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1 Introduction

Our present understanding of Nature rests heavily on the framework of quantum field
theory. For the theory of elementary particles, naturally this comes hand in hand with
relativistic physics. So the formulation of quantum field theories, specifically gauge theories,
are intimately connected with Lorentz or Poincaré symmetry. For various applications, it
is necessary to look beyond relativistic theories. For effective descriptions of systems where
typical velocities are much lower than the speed of light, the Galilean algebra replaces the
Poincaré algebra as the symmetry of interest. This happens, e.g. in many real-life condensed
matter systems, (non-relativistic) hydrodynamics. For systems such as these, quantum field
theoretic descriptions naturally to incorporate Galilean symmetries instead of Lorentz or
Poincaré symmetry. Although this seems like an age-old problem, interesting progress
in the field has been achieved only recently, coinciding with an effort in understanding
the Holographic Principle away from its usual setting in relativistic Anti-de Sitter (AdS)
spacetimes [1–5]. In this paper, we shall be interested in the construction of Galilean gauge
theories. Initial works on Galilean gauge theories date back to the construction of Galilean
electrodynamics by Le Ballac and Levy-Leblond [6] in the 1970s. The more recent papers
in this direction are [7–16].

Relativistic quantum field theories are defined on fixed (pseudo-) Riemannian manifolds
with a definite metric structure. When we move to Galilean field theories, the background
metric on the manifold becomes degenerate as the speed of light goes to infinity and the
(pseudo-) Riemannian structure is replaced by a so-called Newton-Cartan structure which
is a quadruple (G, h, τ,Γ) [17, 18]. G is a (d+1) dimensional manifold where we can choose
a set of coordinates (t, xi). h is a contravariant spatial metric hµν and τ = τadx

a a non-
vanishing one-form called the clock form. Γ is torsion-free linear connection. A flat NC
structure is given by a vanishing Γ. The Galilean algebra is defined as the Lie algebra of
vector fields ξ = ξa∂a satisfying

Lξhµν = 0, Lξτa = 0, τah
ab = 0. (1.1)

The algebra generated is the same as the one obtained by an Inönü-Wigner contraction of
the Poincaré algebra.

The absence of a non-degenerate metric makes the writing of an action a difficult
proposition. Some of the recent literature, include some of our earlier work in this direc-
tion [7, 11, 19], thus concentrated on the aspects of symmetries arising from the equations
of motion (EOM) which were arrived at by a limiting procedure starting from a relativistic
quantum field theory. Particular attention was given to the conformal versions of these
Galilean QFTs, or Galilean Conformal Field Theories. It was shown that Galilean gauge
theories in four dimensions, viz. Galilean electrodynamics and Galilean Yang-Mills theo-
ries had EOM that exhibited invariance under the infinite dimensional Galilean Conformal
Algebra. These infinite enhancements remained when one coupled the gauge theories to
massless matter (scalars or fermions). We will review some of this briefly later in the paper.
But our focus in this current paper is the construction of explicit actions for these gauge
theories. We do this by the process of null reduction [20–23] that has been previously
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employed for generating non-relativistic theories from relativistic theories in one higher
dimension.

In particular, we focus on Galilean gauge theories in dimensions three and four. We
start with relativistic gauge theories in d = 4, 5 and null reduce to generate actions for
Galilean electrodynamics and Galilean Yang-Mills theories in d = 3, 4. For the abelian
theories, this process yields results that are already present in the literature, reproducing
the so-called Magnetic sector of GED in d = 4 [7, 14] and a known action in d = 3 [24].
The actions of Galilean YM are again straight-forward generalisations of their abelian
counterparts. Interesting results appear when we delve deeper into the symmetries of these
actions and their corresponding EOM. We find that for the gauge theories non-relativistic
conformal algebras, the Galilean Conformal Algebra in d = 4 and the Schrödinger algebra
in d = 3 are realised at the level of the action. These are actually partially enhanced
to their infinite dimensional algebras in the action itself. At the level of the EOM, there
is further enhancement of symmetries. While the appearance of the infinite dimensional
GCA is not unexpected given earlier works, the appearance of the Schrödinger-Virasoro
algebra in d = 3 is new. Further surprises await us when we look at the canonical analysis
later in the paper. Here we find that the entire infinite dimensional algebras are realised
as symmetries in phase space. There are also central extensions which we find.

Along the way, we also investigate aspects of electromagnetic duality for Galilean
Electromagnetism. While in d = 4 the duality has been known to exchange electric and
magnetic theories, we find that in d = 3 the theory itself has an in-built electromagnetic
duality. This is inherited from the null reduction of the higher dimensional relativistic
theory. We end our analysis with a few quantum aspects of Galilean Yang-Mills theory. A
detailed exposition of this will be carried out in later work.

Outline. The paper is organised as follows. We begin in section 2 with a review of non-
relativistic conformal symmetries, specifically focussing on the Galilean conformal algebra
and then the Schrödinger algebra first discussing the finite dimensional algebras and then
going onto their infinite dimensional extensions. We briefly comment about their geometric
realisations. We end the section with a quick review of the procedure of null reduction.

In section 3, we address Abelian Galilean gauge theories. We begin with some review
material about Galilean electrodynamics in d = 4 and then proceed to find actions by null
reductions in d = 4 and d = 3. Symmetries arising from the actions and the corresponding
EOM are discussed. While most of this is review material, we discover a realisation of the
infinite dimensional Schrödinger-Virasoro algebra in d = 3. We then discuss electromag-
netic duality for the d = 3 Galilean theory and its differences in the d = 4 case. Much of
the d = 3 analysis is based on null reductions.

Section 4 addresses non-Abelian theories. The section is structured similar to the
Abelian one, but we provide more details of the symmetry analyses of the actions and
EOM. Unlike the Abelian case, we find that our EOMs don’t reduce to earlier work in
d = 4 when some fields are turned off. Interestingly, though we again find an enhancement
of symmetries in d = 4, as well as in d = 3.

We perform a canonical analysis of symmetries in section 5 and find that the infinite
dimensional Virasoro sub-algebras are non-trivially realised in phase space for the Yang-
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Mills theories in both dimensions. In addition, there are state-dependent central extensions
to the Virasoro algebra. In section 6, we briefly discuss quantum mechanical aspects
and write down the Feynman rules for Galilean Yang-Mills theories. We conclude with a
summary of our results and a list of future directions in section 7. An appendix contains
some aspects of GCA representation theory.

2 Non-relativistic conformal symmetries

Different versions of conformal symmetry have been discussed in the non-relativistic set-
ting [25]. We will focus our attention on two of these, viz. Galilean Conformal symmetry [4]
and Schrödinger symmetry [1, 26–28]. Galilean conformal symmetry is arrived at by an
Inonu-Wigner contraction of relativistic conformal symmetry, much the same way as one
derives the Galilean algebra from the Poincaré algebra. This is the symmetry for a massless
or gapless non-relativistic system. Schrödinger symmetry on the other hand is the group
of symmetries of the free Schrödinger equation.

In order to set notation, let us remind ourselves of the relativistic conformal generators
in d dimensional Minkowski spacetime. The conformal group is constructed from trans-
lations [Pµ], Lorentz transformations [Jµν ], dilatation [D], and special conformal transfor-
mations (SCT) [Kµ]. In vector field notation, they are given by

Pµ = ∂µ, Jµν = (xµ∂ν − xν∂µ), D = −xµ∂µ, Kµ = −(2xµxν∂ν − xνxν∂µ), (2.1)

where µ = (0, i = 1, . . . , d − 1). The commutation relations satisfied by these generators
form the conformal algebra, which is isomorphic to so(d, 2).

2.1 Galilean conformal symmetries

As stated earlier, the Galilean Conformal Algebra is obtained from the relativistic confor-
mal algebra through an Inönü-Wigner contraction. We will perform the non-relativistic
limit at the spacetime level and in units where c = 1. In this limit, the velocities are small
as compared to the speed of light. The systematic procedure to take the limit is as follows

xi → εxi, t→ t along with ε→ 0. (2.2)

The scaling in (2.2) is equivalent to c→∞ scaling. Contracting (2.1) in this way we get

H = −∂t, D = −(t∂t + xi∂i), K = −(t2∂t + 2txi∂i), (2.3a)
Pi = ∂i, Bi = t∂i, Ki = t2∂i, (2.3b)
Jij = (xi∂j − xj∂i), (2.3c)

where (H,D,K) → {Hamiltonian, dilatation and temporal SCT} and (Pi, Bi,Ki) →
{translation, boost and spatial SCT}. Finally, Jij are the generators of spatial rotations.
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The algebra of these generators are given by

[Jij , Jkl] = (δikJjl − δjkJil − δilJjk + δjlJik), [H,Bi] = Pi,

[Pi, Bj ] = 0, [Jij , Xk] = (δikXj − δjkXi), [Bi, Bj ] = 0,
[D,H ] = H, [D,Pi] = Pi, [D,K] = −K, [D,Ki] = −Ki,

[K,H] = 2D, [K,Pi] = 2Bi, [Bi,K] = −Ki,

[Bi,Kj ] = 0, [Ki, Pj ] = 0, [Ki, H] = 2Bi, (2.4)

where Xi = (Pi, Bi,Ki). This is a finite dimensional Galilean conformal algebra (fGCA).
The generators can also be written in a suggestive form for n = 0,±1 given as

L(n) = −tn+1∂t − (n+ 1)tnxi∂i, (L(−1,0,1) → H,D,K) (2.5a)

M
(n)
i = tn+1∂i, (M (−1,0,1)

i → Pi, Bi,Ki) . (2.5b)

The fGCA can be written down as[
L(n), L(m)] = (n−m)L(n+m),

[
L(n),M

(m)
i

]
= (n−m)M (n+m)

i ,
[
M

(n)
i ,M

(m)
j

]
= 0,[

L(n), Jij
]

= 0,
[
Jij ,M

(n)
k

]
= M

(n)
j δik −M

(n)
i δjk. (2.6)

One sees from above that the algebra continues to hold for any integer value of n. Surpris-
ingly the algebra is extended to an infinite-dimensional algebra which we name I-GCA or
simply GCA from now on. The algebra above can admit central terms in the usual Virasoro
subalgebra. There is a further central extension which the [L,M ] commutator gets in the
special case of d = 2. In the systems we study later in the paper, we will find that in their
realisation in phase space, the symmetries develop a Virasoro central extension.

The action of infinite extension of GCA on the fields at general space-time points is
given by [7, 19, 29]:[

L(n), ϕ(t, x)
]

=
(
tn+1∂t + (n+ 1)tnxk∂k + (n+ 1)tn∆

)
ϕ(t, x)

−n(n+ 1)tn−1xkU
[
M

(0)
k , ϕ(0, 0)

]
U−1, (2.7a)[

M
(n)
k , ϕ(t, x)

]
= −tn+1∂kϕ(t, x) + (n+ 1)tnU

[
M

(0)
k , ϕ(0, 0)

]
U−1. (2.7b)

In the above, ϕ(t, x) represents a field of generic spin. For the purpose of this paper, we
shall only be interested in scalars and gauge fields and hence the transformation laws read:[

M
(0)
k , ϕA(0, 0)

]
= aφkδA0 + sδAtak + rδAiφδik, (2.8)

where the index i is not summed over and ϕ0(0, 0) = φ, ϕt(0, 0) = at, ϕi(0, 0) = ai
(φ→ scalar field, {at, ai} → gauge fields). The values of constants (a, s, r) are determined
by demanding inputs from the dynamics. We will clarify later in the paper how the values
of these constants get fixed for the theory under consideration (see e.g. section 4.3). We
will use (2.7) to check the symmetries of the system we are dealing with in this paper. For
the detailed analysis of the actions of GCA generators on fields, the reader is directed to
appendix A.
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2.2 Schrödinger symmetries

We now revisit another non-relativistic algebra that has less symmetries in comparison to
GCA. The Schrödinger group [26, 27], Sch(d) is a symmetry group of the free Schrödinger
equation in d dimensions. This symmetry has been discussed in the context of fermions at
unitarity [30]. Some recent literature on the Schrödinger algebra includes [31–37].

