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1 Introduction

The AdS/CFT correspondence [1, 2] postulates the equivalence between type IIB string
theory on AdS5 × S5 and 4-dimensional N = 4 Super Yang-Mills (SYM) theory with gauge
group SU(N) and effective coupling λ = Ng2

YM. In the large N and large λ limit solutions of
classical gravity in the bulk correspond to states of the field theory living on the boundary.
A remarkable property of this conjecture derived from string theory is that it can account
for non-conformal theories with (partially or completely) broken supersymmetry [3, 4]. Over
the past many years, a considerable amount of work has been done in the direction of
mapping calculations from a suitable strongly coupled field theory to a classical theory of
gravity. Of particular interest are field theories that share certain features with Quantum
Chromodynamics (QCD) for which an in-depth study can lead to a better understanding of
how to resolve the long-standing problem of confinement in gauge theories.

A concrete example of such a QCD-like theory is the N = 1* supersymmetric theory
which is obtained as a deformation of N = 4 SYM by adding mass terms for the 3 chiral
multiplets. It possesses a rich phase space, with confining and deconfining phases interrelated
by phase transitions [5]. Importantly, it has a well defined ultraviolet fixed point in contrast
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with other known N = 1 theories, and it can be studied via lattice simulations as well
as holographic methods. On the gravity side, Polchinski and Strassler [6] proposed that
the vacua of the gauge theory correspond in the bulk to five-branes with D3-brane charge
wrapping an equator of the S5, in an asymptotically AdS5 × S5 spacetime. The addition
of mass deformations to N = 4 means, in the 10-dimensional type IIB language, turning
on non-normalizable modes of the 3-forms on the S5. Their 7-form duals couple to the D3-
branes which by Myers’ effect [7] polarize into five-branes sitting at a non-zero Anti-de Sitter
(AdS) radius. We will see that this picture for the holographic dual of the N = 1* detailed
by Polchinski and Strassler [6] can indeed be described directly in the supergravity regime.

The construction of the backreacted supergravity solution dual to the vacua of the
N = 1* theory has remained a daunting task since the probe analysis of [6] in the low-
temperature phase of the theory, below the expected Hawking-Page transition in the
canonical ensemble. In this regime, the GPPZ flow [8] obtained in the context of 5-
dimensional gauged supergravity, and its uplift to a 10-dimensional solution of type IIB
supergravity on AdS5 × S5, is a promising candidate for a fully backreacted supergravity
solution that holographically describes a class of vacua of the gauge theory. However, the
5-dimensional GPPZ solution, as well as the corresponding 10-dimensional uplift, contains a
singularity [9, 10]. The origin of this singularity has been studied in detail [9, 11] and has led
to the debate of whether the GPPZ solution actually corresponds to any of the supersym-
metric vacua of the N = 1* theory. Recently, in [11] it was shown that the near-singularity
structure of the uplifted GPPZ solution admits an interpretation in terms of smeared
five-branes along a compact direction of spacetime. Though the existence of five-branes is a
neccessary ingredient, it is still yet to be shown that the GPPZ flow is the holographic dual
to the Coloumb vacua of the gauge theory as described by Polchinski and Strassler [9–12].1

Progress has also been made in the high-temperature phase of the theory, above the
expected Hawking-Page transition. In this regime, Minahan and Freedman [13] argued that
five-branes are not essential since infrared singularities arising from the 3-form perturbation
are hidden behind the horizon, and constructed perturbatively the supergravity solution
involving an asymptotically AdS5 × S5 black hole with spatial horizon topology R3 × S5,
at second order in the mass perturbation m. This solution describes a high-temperature
deconfined vacuum of the gauge theory. Recently, a fully backreacted supergravity solution
of this high-temperature phase was found using numerical techniques [12], whose properties
are in accordance with the perturbative results of [13]. However, ref. [12] already pointed
out that this is not necessarily the only deconfined vacuum of the N = 1* theory in the
high-temperature phase. In fact, their numerical analysis hinted at the existence of a
topological phase transition from horizon topology R3 × S5 to R3 × S2 × S3 mediated by a
Gregory-Laflamme-type of instability. This high-temperature phase with horizon topology
R3 × S2 × S3 admits an interpretation in terms of polarised D3-branes for which there is no
explicit supergravity construction.

The main focus of this paper is in finding holographic duals with R3×S2×S3 topology.
Such supergravity solutions describe massive vacua of the N = 1* theory, and verifying
their existence remains an important open problem as it is key to uncovering various phase

1In section 3 we describe in some detail the supersymmetric vacua of the N = 1* theory following [6].
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transitions in the theory. Our approach, contrary to the DBI probe analysis of [6] at zero
temperature and the analysis of [13] at high temperature, consists in tackling the problem
of finding holographic duals directly in the 10-dimensional supergravity regime. This can
be accomplished by employing a long-wavelength effective theory, known as the blackfold
approach [14, 15], in order to perturbatively construct the supergravity solution. This
method has been used in various holographic contexts to analyze anti-D3 branes at the tip of
the Klebanov-Strassler throat [16] and anti-M2 branes in the Cvetic-Gibbons-Lu-Pope [17]
background, as well as to construct thermal giant gravitons [18, 19], thermalised Wilson
loops [20, 21] in AdS/CFT and find new black holes in AdS spacetime [22, 23]. We provide
various details about the method in section 2. Our goal in this paper is to apply this same
methodology in which D3-NS5 branes are wrapped around an S2 of mass-deformed AdS in
order to perturbatively construct supergravity solutions with R3 × S2 × S3 topology at low
and high temperatures.

The analysis of Polchinski and Strassler (PS) revealed that the supersymmetric vacua of
N = 1* gauge theory are metastable [6]. The same metastability properties were observed
by Freedman and Minahan (FM) in the high-temperature phase [13]. Our method allows
to perturbatively construct these metastable states directly in the supergravity regime.
By wrapping extremal D3-NS5 branes in mass-deformed AdS or in mass-deformed black
D3-brane backgrounds, we show that such solutions are indeed metastable and consistent
with [6, 13]. Yet, similarly to the case of D3-NS5 branes at the tip of Klebanov-Strassler
throat [16], one may wonder about the fate of infrared singularities due to the presence of
brane sources. Bypassing this issue, we in addition consider wrapping non-extremal (black)
D3-NS5 branes in the same backgrounds in order to cloak brane singularities. This allows
us to show the existence of metastable solutions with spatial horizon topology R3× S2× S3,
which are continuously connected to the PS supersymmetric vacua at low temperatures
and to the FM deconfined vacua at high temperatures. Furthermore, metastability is
lost at a critical value of the global entropy in the system, or at a critical value of the
temperature in the high-temperature phase, where two classes of solutions (an unstable
and a metastable) meet. This picture is qualitatively similar to that of D3-NS5 branes in
Klebanov-Strassler [16].

We study the phase diagram of the N = 1* gauge theory in the constant entropy (or
isentropic) and canonical ensembles, including in our analysis known analytic and numerical
solutions as well as the two perturbative solutions found in this work. In particular, we
show that the perturbative solution we construct that is continuously connected to the PS
vacua can dominate the constant entropy ensemble in a specific regime of parameters but
is always subdominant in the canonical ensemble. In the canonical ensemble this solution is
approached at high temperatures, similarly to the GPPZ solution as argued in [12]. In turn,
the second solution we construct that is continuously connected to the FM solution is a black
hole solution with two disconnected horizons which are generically coexisting at different
temperatures. We show that, to leading order in the perturbative scheme we employ, there is
no choice of parameters for which the two horizons are in thermal equilibrium. As such, these
solutions do not have a role to play in the phase diagrams of these ensembles. Our work thus
sheds light on the various phases of N = 1* gauge theory and potential phase transitions.
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This paper is organised as follows. In section 2 we introduce the basics of the blackfold
effective theory applied to the specific supergravity context that we are interested in. In
section 3 we initiate the study of the Polchinski-Strassler construction by embedding five-
brane probes in a perturbed AdS5 × S5 geometry in the presence of fluxes, describing the
low-temperature phase of the theory. In the extremal limit we find that the PS vacua are
consistent with the blackfold equations. In the non-extremal regime, we perturbatively
find stationary solutions to the blackfold equations with horizon topology R3 × S2 × S3

which are continuously connected with the PS vacua. These solutions exist up to a critical
value of the global entropy of the system. At that point, a transition occurs in which the
metastable state merges with an unstable configuration. In section 4 we consider five-branes
on top of the high-temperature deconfined vacuum of the theory. We therefore consider
non-extremal probes on the background of the perturbed black hole geometry of ref. [13],
focusing on the physics far away from the background horizon. In the extremal limit
there is a maximum value for the background temperature that permits the formation of a
metastable state [13] and we find that such a critical value is also present in the non-extremal
regime. For temperatures lower than this critical value, our results are qualitatively similar
to the analysis of the low-temperature phase and we recover a metastable black D3-NS5
configuration. As expected, thermal effects associated with the internal processes of the
bound state dominate the free energy of the probes for sufficiently low, though not arbitrarily
small, background temperatures. We conclude in section 5 with a summary of the results
and a discussion of some of the open questions and future directions.

2 Elements of the effective theory

In this section we review and partly extend the blackfold approach applied to D3-NS5
branes [14–16, 24]. This approach can be viewed as a generalised fluid/gravity corre-
spondence in which one maps the long-wavelength deformations of a (black) brane into a
hydrodynamic system restricted to a higher-dimensional surface of spacetime — the black-
fold. The fluid moving on this submanifold obeys constraint equations that correspond to
necessary (sufficient in all known cases) conditions for the existence of a regular backreacted
solution [25–27] which locally, near the horizon is approximated by a uniform, flat p-brane
solution (in our case the D3-NS5 or D3-D5 bound states) and asymptotically approaches a
given background solution [17, 24] — in this particular case it approaches mass-deformed
AdS5 × S5 which is introduced in section 3.2. Below we discuss the geometry of black
D3-NS5 branes, blackfold constraint equations and thermodynamics of putative solutions.

2.1 Near-horizon solution

Our goal is to construct perturbative solutions of type IIB supergravity that approximate
the mechanism of polarized branes of Polchinski and Strassler for the holographic dual of
the N = 1* theory. We are interested in a sector of solutions which can be obtained in a
long-wavelength (small derivative) expansion of the supergravity equations. One can then
attempt to build an interpolating solution where the near-horizon geometry and fluxes of a
wrapped five-brane are matched with the perturbative backgrounds found in [6, 13].

