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1 Introduction

Abelian U(1) gauge theories are at the heart of electrodynamics, which, together with
gravity, explains most of the world we experience. In modern high-energy physics, they
are typically viewed as boring cousins of their non-abelian counterparts. The reason for
this is that in four space-time dimensions they are infrared free and UV incomplete. In
solid-state physics, however, U(1) gauge theories pop up as effective descriptions of many
condensed matter systems with non-trivial and strongly coupled dynamics. Moreover they
show up as effective descriptions of non-abelian gauge theories and were long hoped to
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shed light on quark confinement and mass gap generation in those theories. While such
abelian mechanisms have shown to be relevant in both supersymmetric [1, 2], and non-
supersymmetric settings [3–6], a lot of justified skepticism remains about the potential of
abelian gauge theories to give insights into the mysteries of 4d non-abelian gauge theories.

Both, in condensed matter applications as well as in the abelianized non-abelian gauge
theories, monopoles play a crucial role. Monopoles have the ability to render the theory
confining, and can therefore completely change the IR dynamics of the theory. The details
of monopoles (e.g., their charge or mass) dictate whether or not they are important for
the IR physics. Yet, on the lattice monopoles typically come as artifact rather than a
feature, and are not under direct control. Two of us proposed a formalism of U(1) lattice
gauge theories which allows electric and magnetic matter to be coupled simultaneously [7],
and provides complete control over the matter content of the theory — both electric and
magnetic. Moreover the formalism allows a duality transformation, mapping magnetic
and electric content to each other, which is a well known feature of continuum theories.
Such models were used for avoiding the complex action problem associated with the θ-
term in 2d abelian gauge theories [8–12], and for formulating interacting exactly self-dual
gauge theories [13, 14]. These modified Villain theories also found applications in fracton
physics [15] and construction of theories with non-invertible symmetries [16, 17].

Furthermore 4d Villain theories allow for θ-terms. Indeed θ-terms in Villain-like models
which have the correct continuum limit have been introduced long ago [18, 19], but gener-
ically they do not preserve exact θ-periodicity and self-duality, when applicable.1 In [7] a
class of θ-terms which preserve the exact 2π periodicity of the θ-angle in the pure gauge
theory were introduced, but self-dual transformations in the presence of the θ-term were
not discussed in detail. Here we find that insisting on exact θ-periodicity and on ultra-
locality ruins self-duality. More precisely, if one performs a duality transformation with
one of the θ-terms proposed in [7], a dual theory has a local, but not ultra-local2 action,
so that the theory is not self-dual for any choice of parameters.

On the other hand, one can restore self-duality by defining a local, but not ultra-local
lattice action, which transforms covariantly under the duality transformation. We there-
fore reformulate the original U(1) lattice gauge theory in a local but non-ultra-local way,
such that self-duality becomes exact. We recover the SL(2,Z) duality, well known in con-
tinuum U(1) gauge theories [20].3 Exploiting the SL(2,Z) structure, we discuss interacting
theories free from the sign problem. The situation is reminiscent of exactly massless Dirac

1The θ-periodicity is lost in the presence of monopoles due to the Witten effect, since a monopole turns
into a dyon which carries electric charge as well as a magnetic one. However, if the entire spectrum of
dyons exists, whose masses correctly interchange under a 2π shift, the θ-periodicity can be valid even in the
presence of magnetically charged matter. This is in fact what happens in abelianized non-abelian theories
in 4d.

2A lattice action is called ultra-local when it couples only fields at a finite number of lattice distances.
In a local lattice theory fields at arbitrary distances may couple, but the pre-factors decrease (at least)
exponentially with the lattice separation.

3It is worth noting that [19] is the first proposal of the SL(2,Z) structure for a lattice gauge theory,
which, however, is only approximate.
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fermions on the lattice. Exactly massless Dirac fermions have axial symmetries in addition
to vector symmetries, which have mixed ’t Hooft anomalies and are subject to the Nielsen-
Ninomiya theorem [21–23]. This was widely interpreted as the inability to preserve axial
symmetries on the lattice. However, Lüscher showed [24],using Neuberger’s solution [25] of
the Ginsparg-Wilson relation [26], that a lattice theory possesing an exact axial symmetry
exists, at the expense of abandoning ultra-locality.

In fact also abelian gauge theories have ‘t Hooft anomalies [27–30] (see also [31]), so
a straightforward implementation of symmetries is bound to face an obstructions, much
like in the case of fermionic chiral symmetry. What is perhaps surprising is that the lat-
tice action can still be made ultra-local when θ angle is vanishing [7], as we will review.
Nevertheless we are forced to abandon ultra-locality when insisting on the θ-angle peri-
odicity4 and imposing self-duality in free abelian gauge theory. As is well known, these
transformations form an SL(2,Z) group.

The paper is organized as follows: in the next section we review the approach to lattice
discretization from [7] that gives rise to the Villain form with an additional closedness
constraint for the 2-form Villain variables. This closedness constraint removes monopoles
and we show that pure U(1) lattice gauge theory becomes self-dual. In section 3 we add
electrically and magnetically charged matter and demonstrate that with our formulation
self-duality can be extended to full QED with either bosonic or fermionic matter. For
the case of bosonic matter we show that with a worldline formulation all sign problems
are overcome (for fermionic matter the Grassmann nature of the matter fields may lead
to a remaining sign problem). Based on the closedness constraint, in section 4 we define
a topological charge in a consistent way and discuss its properties including the Witten
effect. Using this topological charge we include a θ-term and discuss the generalized duality
transformation that takes into account this term. To obtain self-duality with the θ-term
we generalize the action to a non-ultra-local form which leads to a fully self-dual lattice
discretization of QED with a θ-term. We discuss the resulting self-duality relations for
several observables as well as the full SL(2,Z) duality. Finally we employ this duality to
discuss theories with non-zero topological angle θ that can be simulated without complex
action problem.

Some more technical parts are collected in several appendices: appendix A summarizes
our notation and some results for differential forms on the lattice. In appendix B we discuss
properties of our definition of the topological charge. In appendix C we discuss properties
of the action kernels used in our paper and in appendix D we provide a short derivation
of a generalized Poisson resummation formula. Appendix E shows how self dual QED can
be mapped to a worldline representation that avoids the complex action problem and thus
makes the theory accessible to Monte Carlo simulations. Finally, in appendix F we discuss
a further generalization of the topological charge that implements all lattice symmetries.

4The 2π θ-angle shifts are only an invariance of a theory without dynamical monopoles, because 2π shifts
cause all monopoles to become dyons. Alternatively the theory can posses an entire tower of dynamical
dyons of unit magnetic charge and all electric charges, in which case the 2π periodicity will be restored.
This is precisely what happens in the abelianized regimes of the SU(N)-gauge theory.
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2 Generalized Villain action for U(1) gauge fields and self-duality

In this section we briefly summarize the discretization strategy outlined in [7], which leads
to a Villain form of the Boltzmann factor [32]. We implement additional closedness con-
straints for the Villain variables that suppress the artificial monopoles that plague the
standard lattice discretization of U(1) gauge fields. We show that the construction leads
to a self-dual discretization of the photon field which will be the starting point for more
general self-dual theories in the subsequent sections.

