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1 Introduction

Although the 2012 discovery of the Higgs boson [1, 2] provided the last piece of the puzzle
to finalize the standard model (SM) of particle physics as a successful theory surpassing
the electroweak scale, the origin of electroweak symmetry breaking (EWSB) remains still
unknown. Most intriguing in that context is the instability of the Higgs mass with respect
to a higher UV scale, the hierarchy problem, which has motivated model building for the
last decades. One elegant solution is the idea of gauge-Higgs unification (GHU) in which the
Higgs boson is part of a higher dimensional gauge field [3–6]. By higher dimensional gauge
invariance the Higgs boson does not have a mass at the classical level. In such a setting it
rather gets a radiative mass at one-loop due to symmetry breaking effects proportional to
the size of the extra dimension: the Hosotani mechanism. These models are particularly
well suited in a warped extra dimension [7] since this can dynamically explain the large
hierarchy between the Planck scale and the electroweak vacuum expectation value (vev) [8].
GHU requires at least the propagation of the gauge bosons in the warped bulk [9, 10] and
it is plausible (and phenomenologically beneficial) to also allow the propagation of fermion
fields in the bulk [11, 12].

Equally puzzling is the charge quantization that is observed in the SM and which
may indicate the unification of the SM gauge group GSM=SU(3)c × SU(2)L × U(1)Y
into a larger gauge group of a grand unified theory (GUT) [13–15], which is also hinted
at by the approximate meeting of the gauge couplings at the unification scale MU . The
SM is particularly well suited for an SU(5) or SO(10) GUT, as its fermions fill complete
representations for both of these gauge groups. The combination of both these ideas, that
is, gauge-Higgs unification of the electroweak group together with the inclusion of the color
group, is called a gauge-Higgs grand unified theory (GHGUT). Previously, gauge-Higgs
unification of the electroweak gauge group SU(2)L × U(1)Y, thus omitting the strong
interactions, was done in [16] and a custodial model was presented in [17] based on an
SO(5)× U(1) gauge group. The latter allows to have a relatively low scale of symmetry
breaking, without violating electroweak precisision tests (EWPT). These models however
generally feature light top partners that mix with the top and provide its large mass, while
keeping the contribution to the Higgs mass moderate [18–23]. The absence of any signal
at the LHC increases the required fine-tuning in these models.
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Models of GHGUT, thus including the strong interactions, are based on two main gauge
groups: SU(6) and SO(11). The latter gauge group also enjoys the benefit of a custodial
symmetry and was studied in [24, 25]. However the presence of light exotics led the authors
to go to six dimensions [26, 27]. Phenomenology of these models was studied in [28, 29].
There has been a renewed interest in SO(5) × U(1)X × SU(3)c gauge-Higgs unification that
is inspired by an SO(11) GHGUT in which the quark and lepton multiplets are introduced
in the spinor SO(5) representation in order to be compatible with SO(11) GHGUT [30–36],
with the running of the gauge couplings studied in [37]. The former gauge group, SU(6), has
been studied in a flat extra dimensional setting in both supersymmetric [38–40] and non-
supersymmetric [41] contexts. In general, the constraining nature of the SU(6) symmetry
leads to the problematic appearance of light exotic fermions (see below) and early models
also suffered from massless down-type quarks and charged leptons. The latter issue was
recently addressed by localizing the SM fermions on a 4D brane [42–44] (and introducing
additional mirror fermions).

Recently, some of the authors of this paper put forward an SU(6) GHGUT in a warped
extra dimension that manages to reproduce the full SM spectrum from a minimal amount
of 5D fields in lowest possible representations while avoiding light exotic fermions [45, 46].
Here we will scrutinize the phenomenology of this model and other variants thereof and also
see how it performs in explaining the observed flavor hierarchies in nature. It is already well
known that extra dimensional models that feature a warped metric can be very successful
in addressing the flavor hierarchies [11, 12, 47, 48]. Small Yukawa couplings are obtained
due to the overlap integrals over the extra dimension of fermions, being localized differently,
with the Higgs field (a mechanism that predates the Randall-Sundrum (RS) model [49]).
Similarly, the hierarchies in the CKM matrix find a very natural explanation in these
models.

Additionally, we will confront the models with various flavor constraints. Bounds
from Flavor Changing Neutral Currents (FCNCs) are also suppressed by the small overlap
functions in the extra dimension, a mechanism that has been called RS-GIMmechanism [12,
17, 47, 50, 51] (an analogue to the GIM mechanism [52] at work in the SM in suppressing
FCNCs). Nevertheless, RS-GIM is not nearly as effective as its SM counterpart and ∆ = 2
flavor constrains have been studied in [51, 53–61]. Constraints on dipole operators in
warped space models have also been well studied in the past [61–69]. See also [70–73]
for studies of flavor in gauge-Higgs unification in a flat extra dimension. Since we are
unifying the EW and strong interactions, including leptons and quarks in a correlated
way, the existing works on flavor constraints in warped extra dimensional settings might
not be very well suited for the model at hand. Moreover, many of the past flavor studies
of gauge-Higgs unification have been done in custodial models based on the SO(5) bulk
gauge symmetry which is qualitatively different from our SU(6) model, lacking a custodial
symmetry. The non-custodial EW gauge group analogue of SU(6) is a bulk SU(3) (⊃
SU(2)L) for which flavor constraints have not been studied to the same extent as in the
custodial analogue. Finally, our GHGUT contains new bosons, as the scalar leptoquark,
that contributes to loop-mediated FCNCs.
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The lack of custodial symmetry means constraints from EWPT will be more stringent
(although the 5D nature of the Higgs will relax them compared to the usual IR-brane
localized Higgs boson scenario, see section 6). However, these constraints do not seem as
relevant in the vanilla models, since they are overshadowed by the much stronger flavor
constraints. This has resulted in rich model building through the use of various flavor sym-
metries within extra dimensional models in order to weaken the flavor bounds both in the
lepton sector [74–87] (see also [88, 89] for a recent review) and in the quark sector [90–95].

Even though applying such flavor symmetries on our setup would be interesting, in this
work we will not pursue this road and be content with the resulting little hierarchy that
exists in the Higgs potential from evading flavor bounds. Beyond that, such model building
with flavor symmetries would not seem as crucial for GHGUTs since SU(6) GHGUT con-
tains extra light colored scalar degrees of freedom alongside the Higgs boson, dictated by
the unification of electroweak and strong symmetries, that provide a hard bound on the fun-
damental IR scale of the model (a bound that is not present in models of electroweak gauge-
Higgs unification), see below. As in 4D GUTs, proton stability is an important issue for
GHGUTs. In extra dimensional models [96, 97], including our SU(6) GHGUT model [45],
the proton is rendered stable by a global baryon number symmetry which allows the new
colored bosons to reside at the TeV scale with the bound being driven by collider searches.
The overall resulting tension of the IR-scale being 1−2 orders of magnitude above the EW
scale is however tiny compared to the full GUT hierarchy problem. The approach we take
therefore is similar in spirit to [98], accepting a little hierarchy problem but at the same time
providing a compelling model of grand unification that evades stringent flavor constraints
and explains the observed hierarchies in fermion masses and mixings. Moreover, the light
new scalars furnish striking experimental signatures to test the model in the future, which
is also true for the top partners, that will be still accessible at (future) colliders.

We organize the paper in the following sections: section 2 provides a concise review
on the basis of gauge fields and fermions in a warped extra dimensions (and introduces
our conventions), which can safely be skipped by readers familiar with warped models. In
section 3 we provide the various tools needed for a phenomenological analysis of models
of gauge-Higgs (grand) unification and in particular SU(6) GHGUTs that may also be
skipped by familiar readers. Section 4 introduces the specific SU(6) GHGUT model that is
naturally suited to provide a full model of the observed flavor hierarchies in nature without
fine-tuned parameters. In section 5 we discuss the flavor constraints that we will consider
and in particular in subsection 5.4 we present the major results of the paper, namely the
various flavor bounds on our model. In section 6 we analyze EWPT and, finally, in section 7
we discuss the extended scalar potential of SU(6) GHGUT and the particular features of
the scalar spectrum. We conclude in section 8 while two appendices contains the more
technical aspects of the presented calculations underlying our results.

2 Gauge fields and fermions in warped space

In this section, we explore the basics behind gauge-Higgs unification in warped space,
see [99–105] for a comprehensive review of extra dimensions. We work in conformal coor-
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dinates in which the warped metric is given by

ds2 =
(
R

z

)2
(ηµνdxµdyν − dz2), (2.1)

where z ∈ [R,R′], and R ∼ 1/Mpl (R′ ∼ 1/TeV) is the position of the UV (IR) brane. The
idea behind gauge-Higgs unification is to embed the Higgs field in the fifth component of
a five dimensional gauge field AM , with M = 0, 1, 2, 3, 5, where A5 is a 4D scalar. As we
will see, only under specific circumstances can this fifth component actually be identified
as a physical scalar field in the spectrum.

2.1 Gauge fields

We start with the 5D Yang-Mills Lagrangian in the convention where the group generators
are normalized such that Tr(T aT b) = 1

2δab

SYM =
∫ R′

R
d4xdz

√
G

(
− 1

2G
MNGABTr(FMAFNB)

)
=
∫ R′

R
d4xdz

(
R

z

)(
− 1

4F
a
ABF

AB,a
)
,

(2.2)
with G = (R/z)10 the determinant of the metric. The quadratic terms of the above
Lagrangian contain mixing terms between A5 and Aµ. The gauge-fixing term is chosen
such as to cancel these terms, reading

SGF =
∫

d4xdz
(
R

z

)(
− 1

2ξ

(
∂µA

µ − ξ z
R
∂5

(
R

z
A5

))2)
. (2.3)

Varying the quadratic action under δAµ and δA5 we find the equations of motion (EOMs)[
ηµν∂2−

(
1− 1

ξ

)
∂µ∂ν

]
Aν−z∂5

(1
z
∂5A

µ
)

= 0, ∂2A5−ξ∂5

(
z∂5

(1
z
A5

))
= 0. (2.4)

The boundary conditions (BCs) for the fifth dimension are obtained by setting the contri-
butions at the boundaries to zero, arising from integration by parts

∫
d4x

[
R

z

(
∂µA5−∂5Aµ

)
δAµ

]z=R′

z=R
= 0,

∫
d4x

[
R

z

(
∂µA

µ−ξz
(
∂5

(1
z
A5

)))
δA5

]z=R′

z=R
= 0.

(2.5)
We shall consider two possible BCs consistent with the above conditions, namely

(+) : A5|z=R,R′ = 0, ∂5Aµ|z=R,R′ = 0, (−) : Aµ|z=R,R′ = 0, ∂5

(1
z
A5

)
|z=R,R′ = 0. (2.6)

The (+) refers to a Neumann BC for the Aµ field, while the (−) refers to a Dirichlet BC
for the Aµ field. For phenomenological purposes it is crucial to identify when we can have
a (massless) zero mode. It turns out that this arises for the vector field Aµ when applying
(+,+) BCs at the (UV, IR) branes, while a zero mode for the scalar field A5 appears when
choosing (−,−) BCs. For mixed BCs no zero modes arise.
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To see this in detail, we write both 5D fields as an infinite sum of 4D fields with bulk
profiles fn,A/5, which can be understood as a separation of variables, called Kaluza-Klein
(KK) decomposition

Aµ(x, z) =
∑
n

fn,A(z)Aµ,n(x), A5(x, z) =
∑
n

fn,5(z)A5,n(x), (2.7)

and demand the 4D fields to obey the usual 4D free EOMs[
ηµν∂2 −

(
1− 1

ξ

)
∂µ∂ν

]
Aν,n +m2

nA
µ
n = 0, ∂2A5,n +m2

5,nA5,n = 0. (2.8)

This leads to the differential equations for the bulk profiles

−m2
nfn,A = z∂5

(1
z
∂5fn,A

)
, −m2

5,nfn,5 = ξ∂5

(
z∂5

(1
z
fn,5

))
. (2.9)

From the first equation it follows that a vector boson zero mode (m0 = 0) has a constant
bulk profile which implies (+,+) BCs for the mode to exist, while a scalar zero mode
(m5,0 = 0), together with the (−,−) BCs, induces f0,5 ∼ z. Interestingly, for higher
modes with vector mass mn > 0, the relation fn,5 = 1

mn
∂5fn,A follows with m5,n =

√
ξmn.

The ξ dependence indicates that A5 is an unphysical Goldstone mode that provides the
longitudinal polarization for the massive vector bosons. Canonically normalizing the kinetic
terms of the vector fields leads to∫ R′

R
dzR

z
fn,Afm,A = δn,m, (2.10)

which determines the normalization of the zero mode

f0,A(z) =
√

1
R log(R′R )

, (2.11)

while fn,5 are automatically normalized by virtue of the EOMs, inducing∫ R′

R
dzR

z
fn,5fm,5 = δn,m. (2.12)

In summary, the 4D KK theory up to quadratic terms has the form

∑
n

∫
d4x

(
− 1

4Fµν,nF
µν
n −

1
2ξ (∂µAµn)2 + 1

2m
2
nA

2
µ,n+ 1

2∂µA5,n∂
µA5,n−

1
2ξm

2
nA

2
5,n

)
, (2.13)

revealing the Goldstone nature of A5,n that provides the longitindal polarization of the
massive gauge bosons mn. At higher order we also get the usual interactions between the
vector bosons and Goldstone modes. The profiles fn,(+,±)(z) and the masses mn,(+,±) of
the (+,±) gauge bosons can be found by solving (2.9) subject to the (+) BC (2.6) at the
UV brane. The profiles are then given in terms of Bessel functions as

fn,(+,±)(z) = Nn,(+,±)z

(
J1(mn,(+,±)z)−

J0(mn,(+,±)R)Y1(mn,(+,±)z)
Y0(mn,(+,±)R)

)
, (2.14)
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with normalization constant Nn,(+,±), while the tower of KK masses mn,(+,±) is found by
solving the IR BC. For a (+,+) gauge boson we have a massless and flat profile for the
zero mode with the first KK mode at m1,(+,+) ∼ 2.45/R′, while (+,−) gauge bosons do
not have a zero mode but their first KK excitation is rather light m1,(+,−) ∼ 0.25/R′.

For (−,±) gauge bosons the UV BC is different, resulting in a different profile

fn,(−,±)(z) = Nn,(−,±)z

(
J1(mn,(−,±)z)−

J1(mn,(−,±)R)Y1(mn,(−,±)z)
Y1(mn,(−,±)R)

)
. (2.15)

The spectrum can be found again by applying the IR BC and will result in a tower of
massive gauge bosons with the first KK modes having mass m1,(−,+) ∼ 2.40/R′ and
m1,(−,−) ∼ 3.83/R′, respectively. We will leave out the index n = 1 for the first KK
mode from here on.

Recall from (2.9) that a (−,−) gauge-boson BC implies a physical massless scalar in
the spectrum, the zero mode of A5(x, z), simply denoted by A5(x) in the following, with
normalized bulk profile f5(z),

A5(x, z) ⊃ f5(z)Aa5(x)T a =
√

2
R

z

R′
Aa5(x)T a. (2.16)

The idea of gauge-Higgs unification is to embed the Higgs field in such a zero mode. Indeed,
a potential for Aa5(x) is forbidden by 5D symmetry. At one-loop, upon symmetry breaking
at the boundaries, a finite potential is generated possibly inducing a 4D vev 〈Aa5(x)〉 = va.

In the presence of such a vev, solving the gauge and fermion profiles in warped space is
complicated. Fortunately, since the vev in gauge-Higgs unification is embedded within the
gauge field, one can actually eliminate it from the bulk with a gauge transformation [106]

AM → ΩAMΩ† − i

g5
Ω∂MΩ† , Ω(z) = exp

(
ig5

∫ z

R
dz′f5(z′)vaT a

)
, (2.17)

which removes the A5 background field:

A5(z)→ Ω
(
A5(z)− f5(z)vaT a

)
Ω†. (2.18)

This transformation is trivial on the UV brane (Ω(z = R) = 1), but on the IR it is given,
in terms of the Higgs decay constant f , by

Ω(z = R′) = exp
(
i
√

2vaT a/f
)
, f = 2

√
R

g5R′
. (2.19)

Consistency requires applying this gauge transformation on the fermion and gauge
fields

Aµ(z = R′)→ Ω(z = R′)Aµ(z = R′)Ω(z = R′)†

Ψ(z = R′)→ Ω(z = R′)Ψ(z = R′) . (2.20)

Therefore, the effect of an A5 vev will manifest itself through the mixing of generators on the
IR brane. We will only need the exact solutions obtained from such a gauge transformation
when computing the (extended) scalar potential in section 7, but otherwise we will be more
intuitive and treat the vev in the bulk as a small expansion parameter with respect to the
IR scale 1/R′.
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2.2 Fermions

Having discussed the principle of gauge-Higgs unification, we summarize the dynamics of
free 5D fermions in warped space [11, 12, 107], starting from the hermitian action (in spaces
without boundaries one can integrate by parts to recover its usual form)

SFermion =
∫

d4x

∫ R′

R
dz
√
G

(
i

2(Ψ̄eMa γaDMΨ−DMΨeMa γaΨ)−mΨ̄Ψ
)
. (2.21)

The Dirac algebra is generalized to 5D, where the inclusion of γ5 = −i
(−1 0

0 1
)

as the

fifth gamma matrix in {γa, γb} = 2ηab, with γµ =
( 0 σµ

σ̄µ 0
)
, makes 5D fermions non-chiral.

Moreover, eMa is the fünfbein, eMa ηabeMb = GMN , which for warped space is given by
eaM = (R/z)δaM from which the spin connection ωM = γµγ5/(4z)δµM follows. The covariant
derivative is then given in the absence of gauge interactions by DµΨ = (∂µ + γµγ5/(4z))Ψ,
and D5Ψ = ∂5Ψ. By spinor algebra, the spin connection cancels between the derivative
and its hermitian conjugate, such that the resulting action is

SFermion =
∫

d4x

∫ R′

R
dz
(
R

z

)4( i
2(Ψ̄γµ

←→
∂µΨ + Ψ̄γ5←→∂5 Ψ)− mR

z
Ψ̄Ψ

)
, (2.22)

with
←→
∂ =

−→
∂ −
←−
∂ . Integrating by parts, which leads to boundary terms along the compact

direction, and defining the dimensionless parameter c = mR we obtain

SFermion =
∫

d4x

∫ R′

R
dz
(
R

z

)4
Ψ̄
(
iγµ∂µ+iγ5∂5−

2i
z
γ5−

c

z

)
Ψ− i2

∫
d4x

(
R

z

)4[
Ψ̄γ5Ψ

]z=R′
z=R .