– 4 –



J
H
E
P
0
4
(
2
0
2
3
)
0
2
1

In order to realise this perturbative scheme within the context of the blackfold approach,
we denote collectively as rb the characteristic scales of the near-horizon solution, while R
and L denote the scales associated with the worldvolume and background fields, respectively.
We are interested in the region of parameter space for which

rb � min(R,L) . (2.1)

The existence of the small parameters rb
R enables a matched asymptotic expansion in which

the near-horizon solution valid at distances r � R is matched to a far-zone (or asymptotic)
background solution valid at large distances r � rb in the overlap region rb � r � R. On
the other hand, the small parameters rb

L ensure that the near-horizon solution of a wrapped
bound state of branes can be approximated at leading order by the solution of the bound
state in flat space. Up to now a general and systematic treatment of matched asymptotic
expansions of this kind is an open problem. Thus, the existence of a regular deformed black
brane solution remains a case-by-case study.

In the particular case we consider here, the corresponding non-extremal, asymptotically
flat D3-NS5 black brane solution of type IIB supergravity obtained by S-duality of the
respective D3-D5 solution, is given in the Einstein frame by

ds2 = (HD)−
1
4

(
−fdt2 +D((dx1)2 + (dx2))2 +

5∑
i=3

(dxi)2
)

+H
3
4D−

1
4 (f−1dr2 + r2dΩ2

3) ,

(2.2)
accompanied by the fields

C2 = − tan θ(H−1D − 1)dx1 ∧ dx2 , B2 = −r2
0 sinh 2α cos θ(φ) sin2 ψ sinωdψ ∧ dω ,

C4 = (H−1 − 1) cothα sin θdt ∧ dx3 ∧ dx4 ∧ dx5 +B2 ∧ C2

(
1 + r2

r2
0 sinh2 α cos2 θ

)
,

e2Φ = HD−1 , (2.3)

where

f(r) = 1−
(
r0
r

)2
, H(r) = 1 +

(
r0
r

)2
sinh2 α , D = (sin2 θH−1 + cos2 θ)−1 . (2.4)

Here and in what follows we set the asymptotic value of the dilaton Φ∞ equal to zero. We
have also expressed the S3 part of the metric using dΩ2

3 = dψ2 + sin2 ψ(dω2 + sin2 ωdφ2).
The parameters r0, α, θ characterize the non-extremal solution and parametrize the thermo-
dynamic quantities of the brane. In the blackfold approach, they are promoted to slowly
varying fields with support on the six-dimensional worldvolume of the brane spanned by
the coordinates σb, b = 0, 1 . . . 5. The extremal solution is recovered by taking the limit

r0 → 0 , α→∞ , (2.5)

in such a way that the combination r2
0e

2α remains fixed. As soon as r0 and θ become
non-zero, the SO(5,1) symmetry of the worldvolume is broken by the introduction of an
entropy flow and the presence of D3 charge. The associated Goldstone modes are encoded
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in the timelike velocity vector field ua and the spacelike orthonormal vector fields va, wb.
The geometry (2.2) sources the gravitational field in the asymptotic region of spacetime
given by the Brown-York stress-energy tensor

T ab = T abδ4(xµ −Xµ) , (2.6)

where

T ab = C
(
r2

0

(
uaub− 1

2γ
ab
)
−r2

0(sinhα)2(sinθ)2(γab−vavb−wawb)−r2
0(sinhα)2(cosθ)2γab

)
.

(2.7)
In (2.7) we have promoted the flat worldvolume metric ηab to a slowly varying induced
metric,

γab = ∂aX
µ∂bX

νgµν , (2.8)

to allow for extrinsic deformations of the brane induced by its embedding Xµ(σa) in the
ambient 10-dimensional background geometry gµν with coordinates xµ. The delta function
in equation (2.6) expresses the localization of the degrees of freedom on the brane. We have
defined C = Ω3

8πG10
where G10 is Newton’s constant in 10 dimensions.

From the point of view of supergravity, D/NS branes are extended charged objects
which can be coupled to the gauge fields of the theory. We may assign to a (stack of)
brane(s) a current for each gauge field under which the brane is charged, sourcing the charge
in the background spacetime. Upon inspection of the fluxes of the solution (2.3) we see
that the D3-NS5 black brane carries the asymptotic higher-form currents

J2 , J4 , j6 . (2.9)

Here, J2 and J4 are electric currents sourcing the gauge fields C2, C4 while j6 is a magnetic
current corresponding to the 3-form H3 of the solution. These currents are formally
computed using the sourced equations of motion of supergravity, in a small r0

r expansion.
When the background into which the brane is embedded has a dilaton that depends on the
brane coordinates transverse to the worldvolume y, i.e. Φ = Φ(y), then the above currents
have to be rescaled appropriately. This can be readily seen from the requirement that
a constant shift of the dilaton is a symmetry of the worldvolume action (see eq. (2.25)
below). Taking this into account, the currents in the Einstein frame read (omitting the
delta functions)

j6 = Ce−
ϕ
2 r2

0 sinhα coshα cos θ(∗1) , (2.10)
J4 = Cr2

0 sinhα coshα sin θ ∗ (v ∧ w) , (2.11)

J2 = Ce−
ϕ
2 r2

0(sinhα)2 sin θ cos θv ∧ w , (2.12)

where ϕ = Φ(Xµ(σ, y)) is the pullback of the dilaton onto the worldvolume. In the above 3
expressions the Hodge dual is taken with respect to the induced metric γab. Moreover, there
is a running dilaton on the worldvolume of the brane to which we associate the current JΦ
with the form

JΦ = jΦδ
4(xµ −Xµ) . (2.13)

– 6 –



J
H
E
P
0
4
(
2
0
2
3
)
0
2
1

Using the sourced equation of motion for a time-independent dilaton we compute

jΦ = −C2 cos2 θr2
0 sinh2 α . (2.14)

For our purposes we also need the energy density ε, local temperature T , and local entropy
density s0 of the brane

ε = Cr2
0

(3
2 + sinh2 α

)
, s0 = 2πCr3

0 coshα , T = 1
2πr0 coshα . (2.15)

Before closing this section, we note that the effective blackfold description of the D3-NS5
system that we consider here is straightforwardly extended to the D3-D5 system since its
thermodynamic quantities are unaffected by S-duality.

2.2 Blackfold equations

Solving the supergravity equations within this perturbative scheme requires satisfying
constraint equations, which determine the blackfold effective theory on the brane. These
equations can be derived in full generality by coupling the supergravity equations of motion
to generic brane sources [24]. Within the context of the matched asymptotic expansion
envisioned here, this derivation is valid in the far-region.

Given the sources of the D3-NS5 bound state, the general leading order blackfold
equations, assuming a vanishing background Ramond-Ramond (RR) scalar field,2 are given
by [24]

∇µTµν = 1
2 F̃

νµ1µ2
3 J2µ1µ2 + e−Φ

6! H
νµ1...µ6
7 j6µ1...µ6 + 1

4! F̃
νµ1...µ4
5 J4µ1...µ4 + jΦ∂

νΦ (2.16)

+ 1
4! (3Hνµ1µ2

3 Cµ3µ4
2 ) J4µ1...µ4 .

Here, the RR field strengths are defined as F̃q+2 = Fq+2 −H3 ∧ Cq−1, Fq+2 = dCq+1 for
q = 1, 3, while the 7-form is given by H7 = ?H3 where the Hodge duality is written with
respect to the background geometry gµν . The equations governing the evolution of the
currents are obtained as Bianchi identities of the type IIB supergravity equations, leading to

d ? J2 +H3 ∧ ?J4 + ?j6 ∧ ?F̃5 = 0 ,
d ? J4 − ?j6 ∧ F3 = 0 , (2.17)

d ? j6 = 0 .

From the point of view of an asymptotic observer in the far-zone region, the continuity equa-
tions (2.16) supplemented with (2.17) constitute the equations of motion for the brane in a
given asymptotic background spacetime in the presence of fluxes, and represent a set of forced
hydrodynamical equations for a fluid moving on a dynamical surface embedded in spacetime.

2For the specific asymptotic backgrounds we consider later in this paper, this assumption is justified in
section 3.2.

– 7 –



J
H
E
P
0
4
(
2
0
2
3
)
0
2
1

We first focus on the relevant conservation equations for the currents. From the last
equation in (2.17) we deduce the conservation of the charge

Q5 =
∫
∗j6 , (2.18)

where the Hodge dual is defined with respect to the worldvolume metric. Since F3 = dC2
the second equation in (2.17) is equivalent to

d (?J4 − (?j6 ∧ C2)) = 0 , (2.19)

implying the conservation of the Page 3-charge

Q̃3 =
∫
∗(J4 + ?(?j6 ∧ C2)) . (2.20)

The quantization conditions [28] for the charges (2.18), (2.20) imply that they must be
proportional to the total number of NS5 and D3 branes respectively, i.e.

Q5 ∼ N5 , Q̃3 ∼ N3 . (2.21)

The proportionality constants will be fixed in section 3.3 and are related to the tension of
each of the coincident NS5 and D3 branes, respectively.

2.3 Equilibrium partition function

The long-wavelength effective theory of black branes maps the thermal excitations of the
brane to an effective relativistic fluid on a dynamical surface. To write an action for a
relativistic fluid in a general supergravity setting is a non-trivial task. When restricting to
stationary configurations, however, the situation becomes tractable. We thus assume the
existence of a background killing vector kµ whose pullback onto the worldvolume we denote
by ka. Following [15], we combine the asymptotic quantities of the D3-NS5 system to
formulate a variational problem for the transverse fluctuations of the brane, after integrating
out its intrinsic degrees of freedom. Thus, one seeks an equilibrium action — also known as
equilibrium partition function in the context of relativistic fluids — that can produce the
sources of the brane via a variational principle. The solutions of the equations of motion
derived from this action must reproduce the correct equilibrium configurations. Such an
action has already appeared in [16] and here we slightly generalize it to include all the
sources of the D3-NS5 system as well as the running of the dilaton along the lines of [24].

The unknown fields which can not be determined from the sole assumption of station-
arity are the horizon radius r0, the non-extremal degree of freedom α, the field θ controlling
the D3 charge embedded in the five-brane and the transverse scalars. For the case studied in
this paper we focus on a single transverse scalar, though the generalization is straightforward
to multiple transverse scalars. The blackfold equations for the currents provide 2 global
conserved charges which constrain the variations of the system. To have a well-defined vari-
ational problem we need an additional global charge. This is accomplished by specifying the
statistical ensemble that we shall use and by fixing the associated thermodynamic quantity.