2.1 Generalized Villain discretization with closedness constraints

When coupling U(1) gauge fields to matter in a gauge invariant way one uses the U(1)-
valued compact link variables Ux,µ ∈ U(1). The coupling between gauge and matter fields
is then implemented via nearest neighbor terms such as φ ∗x Ux,µ φx+µ̂. Under a U(1) gauge
transformation the matter fields transform as φx → eiλxφx, such that the transformation
Ux,µ → eiλxUx,µ e

− iλx+µ̂ gives rise to gauge invariance of φ ∗x Ux,µ φx+µ̂.
We now parameterize the link variables in the form5

Ux,µ ≡ eiA
e
x,µ , (2.1)

with the gauge fields Aex,µ ∈ [−π, π). We added the superscript e to mark the gauge
fields as electric gauge fields, a notation that will turn out to be useful when studying
electric-magnetic duality.

We may define the field strength tensor as the naive discretization of the continuum
form ∂µA

e
ν − ∂νAeµ and obtain

Aex+µ̂,ν −Aex,ν −Aex+ν̂,µ +Aex,µ ≡ (dAe)x,µν , (2.2)

where in the last step we have defined the exterior lattice derivative d, here acting on the
link variables. We will partly use the language of differential forms on the lattice and in
appendix A briefly summarize our conventions and some of the results we use (for a more
extensive presentation see the appendix of [7] or the mathematical standard literature such
as [33]).

The compact link variables (2.1) are obviously invariant under the shifts

Aex,µ → Aex,µ + 2π kx,µ , kx,µ ∈ Z . (2.3)

However, the exterior derivative (dAe)x,µν is not invariant under shifts, but instead trans-
forms as

(dAe)x,µν → (dAe)x,µν + 2π (dk)x,µν , (2.4)

i.e., (dAe)x,µν is shifted by multiples of 2π. One way to establish invariance under the shift
symmetry is to construct the action from the periodic function cos((dAe)x,µν), which gives
rise to the Wilson gauge action. Another option is to define the field strength as

F ex,µν ≡ (dAe)x,µν + 2π nx,µν = (dAe + 2π n)x,µν , (2.5)
5To be specific, we consider a 4-d hypercubic lattice with lattice extents Nµ, µ = 1, 2, 3, 4 and a total

number of sites V ≡ N1N2N3N4. The lattice constant is set to a = 1 and all fields obey periodic boundary
conditions.
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where nx,µν ∈ Z is a 2-form (i.e., plaquette based) variable which subsequently is summed
over and obviously eats up a possible term 2π (dk)x,µν generated by the shifts (2.3). In other
words the Villain variables nx,µν can be viewed as gauge field of the shift symmetry [7]. In
its simplest form this construction gives rise to a gauge field Boltzmann factor

Bβ [Ae] ≡
∏
x∈Λ

∏
µ<ν

∑
nx,µν∈Z

e−
β
2 F

e
x,µνF

e
x,µν =

∏
x∈Λ

∏
µ<ν

∑
nx,µν∈Z

e−
β
2 (dAe+2π n)x,µν(dAe+2π n)x,µν ,

(2.6)
which is known as the Villain discretization [32]. The first product runs over our 4-
dimensional lattice Λ with periodic boundary conditions. We will refer to the variables
nx,µν as Villain variables. As usual β is the inverse gauge coupling β = 1/e2, where e is
the electric charge.

The Boltzmann factor (2.6) is not only invariant under the shifts (2.3), (2.4), but also
under the transformation Aex,µ → Aex,µ − λx+µ̂ + λx which, up to a possible re-projection
into the interval [−π, π), corresponds to the gauge transformation of the gauge fields Aex,µ.

A key insight is to note that the Villain variables nx,µν may be constrained further:
they were introduced to implement the invariance of the Boltzmann factor Bβ [Ae] under the
shifts (2.3), (2.4) which leads to a shift of the exterior derivative (dAe)x,µν by 2π (dk)x,µν .
Note that this shift obeys (d(dk))x,µνρ = 0 due to the nil-potency of the exterior derivative
operator d , i.e., d2 = 0 (compare appendix A). Thus we may constrain also the Villain
variables nx,µν to obey

(dn)x,µνρ = 0 ∀x , µ < ν < ρ . (2.7)

This constraint implies that for all 3-cubes (x, µ < ν < ρ) of the lattice the oriented sum
over the Villain variables on the surface of the cube vanishes (appendix A). Using again
the language of differential forms, the Villain variables are restricted to be a closed integer-
valued 2-form. We point out that this constraint implies the absence of monopoles as we
will discuss in more detail below.

Taking into account this closedness constraint we may formulate the partition sum of
pure U(1) gauge theory in the form

Z(β) ≡
∫
D[Ae]

∑
{n}

e
−β2
∑

x,µ<ν
(F ex,µν)2 ∏

x

∏
µ<ν<ρ

δ
(
(dn)x,µνρ

)
. (2.8)

Here we have defined the measure for the gauge fields and the sum over all configurations
of the Villain variables as

∫
D[Ae] ≡

∏
x

∏
µ

∫ π

−π

dAex,µ
2π ,

∑
{n}
≡
∏
x

∏
µ<ν

∑
nx,µν∈Z

. (2.9)

The product in (2.8) runs over all 3-cubes (x, µ < ν < ρ) and implements the closedness
constraint (2.7) using Kronecker deltas which we here denote with δ(j) ≡ δj,0.
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It is useful to write the constraints in (2.8) by using the Fourier representation of the
Kronecker deltas, such that

∏
x

∏
µ<ν<ρ

δ
(
(dn)x,µνρ

)
=
∏
x

∏
µ<ν<ρ

∫ π

−π

dAmx,µνρ
2π e−iA

m
x,µνρ(dn)x,µνρ

=
∫
D[Am] e−i

∑
x

∑
µ<ν<ρ

Amx,µνρ(dn)x,µνρ , (2.10)

where we have introduced auxiliary fields Amx,µνρ ∈ R assigned to the cubes (x, µνρ) of the
lattice which, when integrated over, generate the closedness constraint (2.7) for the Villain
variables. The notation Am is chosen to reflect the fact that in the electric-magnetic
duality transformations we discuss below, the auxiliary field Am will take over the role
of the vector potential, while in the dual form the vector field Ae will generate the dual
closedness constraints. Due to this role in the duality transformation we will also use the
nomenclature magnetic gauge field for Am, while Ae is referred to as electric gauge field
(see above).

For notational convenience, in the last step of (2.10) we have introduced the integral
over all configurations of the magnetic gauge fields Amx,µνρ,∫

D[Am] ≡
∏
x

∏
µ<ν<ρ

∫ π

−π

dAmx,µνρ
2π . (2.11)

We thus may write the partition sum of our discretization of the U(1) gauge field in
the form,

Z(β) =
∫
D[Ae]

∫
D[Am] Bβ [Ae, Am] , (2.12)

where we have introduced the Boltzmann factor

Bβ [Ae, Am] ≡
∑
{n}

e
−β2
∑

x

∑
µ<ν

(F ex,µν)2
e
−i
∑

x

∑
µ<ν<ρ

Amx,µνρ(dn)x,µνρ , (2.13)

that depends on both, the electric gauge field Ae that in the Boltzmann factor Bβ [Ae, Am]
describes the photon dynamics, as well as on the magnetic gauge field Am that here gen-
erates the constraints. As announced, in the duality transformation we discuss in the next
subsection these two fields will interchange their role.