The Schrödinger algebra is generated by the generators of centrally extended Galilean
algebra with two additional generators; the dilatation D̃ and a special conformal transfor-
mation K̃. These generators are given by

Pi = ∂i, H = ∂t, Gi = t∂i + xiM, Jij = (xi∂j − xj∂i),
D̃ = 2t∂t + xi∂i, K̃ = 2t2∂t + 2txi∂i + x2M. (2.9)

The non-zero commutations relations of the Schrödinger algebra are

[H, D̃] = 2H, [Pi, D̃] = Pi, [D̃,Gi] = Gi, [D̃, K̃] = 2K̃,
[Pi, Gj ] = −δijM, [H, K̃] = D̃, [H,Gi] = −Pi, [Gi, K̃] = −Gi,
[Jij , Pk] = δikPj − δjkPi, [Jij , Gk] = δikGj − δjkGi,
[Jij , Jkl] = (δikJjl + δjlJik − δilJjk − δjkJil). (2.10)

HereGi is the Schrödinger boost, andM is a central element, that can be viewed as the mass
or the particle number of the system. The number of generators of the group, including
the central element M , in d = 4 is 13, which is to be contrasted with the finite GCA, which
has 15. The difference comes about in the number of special conformal generators, which
is a vector-worth in the GCA compared to a single one in the Schrödinger algebra.

We now briefly discuss the representation of the Schrödinger algebra following [30]. A
primary operator ϕ(0, 0) at (t = 0, xi = 0) of scaling dimension ∆ϕ is defined by

[D̃, ϕ(0, 0)] = ∆ϕϕ(0, 0); [Gi, ϕ(0, 0)] = 0, [K̃, ϕ(0, 0)] = 0. (2.11)

Then the tower of operators built by repeated action of Pi and H on a primary operator
forms an irreducible representation of the Schrödinger algebra. In this way, we can see that
all local operators can be divided into irreducible representations built on different primary
operators. For a primary operator at an arbitrary spacetime point (t, xi), the generators
Gi and K̃ act as

[
Gi, ϕ(t, x)

]
= (t∂i +mϕxi)ϕ(t, x),[

K̃, ϕ(t, x)
]

= [(2t2∂t + 2txi∂i + t∆ϕ) + x2mϕ]ϕ(t, x), (2.12)

where mϕ is the eigenvalue of M on ϕ. For any local operator at an arbitrary spacetime
point, the generators Pi, H and D̃ act as

[
Pi, ϕ(t, x)

]
= ∂iϕ(t, x),

[
H,ϕ(t, x)

]
= ∂tϕ(t, x),[

D̃, ϕ(t, x)
]

= (2t∂t + xi∂i + ∆ϕ)ϕ(t, x). (2.13)
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The boost and dilatation generators act on the fields of our interest ϕ = (φ→ scalar field,
{at, ai} → gauge fields) as

δGkφ = −t∂kφ, δGkat = −(t∂kat + ak), δGkai = −(t∂kai − δikφ), (2.14a)
δD̃ϕ = (2t∂t + xk∂k + ∆ϕ)ϕ. (2.14b)

The generator of the special conformal transformation K̃ acts on ϕ as

δK̃at = (2t2∂tat + 2txk∂kat + 4tat + 2xkak), (2.15a)
δK̃ai = (2t2∂tai + 2txk∂kai + 2tai − 2xiφ), (2.15b)
δK̃φ = (2t2∂tφ+ 2txk∂kφ). (2.15c)

Since we would be interested in gauge fields in the bulk of the paper, we would be dealing
with massless systems and hence will restrict ourselves to the zero eigenvalue subsector of
M : mϕ = 0.

Although the Schrödinger algebra as reviewed above is rather well known, somewhat
less studied is the interesting observation that even this algebra admits an infinite exten-
sion [28, 38]. To get this infinite extension, we first rewrite the generators as

Z(n) = 2tn+1∂t + (n+ 1)tnxi∂i + 1
2n(n+ 1)tn−1x2M,

Y
(m)
i = tm+ 1

2∂i +
(
m+ 1

2

)
tm−

1
2xiM,

T (n) = tnM, (2.16)

where n = (−1, 0, 1), m =
(
−1

2 ,
1
2

)
and (Z(−1,0,1) → H, D̃, K̃),

(
Y

(− 1
2 ,

1
2 )

i → Pi, Gi

)
. To

distinguish from the GCA case, we use the notation Z(n) instead of the usual L(n) notation
for the Schrödinger case. In terms of these redefined generators the Schrödinger algebra
becomes

[Z(n), Z(m)] = (n−m)Z(n+m), [Y (n)
i , Y

(m)
j ] = (n−m)δijT (n+m),

[Z(n), Y
(m)
i ] =

(
n

2 −m
)
Y

(n+m)
i , [Z(n), T (m)] = −mT (n+m). (2.17)

We see that the above algebra is satisfied if we extend the values of n,m to n ∈ Z,m ∈ Z+ 1
2 ,

thus giving us an infinite extension of the Schrödinger algebra, which in literature is referred
to as the Schrödinger-Virasoro algebra. The Virasoro sub-algebra again admits a central
extension, which we will encounter in our analysis later in the paper. The action of infinite
generators Z(n) on our fields of interest ϕ = (φ, at, ai) can be written down as

δZ(n)φ = 2tn+1∂tφ+ (n+ 1)tn(xk∂k + ∆φ)φ,
δZ(n)ai = 2tn+1∂tai + (n+ 1)tn(xk∂k + ∆ai)ai − n(n+ 1)tn−1xiφ,

δZ(n)at = 2tn+1∂tat + (n+ 1)tn(xk∂k + ∆at)at + n(n+ 1)tn−1xkak. (2.18)

– 7 –
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Similarly the action of Y (n)
k generators on the fields ϕ is

δ
Y

(m)
k

φ = tm+ 1
2 ∂kφ, δ

Y
(m)
k

ai = tm+ 1
2∂kai −

(
m+ 1

2

)
tm−

1
2φ,

δ
Y

(m)
k

at = tm+ 1
2∂kat +

(
m+ 1

2

)
tm−

1
2ak. (2.19)

These transformations above for the Abelian fields (φ, at, ai) (and their generalizations to
non-Abelian fields) will be useful to show the invariance of Galilean versions of electrody-
namics (and Yang-Mills) under Schrödinger algebra in 3 dimensions.

2.3 Geometrical realization of non-relativistic conformal symmetries

In the introduction, we described the Galilean algebra as the isometry algebra of a flat
Newton-Cartan manifold (1.1). The non-relativistic conformal algebras that we have dis-
cussed above from an algebraic perspective can also be look at geometrically. In terms of
the previously discussed Newton-Cartan structures, these symmetries arise as conformal
isometries [18, 39].

Generically, the infinite dimensional conformal isometries of the flat NC spacetime are
generated by vector fields ξa which satisfy the non-relativistic conformal Killing equations

Lξhµν = λhµν , Lξτa = µτa; λ+Nµ = 0. (2.20)

Solving these equations, the vectors fields ξa span the conformal Galilei algebra of level N ,
denoted by cgalN (G, h, τ). The level N of the algebra is related to the dynamical exponent
z, which characterizes the unequal scaling of space and time under dilatation, as z = 2

N .
For N = 2, i.e. z = 1 the algebra cgal2(G, h, τ) = gca(d + 1) is the infinite dimen-

sional Galilean conformal algebra. For N = 1, i.e. z = 2 we get the infinite dimensional
Schrödinger-Virasoro algebra cgal1(G, h, τ) = sv(d+ 1).

Further demanding that the non-relativistic conformal transformations preserve the
form of the geodesic equation i.e. the projective structures associated with the flat connec-
tion Γ = 0, the algebra reduces to finite dimensional Schrödinger algebra cgal1(G, h, τ,Γ) =
sch(d+ 1) for z = 2, and finite dimensional GCA for z = 1. We refer the reader to [18] for
further detials.

2.4 Null reduction

Before moving onto the main body of the paper, let us briefly review the process of null
reduction which will be our primary tool in constructing non-relativistic actions. Null
reduction is a method to obtain a d-dimensional Galilean invariant theory from a (d+ 1)-
dimensional relativistic theory [20–23]. Below we elucidate this by applying it to a scalar
field theory.

To begin with, consider the metric of a (d+ 1)-dimensional Minkowski spacetime

ds2 = ηBCdx
BdxC = −(dx0)2 + (dx1)2 + δABdx

AdxB, (2.21)
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where B, C = (0, 1, . . . , d) and A,B = (2, . . . , d). We will make a change of coordinates to
the usual light-cone coordinates given below

u = 1√
2

(x0 − x1), t = 1√
2

(x0 + x1). (2.22)

In lightcone coordinates, the metric becomes

ds2 = ηµ̃ν̃dx
µ̃dxν̃ = 2du dt+ δABdx

AdxB, (2.23)

where µ̃ = (u, t, 2, 3, . . . ). We will now look how to implement this technique on a field
theory. We will first start with an action of Lorentz invariant theory on the coordinate
system (2.21). We then reduce the action of that theory along the u null direction of the
coordinate system (2.23). Here, the components of (d+1)-dimensional generic fields reduce
to different fields in d-dimensional Galilean invariant theory, e.g. a gauge field reduces as
Aµ̃ = (Au,At,Ai). The fields A are taken to be independent of the coordinate u. The t
coordinate becomes time in d-dimensional Galilean theory and (A,B) becomes the spatial
coordinates i, j = (1, 2, 3, . . . ).

Let us discuss this technique through an example of a scalar field theory. Consider
a relativistic scalar field theory in 5-dimensional Minkowski spacetime, described by the
action

S =
∫
dt d4x

(1
2η
BC∂Bφ∂Cφ

)
=
∫
dt d4x

(
−1

2(∂0φ)2 + 1
2(∂1φ)2 + 1

2(∂iφ)2
)
, (2.24)

where B = [0, 1, i = (2, 3, 4)]. We will now express (2.24) in coordinate system (2.23) so
that we can perform a null reduction. The action becomes

S =
∫
d5x

(1
2η

µ̃ν̃∂µ̃φ∂ν̃φ

)
=
∫
dt du d3x

(1
2η

tu∂tφ∂uφ+ 1
2η

ut∂uφ∂tφ+ 1
2η

ij∂iφ∂jφ

)
. (2.25)

With φ(t, xi) independent of the null coordinate u, we perform the null reduction on (2.25)
along u-direction and get the action as

SG =
∫
dt d3x

(1
2η

ij∂iΦ∂jΦ
)

(2.26)

where the subscript G denotes Galilean and φ(t, xi) has reduced to Φ(t, xi). This resultant
action (2.26) is invariant under GCA in d = 4 dimensions.