– 8 –
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A peculiar property of the D3-NS5/D5 system is the non-vanishing of its temperature
as a direct consequence of the limit (2.5), as can readily be seen from (2.15) and noted
in [16]. Since the global temperature T is given by T = |k|T ,3 in the extremal limit it is
a function of the transverse scalar(s) and consequently of the solution. This makes the
constraint of fixed temperature unsuitable for those trajectories in the phase space with
the appropriate extremal limit. Nevertheless, by looking at (2.15) we see that the entropy
density (and thus the global entropy) does vanish when we apply the limit (2.5). Therefore,
we proceed to work in an ensemble for which the global entropy

S =
∫
B5

√
−γ s0
|k|

, (2.22)

is kept fixed, where we have defined the spatial part of the brane worldvolume such that
M6 = R×B5. That is, we let entropy flow into the system and consider the system at fixed
entropy/horizon area. In this constant entropy ensemble the quantity to be extremized
is the total energy E = E(S) of the system, as we will show later in this section. By
considering 2 systems in thermal contact in the constant entropy ensemble and following
standard statistical arguments, we trivially find that one of the conditions of equilibrium is
given by the equality of the respective temperatures, i.e.

∂E

∂S
|1 = ∂E

∂S
|2 ⇒ T1 = T2 , (2.23)

where the subscripts “1,2” label the two different systems.
The structure of a hydrodynamic theory is determined by the global symmetries that

the flow possesses. These symmetries are materialised as conservation laws. Defining
J̃4 = J4 + ?(?j6 ∧C2), we observe that the D3-NS5 system for a large4 class of supergravity
backgrounds possesses the conservation laws

d ? J̃4 = 0 , d ? j6 = 0 . (2.24)

The conserved global charges arising from here, as we saw previously with purely supergravity
arguments, count the number of D3 and NS5 branes enclosed by 6-dimensional and 4-
dimensional surfaces, respectively. For another choice of the background or beyond the
leading order analysis considered here, the above conservation laws can be modified by
terms inducing a mixing between them. In the language of [29], we are facing a structure of
generalized global p-form symmetries. In this context, one searches for a symmetry-based
formulation of a hydrodynamic theory whose underlying microscopic degrees of freedom
are bound states of D3 and D5/NS5 branes, generalizing previous works [30]. At the very
least, this requires the definition of an operation — an appropriate product — between 2
higher form symmetries of respective degrees p and p+ 2, corresponding to conservation
laws for the higher-spin currents (in our case, these currents are J̃4, j6). The resulting

3This the expected definition from the fluid point of view and can be derived by varying the action, see
eq. (2.36).

4These conservation laws hold for supergravity backgrounds for which the general analysis of [24] reduces
to eqs. (2.17).
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structure is another example of a kind of higher-group symmetry [31] arising in the context
of supergravity.

Let us consider the coupling of each of the p-form and (p+2)-form symmetries to
background gauge fields, for the case p = 3. For the specific supergravity setting we will
consider, these gauge fields are phrased as a 6-form B̃6 (see below) coupled to the five-branes
as well as the usual RR 4-form C4 coupled to the D3 branes. Note that we will not attempt
a general treatment of the product structure outlined above. Rather, we will focus on the
simplest possible case for which there is no mixing in the transformations of the gauge fields
and restrict our attention to stationary configurations. The worldvolume effective action
we write must reproduce the conservation laws (2.24) via the requirements of background
gauge invariance.

Taking into account all the above considerations, the action of the D3-NS5 black brane
in equilibrium under variations that keep entropy fixed is given by

I =
∫
M6

√
−γε−Q5

∫
M6

P [B̃6]− Q̃3

∫
M4

P [C4] , (2.25)

extremized under constant global charges Q5, Q̃3. With the symbol P we denote the pullback
of the background gauge potentials onto the worldvolume. For the 6-form we defined

B̃6 = B6 − C2 ∧ C4 , (2.26)

where B6 is introduced via

dB6 = e−Φ ? H3 + C4 ∧ F3 . (2.27)

In what follows, we split the worldvolume into 2 submanifolds M‖ = M4, M⊥ with respect
to the directions parallel and transverse to the D3 branes, denoted for later convenience as
t, x, y, z and ω, ϕ respectively. Concentrating on stationary configurations, the velocity can
always be aligned with a timelike Killing vector ka and be expressed as ua = ka

|k| [32]. In
addition we assume that the 1-forms v, w are given by a standard stationary ansatz which
aligns each of them with the 2 transverse directions (see (3.20)). Notice though that this is
not the most general ansatz for stationary D3 branes inside the NS5. Let us in addition
define γab⊥ = vavb + wawb. It is then straightforward to compute the complete variation of
the action (2.25). The vanishing of the variation of the global entropy δS = 0 implies

1
2(γab + uaub)δγab + 3δr0

r0
+ δ(coshα)

coshα = 0 . (2.28)

Given the variation of the field θ obtained from the contraint of constant global charge Q̃3

δ(tan θ) = −δC2ωϕ√
γ⊥

e−
ϕ
2 − γab⊥ δγab

2 tan θ − tan θ δϕ2 , (2.29)
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for the first term in (2.25) we find

δ

(∫
M6

√
−γε

)
=
∫
M6

√
−γ
2 C

(
r2

0
2 γ

ab − r2
0u

aub − r2
0 sinh2 α sin2 θγab⊥ + r2

0 sinh2 αγab
)
δγab

−
∫
M6

√
−γ

(
1
√
γ⊥
Q5Φ3

)
δC2ωϕ +

∫
M6

√
−γ

(
C

2 r
2
0 sinh2 α cos2 θ

)
δϕ ,

(2.30)

where we defined Φ3 = sin θ tanhα and for future convenience we also define Φ5 =
cos θ tanhα. Varying the last 2 terms of the action (2.25) one trivially finds

δ

(
−Q5

∫
M6

P [B̃6]
)

= −
∫
M6

√
−γ

(
Q5√
−γ

)
δ(B̃6tx...ωϕ) , (2.31)

and
δ

(
−Q̃3

∫
M4

P [C4]
)

= −
∫
M6

√
−γ

(
Q̃3√−γ‖

)
δC4txyz , (2.32)

where in the last equality we defined the 3-charge density such that∫
M⊥

√
γ⊥Q̃3 = Q̃3 .

Adding equations (2.30), (2.31), (2.32) we find that the complete variation of the action (2.25)
is given by

δI =−
∫
M6

√
−γ

(1
2T

abδγab+jϕδϕ+Jωϕ2 δC2ωϕ+J̃ txyz4 δC4txyz+jtx...ωϕ6 δB̃6tx...ωϕ

)
, (2.33)

as required. Demanding the action to be invariant under the gauge transformation

δB̃6 = dλ5 , (2.34)

for an arbitrary 5-form λ5 we find upon partial integration that the current j6 is conserved.
Similarly, from the invariance of the action under the gauge transformation

δC4 = dκ3 , (2.35)

for an arbitrary 3-form κ3 we get as a consequence the conservation of the modified current
J̃4. Moreover, we may obtain the temperature of the black brane using the variational
principle

TNS5 = 1√
−γ

δI

δS
= T |k| . (2.36)

As it will be relevant for later parts of this paper, we note that one may move to the
canonical ensemble via a Legendre transformation

IT = I −
∫
M6

√
−γs0T . (2.37)

This action should be extremized under constant global temperature T and charges Q̃3, Q5.
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Smarr relation. We now proceed to derive the remaining global conserved charges of
the stationary D3-NS5 configurations described previously. The total energy of the D3-NS5
black hole is the conserved charge associated with the differomorphism invariance of the
worldvolume effective action along the timelike Killing direction. The corresponding local
conserved current reads

Pµk = Tµνkν + 1
2!J

µν
2 C2λνk

λ + 1
4! J̃

µµ1µ2µ3
4 C4λµ1µ2µ3k

λ + 1
6!j

µµ1...µ5B̃6λµµ1...µ5k
λ . (2.38)

In fact, the above expression is valid for an arbitrary killing vector kµ [30]. Equivalently,
one may derive (2.38) by combining the equations of motion (2.16), (2.17). For a timelike
killing vector kµ, and defining the unit vector normal to a constant time-slice of spacetime
as ηµ = kµ√

−gtt , the total energy is given by

E =
∫
B5
dV5P

µ
k ηµ , (2.39)

where dV5 is the volume form along the spatial part of the worldvolume. Evaluating the
formula above for the configurations of interest we obtain

E =
∫
B5

√
−γε−Q5

∫
B5
P [B̃6]−

∫
B5
Q̃3
√
γ⊥P [C4] . (2.40)

Upon (minus) Wick-rotating and integrating the Euclidean time over a period β = 1
T , we

observe that extremizing the action (2.25) is equivalent to extremizing the total energy of
the system, as previously mentioned.

In order to extract the potentials conjugate to the charges Q̃3, Q5 we may again use
the action (2.25). The variational definition reads

Φ̃D3 = δI
δQ̃3
|S,Q5 , ΦNS5 = δI

δQ5
|S,Q̃3

, (2.41)

where we defined the Wick-rotated action such that I = (−iβ)I. Calculating the variations
explicitly, we arrive at

Φ̃D3 =
∫
B5

Φ3
√
−γ∫

M⊥

√
γ⊥
−
∫
B3
P [C4] , (2.42)

ΦNS5 =
∫
B5

√
−γΦ5 −

∫
B5

√
−γΦ3

∫
M⊥

P [C2]∫
M⊥
√
γ⊥
−
∫
B5
P [B̃6] . (2.43)

It is easy to see that the following identity holds

E − Φ̃D3Q̃3 − ΦNS5Q5 =
∫
B5

√
−γ 3

2Cr
2
0 = 3

2TS . (2.44)

Given the above identity, we arrive at the Smarr relation

E = 3
2TS + Φ̃D3Q̃3 + ΦNS5Q5 , (2.45)

in agreement with the one obtained in [33].
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3 Non-extremal five-branes in mass-deformed AdS5 × S5

In this section we discuss the classification of supersymmetric vacua of the N = 1* theory
following [6]. This is followed by introducing the perturbative background of mass-deformed
AdS5 × S5, which is the starting point for constructing supergravity duals to the various
vacua. At the end of this section we explicitly solve the blackfold equations for non-extremal
D3-NS5 branes in this background, giving evidence for the existence of black holes with
R3×S2×S3 horizon topology. We also study the metastability properties of these solutions.