2.2 Proof of self-duality

The first step towards establishing self-duality is to rewrite the exponent of the second
term in the Boltzmann factor (2.13),∑

x

∑
µ<ν<ρ

Amx,µνρ(dn)x,µνρ = 1
2π
∑
x

∑
µ<ν<ρ

Amx,µνρ
(
d(dAe + 2πn)

)
x,µνρ

= − 1
2π
∑
x

∑
µ<ν

(∂Am)x,µν(dAe + 2πn)x,µν , (2.14)

where in the first step we used d 2 = 0 (see appendix A) to insert the term dAe. Sub-
sequently we applied the partial integration formula (A.2). The Boltzmann factor (2.13)
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thus can be written in the form of a product over all plaquettes (we here inserted F ex,µν =
(dAe + 2π n)x,µν),

Bβ [Ae, Am] =
∏
x

∏
µ<ν

∑
nx,µν∈Z

e−
β
2

(
(dAe + 2π n)x,µν

)2

e
i

2π (dAe + 2πn)x,µν(∂Am)x,µν . (2.15)

Each factor in this product is 2π-periodic in the corresponding variable dAe, where the
periodicity is generated by the sum over the Villain variable on the plaquette. Thus we
may use Poisson resummation (see appendix D for the proof of a more general result that
collapses to the usual Poisson resummation when setting N = 1.),

∑
n∈Z

e−
β
2 (dAe + 2π n)2

e
i

2π (dAe + 2πn)(∂Am) = 1√
2πβ

∑
p∈Z

e
− 1

2
1

4π2β
(∂Am + 2π p)2

e−i p dA
e
, (2.16)

where we have omitted the plaquette indices for notational convenience. Using this expres-
sion for all factors in the Boltzmann weight (2.15), we find

Bβ [Ae, Am] =
( 1

2πβ

)3V ∑
{p}

e
− β̃2
∑

x,µ<ν

(
(∂Am + 2π p)x,µν

)2

e
− i
∑

x,µ<ν
(dAe)x,µν px,µν , (2.17)

where we have defined the dual gauge coupling

β̃ ≡ 1
4π2β

, (2.18)

and denote the sum over all configurations of the newly introduced plaquette occupation
numbers px,µν ∈ Z as ∑

{p}
≡
∏
x

∏
µ<ν

∑
px,µν∈Z

. (2.19)

The next step is to use again the partial integration formula (A.2) from appendix A to
rewrite the second exponent in (2.17) such that the Boltzmann factor reads

Bβ [Ae, Am] =
( 1

2πβ

)3V ∑
{p}

e
− β̃2
∑

x,µ<ν

(
(∂Am + 2π p)x,µν

)2

e
−i
∑

x,µ
Aex,µ (∂ p)x,µ . (2.20)

We remark that we will use the form (2.20) of the Boltzmann factor to show that the
self-dual formulation of scalar electrodynamics that we construct in the next section is free
of any complex action problem. The self-dual formulation of pure gauge theory is already
free of a complex action problem when the form (2.8) of the partition sum is used.

To complete the proof of self-duality of pure U(1) gauge theory, we now switch to the
dual lattice. Using (A.4) we identify the r forms on the original lattice with 4− r forms on
the dual lattice (when forms are considered on the dual lattice they are marked with “ ˜ ”
— compare appendix A),

Aex,µ =
∑

ν<ρ<σ

εµνρσ Ã
e
x̃−ν̂−ρ̂−σ̂,νρσ , A

m
x,µνρ =

∑
σ

εµνρσ Ã
m
x̃−σ̂,σ , px,µν =

∑
ρ<σ

εµνρσ p̃x̃−ρ̂−σ̂,ρσ .

(2.21)
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The d and ∂ operators interchange their role when switching to the dual lattice (see Equa-
tion (A.5) in appendix A), such that

(∂ Am)x,µν =
∑
ρ<σ

εµνρσ (dÃm)x̃−ρ̂−σ̂,ρσ , (∂ p)x,µ =
∑

ν<ρ<σ

εµνρσ (d p̃ )x̃−ν̂−ρ̂−σ̂,νρσ . (2.22)

Using (2.21) and (2.22) in (2.20) we find the following dual form of the Boltzmann factor,

Bβ [Ae, Am] =
( 1

2πβ

)3V∑
{p̃}

e
− β̃2
∑

x̃,µ<ν

(
(dÃm+2π p̃ )x̃,µν

)2

e
−i
∑

x̃,µ<ν<ρ
Ãex̃,µνρ (d p̃ )x̃,µνρ

=
( 1

2πβ

)3V∑
{p̃}

e
− β̃2
∑

x̃,µ<ν

(
F̃mx̃,µν

)2

e
−i
∑

x̃,µ<ν<ρ
Ãex̃,µνρ (d p̃ )x̃,µνρ , (2.23)

where we defined
F̃mx̃,µν ≡ (dÃm + 2π p̃ )x̃,µν , (2.24)

and the sum over all configurations of the dual plaquette occupation numbers,∑
{p̃ }

≡
∏
x̃

∏
µ<ν

∑
p̃x̃,µν∈Z

=
∑
{p}

, (2.25)

where the identity on the right hand side is an obvious consequence of the last equation
in (2.21). Thus, up to an overall factor the Boltzmann weights (2.13) and (2.23) have the
same form.

Comparing (2.23) with (2.13) we can summarize the duality relation for the Boltzmann
factor as

Bβ [Ae, Am] =
( 1

2πβ

)3V
B̃
β̃

[
Ãm, Ãe

]
with β̃ = 1

4π2β
. (2.26)

Equation (2.26) constitutes the self-duality relation for the generalized Boltzmann factor
Bβ [Ae, Am], where in the l.h.s. form of the Boltzmann factor the electric gauge field Ae

describes the dynamics and the magnetic gauge field Am generates the constraints. Under
the duality transformation the gauge coupling β is replaced by the dual coupling β̃, the
Boltzmann factor picks up the overall factor (2πβ)−3V , all fields are replaced by their
dual living on the dual lattice (thus the notation B̃

β̃
[Ãm, Ãe]), and finally, the electric and

the magnetic field interchange their role. This means that in the dual form on the r.h.s.
of (2.26) the dual magnetic field Ãm describes the dynamics, while the dual electric field
Ãe now generates the constraints.