3 Abelian Galilean gauge theory

In this section, we will address Galilean electrodynamics in dimensions d = 4 and then
d = 3. We will construct actions by null reducing relativistic electrodynamics in one higher
dimension and investigate the symmetries associate with the action and the corresponding
EOM. Much of this is review material, although the discovery of the (partial) realisation
of the infinite dimensional Schrödinger Virasoro in the d = 3 case is new. We then address
the question of electromagnetic duality in these theories, focussing on the d = 3 case and
point out differences to the one found earlier in the d = 4 case.
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3.1 Galilean electrodynamics in d = 4

Le Bellac and Lévy-Leblond first introduced Galilean electrodynamics (GED) in [6] and
wrote it down in the language of electric ( ~E) and magnetic ( ~B) fields. In [7], we (a subset of
the current authors) discussed the Galilean electrodynamics in terms of potential formula-
tion, scaling the scalar and vector potentials in addition to the scaling of coordinates (2.2).
The non-relativistic scaling1 of the 4-vector potential was considered in two different ways:

at → at, ai → εai and at → εat, ai → ai; along with ε→ 0. (3.1)

The first limit is known as the Electric limit whereas the second limit is called as Magnetic
limit. The EOM of these two sectors (in absence of sources) are as follows:

Electric limit: ∂i∂iat = 0, ∂j∂jai − ∂i∂jaj + ∂t∂iat = 0; (3.2a)
Magnetic limit: ∂j∂jai − ∂i∂jaj = 0, ∂i∂iat − ∂i∂tai = 0. (3.2b)

These equations can also be written in terms of ~E and ~B. They become

Electric limit: ~∇ · ~E = 0, ~∇ · ~B = 0, ~∇× ~E = 0, ~∇× ~B = ∂ ~E

∂t
(3.3a)

Magnetic limit: ~∇ · ~E = 0, ~∇ · ~B = 0, ~∇× ~E = −∂
~B

∂t
, ~∇× ~B = 0. (3.3b)

By looking at (3.3), we notice that under the exchange of electric and magnetic fields, i.e.
under the following transformation

~E −→ ~B, ~B −→ − ~E, (3.4)

the EOM in the electric and the magnetic sectors get interchanged. This is referred to as
the electric-magnetic duality between “electric” and “magnetic” sectors of Galilean elec-
trodynamics [8].

We will now look at the invariance of EOM (3.2) of Galilean electrodynamics under
infinite-dimensional Galilean conformal symmetry. For that, we have to use the details of
representation theory (look at appendix A). The transformation of equations of Electric
limit under the generators (L(n),M

(n)
k ) of GCA are given by

[L(n), ∂i∂iat] = 0, [L(n), ∂j∂jai − ∂i∂jaj + ∂t∂iat] = −1
2 n(n+ 1) tn−1(d− 4)∂iat,

[M (n)
k , ∂i∂iat] = 0, [M (n)

k , ∂j∂jai − ∂i∂jaj + ∂t∂iat] = 0. (3.5)

We see that for d = 4, the equations are invariant under the full infinite dimensional GCA.
Similarly for Magnetic case, we have

[L(n), ∂j∂jai − ∂i∂jaj ] = 0, [L(n), ∂i∂iat − ∂t∂iai] = −1
2n(n+ 1)(d− 4)tn−1∂iai,

[M (n)
k , ∂j∂jai − ∂i∂jaj ] = 0, [M (n)

k , ∂i∂iat − ∂t∂iai] = 0. (3.6)

From (3.5) and (3.6), we see that Galilean electrodynamics is invariant under GCA in d = 4
case. For further explanations, the reader is directed to [7].

1In the rest of the paper, by “non-relativistic scaling” we always mean scaling the relevant quantities by
the small parameter ε and taking the limit ε→ 0.

– 10 –



J
H
E
P
0
4
(
2
0
2
2
)
1
7
6

3.2 An action for Galilean electrodynamics in d = 4

In this section, as a warm-up to our analysis in Yang Mills theory, we review the construc-
tion of the action for Galilean electrodynamics by null reducing electrodynamics (ED) in
one higher dimension [14, 24]. For that, let us consider the 5-dimensional Maxwell action

SED =
∫
d5x

(
− 1

4η
µ̃ρ̃ην̃σ̃Fµ̃ν̃Fρ̃σ̃

)
, (3.7)

in the coordinate system (2.23). The field strength is given by Fµ̃ν̃ = (∂µ̃Aν̃ − ∂ν̃Aµ̃). We
take the vector potential Aµ̃ to be independent of the null coordinate ‘u’ and decompose
the components of Aµ̃ as

Au = φ, At = at, Ai = ai. (3.8)

Then performing null reduction, we get an action for Galilean electrodynamics in 4-
dimensions as

SGED =
∫
dt d3x

(
− 1

4W
ijWij + Ei∂iφ+ 1

2(∂tφ)2
)
, (3.9)

where Wij = (∂iaj − ∂jai) and Ei = (∂tai − ∂iat). The associated EOM are given by

∂2
t φ+ ∂iEi = 0, ∂i∂iφ = 0, ∂jWji − ∂t∂iφ = 0. (3.10)

We see that the action (3.9) is invariant under GCA (2.7) in d = 4. We further see that
setting φ = 0, equations (3.10) reduce to

∂jWji = 0, ∂iEi = 0, (3.11)

which are the EOM in the magnetic limit of GED (3.2b) [7]. Thus we see that from a null
reduction, we only get the magnetic sector of GED.

3.3 Galilean electrodynamics in d = 3 dimensions

We will study Galilean electrodynamics in 3-dimensions obtained by null reduction of
electrodynamics in 4-dimensions. We see that the action looks identical to the case in four
dimensions (3.9) with the difference being in the values of spatial indices i, j. However the
symmetries are different: GED in 3-dimensions is invariant under Schrödinger algebra [24].

We will now look at the invariance of the GED action under the Schrödinger sym-
metries. Under boost transformations, using the transformations of the fields (2.14a), the
action transforms as

δGkSGED =
∫
dt d2x δGkLGED =

∫
dtd2x ∂k

[
−t
(1

2∂tφ∂tφ+ Ei∂iφ−
1
4W

ijWij

)]
,

(3.12)
where LGED =

(
1
2∂tφ∂tφ+Ei∂iφ− 1

4W
ijWij

)
is the Lagrangian density. Under dilatation,

the fields transform as given in (2.14b) with scaling dimensions (∆φ,∆at ,∆at), to be de-
termined. We see that using these transformations of the fields, the action transforms to a
total derivative

δD̃SGED =
∫
dt d2x δD̃LGED =

∫
d2x

[
∂t(2 tLGED) + ∂k(xkLGED)

]
(3.13)

– 11 –



J
H
E
P
0
4
(
2
0
2
2
)
1
7
6

if the scaling dimensions of the fields are taken to be

∆φ = 0, ∆ai = 1, ∆at = 2. (3.14)

Under special conformal transformations, using (2.15) the action changes as

δK̃SGED =
∫
dtd2x

[
∂t(2t2LGED) + ∂k(2txkLGED)

]
. (3.15)

We see that the action transforms to a total derivatives under boosts, dilatation and the
special conformal transformation. Thus, the action is invariant under the Schrödinger
symmetry in d = 3 dimensions.

Now we will show that the GED action is invariant under the infinite symmetries
generated by Y (n)

i and the global symmetries generated by Z(n) for n = −1, 0, 1. To see
this, we use the transformations of the fields (2.18), (2.19) under Y (n)

i and Z(n), and get
the changes in the action as

δZ(n)SGED =
∫
dtd2x

[
∂t
(
2tn+1LGED

)
+ ∂k

(
(n+ 1)tnxkLGED

)
− n(n+ 1)(n− 1) tn−2(φ)2

]
,

δ
Y

(n)
k

SGED =
∫
dt d2x ∂k

[
−
(
tn+ 1

2 LGED −
1
2

(
n− 1

2

)(
n+ 1

2

)
tn−

3
2 (φ)2

)]
. (3.16)

We see that δ
Y

(n)
k

SGED is a total derivative for all n, and δZ(n)SGED is a total derivative
only for n = (−1, 0, 1), implying invariance under Z(−1,0,1) ≡ (H,D,K).

The next thing we are interested in is looking at the symmetries of the EOM (3.10)
of the theory. The analysis here is very similar to what we will present later on in the
Yang-Mills case. Instead of repeating ourselves, we point the reader to section 4.4 and all
the results would hold by putting the structure constants to zero. The upshot is that the
EOM are invariant under the finite Schrödinger algebra as well as the infinite dimensional
boosts, as in the case of the action. However, like in the d = 4 GED case, when the field φ
is turned off, the EOM exhibit an extended symmetry and remain invariant under the full
infinite Schrödinger-Virasoro algebra.

3.4 Electromagnetic duality

Earlier in this section, we encountered the electric-magnetic duality in 4d GED which
exchanges the electric and magnetic sectors (3.4). Then it is natural to ask if there is some
notion of similar duality in 3d GED obtained by null reduction. Given the result in 4d
GED, this is not obvious since we get only the magnetic sector from null reduction. As we
will see in this section, there are electromagnetic type dualities in GED in 3-dimensions,
and these are of different kind than the electric-magnetic duality in 4-dimensions. We will
heavily use null reduction in the following.

3.4.1 Free theory

The electromagnetic duality in relativistic electrodynamics in 4-dimensions is the invariance
of Maxwell’s equations ∂µFµν = 0 and Bianchi identity ∂µF̃

µν = 0 under the duality
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transformation
Fµν → F ′µν = F̃µν , F̃µν → F̃ ′µν = Fµν . (3.17)

Here the dual of the field strength is defined, in our conventions, as

F̃µν = 1
2ε

µνρσFρσ, (3.18)

where εµνρσ is the totally antisymmetric tensor with ε0123 = 1.
To get electromagnetic duality in GED in 3-dimensions, let us perform null reduction

using the reduction ansatz (2.23), (3.8). The field strength reduces to field strength like
variables in the Galilean theory as

Wt = Fut = −∂tφ, Wi = Fui = −∂iφ, Wit = Fit = ∂iat − ∂tai,
Wij = Fij = ∂iaj − ∂jai, (3.19)

and the dual field strength reduces to dual field strength like variables in the Galilean
theory as

W̃ t = F̃ ut = 1
2ε

tijWij , W̃ i = F̃ ui = −εtijWtj , W̃ it = F̃ it = −εtijWj ,

W̃ ij = F̃ ij = εtijWt. (3.20)

Here εtij is totally antisymmetric with εt23 = −1 and it is related to the totally antisym-
metric tensor in 4-dimensions as εutij = εtij . Then the Galilean EOM can be written in
terms of the field strength like variables as

δij∂iWj = 0, δjk∂jWki + ∂tWi = 0, ∂tWt + δij∂iWjt = 0. (3.21)

The null reduction of the Bianchi identity ∂µF̃µν = 0 gives Bianchi identities in the Galilean
theory as

∂tW̃
t + ∂iW̃

i = 0, ∂iW̃
it = 0, ∂tW̃

ti + ∂kW̃
ki = 0. (3.22)

Now to do null reduction of the relativistic electromagnetic duality transformation (3.17),
let us first express it in terms of field strength Fµν and dual field strength F̃µν with proper
index structure:

F ′αβ = ηαµηβνF̃
µν , F̃ ′µν = ηµαηβνFαβ . (3.23)

Null reducing these expressions, we get the duality transformations in Galilean theory,
W →W ′ = W̃ , W̃ → W̃ ′ = W as

Wt →W ′t = −W̃ t, Wi →W ′i = δijW̃
tj , Wti →W ′ti = δijW̃

j ,

Wij →W ′ij = δikδjlW̃
kl,

W̃ t → W̃ ′t = −Wt, W̃ i → W̃ ′i = δijWtj , W̃ ti → W̃ ′ti = δijWj ,

W̃ ij → W̃ ′ij = δikδjlWkl. (3.24)

We see that under the transformations (3.24), the Galilean EOM (3.21) for (Wt,Wi,Wti,Wij)
become Galilean Bianchi identities (3.22) for (W̃ ′t, W̃ ′i, W̃ ′ti, W̃ ′ij) and the Galilean Bianchi
identities for (W̃ t, W̃ i, W̃ ti, W̃ ij) become Galilean EOM for (W ′t ,W ′i ,W ′ti,W ′ij). Thus the
field equations (3.21) and (3.22) are invariant under the transformations (3.24).
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3.4.2 Interacting theory

We have a generalization of the electromagnetic duality to SL(2,R) duality in a relativistic
interacting theory of a complex scalar Z(x) and the electromagnetic field Aµ(x) in 4-
dimensions [40]. This theory is described by the Lagrangian density

LED = −1
4(ImZ)FµνFµν −

1
8(ReZ)εµνρσFµνFρσ, (3.25)

and the EOM
∂µ
[
(ImZ)Fµν + (ReZ)F̃µν

]
= 0, (3.26)

along with the Bianchi identity. These EOM and Bianchi identity are invariant under
SL(2,R) duality transformations

S =
(
d c

b a

)
, ad− bc = 1, (3.27)

with the fields transforming as

Fµν → F ′µν =
[
d+ c

2(Z + Z̄)
]
Fµν + ic

2 (Z − Z̄)F̃αβηαµηβν ,

F̃µν → F̃ ′µν =
[
d+ c

2(Z + Z̄)
]
F̃µν − ic

2 (Z − Z̄)Fαβηαµηβν , (3.28)

and
Z ′ = aZ + b

cZ + d
. (3.29)

We note that this duality is a symmetry of the EOM and the Bianchi identity and not of
the Lagrangian (3.25), as can be checked by a straightforward calculation [40].