3.1 Polchinski-Strassler vacua

The field content of N = 4 with gauge group SU(N) consists of 6 scalars, 4 Weyl fermions
and 1 vector, all transforming in the adjoint representation of SU(N). In the language of
N = 1 the fields are organized in a vector multiplet V containing the vector Aµ and the
gaugino ψ4, as well as three chiral multiplets Φi of the form

Φi = (ψi, ϕi) , i = 1, 2, 3 , (3.1)

where ϕ are 3 complex scalars. We obtain the N = 1* theory by adding to the superpotential
diagonal mass terms for the chiral multiplets, which upon a rescaling of the fields can always
be parametrized by one parameter, namely

δW = mijTr(ΦιΦj) , mij = mδιj . (3.2)

The vacuum structure of this theory has been extensively studied [5, 11, 34, 35]. Varying
the classical superpotential yields the F-term equations for the vacua

[ϕι, ϕj ] = −mεijkϕk . (3.3)

For gauge group SU(N) the solutions of the above equations are given by N-dimensional,
generically reducible, representations of SU(2). Each vacuum is therefore specified by a
partition of N according to ∑

d

dkd = N , (3.4)

where the dimension of an irreducible representation is denoted by d and the non-negative
integer kd counts the frequency of its appearance in the partition. The simplest solutions
to the above equation correspond to the case for which there is no summation, such that
kd = N

D for some divisor D of N. These vacua preserve an SU(kd) gauge group classically,
while quantum-mechanically they split into kd distinct vacua with completely broken gauge
group, exhibiting a mass gap [5]. We will refer to them as the massive vacua. Among
them one distinguishes the Higgs vacuum, corresponding to the unique N-dimensional
representation (kd = 1), as well as the vacuum with kd = N which at the quantum level
splits into the N confining vacua. On the other hand, vacua obtained via a partition of N
with more than one term in (3.4) will always contain at least one unbroken U(1) gauge
factor and are thus Coulomb vacua.

– 13 –



J
H
E
P
0
4
(
2
0
2
3
)
0
2
1

For the holographic description of the field theory vacua Polchinski and Strassler,
inspired by the work of Myers on the effective action of non-abelian D-branes [7], proposed
a mapping to configurations of D3 branes polarized into five-branes, in an asymptotically
AdS5 × S5 spacetime. The scalars transverse to the worldvolume of the brane correspond
to the field theory scalars ϕι. According to (3.3) the D3 branes are non-commutatively
expanded to form spherical shells [7]. The polarization process is triggered by the addition
of mass deformations to N = 4 which on the gravity side amounts to turning on 3-form
perturbations on the S5. Their 7-form duals couple to the D3 branes, forcing them to
expand and wrap an equator of the S5, effectively formulating an Abelian five-brane with
D3 brane charge in the static configuration R1,3 × S2. More precisely, the holographic
prescription of [6] maps the vacua of the field theory to the partition of the total D3 charge N
into spherical shells each carrying a D3 charge N3,I and (pI , qI) five-brane charges, where pI
and qI are the numbers of NS5 and D5 branes carried by the I shell, respectively. We have∑

I

N3,I = N . (3.5)

In order for the above partition to be a viable analogue of (3.4) on the gravity side one
has to go beyond the probe level and move a number of order N of D3 branes, from the
AdS origin all the way to an expanded shell at a different location in the throat. To this
end, an important observation is the fact that the potential felt by a probe is independent
of the warp factor encoding the distribution of the D3 charge in directions transverse to
the worldvolume, and thus remains unaltered when the brane lives in the background
sourced by one or multiple shells in the configuration R1,3 × S2. This suggests that each
of the expanded shells in (3.5) minimizes its own potential and can be placed at a different
non-zero AdS radius. Therefore, a generic massive vacuum preserving classically an SU(p)
gauge symmetry is described by a single fully-expanded shell made out of p coincident D5
branes each carrying a D3 charge q, such that N = N3 = pq. This stems from the property
of (curved) D-brane physics according to which k coincident branes give rise to a low energy
field theory with an enhanced SU(k) gauge symmetry. It was furthermore argued in [6]
that these vacua have an equivalent description in terms of q NS5 branes each carrying D3
charge p.5 On the other hand, distributions of brane sources arranged in multiple shells
across the AdS radial coordinate correspond to a partition of N with multiple terms in (3.5)
and are expected to be associated with the holographic description of the Coulomb vacua.

Focusing on a single shell of NS5 or D5 kind, the effective supergravity description of
the brane configuration we employ here is meaningful in the regime N5, N3 � 1, where the
number of coincident five-branes is denoted by N5 from now on, whenever the hierarchy
of scales (2.1) can be achieved. Concentrating on the NS5 case for clarity, we search for
solutions which asymptote for large values of the radial coordinate to the perturbative
background of [6, 13] and whose near-horizon geometry and fields are given in (2.2) at zeroth
order in the small derivative expansion. The matching of the 2 geometries in this long-
wavelength regime is provided by a set of 6-dimensional differential equations (2.16), (2.17).

5We note that there are puzzling issues associated with the precise mapping of brane configurations to
field theory vacua [36], which however do not change the essence of our discussion here.
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In sections 3.3 and 3.4 we will see that in the extremal limit there exist stationary solutions
in agreement with the DBI results of [6], while in the non-extremal regime these solutions
exist until a critical value of the horizon area. Our matched asymptotic expansion scheme
shares certain qualitative features with the interpolating metric proposed in [6], though
the crucial difference is that here the matching is by construction in agreement with the
supergravity equations, including all the supergravity fields. The price to be paid is that
we must start with a thin five-brane shell satisfying N3 � N and perturbatively correct the
solution in powers of N3

N . Note that in the planar limit such a perturbative expansion is
indeed possible. The foregoing discussion also implies that the Higgs vacuum corresponding
to a single D5 brane (N5 = 1), as well as the confining vacuum realized by a single NS5
brane, can not be directly embedded in the blackfold approach.

An interesting limiting behaviour of (3.4) is obtained in the regime of multiple spherical
stacks of five-branes. There exists classes among those brane configurations whose generic
building block is a thin enough shell and thus can be associated to the type of solutions
we are considering in this work. The significance of these solutions is reinforced by the
symmetric cancellations of interactions between distinct shells emerging from [6], suggesting
that each shell can be treated independently. We note, however, that such a statement
has to be checked using the explicit extremal solution obtained after taking into account
the backreaction of the brane on the geometry and the fluxes, and does not hold once
temperature flows into the system. In the limit of very large N →∞ one could view the
dimension of the representation d as a continuous variable x and assign to it a smooth
distribution k(x). Equation (3.4) can then be written as∫ ∞

0
xk(x)dx = 1 . (3.6)

A natural realization of this limiting behaviour can be provided in the gravity side by
mapping x to some spacetime coordinate ω, x = f(ω). In [11] strong evidence was presented
for the appearance of a continuous distribution of five-branes with D3 charge in the near-
singularity structure of the uplifted GPPZ solution. The existence of this collection of
five-branes smeared across a (periodic) direction of spacetime, along with the expected
screening behaviour of probe strings extended in the geometry, supports the claim of [11]
that the solution in [9, 10] can be dual, for a given regime of parameter space, to a set of
Coulomb vacua of the gauge theory.

The complexity of finding supergravity solutions that realize the mechanism envisioned
by Polchinski and Strassler can be understood by looking at symmetries. The N = 4 theory
possesses an SO(6) ∼ SU(4) R-symmetry which rotates the fields one into another. This
corresponds on the string side to the isometries in the S5. In N = 1 notation, the symmetry
is already reduced in the ultraviolet to SU(3)×U(1). The introduction of 3 equal masses
results in the breaking SU(3)×U(1)→ SO(3).

In the gravity side, spoiling the R-symmetry with the mass terms (3.2) means that all
supergravity fields generically obtain angular dependence and require the implementation
of an at least cohomogeneity-3 ansatz, a fact that makes the construction of exact solutions
directly in 10 dimensions a difficult task at the present time. This observation further
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motivates the adoption of blackfold methods towards the construction of explicit perturbative
solutions describing the backreacted Polchinski-Strassler branes, which we will pursue below.

3.2 Background geometry and fluxes

In this section we introduce the mass-deformed AdS5 × S5 background. The geometry
sourced by any distribution of N D3 branes aligned in the µ directions is given by

ds2 = Z−
1
2 ηµνdx

µdxν + Z
1
2dymdym, µ, ν = 0, 1, 2, 3 , (3.7)

where r2 = ymym and Z any harmonic function of the transverse coordinates ym. The
solution of the type IIB equations of motion also contains the field strength

F5 = dχ4 + ?dχ4 , χ4 = 1
gsZ

dt ∧ dx1 ∧ dx2 ∧ dx3 , (3.8)

while the dilaton is trivial such that eΦ = gs. The 0-form RR potential (axion) C0 is equal
to a constant, which we choose to be zero without loss of generality. For the choice

Z(r) = L4

r4 , L4 = 4πgsNα′2 , (3.9)

we recover AdS5 × S5 with all the D3 branes lying at the origin r = 0. This solution forms
the seed of the perturbative supergravity background into which the expanded branes are
embedded and receives corrections weighted by positive powers of m

r , where m is the mass
parameter and treated as a perturbation. The first order correction comes from the 3-form
dual to the mass deformation of the gauge theory

G3 = −
√

2
gs
L4d

( 1
r4S2

)
, S2 = 1

2Tmnpy
mdyn ∧ dyp . (3.10)

Here Tmnp is a constant, totally antisymmetric and anti-self dual tensor encoding the
masses of the fermions. In standard complex coordinates parametrizing the transverse
space, it reads

T3 = m
(
dz1 ∧ dz̄2 ∧ dz̄3 + dz̄1 ∧ dz2 ∧ dz̄3 + dz̄1 ∧ dz̄2 ∧ dz3

)
. (3.11)

The backreaction of the 3-form G3 brings m2 corrections to all the fields and in [13] these
corrections were analytically calculated. Setting T = 0 in the formulae derived in [13]
we obtain the expressions for the corrected geometry and field strengths to second order.
This is the background that constitutes the ultraviolet boundary condition for the class of
solutions we are constructing here. The mass-deformed geometry has the form

ds2 =
(
Z−

1
2 (r) + h(r)