(2.23)
The above form is useful to derive the 5D fermion propagators, but we will be interested

in the KK description and decompose the 5D fermions in their chiral components Ψ =
(χ, ψ̄)T , leading to the bulk action with boundary terms

SFermion =
∫

d4x

∫ R′

R
dz
(
R

z

)4(
iχ̄σ̄µ∂µχ+ iψσµ∂µψ̄−ψ∂5χ+ χ̄∂5ψ̄+ 2−c

z
ψχ− 2+c

z
χ̄ψ̄

)
+ 1

2

∫
d4x

(
R

z

)4[
ψχ− χ̄ψ̄

]z=R′
z=R . (2.24)

Varying the action for χ̄ and ψ results in the bulk coupled EOMs

iσ̄µ∂µχ+ ∂5ψ̄ −
c+ 2
z

ψ̄ = 0, iσµ∂µψ̄ − ∂5χ+ 2− c
z

χ = 0 , (2.25)

as well as a boundary term

1
2

∫
d4x

[(
R

z

)4
(ψδχ+ δψχ− χ̄δψ̄ − δχ̄ψ̄)

]z=R′

z=R
= 0, (2.26)
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whose vanishing determines the BCs. We will denote with (−) a Dirichlet BC for the left
handed (LH) mode and with (+) a Dirichelt BC for the right handed (RH) mode, implying
a Neumann-like BC for the other chirality, leading to (for z = R,R′)

Ψ(−) : χ(x, z) = 0 =⇒ ∂5ψ(x, z) = 2 + c

z
ψ(x, z),

Ψ(+) : ψ(x, z) = 0 =⇒ ∂5χ(x, z) = 2− c
z

χ(x, z). (2.27)

The 5D EOMs are solved via a KK decomposition

χ(x, z) =
∑
n

fn,L(z)χn(x), ψ̄(x, z) =
∑
n

fn,R(z)ψ̄n(x), (2.28)

where each 4D spinor satisfies the 4D Dirac equation with mass mn

iσ̄µ∂µχn −mnψ̄n = 0, iσµ∂µψ̄n −mnχn = 0. (2.29)

The EOMs are then reduced to first order differential equations for the bulk profiles, reading

f ′n,R +mnfn,L −
c+ 2
z

fn,R = 0, f ′n,L −mnfn,R + c− 2
z

fn,L = 0. (2.30)

The profiles themselves are orthonormalized, such that the kinetic terms for the 4D fields
are canonically normalized and do not mix, resulting in the conditions

∫ R′

R
dz
(
R

z

)4
fn,L(z)fm,L(z) =

∫ R′

R
dz
(
R

z

)4
fn,R(z)fm,R(z) = δn,m. (2.31)

For a zero mode, mn = 0, the above equations decouple and we find

f0,L = 1√
R′

(
z

R

)2( z

R′

)−c
f(c), f0,R = 1√

R′

(
z

R

)2( z

R′

)c
f(−c), (2.32)

with the flavor function

f(c) =
√

1− 2c√
1− (R′/R)2c−1

, (2.33)

measuring the overlap of the respective fermion-profile with the IR brane. Such zero modes
only appear for specific BCs: a Ψ(+,+) BC will give rise to a massless LH fermion χ0(x),
while a Ψ(−,−) BC results in a massless RH fermion ψ0(x). For mixed BCs no zero mode
appears. The SM fermionic content will be described by such massless chiral modes be-
fore EWSB. We will omit the zero index for the profiles of the zero modes subsequently.
For higher modes with mn 6= 0 one can solve the EOMs by separating the coupled equa-
tions (2.30) into two independent second order equations of Bessel type

f ′′n,L−
4
z
f ′n,L+

(
m2
n −

c2 + c− 6
z2

)
fn,L = 0, f ′′n,R−

4
z
f ′n,R+

(
m2
n −

c2 − c− 6
z2

)
fn,R = 0.

(2.34)
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The warped sine and cosine functions [108]

S(z,m, c) = π

2mR
(
z

R

)1/2+c(
J1/2+c(mR)Y1/2+c(mz)−J1/2+c(mz)Y1/2+c(mR)

)
, (2.35)

C(z,m, c) = πmR

2 cos(cπ)

(
z

R

)1/2+c(
J−1/2+c(mR)J−1/2−c(mz)+J1/2+c(mz)J1/2−c(mR)

)
,

provide convenient solutions in terms of Bessel functions such that the BCs C(R,mn, c) = 1,
C ′(R,mn, c) = 0, S(R,mn, c) = 0 and S′(R,mn, c) = mn are satisfied and from which
general massive solutions to equation (2.34) can be constructed as

fn,L(z) =
(
R

z

)c−2
(bnS(z,mn, c)− anC(z,mn, c)),

fn,R(z) =
(
R

z

)−c−2
(anS(z,mn,−c) + bnC(z,mn,−c)). (2.36)

The solutions for fn,R can be constructed from fn,L by flipping c → −c and applying the
coupled EOMs at z = R. One can easily retrieve the zero mode solutions, as for mn = 0
the cosine becomes 1. We will need the above solutions in particular when describing the
KK excitations of the leptons and quarks in appendix A.2, mediating important decays
such as µ→ eγ.

3 Elements of SU(6) gauge-Higgs grand unification

3.1 Gauge bosons

We outline here the basic structure of SU(6) GHGUTs . The bulk gauge symmetry is
SU(6) which is broken to subgroups on the UV and the IR brane via (−) BCs. In [45] the
UV brane symmetry was chosen to be SU(5) and the IR brane symmetry was GSM. This
choice is reflected in the BCs for the gauge bosons Aaµ

Aµ =



(++) (++) (+−) (+−) (+−) (−−)
(++) (++) (+−) (+−) (+−) (−−)
(+−) (+−) (++) (++) (++) (−−)
(+−) (+−) (++) (++) (++) (−−)
(+−) (+−) (++) (++) (++) (−−)
(−−) (−−) (−−) (−−) (−−) (−−)


, (3.1)

where a broken symmetry corresponds to a Dirichlet BC (−) for the corresponding gauge
field. In this 6 × 6 matrix we identify the unbroken groups SU(2)L and SU(3)c by the
highlighted 2×2 and 3×3 submatrices, respectively. The off-diagonal degrees of freedom are
of signature (+,−) and correspond to massive vector bosons that are charged both under
SU(2)L and SU(3)c, carrying the quantum numbers of the usual X,Y gauge bosons of 4D
SU(5) GUTs, i.e. forming an SU(2)L doublet of SU(3)c triplets (X4/3, Y 1/3) ∼ (3∗,2)5/6.
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As discussed, only (−,−) gauge boson modes will lead to a corresponding massless scalar at
tree-level, although at loop-level it will receive a mass. Thus in SU(6) GHGUT, the scalar
spectrum will consist of 11 scalar modes that decompose as (1,2)1/2 ⊕ (3,1)−1/3 ⊕ (1,1)0
under the SM gauge group. Apart from the Higgs, we therefore find a scalar leptoquark
with quantum numbers (3,1)−1/3 and a scalar singlet.

Importantly, one can consider an alternative structure in the gauge model to the one
considered above, which flips the symmetries on the branes. This flipped model has an
unbroken SU(5) gauge symmetry on the IR brane and the SM gauge symmetry on the UV
brane which results in the gauge BCs

Aµ =



(++) (++) (−+) (−+) (−+) (−−)
(++) (++) (−+) (−+) (−+) (−−)
(−+) (−+) (++) (++) (++) (−−)
(−+) (−+) (++) (++) (++) (−−)
(−+) (−+) (++) (++) (++) (−−)
(−−) (−−) (−−) (−−) (−−) (−−)


. (3.2)

We will refer to this model as G(UV)
SM in reference to its SM gauge symmetry on the UV

brane, while we refer to the previous/original model (3.1) as G(IR)
SM . The choice between

these two models will have important consequences concerning the gauge coupling running
which we leave for a future analysis. Nevertheless, one can already understand the very
rough features of the running in the different incarnations. In the G(IR)

SM model, the GUT
symmetry would be broken only below the IR/compositeness scale 1/R′ ∼ TeV, where
unification would need to happen, while in the G(UV)

SM model it would be broken already at
the Planck scale (in the holographic dual interpretation just the GSM subgroup of the full
GUT group would actually be gauged [109]). Also a (more conventional) scenario where
the GUT breaking is realized slightly below the Planck scale via a UV-brane localized
scalar sector is worth investigating. The gauge coupling running in extra dimensions has
been discussed in [110–119].

Aside from the running, the only phenomenological difference in the gauge sector is
that the nature of the X,Y gauge bosons switches from (+,−) to (−,+) which means
they become heavier and do not couple to UV localized fermions (to good approximation)
in constrast with the (+,−) X,Y gauge bosons from the G(IR)

SM model that are light and
have to a good approximation universal couplings to the three SM fermion generations. Of
course, when including the fermions, the flipping of the gauge symmetries can have more
important consequences for the flavor of the model, which we will explore in this paper in
detail. In particular, the model we will identify as the phenomenologically most viable in
section 4 will be of G(UV)

SM type.

3.2 Fermions

The fermion sector of the setup comes in full SU(6) representations, with the minimal
embedding consisting of a 1,6,15 and a 20, which are the four smallest SU(6) representa-
tions [45]. If one does not want to introduce brane matter fields, this is indeed a necessary
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condition and, as it turns out, a sufficient condition for viable SU(6) GHGUT. The 20 is a
necessary bulk fermion in SU(6) GHGUT as it is the smallest representation containing a
fermion with the quantum numbers of the up-type quark, (3,1)2/3, that connects through
the A5 Higgs to a fermion with the quantum numbers of the doublet quark, (3,2)1/6. In
other words, the covariant derivative of a 20 contains a Yukawa coupling for the up-quark.
The same reasoning can be applied to the Yukawa coupling for the down-quark and the
electron for which the 15 is the smallest bulk fermion. Note that although the 15 contains
an up-type quark, it does not connect to a doublet and therefore cannot give a Yukawa
coupling for the up quark, indicating again the necessity of having a 20. The necessity
of a 6 follows from the requirement of a neutrino yukawa coupling. Therefore on general
grounds, one needs minimally a 20,15 and a 6.

Such a setup, however, would lead to heavy neutrinos (see section 3.8). This can be
minimally solved by introducing an additional 1, as will be demonstrated. Furthermore,
the construction as such would lead to serious problems since we would have two distinct
quark doublets, one in the 20 for the up quark Yukawa and one in the 15 for the down
quark Yukawa. Similarly, we would have two lepton doublets, one in the 15 for the electron
Yukawa and one in the 6 for the neutrino Yukawa. We solve this issue by introducing brane
masses on the UV/IR boundaries that connect the doublets such that one physical massless
doublet survives while the other decouples, similar to what happens in conventional models
of gauge-Higgs unification.

After this brief overview, we will enter in more detail the general embedding of the SM
fermions into these four SU(6) bulk fermions, 20,15,6, and 1, which is given by

20→ 10 = q′(3,2)1/6 ⊕ (3∗,1)−2/3 ⊕ e
′c(1,1)1

10∗ = (3∗,2)−1/6 ⊕ u(3,1)2/3 ⊕ (1,1)−1,

15→ 10 = q(3,2)1/6 ⊕ (3∗,1)−2/3 ⊕ e
c(1,1)1

5 = d′(3,1)−1/3 ⊕ l
′c(1,2)1/2,

6→ 5 = d(3,1)−1/3 ⊕ l
c(1,2)1/2

1 = νc(1,1)0,

1→ 1 = ν ′c(1,1)0 , (3.3)

where we display the decomposition of the multiplets under SU(5)⊂ SU(6). Since fermions
in 5D come in Dirac representations, we have for each bulk fermion a LH and a RH
component. We denote in (3.3) the 5D fermions by the usual symbols of the SM fermions
they contain. In the following, we will work with the LH/RH components of the 5D fields
and therefore add a L/R subscript to indicate their embedding, employing Ψc

L ≡ (Ψc)L =
(ΨR)c.1 The primed fermions contain no zero modes, but carry the same SM charges as
some of the SM zero modes and will mix with the latter once boundary terms are added,
a phenomenon well-known in models of gauge-Higgs unification. As we will explore below,

1Therefore the label L/R designates the transformation properties under the Lorentz group. For the SM
leptons, embedded as conjugates, this means the singlet and doublet electron are denoted by respectively
ecL and lcR.

– 11 –



J
H
E
P
0
4
(
2
0
2
3
)
0
1
2

this effect will lead to kinetic mixing and as a consequence the physical mass eigenstates
will reside in both the primed and unprimed fermions. The notable exception is the RH
up-type quark which has no primed partner and therefore no mixing will be present. We
define as exotics the remaining fermions without any labels in (3.3), which do not mix
with the SM mass eigenstates, and are necessary to complete the bulk fermions in SU(6)
representations. In SU(6) GHGUT there are in total four different exotic fields, which after
considering brane masses and EWSB combine into three exotic sectors: one electron-like
exotic Ẽ residing in the 20, one down-type D̃ exotic in the 20, and one up-type Ũ exotic
residing in (three different fields within) the 15 and the 20.

Once the gauge sector and fermion embedding is specified we still need to add boundary
masses in order to get the correct SM spectrum. Indeed, without brane masses, not all
LH fermions connect to their RH counterparts resulting in the corresponding SM fermions
remaining massless. Due to the restrictive SU(5) gauge symmetry there are only three
possible masses that can be written down on the corresponding brane, of which only two
are of main interest for SU(6) GHGUT. The first connects the 10 of the 20 to the 10 of the
15, while the second connects the 5 of the 15 to the 5 of the 6. The former provides a link
for the quark doublet and for the electron singlet to their respective primed partners and is
therefore denoted byMq/e, while the latter connects the RH down quark and lepton doublet
to their respective primed partners and is correspondingly denoted with Md/l.2 There is
also a connection between the two singlets in order to obtain the correct neutrino mass,
denoted withMν , but that one is of less phenomenological interest for our present analysis;
the same holds for components of the brane masses in the exotics sector. Symbolically we
denote these connections as

20→10 ⊕ 10∗

mMq/e

15→10 ⊕ 5 ⊕
mMd/l

6→ 5 ⊕ 1
mMν

1→ 1 .

Apart from these three SU(5) invariant boundary masses there is also the question of
where to place the boundary mass: on the UV brane or on the IR brane. The placement
is determined by which one is allowed by the fermion BCs — indeed most of the boundary
masses one could write down will simply vanish due to these BCs. Therefore in total there
are 4 different versions of the SU(6) GHGUT: one where Mq/e and Md/l are UV brane
masses, one where both are IR brane masses and two mixed models. In addition, we can
consider these four models but with the flipped gauge symmetries, G(UV)

SM ↔ G
(IR)
SM , leading

2On the other hand, in case the gauge symmetry on the brane is GSM, the brane masses connecting the
SU(5) 10s and 5s will actually decompose into all possible terms connecting individual SM fermions in a
GSM invariant way.
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G
(UV)
SM G

(IR)
SM

IR brane masses: Mq/e,Md/l 3 Light exotics: 7

UV brane masses: Mq/e,Md/l Large FCNCs: 7 Large FCNCs: 7

IR brane masses: Mq/e

UV brane masses: Md/l

CKM matrix : 7 CKM matrix : 7

IR brane masses: Md/l

UV brane masses: Mq/e

CKM matrix : 7 CKM matrix : 7

Table 1. Summary of the different incarnations of SU(6) GHGUT. The mixed models fail to
reproduce the CKM matrix while the UV-brane mass models suffer from large FCNCs. The IR-
brane model with the SM on the UV brane is the most suitable as the IR variant suffers from light
exotic fermions.

to a total of 8 different models. Flavorwise these different models become phenomenologi-
cally very distinct. In table 1 we summarize the main problems with these different models
as will become clear in section 4. In the end the most natural model is one with IR brane
masses and the SM gauge symmetry on the UV which will be the main subject of analysis
in this paper.

3.3 Boundary conditions

As mentioned, in order to make the model phenomenologically viable, we need to introduce
the boundary mass terms that will connect the bulk fermions. These terms will modify the
usual BCs for the bulk fermions. The general derivation of BCs for fermions on an interval
was studied in [107, 120], out of which we will only need the simple case of a brane mass.

