1]⊗{−1
2} 1

11
6 + 1

6
√

49 + 20 C3 8 C3 + 88
5 + 8

5
√

49 + 20 C3 L[1]⊗{+1
2} 1

17
6 + 1

6
√

49 + 20 C3 8 C3 + 208
5 + 32

5
√

49 + 20 C3 L[1]⊗{+1
2} 1

−1
6 + 1

6
√

49 + 20 C3 8 C3 + 280
5 − 40

5
√

49 + 20 C3 L[1
2 ]⊗{−1} 1

3
2 + 1

6
√

9 + 20 C3 8 C3 L[1
2 ]⊗{0} 2

19
6 + 1

6
√

49 + 20 C3 8 C3 + 280
5 + 40

5
√

49 + 20 C3 L[1
2 ]⊗{+1} 1

(B.3)

where we also list their multiplicities and the supermultiplets to which they belong. Com-
paring to the previous results, we find that all the mass eigenvalues exhibited in (B.3) fit
into and fully span the list identified in [26, 28, 29] (up to an overall normalisation factor
in the definition of mass). On the other hand, the seemingly missing eigenvalue (of the
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operator ∆2 in the notation of [28]) is precisely taken care of by the non-trivial multiplicity
in the penultimate line of (B.3).

Similarly, we may extract the scalar masses from (B.1) as

∆ m2 L[J ] #

φ −1
6 + 1

6
√

49 + 20 C3 8 C3 + 136
5 − 8

√
49 + 20 C3 L[1

2 ]⊗{−1} 1
3
2 + 1

6
√

9 + 20 C3 8 C3 − 144
5 L[1

2 ]⊗{0} 2
19
6 + 1

6
√

49 + 20 C3 8 C3 + 136
5 + 8

√
49 + 20 C3 L[1

2 ]⊗{+1} 1

−3
2 + 1

6
√

81 + 20 C 8 C3 + 648
5 − 72

5
√

81 + 20C3 L[0]⊗{−3
2} 1

−1
2 + 1

6
√

81 + 20 C 8 C3 + 288
5 − 48

5
√

81 + 20 C3 L[0]⊗{−3
2} 1

1
6 + 1

6
√

1 + 20 C 8 C3 − 32
5 − 32

5
√

1 + 20 C3 L[0]⊗{−1
2} 2

7
6 + 1

6
√

1 + 20 C 8 C3 − 152
5 − 8

5
√

1 + 20C3 L[0]⊗{−1
2} 2

11
6 + 1

6
√

1 + 20 C 8 C3 − 152
5 + 8

5
√

1 + 20C3 L[0]⊗{+1
2} 2

17
6 + 1

6
√

1 + 20 C 8 C3 − 32
5 + 32

5
√

1 + 20 C3 L[0]⊗{+1
2} 2

7
2 + 1

6
√

81 + 20 C 8 C3 + 288
5 + 48

5
√

81 + 20 C3 L[0]⊗{+3
2} 1

9
2 + 1

6
√

81 + 20 C 8 C3 + 648
5 + 72

5
√

81 + 20C3 L[0]⊗{+3
2} 1

(B.4)

Again, all these eigenvalues fit into the list of eigenvalues identified in [24, 25, 28] (up
to an overall normalisation factor and shift in the definition of scalar mass). Just as
before, the seemingly missing eigenvalues (of the operators ∆3, ∆L in the notation of [28])
are precisely taken care of by the non-trivial multiplicities in the last column of (B.4).
In that same notation of [28], the eigenvalues of ∆3 pick a definite sign, fixing all the
potential ambiguities.

Similar, one can extract the masses of all fields in the other representation towers (4.23),
as well as in the lower representations (C.1). In the latter, the general pattern of (B.3), (B.4),
degenerates and only some of the potential eigenvalues are realised, the explicit values follow
from the multiplet structure together with (4.17).

C Degeneracies in low representations on the squashed S7

In this appendix, we summarise the N = 1 supermultiplets in the Kaluza-Klein spectrum
on the left-squashed S7 which appear in USp(4)× SU(2) representations with small Dynkin
labels, such that some of the generic structures (4.22), (4.23) degenerate. In particular, in
some of these representation, the values of the label s do no longer combine into full SL(2)
representations, such that in these cases we revert to the notation of (4.20). The full list of
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these supermultiplets is given by