)
(ηµνdxµdxν) + Z

1
2 (r)gmndxmdxm, µ, ν = 0, 1, 2, 3 , (3.12)

where h(r) = h0 = 7
24m

2L2 and gmn = δmn + O(m2). We note that the second order
corrections to the transverse geometry contribute with higher order terms in the charge/mass
expansion of the action (2.25) and for the most of this work will be neglected. This is also
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the case for the O(m2) corrections to the axion/dilaton. The relevant components of the
corrected 4-form potential are given by

C4 =
(

r4

L4gs
+ r2m2

12gs

)
dt ∧ dx ∧ dy ∧ dz . (3.13)

Let us now comment on the validity of the effective description we employ for the
D3-NS5 system in the background just outlined. The scales associated with the NS5 and
D3 charge are rNS5 ∼

√
N5
√
α′ and rD3 ∼ (gsN3)

1
4
√
α′. A generic requirement arising

from (2.1) comes from the 3-form G3 which is dual to the mass perturbation of the gauge
theory, and whose norm scales as

|G3| ∼
3L
2gs

m

r
+O

(
m3

r3

)
. (3.14)

The 3-form possesses an infrared singularity which for the Polchinski-Strassler (PS) back-
ground is unavoidable and makes the introduction of the brane sources essential to interpret
it by replacing it with an expanded five-brane. Requiring

rNS5 � |G3|−1 , rD3 � |G3|−1 , (3.15)

we deduce that solutions derived from the action (2.25) can not be trusted as r → 0. Far
from this region of spacetime, the characteristic length scale of the background and, for a
static embedding, of the worldvolume geometry, is the AdS radius L. Thus we must satisfy

N5 �
√
gsN , N3 � N . (3.16)

For sufficiently large gsN i.e. in the necessary regime for supergravity to be valid, we can
always satisfy these inequalities. We moreover note that for the configurations of interest
r ∼ mN3

N5
α′ and then (3.15) implies N3

N5
� N

1
4 .

A related issue concerns the zero temperature limit of our solutions. As discussed in
section 2.3 the local temperature of the brane (see eq. (2.15)) does not necessarily vanish
when we take the limit (2.5). However, we can make it vanish by sending N3 to infinity
and paying the cost of violating the validity regime (3.16). At the same time, for a PS
massive vacuum this is just the planar limit. The point here is that we approximate the PS
massive vacua by starting from an “ultra-thin” (or high-temperature) regime and iteratively
moving towards a fully-expanded shell of zero temperature. As a useful analogue consider
constructing, using the same perturbative scheme, a Myers-Perry black hole starting from
the ultra-spinning regime and iteratively approaching the non-spinning (Schwarzschild)
case [37, 38].

3.3 Ansatz for stationary solutions and extremal limit

In this section we make explicit the type of solutions of (2.16), (2.17) we consider and show
that their extremal limit is in agreement with the DBI results of [6].

We parametrize the 6-dimensional transverse space with metric gmn using standard
spherical coordinates which are the radial coordinate r and the 5 angles κ, λ, ψ, ω, ϕ on the
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S5. The five-branes are embedded in (3.12) in such a way that they wrap an equator of the
S5. Working in the static gauge we set

r=R, σ0 = t, σ1 = x1, σ2 = x2, σ3 = x3, σ4 = ω, σ5 =ϕ, κ= λ=ψ= π/2 ,
(3.17)

and the induced metric becomes

γabdσ
αdσb =

(
R2

L2 + h0

)(
−dt2 + (dx1)2 + (dx2)2 + (dx3)2

)
+L2(dω2+sin2 ωdϕ2+O(m2)).

(3.18)
In this section and for the rest of this paper we exploit the scaling symmetries of the

equations of motion to set the asymptotic value of the dilaton equal to zero and consider
the D3-NS5 and D3-D5 cases simultaneously.

The unknown degrees of freedom of the D3-NS5 black brane that we are searching
for are now treated as follows. The intrinsic degrees of freedom are given by the set of
worldvolume fields ua, va, wa. The requirement of stationarity imposes strict constraints
on the form of these fields. On general grounds, we can align the velocity field with the
timelike killing vector k = kµ∂µ = ∂t, such that

u = ua∂a = 1√
R2

L2 + h0
∂t . (3.19)

Analogously, we employ a stationary ansatz for the 1-forms v, w so that they are aligned
along the directions of the S2, i.e.

va∂a = 1
√
γωω

∂ω , wa∂a = 1
√
γϕϕ

∂ϕ . (3.20)

Projecting equation (2.16) onto the worldvolume, we arrive at the intrinsic equations

∇aT ab = 0 . (3.21)

It is a trivial exercise to verify that equation (3.21) is automatically satisfied using the
ansatz (3.19), (3.20). On the other hand, the projection of equation (2.16) onto the direction
r transverse to the five-brane is given by

Kab
rT ab = 1

2F
ra1a2
3 J2a1a2 + e−Φ

6! H
ra1...a6
7 j6a1...a6 + 1

4! F̃
ra1...a4
5 J4a1...a4 + jΦ∂

rΦ , (3.22)

where Kab
r are the components of the second fundamental tensor (extrinsic curvature) along

the transverse direction r. The dynamical degrees of freedom, namely the horizon radius
r0, the non-extremality field α, the field θ and the transverse scalar R are now determined
by the equations (3.22) and (2.17), supplemented with the constraint of constant global
entropy. Notice that the conserved charges (2.18), (2.20) stemming from (2.17) combine to
provide us with a global solution for θ via

tan θ = e−
ϕ
2

(
Q̃3
Q5

1
4πL2 + 3m

2RL
2
)
. (3.23)
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Extremal limit. For clarity, we choose to work directly with the action (2.25). Its
extremal limit is given by

I = Q5

∫
M6

√
γe

ϕ
2

√
(1 + tan2 θ)−Q5

∫
M6

P [B̃6]− Q̃3

∫
M4

P [C4] , (3.24)

where the field θ is given in (3.23). This action has the same form as the DBI action, upon
identifying the proportionality constants in (2.21) as follows

Q5 = N5
(2π)5α′3

, Q̃3 = N3
(2π)3α′2

. (3.25)

A crucial ingredient of the PS solution is the existence of a small parameter effectively
proportional to the flux G3. This small parameter enables a treatment of the system as
a perturbation of the Coulomb branch of the parent N = 4 theory (3.7), (3.8), and is
translated to the dominance of the D3 charge density. Thus, in order to treat the mass as a
perturbation in the far-zone one has to consider the regime where the five-brane charge is a
perturbation. In our setting this means that we have to consider the regime

c = Q̃3
4πL2Q5

� 1 . (3.26)

Here c represents the ratio of the effective D3 charge density to the fivebrane charge density.
In the extremal limit we should recover a supersymmetric confuguration. The expansion

parameter that supersymmetry “sees” during the probe calculation is then ε ∼ 1
c . Inserting

into (3.24) all the necessary data and expanding with respect to ε we find

I

4πV Q5
= 2πQ5

Q̃3
R2
(
R−m Q̃3

4πQ5

)2

, (3.27)

where V is the volume of the 4 Minkowski directions. In this way we recover the Polchinski-
Strassler potential for NS5 shells in the configuration R1,3 × S2 directly in supergravity.
There are 2 non-zero equilibrium configurations, one stable

Rmin = m
N3
N5

πα′ , (3.28)

and one unstable Rmax = Rmin
2 . One of our main purposes is to examine the metastability

of the vacuum (3.28). It is straightforward to check that the extremal limit of (3.22), (3.23)
faithfully reproduces the equations of motion derived by the DBI action in [6].

3.4 Moving away from extremality

Having established the consistency of the Polchinski-Strassler polarized branes with the
blackfold equations, we now move to the non-extremal case. Using (2.15) the action can be
written

I = Q5

∫
M6

√
−γe

ϕ
2

√
(1 + tan2 θ)G(α)−Q5

∫
M6

P [B̃6]− Q̃3

∫
M4

P [C4] . (3.29)
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Here, the function G of the field α is equal to

G(α) = 3 + 2 sinh2 α

2 coshα sinhα , (3.30)

and encodes the information about the thermally excited worldvolume of the five-brane. In
turn, the off-shell constraint of constant global entropy leads to

sinh8 α+ sinh6 α = E(R)6(1 + tan2 θ)3

Ŝ4
, E(R) = R2

L2 + 7m2L2

24 , (3.31)

where Ŝ is a conveniently normalized entropy, given by

S = a2Ŝ = V3
A(N,N5)

L3 Ŝ , A(N,N5) =
√

2N
5
4N

3
2

5 π
− 7

4 , (3.32)

and V3 is the volume of the spatial Minkwoski directions. The field θ controlling the D3
charge transferred to the five-brane is given by (3.23). In order to analytically solve the
system for r0, α, and R, it is inevitable to recur to perturbative methods. It is desirable
that our small parameter vanishes at extremality. Since the holographic duals of the field
theory vacua are zero entropy limits of (collections of) the non-extremal D3-NS5 black
branes, we consider a regime of small entropy, which can be thought of as a near-extremal
regime. Any quantity of interest will be expressed as a series in powers of the entropy.

Using (3.23), (3.31) we compute

G(α) = 1 + Ŝ

E(R)
3
2 (1 + tan2 θ)

3
4
− 1

8
Ŝ2

E(R)3(1 + tan2 θ)
3
2

+O(Ŝ3) . (3.33)

Defining in particular the density s = S
V3
, the entropy corrections to the extremal polarized

branes can be written as a series in powers of the dimensionless ratio s
m3 , whose coefficients

are functions of N3, N5 and N . In the solutions derived below we focus on the dominant
coefficients in the regime where c is large. With the result (3.33) at our disposal and
substituting all the necessary data into the equation of motion (3.22) derived from the
action (3.29) we find the following 2 solutions

Rmax = mcL2

2

(
1 + s

m3
4
Ac

5
2

+O(s2)
)
, (3.34)

Rmin = mcL2
(

1− s

m3
1
Ac

5
2

+O(s2)
)
. (3.35)

Clearly, these correspond to the thermally-corrected PS solutions for the unstable maximum
and the metastable minimum. When setting S = 0 we recover the results of Polchinski
and Strassler [6] given already in (3.28) and below. Both solutions have horizon topology
R3 × S2 × S3. We observe that the dominant effect is that the 2 extrema approach each
other. The existence of the stable solutions (3.35) which are continuously connected with
the PS polarized branes constitutes strong evidence in favour of the claim that the PS
vacua are not gapless, but persist to exist as temperature flows into the system and are thus
metastable. In fact, there exists a critical value of the entropy until which the metastable
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Figure 1. a) Effective potential for a choice of parameters such that c = 10, where for illustrative
reasons we pick m so that the non-zero extremal minimum is located at one in L = 1 units. The
black dots represent the non-trivial extrema. The purple curve captures the potential felt by the
brane for a value of the entropy close to the critical one. b) Plot of the ratio d comparing the scale
associated to the Schwarzschild radius with the radius R set by the equations of motion of the
brane, as a function of the non-extremality parameter α, for the choice c = 30 and keeping the same
convention for the mass perturbation as in 1(a).

state survives. We can give an estimation of the critical entropy by locating the value of
the transverse scalar for which the 2 extrema collide. We find

Ŝ∗ ≈ η(mL)3c
5
2 , η = 0.0962 . (3.36)

We may use the expression for the function G(α) (3.33) to determine the entropy
corrections because of the thermalization of the D3-NS5 system in the PS background
directly in the effective potential VS = I

4πQ5V4
. Observe the main modification that the

presence of a non-zero brane horizon brings to the probe potential. At non-zero S the
leading terms in the charge expansion do not cancel, giving rise to the dominant entropy
correction (3.27)

∆V = Ŝ
RL√
c
. (3.37)

An analogous effect due to the presence of a non-zero background horizon was also observed
in [13]. For concreteness, in figure 1(a) we show the plot of the effective potential keeping
only the dominant correction (3.37).