We consider two 5D fermions Ψ1,Ψ2

Ψ1 =

χ1

ψ̄1

 , Ψ2 =

χ2

ψ̄2

 . (3.4)

In order to have non-vanishing brane masses betweens these two 5D fermions, they must
obey opposite BCs. Chosing a [+] BC for Ψ1 on the IR brane, leading to ψ1(z = R′) = 0,
and a [−] BC for Ψ2, inducing χ2(z = R′) = 0, a non-vanishing invariant mass term can
be written on the IR brane, reading∫

d4x

(
R

R′

)4
(Mψ2χ1 + h.c.)z=R′ . (3.5)

The effect of such an IR brane mass can be studied by pushing the Lagrangian into the
bulk to z = R′ − ε [107], such that the bulk EOMs contain a dirac delta

iσ̄µ∂µχ1 + ∂5ψ̄1 −
(c+ 2)
z

ψ̄1 +M∗ψ̄2δ(y −R′ + ε) = 0,

iσ̄µ∂µψ̄2 − ∂5χ2 + (2− c)
z

χ2 +Mχ1δ(y −R′ + ε) = 0. (3.6)
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Integrating these two equations over the extra dimension results in two jump conditions

[ψ̄1]|R′−ε = −M∗ψ̄2|R′−ε,

[χ2]|R′−ε = Mχ1|R′−ε. (3.7)

In order for the defining BCs at z = R′ to be respected, at z = R′−≡ limε→0[R′−ε] we
obtain the BCs

ψ̄1|R′− = M∗ψ̄2|R′− ,

χ2|R′− = −Mχ1|R′− . (3.8)

Assuming similar brane masses and BCs as before, but now on the UV brane,∫
d4x(Mψ2χ1 + h.c.)z=R , (3.9)

a similar derivation leads to

ψ̄1|R+ = −M∗ψ̄2|R+ ,

χ2|R+ = Mχ1|R+ . (3.10)

3.4 Kinetic mixing

We now explore the mixing that results from the modified BCs due to the brane masses.
Indeed, because of the brane masses connecting the different bulk fermions, the original SM
zero modes (unprimed fields in (3.3)) and non-zero modes that carry the same SM charges
(primed fields) mix, with the physical zero-mode eigenstates residing in a linear combination
of both. For example, consider ecL (which corresponds to the SU(2)L singlet due to the
charge conjugation) within the bulk 15, which features a LH zero mode (corresponding to
(+,+) BCs) that will mix with the e′cL in the bulk 20. Symbolically, the 4D electron field
ec,0L (x) is embedded within these 5D fields as

ecL(x, z) = fecL(z)ec,0L (x) + . . . , e′cL(x, z) = fe′cL (z)ec,0L (x) + . . . . (3.11)

The addition of a brane mass on the IR connecting these two fields changes the BC for the
primed field into e′cL(z = R′) = Mee

c
L(z = R′), which allows us to find the two profiles

fecL(z) = 1√
R′

(
z

R

)2( z

R′

)−c15

f(c15),

fe′cL (z) = 1√
R′

(
z

R

)2( z

R′

)−c20

Mef(c15), (3.12)

using equation (2.32). In appendix A.1 we list all the profiles for our eventual model with
IR-brane localized masses. Note that the generalization to three generations requires these
profiles to be vectors in generation space and Me is consequently a 3× 3 matrix while

fc15 ≡ diag(f(c15,1), f(c15,2), f(c15,3)) (3.13)
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is a diagonal matrix denoting the localization of the three different generations. Inspecting
the 4D effective kinetic term of ec,0L (x) we see how the brane mixing modifies the normal-
ization of the 4D fields, resulting in

L ⊃ iēc,0L
∫
dz

(( 1√
R′

(
z

R

)2( z

R′

)−c15

fc15

)2

+
(

1√
R′

(
z

R

)2( z

R′

)−c20

Mefc15

)2 )
γµ∂µe

c,0
L

= iēc,0L (1 + fc15M
†
ef
−2
c20Mefc15)γµ∂µec,0L

≡ iēc,0L KecL
γµ∂µe

c,0
L , (3.14)

which is not canonically normalized for non-zero brane mass Me.
However, with the kinetic matrix KecL

being hermitian, we can redefine the zero modes
as ec,0L → K

−1/2
ecL

ec,0L to go from the flavor basis to the kinetic basis. Such transformation on
the fermion fields - before diagonalizing the mass matrix - is crucial to obtain the correct
phenomenology in GHU models. For example if one starts with a mass matrix Mec after
EWSB for the electron in the flavor basis (see section 3.8 for scalar/Higgs couplings), one
first has to transform this matrix to the kinetic basis via the redefinition introduced above
— and its counterpart K−1/2

lcR
for the lepton doublet lcR mixing with l′cR — follwed by the

usual bi-unitary mass diagonalization of the (conjugate) leptons with rotation matrices
UL/R,ec , to obtain the physical spectrum

MSM
e = U †L,ecK

−1/2†
lcR

MecK
−1/2
ecL

UR,ec . (3.15)

Here, MSM
e is the diagonal matrix containing the masses of the charged leptons. After a

similar transformation in the neutrino sector we can find the PMNS matrix as the product
VPMNS ≡ U †L,νUL,e = UTL,νcU

∗
L,ec in terms of the rotation matrices of the conjugate lepton

mass matricesMec ,Mνc and similarly for the CKM matrix in the quark sector, VCKM =
U †L,uUL,d. Below, we will discuss the various resulting gauge and scalar couplings in our
model in the flavor basis. The couplings in the mass basis are then obtained by subsequent
rotations to the kinetic and mass basis.

3.5 Gluon and photon couplings

We begin by exploring the couplings of the fermions to the gluon Gµ and photon Aµ.
The profiles of the zero mode gluon f0,G(z) and photon f0,A(z) are flat along the extra
dimension, in consequence of the intact color and electromagnetic symmetry due to the
(+,+) nature of these gauge bosons. We will therefore prefer to indicate these profiles by
the more general f0,(+,+)(z) to distinguish them from different types of gauge bosons that
we will encounter in later sections. This flatness means the couplings are identical to those
of the SM. This can be easily confirmed for example by looking at the gluon couplings to
the quarks in the flavor basis. Consider the couplings to the LH quarks

L ⊃ g5
(
q̄αLγ

µqβL + q̄′αL γ
µq′βL )T aαβGaµ, (3.16)

where T aαβ are the color generators. Notice that due to kinetic mixing we have to include
both the LH doublet from the 15 and from the 20, connected via brane masses.
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The usual normalization of the gauge boson profile (2.10) is such that the kinetic terms
are canonically normalized, however we will opt for a different normalization such that the
gauge boson interactions with the fermions are simpler, namely∫

dz
(
R

z

)
fn,(+,+)(z)2 = R log(R′/R). (3.17)

This makes the zero mode profiles particularly simple, f0,(+,+)(z) = 1. The resulting kinetic
terms can in turn be canonically normalized by redefining the gauge fields with a net effect
of replacing the 5D coupling g5 with g5/(

√
R log(R′/R)) which can be identified with the

SM gauge coupling.3 The coupling of the LH quark, within the 15, to a gluon is then
given by

S ⊃ gs
∫

dzd4x

(
R

z

)4
(q̄LγµqL)Gµ = gs

∫
dz
(
R

z

)4
f2
qL

(z)
∫

d4x(q̄0
Lγ

µq0
L)G0

µ + . . .

= gs

∫
d4x(q̄0

Lγ
µq0
L)G0

µ + . . . , (3.18)

where we neglect all but the zero modes of the KK tower of the fermions and gauge bosons.
Therefore in generation space and in the flavor basis, the couplings will be independent of
the localization of the generations and equal to gs13×3. Since the rotation to the mass basis
is unitary, the couplings remain invariant and SM-like. Taking into account that due to the
brane masses, the LH quark is also partly living in the 20, the full coupling is gsKqL13×3,
with KqL equal to the kinetic mixing matrix of the LH quarks. Thus after the canonical
normalization of the kinetic terms, these couplings will again be gs13×3, just as in the SM.

In contrast, in the couplings of the fermions to the first KK mode of the gluons and pho-
tons (and of the Z/W bosons) the 5D nature of the model is exposed, giving rise to Flavor
Changing Neutral Currents (FCNCs) due to the z dependent profile of these modes along
the extra dimension. This will make the couplings dependent on the fermion localization
or bulk-mass parameter c. Therefore in the flavor basis the couplings will still be diagonal
but non-universal in generation space. Then, after rotating into the canonically normal-
ized mass basis, the coupling matrix will have off-diagonal entries, inducing FCNCs in the
quark sector and the lepton sector. Here we will develop formulae for these couplings. The
signature of these KK modes for the photon and gluon is (+,+), meaning they correspond
to unbroken gauge symmetries. The results are also applicable to the KK bosons of Z/W
bosons - the effects of EWSB on the proporties of the latter modes are negligible to good ap-
proximation. Using the profile f(+,+)(z) from (2.14) with the corresponding normalization

N(+,+) =
πm(+,+)Y0(m(+,+)R)

√
2 log R′

R

2
√

Y 2
0 (m(+,+)R)

Y 2
0 (m(+,+)R′)

− 1
∼

√
2 log R′

R

R′J1(m(+,+)R′)
, (3.19)

3At the classical level, this creates the problem in SU(6) GHGUT of having a strong coupling gs equal
to g and a hypercharge coupling g′ =

√
3/5g with the wrong Weinberg angle. Note that this situation is

not any different from 4D GUTs: we are relying on the running of the gauge couplings at the quantum level
to give the correct measured low-energy couplings. We leave the study of this evolution for future work.
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and the corresponding first KK mass m(+,+) ∼ 2.45/R′, we find the coupling of the (LH)
zero mode quark to the first KK gluon to be (ignoring kinetic mixing with the 20)

gs

∫
dzd4x

(
R

z

)4
(q̄LγµqL)Gµ = gs

(∫
dz
(
R

z

)4
f(+,+)(z)f2

qL
(z)
)∫

d4x(q̄0
Lγ

µq0
L)G1

µ + . . . .

(3.20)
It is convenient to define an effective coupling, λ(+,+)(c), capturing the deviation from

the strong coupling

λ(+,+)(c) ≡
(∫ R′

R
dz
(
R

z

)4
f(+,+)(z)f2

qL
(z)
)

(3.21)

≈ N(+,+)R
′
(∫ 1

0
dtt1−2cJ1(tm(+,+)R

′)f2(c)− 1

(m(+,+)R′) log
(

2
m(+,+)R

))

≈ N(+,+)R
′(m(+,+)R

′)
(

0.05
0.48− 0.35cf

2(c)− 1

(m(+,+)R′)2 log
(

2
m(+,+)R

)),

where we used approximations for the Bessel functions and the numerical value of the
integral in the second and last step, respectively, capturing the behavior in full parameter
space. We can understand its form from the KK gluon profile, which consists of an IR-
localized peak and a small constant part. The second term in the expression reflects this
localization independent contribution, while the first term is amplified for an IR localized
fermion which has a large overlap with the peak of the KK gluon profile.

3.6 Z/W couplings

A second category of gauge fields are the Z/W bosons. Their first KK profiles behave as the
first KK wave functions of the gluon and photon, discussed above, to good approximation -
the exactness of which we will discuss below. The Z/W boson zero modes undergo a more
drastic change when compared to their gluon and photon counterparts. Since electroweak
symmetry is broken, the former deviate from flatness close to the IR brane, in contrast to
the photon and gluon zero modes.

The effect of EWSB is contained in the covariant derivative of the Higgs boson

S ⊃
∫

d4xdz
(
R

z

)
DµA5D

µA5 , (3.22)

which will make the profiles non-trivial. When the Higgs field gets a potential and vev at
the one-loop level (see section 7), this term induces a non-diagonal mass matrix for the
gauge bosons A = Z/W that get a mass from EWSB

L ⊃ (mA)2

2
∑

n,m=0
fnmA

n
µA

µm, (3.23)
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where we work in the basis where the original W 0,µ and Bµ have already been rotated by
the Weinberg angle into the γ/Z bosons and we define the overlaps fnm as

fnm =
∫ R′

R
dz
(
R

z

)
[f5(z)]2 fn,(+,+)(z)fm,(+,+)(z) , (3.24)

with f5(z) (see eq. (2.16)) the bulk profile of the Higgs and fn,(+,+)(z) that of the n’th KK
mode of the gauge boson A = W/Z in the gauge basis. On top of this contribution from
EWSB, one has to add the mass from the RS geometry for the KK modes and diagonalize
the total mass matrix to obtain the physical gauge bosons.

Applying this to the Z boson and only including the first KK mode with mass m(+,+) =
2.45/R′, we find that the mass eigenstates, which we denote by Zµ0 , Z

µ
1 , are related to the

gauge eigenstates, denoted by Zµ(0), Z
µ
(1), by the linear combinations

Zµ0 = Zµ(0) − f01

(
mZ

m(+,+)

)2
Zµ(1),

Zµ1 = f01

(
mZ

m(+,+)

)2
Zµ(0) + Zµ(1), (3.25)

where f01 = 5.47 is the off-diagonal overlap between the zero and first gauge eigenstates.
Higher overlaps f0i quickly decouple (f02 = −1.02 for instance).4 This allows us to neglect
the mixing coming from the higher modes. The next leading effect in fact does not come
from the second KK Z gauge boson, but from the massive (−,−) gauge boson Xµ with
mass m1,(−,−) = 3.83/R′ that corresponds to the abelian subgroup U(1)X ⊂ SU(6)/SU(5).

The above expression for the 4D mass eigenstates can be reformulated in terms of
the corresponding 5D profiles for the mass eigenstates which are convenient to compute
the corresponding couplings. Indeed, using the KK decomposition for the Z boson and
inverting (3.25) we find

Zµ = f0,(+,+)Z
µ
(0) + f(+,+)Z

µ
(1) + . . . (3.26)

=
(
f0,(+,+) − f01

(
mZ

m(+,+)

)2
f(+,+)

)
︸ ︷︷ ︸

fZ0 (z)

Zµ0 +
(
f01

(
mZ

m(+,+)

)2
f0,(+,+) + f(+,+))

)
︸ ︷︷ ︸

fZ1 (z)

Zµ1 + . . . ,

which reflects the relation between the 4D mass and gauge eigenstates from eq. (3.25).
The above expression merits a few observation. First of all, it is justified to neglect

the effect of EWSB on Zµ1 as it will be further suppressed by (mZ/m(+,+))2. Moreover,
the second term above for the bulk profile of Zµ0 will give a non-flat contribution to the
physical W/Z-boson and cannot be omitted: it is of phenomenological importance for
FCNCs. Since we already derived the couplings of a fermion to the first KK mode in the
previous section, the effective coupling to a W/Z boson simply follows. If we take as an

4This is in contrast to IR-brane localized Higgs scenarios where the overlap integrals remain equal (up
to a sign) for higher modes [62].
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example the coupling of the Z gauge boson zero mode Z0
µ to the electron singlet ecL in the

15, the 5D coupling reads

S⊃ g

cW

∫
dzd4x

(
R

z

)4
(ēcLγµecL)Zµ = g

cW

∫
dz
(
R

z

)4
fZ0(z)f2

ecL
(z)
∫

d4x(ēc,0L γµec,0L )Z0
µ+ . . . ,

(3.27)
The deviations of the couplings of the fermions to the Z from the SM case gSM = g

cW
is

then determined by the overlap function

λZ0(c) =
(∫ R′

R
dz
(
R

z

)4
fZ0(z)f2

ecL
(z)
)

=
(

1− f01λ(+,+)(c)
(

mZ

m(+,+)

)2)
. (3.28)

We see that the coupling receives corrections mostly from physics close to the IR brane. In
consequence, UV localized fermions (c > 0.5 for LH modes) will behave very much SM-like.
Since part of the electron singlet is living in the 20 due to brane mixing, we also have to
add the contribution from the Z boson coupling to this singlet. The couplings in the mass
basis can then be found by successive rotation to the kinetic basis and mass basis.

Let us end this section by commenting on the strength of FCNCs coming from the
Z boson versus its first KK excitation. By comparing the localization dependence of the
coupling to the first KK Z boson λ(+,+)(c) to that of the interaction with the Z boson
λZ0(c), we find the following ratio between FCNCs

1
f01(mZ/m(+,+))2

(
mZ

m(+,+)

)2
= 1/f01, (3.29)

taking into account a (mZ/m(+,+))2 mass suppression. We conclude that in general the
first KK Z boson will provide a 1/f01 ∼ 18% correction to the leading contribution, and
we will therefore include the first KK Z boson contribution in flavor observables.

3.7 X,Y couplings

Apart from the SM-like gauge bosons, we also encounter the usual SU(5) X,Y gauge bosons
in SU(6) GHGUTs. Their couplings are encoded in the covariant derivative. Restricting
ourselves to terms involving only SM fermions we find the following current-couplings in
the interaction basis

L ⊃ g5√
2

(
X†µ,α(d̄αLγµecL + d̄αRγ

µecR)− Y †µ,α(ūαLγµecL + d̄αRγ
µνcR)

+X†µ,α(d̄′αL γµe′cL + d̄′αR γ
µe′cR)− Y †µ,α(ū′αL γµe′cL + d̄′αR γ

µν ′cR) + h.c.
)
, (3.30)

where we include both SM-like fermions containing the corresponding zero modes and the
primed fermions that will mix with the SM fermions due to brane masses. Note that
the RH up quark is not embedded within the same 10 as the electron singlet and quark
doublet, instead the latter coming with an exotic quark. This prohibits the dangerous
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diquark couplings that mediate proton decay. More generally the model contains a global
baryon number conservation prohibiting proton decay also for the scalar leptoquark [45].
However, given the low cutoff on the IR brane of the model, the global baryon number
symmetry found at the renormalizable level is not sufficient to protect proton decay from
higher dimensional operators originating from quantum gravity effects and one needs to
promote the global symmetry to a gauge symmetry [96, 97].

To evaluate the couplings above, we have to perform overlap functions between the
X,Y gauge bosons and the different zero modes in the interaction basis and afterwards
rotate to the mass basis. In our models the X,Y gauge bosons come in two variants of
BCs: (+,−) modes and (−,+) modes, corresponding to the SM gauge group residing on
the IR brane or on the UV brane, respectively. In the case of (+,−) gauge bosons, the first
KK mode has a mass m(+,−) ∼ 0.25/R′ and we find the corresponding form of the profile
in equation (2.14). Due to the mass being small with respect to 1/R′, one can expand the
arguments of the Bessel functions in m(+,−)z, leading to

f(+,−)(z) ≈ 1 +
(m(+,−)z)2

2 log
(
m(+,−)R

2

)
. (3.31)

With this approximation the effective coupling to the LH fermion zero modes, with profile
fL(z), becomes (normalized similar to (3.28), with a factor g/

√
2 pulled out)

λ(+,−)(c) =
(∫ R′

R

(
R

z

)4
f(+,−)(z)f2

L(z)
)

=
(

1−
m2

(+,−)R
′2

2(3− 2c) log
( 2
m(+,−)R

)
f2(c)

)
. (3.32)

Consequently, UV localized fermions (c > 0.5 for LH modes) will couple to the X,Y bosons
in a fashion very similar to usual 4D GUTs (although the mass is radically different).

In the models where the SM gauge symmetry resides on the UV brane, G(UV)
SM , the X,Y

gauge bosons become of (−,+) nature and their couplings to fermions get very different.
Already from the UV BC, implying a vanishing profile, it follows that the more a fermion is
UV localized, the smaller the coupling will become. The (−,+) gauge-boson wavefunctions
are given in equation (2.15) resulting in the approximately normalized wave function for
the first KK mode with mass m(−,+) = 2.40/R′

f(−,+)(z) ≈

√
2 log R′

R

R′J1(m(−+)R′)
zJ1(m(−+)z). (3.33)

The effective coupling to zero mode fermions can then be computed from the following

– 20 –



J
H
E
P
0
4
(
2
0
2
3
)
0
1
2

overlap function

λ(−,+)(c) =
(∫ R′

R
dz
(
R

z

)4
f(−,+)(z)f2

L(z)
)

≈

√
2 log R′

R

J1(m(−+)R′)
f2(c)

(∫ 1

0
dtt1−2cJ1(m(−+)R

′t)
)

≈

√
2 log R′

R

J1(m(−+)R′)
(m(−+)R

′) 0.05
0.48− 0.35cf

2(c), (3.34)

where we use the same approximation for the overlap function as in (3.21). Note that in
contrast to interactions with the KK mode of a (+,+) state, this coupling can be turned
to zero for a sufficiently UV localized LH fermion c > 0.5 while the (+,+) and (+,−)
modes are non-zero throughout the whole bulk and their couplings to fermions cannot be
suppressed (unless for extreme IR localization in the latter case).