Performing null reduction of (3.25), we get the Lagrangian describing a theory of
complex scalar and GED in 3-dimensions:

LM+S = (ImZ)
[1

4W
ijWij +W iWti + 1

2WtWt

]
−(ReZ)

2

[
W̃ tWt + W̃ iWi + W̃ itWit + 1

2W̃
ijWij

]
. (3.30)

The null reduction of (3.26) gives the EOM

∂t
[
i(Z − Z̄)Wt + (Z + Z̄)W̃ t]+ ∂i

[
i(Z − Z̄)δijWjt + (Z + Z̄)W̃ i] = 0,

∂i
[
i(Z − Z̄)δijWj + (Z + Z̄)W̃ it] = 0, (3.31)

∂t
[
i(Z − Z̄)δijWj − (Z + Z̄)W̃ ti]+ ∂k

[
i(Z − Z̄)δklδijWlj − (Z + Z̄)W̃ ki] = 0.

The Bianchi identities are same as given in (3.22). Now we perform null reduction on
the action of SL(2,R) transformations on relativistic fields (3.28). This null reduction,
using (3.19), (3.20), gives the action of SL(2,R) transformations on the fields in the Galilean
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theory as

Wt → W ′t =
[
d+ c

2(Z + Z̄)
]
Wt −

ic

2 (Z − Z̄)W̃ t,

Wi → W ′i =
[
d+ c

2(Z + Z̄)
]
Wi + ic

2 (Z − Z̄)W̃ tjδji,

Wit → W ′it =
[
d+ c

2(Z + Z̄)
]
Wit −

ic

2 (Z − Z̄)W̃ jδji,

Wij → W ′ij =
[
d+ c

2(Z + Z̄)
]
Wij + ic

2 (Z − Z̄)W̃ klδkiδlj , (3.32)

and

W̃ t → W̃ ′t =
[
d+ c

2(Z + Z̄)
]
W̃ t + ic

2 (Z − Z̄)Wt,

W̃ i → W̃ ′i =
[
d+ c

2(Z + Z̄)
]
W̃ i − ic

2 (Z − Z̄)Wtjδji,

W̃ it → W̃ ′it =
[
d+ c

2(Z + Z̄)
]
W̃ it + ic

2 (Z − Z̄)Wjδ
ji,

W̃ ij → W̃ ′ij =
[
d+ c

2(Z + Z̄)
]
W̃ ij − ic

2 (Z − Z̄)Wklδ
kiδlj . (3.33)

To see the invariance of the field equations, we can first replace fields (W, W̃ ) by (W ′, W̃ ′)
in (3.31), (3.22), i.e. assume that (W ′, W̃ ′) satisfy the field equations and the Bianchi
identities. Then using the transformations (3.32), (3.33) and ad−bc = 1, we can show that
the fields (W, W̃ ) satisfy equations (3.31) and (3.22).

The takeaway point from this analysis is that electromagnetic duality in Galilean
electrodynamics is very different in four and three dimensions. While in four dimensions,
there is an exchange between the electric and magnetic sectors, which are in effect two
different theories, in three dimensions, the duality exists already in one sector, which
reduces to the magnetic sector by putting an extra field to zero. A priori, this may seem
like a surprise, as the actions of both the 4d and the 3d theories are almost identical and
obtained in the same way from the higher dimensional relativistic theory. The answer to
the difference is of course that the original 5d relativistic theory from which the 4d action is
derived, is not invariant under electromagnetic duality, whereas the 4d relativistic theory is.
The duality structure of the 3d Galilean theory is directly inherited from the 4d relativistic
theory through null reductions.

4 Non-Abelian Galilean gauge theory

In this section, we move on to the non-Abelian Galilean gauge theories. Before doing so,
in order to set notation, let us very briefly recall the relativistic theory and the symmetries
associated with it.

It is well known that classical relativistic Yang-Mills theory is invariant under conformal
symmetry in four spacetime dimensions. The Yang-Mills action in (d+ 1)-dimensions is:

SYM =
∫
dd+1xLYM =

∫
dd+1x

(
−1

4F
µ̃ν̃aF aµ̃ν̃

)
, (4.1)

– 15 –



J
H
E
P
0
4
(
2
0
2
2
)
1
7
6

and the EOM
∂µ̃F

µ̃ν̃a + gfabcAbµ̃F
µ̃ν̃c = 0, (4.2)

where a = 1, 2, . . . , N2 − 1. The non-abelian field strength is defined as F aµ̃ν̃ = ∂µ̃A
a
ν̃ −

∂ν̃A
a
µ̃ + gfabcAbµ̃A

c
ν̃ . Here, Aaµ̃ is the gauge field and fabc is the structure constant of the

underlying gauge group. The action (4.1) and equations (4.2) are trivially invariant under
Poincaré and scale transformations in all dimensions.

δKσ̃
(
∂µ̃F

µ̃ν̃a + gfabcAbµ̃F
µ̃ν̃c) =

(
d− 3

)[
F aσ̃ν̃ +

(
∂σ̃A

a
ν̃ − ησ̃ν̃∂ρ̃Aρ̃a

)
+ gfabc

{
2Abσ̃Acν̃

− ησ̃ν̃Aρ̃bAcρ̃ + ησ̃ρ̃x
ρ̃(∂ρ̃(Abρ̃Acν̃)

+Aρ̃bF cρ̃ν̃ + gf cdeAρ̃bAdρ̃A
e
ν̃

)}]
. (4.3)

We see that the EOM are invariant under SCT in d + 1 = 4 spacetime dimensions. So
relativistic Yang-Mills theory is invariant under the entire conformal group at the classical
level in four spacetime dimensions.

4.1 Galilean Yang-Mills theory

We begin our investigation of non-Abelian gauge theories with a brief review of existing
literature. In [11], a subset of us looked at the generalised SU(N) Galilean field theory.
Below we review the simplest case, i.e. the SU(2) theory. The first non-trivial generalisation
is the existence of skewed limits when one deviates from a U(1) theory. It is due to the
presence of three different gauge fields that leads to four limits instead of two in the U(1)
case. The scaling of gauge fields (Aaµ = aat , a

a
i ) are defined as

Electric limit: aat → aat , aai → εaai , (4.4a)
Magnetic limit: aat → εaat , aai → aai , (4.4b)

EEM limit: a1,2
t → a1,2

t , a1,2
i → εa1,2

i , a3
t → εa3

t , a3
i → a3

i , (4.4c)
EMM limit: a1

t → a1
t , a1

i → εa1
i , a2,3

t → εa2,3
t , a2,3

i → a2,3
i . (4.4d)

Here, a = (1, 2, 3) and E denotes for electric and M for magnetic case. When we apply
these four sets of scaling on the Non-abelian EOM (4.2), we will get the vanilla limits
(Electric and Magnetic limits) as well as the skewed limits (EEM and EMM limits). We
will now write down the EOM for each sector. They are given by

• Electric limit:

∂i∂ia
a
i − ∂j∂iaaj + ∂t∂ia

a
t + gεabcabt∂ia

c
t = 0, ∂i∂iA

a
t = 0. (4.5)

• Magnetic limit:
∂i∂ia

a
t − ∂i∂taai = 0, ∂j∂ja

a
i − ∂j∂iaaj = 0. (4.6)

• EEM limit:

∂i∂ia
1,2
t = 0, ∂i∂ia

1,2
j − ∂

i∂ja
1,2
i + ∂t∂ja

1,2
t = 0, (4.7a)

∂i∂ia
3
t − ∂i∂ta3

i = 0, ∂i(∂ia3
j − ∂ja3

i ) = 0. (4.7b)
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• EMM limit:

∂i(∂ia1
j − ∂ja1

i ) + ∂t∂ja
1
t + g∂i(a2

i a
3
j − a3

i a
2
j )

+ga2
i (∂ia3

j − ∂ja3
i ) + ga3

i (∂ja2
i − ∂ia2

j ) = 0, (4.8a)
∂i∂ia

1
t = 0, ∂i(∂ia2,3

j − ∂ja
2,3
i ) = 0, (4.8b)

∂i∂ia
3
t − ∂i∂ta3

i − 2ga2
i ∂

ia1
t − gA1

t∂
ia2
i = 0, (4.8c)

∂i∂ia
2
t − ∂i∂ta2

i + 2ga3
i ∂

ia1
t + ga1

t∂
ia3
i = 0. (4.8d)

For SU(2) theory, the structure constant fabc ≡ εabc with εabc = ±1 for different permuta-
tions. In [11], the invariance of EOM of these four limits of Galilean Yang-Mills was seen
under infinite-dimensional GCA.

Below we will obtain a different set of EOM from the ones above by looking at a
null reduction of relativistic Yang-Mills in d = 4. Needless to say, turning the coupling
g = 0, and setting an extra field to zero, like in the electrodynamics case, we will recover
the Magnetic sector EOM above (4.8b). The magnetic sector in the above is the same as
the U(1) case, with some added gauge indices. So given the abelian null-reduced Galilean
theory reproduces the Magnetic equations, it is a foregone conclusion that turning off the
gauge coupling (and setting the extra field to zero) would reduce the EOM to (4.8b).
What is unexpected is that the EOM from the action we derive does not fit into any one
we derived using the limiting procedure. The infinite dimensional symmetries, however,
would still emerge from this new set of equations.

4.2 Null reduction of Yang-Mills theory

We will construct the action for Galilean Yang-Mills theory by using the null reduction
procedure. We will follow the same technique that was applied to scalar field theory and
Maxwell theory to get their Galilean counterparts. We write the Lagrangian density of
Yang-Mills theory in (d+ 1) dimensions (4.1) in null coordinates (2.23):

LYM = −1
4η

µ̃ρ̃ην̃σ̃F aµ̃ν̃F
a
ρ̃σ̃ = −1

4
[
2F autF atu + F ijaF aij + 4F auiF iat

]
, (4.9)

and perform null reduction along the null direction parametrized by the coordinate u. We
take the gauge field to be independent of the u-coordinate, i.e. ∂uAaµ̃ = 0, and decompose
its components as

Aau = φa, Aat = aat , Aai = aai . (4.10)

Then the null reduction gives the Lagrangian density in d spacetime dimensions as

LGYM =
[1

2(∂tφa − gfabcφbact)(∂tφa − gfadeφdaet )−
1
4(∂iaj − ∂jai + gfadeaidaje)

(∂iaj − ∂jai + gfabcabia
c
j) + (∂iφa − gfabcφbaci )(∂taia − ∂iaat + gfabcabta

ic)
]
,

(4.11)
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where GYM stands for Galilean Yang-Mills. It can also be written in a compact form
given by

LGYM = 1
2Dtφ

aDtφ
a +Diφ

aEia − 1
4W

ijaW a
ij , (4.12)

where Dt, Di are gauge-covariant derivatives and Eia, W a
ij are field strength variables

defined as

Dtφ
a = ∂tφ

a − gfabcφbact , Diφ
a = ∂iφ

a − gfabcφbaci , (4.13a)
Eia = ∂ta

ia − ∂iaat + gfabcabta
ic, W a

ij = ∂iaj − ∂jai + gfabcabia
c
j . (4.13b)

The EOM for the Lagrangian (4.12) are given by

DtDtφ
a +DiE

ia = 0, (4.14a)
DiDiφ

a + gfabcφbDtφ
c = 0, (4.14b)

DtDiφ
a −DjW

a
ji − gfabcφbEic = 0. (4.14c)

We can also find these equations by doing the procedure of null reduction on relativistic
equations.2

If we put φa = 0, the equations become

DiE
ia = 0, DjW

a
ji = 0. (4.15)

4.3 Symmetries of Galilean Yang-Mills theory in d = 4

We will explicitly look at the symmetries of the Galilean Yang-Mills at the level of La-
grangian and EOM in d = 4. We will use the action of GCA to find the symmetries
of (4.12) and (4.14). In the representation theory, we have some undefined constants given
as (∆, a, r, s). They depend on the fields of the theory under consideration. The scaling
weight (∆) for a particular field gets fixed when we impose invariance of the Lagrangian
under scale transformation. Similarly, the constants (a, r, s) get fixed by comparing the re-
sults from (2.7b) with n = 0 and taking the non-relativistic limit on boost transformations
for a particular field. For our case, the values of these constants are given by

∆φ = ∆ai = ∆at = 1, a = 0, r = −1, s = 1. (4.16)

In the coming section, we will use these values of the constants to find the invariance of
the Lagrangian and EOM under GCA.