Conclusively, in all cases we considered in the regime where the D3 charge dominates we
encountered the same pattern: as we turn the entropy on the metastable vacuum continues
to exist, gets lifted and moves towards the unstable maximum. Further raising the entropy
results in a collision of the 2 extrema at a critical value of the entropy. The dominant term
in the expansion of this quantity is given in (3.36). Right after the merger, the metastable
state is lost. The picture emerging from this analysis is qualitatively similar with that of
non-extremal antibranes at the tip of the Klebanov-Strassler throat in ref. [16], though here
there are certain differences which we comment below.

A clear difference concerns the mechanism responsible for the loss of the metastable
state. To investigate this issue we introduce a quantity which can give us information
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regarding the physics near the transition point. A measure of the thickness of the black
D3-NS5 state can be defined as

d = 2ls

√
n CQ5

r0

R
, (3.38)

where n = N3
N5

, comparing the scale of the Schwarzschild radius of the black hole with the
conformal radius R of the NS5 shell. In figure 1(b) we depict this ratio using the equations
of motion as a function of the non-extremality parameter α.

The black line captures the metastable branch while the orange one corresponds to
the evolution of the unstable vacuum. We observe that as we thermalize the system the
Schwarzschild radius of both states grows, while throughout the process the values of d are
always bounded from above. In the terminology of [17] we may interpret the transition point
as a thin-thin merger between 2 black holes. This is in contrast with the results of [16] where
the metastable state was lost via a thin-fat merger driven by the properties of the horizon.

We end this discussion by noting that the analysis presented here allows us to ascertain
the existence of a black hole in mass-deformed AdS5 × S5 with spatial horizon topology
R3 × S2 × S3. These configurations are continuously connected to the PS vacua by sending
S → 0 and are thus the first example of this type of solutions directly constructed in
10-dimensional supergravity. However, one should note that these solutions are perturbative,
and higher-order corrections would need to be included in order to describe exactly a class
of PS massive vacua [6]. We also note that our solution is able to hide potential infrared
singularities (due to brane sources, see (3.14)) behind the horizon when S 6= 0. We will
describe further features of these black holes in the next section.

Energy and first law. The black hole solution we are considering is characterized by the
parameters m,L,N3, N5. For fixed L (or, at leading order in N3

N , for fixed N) one expects
on-shell a first law of the form

δE = TδS + λδm+ µ3δN3 + µ5δN5 , (3.39)

where λ is the conjugate variable to the mass perturbation m and µ3, µ5 are the chemical
potentials corresponding to N3, N5. For fixed N3, N5 we recover the first law already
written in [12, 39]. It should be noted that one expects the total five-brane charge of the
solution to be zero, so that the conserved charge density Q5 and the associated conserved
number N5 actually correspond to a dipole charge. At the same time, the total D3 charge
of the solution at leading order is N . Once the fields are corrected in the far-zone, it is
likely that this quantity receives N3

N corrections.
As noted in section 2.3, the temperature of the five-brane can be derived by varying

the action (2.25). Evaluating eq. (2.36) on-shell we can write the entropy expansion of the
black hole temperature

T (S) = Tex − g1S +O(S2) , (3.40)

where the extremal temperature is

Tex = a1

√
E(Rmin)

(1 + tan2 θ)
1
4
, a1 = 1

2π

√
C
Q5

, (3.41)
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and the dominant contribution to the linear coefficient is g1 = a1
a2(mL)2c2 . In turn, evaluating

the (Wick-rotated) action, and thus the total energy, on the metastable solution we obtain

E = TexS −
g1
2 S

2 +O(S3) . (3.42)

For zero entropy the energy is zero, as required for an extremal supersymmetric configuration.
The thermodynamic properties and relations of the black hole solution considered here

hold order-by-order in the entropy expansion. As a useful check, we observe that using
the energy at order O

(
S2) the variation δE

δS reproduces the linear entropy expansion of the
temperature T given by (3.40), as expected. Furthermore, it is straightforward to verify
that the solution found here satisfies the (on-shell) Smarr relation

TS = 4
3E −

1
3λm , (3.43)

in agreement with the Smarr relation previously derived in [12, 39] for black holes in
mass-deformed AdS.

4 Five-branes in the high-temperature phase

In this section we provide a similar analysis as in the previous section but in the high-
temperature phase of the N = 1* in which the background is that of a black brane in
asymptotic mass-deformed AdS5 × S5 obtained perturbatively in [13]. The analysis will
reveal the existence of black holes with spatial horizon topology R3 × S2 × S3 in this
high-temperature phase. At the end of this section we will combine the results of the
previous section and that of [12] in order to construct phase diagrams.

4.1 AdS5 × S5 black hole background

Adding temperature to brane configurations can be performed from the perspective of
holography in various ways [17]. The most common approach is to thermalize the background
by considering the system in the vicinity of a black hole solution. A second method focusing
more directly on the properties of the brane is by heating-up the state itself and, from this
perspective, this is the route we followed in the previous section. In this section we follow
a third, more general approach to describe thermal effects in metastable states in string
theory by thermalizing at the same time all the sectors of the theory. This approach has
been applied in [20] to the study of Wilson loops in AdS/CFT.

The high-temperature deconfined vacuum of the N = 1* theory is dual to a black
hole in the infrared, in an asymptotically AdS5 × S5 spacetime. In [13] the backreaction of
the 3-form on the metric, five-form and the dilaton for the finite temperature case were
analytically calculated. Using numerical methods the authors of [12] managed to construct
a black hole solution of type IIB supergravity dual to the high-temperature deconfined
vacuum of the theory with horizon topology R3 × S5, at all orders in the mass perturbation.
Their result for the effect of the fermion masses in the entropy at strong coupling is in
agreement with the perturbative results of [13]. Employing the effective theory outlined in
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section 2, here we study analytically the D3-NS5 system on top of the high-temperature
deconfined vacuum by investigating stationary solutions of (2.16), (2.17).

The background geometry into which we embed the five-brane is the mass-perturbed
thermal D3 brane solution obtained in [13], which has the expression

ds2 = E(r)
(
f(r)dt2 + dx2 + dy2 + dz2

)
+ L2

r2

(
dr2

f(r) + r2dΩ2
5 +O(m2)

)
, (4.1)

where
f(r) = 1−

(
rH
r

)4
, E(r) = r2

L2 + 7m2L2

24 . (4.2)

The Hawking temperature of the black hole reads

TAdS = rH
πL2 +O(m2) . (4.3)

We note that we will make use of an expansion in powers of rH
r to simplify complicated

expressions in the bulk. Consequently our results are valid in the region r � rH , far away
from the horizon. In all calculations to follow we approximate the fluxes G3, H7 and F5 by
their expressions close to the boundary, given in section 3.2.

Before moving on, we have to consider the requirement of separation of scales in the
presence of the new scale associated with the temperature of the black hole, rH = TπL2.
In addition to the requirements in section 3.2, far away from the region r → 0 with large
curvature, we must satisfy

rD3, rNS5 � TAdSL
2 , (4.4)

which in L = 1 units leads to

TAdS �
(
N3
N

) 1
4
, TAdS �

√
N5

(gsN)
1
4
. (4.5)

Given (3.16) these inequalities impose rather weak lower bounds on the temperatures we can
examine. These bounds only say that we can not have a valid calculation for an arbitrarily
small temperature of the background, since then the horizon shrinks to r = 0. Therefore,
we will not be able to approach the TAdS = 0 case in the previous section in such a way
that the solution remains within the regime of validity of the method we employ.

4.2 Extremal limit

We continue to focus on the wrapped D3-NS5 brane in the configuration R1,3 × S2. For the
static embedding defined in (3.17) the induced metric becomes

γabdσ
αdσb =E(R)

(
−f(R)dt2 +dx2 +dy2 +dz2

)
+L2(dω2 +sin2ωdϕ2 +O(m2)) . (4.6)

Our ansatz for the worldvolume fields ua, va, wa has the same form with the one in section 3.3.
Specifically, the velocity field is

u = ua∂a = 1√
f(R)E(R)

∂t . (4.7)
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The 1-forms v, w are still given by (3.20). Notice that, as every other quantity of inter-
est, these expressions receive corrections coming from the mass m

r and temperature rH
r

expansions.
Inserting the necessary data into the extremal action (3.24) and truncating the 2 parallel

expansions at a convenient order, we arrive at the effective potential

I

4πV Q5
= Q̃3

4πQ5

R4

L4

√1− r4
H

R4 − 1

+ 2πQ5

Q̃3
R2
(
R−m Q̃3

4πQ5

)2

, (4.8)

which is the same function (upon an irrelevant normalization) of the transverse scalar as
the one found using the DBI action [13]. Furthermore, it is straightforward to check that
the extrinsic equation (3.22) coincides with the equation of motion derived from (4.8).