In the GUV
SM models, therefore the resulting (−,+) X,Y gauge bosons will only play

a very minor role in terms of flavor, as the first two generations of fermions will indeed
be UV localized and only couple feebly to the X,Y states (moreover their masses are an
order of magnitude larger than those of the (+,−) gauge bosons). In contrast, in the GIR

SM
models, the X,Y bosons act very much like heavier W/Z gauge boson with nearly flat
extra dimensional profile and thus couple to the fermions throughout the whole bulk.

3.8 A5 scalars

One of the most striking consequence of SU(6) GHGUTs is the presence of an extended
scalar sector consisting of a colored triplet and a singlet in addition to the Higgs. We shall
omit the singlet for the time being, as it only mediates SM-exotic couplings in contrast to
the triplet that mediates SM-SM couplings (as does the Higgs).

Being part of a five dimensional gauge field, the scalars are included within the fifth
component of the covariant derivative

L ⊃ −ig5
∑

F=1,6,15,20

(
− Ψ̄F,L(T iFAi5)ΨF,R + Ψ̄F,R(T iFAi5)ΨF,L

)
. (3.35)

The sum over F covers the different bulk representations of the fermions while the sum
over i corresponds to the 35 generators in the theory. As discussed, there are 11 physical
scalars in our model corresponding to the Higgs, which provides masses to the SM fields
after acquiring a vev, the scalar leptoquark and the singlet field (see section 7 for the
analysis of the scalar potential). We will be working with complex fields for the Higgs, H
(1,2)1/2 and the leptoquark S (3,1)−1/3 which are embedded together with their complex
conjugates within (T iFAi5). Working out the above Lagrangian and only taking the scalar
interactions that induce SM-SM couplings we find

L ⊃ −i g5√
2

(q̄α,iL d′R,α + εjiūαRq
′
L,j,α − l̄

c,i
R ν

c
L + εjiēcLl

c′
R,j)Hi

− i g5√
2

(ūαRec′L + q̄α,iL lc′R,i + d̄αRν
c
L)Sα + h.c., (3.36)

with ε12 = 1 and 〈H〉 = 1√
2(0, v)T .
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Again, some of these couplings include the primed fermions since they mix with the zero
modes after inclusion of boundary terms and thus contribute to the SM mass eigenstate.
To understand these couplings in more detail we consider, as an example, the l̄c,iR νcLHi term.
The corresponding wavefunctions of the RH and LH zero modes read

fνcL(z) = 1√
R′

(
z

R

)2( z
R

)−c6

fc6 ,

flcR(z) = 1√
R′

(
z

R

)2( z
R

)c6

f−c6 , (3.37)

since both the neutrino doublet and singlet are embedded within the bulk 6. The extra-
dimensional profile of a real scalar zero mode (see (2.16)) is given by f5(z) =

√
2/R(z/R′),

which leads to the following overlap after separating the 5D fields into their bulk profile
and 4D fields

L ⊃ − g5√
2

∫
dz
(
R

z

)4 ∫
d4x(−l̄c,iR ν

c
L)〈Hi〉

= − g5√
2
v√
2

∫
dz
√

2
R

(
z

R′

)( 1
R′
fc6f−c6

)∫
d4x(ν̄c,0R νc,0L ) + . . .

= − g∗v

2
√

2
fc6f−c6

∫
d4x(ν̄c,0R νc,0L ) + . . . , (3.38)

where g∗ = g5/
√
R is the dimensionless counterpart of the five-dimensional coupling and

we recover a regular 4D mass term for the neutrino. Unsurprisingly, the localization of the
bulk field 6 is determining this mass. However the same localization is also determining the
localization of the RH down quark and conjugate LH doublet, and fitting the corresponding
mass would result in a too heavy neutrino. This is why we need a singlet 1 that will mix
with the zero mode neutrino to recover a light mass eigenstate such that after kinetic
normalization small neutrino masses are obtained as will be explicitly shown in section 4.

The couplings with the triplet can be computed in a similar way, for example the
− g5√

2(d̄αRνcLSα) term leads to the 4D Yukawa interaction

L⊃− g5√
2

∫
dz
(
R

z

)4∫
d4x(d̄RνcL)S=−g5

2

∫
dz
√

2
R

(
z

R′

)( 1
R′
fc6f−c6

)∫
d4x(d̄0

Rν
c,0
L )S+...

=−g∗2 fc6f−c6

∫
d4x(d̄0

Rν
c,0
L )S+... . (3.39)

Notice that we find the same couplings as for the Higgs-neutrino Yukawa coupling derived
above. This is a more general observation: the Yukawa couplings of the triplet scalar
will be identical to the Higgs-Yukawa couplings before mass diagonalization, as they are
embedded in the same SU(5) multiplet. This will lead to a strong flavor-hierarchical pattern
in the triplet-Yukawa terms, similar to the Higgs-Yukawa couplings. As a consequence, the
scalar triplet will not play a leading role in flavor constraints as its couplings to the first two
generations are very suppressed. For loop processes, when including the KK excitations of
the fermions, this conclusion will be changed where the leptoquark is the most constraining
mediator for the µ→ eγ decay.
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4 Flavor of SU(6) gauge-Higgs grand unification

Having discussed the building blocks and couplings of SU(6) GHGUT, we will analyse the
most compelling incarnation of the model and test if it can reproduce the flavor hierarchies
observed in nature. This will allow us to understand why other configurations do not work.
The main objective will thus be to reproduce the masses of the SM fermions, the CKM
matrix and the PMNS matrix while having the smallest possible IR scale and avoiding any
large hierarchies in the input parameters. We will also include a realistic neutrino sector
in our scans. To this end, we choose an arbitrary benchmark of allowed neutrino masses
of 7meV, 11meV, and 51meV in the normal hierarchy, however varying them within the
allowed range would not change the analysis notably.

The absolute values of the elements of the CKM matrix contain the following strong
hierarchies [121]

VCKM ∼


|Vud| |Vus| |Vub|
|Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 =


0.9740 0.2265 0.0036
0.2264 0.9732 0.0405
0.00885 0.0398 0.9992

 ∼


1 λ λ3

λ 1 λ2

λ3 λ2 1

 , (4.1)

with the Wolfenstein parameter λ ≈ 0.23, which we will attempt to reproduce in our model.
We also make sure that we obtain approximately the correct amount of CP violation sourced
from the CKM matrix, as quantified by the Jarlskog invariant J = Im(VusVcbV ∗ubV ∗cs) ∼
3× 10−5. The PMNS matrix on the other hand does not contain large hierarchies,

VPMNS ∼


0.82 0.55 0.15
0.37 0.58 0.71
0.40 0.59 0.69

 , (4.2)

where we take the central values from [122]. Concretely, in the scans over parameter space,
we will require that all fermion masses and the entries of the CKM and PMNS matrices do
not deviate more than 20% from their target values. While this exceeds the experimental
uncertainties, it facilitates the scan and demanding smaller deviations does not change our
results significantly. We also require the brane-mass matrix entries 0.2 < |(Mf )ij | < 2 to
be order one.

4.1 IR brane mass model

Let us start with the model that was identified in table 1 as the most promising one where
we consider all brane masses to reside on the IR brane. This will allow us to understand
the issues with the other embeddings. Concerning the gauge sector, we will study the
model with the unbroken SU(5) symmetry on the IR brane and the SM gauge group on the
UV, G(UV)

SM , since the model with the SM group on the IR brane, G(IR)
SM , suffers from light

exotics as we will see. The BCs, where as usual we specify those for the LH components
of the bulk fermion, become unique and simply follow from the requirement to have only

– 23 –



J
H
E
P
0
4
(
2
0
2
3
)
0
1
2

IR-brane masses

20→ q′(3,2)+,−
1/6 ⊕ (3∗,1)+,−

−2/3 ⊕ e
c′(1,1)+,−

1

(3∗,2)+,−
−1/6 ⊕ u(3,1)−,−2/3 ⊕ (1,1)+,−

−1 ,

15→ q(3,2)+,+
1/6 ⊕ (3∗,1)−,+−2/3 ⊕ e

c(1,1)+,+
1

d′(3,1)−,+−1/3 ⊕ l
c′(1,2)−,+1/2 ,

6→ d(3,1)−,−−1/3 ⊕ l
c(1,2)−,−1/2 ⊕ ν

c(1,1)+,+
0 ,

1→ νc′(1,1)+,−
0 . (4.3)

The boundary masses consist of three terms

SIR = −
∫

d4x

(
R′

R

)4(
Mq/eψ20,10χ15,10 +Md/lψ6,5χ15,5 +Mνψ1,1χ6,1 + h.c.

)
. (4.4)

Note that, given the chosen BCs, these are the only non-vanishing brane masses that one
can write down, with the only exception being a UV-brane mass in the up-type exotic sector

SUV = −
∫

d4x
(
Mũψ15,(3∗,1)χ20,(3∗,1) + h.c.

)
. (4.5)

This UV-brane mass will not impact the flavor aspects of the model but is important in
the Higgs potential (see section 7). The full solution for the fermion zero-mode profiles can
be found in appendix A.1.

The hierarchies in the CKM matrix can be naturally reproduced in this model —
indeed, looking at the mass matrices in the flavor basis, we find (see eq. (A.4))

Mu = g∗v

2
√

2
fc15M

†
q/ef−c20 ,

Md = − g∗v

2
√

2
fc15M

†
d/lf−c6 . (4.6)

It is well known [47] that the bi-unitary diagonalization of the above matrices will feature
transformation matrices that carry distinct hierarchies, following from the hierarchies in
the mass matrices. For instance in the down sector we generically find

UL,d ∼


1 f(c15,1)

f(c15,2)
f(c15,1)
f(c15,3)

f(c15,1)
f(c15,2) 1 f(c15,2)

f(c15,3)
f(c15,1)
f(c15,3)

f(c15,2)
f(c15,3) 1

 , UR,d ∼


1 f(−c6,1)

f(−c6,2)
f(−c6,1)
f(−c6,3)

f(−c6,1)
f(−c6,2) 1 f(−c6,2)

f(−c6,3)
f(−c6,1)
f(−c6,3)

f(−c6,2)
f(−c6,3) 1

 , (4.7)

with the rotation matrices in the up sector being analogous. Therefore, by taking the
localizations of the 15 to fulfill

f(c15,1)/f(c15,2) ∼ λ, f(c15,2)/f(c15,3) ∼ λ2, f(c15,1)/f(c15,3) ∼ λ3, (4.8)

the LH rotation matrices in the up and down sector will carry the same hierarchies as the
CKM matrix (4.1) (see also [54]). The latter matrix, being the product VCKM = U †L,uUL,d,
will then take over these hierarchies.
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This also explains whymixed models, where both UV- and IR-brane masses are present,
generally do not succeed in having a hierarchical CKM matrix. For instance if the 15 and
6 are connected through a UV-brane matrix Md/l instead, the mass matrix in the flavor
basis will be modified to

M′d = − g∗v

2
√

2
fc15

(
R

R′

)−c15

M †d/l

(
R

R′

)c6

f−c6 , (4.9)

which will make the LH down rotation matrix of a different structure than the LH up
rotation matrix resulting in a CKM matrix with all entries being O(1).

UV models, on the other hand, where both Md/l and Mq/e are on the UV brane can
reproduce the CKM matrix. However such a setup requires the heavier generations of
fermions to be localized closer to the UV brane, while the lighter generations are localized
more in the IR as the mass generation now happens through the UV brane. Flavor con-
straints will make these models highly tuned as the lighter generations now couple strongly
to KK excitations that are still IR localized, inducing large FCNCs. In this case, we find
the IR scale gets pushed to ∼ O(103)TeV. Finally, the model with IR-brane masses and
the SM gauge group on the IR brane can be discarded because it contains light exotics. In
particular, the exotic lepton with charge +1 embedded in the 20 would have (−,+) BCs
and thus become very light for the localization of the bulk 20 that is necessary to have
light up and charm quarks (c20,1/2 < −0.5).

Going back to the most viable IR brane mass model, we will assume IR localization for
the 15 hosting the third generation LH quark doublet (c15,3 < 0.5) in order to reproduce the
large top mass. The multiplets hosting the doublets of the two lighter generations will then
naturally be UV localized c15,1/2 > 0.5 by virtue of CKM relations (4.8), which will help to
suppress FCNCs. The remaning bulk localizations for the 20 and 6 are uniquely determined
by the requirement of reproducing the correct SM quark masses resulting in the constraints

mc

mt
∼ λ2 f(−c20,2)

f(−c20,3) ,
mu

mt
∼ λ3 f(−c20,1)

f(−c20,3)
mb

mt
∼ f(−c6,3)
f(−c20,3) ,

ms

mt
∼ λ2 f(−c6,2)

f(−c20,3) ,
md

mt
∼ λ3 f(−c6,1)

f(−c20,3) , (4.10)

implying one free parameter in the flavor sector (that could be taken as c15,3) that rescales
the overall localization of the left-handed fermions.5 Of course, the anarchic nature of the
brane matrices Mq/e and Md/l causes these relations to be only approximate.

Moving to the lepton sector, we find the mass matrix of the charged (conjugate) leptons
in the flavor basis (A.7)

Mec = − g∗v

2
√

2
f−c6Md/lfc15 . (4.11)

We see that there is a degeneracy of electron and down masses, just as in SU(5) 4D GUTs.
Since the gauge symmetry on the UV brane is GSM, it is an ideal brane to introduce

5We note that, in our setup, only the multiplets containing the 3rd generation quark doublet and the
RH top quark are IR localized, whereas the remaining multiplets are UV localized. Therefore this model
keeps most of the attractive features of the MCHM with the lighter fermions being mostly elementary and
the heavier ones composite.
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SU(5) breaking effects that can correct this mass relation. It is indeed possible to lift
the degeneracy of the electron and down quarks by introducing a brane kinetic term: for
example, we can add a UV-localized kinetic term for the 5D fermion lcR in the 6 with
coefficient κ, reading

Skin,UV =
∫

d4x iκR l̄cRσ̄
µ∂µl

c
R|z=R. (4.12)

The effect of such a brane localized term will be that the UV BCs will be modified to [107]

l̄cL|z=R = iκσ̄µ∂µl
c
R|z=R, ∂5l

c
R|z=R = −iσµ∂µ l̄cL|z=R + 2 + c6

R
lcL|z=R. (4.13)

Expanding the 5D fields in their KK decomposition (2.28) and using the EOMs (2.29)
results in the modified BC

flcL(z = R) = κmnRflcR(z = R). (4.14)

In the limit of vanishing kinetic term κ = 0 we recover the usual condition for a (−,−) 5D
fermion, while for a general non-zero κ, the zero-mode solution is unaffected by the UV
kinetic term with the exception of the absolute normalization of the kinetic term. Indeed,
the inclusion of a UV kinetic term will change the kinetic mixings (A.6) as follows

KlcR
= 1 + f−c6Md/lf

−2
−c15M

†
d/lf−c6 → 1 + κRf2

lcR
(z = R) + f−c6Md/f

−2
−c15M

†
d/lf−c6

≈ 1 + (−2c−6 − 1)κ+ f−c6Md/lf
−2
−c15M

†
d/lf−c6 , (4.15)

where the approximation holds for UV-localized fermions with c < −0.5.6 Therefore one
can break the down-electron degeneracy and approximately obtain the correct charged
lepton masses for the UV kinetic term7

κ =


(md/me)2−1
−2c6,1−1 0 0

0 (ms/mµ)2−1
−2c6,2−1 0

0 0 (mb/mτ )2−1
−2c6,3−1

 . (4.16)

Concerning the neutrino sector, we find the following mass matrix in the flavor basis
(see (A.7))

Mνc = g∗v

2
√

2
f−c6fc6 . (4.17)

Unsurprisingly, the masses of the neutrinos are purely determined by the localizations of
the bulk 6, which already determines the masses of the down-type quarks and charged
leptons. Therefore the singlet 1 is crucial as it allows the RH neutrino to mostly reside in

6For IR localized fermions, unsurprisingly, the effect of a UV kinetic term is negligible.
7We chose here a diagonal matrix for simplicity but stress that, due to the mild hierarchies between

charged-lepton and down-type quark masses, a rather anarchic general matrix could be employed, too.
In fact, employing generic brane-kinetic terms for all fermions would not spoil the generation of flavor
hierarchies in the setup and in that sense all parameters can be natural while predicting rather degenerate
down-quark and lepton masses, at the same time accommodating very different up-type quark masses.
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the singlet resulting in a small neutrino mass. Indeed, incorporating the kinetic mixing,
the neutrino mass matrix in the canonically normalized basis reads

Mcan
νc = g∗v

2
√

2
K
−1/2†
lcR

f−c6fc6K
−1/2
νcL

. (4.18)

Neglecting mixing implies the neutrino masses

mν,i '
g∗v

2
√

2
f(−c6,i)f(c1,i)/Mν,ii (4.19)

for UV localized singlets (c1 > 0.5). Small neutrino masses can then be achieved by taking
the singlet 1 very UV localized. The ratio of masses is therefore determined by the c1,i
parameters,

mνi

mνj

' f(−c6,i)f(c1,i)
f(−c6,j)f(c1,j)

. (4.20)

Since the flavor function is exponentially sensitive to the localization parameter, only
slight differences in the localizations of the singlets 1 are necessary in order to reproduce
realistic neutrino masses. Concerning the PMNS matrix, it equals the product of the two
LH lepton rotation matrices VPMNS = U †L,νUL,e = UTL,νcU

∗
L,ec (see under eq. (3.15)). It

follows (similarly from eq. (4.7)) that these matrices are determined by the 6 localizations

(UL,ν)ij ∼ (UL,e)ij ∼
f(−c6,i)
f(−c6,j)

, i ≤ j. (4.21)

This is ideal to explain VPMNS since the localizations of the 6 do not contain any strong
hierarchies. This reflects the fact that the RH down localizations could be chosen almost
degenerate, as was noted e.g. in [92] where the localizations were in fact chosen to be the
same to protect the RH down sector from FCNCs. Indeed there are no strong hierarchies
remaining: the down-type quark and lepton mass hierarchies are almost fully accounted
for by the localizations of the 15 and the ratios between the localizations of the 6 can
therefore finally be extracted from (4.10) as

f(−c6,2)
f(−c6,1) ∼ 4, f(−c6,3)

f(−c6,2) ∼ 2. (4.22)

As mentioned, these small hierarchies mean the model is well suited to explain the un-
hierarchical PMNS matrix and we take the view that its specific features are the result
of the anarchic brane masses on the IR. Moreover, this feature is not spoiled for different
benchmark neutrino masses. In fact, even for scenarios where the lightest neutrino is much
lighter than the other two, requiring large hierarchies in the f(c1,i)’s, the PMNS matrix
will not be disturbed since these hierarchies will mostly affect the RH neutrino rotation
matrices and therefore will not enter into VPMNS. Therefore, we generically obtain an
anarchic structure for the PMNS matrix.