To establish full duality of the partition sum Z(β) we replace the integral measures∫
D[Ae] and

∫
D[Am] by the corresponding dual integral measures defined as,

∫
D
[
Ãe
]
≡
∏
x̃

∏
µ<ν<ρ

∫ π

−π

dÃex̃,µνρ
2π =

∫
D[Ae] ,

∫
D
[
Ãm

]
≡
∏
x̃

∏
µ

∫ π

−π

dÃmx̃,µ
2π =

∫
D[Am] , (2.27)
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where again (2.21) ensures that the dual integration measures are equal to the ones on the
original lattice. Thus we find

Z(β) =
∫
D[Ae]

∫
D[Am] Bβ [Ae, Am]

=
( 1

2πβ

)3V∫
D[Ãe]

∫
D[Ãm] B̃β

[
Ãm, Ãe

]
=
( 1

2πβ

)3V
Z(β̃) , (2.28)

and identify the final form of the self-duality relation for the partition sum

Z(β) =
( 1

2πβ

)3V
Z(β̃) with β̃ = 1

4π2β
. (2.29)

Before we discuss properties and consequences of the self-duality relation (2.29) we note
that iterating the duality relation gives the identity map, i.e.,

Z(β) =
( 1

2πβ

)3V
Z
(
β̃
)

=
( 1

2πβ

)3V ( 1
2πβ̃

)3V

Z
( ˜̃
β
)

= Z(β) , (2.30)

where in the last step we used the obvious properties ββ̃ = 1/4π2 and ˜̃β = β. Equa-
tion (2.30) constitutes an important consistency check for the self-duality relation we con-
structed.

The self-duality relation (2.29) obviously maps the weak- and strong-coupling regions
of the partition sum Z(β) onto each other. Suitable derivatives of lnZ(β) thus will relate
observables in the strong and the weak coupling region. To give an example, we consider
the expectation value of the square of the field strength, which is proportional to the first
derivative of lnZ(β):

〈F 2〉β ≡ −
1

3V
∂

∂β
lnZ(β) = − 1

3V
∂

∂β
ln
(
(2πβ)−3V Z

(
β̃)
)

= 1
β
− 1

3V

(
∂

∂β̃
lnZ(β̃)

)
dβ̃

dβ
= 1
β
− 〈F 2〉

β̃

1
4π2β2 . (2.31)

Multiplying the equation with β we can summarize the duality relation for 〈F 2〉 in a sum
rule that connects the weak and strong coupling results for 〈F 2〉,

β 〈F 2〉β + β̃ 〈F 2〉
β̃

= 1 . (2.32)

In a similar way one may relate the weak and strong coupling results of higher derivatives
of lnZ(β), i.e., the susceptibility of the action density and higher moments. Self-duality
relations for correlators of F 2 can be obtained by introducing an x-dependence of β (which
leaves the duality transformation unchanged) and by performing local derivatives that
generate the correlators.

3 Self-dual lattice QED

In this section we generalize our self-dual discretization of pure gauge theory to self-dual lat-
tice QED, where we explicitly discuss the coupling of electrically and magnetically charged
scalar fields. More particularly we first discuss in detail the case where we couple separate
species of matter fields, one that is electrically charged and a second field with magnetic
charges. Subsequently we briefly address the possibility of coupling dyonic matter in our
formulation.
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3.1 Coupling separate species for electric and magnetic matter

We here first present the construction for coupling separate species of electric and magnetic
matter fields, then establish self-duality and finally discuss some of its consequences. We
remark that in appendix E we show that one may switch to a worldline formulation that for
the case of bosonic matter solves the complex action problem introduced by the closedness
constraints, such that the worldline form can be used for numerical simulations.

We couple electrically charged matter to the electric gauge field Ae and magnetically
charged matter to the magnetic gauge field Am. Note that we have defined the mag-
netic gauge field Am on the cubes of the original lattice, such that the corresponding dual
form Ãm corresponds to fields Ãmx̃,µ that live on the links (x̃, µ) of the dual lattice (com-
pare (2.21)). We now use this dual form to couple the magnetically charged matter fields.

The partition function with gauge fields coupling to electric and magnetic matter
fields reads

Z(β,M e, λe, qe, Mm, λm, qm) ≡
∫
D[Ae]

∫
D[Am] Bβ [Ae, Am] ZMe, λe, qe [Ae] Z̃Mm, λm, qm

[
Ãm

]
,

(3.1)
where Bβ [Ae, Am] is the gauge field Boltzmann factor in the form (2.13). We have intro-
duced the partition function ZMe, λe, qe [Ae] for electrically charged matter φe that couples
to the electric background gauge field Ae as

ZMe, λe, qe [Ae] ≡
∫
D[φe] e−SMe, λe, qe [φe,Ae] ,

∫
D[φe] ≡

∏
x

∫
C

dφex
2π , (3.2)

SMe, λe, qe [φe, Ae] ≡
∑
x

[
M e|φex|2 + λe|φex|4 −

∑
µ

[
φe ∗x e i q

eAex,µ φex+µ̂ + c.c.
]]
, (3.3)

where we imparted the electric matter with a charge qe ∈ Z. As already announced, we
couple bosonic matter, which for the electric field is a complex scalar φex ∈ C that is assigned
to the sites x of the original lattice. The path integral measure

∫
D[φe] is the usual product

measure and the action SMe, λe, qe [φe, Ae] is the free action plus a quartic term with coupling
λe. The mass parameter M e is related to the tree level mass me via M e = 8 + (me)2.

The magnetically charged scalar field φ̃mx̃ ∈ C lives on the sites x̃ of the dual lattice and
couples to the magnetic gauge field Ãmx̃,µ on the links of the dual lattice. The corresponding
partition sum has the same form as the partition sum (3.2) for the electric matter but for
the magnetic matter is defined entirely on the dual lattice,

Z̃Mm, λm, qm
[
Ãm

]
≡
∫
D
[
φ̃m
]
e−S̃Mm,λm, qm

[
φ̃m,Ãm

]
,

∫
D
[
φ̃m
]
≡
∏
x̃

∫
C

dφ̃mx̃
2π , (3.4)

S̃Mm, λm, qm
[
φ̃m, Ãm

]
≡
∑
x̃

[
Mm|φ̃mx̃ |2 + λm|φ̃mx̃ |4 −

∑
µ

[
φ̃m ∗x̃ e i q

mÃmx̃,µ φ̃mx̃+µ̂ + c.c.
]]
. (3.5)

Similarly to the electric matter, we chose to give the magnetic matter a charge qm ∈ Z.
As before we allow for a quartic self-interaction term with corresponding coupling λm,
and the relation of the mass parameter Mm to the tree level mass mm is again given by
Mm = 8 + (mm)2.
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It is obvious that the construction can easily be generalized to coupling fermionic
electric and magnetic matter fields, by simply replacing the partition sums ZMe, λe, qe [Ae]
and Z̃Mm, λm, qm

[
Ãm

]
by the corresponding fermion determinants in the background fields

Ae and Ãm where for the latter case the corresponding discretized lattice Dirac operator
lives entirely on the dual lattice.