4.3.1 Gauge invariance of action

Before looking at spacetime symmetries of the Lagrangian, we will first discuss in details
the gauge transformations. We will evaluate non-relativistic gauge transformation by doing
a null reduction on relativistic transformations. We will begin with relativistic gauge
transformations given by

Aaµ → Aaµ + 1
g
∂µα

a + fabcAbµα
c. (4.17)

2The Lagrangian was also introduced in [41] to derive the EOM for Galilean Yang-Mills theory with
U(N) gauge group obtained as an effective theory from non-relativistic open string theory.
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Performing a null reduction along u direction and using (4.10), the final result comes out
to be

aai → aai + 1
g
∂iα

a + fabcabiα
c, (4.18a)

aat → aat + 1
g
∂tα

a + fabcabtα
c, (4.18b)

φa → φa + fabcφbαc. (4.18c)

Here, the field φa now transforms as a scalar field in adjoint representation. Let us see how
the Lagrangian changes under these transformations. The quantities (4.13) transform as

Dtφ
a → Dtφ

a + fabcαcDtφ
b, Diφ

a → Diφ
a + fabcαcDiφ

b, (4.19a)
Eia → Eia + fabcαcEib, W a

ij →W a
ij + fabcαcW b

ij . (4.19b)

Using (4.19), the Lagrangian density change as δLGYM = 0. It tell us that the action is
invariant under the gauge transformations (4.18).

4.3.2 Spacetime symmetries at the level of action

We will first look into the symmetries of the action and then at the level of equations.
The action and EOM are trivially invariant under translations (H,Pi) and rotations (Jij).
We will only show the invariance under boost (Bi), scale transformation (D) and SCT
(K,Ki) and then will move on to exhibit the invariance under infinite extension (L(n),M

(n)
i )

of GCA.

Boost transformations. For our case, fields transform under boosts as

δBkφ
a = −(t∂kφa), δBka

a
t = −(t∂kaat + aak), δBka

a
i = −(t∂kaai − δikφa). (4.20)

We can find these transformations by looking at (2.7b) with n = 0 and using the values
of the constants as given in (4.16). To compare these transformation to the ones we
have in (2.7b) with n = 0, we have used the relation δεϕ = [εQ, ϕ(t, x)], where Q is the
generator of the infinitesimal symmetry transformations acting on a generic field ϕ and ε
is the symmetry parameter. The action (4.12) transforms as

δBkSGYM =
∫
dt d3x (δBkLGYM)

=
∫
dt d3x ∂k

[
−t
(1

2Dtφ
aDtφ

a + EiaDiφ
a − 1

4W
ijaW a

ij

)]
. (4.21)

We see that the action comes out to be invariant under boost transformation (4.20).

Scale transformation. We will see how dilatation (D) affects the Lagrangian. The field
transformations under dilatation is given by

δDΦa = (t∂t + xk∂k + 1)Φa, (4.22)

where Φa ≡ (φa, aai , aat ). The action changes as

δDSGYM =
∫
dtd3x

[
∂t( tLGYM) + ∂k(xkLGYM)

]
. (4.23)

The action is invariant under dilatation.
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Ki transformations. The fields Φa = (φa, aai , aat ) transforms under Ki as

δKiφ
a = −(t2∂iφa), δKia

a
t = −(t2∂iaat + 2taai ), δKia

a
j = −(t2∂iaaj − 2tδijφa). (4.24)

Using these transformations of the fields, we get the change in the action

δKiSGYM =
∫
dt d3x

(
δKiLGYM

)
=
∫
dt d3x ∂l

[
− t2

(1
2Dtφ

aDtφ
a + EiaDiφ

a − 1
4W

ijaW a
ij

)
+ (φa)2

]
=
∫
dt d3x ∂l

[
− t2 LGYM + (φa)2

]
. (4.25)

Again, the action is invariant under Ki transformation.

K transformation. Under K, the fields transforms as

δKa
a
t = (t2∂taat + 2txk∂kaat + 2taat + 2xkaak), (4.26a)

δKa
a
i = (t2∂taai + 2txk∂kaai + 2taai − 2xiφa), (4.26b)

δKφ
a = (t2∂tφa + 2txk∂kφa + 2tφa). (4.26c)

We have used (4.16) in (2.7a) with n = 1 to get these variations in fields. Using these
transformations in action, we get

δKSGYM =
∫
dt d3x

[
∂t

{
t2
(1

2Dtφ
aDtφ

a + EiaDiφ
a − 1

4W
ijaW a

ij

)
+ (φa)2

}
+ ∂k

{
2txk

(1
2Dtφ

aDtφ
a + EiaDiφ

a − 1
4W

ijaW a
ij

)}]
=
∫
dt d3x

[
∂t
(
t2LGYM + (φa)2

)
+ ∂k

(
2txkLGYM

)]
. (4.27)

The action comes out to be invariant under K transformation.
We have seen that the action is invariant under finite GCA. We will now move on to

the infinite extension of GCA. We will see how the action changes and get the required
invariance under these transformations (2.7).

M
(n)
k transformations. The fields under M (n)

k transform as

δ
M

(n)
k

aat = −(tn+1∂ka
a
t + (n+ 1)tnaak), δ

M
(n)
k

φa = −(tn+1∂kφ
a), (4.28a)

δ
M

(n)
k

aai = −(tn+1∂ka
a
i − (n+ 1)tnδikφa). (4.28b)

If we take n = 0,±1 in (4.28), we get back the global transformations. The action changes as

δ
M

(n)
k

SGYM =
∫
dt d3x ∂k

[
− tn+1

(1
2Dtφ

aDtφ
a + EiaDiφ

a − 1
4W

ijaW a
ij

)
+ 1

2n(n+ 1)tn−1(φa)2
]

=
∫
dt d3x ∂k

[
−
(
tn+1 LGYM −

1
2n(n+ 1)tn−1(φa)2

)]
. (4.29)

The action becomes invariant under M (n)
k transformations.
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L(n) transformations. The fields under L(n) transforms as

δL(n)aat =
(
tn+1∂ta

a
t + (n+ 1)tnxk∂kaat + (n+ 1)tnaat + n(n+ 1)tn−1xkaak

)
, (4.30a)

δL(n)aai =
(
tn+1∂ta

a
i + (n+ 1)tnxk∂kaai + (n+ 1)tnaai − n(n+ 1)tn−1xiφ

a
)
, (4.30b)

δL(n)φa =
(
tn+1∂tφ

a + (n+ 1)tnxk∂kφa + (n+ 1)tnφa
)
. (4.30c)

Under these transformations the action changes as

δL(n)SGYM =
∫
dtd3x

[
∂t

({
tn+1LGYM + 1

2n(n+ 1)tn−1(φa)2
})

+ ∂k
(

(n+ 1)tnxkLGYM
)
− n(n+ 1)(n− 1) tn−2(φa)2

]
.

(4.31)

The action is not invariant under L(n) transformations for all n, but invariant only under
the global part, i.e. L(−1,0,1) ≡ (H,D,K).

In conclusion, the action is invariant under M (n)
k but not invariant under L(n) for all

n. It comes out to be invariant under the global part of L(−1,0,1) ≡ (H,D,K).

4.3.3 Spacetime symmetries at the level of EOM

We will now see the invariance at the level of EOM. Here, we will only show the changes of
equations under L(n),M

(n)
k . We can find the global part by taking the value of n = 0± 1.

M
(n)
k transformations. We will use (4.28) to find the invariance of equations (4.14)

under M (n)
k . We get the result as

δ
M

(n)
k

(4.14a) = −tn+1∂k(4.14a)− (n+ 1)tn(4.14c) = 0, (4.32a)

δ
M

(n)
k

(4.14c) = −tn+1∂k(4.14c)− (n+ 1)tnδik(4.14b) = 0, (4.32b)

δ
M

(n)
k

(4.14b) = −tn+1∂k(4.14b) = 0. (4.32c)

Here, (4.14a), (4.14b), etc means that we are considering only the l.h.s. of (4.14).

L(n) transformations. Similarly, using (4.30) on (4.14), we get

δL(n) (4.14a) = (tn+1∂t + (n+ 1)tnxk∂k + 3(n+ 1)tn) (4.14a)
+n(n+ 1)tn−1xk (4.14c) + n(n+ 1)(n− 1)tn−2xkDkφ

a

+n(n+ 1)(n− 1)tn−2φa, (4.33a)
δL(n) (4.14b) = (tn+1∂t + (n+ 1)tnxk∂k + 3(n+ 1)tn) (4.14b) = 0, (4.33b)
δL(n) (4.14c) = (tn+1∂t + (n+ 1)tnxk∂k + 3(n+ 1)tn) (4.14c)

+n(n+ 1)tn−1xk (4.14b) = 0. (4.33c)

We see that the (4.14b), (4.14c) are invariant under L(n) for all n. However, (4.14a) is
invariant only under L(−1,0,1).

In conclusion, the equations are completely invariant under M (n)
k but not invariant un-

der L(n) for all n. They come out to be invariant under the global part of L(−1,0,1)≡(H,D,K).
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Symmetries of equations when φa = 0. When we take φa = 0 in (4.14), we get the
equations given in (4.15). We will now look for the symmetries of these equations under
infinite extension of GCA. To find the fields variation for this case, we have to put φa = 0
in the transformations (4.28), (4.30). The invariance of (4.15) under L(n) is given by

δL(n)(DiE
ia) =

[
tn+1∂t + (n+ 1)tnxk∂k + 3(n+ 1)tn

]
(DiE

ia)

+n(n+ 1)tn−1xk(DiW a
ki) = 0, (4.34a)

δL(n)(DiW a
ij) =

[
tn+1∂t + (n+ 1)tnxk∂k + 3(n+ 1)tn

]
(DiW a

ij) = 0. (4.34b)

Similarly, under M (n)
k

δ
M

(n)
k

(DiE
ia) = 0, δ

M
(n)
k

(DiW a
ij) = 0. (4.35)

These equations are invariant under full infinite dimensional GCA.
So, in conclusion, the symmetry analysis of Galilean Yang-Mills in d = 4 obtained by

null reducing the relativistic Yang-Mills action in d = 5 gives us

• At the level of action: invariance under finite GCA + infinite dimensional boosts.

• At the level of EOM : invariance under finite GCA + infinite dimensional boosts.