Having accounted for the observed flavor hierarchies, we perform a scan over parameter
space and select 5000 points that reproduce these hierarchies (or lack thereof for the PMNS
matrix) within 20%. In the next section we discuss and test the flavor constraints on the
model.
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5 Flavor constraints

Having identified a successful model to explain the flavor hierarchies, we can now go over
to the flavor constraints. As in general RS models, the flavor structure of GHGUTs is
particularly rich. We will discuss two broad categories of observables, flavor violation in
the quark sector due to meson mixing and flavor violation in the lepton sector in charged
lepton observables. Previously, these observables have been proven to provide the most
stringent constraints on extra dimensional models, which is why we focus on them in this
work. In the literature, flavor effects in both the quark and lepton sectors have been well
studied [51, 53–69], but independently from another and often in the context of an IR-brane
localized Higgs. In GHGUT, one can no longer study these effects separately since quarks
and leptons are unified in the same multiplets and therefore their localization is intertwined.

5.1 Meson mixing

Due to the presence of KK gauge bosons with non-universal interactions, tree-level FCNCs
can arise. These effects are naturally suppressed by the mass of the corresponding bosons
m(+,+) ∼ 2.45/R′. However, with O(1) couplings this suppression would not be nearly
enough to evade the current bounds on FCNC couplings from meson mixing. Indeed
O(1) couplings would imply lower bounds on the mediating gauge bosons at the level
of ∼ 104 TeV. However, due to the RS-GIM mechanism, which ensures that off-diagonal
couplings are suppressed by the same small overlap functions that generate small yukawa
couplings, the actual bounds are substantially smaller.

FCNCs give notable effects in ∆F = 2 flavor observables such as Bs − B̄s, Bd − B̄d,
D− D̄ and K − K̄ mixing, where the latter is generally the most constraining. Due to the
large SU(3) coupling, the dominant contribution comes from the tree-level exchange of the
lightest KK gluon, although in principle the KK photon and the electroweak gauge bosons
and their KK modes also contribute. The relevant Lagrangian, featuring off-diagonal cou-
plings to the first KK gluon in the mass basis, reads

L = (gijL,q q̄
α,i
L γµq

j
β,L + gijR,q q̄

α,i
R γµq

j
β,R)(T a)βαGa,1µ , (5.1)

where q = u, d and i, j are generation indices and below we omit a zero mode superscript
for the SM fermions. The full expressions for these couplings in the mass basis are given by

gL,u = gsU
†
L,uK

−1/2†
qL

(
λ(+,+),c15 + fc15M

†
q/ef

−1
c20 λ(+,+),c20 f

−1
c20Mq/efc15

)
K−1/2
qL

UL,u

gR,u = gsU
†
R,uλ(+,+)c20UR,u (5.2)

gL,d = gsU
†
L,dK

−1/2†
qL

(
λ(+,+),c15 + fc15M

†
q/ef

−1
c20 λ(+,+),c20 f

−1
c20Mq/efc15

)
K−1/2
qL

UL,d

gR,d = gsU
†
R,dK

−1/2†
dR

(
λ(+,+),−c6 + fc−6Md/lf

−1
−c15 λ(+,+),−c15 f

−1
−c15M

†
d/lf−c6

)
K
−1/2
dR

UR,d ,

with λ(+,+),c the coupling to the first KK mode, given in eq. (3.21).
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After integrating out the KK gluon with mass m(+,+) = 2.45/R′ we obtain the effective
4D Hamiltonian (focusing on the down sector)

H = Cij1 (m(+,+))(d̄
α,i
L γµd

j
L,α)(d̄β,iL γµdjL,β) + C̃ij1 (m(+,+))(d̄

α,i
R γµd

j
R,α)(d̄β,iR γµdjR,β)

+ Cij4 (m(+,+))(d̄
α,i
L djR,α)(d̄β,iR djL,β) + Cij5 (m(+,+))(d̄

α,i
L djR,β)(d̄β,iR djL,α), (5.3)

with

Cij1 (m(+,+)) =
gijL,dg

ij
L,d

6m2
(+,+)

, C̃ij1 (m(+,+)) =
gijR,dg

ij
R,d

6m2
(+,+)

,

Cij4 (m(+,+)) = −
gijL,dg

ij
R,d

m2
(+,+)

, Cij5 (m(+,+)) =
gijL,dg

ij
R,d

3m2
(+,+)

. (5.4)

The coefficients of these operators are experimentally well constrained [123], especially in
the Kaon sector, for which i, j = 1, 2. The imaginary component of C21

4 (Λ) experiences the
most stringent bound, requiring a new physics scale of ∼ 104 TeV for order one couplings.
The limits quoted in [123] are calculated at the new physics scale (identified with the bound
on Λ assuming order one coupling) and considering only one effective operator present at
a time. Since these coefficients depend considerably on the renormalization scale, they
should be translated to our new physics scale ∼ m(+,+). Considering this, we will use
the bounds quoted in [55], that are evaluated at 3TeV. Moreover the C21

4 (Λ) coefficient
only receives contributions from the KK gluon exchange and not from photon or other
electroweak gauge bosons. The approach of only taking into account gluon exchange is
therefore especially well motivated.

5.2 Tree-level lepton flavor violation

We will now consider observables in the lepton sector that arise at tree-level, namely
µ+ → e+e−e+ decay and µ−e conversion. The relevant Lagrangian contains the couplings
of the leptons to the Z boson (and its first KK mode) in the mass basis, reading

L = g

cW

(
gijL ē

i
Lγµe

j
L + gijR ē

i
Rγµe

j
R

)
Z0,µ + g

cW

(
g′ijL ē

i
Lγµe

j
L + g′ijR ē

i
Rγµe

j
R

)
Z1,µ. (5.5)

Although the leptons are embedded as conjugate fields in our model, we will convert these
couplings to those of unconjugated fields for phenomenology calculations. The coefficients
are given by

gL=(−1/2+s2
W )
(
U †L,ecK

†,−1/2
lcR

(
λZ0,−c6+f−c6Md/lf

−1
c15λZ0,−c15f

−1
c15M

†
d/lf−c6

)
K
−1/2
lcR

UL,ec
)∗

gR=(s2
W )
(
U †R,ecK

†,−1/2
ecL

(
λZ0,−c6+f−c6Md/lf

−1
c15λZ0,−c15f

−1
c15M

†
d/lf−c6

)
K
−1/2
ecL

UR,ec
)∗
, (5.6)

where we used the couplings derived in equation (3.28) (and added a complex conjugate
to obtain the couplings to the unconjugated leptons), while the equivalent couplings to the
first KK Z boson can be obtained by the substitution λZ0,c → λ(+,+),c. We neglect the
fermion mixing with KK modes as its leading effect is suppressed not only by (vR′)2, but
by an additional factor of log(R′/R) [54].
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5.2.1 µ+ → e+e−e+ decay

Flavor violation in µ→ 3e can be parameterized with the effective Lagrangian [124, 125]

L = −4GF√
2

(
g1(ēRµL)(ēReL) + g2(ēLµR)(ēLeR) + g3(ēRγµµR)(ēRγµeR) (5.7)

+ g4(ēLγµµL)(ēLγµeL) + g5(ēRγµµR)(ēLγµeL) + g6(ēLγµµL)(ēRγµeR)

+mµARēRσ
µνµLFµν +mµALēLσ

µνµRFµν + h.c.
)
.

In the above Lagrangian we recognize the loop-level dipole operators proportional to AL
and AR, which will be subdominant with respect to the tree-level contact interactions.
However on their own these dipole operators give the striking µ→ eγ signature which we
will discuss in the next section. Neglecting small KK-photon contributions, the remaining
operators are generated at tree level by Z boson (zero- and KK-mode) exchange, therefore
the scalar contact interactions are absent (g1 = g2 = 0) in the model at hand, resulting in
the branching ratio [124, 125]

Br(µ→ 3e) = 2(g2
3 + g2

4) + g2
5 + g2

6 . (5.8)

Dating from 1988, the current experimental bound still reads [126]

Br(µ→ 3e) < 10−12 (5.9)

and is expected to be improved by the upcoming Mu3e experiment to [127]

Br(µ→ 3e) < 10−16 . (5.10)

Integrating out the Z boson in eq. (5.5) we find the effective Lagrangian

L = −4GF√
2

(
gijL g

kl
L (ēiLγµe

j
L)(ēkLγµelL) + gijRg

kl
R (ēiRγµe

j
R)(ēkRγµelR)

× 2gijL g
kl
R (ēiLγµe

j
L)(ēkRγµelR)

)
, (5.11)

with the first KK mode leading to a similar result. Including both contributions and
matching to eq. (5.7), we obtain the couplings contributing to the µ→ 3e process

g3 = 2
(
g12
R g

11
R + g′12

R g′11
R

(
mZ

m(+,+)

)2)
,

g4 = 2
(
g12
L g

11
L + g′12

L g′11
L

(
mZ

m(+,+)

)2)
,

g5 = 2
(
g12
R g

11
L + g′12

R g′11
L

(
mZ

m(+,+)

)2)
,

g6 = 2
(
g12
L g

11
R + g′12

L g′11
R

(
mZ

m(+,+)

)2)
. (5.12)
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5.2.2 µ− e conversion

For µ− e conversion in nuclei we consider quark-lepton effective operators in the effective
Lagrangian [124, 125]

L = −2GF√
2

(
ē(s−pγ5)µ

∑
q

q̄(sq−pqγ5)q+ēγα(v−aγ5)µ
∑
q

q̄γα(vq−aqγ5)q+h.c.
)
. (5.13)

Effects in the light-quark sector will be very small and therefore vq = T3 − 2Q sin2 θW and
aq = T3, as in the SM. We also omit possible tensor couplings as they lead to non-coherent
transitions and are therefore suppressed by approximately the number of nucleons. For
coherent muon conversion, only the scalar and vector couplings are relevant. These can
then be converted from the quark level to the nucleon level, in order to obtain the conversion
rate [124, 125]

Br(µ→ e)N =
G2
FF

2
pm

5
µα

3Z4
eff

2π2ZΓcapt
(5.14)

×
(
|4eALZ+(s−p)SN +(v−a)QN |2 + |4eARZ+(s+p)SN +(v+a)QN |2

)
,

where Γcapt denotes the muon capture rate and QN , SN are defined as

SN = su(2Z +N) + sd(2N + Z),
QN = vu(2Z +N) + vd(2N + Z). (5.15)

The parameters for 48
22Ti/27

13Al/197
79 Au nuclei are Fp ∼ 0.55/0.66/0.16, Zeff ∼

17.61/11.62/33.5, and Γcapt ∼ (2.6/0.71/13.07) × 106 sec−1 [128–130]. The two strongest
experimental constraint are obtained for 48

22Ti and 197
79 Au and read [131, 132]

Br(µ→ e)Ti < 6.1× 10−13,

Br(µ→ e)Au < 9.1× 10−13. (5.16)

The conversion rate for Titanium is slightly smaller and as a result we will only work with
the latter. The upcoming experiments COMET and Mu2e [133] will probe µ−e conversion
in Aluminium with an expected sensitivity at 90% confidence level (CL) of

Br(µ→ e)Al < 8× 10−17. (5.17)

We will also include this upcoming experiment in our analysis.
The relevant couplings have three different origins, cominng from the Z boson and its

KK modes, the X,Y gauge bosons, and the scalar triplet. We can safely neglect the scalar
triplet as its couplings are too small to be competitive with the other two sources. The
contributions of the X,Y gauge bosons will be heavily suppressed in the models where the
gauge symmetry on the UV brane is GSM, both due to the heavier mass of the X,Y gauge
bosons and by their small couplings to the first generation fermions, that are UV localized.
However for the models with the SM gauge symmetry on the IR brane, these contributions
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can be important and need to be accounted for. The contributions from the Z boson are
obtained from eq. (5.5), including the respective quark couplings, leading to

L = −4GF√
2

2
(
gijL g

kl
L,q(ēiLγµe

j
L)(q̄kLγµqlL) + gijL g

kl
R,q(ēiLγµe

j
L)(q̄kRγµqlR)

+ gijRg
kl
L,q(ēiRγµe

j
R)(q̄kLγµqlL) + gijRg

kl
R,q(ēiRγµe

j
R)(q̄kRγµqlR)

)
, (5.18)

(and similar for the KK Z boson). Comparing to eq. (5.13) we can read off the values for
v and a

v =
(
g12
L + g′12

L

(
mZ

m(+,+)

)2)
+
(
g12
R + g′12

R

(
mZ

m(+,+)

)2)
,

a =
(
g12
L + g′12

L

(
mZ

m(+,+)

)2)
−
(
g12
R + g′12

R

(
mZ

m(+,+)

)2)
. (5.19)

5.3 Loop-level lepton flavor violation

As a complementary probe to the tree level flavour-violating processes discussed so far, we
will now consider the loop-level process µ→ eγ, which is mediated by penguin diagrams. In
5D, these are finite at one-loop order and have been studied in a fully 5D framework in [64].
We will prefer to work in a KK picture as it makes the calculation more transparent, as was
done in [62], where only the dominating Higgs loop was included. Below, we will review
the calculation and include other processes, such as the Z-loop and W -loop contribution
and most relevant for our SU(6) GHGUT, the scalar leptoquark. Since these processes
require the careful treatment of KK fermions, we include the details of the calculation in
appendix A.2 and appendix B.

The amplitude for the process µ(p) → e(p′)γ(q) reads A = e ε∗µ(q)Mµ [134]. Gauge
invariance dictates that it must remain invariant under εµ → εµ+qµ, leading to the general
form

Mµ = ūp′(CLΣµ
L + CRΣµ

R)up/mµ, (5.20)

where

Σµ
L = (pµ + p′,µ)PL − γµ(mePL +mµPR),

Σµ
R = (pµ + p′,µ)PR − γµ(mePR +mµPL), (5.21)

with CL/R the model dependent coefficients that are calculated in appendix B for SU(6)
GHGUT. Orthogonal directions to (pµ + p′,µ) in (5.20) are parameterized by qµ, however
for on-shell processes these disappear due to q2 = 0 and ε∗µqµ = 0. One can then rewrite
this amplitude using the Gordon decomposition

Mµ = ūp′i
σµνqν
mµ

(CLPL + CRPR)up. (5.22)

Finally, the decay width for the flavour violating process is given by

Γ(µ→ eγ) =
(m2

µ −m2
e)3(|CL|2 + |CR|2)
16πm5

µ

(5.23)
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Figure 1. Current bound on µ − e conversion in Titanium (left) and future bound on µ − e

conversion in Aluminium (right), displayed together with the predictions of our scan as a function
of 1/R′. The points in the red (blue) region are (expected to be) excluded.

This is to be compared to the dominating µ → eνν̄ decay, with Γ(µ → eνν̄) =
m5
µG

2
F /192π3. The branching ratio for the flavor violating process is then

Br(µ→ eγ) = 12π2(C2
L + C2

R)
(GFm2

µ)2 . (5.24)

The most stringent constraint on this branching ratio stems from the MEG experi-
ment [135], reading

Br(µ→ eγ) = 4.2× 10−13, (5.25)

at 90% CL. In the upcoming years, an update from MEG II [136] is expected, with a
projected sensitivity of

Br(µ→ eγ) = 6× 10−14. (5.26)

As mentioned, the flavor violating decay can be induced from four different loop diagrams,
namely W , Z, Higgs, and leptoquark loops. We will treat all four effects and compare
them for SU(6) GHGUT (see appendix A.2 and appendix B for the details).

The same diagrams also induce an electric dipole moment (and an anomalous magnetic
moment). From the above formulas, the dipole (and magnetic) moment are dl = (C lL −
C lR)/2ml = Im(C lL)/ml (and al = (C lL + C lR)/e = 2Re(C lL)/e) for the diagonal elements
C l∗R = C lL ≡ (CL)ll. We will use the strongly constrained electron electric dipole moment
de/e < 0.11× 10−28cm at 90% to constrain the model [137].

5.4 Results

In figure 1, we illustrate the constraints from µ − e conversion. The current bound from
the Titanium atom is still rather weak for GHGUT models and can be basically neglected
for 1/R′ > 3TeV. However upcoming experiments in Aluminium can completely exclude
the model for 1/R′ < 10TeV and probe the parameter space into the 25TeV range. Our
results agree with previous studies of µ − e conversion in extra dimensional models [62],
see also [88, 89, 138].
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Figure 2. Current (red) and future (blue) constraints on the µ→ 3e decay (left) and (ImC4
K)−1/2

(right), displayed together with the predictions of our scan as a function of 1/R′.

Figure 2 shows the current and upcoming bound on the branching ratio for the decay
µ → 3e and the constraints from K − K̄ meson mixing in the quark sector. The current
bound on µ→ 3e is again weak but the upcoming constraint should probe up to the 15TeV
region. The constraint from K − K̄ meson mixing is rather weak, too. Excluding even
an IR scale as low as 1/R′ . 3TeV is difficult. Bounds from µ − e conversion therefore
furnish the more reliable tree level constraint on the model. Our results agree relatively
well with previous studies of K − K̄ meson mixing [55, 59], with differences owing to a
different fermion sector.