The proof of self-duality is straightforward and is essentially a corollary of the self-
duality relation (2.26) for the gauge field Boltzmann factor Bβ [Ae, Am]. Using (2.26) in
the partition sum (3.1) we find (here C = (1/2πβ)3V )

Z(β,M e, λe, qe, Mm, λm, qm) =C

∫
D[Ae]

∫
D[Am]B

β̃
[Ãm, Ãe]ZMe, λe, qe[Ae]Z̃Mm, λm, qm

[
Ãm

]
=C

∫
D[Ãm]

∫
D[Ãe]B

β̃
[Ãm, Ãe]Z̃Mm, λm, qm

[
Ãm

]˜̃
ZMe, λe,−qe

[˜̃
Ae
]
,

(3.6)

where in the second step we have used (2.27) to replace the path integral measures by their
dual counterparts, as well as the identity

ZMe, λe, qe[Ae] = ˜̃
ZMe, λe,−qe

[˜̃
Ae
]
. (3.7)

It is important to note that here the iterated duality relation gives rise to a flip of the sign
of the electric charge qe: for vector fields eq. (A.4) from appendix A implies

Aex,µ =
∑

ν<ρ<σ

εµνρσÃ
e
x̃−ν̂−ρ̂−σ̂,νρσ , Ãex̃,µνρ = −

∑
σ

εµνρσAx+ŝ−σ̂,σ , (3.8)

where ŝ = 1̂+2̂+3̂+4̂. As a consequence we find ˜̃Aex,µ = −Aex,µ, such that the link variables
e iq

eAx,µ in the electric mater action (3.3) become complex conjugate under iterated duality,
which in turn is equivalent to changing the sign of the electric charge qe.

Comparing the second line of (3.6) with the definition (3.1) of the full partition sum
we can identify the self-duality relation for our discretization of QED

β
3V
2 Z(β,M e, λe, qe, Mm, λm, qm) = β̃

3V
2 Z

(
β̃, M̃ e, q̃ e, λ̃e, M̃m, λ̃m, q̃m

)
with (3.9)

β̃ = 1
4π2β

, M̃ e = Mm , λ̃e = λm , q̃ e = qm , M̃m = M e , λ̃m = λe , q̃ m = − qe .

Note that we have split the prefactor C = (1/2πβ)3V of the partition sums in (3.6) by
dividing it into equal powers of β and β̃ to fully display the symmetry. As for the case of
pure gauge theory, the duality transformation generates an overall factor, and the gauge
coupling β is replaced by the dual coupling β̃ = 1/(4π2β), thus interchanging weak and
strong coupling. In addition the parameters M e, λe of electric matter are interchanged
with the parameters Mm, λm of magnetic matter.6 For the charge vector q = (qe, qm)t

(the superscript t denotes transposition) we find the following relation between the dual
and the original charges,

q̃ = S q with S =
(

0 1
−1 0

)
. (3.10)

6When coupling fermionic matter only the bare fermion masses appear as parameters.
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The self-duality symmetry described by (3.9) and (3.10) will be referred to as S. However,
we remark already now that in the next section we will extend the symmetry S to also
include the θ-angle shifts by 2π, the so called T transformation.

Again we can generate self-duality relations for observables by evaluating derivatives of
lnZ with respect to the couplings and when the couplings are considered to be space-time
dependent suitable derivatives give rise to self-duality relations for correlation functions.
We discuss two examples for such self-duality relations, the first being the generalization
of the sum rule (2.32),

β 〈(F e)2〉β,Me, λe, qe,Mm, λm, qm + β̃ 〈(F e)2〉
β̃,M̃e, q̃ e, λ̃e, M̃m, λ̃m, q̃ m

= 1 . (3.11)

The second term in the sum rule is evaluated with the dual parameters, i.e., with gauge
coupling β̃ and interchanged electric and magnetic coupling parameters.

Derivatives with respect to M e and Mm generate field expectation values for the
electric and magnetic matter fields. Exploring the duality relation (3.9) one finds〈

|φe|2
〉
β,Me, λe, qe,Mm, λm, qm

≡ − 1
V

∂

∂M e
lnZ(β,M e, λe, qe, Mm, λm, qm)

=
〈
|φ̃m|2

〉
β̃,M̃e, q̃ e, λ̃e, M̃m, λ̃m, q̃ m

, (3.12)

with
〈
|φ̃m|2

〉
= −1/V ∂ lnZ/∂Mm. According to the self-duality relation (3.12), the elec-

tric and magnetic field expectation values are converted into each other when changing from
weak to strong coupling and simultaneously interchanging electric and magnetic coupling
parameters. In a similar way self-duality relations for various observables and correlation
functions can be obtained, where electric and magnetic fields and their parameters are in-
terchanged, when switching between the weak and strong coupling domains of the theory.
We stress once more, that the self-duality relations we discuss here hold identically for
fermionic and for bosonic matter.

We remark again that the Boltzmann factor (2.13) which we use in (3.1) is com-
plex, such that we cannot use Monte Carlo simulations for self-dual QED directly in the
form (2.13), (3.1). This can be overcome by switching to a worldline representation, which
we discuss in appendix E.

3.2 Comments on coupling dyons

In addition to purely electric and purely magnetic matter, one can also couple dyonic
matter by identifying the lattice and its dual, e.g., by specifying a map F : Λ → Λ̃ which
sends x ∈ Λ to x + ŝ

2 ∈ Λ̃. We also define the map F̃ : Λ̃ → Λ which sends x̃ ∈ Λ̃ to
x̃ + ŝ

2 ∈ Λ. The maps F and F̃ do not have to necessarily be shifts by the same amount,
and we could have just as well defined F̃ : x̃ → x̃ − ŝ

2 . We now work with only a single
species of matter, the dyonic field φx ∈ C, that lives on the sites x of the lattice and carries
both an electric charge qe and a magnetic charge qm. The corresponding action is obtained
by replacing φex → φx in the mass and quartic terms of (3.3) and by replacing the hopping
terms as follows,

φe ∗x e i q
e Aex,µ φex+µ̂ → φx e

i qe Aex,µ + i qm Ãm
F (x),µ φx+µ̂ . (3.13)
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The field φm from the previous section is dropped completely.7 Under a duality transfor-
mation the dyon field is mapped to the dual lattice, and since in the construction here we
identify original and dual lattice, the duality relations (3.9) apply also to the dyonic case,
of course with the modification that we have only a single mass parameter M and only a
single quartic coupling λ. As in the previous subsection, also here the construction carries
over to fermionic dyon matter in an obvious way.

Notice, however, that coupling dyons makes it difficult to eliminate the sign problem
even if they are bosonic. In the previous subsection and appendix E the complex action
problem was solved by switching to a worldline formulation for the magnetic matter, which
converts the dependence of the magnetic matter action on the magnetic gauge field Ãm into
terms of the form ei q

m Ãmx̃,µ k̃x̃,µ where the k̃x̃,µ ∈ Z are the flux variables that describe the
dynamics of the magnetic matter in the worldline language (see appendix E). In this form
the Ãm then can be integrated out together with the constraint factors (2.10) to generate
more general constraints that couple the Villain and the flux variables. However, when
dyons are considered, the worldline expansion also generates terms of the form ei q

e Aex,µ kx,µ

that can not be integrated out, since the action for the electric gauge field Ae is quadratic.
Further the S-duality transformation does not change the situation, since it merely inter-
changes the form of the electric and the magnetic gauge action, i.e., one of the two is always
quadratic. Hence dyons generically have a complex action problem.