• At the level of EOM, with fields turned off : invariance under infinite GCA.

An interesting point to re-emphasise is that the EOM even with the fields φa turned off are
different from the ones obtained by taking limits as was described earlier in the section. It
is possible that one needs to consider scalings of the gauge coupling g in order to obtain
these results.3

4.4 Spacetime symmetries of Galilean Yang-Mills theory in d = 3

We will now focus on symmetries of the Galilean Yang-Mills action in three dimensions. We
will show that the Galilean Yang-Mills action is invariant under Schrödinger symmetries.
The symmetry analysis for this theory under the Galilean transformations (H,Pi, Gi, Jij)
is very similar to the d = 4 case, as discussed in the previous section. The following
straightforward yet crucial analysis reveals the infinite number of Y (n) generators to be
symmetries of theory.

4.4.1 Symmetries at the level of action

Under scale transformation (2.14b), the action transforms as

δD̃SGYM =
∫
dt d2x

(
δD̃LGYM

)
=
∫
dtd2x

[
∂t(2tLGYM) + ∂k(xkLGYM)

]
, (4.36)

3A similar phenomenon was observed when constructing the action of Carrollian scalar electrodynamics
in [42].
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which is a total derivative, implying the invariance of the action under dilatation. Under
the special conformal transformation (2.15), the action changes as

δK̃S =
∫
dtd2x

[
∂t(2t2LGYM) + ∂k(2txkLGYM)

]
. (4.37)

Thus the action is invariant under special conformal transformation in d = 3. We will now
move on to the invariance of the action under the infinite extension of Schrödinger algebra.
Under Z(n) and Y (n)

k transformations, the fields transform as

δZ(n)φa = 2tn+1∂tφ
a + (n+ 1)tn(xk∂k + ∆φ)φa,

δZ(n)aai = 2tn+1∂ta
a
i + (n+ 1)tn(xk∂k + ∆ai)aai − n(n+ 1)tn−1xiφ

a,

δZ(n)aat = 2tn+1∂ta
a
t + (n+ 1)tn(xk∂k + ∆at)aat + n(n+ 1)tn−1xkaak. (4.38)

Similarly for Y , we have

δ
Y

(m)
k

φa = tm+ 1
2 ∂kφ

a, δ
Y

(m)
k

aai = tm+ 1
2∂ka

a
i −

(
m+ 1

2

)
tm−

1
2φa,

δ
Y

(m)
k

aat = tm+ 1
2∂ka

a
t +

(
m+ 1

2

)
tm−

1
2aak. (4.39)

Under Z and Y transformations above, the changes in the action are

δZ(n)SGYM =
∫
dtd2x

[
∂t
(
2tn+1LGYM

)
+ ∂k

(
(n+ 1)tnxkLGYM

)
−n(n+ 1)(n− 1) tn−2(φa)2

]
, (4.40)

δ
Y

(n)
k

SGYM =
∫
dt d2x ∂k

[
−
(
tn+ 1

2 LGYM −
1
2

(
n− 1

2

)(
n+ 1

2

)
tn−

3
2 (φa)2

)]
.

(4.41)

In conclusion, the action comes out to be invariant under Z(−1,0,1) ≡ (H,D,K) and com-
pletely invariant under Y (n)

k transformations.

4.4.2 Symmetries at the level of EOM

We will focus on the invariance of the EOM under the infinite dimensional Schrödinger
algebra.

Y
(n)
k transformations. The invariance of EOM are given as below

δ
Y

(n)
k

(4.14a) = −tn+ 1
2∂k (4.14a)−

(
n+ 1

2

)
tn−

1
2 (4.14c) = 0, (4.42a)

δ
Y

(n)
k

(4.14c) = −tn+ 1
2∂k (4.14c)−

(
n+ 1

2

)
tn−

1
2 δik (4.14b) = 0, (4.42b)

δ
Y

(n)
k

(4.14b) = −tn+ 1
2∂k (4.14b) = 0. (4.42c)
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Z(n) transformations. Under (4.38), the equatons (4.14) transforms as

δZ(n) (4.14a) = (2tn+1∂t + (n+ 1)tnxk∂k + 4(n+ 1)tn) (4.14a)
+n(n+ 1)tn−1xk (4.14c)− 2n(n+ 1)(n− 1)tn−2φa, (4.43a)

δZ(n) (4.14b) = (2tn+1∂t + (n+ 1)tnxk∂k + 2(n+ 1)tn) (4.14b) = 0, (4.43b)
δZ(n) (4.14c) = (2tn+1∂t + (n+ 1)tnxk∂k + 3(n+ 1)tn) (4.14c)

−n(n+ 1)tn−1xk (4.14b) = 0. (4.43c)

We see that the equations (4.14) are invariant under Z(−1,0,1) and Y (n)
k for all n. Now for

the case with φa = 0. The invariance of (4.15) under Z(n) is given by

δZ(n)(DiE
ia) =

[
2tn+1∂t + (n+ 1)tnxk∂k + 4(n+ 1)tn

]
(DiE

ia)

−n(n+ 1)tn−1xk(DiW a
ki) = 0, (4.44a)

δZ(n)(DiW a
ij) =

[
2tn+1∂t + (n+ 1)tnxk∂k + 2(n+ 1)tn

]
(DiW a

ij) = 0. (4.44b)

Similarly, under Y (n)
k

δ
Y

(n)
k

(DiE
ia) = 0, δ

Y
(n)
k

(DiW a
ij) = 0. (4.45)

We see that the equations (4.15) are invariant under the infinite extension of Schrödinger
symmetry.

Again to summarise, the symmetry analysis of Galilean Yang-Mills in d = 3 obtained
by null reducing the relativistic Yang-Mills action in d = 4 gives us

• At the level of action: invariance under finite Schrödinger algebra + infinite dimen-
sional boosts.

• At the level of EOM : invariance under finite Schrödinger algebra + infinite dimen-
sional boosts.

• At the level of EOM, with field turned off : invariance under infinite Schrödinger-
Virasoro algebra.

4.5 Scale transformation with generic z

Dynamical exponent z is defined as the relative scaling of space and time under the Di-
latation operator:

D : t→ λzt, x→ λx. (4.46)

For the case of the Schrödinger algebra z = 2 and, rather interestingly, for the GCA z = 1.
Usually, z = 1 indicates a relativistic theory, but GCFTs are examples of non-relativistic
QFTs with z = 1.

We now discuss whether scale transformations with generic dynamical exponent z can
be a symmetry at the level of Lagrangian (4.12) in d spacetime dimensions. To understand
it, we first write down the scale transformation of different fields Φa = (φa, aat , aai ), given by

δD̄Φa = −(zt∂t + xk∂k + ∆Φ)Φa. (4.47)
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We will now look at the transformation of different covariant terms (4.13) under (4.47):

δD̄(Dtφ
a) = δD̄(∂tφa − gfabcφbact)

= −(zt∂t + xk∂k)Dtφ
a − (∆φ + z)∂tφa + (∆φ + ∆at)gfabcφbact . (4.48)

If we demand that (Dtφ
a) transforms as a primary, we find

∆φ + z = ∆φ + ∆at ⇒ ∆at = z. (4.49)

Similarly, demanding the same for Diφ
a,W a

ij , E
ia, we get

∆φ + 1 = ∆φ + ∆ai =⇒ ∆ai = 1 . (4.50)

Finally, we will now look at the change in the action. The remaining terms are given by

δD̃SGYM =
∫
dt dd−1x

{[
d− 1− z

2 −∆φ

]
(Dtφ

a)2 − (∆φ + ∆ai − d+ 2)Diφ
aEia

−
[
z + (d− 1)

4 − ∆ai + 1
2

]
W ijaW a

ij

}
. (4.51)

The conditions we get from above are

∆ai = 1, ∆at = z, d− 1− z = 2∆φ, ∆φ = d− 3. (4.52)

So, from these equations we arrive at

z + d = 5. (4.53)

The significance of this equation for d > 5 is not clear to us. This condition should be
satisfied to get the dilatation invariance of the Lagrangian (4.12). Clearly, we get z = 1
when d = 4 and z = 2 when d = 3, which are both in agreement with our analysis in the
paper so far.

5 Noether charges and phase space analysis

The analysis above clearly reflects that the infinite dimensional Abelian ideal along with
3 generators of the SL(2) subalgebra for both the GCA and the Schrodinger algebra,
respectively for d = 4 and d = 3 are symmetries of the theory. In the following we will
investigate the dynamical realization of these symmetries in terms of Noether charges.
However, for both the cases, we also noticed that the infinite dimensional enhancement of
the SL(2) part, i.e. the Witt algebra generates on-shell symmetries, at the level of equations
of motion, when a particular field is turned off. This is a reflection of the fact that these
are weak symmetries in the sense elaborated in [42–45]. To investigate the roles of these
later ones, we look at their realizations on phase space, where they generate Hamiltonian
vector fields.
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5.1 Galilean Yang-Mills theory in d = 4

We will now examine the dynamical realization of the infinite dimensional GCA on the
space of fields satisfying the EOM. The Lagrangian is invariant under M (n)

i and finite part
of L(n), obviously giving rise to conserved quantities. In spite of the fact that L(n), ∀n ∈ Z
are not symmetry generators of the theory (4.12), we will see that they are the symmetries
of the phase space.

In order to construct the conserved quantities, we make use of the pre-symplectic
potential on the space of solutions, defined from the Lagrangian via:

δL =
∫
dd−1x ∂t Θ(δ)︸ ︷︷ ︸

(pre)-symplectic potential

: on-shell (5.1)

for a generic variation δϕ. The pre-symplectic potential arising from (4.12) is

Θ(δ) = Dtφ
a(δφa) +Diφ

a(δaia). (5.2)

Now, for a specific symmetry transformation ϕ→ ϕ+ δεϕ:

δεL =
∫
dd−1x ∂tβ(δε) : off-shell, (5.3)

for some function β in field space. Hence, comparing (5.1) and (5.3), we deduce that
on-shell, the Noether charges Qε are given by:

Qε =
∫
dd−1x (Θ(δε)− β(δε)) (5.4)

The Noether charges for GCA in d = 4 can now be calculated using this technique. We
will focus on the Noether charges for L(−1,0,1) = H,D,K.

QH =
∫
d3xΓ ≡ H, (5.5)

QD =
∫
d3x

[
tΓ + (xk∂kφa + φa)Dtφ

a + (xk∂kaai + aai )Diφ
a
]
, (5.6)

QK =
∫
d3x

[
t2Γ + 2t(xk∂kφa + φa)Dtφ

a + (2txk∂kaai + 2taai − 2xiφa)Diφ
a + (φa)2

]
,

(5.7)

where
Γ = 1

2Dtφ
aDtφ

a +Diφ
aDia

a
t + 1

4W
ijaW a

ij + gfabcφbactDtφ
a

and H is the Hamiltonian of our system. Interestingly, as in the Abelian case [15] the
charges corresponding to the M (n)

k transformations vanish for all n:

QM =
∫
d3x

(
Θ(δ

M
(n)
k

)− β(δ
M

(n)
k

)
)

=
∫
d3x

(
Dtφ

a(δ
M

(n)
k

φa) +Diφ
a(δ

M
(n)
k

aia)
)

= 0.
(5.8)
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Pre-symplectic structure

In order to inspect the action of the L(n) generators on the phase space, we start with the
pre-symplectic structure for Galilean Yang-Mills theory given by the exterior derivative of
the pre-symplectic potential on the space of fields:

Ω(δ1, δ2) =
∫
d3x (δ2Θ(δ1)− δ1Θ(δ2))

=
∫
d3x [Dtδ2φ

aδ1φ
a +Diδ2φ

aδ1a
ia −Dtδ1φ

aδ2φ
a −Diδ1φ

aδ2a
ia

−gfabc(φbδ2a
c
tδ1φ

a + φbδ2a
c
iδ1a

ia − φbδ1a
c
tδ2φ

a − φbδ1a
c
iδ2a

ia)]. (5.9)

As expected in any gauge theory, the gauge transformation (4.18) gives a degenerate di-
rection in space of solutions:

Ω(δαa , δ) = 0 (5.10)

for any arbitrary gauge parameter αa.