[1, q, 1]q>1 : L[3
2 ]⊗[0] ⊕ L[1]⊗[1

2 ] ⊕ L[1
2 ]⊗[1] ⊕ L[0]⊗[3

2 ] ,
[0, q, 0]q>1 : L[3

2 ]⊗[0] ⊕ L[0]⊗[3
2 ] ,

[k, 1, k]k>1 : L[3
2 ]⊗[0] ⊕ L[1]⊗[1

2 ] ⊕ L[1
2 ]⊗[1

2 ⊗ 1
2 ] ⊕ L[0]⊗[3

2 ] ⊕ L[0]⊗{+1
2} ,

[k, 0, k]k>1 : L[3
2 ]⊗[0] ⊕ L[1]⊗{−1

2} ⊕ L[1
2 ]⊗{0,+1} ⊕ L[0]⊗[3

2 ] ,
[1, 1, 1] : L[3

2 ]⊗[0] ⊕ L[1]⊗[1
2 ] ⊕ L[1

2 ]⊗[1] ⊕ L[0]⊗{−3
2 ,+

1
2 ,+

3
2} ,

[1, 0, 1] : L[3
2 ]⊗[0] ⊕ L[1]⊗{−1

2} ⊕ L[1
2 ]⊗{+1} ⊕ L[0]⊗{−3

2 ,+
3
2} ,

[0, 1, 0] : L[3
2 ]⊗[0] ⊕ L[0]⊗{−3

2 ,+
1
2 ,+

3
2} ,

[0, 0, 0] : L[0]⊗{−1
2 ,

3
2} ⊕ A1[3

2 ] ,
[k, 1, k + 2]k>0 : L[1]⊗[1

2 ] ⊕ L[1
2 ]⊗[1] ⊕ L[0]⊗[1

2 ] ,
[k, 0, k + 2]k>0 : L[1]⊗{+1

2} ⊕ L[1
2 ]⊗{−1, 0} ,

[0, q, 2]q>1 : L[1]⊗[1
2 ] ⊕ L[1

2 ]⊗[1] ,
[0, 1, 2] : L[1]⊗[1

2 ] ⊕ L[1
2 ]⊗{−1,+1} ,

[0, 0, 2] : L[1]⊗{+1
2} ⊕ A1[1

2 ] ,
[k + 2, 0, k]k>0 : L[1]⊗[1

2 ] ⊕ L[1
2 ]⊗[1] ⊕ L[0]⊗{+1

2} ,
[2, q, 0]q>0 : L[1]⊗[1

2 ] ⊕ L[1
2 ]⊗[1] ,

[2, 0, 0] : L[1]⊗[1
2 ] ⊕ L[1

2 ]⊗{+1} ⊕ A1[1
2 ] ,

[k, 1, k + 4] : L[1
2 ]⊗[0] ⊕ L[0]⊗{−1

2} ,
[k, 0, k + 4] : L[0]⊗{−1

2} .

(C.1)

Note that for the [0, 0, 0]L[0]⊗
{
−1

2

}
multiplet, our formula (4.17) yields the value ∆ = 1

3 ,
which lies below the unitary bound. This arises because KK spectroscopy strictly computes
the mass eigenvalues in the AdS bulk, whereas their translation into conformal dimensions
via ∆(∆ − 3) = m2L2 allows for two solutions. For this multiplet, the other choice of
solution of ∆ gives the correct conformal dimension.6

This completes the full Kaluza-Klein spectrum.

D Spectrum of the right-squashed S7

In this appendix, we summarize the entire spectrum of the right-squashed sphere, including
the fermions. We extend what has been presented in figure 1 as well as figure 2 including
the fermions, as well as present what happens for the L[3

2 ] and L[1] long multiplets.

6We thank Joel Karlsson for drawing our attention to this.
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L[3
2 ]⊗{0}

LS RS

−3

+3

{gµν , Aµ}
ψ1,µ

ψ2,µ
{gµν , Aµ}

ψ1,µ

ψ2,µ

•
•
•

•

•

•

Figure 4. Shift patterns of the conformal dimensions within L[ 3
2 ], as we go from the left- to the

right-squashed S7. Here, gµν is a graviton, Aµ a vector and ψµ a gravitino.

LS RS

L[1]⊗{−1
2}

Aµ

Aµ

{ψµ, λ}
Aµ

Aµ

λ

ψµ

+2

+4

•
•
•

•

••

•

•

L[1]⊗{1
2}

LS RS

Aµ

Aµ

{ψµ, λ}
Aµ

Aµ

λ

ψµ

-2

-4

•

•
•

•

•

•

•

Figure 5. Shift patterns of the conformal dimensions of the states within L[1], as we go from the
left- to the right-squashed S7. Here, Aµ are vectors, ψµ is a gravitino, and λ a fermion with spin 1

2 .
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L[1
2 ]⊗{−1}

LS RS

{Aµ, φ}

φ

Aµ

λ1

λ2

λ1

λ2

+3

+4

+2

•
•

•

•

•

•

•

L[1
2 ]⊗{1}

LS RS

{Aµ, φ}
λ2

λ1

Aµ

φ

λ2

λ1
-3

-2

-4

•
•

•

•

•

•

•

•

L[1
2 ]⊗{0}

LS RS
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