However, it is well known that a θ-term can add or remove an electric charge from a
monopole, which is the famous Witten effect [34], and we will exploit this effect to relate
some dyonic theories to their simpler cousins discussed in the previous subsection, where
indeed a worldline representation solves the complex action problem. We will review the
Witten effect and its relation to the complex action problem in the next section when we
introduce the θ-term for the Villain action. For the moment let us just note that when we
change θ → θ±2π we can absorb this shift by changing the dyonic charges qe → qe∓qm and
qm → qm. Obviously this can be used to relate theories with sign problem to theories that
can be simulated without the sign problem. This idea becomes more powerful when the shift
of θ is combined with the duality transformation such that the group of transformations
becomes SL(2,Z). We will see that this allows us to connect some theories which have
dyons8 and a nonzero θ-term, to theories without the complex action problem. This will
be discussed in detail in section 4.5.

4 QED with a θ-term

We generalize our formulation of self-dual U(1) lattice gauge theory and self-dual lattice
QED further by adding a θ-term. We first construct a suitable discretization of the topo-
logical charge and analyze its properties. Subsequently we add the θ-term to the gauge field
Boltzmann factor and identify the corresponding duality transformation. In yet another

7We remark that we could have placed the dyonic field also on the dual lattice by coupling the dual of
the electric field there.

8As we will see, such dyonic theories in general have smeared electric and magnetic charges, as the
introduction of the θ-term will force the Witten effect to endow monopoles with electric charges which are
generically spread across multiple lattice links.
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generalization step we construct a self-dual Boltzmann factor at finite θ for the gauge fields,
which then is the basis for fully self-dual U(1) lattice gauge theory and self-dual lattice
QED both now containing also the θ-term.

Before we go through these steps, let us comment on our construction. It is well known
that there are many ways to discretize a θ-term. We will, however, insist that the θ-term
capturea the topological aspecta of the continuum U(1) theory. In the continuum the
θ-term of the U(1) gauge theory is

Sθ = iθ Q , (4.1)

where
Q = 1

8π2

∫
d4x

∑
µ<ν
ρ<σ

FµνFρσε
µνρσ , (4.2)

is the topological charge. It is well known that the θ-term does not depend on the local
details of the gauge field Aµ, and only depends on the topological class of the gauge bundle.
In other words, the variation of the above action with respect to small local changes of the
gauge field Aµ is zero.

Moreover when θ is shifted θ → θ+2π, the Euclidean path integral weight is unchanged
in the continuum, because9 Q ∈ Z.

The above features are both ruined in the presence of a dynamical monopole.10 In-
deed the Witten effect would endow the worldline of the monopole with electric charge
θ/2π, hence generating an explicit dependence on the gauge field Aµ along the monopole
worldline, turning the monopole into a dyon. We will see a manifestation of this in our lat-
tice construction below. The θ-periodicity can be restored if the theory contains an entire
tower of dyons of all electric charges, but generically it will be destroyed by the presence
of dynamical magnetic matter.

To construct the desired θ-term, we will therefore be guided by a theory without
monopoles being gauge-invariant, independent of the local details of the gauge field Ax,µ
and that has a 2π-periodicity in θ. To construct such a term it is sufficient to construct the
appropriate topological charge Q. The most natural way to construct such a topological
charge is to identify the lattice Λ and its dual Λ̃ by defining a map Λ→ Λ̃, as was discussed
in [7]. Since such maps are not unique, the definition of the topological charge Q will not
be unique either, and the most general definition of the topological charge will not be local.
All of these definitions will turn out to be equivalent when monopoles are absent, because
of the topological nature of Q.

We will see, however, that if such a θ term is introduced, any attempt to define an ultra-
local kinetic term will fail to satisfy self-duality. In particular electric-magnetic duality
transformation of such an ultra-local action would produce a local, but not ultra local
action, and therefore violate the self-dual covariance. When we insist on self-duality we
will be forced to consider local, but not ultra-local actions.

9This is only true on spin manifolds. On non-spin manifolds the θ-periodicity is θ → θ + 4π because Q
can be half-integer.

10Such an operator is constructed by excising a contour C from the space-time manifold, and imposing
that on a small sphere linking the contour C the flux is

∫
F = 2πqm, where qm ∈ Z is the charge of the

monopole operator.
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It is well known that θ-periodicity and self-duality generate an SL(2,Z) duality group.
Therefore, insisting on the exact SL(2,Z) structure of a lattice theory will force us to
abandon ultra-locality.

4.1 Construction of a suitable topological charge

Following [7] we now introduce a topological charge for the Villain formulation but already
generalize the discretization presented in [7] to a form that will turn out to be useful for
the construction of self-dual theories with a θ-term. More specifically we introduce a whole
family QT [F e] of lattice discretizations for the topological charge that are labelled by an
integer-valued vector T ,

QT [F e] ≡ 1
8π2

∑
x

∑
µ<ν
ρ<σ

F ex,µν εµνρσ F
e
x−ρ̂−σ̂+T, ρσ (4.3)

= 1
8π2

∑
x

∑
µ<ν
ρ<σ

(dAe + 2πn)x,µν εµνρσ (dAe + 2πn)x−ρ̂−σ̂+T, ρσ ,

where we have introduced T =
∑
µ tµµ̂ with tµ ∈ Z. Note that F ex,µν is again given

by the combination (2.5) of the exterior derivative and the Villain variable, i.e., F ex,µν =
(dAe)x,µν + 2πnx,µν . We now want to show that the definition has the desired properties
of the continuum topological charge, when magnetic monopoles are not present. Since
monopoles are not present, we will assume that Villain variables obey the closedness con-
straints (2.7). Thus the topological properties of QT [F e] as we define it in (4.3) are specific
to the case when monopoles are absent.

For T = 0 the definition of Q0[F e] is essentially a direct lattice discretization of the
continuum topological charge Q ∝

∫
d4xFµν(x)εµνρσFρσ(x) with an additional shift of the

second factor F ex,ρσ by one lattice unit in the negative ρ and σ directions.11 This, in
the absence of monopoles, will have as a consequence that the θ-term depends only on
the villain variables nx,µν and not on gauge fields, and will also imply θ periodicity by
2π. Following [7], this θ-term may be interpreted as defining a map from a lattice to
a dual lattice, and then making a natural product of F ex,µν on a plaquette (x, µν) with
the corresponding dual field strength on the plaquette dual to (x, µν). For T 6= 0 this
definition from [7] is generalized to a product of F ex,µν with the dual field strength on the
dual plaquette shifted by T , which we implement by adding T in the argument of the second
factor in (4.3). Note that when T becomes larger than the extent of the lattice the periodic
boundary conditions will identify the shifted site x+ T with some site of the lattice, such
that only a finite number of vectors T correspond to distinct definitions of QT [F e].

We will now show, that QT [F e] is topological in nature and that QT [F e] gives the same
result for all vectors T as long as the Villain variables are closed. We proceed towards this
goal in several steps where we discuss and use properties of QT [F e] that are partly proven
in appendix B.