M
(n)
k and L(n) transformations. Consistent with the finding that conserved quan-

tities associated with the M (n)
k transformations (4.28) are all 0, we observe that their

corresponding Hamiltonian functions are trivially zero as well:

Ω(δ
M

(n)
k

, δ) = 0. (5.11)

Curiously, L(n) transformations for all n are Hamiltonian vector fields, giving rise to non-
trivial generators of canonical transformations, despite the fact that only the n = 0,±1
modes are symmetries of the theory:

Ω(δL(n) ,δ) = δ

∫
d3x

[
tn+1

{1
2Dtφ

aDtφ
a+ 1

4W
ijaWija

}
−(n+1)tn

{
2(aiaDiφ

a+φaDtφ
a)

+xk(φa∂kDtφ
a+aai ∂kDiφa)

}
+n(n+1)tn−1(φa)2

]
=δQ[f(t)]. (5.12)

Algebra of the Hamiltonian functions. One of the most important questions in the
phase space analysis of GCA in context of Galilean Yang Mills theory is whether the Witt
sub-algebra of GCA generated by the Hamiltonian vector fields δL(n) gets centrally extended
or not at the level of the corresponding Hamiltonian functions. The answer turns out to
be affirmative:

Ω(δL(n) , δL(m)) = (n−m)Q[L(n+m)] +KL(n),L(m) (5.13)

where KL(n),L(m) =
[
n(n2− 1)−m(m2− 1)

]
tn+m−1 ∫ d3x(φa)2 is a state dependent central

extension, routinely observed in asymptotic symmetries of gravitational theories [46] and
satisfies the 2 co-cycle condition:

K[L(n),L(m)],L(r) +K[L(m),L(r)],L(n) +K[L(r),L(n)],L(m) = 0. (5.14)

The same feature was observed in the in the Abelian case [15] as well. The realization
of the commutation relation [Ln,M (m)

k ] = (n − m)M (n+m)
k is trivial as the Hamiltonian

functions corresponding to M (m)
k are all zero.
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5.2 Galilean Yang-Mills theory in d = 3

Since the Lagrangian in d = 3 has the same form as that of d = 4, the construction for
Noether charges follow exactly the same route. Before going into the details of some of
the expressions for charges and the algebra, it is important to point out that everything
that we construct in this sub-section also holds for the U(1) case, just by turning off the
structure constants. So our conclusions for this sub-section equally applies to Galilean
Electrodynamics in d = 3.

Conserved quantities corresponding to the Z(n), (n=0,±1) symmetry generators (4.38)
of the Schrödinger algebra are as follows.

QH =
∫
d2xH ≡ Hamiltonian, (5.15)

QD̃ =
∫
d2x

[
tH+ xk∂kφ

aDtφ
a + (xk∂kaai + aai )Diφ

a
]
, (5.16)

QK̃ =
∫
d2x

[
t2H+ 2txk∂kφaDtφ

a + (2txk∂kaai + 2taai − 2xiφa)Diφ
a
]
, (5.17)

where H = 2
[

1
2Dtφ

aDtφ
a +Diφ

aDia
a
t + 1

4W
ijaW a

ij + gfabcφbactDtφ
a
]
. However the charges

corresponding to the Y (n)
k transformations vanish trivially for all n, analogous to the role

of the M (n) generators in the 4 dimensional counterpart:

QY =
∫
d3x

(
Θ(δ

Y
(n)
k

)− β(δ
Y

(n)
k

)
)

=
∫
d3x

(
Dtφ

a(δ
Y

(n)
k

φa) +Diφ
a(δ

Y
(n)
k

aia)
)

= 0.
(5.18)

Hamiltonian functions

As expected from the symmetry analysis above, we notice that the transformations δ
Y

(n)
k

are Hamiltonian vector fields on the space of solutions, but with vanishing dynamical
generators:

Ω(δ
Y

(n)
k

, δ) = 0. (5.19)

On the other hand, all the infinite modes of the Z(n) generators give rise integrable Hamil-
tonian functions on the space of solutions. Substituting these expressions in (5.9), we have

Ω(δZ(n) ,δ) = δ

∫
d2x

[
2tn+1

{1
2Dtφ

aDtφ
a+ 1

4W
ijaWija

}
−(n+1)tn

{
(aiaDiφ

a+2φaDtφ
a)

+xk(φa∂kDtφ
a+aai ∂kDiφa)

}
+(n+1)ntn−1(φa)2

]
=δQ[Zn]. (5.20)

For the phase space realization of the Schrödinger algebra (2.17), we readily notice that the
central mass term drops off, since the Hamiltonian functions corresponding to Y generators
themselves vanish. For the very same reason, the brackets [Z(n), Y

(m)
i ] trivialize at the level

of Hamiltonian functions:
Ω(δZ(n) , δ

Y
(m)
i

) = 0. (5.21)
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I J

k

Figure 1. GED propagator 〈AIAJ〉.

However the Witt subalgebra of the Schrödinger algebra generated by Z(n) gets centrally
extended on the space of solutions:

Ω(δZ(n) , δZ(m)) = (n−m)Q[Z(n+m)] + 2
[
n(n2 − 1)−m(m2 − 1)

]
tn+m−1

∫
d3x(φa)2.

(5.22)
As in the Witt subalgebra of GCA, the second term in (5.22) is also a state dependent
central term satisfying the 2 co-cycle condition (5.14). So indeed, even for Galilean gauge
theories in 3d (both electrodynamics and Yang-Mills), the entire infinite dimensional Vira-
soro sub-algebra of the Schrödinger-Virasoro algebra is realised in phase space, along with
the central extensions. This is rather remarkable given that this same sub-algebra did not
turn out to be symmetries of the action or the subsequent EOM.

6 Quantum aspects: propagators and vertices

In earlier sections, we focused on classical aspects of Galilean electrodynamics and Galilean
Yang-Mills theories. Now we would to like to look at the quantization of these theories. In
this paper, we take the initial steps to our goal.

A detailed study of the quantum theory of GED coupled to a scalar field in 3-dimensions
was done in [24]. For our purposes, where the additional scalar field is absent, we only
review here the expression for the propagators of the gauge fields of GED:

〈AI(k)AJ(−k)〉 ≡ DIJ(k) = − i

~k2


0 1 0
1 −(1− ξ)ω2

~k2 (1− ξ)ωkj~k2

0 (1− ξ)ωki~k2 δij − (1− ξ)kikj~k2

 , (6.1)

where k = (ω,~k), AI = (φ, at, ai) and i = {1, 2} and this propagator is shown in figure 1.
(Performing a similar analysis in 4-dimensions, we get the same expression (6.1) for gauge
field propagators in 4-dimensions with i = {1, 2, 3}.) This will be useful when we try to
find the propagators for the Galilean Yang-Mills theory.

The construction of the full quantum theory of Galilean Yang-Mills theory is quite
non-trivial. In this section, we begin by obtaining tree level propagators and vertices, and
write Feynman rules for Galilean Yang Mills theory. We hope to return to more details of
the full quantum mechanical theory in future work.

Let us first recall the total gauge-fixed Lagrangian of the relativistic Yang-Mills theory
including the gauge fixing and ghost terms:

L = −1
4F

µ̃ν̃aF aµ̃ν̃ −
1
2ξ
(
∂µ̃Aµ̃

)2 − ∂µ̃c̄aDµ̃c
a, (6.2)
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where ξ is the gauge fixing parameter, (ca, c̄a) are ghost fields and Dµc
a = ∂µc

a−gfabcAbµcc.
Performing null reduction along u-direction, we get the total Lagrangian density, including
the gauge fixing term and the ghost term, for Galilean Yang-Mills theory in four dimensions

L̃GYM = 1
2Dtφ

aDtφ
a +Diφ

aEia − 1
4W

ijaW a
ij

− 1
2ξ (∂tφa + ∂iaai )2 − gfabc∂tc̄aφbcc − δij∂ic̄a(Djc)a. (6.3)

From this Lagrangian density, we have the kinetic terms as

Lkin = 1
2∂tφ

a∂tφ
a + δij∂iφ

a(∂taaj − ∂jaat )−
1
2δ

ikδjl(∂iaaj∂kaal − ∂iaaj∂laak)

− 1
2ξ (∂tφa∂tφa + 2∂tφa∂iaai + δijδkl∂ia

a
j∂ka

a
l )− δij∂ic̄a∂jca. (6.4)

In order to get propagators from this kinetic part of the Lagrangian, let us first introduce
Fourier transformation to momentum space

Φa(t, ~x) =
∫
dω

2π
d3~k

(2π)3 e
−iωtei

~k·~xΦ̃a(ω,~k), (6.5)

where Φa = (φa, aat , aai , ca, c̄a), and delta functions∫
dω

2π e
−iωt = δ(ω),

∫
d3~x

(2π)3 e
i~k·~x = δ(3)(~k). (6.6)

We also introduce the notation, k = (ω,~k) and AaI = (φa, aat , aai ). Taking Fourier transfor-
mation and using delta functions, the kinetic part of the action becomes

Skin =
∫
dωd3~k

(2π)4

(1
2A

a
I (k)dIJabAbJ(−k) + c̄a(k)

(
− ~k2)ca(−k)

)
, (6.7)

where

dIJab(k) =


(
1− 1

ξ

)
ω2 −~k2 −

(
1− 1

ξ

)
ωkj

−~k2 0 0
−
(
1− 1

ξ

)
ωki 0 −δij~k2 +

(
1− 1

ξ

)
kikj

 . (6.8)

Then from the inverse of dIJab, we get the propagators for the fields AaI (illustrated in
figure 2(a)) as

〈AaI (k)AbJ(−k)〉 ≡ Dab
IJ(k) = − iδ

ab

~k2


0 1 0
1 −(1− ξ)ω2

~k2 (1− ξ)ωkj~k2

0 (1− ξ)ωki~k2 δij − (1− ξ)kikj~k2

 . (6.9)

The inverse of the coefficient of c̄c in (6.7) gives the propagator for ghost fields (illustrated
in figure 2(b)) as

〈c̄a(k)cb(−k)〉 = iδab

~k2
. (6.10)
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a b

I J

k

(a) Gauge field propagator 〈AaIAbJ〉.

a bk

(b) Ghost propagator.

Figure 2. Two-point Propagators.

We see that the denominators of propagators above depend only on spatial momentum
and are independent of frequency implying instantaneous propagation of field excitations.
In other words, there are no local degrees of freedom in the theory. This is consistent with
the fact that in spite of presence of the infinite number of M(n) symmetry generators, they
have no non-trivial dynamical realization.