Finally, on the left panel of figure 3, the current and upcoming bounds on the branching
ratio of µ→ eγ are displayed. This process already reliably excludes IR scales 1/R′ lower
than 20TeV. It provides therefore currently the most stringent constraint on the IR scale
of the model from flavor. The future improvement by an order of magnitude on the
branching ratio means the parameter space for 1/R′ < 30TeV will be completely probed.
There is a rather broad range of branching ratios for a specific IR scale. This reason behind
this variation is that the branching ratio is largely determined by the lightest KK mode
mediating the decay and for any specific IR scale 1/R′, there can be moderate variations
in the mass of this mode. On the right panel of figure 3, the breakdown of the Br(µ→ eγ)
in terms of the different loop contributions is shown (under the assumption that only one
mediator is present). The leptoquark contribution is the most relevant one, with the Higgs
boson and W/Z boson contributions being smaller. This allows us to understand our more
constraining results in comparison to the literature [62] since the leptoquark is absent in
these previous analysis. The electron electric dipole moment results are shown in figure 4
and are of a similar constraining strength as the future update on the µ→ eγ measurement
with again the leptoquark contributing the most. In order to avoid excessive fine-tuning in
the Higgs sector, one should therefore implement a flavor symmetry in the lepton sector.
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Figure 3. Current (red) and future (blue) constraints on the µ → eγ decay, displayed together
with the predictions of our scan (left), and relative size of the leptoquark (blue), Higgs (red), Z
boson (green), and W boson (black) loop contributions (right), as a function of 1/R′.
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Figure 4. Current constraints on the electron electric dipole moment, displayed together with
the predictions of our scan (left), and relative size of the leptoquark (blue), Higgs (red), Z boson
(green), and W boson (black) loop contributions (right), as a function of 1/R′.

6 Electroweak precision

Having obtained bounds from the flavor sector in the last section, we investigate in this
section effects of SU(6) GHGUT on electroweak precision parameters, namely the oblique
parameters S, T, U . It will turn out that the constraints on 1/R′ from the flavor con-
siderations above are more stringent than the ones obtained from EWPT in this section,
however the latter are less model dependent. These oblique corrections have already been
studied in several models of warped extra dimensions, for example in the context of brane
fermions [139], IR brane localized Higgs scenarios with and without custodial symme-
try [54, 140, 141], bulk Higgs scenarios [142], and also GHU models with custodial symme-
try [17], but none of these analyses apply directly to our model. In the following, we show
an explicit calculation for the oblique parameters in our setup, but the obtained results
apply also to other GHU scenarios without custodial symmetry.
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6.1 Deriving the effective Lagrangian

To connect to the electroweak parameters we match our model onto an 4D effective theory.
The most general 4D Lagrangian for the electroweak gauge bosons is given by [139]

L = −1
4
(
1−Π′γγ(0)

)
FµνF

µν − 1
2
(
1−Π′WW (0)

)
WµνW

µν

− 1
4
(
1−Π′ZZ(0)

)
ZµνZ

µν + sW cW
2 Π′γZ(0)FµνZµν

+
(
m2
W + ΠWW (0)

)
W+
µ W

−,µ + 1
2
(
m2
Z + ΠZZ(0)

)
ZµZ

µ . (6.1)

Here mW,Z are the SM masses at tree level and sW = sin(θW ) and cW = cos(θW ) are
the sine and cosine of the weak mixing angle θW , respectively. The vacuum polarization
amplitudes Π(0) and their derivatives Π′(0) = ∂

∂q2 Π|q2=0 incorporate the effects of BSM
physics, with the fermion vertices normalized to their (tree level) SM values. We consider
the case of oblique corrections in which all vertex corrections are equal and can therefore
be absorbed in the common gauge boson polarizations Π. This is in general not the case in
RS scenarios, but the RS-GIM mechanism ensures that the differences are small [54]. An
exception to this could be IR localized fermions, and their effects, for example in the Zbb̄
coupling, have to be considered independently. It turns out these constraints are in general
not competitive with flavor constraints. Thus we focus only on the common oblique part
and neglect the differences between fermions.

In RS models the coefficients Π can be computed to first order in a tree level
calculation by integrating over the extra dimension. All effects result from the fact that
EWSB in GHU mixes the gauge bosons with their KK states and, in the case of the Z
boson, also mixes the Z boson with the Xµ associated with U(1)X (see section 3.6). In
this subsection we will explicitly derive the corrections entering EWPT from the Z boson,
with the calculation for the W boson proceeding similarly. Then in the next subsection
we compare the corrections coming from the Z and W bosons with the current bounds on
the oblique parameters S, T and U .

Because the wavefunction of the photon zero mode is flat, it gives no contribution, i.e.
Π′γγ(0) = Πγγ(0) = 0, and in this model there is no kinetic mixing between the Z boson
and the photon at tree level, Π′γZ(0)=0.

Considering only the first two modes of the Z boson as well as the first mode of Xµ,
the action, including EWSB from (3.23), takes the form

S ⊃
∫

d4x

−1
4Z

(0)
µν Z

(0),µν − 1
4Z

(1)
µν Z

(1),µν − 1
4X

(1)
µν X

(1),µν (6.2)

+1
2
(
Z

(0)
µ Z

(1)
µ X

(1)
µ

)
m2
Z f01m

2
Z −fX01

gZgXv
2

12

f01m
2
Z m2

(+,+) −fX11
gZgXv

2

12

−fX01
gZgXv

2

12 −fX11
gZgXv

2

12 m2
(−,−)



Z(0),µ

Z(1),µ

X(1),µ


 ,
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where mZ = gZv/2, gZ =
√
g2 + g′2 and f01 = 5.47 is the overlap between the zero

mode and first KK excitation of the Z boson with the Higgs wavefunction, as defined in
section 3.6. There are also corresponding overlap integrals fX01 = 4.94 and fX11 = 29.47
between the wavefunction of the first mode of Xµ and the zero and first mode of the Z
boson respectively. The overlaps between the zero mode of the Z boson and higher modes
are much smaller so that we can neglect them at this order in (R′v)2. Furthermore, gX
denotes the coupling of U(1)X. Diagonalizing the mass matrix, one finds the action for the
mass eigenstate Z0, reading

S ⊃
∫

d4x

[
− 1

4Z0,µνZ
µν
0 + 1

2m
2
Z

(
1− f2

01
m2
Z

m2
(+,+)

−
(
fX01

)2 g2
Xv

2

36m2
(−,−)

)
Z0,µZ

µ
0

]
. (6.3)

Additionally, one has to correctly normalize the fermion interaction terms to their SM
values.

To achieve this, we use eq. (3.28) to rescale the Z boson field by

Z0,µ → λ−1
Z0Z0,µ =

(
1− λ(+,+)f01

m2
Z

m2
(+,+)

)−1

Z0,µ . (6.4)

As explained above we focus here on the lighter generations of UV localized fermions, for
which λ(+,+) ≡ λ(+,+)(c > 0.5) is independent of the fermion localization, representing
the common oblique corrections. Note that we neglect the effect of X(1) on the fermion
couplings since the corresponding overlap λ(−,−) between UV localized fermions and a
(−,−) field is very much suppressed. In total this results in the action

S ⊃
∫

d4x

[
− 1

4

(
1−

(
−2λ(+,+)f01

m2
Z

m2
(+,+)

))
Z0,µνZ

µν
0 (6.5)

+ 1
2m

2
Z

(
1 +

(
−f2

01 + 2λ(+,+)f01
) m2

Z

m2
(+,+)

−
(
fX01

)2 g2
Xv

2

36m2
(−,−)

)
Z0,µZ

µ
0

]
,

from which we can read off

Π′ZZ(0) = −2λ(+,+)f01
m2
Z

m2
(+,+)

, (6.6)

ΠZZ(0) = m2
Z

[(
−f2

01 + 2λ(+,+)f01
) m2

Z

m2
(+,+)

−
(
fX01

)2 g2
Xv

2

36m2
(−,−)

]
. (6.7)

Doing a similar calculation for the W boson results in

Π′WW (0) = −2λ(+,+)f01
m2
W

m2
(+,+)

, (6.8)

ΠWW (0) = m2
W

(
−f2

01 + 2λ(+,+)f01
) m2

W

m2
(+,+)

. (6.9)

– 37 –



J
H
E
P
0
4
(
2
0
2
3
)
0
1
2

6.2 S, T, U parameters

Rescaling the vacuum polarizations by ΠWW = g2
WΠ11,ΠZZ = g2

ZΠ33, etc., we can use the
standard definitions of the S, T, U parameters [143]

S = 16π(Π′33(0)−Π′3Q(0)) , (6.10)

T = 4π
s2
W c

2
Wm

2
Z

(Π11(0)−Π33(0)) , (6.11)

U = 16π(Π′11(0)−Π′33(0)) (6.12)

to obtain at leading order in (vR′)2

S = 4πv2

m2
(+,+)

(
−2λ(+,+)f01

)
, (6.13)

T = 4πv2

4c2
Wm

2
(+,+)

(
f2

01 − 2λ(+,+)f01
)

+ 4πv2

36s2
W c

2
Wm

2
(−,−)

(
fX01

)2 g2
X

g2
Z

, (6.14)

U = 0 . (6.15)

Note that S, T are both positive since λ(+,+)f01 < 0, which is the case for all other RS
scenarios (except when the fermions are on the brane [139]). The result depends on the
coupling gX , which has to be calculated by running down the unified coupling from the
unifying scale. A reasonable expectation is that gX ∼ gZ , gW , from which it follows that
the contribution of X(1) in (6.14) is about 10% that of Z(1). As a conservative bound we
drop this term in the comparison with the experimental constraints and leave the exact
analysis of the running for a future work.

From (3.21) it follows to leading order, for the UV localized fermions we consider
here, λ(+,+) ∼ − 1√

L
, with L = log(R′/R) the logarithm of the warp factor. In fact it is

convenient to use the same formula to estimate the scaling of f01, by realizing that the
integral can be recovered by replacing the Higgs wavefunction in (3.24) with a LH zero
mode fermion wavefunction with c = −1/2. This leads to f01 ∼

√
L and one can show that

similarly fX01 ∼
√
L, but with a smaller numerical coefficient. Together, these relations

imply S ∼ L0 and T ∼ L1 to leading order, as in the brane Higgs scenarios without
custodial symmetry [54]. In fact one could try to use (3.24) for a brane localized Higgs by
just replacing the Higgs wavefunction by a delta function on the IR brane. However, in
brane Higgs scenarios one can no longer neglect the contribution of higher KK modes, as
their overlap with the Higgs stays the same [62]. Taking this into account, we find that the
constraints in GHU are significantly weaker. More quantitatively, in our scenario, the T (S)
parameter gets reduced by a factor approximately 0.4 (0.8) with respect to non-custodial
brane Higgs scenarios. It is also worth mentioning that the smallness of the T parameter
is partly due to the fact, that the weak mixing angle of the KK modes is considered the
same as that of the zero modes. This might change if the running of the couplings is taken
into account, which we will explore further in a future work.
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Figure 5. Regions allowed at 68%, 95%, and 99% CL in the S − T plane with U = 0 (mt,ref. =
172.5GeV, mH,ref. = 125GeV) [144]. The blue line represents the contributions in our GHGUT
(left) and in a Brane-Higgs (BH) scenario [54] (right) for 1/R′ ∈ [2, 10]TeV and 1/R = 1018 GeV.
Note that both models are without custodial protection. 1/R′ increases in the direction of the
arrow and the blue dots represent the values 1/R′ = 2, 3, 4, 5, 10TeV. See text for details.

The experimental bounds on the S and T parameters and their correlation matrix are
given by [144]

S = 0.04± 0.08,
T = 0.08± 0.07,

ρ =

1.00 0.92
0.92 1.00

 . (6.16)

Using these bounds, we give in figure 5 the regions allowed at 68%, 95%, and 99% CL
in the S − T plane. The blue line represents the RS corrections from (6.13) and (6.14)
for different values of 1/R′. In the global fit the parameter U is set to zero and we used
v = 246GeV and s2

W = 0.23122.
The RS contributions from (6.13) and (6.14) pass the CL thresholds at

1
R′

> 3.0 TeV (99% CL) , (6.17)
1
R′

> 3.2 TeV (95% CL) , (6.18)
1
R′

> 3.7 TeV (68% CL) . (6.19)

Note that for moderately large values of 1/R′ the fit compared to the SM is improved.

7 Scalar potential

Having identified an SU(6) model that can be successful in accounting for all the flavor
hierarchies, we now put its scalar sector to the test. The one-loop scalar potential can
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be computed from the gauge boson and fermion spectrum using the Coleman-Weinberg
formula [108], from which we get (anticipating that our final parameter space will feature
a vanishing singlet vev)

V (h) =
∑
r

Vr(h) =
∑
r

Nr

(4π)2

∫ ∞
0

dp p3 log(ρr(−p2, h)), (7.1)

where Nr = −4Nc for quarks, Nr = 3 for gauge bosons, and ρr denotes the corresponding
spectral function, whose roots at −p2 = m2

n;r, n ∈ N encodes the physical spectrum. To
find these spectral functions one has to solve for the exact gauge boson and fermion masses,
considering a general vev for each of the possible massless scalars. As discussed in section 2,
this can be more easily done in the holographic gauge [106], where the vev of the scalars
is gauged away from the bulk to the IR brane. The largest contribution typically comes
from the top quark and W/Z gauge bosons, as indicated by their large coupling to the
Higgs. Furthermore, the up-type exotic sector, whose spectrum depends on the Higgs vev,
can also contribute to the potential, as found in [45]. This can easily be understood from
considering the equivalent 4D dual formulation of our model in which the exotic sector
can be understood as a vector-like fermion in the elementary sector. This new elementary
fermion has the quantum numbers of an up-type quark and its connections to the strong
sector are identical to those of the up-type quarks from SU(5) invariance. It follows that
also for this exotic sector only the third generation couples significantly to the strong sector
and is capable of generating a Higgs potential.

For a quantitative discussion, it is useful to have a consistent expansion of the potential.
We thus write each of the spectral functions as

ρr(−p2, h) = 1 + fr;1(−p2) sin2(h/
√

2f) + fr;2(−p2) sin4(h/
√

2f), (7.2)

with f = 2
√
R/g5R

′ the Higgs decay constant defined in (2.19). Denoting sin2(h/
√

2f) = x,
each contribution to the Higgs potential becomes

Vr(x) = Nr

(4π)2

∫ ∞
0

dpp3 log(1 + fr;1(−p2)x+ fr;2(−p2)x2). (7.3)

A consistent expansion up to x2 can then be found as [55]

Vr(x) = αrx+ βrx
2 + γrx

2 log
(2crx

Λ2
r

)
,

αr = Nr

(4π)2

∫ ∞
0

dpp3fr;1(−p2),

βr = Nr

(4π)2

(∫ ∞
0

dpp3
(
fr;2(−p2)− 1

2fr;1(−p2)2 + c2
r

2Λ4
r sinh(p2/Λ2

r)2

)
− 3

8c
2
r

)
,

γr = Nr

(4π)2
1
4c

2
r , (7.4)

where Λr is an IR regulator coming from the fact that cutting off the expansion at order
sin4(v/

√
2f) introduces an IR divergence for zero modes and cr = fr;1(−p2)p2 for p→ 0.
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Figure 6. Left panel: the Higgs mass as a function of the top quark mass for 1/R′ = 10TeV.
Points in red feature Mũ > 0 and predict the wrong Higgs mass while the points in blue belong
to Mũ < 0 and are compatible with the correct Higgs mass. Right panel: the mass of the colored
scalar versus the top quark mass. Points in red (blue) feature Mũ > 0 (Mũ < 0).

In this expansion the Higgs potential becomes particularly simple to analyse, reading8

V (h) = αtot sin2
(

h√
2f

)
+ βtot sin4

(
h√
2f

)
+ sin4

(
h√
2f

)∑
r

γr log
(2cr sin2

(
h√
2f

)
Λ2
r

)
,

(7.5)
with αtot =

∑
r αr and βtot =

∑
r βr. Requiring spontaneous symmetry breaking and a

stable potential leads to the conditions αtot < 0 and βtot > 0, from which the Higgs mass
and vev can be computed as

sin
(

v√
2f

)2

= −αtot
2βtot + γtot

,

mh = (βtot + 3/2γtot)1/2

f
sin
(√

2v
f

)
, (7.6)

with γtot =
∑
r γr The first condition embodies the fine tuning problem in the Higgs

potential. For an untuned potential, |αtot| ∼ |βtot| ∼ f4, there will in general be no large
seperation of scale between v and f . Tuning consists in cancelling large contributions to
αtot from different sectors (mostly the top and the exotics) with each other to generate
αtot � βtot and such that the vev v is stabilised at v � f . Similarly to the MCHM5, the
contributions of the top quark to β appear at higher order in the mixing with the strong
sector compared to α, which can lead to the problem of double tuning [145]. This shows the
crucial importance of the exotic sector that turns out to contribute to β at leading order and
can therefore generate a large quartic. As a result, there is no double tuning in our model.

To analyse the EWSB in the model quantitatively, we work with the exact one-loop
potential from Eq (7.1). We restrict ourselves to the third generation fermions plus the W

8In contrast to most other gauge-Higgs literature, we find a factor of 21/2 inside the trigonometric
functions which is compensated by a factor of 2 and 4 in αr and βr respectively. This is due to our
unconventional normalization for the generators Tr(T aT b) = δab/2.
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and Z bosons, whose contribution to the scalar potential is dominant. The main parameters
playing a role in EWSB are c15,3, c20,3,Mq/e and Mũ, since the c6,3, c1,3 and Md/l,Mν

determine mostly the bottom, tau and neutrino sectors which are only of minor importance.
Interestingly, the UV brane massMũ becomes of crucial importance for the Higgs potential
as this parameter influences the dependence of the exotic sector on the Higgs background.
We note that for each data point employed in the flavor scans we fix c20,3 to fine tune the
potential to obtain the correct SM vev, satisfying the EWSB condition (7.6). Since c20,3
also enters the top mass, we expect a strong correlation between the Higgs and top sectors.

The results are presented in figure 6, left panel, where only a fraction of our full scan
was used due to the computational costs. Interestingly, there are two branches, one branch
with positive exotic brane mass Mũ > 0 which predicts a wrong Higgs mass, while the
negative brane-mass branch predicts a Higgs mass in agreement with observation. This
points to the crucial importance of the exotic up quark that couples to the Higgs and thus
can contribute to its mass.