11Without this shift we would not be able to show the topological properties of QT , and the θ-term in
the absence of monopoles would lose the independence on Aex,µ and the θ-periodicity.
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The first property shown in appendix B is the fact that QT [F e] is invariant under
adding an arbitrary exterior derivative (dB)x,µν to the field strength F ex,µν , i.e.,

QT [F e + dB] = QT [F e] , (4.4)

where Bx,µ is an arbitrary 1-form, i.e., an arbitrary set of link-based fields. We stress again
that this property only holds when the Villain variables nx,µν in F ex,µν = (dAe)x,µν+2π nx,µν
obey the closedness condition (2.7).

The property (4.4) immediately implies that QT [F e] is independent of the exterior
derivative (dAe)x,µν in F ex,µν = (dAe)x,µν + 2π nx,µν . Thus the topological charge depends
only on the Villain variables nx,µν and we may write (compare the definition (4.3))

QT [F e] = 1
2
∑
x

∑
µ<ν
ρ<σ

nx,µν εµνρσ nx−ρ̂−σ̂+T, ρσ with (dn)x,µνρ = 0 ∀x, µ<ν<ρ . (4.5)

The fact that the Villain variables obey the closedness condition (2.7) can be used
together with the Hodge decomposition (see eq. (A.3) of appendix A) to write the Villain
variables in the form

nx,µν = (d l)x,µν + hx,µν , (4.6)

where the condition (dn)x, µνρ = 0 implies that we do not have a contribution (∂ c)x, µνρ in
the Hodge decomposition (A.3) of nx,µν . In (4.6) lx,µ ∈ Z is an integer-valued 1-form which
due to d2l = 0 does not contribute to dn. The second term in the Hodge decomposition (4.6)
are the closed integer-valued harmonic contributions hx,µν which obey (dh)x,µνρ = 0 and
cannot be written as exterior derivatives. We may parameterize them in the form (µ < ν)

hx,µν = ωµν

Nρ∑
i=1

Nσ∑
j=1

δ
(4)
x,iρ̂+jσ̂ with ρ 6= µ, ν ; σ 6= µ, ν ; ρ 6= σ , (4.7)

where Nρ and Nσ denote the lattice extents in the ρ - and σ-directions and δ
(4)
x,iρ̂+jσ̂ is

the 4-dimensional Kronecker delta. In other words hx,µν is the constant ωµν ∈ Z for µ-ν
plaquettes (x, µν) that have their root site x in the ρ-σ plane that is orthogonal to the µ-ν
plane and contains the origin. For all other plaquettes hx,µν = 0. It is easy to see that the
harmonics hx,µν are closed forms, i.e., they obey (dh)x,µνρ = 0. We stress that our choice
for the parameterization of the hx,µν is not unique, since they can be deformed by adding
arbitrary exterior derivatives.

In appendix B we show the following result for the topological charge12

QT [2πn] = QT [2πh] = ω12 ω34 − ω13ω24 + ω14ω23 = 1
8εµνρσωµνωρσ ∈ Z , ∀ T . (4.8)

The first identity follows already from (4.4) and shows that the topological charge depends
only on the harmonic contributions to the Villain variables. The second step is the explicit
evaluation of QT [2πn] = QT [2πh] for the parameterization (4.7) of the harmonics, which,

12In the notation for the final expression on the r.h.s. of (4.8) we assume antisymmetry of the ωµν .
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as shown in appendix B, turns out to be independent of the vector T that appears as a
parameter in the definitions (4.3) and (4.5). This completes the proof of our statement
that for closed Villain variables QT [F e] = QT [2πn] = QT [2πh] is independent of T due to
its topological nature. In addition the definition of the topological charge is integer-valued
and can be computed uniquely from the harmonics in the Hodge decomposition of the
Villain variables.

4.2 The Witten effect

Before we come to performing the duality transformation in the next section let us discuss
an interesting physical aspect of the abelian θ-term, the Witten effect, which constitutes an
important consistency check of our formulation. The Witten effect states that the θ-term
endows a magnetic monopole with the minimal possible magnetic charge m = 2π with an
electric charge q = θ/2π.

We here consider a general definition of the topological charge given by the superpo-
sition of different discretizations QT ,

Q =
∑
T

γT QT [dAe + 2πn] , (4.9)

where the QT are given by (4.3) and we require
∑
T γT = 1. Now consider a magnetic

Wilson loop defined by ∏
(x̃,µ)∈C̃

e i Ã
m
x̃,µ , (4.10)

along some contour C̃ on the dual lattice. Combining the Wilson loop with the closedness
factor (2.10) and integrating over the Ãm we find

∫
D[Ãm] e−i

∑
x

∑
µ<ν<ρ

Amx,µνρ(dn)x,µνρ ∏
(x̃,µ)∈C̃

e i Ã
m
x̃,µ (4.11)

=
∫
D[Ãm]

∏
(x̃,µ)∈C̃

e
i Ãmx̃,µ[1+

∑
ν<ρ<σ

εµνρσ(dn)x+µ̂,νρσ ] ∏
(x̃,µ) 6∈C̃

e
i Ãmx̃,µ

∑
ν<ρ<σ

εµνρσ(dn)x+µ̂,νρσ ,

where in the second step we rewrote the Am in terms of the dual fields Ãm. Obviously this
integral imposes the new constraint

∑
ν<ρ<σ

εµνρσ(dn)x+µ̂,νρσ =

−1 if (x̃, µ) ∈ C̃ ,

0 if (x̃, µ) /∈ C̃ .
(4.12)

This constraint modifies the condition (2.7), which in its original form ensures the complete
absence of monopoles, while now along the contour C̃ of the magnetic Wilson loop (4.10)
monopole charges are inserted.
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Let us now inspect QT in the presence of the modified constraint (4.12) induced by
the magnetic Wilson loop. We find (use QT [dAe] = 0),

QT [dAe + 2πn] = 1
4π
∑
x

∑
µ<ν
ρ<σ

nx,µνεµνρσ(dAe)x+T−ρ̂−σ̂, ρσ

+ 1
4π
∑
x

∑
µ<ν
ρ<σ

(dAe)x,µνεµνρσnx+T−ρ̂−σ̂, ρσ +QT [2πn] . (4.13)

Reorganizing the sums one finds∑
x

∑
µ<ν
ρ<σ

nx,µν εµνρσ(dAe)x+T−ρ̂−σ̂, ρσ =
∑
x

∑
µ<ν
ρ<σ

nx−T+ρ̂+σ̂,µν εµνρσ(dAe)x, ρσ (4.14)

=
∑
x

∑
ρ<σ

Nx,ρσ(dAe)x, ρσ =
∑
x

∑
µ

Aex,µ(∂N)x,µ =
∑
x

∑
µ

Ax+T,µ
∑

ν<ρ<σ

εµνρσ(dn)x+µ̂,νρσ ,

where
Nx, ρσ =

∑
µ<ν

nx−T+ρ̂+σ̂,µν εµνρσ . (4.15)

In the third step of (4.14) we used the partial integration formula (A.2), and again some
reordering of terms to get to the final form. In a similar way we find for the second sum
in (4.13),∑

x

∑
µ<ν
ρ<σ

(dAe)x,µν εµνρσ nx+T−ρ̂−σ̂,ρσ =
∑
x

∑
µ

Ax−T+ŝ,µ
∑

ν<ρ<σ

εµνρσ(dn)x+µ̂,νρσ , (4.16)

so that inserting (4.13), (4.14) and (4.16) in (4.9) we find

Q[dAe + 2πn] = 1
2π
∑
x

∑
µ

∑
T

γT
Ax+T,µ +Ax−T+ŝ,µ

2
∑

ν<ρ<σ

εµνρσ(dn)x+µ̂,νρσ +Q[2πn] .