The extremal case is characterized by the existence of a maximum background temper-
ature T ∗ beyond which the metastable vacua is lost. In the next subsection we will see that
such a critical temperature is also present in the non-extremal regime. Interestingly, this
critical value of the temperature scales as ∼ c

3
4 where c is the large parameter expressing

the dominance of the D3 charge. On the other hand, it was demonstrated in [13] that the
horizon shrinks as a function of the mass perturbation, suggesting the existence of a critical
temperature THP ∼ m. The latter separates the theory into high- and low-temperature
phases. By direct analogy with N = 4 one expects that here the mass parameter m plays
the role of the compactification radius L, leading to a Hawking-Page transition at the
temperature THP . This means that the metastable five-branes can survive way above
THP , and the corresponding supergravity solutions, if they turn out to exist in equilibrium
(see 4.4), may dominate the ensemble at intermediate phases.

4.3 Non-extremal regime

Analogously to section 3.4 we now use the action (2.25) to explore non-extremal effects in
the metastable polarized branes in the background of the black hole solution (4.1). The
effective potential of the black hole reads

V ′S = c
R4

L2

G(α)

√
1− r4

H

R4 − 1

+ R4

2cL2G(α)−mR3 + cm2L2

12 R2 (7G(α)− 1) . (4.9)

Somewhat surprisingly, the leading order solution for the function G(α) is not affected
by the background temperature. In fact, it was calculated in (3.33). This occurs because
the constraint of global entropy (3.31) remains unaltered for the static embedding (3.17).
Substituting the solution for G(α) into (4.9) we have at our disposal all the entropy
corrections to the effective potential (4.9). In figure 2 we depict the effective potential as a
function of the transverse scalar R keeping only the dominant entropy corrections in two 2
different regimes which we now discuss.

Perhaps the most striking new feature arising from the non-extremal analysis of the
five-brane is the simultaneous presence of 2 critical values for thermodynamic quantities
associated with the background black hole and the five-brane itself. There exists no stable
five-brane configuration for background temperatures greater than T ∗NE nor for brane
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Figure 2. Effective potential using the same choice of parameters and conventions as in figure 1(a),
for fixed entropy Ŝ = 0.01 (left panel) and for fixed temperature TAdS = 0.09. The purple curve
captures the potential felt by the brane close to criticality. The triangle O keeps track of the global
minimum at the horizon of the background black hole.

entropy greater than S∗NE . More precisely, on the one hand, for any fixed horizon area of
the brane which permits the formation of a metastable state, we encounter a maximum
value of the background temperature until which the metastable state survives. This critical
temperature becomes a function of the entropy, as well as of m and c. The leading extremal
result T ∗ ≈ 0.7336π−1mc

3
4 receives contributions coming from the presence of the brane

horizon, which result in lowering the critical background temperature. On the other hand,
for any fixed temperature allowing for the formation of a metastable state our findings are
very close with those of the analysis in section 3.4, i.e. increasing the brane entropy results
in a collision of the extrema after which the metastable is lost. The critical value of the
entropy at which this merger occurs S∗NE has the leading behaviour of (3.36) and receives
contributions at order T 8

AdS for large c.
To sum up, a general lesson learned is that the metastable D3-NS5 state ceases to exist

via a merger with the unstable configuration. The merging of these 2 black holes can be
provoked by a growing temperature of the (background) AdS5 × S5 black hole and/or by a
slowly expanding horizon area of the branes.

We now proceed and compute thermal contributions to the on-shell value of the potential
(total energy) of the metastable five-brane. These are associated to the temperature of the
background black hole and the entropy of the brane. The leading thermal corrections are
given by

EFM(Rmin)
4πQ5V3

= mŜL3√c− cπ4

2 T 4
AdSL

6 +O(ST 4
AdS) . (4.10)

We see that in the regime

ŜTAdS >
L3c

1
2

2m π4T 5
AdS , (4.11)

the blackfold correction prevails. Recall the condition (4.5) related to the temperature
of the geometry (4.1). We conclude that for sufficiently (though not arbitrarily) small
temperatures TAdS the effects associated with the thermally excited worldvolume of the
brane become important and eventually dominate the total energy of the configuration. We
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may observe the dominant role of the blackfold correction by checking the condition (4.11)
for a five-brane with approximately half the critical horizon size, i.e. when Ŝ ≈ Ŝ∗/2. For
such a five-brane the internal processes of the bound state prevail for

TAdS < (0.1)Dm
√
c , (4.12)

where D is a O(1) number. This shows that the blackfold correction dominates the total
energy of generic configurations even for temperatures way above the expected Hawking-Page
transition.

So far we have concentrated our attention on the properties of the D3-NS5 bound state.
However, the supergravity solution studied in this section consists of 2 black holes with
disconnected horizons. We discuss further properties of this 2-black hole system in the next
section where we construct phase diagrams in 2 distinct ensembles.

4.4 Features of phase space

Our results indicate the existence of a new class of (multi-)black hole spacetimes in the
supergravity dual of the N = 1* theory, which have the interpretation of being thermal
states of the dual gauge theory. Here we take a step towards a better understanding of
the phase space of the theory by considering phase diagrams which take into account the
perturbative supergravity solution we dealt with in this paper as well as analytic [13] and
numerical [12] solutions found in earlier studies. We will be studying the phase space in
the two ensembles that have been used in the string dual of N = 1*, namely the constant
entropy S and the canonical ensembles.

Prior to drawing the phase diagrams, it is necessary to study further the properties of
the solution consisting of a black five-brane on top of the mass-perturbed thermal D3-brane
background, which we constructed in section 4.3. This solution contains two (disconnected)
horizons, each of which have their own associated temperature and are thus generically
out-of-equilibrium. In order to study the phase diagram one needs to understand whether,
and under which conditions, can the two horizons be in thermal equilibrium.6 To answer
this question we look at the temperature of the five-brane (2.36) which is a natural function
of the background black hole temperature TAdS. The leading behaviour of (2.36) is

T 2 = a2
1
c

(tanhα)E(R)f
(
TAdS
R

)
+O(T 8

AdS) . (4.13)

Focusing on the extremal limit and imposing thermal equilibrium T = TAdS, the equation
above implies

r2
H

R2
min

= N

N3

(
1− r4

H

R4
min

+ . . .

)
. (4.14)

This resulting condition is inconsistent with the approximations we have made and the
validity regime outlined in section 3.2. Indeed, we have placed the brane far from the
background horizon relying on an expansion in powers of small rH

R in order to write the
6In the ensembles we consider, thermal equilibrium requires that the temperatures of the two horizons

are equal, see eq. (2.23).
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background temperature corrections to the probe potential. At the same time, the brane
has to be thin enough in order for the leading blackfold approximation to be valid, leading
to N � N3. Incorporating leading finite S corrections does not change this conclusion. We
infer that the two black holes are out of equilibrium at ideal order in this perturbative
scheme, since the thin NS5 is too hot to begin with for its temperature to be treated as a
small perturbation.

It is possible that the absence of a valid regime where the two black holes are in
thermal equilibrium is an artifact of the various approximations we made. For instance,
one could allow for the brane to move closer to the background horizon, work with the full
bulk expressions given in [13] and search numerically for metastable states. This scenario
is however unlikely to be successful because, besides requiring accounting for additional
interaction terms between the two black holes which are hard to predict without solving
directly the full set of Einstein equations, we also expect it to be difficult to balance the
growing gravitational force between the two horizons. Another potential solution to this
issue would be to consider a five-brane of N3 ∼ N D3 charge while still being far away
from the horizon rH . However, this requires including higher order corrections in N3

N and is
outside the scope of the present work. Below we study the phase diagram for solutions in
thermal equilibrium and thus do not consider the construction of section 4.3.

Constant entropy ensemble. Here we discuss properties of the phase space in the
ensemble where the global entropy is kept fixed. The preferred configuration in the ensemble
is the one with lowest energy, which is given as a function of the entropy. It is useful to
define the dimensionless entropy density as follows

ŝm = sN
m3 , sN = s

N2 , (4.15)

while for a dimensionless energy density we define

ρ̂s = ρ

N2m4 , ρ = E

V3
. (4.16)

Given these definitions, the dimensionless energy density corresponding to the black
D3-NS5 brane in (3.42) has the leading behaviour

ρ̂s,bf =
√
N3
N5

1
2
√
π
ŝm −

(
N

N3

)2
ŝ2
m +O(ŝ3

m) , ŝm <
N

5
2

3
N2N5

η

4
√
π
. (4.17)

The next step is to consider the exact numerical solution found in [12]. One may move
from the canonical to the constant S ensemble using (2.37) and inverting the relation
S = S(T ) → T = T (S).7 The numerical solution possesses 2 branches of solutions,
one of which has a zero entropy limit. Since the blackfold solution has by definition a
supersymmetric limit, we are primarily interested in the comparison of its energy density
with the one obtained for the (red) branch of the numerical solution with such a limit. Recall

7To obtain such a relation for each of the branches of the numerical solution, we approximate the result
of [12] with a polynomial for the quantity sN

T3 as a function of m
T
, and numerically invert the result with

respect to T .
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Figure 3. Dimensionless energy density ρ̂s as a function of ŝm. In both plots the black line
corresponds to the blackfold solution of section 3, while the red to the (red) branch of the numerical
solution of [12] which has a zero entropy limit. We plot the 2 solutions in the entropy regime that
they co-exist. In (a) the blackfold energy density is depicted for the choice

√
N3

N5
= 20 and N3

N = 0.1
and is the preferable configuration in the constant entropy ensemble. In (b) the choice of parameters
is such that

√
N3

N5
= 70 and N3

N = 0.05 and the numerical solution dominates.

that the phase space of the theory for fixed N is described by the parameters m,N3, N5. In
figures 3(a) and 3(b) we plot the (dimensionless) energy density in this low-entropy regime
for two different choices of (N3, N5).

We see that one can find regimes of parameter space for which the energy density of
the five-brane is larger, equal or even smaller than the one of the mass-deformed thermal
D3 brane. This suggests that the configuration of lowest energy depends on the particular
values of N3 and N5. For large enough values of the entropy (ŝm > ŝ1

m ≈ 0.03) one must
take into account the other (blue) branch of the numerical solution. From (4.17) we deduce
that the blackfold solution can indeed exist in this high-entropy regime. For any fixed ratio
N3
N this can happen by increasing its extremal temperature (or, equivalently, the ratio

√
N3
N5

).
As a result, the energy density of the blackfold significantly increases so that the numerical
solution becomes the preferable configuration. As far as the unstable branch of blackfold
solutions is concerned, these have generically higher values of energy density than those of
the metastable branch.