In order to obtain vertices, let us write the interaction part of the Lagrangian den-
sity (6.3):

Lint = gfabc
(
∂tφ

aabtφ
c + δij∂iφ

aabta
c
j − δijabiφc∂jaat + δijabiφ

c∂ta
a
j

−δikδjl∂iaajabkacl − ∂tc̄aφbcc − δij∂ic̄aabjcc
)

+g2fabcfade
(1

2a
b
tφ
cadtφ

e + φcadt a
b
ia
e
jδ
ij − 1

4δ
ikδjlabia

c
ja
d
ka
e
l

)
. (6.11)

Transforming to momentum space and using delta functions, we can write the 3 field
interaction terms in the action as

S(3)
int =

∫ 1
(2π)12

3∏
i=1

dωid
3~ki (2π)4δ(ω1 + ω2 + ω3)δ(3)(~k1 + ~k2 + ~k3)gfabc ×

[
i

2(ω1 − ω2)φa(k1)φb(k2)act(k3) + iδij(k1 − k2)iφa(k1)abt(k2)acj(k3)

+ i

2(ω3 − ω2)φa(k1)abi(k2)acj(k3)δij

+ i

6
(
(k1 − k2)iδilδjk + (k2 − k3)iδijδlk + (k3 − k1)iδikδjl

)
aaj (k1)abk(k2)acl (k3)

− iω2φ
a(k1)c̄b(k2)cc(k3) + iδijk2ja

a
i (k1)c̄b(k2)cc(k3)

]
, (6.12)

where ∏n
i=1 dωid

3~ki = dω1d
3~k1 . . . dωnd

3~kn. From this expression for the action in momen-
tum space, we can write the 3-point vertices (given by diagrams in figure 3) as

V abc
3φφat = −gfabc(ω1 − ω2), V abc i

3φatai = −gfabc(k1 − k2)i, V abc ij
3φaiaj = gfabc(ω2 − ω3)δij ,

V abc ijk
3 aiajak = −gfabc

(
(k1 − k2)kδij + (k2 − k3)iδjk + (k3 − k1)jδik

)
,

V abc
3φc̄c = gfabcω2, V abc

3 aic̄c = −gfabcki2. (6.13)
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a

k1

k3
c

k2

φ

φ

b

at

(a) V abc3φφat

a

k1

k3
c

k2

at

φ

b

ai

(b) V abc i3φatai

a

k1

k3
c

k2

ai

φ

b

aj

(c) V abc ij3φaiaj

a

k1

k3
c

k2

aj

ai

b

ak

(d) V abc ijk3 aiajak

a

c

b

φ

k1

k3

k2

(e) V abc3φc̄c

a

c

b

ai

k1

k3

k2

(f) V abc3 aic̄c

Figure 3. Three-point Vertices.

Similarly, transforming the 4 field interaction terms in Sint to momentum space, we get

S(4)
int =

∫ 1
(2π)16

4∏
i=1

dωid
3~ki (2π)4δ(ω1 + ω2 + ω3 + ω4)δ(3)(~k1 + ~k2 + ~k3 + ~k4)×

g2
[1

4
(
fabdface + fabefacd

)
φb(k1)φc(k2)adt (k3)aet (k4)

−
(
fabdface + fabefacd

)
φb(k1)act(k2)adi (k3)aej(k4)δij

− 1
24
(
fabcfade(δikδjl − δilδjk) + fabdface(δijδkl − δilδjk)

+fabefacd(δijδkl − δikδjl)
)
abi(k1)acj(k2)adk(k3)ael (k4)

]
, (6.14)

from which we can read of the 4-point vertices, which are given by diagrams in figure 4:

V bcde
4φφatat = ig2(fabdface + fabefacd

)
,

V bcde ij
4φataiaj = −ig2(fabdface + fabefacd

)
δij ,

V bcde ijkl
4 aiajakal = −4ig2

(
fabcfade(δikδjl − δilδjk) + fabdface(δijδkl − δilδjk)

+ fabefacd(δijδkl − δikδjl)
)
. (6.15)

In future work, in order to make the theory contain non-trivial degrees of freedom,
we would be coupling matter degrees of freedom to the above Lagrangian. The Feynman
rules we have derived above would be useful for computing quantum mechanical processes
in the non-abelian Galilean gauge theories, now coupled with matter.
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k2
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φ
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at

d

at

k3

(a) V bcde4φφatat

b

k1

k4

e

k2

at

φ

c

aj

d

ai

k3

(b) V bcde ij4φataiaj

b

k1

k4

e

k2

aj

ai

c

al

d

ak

k3

(c) V bcde ijkl4 aiajakal

Figure 4. Four-point Vertices.

7 Conclusions and future directions

Summary

In this paper, we have investigated various properties of Galilean gauge theories. We
have arrived at actions for abelian and non-Abelian Galilean QFTs by a process of null
reduction from higher dimensional relativistic QFTs. We principally investigated the sym-
metry structures associated with these gauge theories and found that there are symmetry
enhancements at various levels.

For three dimensional theories (both abelian and non-abelian), the gauge theories
exhibit invariance under the Schrödinger group. The Schrödinger algebra admits an infinite
extension giving the so-called Virasoro-Schrödinger algebra. At the level of the action
of these Galilean gauge theories, we found that the symmetries enhance from the finite
version to a subset of the infinite algebra. At the level of the EOM, we found even more
enhancements. Finally, in our analysis of the pre-symplectic structure, the symmetries
in phase space exhibited the full Virasoro-Schroödinger algebra, together with a state-
dependent central extension.

The story in four spacetime dimensions proceeded along similar lines, now with the
Schrödinger algebra replaced by the finite Galilean Conformal Algebra and the Virasoro-
Schrödinger algebra replaced by the infinite version of the GCA.

Apart from this, as an aside, we also considered electro-magnetic duality in the d = 3
abelian theory and found that unlike the d = 4 case where the duality transformation
exchanged electric and magnetic theories, the field equations of the theory we considered
were invariant under the duality. This invariance was inherited from relativistic duality
symmetric theory via null reduction. The d = 4 case, even though also obtainable from
null reductions, does not inherit any duality symmetry since the relativistic d = 5 theory
itself is not duality invariant.

We concluded our analysis with a sneak-peek into the quantum-mechanical regime of
these gauge theories and wrote down the propagators and vertices for the theories. The
full-blown quantum analysis is left for future work.

Looking ahead

A lot of recent attention has been devoted to Carrollian theories, where the speed of light,
instead of going to infinity like in Galilean theories, goes to zero [47]. In these peculiar
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theories, the lightcones thus close up and a priori, these theories seem like non-sensical ones
which would be of no use. Surprisingly however, these Carrollian theories have been shown
to encompass a great deal of interesting physics. These Carrollian structures show up
whenever one attempts to write down a QFT on a null surface [42, 48] and hence is vitally
important for understanding holographic duals to asymptotically flat spacetimes living on
I ± [49–57]. These are also important for any generic null surface and hence crucial for
theories defined on black hole event horizons [58]. It has been shown that 2d Carrollian
CFTs (the symmetries of which are actually isomorphic to 2d Galilean CFTs [49]) replace
usual relativistic CFTs on the worldsheet of strings in the tensionless or null limit [59–64].
For higher dimensional objects like branes, higher dimensional Carrollian CFTs should be
important. Of late, Carrollian theories have been found to be of importance in cosmo-
logical scenarios including dark energy [65], and in the theory of fractons in condensed
matter physics [66]. Given such a wide array of applicability, field theories with Carrol-
lian symmetry, especially Carrollian gauge theories are going to play a pivotal role going
forward. Analysis of abelian and non-abelian Carrollian gauge theories have been carried
out using EOM [67]. It is however of greater importance to construct actions of quantum
field theories with Carroll symmetry. Some work in this direction are [42, 45, 68, 69].
We would like to generalise these constructions to non-abelian theories and study their
quantum mechanical structure.

Returning to the Galilean arena, we obviously wish to investigate the quantum me-
chanical structure of the gauge theories we have developed. This is work in progress. We
wish to generalise the constructions in this paper to Supersymmetric QFTs. The process
of null reduction would be useful in this case as well. We plan to return to these and other
related questions in the near future.
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A Scale-spin representation of GCA

The GCA is given as

[
L(n), L(m)] = (n−m)L(n+m),

[
L(n),M

(m)
i

]
= (n−m)M (n+m)

i ,
[
M

(n)
i ,M

(m)
j

]
= 0,[

L(n), Jij
]

= 0,
[
Jij ,M

(n)
k

]
= M

(n)
j δik −M

(n)
i δjk (A.1)
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where L(−1,0,1) → (H,D,K), M (−1,0,1)
i → (Pi, Bi,Ki) respectively. We will now construct

the representation theory for this algebra. We will begin by labelling the primary states4

under dilatation (L(0)) and rotation (Jij) as [7, 19, 29]:

L(0)|ϕ〉p = ∆|ϕ〉p, Jij |ϕ〉p = Σij |ϕ〉p. (A.2)

where ∆ is the scaling weight and Σij denotes the action of rotation in the particular
representation of SO(d − 1). The labeling of the states can be performed in this manner
because both D and Jij commutes (A.1) and we can use eigenvalues of both the operators
simultaneously. We will write down the action of the finite part of GCA on the primary
operators as[

L(−1), ϕ(t, x)
]

= ∂tϕ(t, x),
[
M

(−1)
i , ϕ(t, x)

]
= −∂iϕ(t, x) (A.3a)[

Jij , ϕ(0, 0)
]

= Σijϕ(0, 0),
[
L0, ϕ(0, 0)

]
= ∆ϕ(0, 0) (A.3b)

where we have used the state-operator correspondence (it relates the primary state and
the vacuum as |ϕ〉p = ϕ(0, 0)|0〉) in the intermediate steps. Next step will be to calculate
the action of L(0) and Jij on ϕ at an arbitrary spacetime point (t, x). For that, we will use

ϕ(t, x) = Uϕ(0, 0)U−1 with U = etL
(−1)−xkM(−1)

k (A.4)

along with Baker-Campbell-Hausdrorff (BCH) formula and the commutation relations of
GCA. The final result becomes[

Jij , ϕ(t, x)
]

=
(
xi∂j − xj∂i

)
ϕ(t, x) + Σijϕ(t, x) (A.5a)[

L(0), ϕ(t, x)
]

=
(
t∂t + xk∂k + ∆

)
ϕ(t, x) . (A.5b)

We will now look at the action of boost and SCT on the primaries. We know from (A.1)
that boost and rotation generators do not commute. Its direct consequences will be that
we cannot find the action of boost as simple as (A.5). We have to think of another method
to evaluate boost action on the primaries. One such way is to use the Jacobi identity given
below:[

Jij ,
[
Bk, ϕ(0, 0)

]]
=
[
Bk,Σijϕ(0, 0)

]
+ δki

[
Bj , ϕ(0, 0)

]
− δjk

[
Bi, ϕ(0, 0)

]
. (A.6)

By solving (A.6), the action of boost on ϕ(0, 0) can be calculated for different theory. For
our case where the field content is given by (φ → scalar field, {at, ai} → gauge fields),
we get [

Bk, ϕ(0, 0)
]

= aφk + sak + rφδik (A.7)

where ϕ(0, 0) = {φ, at, ai}. The values of constants (a, s, r) are determined by demanding
inputs from the dynamics. The action of boost on ϕ(t, x) at finite spacetime points is
given by [

Bk, ϕ(t, x)
]

= −t∂kϕ(t, x) + U
[
Bk, ϕ(0, 0)

]
U−1 . (A.8)

4The primary states in the non-relativistic setting are defined as

Ln|ϕ〉p = Mn
i |ϕ〉p = 0, ∀ n > 0.
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Once we have (A.7), the action of SCT can be calculated easily. They are[
K,ϕ(t, x)

]
=
(
t2∂t + 2txk∂k + 2t∆

)
ϕ(t, x)− 2xkU

[
Bk, ϕ(0, 0)

]
U−1, (A.9a)[

Kk, ϕ(t, x)
]

= −t2∂kϕ(t, x) + 2tU
[
Bk, ϕ(0, 0)

]
U−1. (A.9b)

Similarly, the action of infinite dimensional generators (L(n) and M (n)
i ) on ϕ(t, x) at arbi-

trary spacetime point can be found. They are given by[
L(n), ϕ(t, x)

]
=
(
tn+1∂t + (n+ 1)tnxk∂k + (n+ 1)tn∆

)
ϕ(t, x)

−n(n+ 1)tn−1xkU
[
M0
k , ϕ(0, 0)

]
U−1, (A.10a)[

M
(n)
k , ϕ(t, x)

]
= −tn+1∂kϕ(t, x) + (n+ 1)tnU

[
M0
k , ϕ(0, 0)

]
U−1. (A.10b)
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