7.1 Color-broken universe

After having studied the Higgs potential, we will now analyse the two other directions in
field space, along the leptoquark vev c and the singlet vev s, which requires a generalization
of equation (7.1) to

Vr(h, c, s) = Nr

(4π)2

∫ ∞
0

dp p3 log(ρr(−p2, h, c, s)). (7.7)

Since we do not need to fine-tune along the color-broken directions in field space, here
a (more robust and analytical, but approximate) calculation exploiting the low-energy
spectrum of the model will be sufficient. We will find that the colored scalar does not
acquire a vev and gets a mass of around mLQ = 0.2/R′. We can understand this result
from a simple analysis of the main contributions to the potential along non-zero c. The
color-broken Universe consists of 5 massive gluons resulting from the SU(3)c × U(1)Y →
SU(2) × U(1) pattern of symmetry breaking. One gauge boson Zc is the equivalent of the
EW Z boson and the four remaining gauge bosons Wc correspond to the EW W bosons
with the straightforward mass relations

mZc = gsc

2 cos θW,c
,

mWc = gsc

2 , (7.8)

with cos2 θW,c = 9g2
s/(12g2

s + 4g′,2) the cosine of the color Weinberg angle squared. These
particles will stabilize the potential along the non-zero color direction in field space. In the
color-broken Universe, the most massive fermion now consists of the right handed top which
mixes with the electron singlet forming a state Tc. This fermion will tend to destabilize
the potential. The yukawa coupling of that particle is (due to SU(5) symmetry) equal to
the usual top yukawa yt resulting in the following mass (for v = 0)

mTc = ytc√
2
. (7.9)
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Using the simplified relations from [108], which in broad lines means neglecting the
contribution of the primed fields, one can easily estimate the resulting potential that these
particles will induce

V (c) = 4× 3
16π2R′4

∫ ∞
0

dpp3 log
(

1 + (gsfR′)2 sin2(c/2f)
sinh2(p)

)
+ 3

16π2R′4

∫ ∞
0

dpp3 log
(

1 + (gsfR′/ cos θW,c)2 sin2(c/2f)
sinh2(p)

)
− 4

16π2R′4

∫ ∞
0

dpp3 log
(

1 + (ytfR′)2 sin2(c/
√

2f)
sinh2(p)

)
. (7.10)

The question of color being spontaneously broken depends on the relative strength of these
terms, in particular the strength of gs in comparison to yt. Neglecting the contribution of
the Zc boson we find the simple expression for the mass term of the scalar triplet

m2
S = ∂2V (c)

∂2c
|c=0 = 3ζ(3)(3g2

s − 2y2
t )

16π2R′2
≈ (0.2/R′)2, (7.11)

where we neglect the subleading contribution from EWSB. In consequence, the conservation
of color in this model results from the largeness of the strong coupling in comparison to the
top yukawa. The lightness of this scalar is a consequence of the Hosotani mechanism which
is a one loop effect. For simplicity, we also neglect the possible contributions of the exotics,
that is to say from fermion towers without mixing with zero modes. As we have seen for
the Higgs potential these exotics are crucial to correctly fine-tune the Higgs potential and
avoid the double-tuning problem. It turns out that for Mũ < 0 the contribution of such
exotics can become sizable, although always stabilizing and thereby increasing the mass of
the colored triplet. Therefore their inclusion does not impact the overall stability and shape
of the potential. To check these suspicions, we performed an exact numerical calculation of
the potential along the leptoquark vev c, including the exotics contribution, whose result
we show in the right panel of figure 6. We notice that indeed, the exotic contribution pushes
the scalar triplet a bit heavier with a mass of around 2.5TeV< mS < 3TeV. The scalar
leptoquark can be looked for at the LHC, with the current bounds beingmS > 1.4TeV [146],
as it will decay almost exclusively into tτ . This is since the Yukawa couplings of the scalar
are highly hierarchical along generation space, just as the Higgs Yukawa couplings.

Similarly, one can investigate the potential along the singlet vev s, although here we
constrain ourselves to a numerical analysis. In the non-zero singlet vev s 6= 0 region, no
LH and RH modes get connected and thus all chiral modes remain massless. This means
that the contributions to the potential come from KK modes that couple to the singlet vev,
which does not allow for an as straightforward analysis as for the colored triplet. Instead
we have to rely on numerical methods. We find the dominant contribution coming from the
KK towers of the up quark and exotic up quark. The results of our analysis are presented
in the right panel of figure 7. A rather broad range of masses for the singlet is observed,
roughly bounded by

msinglet . 0.05/R′. (7.12)
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Figure 7. The mass of the singlet scalar versus the top quark mass for the points Mũ < 0. Points
with Mũ > 0 generate a vev for the singlet.

When restricting ourselves to the branch consistent with a correct Higgs mass, i.e. Mũ < 0,
we find that no vev is generated for the singlet. A vev for the singlet is induced for Mũ > 0
as this can make the up-type exotic contribution destabilizing.

8 Conclusions

We have presented a detailed study of SU(6) GHGUT and its phenomenology. We have
identified a fermion embedding and a pattern of symmetry breaking that is particularly
well-suited to reproduce the observed flavor hierarchies in nature: hierarchical fermion
masses, the CKM matrix and the PMNS matrix all find a natural explanation. Fur-
thermore, we computed the leading flavor constraints on the model from meson mixing
and charged lepton flavor violation (from tree-level and loop-level observables). We find
µ → eγ (and the electon electric dipole moment) to be currently the most constraining
process pushing the IR scale above 20TeV, implying the first KK excitation of the gauge
bosons to be at 50TeV. The first fermion KK excitation are much lighter and can be as low
as 10TeV which is inaccessible at the LHC but very much in reach of future colliders [147].
The future bounds from µ − e conversion could safely probe IR scales of the model up to
12TeV. In spite of the non-custodial nature of the setup, the constraints from EWPT are
not quite as competitive as the flavor bounds, but are less model dependent since the latter
could be mitigated, e.g. via imposing flavor symmetries.

The strong bounds on the model mean we are left with a little hierarchy problem in
the scalar potential for the Higgs vev. However, assuming a correctly fine-tuned Higgs vev,
the resulting Higgs mass, which is a non-trivial prediction of the scalar potential, is found
consistent with experimental values. In this context, it would be interesting to study the
quality of unification in dependence on the IR scale, too. Although the KK gauge bosons
and fermions are out of reach of current colliders and a potential signature in µ → eγ or
other flavor observables will only be an indirect probe of the model, the smoking gun signal
of the minimal SU(6)/SU(5) GUT will be the presence of the scalar singlet and leptoquark
whose masses are directly proportional to the IR scale of the model 1/R′, but a considerable
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factor smaller. Although the leptoquark has ideal quantum numbers to explain some of the
recent flavor anomalies, its Yukawas are closely aligned with the Higgs Yukawas, resulting
in particular in very small off-diagonal couplings. Interestingly, the singlet could play a
crucial role in a model of EW baryogenesis. A detailed analysis of the collider signatures
and gauge coupling running is left for future work.
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A Diagonalization of fermion kinetic and mass matrices

A.1 Zero mode approximation

In this appendix we provide the solutions of the IR brane model (see section 4.1) for the
wave functions and mass matrices of the fermions (see section 2.2 and section 3.3 for the
solutions of warped fermions in the presence of brane masses) in the Zero Mode Approxima-
tion (ZMA) in which we do not take into account fermion-mass mixing with the KK modes.

In the quark sector, we find the following profiles

fuR(z) = 1√
R′

(
z

R

)2( z

R′

)c20

f−c20 ,

fdR(z) = 1√
R′

(
z

R

)2( z

R′

)c6

f−c6 ,

fd′R(z) = − 1√
R′

(
z

R

)2( z

R′

)c15

M †d/lf−c6 , (A.1)

where the latter profile enters due to the IR brane mass term Md/l that implies the IR BC
fd′R(R′) = −M †d/lfdR(R′), and

fqL(z) = 1√
R′

(
z

R

)2( z

R′

)−c15

fc15 ,

fq′L(z) = 1√
R′

(
z

R

)2( z

R′

)−c20

Mq/efc15 , (A.2)

with the latter profile coming from the IR brane mass term Mq/e that implies the IR BC
fq′L(R′) = Mq/efqL(R′).

From the primed fermions, in which a small admixture of the zero mode can live, we
deduce the kinetic mixings in the quark sector

KuR = 1,

KdR = 1 + f−c6Md/lf
−2
−c15M

†
d/lf−c6 ,

KqL = 1 + fc15M
†
q/ef

−2
c20Mq/efc15 . (A.3)
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The overlap of the LH and RH modes with the Higgs boson, see eq. (3.38), results in the
mass matrices in the flavor basis

Mu = g∗v

2
√

2
fc15M

†
q/ef−c20 ,

Md = − g∗v

2
√

2
fc15M

†
d/lf−c6 . (A.4)

We proceed similarly in the lepton sector, where we find the following profiles for the
SM zero modes and their primed partners

flcR(z) = 1√
R′

(
z

R

)2( z

R′

)c6

f−c6 ,

fl′cR(z) = − 1√
R′

(
z

R

)2( z

R′

)c15

M †d/lf−c6 ,

fecL(z) = 1√
R′

(
z

R

)2( z

R′

)−c15

fc15 ,

fe′cL (z) = 1√
R′

(
z

R

)2( z

R′

)−c20

Mq/efc15 ,

fνcL(z) = 1√
R′

(
z

R

)2( z

R′

)−c6

fc6 ,

fν′cL (z) = 1√
R′

(
z

R

)2( z

R′

)−c1

Mνfc6 , (A.5)

where again the IR boundary masses Md/l,Mq/e and Mν dictate the profiles of the various
primed fields. The lepton kinetic mixing matrices are given by

KlcR
= 1 + f−c6Md/lf

−2
−c15M

†
d/lf−c6 ,

KecL
= 1 + fc15M

†
q/ef

−2
c20Mq/efc15 ,

KνcL
= 1 + fc6M

†
νf
−2
c1 Mνfc6 , (A.6)

and the mass matrices in the flavor basis are

Mec = − g∗v

2
√

2
f−c6Md/lfc15 ,

Mνc = g∗v

2
√

2
f−c6fc6 . (A.7)

A.2 Beyond the zero mode approximation

While the previous appendix dealt with the treatment of the zero modes, for some processes,
such as µ→ eγ, we need to take into account the first KK modes and their mass mixings.
In this appendix we discuss first the correct kinetic normalization of the first two KK modes
in the lepton sector and then how to go from the canonically normalized basis to the mass
basis and compute all the couplings that are needed for the µ→ eγ decay.
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A.2.1 Electron singlet

We will first examine the case of the ec and ec′ states, that are respectively (+,+) and
(+,−) modes connected on the IR boundary by the brane mass Mq/e. From section 2.2 we
know the general solution of fermions profiles in warped space, in the flavor basis, is a linear
combination of warped sines and warped cosines, in particular see equation (2.35) for their
explicit forms. The UV BCs allow us to restrict the solutions to a compact form, reading

ec(x, z) =
∑
n


−
(
R
z

)c−2
C(z,mn, c)~anecL,n(x)(

R
z

)−c−2
S(z,mn,−c)~anecR,n(x)

 ,

ec′(x, z) =
∑
n


−
(
R
z

)c′−2
C(z,mn, c

′)~a′necL,n(x)(
R
z

)−c′−2
S(z,mn,−c′)~a′necR,n(x)

 . (A.8)

Here, C(z,mn, c) is a diagonal matrix with c = diag(c1, c2, c3), taking into account the
full generation space, and the an, a′n are also coefficients in generation space. Moreover,
ecL,n and ecR,n are the KK-decomposed 4D modes. We expect three charge conjugated
LH zero modes ecL,1, ecL,2 and ecL,3, corresponding to the three SM singlet electrons with
no corresponding RH zero modes while the rest of the KK decomposition consists of
vector-like massive fermions.

The IR brane masses will be the source of mixing between generations. Indeed the IR
BCs induce the following relations between ~an and ~a′n(

R

R′

)c′
C(R′,mn, c

′)~a′n = −M
(
R

R′

)c
C(R′,mn, c)~an(

R

R′

)−c
S(R′,mn,−c)~an = M †

(
R

R′

)−c′
S(R′,mn,−c′)~a′n. (A.9)

Requiring the above set of equations to have a non trivial solution ~an 6= 0 6= ~a′n leads to the
KK mass spectrum mn, with the first three solutions m1 = m2 = m3 = 0 corresponding to
zero modes. We can now solve for ~a′n as a function of ~an

~a′n = −C−1
c′,R′,nMCc,R′,n~an ≡ Ke,n~an, (A.10)

where we switch notation and define Cc,z,n ≡
(
R
z

)c
C(z,mn, c) and introduce the ma-

trix Ke,n.
Having found ~a(′)

n and mn we still need to transform to a basis in which the kinetic
terms are canonically normalized. Indeed, for the LH sector we find the kinetic terms

L ⊃ ēcL,m(x)γµ∂µ
[
~a†m

∫
dz(C†c,z,mCc,z,n +K†e,mC

†
c′,z,mCc′,z,nKe,n)~an

]
ecL,n(x), (A.11)

where the expression in brackets is a hermitian matrix over all KK modes with indices m,n
and one can therefore define its inverse square root, namely (V e

L)nm. Transforming the LH
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fields by this matrix, ecL,n → (V e
L)nme

c
L,m, the kinetic terms are canonically normalized.

One has to perform a similar set of transformations in the RH sector with the corresponding
matrix (V e

R)nm.
Analogous transformations have to be done on the mass terms

L ⊃ ēcL,m(x)~a†m
[ ∫

dz(C†c,z,mCc,z,n +K†e,mC
†
c′,z,mCc′,z,nKe,n)mn~an

]
︸ ︷︷ ︸

(MEKK
)mn

ecR,n(x), (A.12)

where we define the expression in brackets as the matrix MEKK .
In summary, we define the LH and RH fermion vectors that combine the different KK

modes

Ψc
e,L = (ecL,1, ecL,2, ecL,3, ecL,4, ecL,5, ecL,6, . . .)

Ψc
e,R = (ecR,4, ecR,5, ecR,6, . . .), (A.13)

where the ellipses stand for higher modes. In the text we only include the lightest set
of KK modes which consists of 3 LH and 3 RH fields as can be seen above. These will
eventually mix with the doublet fields resulting in a total of 6 vectorlike KK modes. In our
numerical computation we also include the next layer of 3 KK modes as these are more
important than the lightest 3 KK modes for certain observables. This can be understood
from the fact that the lightest set of KK mode only couple modestly to the Higgs since they
are mostly localized in the bulk fermion that does not couple to the Higgs. The discussed
transformations that canonically normalize the kinetic terms then act as

Ψc
e,L → V e

LΨc
e,L

Ψc
e,R → V e

RΨc
e,R , (A.14)

and transform the KK masses as follows

L ⊃ Ψ̄c
e,LMEKKΨc

e,R + h.c→ Ψ̄c
e,LV

e†
L MEKKV

e
RΨc

e,R + h.c. . (A.15)

A.2.2 Lepton doublet

We now perform a similar analysis for the charge conjugated doublets lc and lc′ with BCs
(−,−) and (−,+), connected on the IR boundary by Md/e. The UV BCs now lead to

lc(x, z) =
∑
n


(
R
z

)c−2
S(z,mn, c)~bnlcL,n(x)(

R
z

)−c−2
C(z,mn,−c)~bnlcR,n(x)

 ,

lc′(x, z) =
∑
n


(
R
z

)c′−2
S(z,mn, c

′)~b′nlcL,n(x)(
R
z

)−c′−2
C(z,mn,−c′)~b′nlcR,n(x)

 , (A.16)
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while the IR BCs induce the conditions(
R

R′

)c
S(R′,mn, c)~bn = −Md/e

(
R

R′

)c′
S(R′,mn, c

′)~b′n(
R

R′

)−c′
C(R′,mn,−c′)~b†n = M †d/e

(
R

R′

)−c
C(R′,mn,−c)~bn. (A.17)

Again, requiring non-trivial solutions for ~bn and ~b′n will determine the KK masses mn

(before EWSB). Solving for ~b′n leads to
~b′n = C−1

−c′,R′,nM
†
d/eC−c,R′,n

~bn ≡ Kl,n
~bn. (A.18)

Similar to the case for the electron singlet, the kinetic terms are non-canonical and can be
brought to a canonical basis via unitary rotations V l

R,L that act on the fermion fields

Ψc
l,R = (lcR,1, lcR,2, lcR,3, lcR,4, lcR,5, lcR,6, . . .)

Ψc
l,L = (lcL,4, lcL,5, lcL,6, . . .) (A.19)

and on the KK mass matrix MLKK .

A.2.3 Neutrino singlet
The final case to look at is the singlet conjugate neutrinos (which contain the RH neutrino)
in the 6 and in the 1 of signature (+,+) and (+,−), connected on the IR brane through
a brane mass Mν . The UV BCs lead to the decompositions

νc(x, z) =
∑
n


−
(
R
z

)c−2
C(z,mn, c)~cnνcL,n(x)(

R
z

)−c−2
S(z,mn,−c)~cnνcR,n(x)

 ,

νc′(x, z) =
∑
n


−
(
R
z

)c′−2
C(z,mn, c

′)~c′nνcL,n(x)(
R
z

)−c′−2
S(z,mn,−c′)~c′nνcR,n(x)

 , (A.20)

and as usual the IR BCs determine the KK masses, reading(
R

R′

)c′
C(R′,mn, c

′)~c′n = −Mν

(
R

R′

)c
C(R′,mn, c)~cn,(

R

R′

)−c
S(R′,mn,−c)~cn = M †ν

(
R

R′

)−c′
S(R′,mn,−c′)~c′n. (A.21)

Having obtained the masses, we can now solve the system by eliminating ~c′ via

~c′n = −C−1
c′,R′,nMνCc,R′,n~cn ≡ Kν,n~cn. (A.22)

Again, the kinetic terms are not yet canonically normalized, which will be achieved by the
combinations of transformation matrices V ν

L and V ν
R , acting on the LH and RH vectors

Ψc
ν,L = (νcL,1, νcL,2, νcL,3, νcL,4, νcL,5, νcL,6, . . .)