It is interesting to note that in [12] evidence was found for the supersymmetric point
obtained in the limit s→ 0 (or ρ→ 0) representing the supersymmetric GPPZ solution,
which has been argued in [11] to contain a smeared distribution of five-branes. The latter
are extremal and as such one expects a non-zero temperature for a collection of them.
Given the features of the configurations examined in this paper, with Text even way above
THP ∼ m, a high temperature of this order for the GPPZ solution would not be a surprise.

Canonical ensemble. We now consider the phase diagram in the canonical ensemble (for
fixed temperature). It is again useful to define dimensionless quantities.8 The dimensionless
free energy density takes the form

f̂ = f

N2T 4 = ρ̂− ŝ
N2 , (4.18)

8Throughout this subsection we follow the conventions of [12], but include the 1/N2 normalization in the
definition of f̂ .

– 29 –



J
H
E
P
0
4
(
2
0
2
3
)
0
2
1


0.5 1.0 1.5 2.0

-1.5

-1.0

-0.5

0.0

(a)

0.044 0.046 0.048 0.050
0

1.×10-7

2.×10-7

3.×10-7

4.×10-7

(b)

0.05 0.06 0.07 0.08 0.09 0.10
0.000000

5.×10-6

0.000010

0.000015

0.000020

(c)

Figure 4. a) Dimensionless free energy density f̂ as a function of m̂ for a choice of parameters
such that

√
N3

N5
= 45 and N3

N = 0.1 for the solution of section 3 (black branch) and the numerical
solution (red and blue branches) of [12]. The rectangle captures the perturbative regime (4.21). (b)
Zooming in the rectangle of figure (a). There exists a branch of solutions which start life close to
the supersymmetric point of [12]. (c) Plot of f̂ where now we also include the unstable branch of
the blackfold solution (orange curve), for the same choice of parameters as in 4(a), 4(b).

where
ρ̂ = ρ

T 4 , ŝ = s

T 3 . (4.19)

All quantities of interest are then functions of m̂ = m√
3T . To obtain f̂ for our blackfold

solutions we evaluate the free energy density at second order in the entropy expansion. We
also invert locally, around the extremal point, the entropy expansion of the temperature to
obtain a relation S = S(T ). The constraint of maximum entropy

S(T ) < S∗ , (4.20)

implies a lower bound on the temperature or, equivalently, a maximum bound m̂1 ≈
2
√

π
3

N5
(1−η)

√
N3

. Recall that the maximum possible temperature in the stable branch is the
extremal one, so that

(1− η)m̂1 < m̂ < m̂1 . (4.21)

In figure 4(a), 4(b) we plot f̂ for the (metastable) five-brane solution on top of mass-
perturbed AdS5 × S5 obtained in section 3.4, as well as the numerical solution for the
mass-deformed thermal D3-brane.

We observe that one of the branches of the numerical solution, the one with non-negative
free energy (red branch), approaches in the supersymmetric limit the blackfold solution
(black ‘ringoid’) produced from the blackening of Polchinski-Strassler polarized branes. One
can find regimes of parameter space for which the two solutions meet at high temperatures.
These black ‘ringoids’ take generically positive values of the free energy and never dominate
the canonical ensemble.

Our final comment concerns the unstable branch of the blackfold solution. In contrast
with the metastable branch, here the extremal temperature is the minimum possible
temperature that these solutions possess, leading to an upper bound for m̂. Analogously,
the constraint (4.20) that is common for both branches leads to a lower bound for m̂. In
figure 4(c) we plot f̂ taking into account both branches of the blackfold solution. The
behaviour that is shown here appears to be similar to the behaviour of the red branch of the
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numerical solution in 4(a). In particular the red branch of the numerical solution can be
described as two curves meeting at a cusp with one curve approaching the supersymmetric
point and the other curve connecting the red and blue branches. Figure 4(c) suggests the
existence of such a “cusp” joining the black and orange curves of the blackfold solution. A
higher-order analysis of the blackfold construction will lead to a more precise picture of
how these two branches are associated.

5 Discussion

We used the long-wavelength effective theory of black branes to investigate the Polchinski-
Strassler mechanism for constructing holographic duals of the N = 1* theory. Our aim
was two-fold: on the one hand, to take the first steps towards constructing directly in 10
dimensions explicit backreacted supergravity solutions involving polarized D3’s into NS5/D5
branes living in a mass-deformed AdS5×S5 geometry, in an appropriate regime of parameter
space; and on the other hand, to provide a non-extremal description of the polarized branes
of [6] and analytically compute the leading corrections to the extremal configurations due to
a thermally excited five-brane worldvolume. To this end, we considered wrapped five-branes
with D3 charge moving in the zero temperature mass-perturbed background of [6] as well
as in the high-temperature deconfined vacuum described by an asymptotically AdS5 × S5

black hole in the infrared [12, 13].
The results presented in this paper provide strong evidence for the existence of

metastable PS polarized branes. By letting entropy and temperature flow into the D3-NS5
system, for both the low and high-temperature phases of the theory considered here, we
observed a pattern where the metastable black five-brane ceases to exist via a merger
with an unstable “thin” state. Both states have horizon topology R3 × S2 × S3. For the
low-temperature phase of section 3 the merger occurs at a critical value of the entropy,
whose leading expression we determined in a small horizon area expansion. An interesting
new feature arising from the analysis of the high-temperature phase in section 4 is that this
merger point can be reached either via a growing horizon of the brane or by heating up the
background black hole until a critical temperature.

A key point in the construction of ref. [6] is the resolution of the infrared singularity
— an anticipated feature for flows to non-conformal theories in the infrared, via a brane
configuration. Both the normalizable and non-normalizable modes related to relevant
operators of conformal dimension ∆ = 3 grow as one flows down to the AdS throat. It was
realized in [6] that the coupling of the D3 branes to the non-normalizable modes is precisely
what is needed to trigger a polarization process whose outcome — a charged five-brane —
is placed at a non-zero AdS radius. In that way the singularity is replaced by an ordinary
object, an expanded brane source. Still, one in principle has to account for divergences one
is usually confronted with in field theories with defects. When judging the fate of a naked
singularity an important issue is whether it can be cloaked behind an horizon [40]. For
the polarized branes of Polchinski and Strassler this question has remained open and our
results imply that the answer is positive.
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We conclude with a summary of open questions and future research directions. Given
the leading order analysis presented here, a natural next step is to obtain the first order
backreacted solution by solving the remaining field equations. In light of the similar
calculation of [27] in the context of Klebanov-Strassler, we are confident that such a metric
can be obtained. Armed with the explicit first order solution for all the fields one may “hang”
probe strings from the AdS boundary stretching into the mass-deformed geometry and check
field theory expectations regarding the confinement or screening of quarks. The explicit
solution can also be used to determine higher-derivative terms to the action (2.25). Note that
in the present work we have encountered another example of the DBI/gravity correspondence,
a low energy manifestation of the open/closed string duality of ref. [41], which has been
shown to hold for N coincident D3-branes in flat space [42] and can be derived in the context
of the generalised open/closed duality proposed in [26]. Thus, generalizing the action (2.25)
by incorporating new corrections can shine light on this duality for D3-NS5 branes.

Another open question concerns the nature of the merger point we face in both the
high- and low-temperature phases considered here. We presented data showing that this
transition point can be characterized as a thin-thin merger between 2 D3-NS5 black holes.
Since both states have the same horizon topology, this can be at most a geometric transition.
We again note that this transition is qualitatively different from the one observed for the
anti-D3’s at the tip of the Klebanov-Strassler throat [16], while it seems to share certain
features with a particular thermal transition (regime III) of the metastable M2-M5 branes
in the CGLP background [30]. It would be interesting to understand this mechanism better.

The results presented here shed new light on the nature of the phase diagram of the
N = 1* theory. We have found black ringoid solutions with horizon topology R3 × S2 × S3

which come from the blackening of the PS polarized branes. We emphasize that these
solutions can survive way above the temperature of the (presumed) Hawking-Page transition9

separating the theory into confining and deconfining phases. In [12] evidence was presented
for the appearance of an instability of black holes with R3 × S5 topology whose endpoint
is potentially a black ringoid of the kind studied in this paper. Thus these 2 trajectories
of the phase space could meet via a topology change transition R3 × S5 → R3 × S2 × S3.
In this paper we showed the existence of such R3 × S2 × S3 solutions and in section 4.4
we give evidence for the picture suggested in [12]. However, due to the fact that we are
performing a perturbative analysis, our solutions are only valid for m̂ � 1 and as such
we were not able to ascertain whether the phase transition found in [12] for m̂ ∼ 2.15 is
a confinement/deconfinement or a deconfinement/deconfinement phase transition. Our
results in section 4.4 shows that our solutions with topology R3 × S2 × S3 are not the
dominant configuration in the canonical ensemble for m̂ � 1. This conclusion does not
include the possibility of having a black ringoid in the background of a mass-deformed
AdS5 × S5 black hole, since at higher-orders in the perturbative scheme it may be possible

9An analytic derivation of the Hawking-Page transition for the N = 1* is still missing in the literature.
Towards this direction, most progress has been done in [43], where the solution with an enhanced SO(3)×SO(3)
symmetry was perturbatively constructed and a complete renormalization procedure of the type IIB on-shell
action was performed. However, to find such a solution one must give masses to all 4 Weyl fermions, and
then the resulting theory is no longer supersymmetric.
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to achieve thermal equilibrium for these configurations. In addition, we considered phase
diagrams in an ensemble for which the global entropy is kept fixed, where we observed that
the preferable configuration depends on the particular values of the five-brane charges.

It would be very interesting to further elaborate on the connection between various types
of solutions and gain a complete view of the phase space of the theory. An interesting way
of gaining such additional knowledge is to perform a stability analysis of the configurations
obtained here. This can be done by studying the linear spectrum of perturbations around
the equilibrium states discussed in section 2. A similar analysis was carried out for black
rings [44] and D3-NS5 branes in Klebanov-Strassler [45]. Our expectation is that a Gregory-
Laflamme-type of instability will be present for certain values of the charges but that there
will be a relatively large regime of stability.

Finally, one could consider applying the blackfold method to find a non-extremal
generalisation of the GPPZ solution by wrapping smeared D3-NS5 branes along a compact
direction and obtain the GPPZ solution in the extremal limit. This would provide additional
understanding of the relation between the GPPZ solution and the vacua described by
Polchinski and Strassler [6]. A similar analysis could be performed in analogous setups in
M-theory, in particular in the context of polarised M2- [46] and M5-branes [47].
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