Ψc
ν,R = (νcR,4, νcR,5, νcR,6, . . .) (A.23)

and on the KK mass matrix MνKK .
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A.2.4 Mass diagonalization

Having studied the transformation from the flavor basis to the kinetic basis, induced by
brane mixing, the final step is going to the mass basis after EWSB. This will mix the charge
conjugate electron singlet with the upper SU(2) component of the charge conjugate lepton
doublet while the neutrino singlet will mix with the lower SU(2) component. Therefore in
the mass basis we will work with the field vectors

Ψc,m
e,L = (Ψc

e,L,Ψc
le,L) = (ecL,1, ecL,2, . . . , ecL,6, lce,L,4, lce,L,5, lce,L,6, )

Ψc,m
e,R = (Ψc

le,R,Ψ
c
e,R) = (lce,R,1, lce,R,2, . . . , lce,R,6, ecR,4, ecR,5, ecR,6)

Ψc,m
ν,R = (Ψc

lν ,L,Ψ
c
ν,R) = (lcν,R,1, lcν,R,2, . . . , lcν,R,6, νcR,4, νcR,5, νcR,6)

Ψc,m
ν,L = (Ψc

ν,L,Ψc
lν ,L) = (νcL,1, νcL,2, . . . , νcL,6, lcν,L,4, lcν,L,5, lcν,L,6). (A.24)

Starting from these four, properly normalized, fields we include the effects of EWSB and
go to the mass basis. Not only will the zero modes get their SM masses, but the KK
masses will also be shifted. Furthermore, this rotation will induce off-diagonal Higgs and
gauge interactions between the SM zero modes and the KK modes, that in turn will induce
FCNC processes, such as µ→ eγ.

We start with the 5D Yukawa couplings in the electron sector that originate from the
bulk 15, reading

L ⊃ − g5√
2

(
ēcLHl

c′
R + l̄c′LHe

c
R + h.c.

)
, (A.25)

with H(x, z) = f5(z)(v + h(x))/
√

2 the A5 Higgs. Upon substitution of the 5D fields with
their KK decomposition, these terms will lead to a tower of interactions including mass
terms. We restrict our mass diagonalization to the first KK level. One can see that the first
term contains the correct chirality Higgs (H) couplings between the zero modes ecL,1,2,3 and
lce,R,1,2,3 which will give rise to the usual charged lepton Yukawa while the second term is
the so called opposite chirality Higgs (H̃) couplings that connect the LH electron singlets to
the RH electron doublets. Notice the latter coupling is absent in the SM and is a coupling
strictly between KK modes.

At the level of the first KK mode we thus write down the following mass terms in the
flavor basis

L ⊃− Ψ̄c,m
e,LMeΨc,m

e,R = −Ψ̄c,m
e,L

 v√
2H MEKK

MLKK
v√
2H̃

Ψc,m
e,R , (A.26)

where the diagonal entries represent the mass contributions from EWSB while the off-
diagonal entries represent the vector-like KK masses (A.15). The Higgs contributions from
EWSB in the flavor basis are given by the following overlap functions

ēcL,nHn,mlce,R,m = ēcL,n
g5√

2

∫ R′

R
dz
[
− ~a†nC†z,c,nCz,−c′,m~b′m

](√ 2
R

z

R′

)
lce,R,m

l̄ce,L,nH̃n,mecR,m = l̄ce,L,n
g5√

2

∫ R′

R
dz
[
~b†,′n S

†
z,c′,nSz,−c,m~am

](√ 2
R

z

R′

)
ecR,m, (A.27)

where the Higgs bulk profile is given by the function in parenthesis and note that H is
a 6 × 6 matrix while H̃ is a 3 × 3 matrix. Before diagonalizing this mass matrix and

– 50 –



J
H
E
P
0
4
(
2
0
2
3
)
0
1
2

extracting the mass eigenstates, one must not forget go to the kinetic basis as discussed in
appendix A.2.1. Indeed we still need to remove any kinetic mixing between the modes by
the transformations

− Ψ̄c,m
e,L

 v√
2H MEKK

MLKK
v√
2H̃

Ψc,m
e,R → −Ψ̄c,m

e,L

V e
L 0
0 V l

L

† v√
2H MEKK

MLKK
v√
2H̃

V l
R 0
0 V e

R

Ψc,m
e,R .

(A.28)
The resulting mass matrix can be diagonalized by a bi-unitary transformation to obtain
the mass basis via

Ψc,m
e,L → UR,ecΨc,m

e,L

Ψc,m
e,R → UL,ecΨc,m

e,R . (A.29)

We can perform an analogous diagonalization for the neutrino sector, whose 5D Yukawas
come from the bulk 6

L ⊃ − g5√
2

(
l̄cRHν

c
L + ν̄cRHl

c
L + h.c.

)
, (A.30)

which results in similar rotations to get to the mass basis

Ψc,m
ν,L → UR,νcΨc,m

ν,L

Ψc,m
ν,R → UL,νcΨc,m

ν,R . (A.31)

B Fermion couplings and µ→ eγ

B.1 Higgs couplings

Armed with all the rotations needed to go to the mass basis, one can now find the couplings
that will enter our computations for µ→ eγ. First of all, the physical Higgs couplings ∆h

are obtained by performing the same series of rotations on the Yukawa matrix as in (A.28),
with no contributions from the KK masses, followed by the mass rotations from (A.29),
leading to

L ⊃ hΨ̄c,m
e,L∆hΨc,m

e,R + h.c.

= h√
2

Ψ̄c,m
e,LU

†
R,ec

V e
L 0
0 V l

L

†H 0
0 H̃

V l
R 0
0 V e

R

UL,ecΨc,m
e,R + h.c.. (B.1)

Therefore, the origin of the off-diagonal Higgs couplings lies in the mass matrix being not
aligned with the Yukawa couplings, which only contain EWSB mass effects and not the
KK vector-like masses.

With the Yukawa couplings above one can calculate Higgs loop contribution to the µ→
eγ decay, which was already discussed previously in [62]. The corresponding amplitude,
with q = p′ − p the incoming photon momentum and containing a sum over the internal
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leptons ml,i from which a photon is emitted, reads

Mµ =
∫ d4k

(2π)4

[
ūp′(−i)(∆h

eiPL + ∆h†
ei PR) i

(/p′ + /k −ml,i)
(B.2)

× (−ieγµ) i

(/p+ /k −ml,i)
(−i)(∆h

iµPL + ∆h†
iµPR)up

]
i

k2 −m2
h

.

The contributions from this amplitude to the dipole coefficients CR and CL are

CR(q2 = 0) = − e∆h†
eimµ

192π2m2
h(zi − 1)4

(
6∆h†

iµmh(−1 + zi)
√
zi(3− 4zi + z2

i + 2 log zi)

+ ∆h
iµmµ(2 + 3zi − 6z2

i + z3
i + 6zi log zi)

)
CL(q2 = 0) = − e∆h

eimµ

192π2m2
h(zi − 1)4

(
6∆h

iµmh(−1 + zi)
√
zi(3− 4zi + z2

i + 2 log zi))

+ ∆h†
iµmµ(2 + 3zi − 6z2

i + z3
i + 6zi log zi

)
, (B.3)

with zi = (ml,i/mh)2 and where we sum over the SM leptons i = 1/e, 2/µ, 3/τ and first
six KK modes i = 4, 5, . . . , 9. These coefficients enter the decay for µ → eγ through
equation (5.24).

We can clearly distinguish two categories of contributions: the first term in both CR
and CL corresponds to the diagram where the necessary chirality flip occurs in the internal
line and is thus proportional to the mass of the internal fermion while in the second term
the chirality flip occurs on the external muon leg and thus carries an extra factor of mµ.
For a heavy KK internal lepton the first term is therefore enhanced by a factor (ml,i/mµ)
with respect to the second term and the amplitude goes as mµ/ml,i. For a light SM internal
lepton the second term can clearly become dominant with the amplitude going as m2

µ/m
2
h.

Thus, overall the decay is unsurprisingly dominated by heavy internal KK leptons.

B.2 Z-boson couplings

Let us now investigate the Z boson couplings to the charged leptons for which the following
5D couplings are relevant

L ⊃ g

cos θW

(
ēcγµe

c + ēc′γµe
c′ + l̄cγµl

c + l̄c′γµl
c′
)
Zµi . (B.4)

As an example let us first extract the Z-couplings to the RH singlet electrons ∆Zi
R with

the LH coupling ∆Zi
L fully analogous. The couplings in the mass basis, corrected by the

various kinetic and mass transformations, are given by

L ⊃ g

cos θW
Ψ̄c,m
e,L γµ∆Zi

R Ψc,m
e,LZ

µ
i

= g

cos θW
Ψ̄c,m
e,LU

†e
R

V e
L 0
0 V l

L

† γµ
ZiR 0

0 Z̃iR

V e
L 0
0 V l

L

U eRΨc,m
e,LZ

µ
i , (B.5)
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where the index i sums over the Z boson KK modes and the
(∼)
ZR matrices read

Zinm,R = sin2 θW

∫ R′

R
dzfZi(z)

[
~a†nC

†
z,c,nCz,c,m~am + ~a†nK

†
e,nC

†
z,c′,nCz,c′,mKe,m~am

]
(B.6)

Z̃inm,R =
(
−1

2 + sin2 θW

)∫ R′

R
dzfZi(z)

[
~b†nS

†
z,c,nSz,c,m

~bm +~b†nK
†
l,nS

†
z,c′,nSz,c′,mKl,m

~bm
]
,

with the profile function for the SM Z boson given in (3.26). Notice that the coupling ∆Zi
R

is hermitian as it should and we can similarly obtain the couplings to the LH electrons ∆Zi
L .

With the coupling ∆Zi
R , ∆Zi

L in the mass basis computed, we can now compute the Z
boson contribution to the µ→ eγ amplitude, where the photon is emitted from the internal
lepton, leading to

Mµ =
(
i
g

cW

)2 ∫ d4k

(2π)4

[
ūp′γα(∆Z

L,eiPL + ∆Z
R,eiPR) i

(/p′ + /k −ml,i)
(−ieγµ)

× i

(/p+ /k −ml,i)
γβ(∆Z

L,iµPL + ∆Z
R,iµPR)up

]
[i∆αβ

Z (k)], (B.7)

where we omit the index indicating the KK mode of the Z boson and with

∆αβ
Z (k) =

−gνβ + kνkβ

m2
Z

k2 −m2
Z

, (B.8)

the Z boson propagator in unitary gauge. The contributions from this amplitude to the
dipole coefficients CR and CL become

CR(q2 = 0) =−
eg2∆Z

L,eimµ

192π2 cos2 θ2
WmZ(zi−1)4

(
6∆Z

R,iµmZ(−1+zi)
√
zi(4−3zi−z3

i +6zi log(zi))

+∆Z
L,iµmµ(8−38zi+39z2

i −14z3
i +5z4

i −18z2
i log(zi)

)
CL(q2 = 0) =−

eg2∆Z
R,eimµ

192π2 cos2 θ2
WmZ(zi−1)4

(
6∆Z

L,iµmZ(−1+zi)
√
zi(4−3zi−z3

i +6zi log(zi))

+∆Z
R,iµmµ(8−38zi+39z2

i −14z3
i +5z4

i −18z2
i log(zi)

)
, (B.9)

with zi = (mli/mZ)2. Similarly as for the Higgs loop we identify two types of contributions,
one with the chirality flip on the internal fermion that goes as 1/ml,i, while for the second
contribution the chirality flip is on the external muon leg and it scales as mµ/m

2
Z .

B.3 W-boson couplings

The W couplings can be extracted from the 5D couplings involving SU(2) doublets in the
flavor basis

L ⊃ g√
2

(
l̄cγµlc + l̄c′γµlc′

)
W i
µ. (B.10)
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In the mass basis, the corresponding couplings ∆W i

L and ∆W i

R are again obtained after
subsequent rotations

L ⊃ g√
2

Ψ̄c,m
e,Rγ

µ∆W i

L Ψc,m
ν,RW

i
µ + g√

2
Ψ̄c,m
e,L γ

µ∆W i

R Ψc,m
ν,LW

i
µ + h.c.

= g√
2

Ψ̄c,m
e,RU

†e
L

V l
R 0
0 V e

R

† γµ
W i 0

0 0

V l
R 0
0 V ν

R

UνLΨc,m
ν,RW

i
µ + h.c.

+ g√
2

Ψ̄c,m
e,LU

†e
R

V e
L 0
0 V l

L

† γµ
0 0

0 W̃ i

V ν
L 0
0 V l

L

UνRΨc,m
ν,LW

i
µ + h.c., (B.11)

where the index i sums over the different W boson KK modes and the overlap functions
(∼)
W read

W i
nm =

∫ R′

R
dzfW i(z)

[
~b†nC

†
z,c,nCz,c,m

~bm +~b†nK
†
l,nC

†
z,c′,nCz,c′,mKl,m

~bm
]

W̃ i
nm =

∫ R′

R
dzfW i(z)

[
~b†nS

†
z,c,nSz,c,m

~bm +~b†nK
†
l,nS

†
z,c′,nSz,c′,mKl,m

~bm
]
. (B.12)

From these couplings, ∆W i

L and ∆W i

R , one can determine the W loop contribution to the
photon vertex. In the SM, this is the only mediator to the µ → eγ decay and it is very
small due to the unitarity of the PMNS matrix and the smallness of the neutrino masses.
In SU(6) GHGUT, both of these effects are violated due to the presence of heavy KK
neutrinos. The one-loop decay amplitude reads

Mδ =
(
i
g√
2

)2 ∫ d4k

(2π)4

[
ūp′γµ(∆W

L,eiPL+∆W
R,eiPR) i

(/p+/k−mi)
γν(∆W †

L,iµPL+∆W †
R,iµPR)up

]
× [i∆νβ

W (k)][i∆µα
W (k−q)](−ie)Γαβδ, (B.13)

where we sum over the SM neutrinos and KK neutrinos with mass mi and omit the index
indicating the KK mode of the W boson. Moreover, ∆νβ

W (k) and Γαβγ are the gauge boson
propagator in unitary gauge and the W+W−γ-vertex respectively:

∆νβ
W (k) =

−gνβ + kνkβ

m2
W

k2 −m2
W

,

Γαβγ = (2k − q)γgαβ + (−k − q)αgβγ + (2q − k)βgγα. (B.14)

In the SM the amplitude above is usually simplified by expanding the neutrino propagator
for small neutrino masses, becoming

∆W
L,ei∆

W †
L,iµ

(p+ k)2 −m2
i

=
∆W
L,ei∆

W †
L,iµ

(p+ k)2 +
∆W
L,ei∆

W †
L,iµm

2
i

(p+ k)4 + . . . , (B.15)

where, due to the absence of KK modes, i sums over the three flavors of neutrinos and ∆W
L

is unitary, which makes the first term vanish. The second term in the expansion then gives
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the leading contribution

C1,R(q2 = 0) =
∑
i

eg2∆W
L,ei∆

W †
L,iµm

2
im

2
µ

128m4
Wπ

2

C1,L(q2 = 0) = 0, (B.16)

which due to the small neutrino masses remains well below experimental reach. In GHGUT
the KK neutrino modes are heavy and one cannot use this expansion, using instead the
full massive KK neutrino propagator. Moreover RH leptons also couple to the W boson
resulting in the following amplitude

CR(q2 = 0) =−
eg2mµ∆W

L,ei

384π2m2
W (zi−1)4

(
∆W †
L,iµmµ(10−43zi+78z2

i −49z3
i +4z4

i +18z3
i log(zi))

+6∆W †
R,iµmW (−1+zi)

√
zi(4−15zi+12z2−z3

i −6z2
i log(zi))

)
CL(q2 = 0) =−

eg2mµ∆W
R,ei

384π2m2
W (zi−1)4

(
∆W †
R,iµmµ(10−43zi+78z2

i −49z3
i +4z4

i +18z3
i log(zi))

+6∆W †
L,iµmW (−1+zi)

√
zi(4−15zi+12z2−z3

i −6z2
i log(zi))

)
, (B.17)

with zi = (mi/mW )2 and an internal sum over the (KK) neutrinos is implied. From this,
one can recover the SM expression (B.16) by expanding for small zi and turning off the
RH couplings.

B.4 S-leptoquark couplings

Finally, let us discuss the couplings to the leptoquark S, important for the µ→ eγ decay,
for which the following 5D yukawa couplings are relevant

L ⊃ − g5√
2

(ūαRec′L + q̄α,iL lc′R,i)Sα + h.c.. (B.18)

Notice that in the SU(6) GHGUT model, there is a symmetry between the ecL and qL
fermions since they are embedded in identical SU(5) multiplets. Therefore, by this corre-
spondence, the above leptoquark couplings are identical to the up-type quark Higgs Yukawa
coupling and electron Higgs Yukawa coupling, respectively. The electron Yukawa couplings
were already calculated in section A.2.4 while the calculation of the up-type quark Yukawa
couplings proceeds in a similar way. The leptoquark couplings in the mass basis, ∆S

R and
∆S
L, defined via

L ⊃ SΨ̄m
u,R∆S

RΨc,m
e,L + SΨ̄m

u,L∆S
LΨc,m

e,R + h.c. , (B.19)

therefore differ from the up-type quark and electron Higgs Yukawa couplings solely by
different mass rotations. As a consequence, non-negligible off-diagonal couplings amongst
the SM fermions are induced. This is in contrast to Higgs mediated FCNCs amongst the
SM fermions, which are very small due to the close alignment between the mass matrix and
Yukawa coupling matrix. It may therefore be important to include the contribution from
the SM fermions mediating the loop process although these are generally suppressed by
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the smaller chirality flip. The leptoquark contribution to µ→ eγ consists of two diagrams:
one where the photon is emitted from the internal leptoquark and one where the photon
is emitted from the internal quark line where the top quark and the light KK modes are
most important. Their total contribution to the dipole coefficients reads

CR(q2 =0)=−
e∆S†

L,eimµ

64π2m2
S(zi−1)4

(
2mS∆S

R,iµ(−1+zi)
√
zi(7−8zi+z2

i +4logzi+2zi logzi)

+∆S
L,iµmµ(1+4zi−5z2

i +4zi logzi+2z2
i logzi)

)
CL(q2 =0)=−

e∆S†
R,eimµ

64π2m2
S(zi−1)4

(
2mS∆S

L,iµ(−1+zi)
√
zi(7−8zi+z2

i +4logzi+2zi logzi)

+∆S
R,iµmµ(1+4zi−5z2

i +4zi logzi+2z2
i logzi)

)
, (B.20)

with zi = (mT,i/mS)2, and a sum over the up-type quarks and their KK modes with mass
mT,i is implied.
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