(4.17)
Since in the presence of the magnetic Wilson loop

∏
(x̃,µ)∈C̃ e

i Ãmx̃,µ upon integrating over
the Ãm we have

∑
ν<ρ<σ εµνρσ(dn)x,νρσ = −1 whenever (x̃, µ) ∈ C̃, and since Q comes with

a weight e−iθQ in the partition function, a magnetic Wilson loop generates the contribution

∏
(x̃,µ)∈C̃

e i
θ

2π
∑

T
γT

Ae
x+T,µ+Ae

x−T+ŝ,µ
2 , (4.18)

which is the Ae-dependent part of Q[dAe + 2πn] that gets added to the topological part
Q[2πn] given by the harmonic contributions as stated in (4.8). The interpretation of the
above formula is that the monopole gets an electric charge qe = θ

2π , although smeared to
the neighborhood of the dual link (x̃, µ). This is the famous Witten effect [34].

When we discussed the coupling of dyonic matter in subsection 3.2, we already an-
nounced, that in this context the Witten effect gives rise to a new duality T which relates
shifts of the θ angle by 2π to a shift of the magnetic charge. The remainder of this subsec-
tion is devoted to discussing the duality T .
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Similar to the derivation of the worldline expansion of magnetic matter discussed in
appendix E we may expand the hopping terms of the dyon action (compare (3.13)) to bring
the dependence of the dyon partition sum on the two gauge fields into the form

∏
(x,µ)

e
i
[
qe Aex,µ + qm Ãm

F (x),µ

]
kx,µ =

∏
(x,µ)

e i q
e Aex,µ kx,µ

∏
(x,µ)

e
i qm Ãm

F (x),µ kx,µ , (4.19)

where kx,µ ∈ Z are the flux variables for dyon matter (compare appendix E). Obviously
the second factor on the r.h.s. generalizes the insertion of the magnetic Wilson loop consid-
ered in (4.10). Upon integrating out the magnetic gauge field this generates the modified
constraint ∑

ν<ρ<σ

εµνρσ(dn)x+µ̂,νρσ = − qm kx,µ ∀ (x, µ) , (4.20)

which now replaces (4.12). However, the steps discussed in the previous paragraphs go
through essentially unchanged also with the new constraint, and the additional term that
is generated by the topological charge is a generalization of (4.18) given by

∏
(x,µ)

e i
θ

2π qm
∑

T
γT

Ae
x+T,µ+Ae

x−T+ŝ,µ
2 kx,µ

∏
(x,µ)

δ

( ∑
ν<ρ<σ

εµνρσ(dn)x+µ̂,νρσ + qm kx,µ

)
e− i θ Q[2πn] ,

(4.21)
where we also wrote explicitly the constraint (4.20), using the already familiar product
over Kronecker deltas. We also display the remaining topological contribution. The first
factor in (4.18) may be combined with the flux terms (4.19) and we replace

∏
(x,µ)

e
i
[
qe Aex,µ + qm Ãm

F (x),µ

]
kx,µ →

∏
(x,µ)

e
i
[
qe Aex,µ + qm

∑
T
γT

Ae
x+T,µ+Ae

x−T+ŝ,µ
2 + qm Ãm

F (x),µ

]
kx,µ ,

(4.22)
where we have reinstated the terms with Ãm that upon integration generate the constraint
in (4.21), given that the topological term is kept in the form Q[2πn].

Note that the required 1-form gauge invariance [7]

Aex,µ → Aex,µ + 2πkx,µ ,
nx,µν → nx,µν − (dk)x,µν ,

(4.23)

can be achieved by a shift of Amx̃,µ ,

ÃmF (x),µ → ÃmF (x),µ −
θ

2
∑
T

γT (kx+T−µ̂,µ + kx−T+s−µ̂,µ) . (4.24)

Indeed the remainder of the action, has phase terms

iθQ[2πn] + i
∑
x

∑
µ<ν<ρ

εµνρσ(dn)x,µνρÃmF (x)−σ̂,σ , (4.25)

which are invariant under the transformations (4.23) and (4.24). Note that Q[2πn] is now
no longer necessarily an integer, because it is a sum of integers weighted by γT , and must
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be kept in the action even if θ ∈ 2πZ. In fact it is crucial that this term is not dropped, as
then the gauge symmetry (4.24) would be ruined.

The r.h.s. of (4.22) shows that in the presence of magnetic matter, the topological
term generates an additional contribution to the electric charge, such that the combined
electric charge is given by qe + qmθ/2π, although this charge is generally smeared across
multiple lattice links, weighted by γT . In fact, no choice of the coefficients γT in the
definition (4.9) allows for an ultra-local Witten effect. Indeed, if even only a single γT is
nonzero, i.e., γT = 1 with γT ′ = 0 ∀ T ′ 6= T , this will produce the spread of the electric
charge. However, independent of the details of the definition of Q we find that shifting
θ → θ + 2π is equivalent to shifting the electric charge qe → qm + qe. Thus, if we shift
θ → θ − 2π and simultaneously qe → qm + qe this becomes an invariance. We will refer to
this invariance as T duality, as is conventional, and summarize it as follows,

θ → θ = θ − 2π , q → q = T q with T =
(

1 1
0 1

)
, (4.26)

where again we use the vector of charges q = (qe, qm)t. We will later see that the S duality
defined in (3.10), i.e., the self-dual transformation, and the duality T together generate
the group SL(2,Z).

In the next two subsections we will see that a generalized form of the S duality holds
also for the theory with a θ-term, but that the discretization we discussed so far will not
map the action into the same form under a duality transformation. We will then go on
to construct lattice actions which enjoy an exact self-duality, at the price of abandoning
the ultra-local structure we so far employed. That such a non-ultra-local structure may be
expected is already suggested by the discussion of the Witten effect in this subsection.

4.3 θ-term and duality transformation

We now generalize the partition sum (3.1) of self-dual lattice QED further by adding a
θ-term and discuss the form of the duality transformation in the presence of such a term.
This will not yet give rise to a self-dual theory, which will be identified only in the next
subsection after another necessary generalization of the action.

We may write the partition sum that now also contains the θ-term in the form

Z(β, θ,M e, λe, qe, Mm, λm, qe) ≡
∫
D[Ae]

∫
D[Am]Bβ,θ[Ae, Am]ZMe, λe, qe [Ae]Z̃Mm, λm, qm

[
Ãm

]
,

(4.27)
where we have generalized the Boltzmann factor (2.13) by adding the θ-term,

Bβ,θ[Ae, Am] ≡
∑
{n}

e
−β2
∑

x

∑
µ<ν

(
F ex,µν

)2

e−i θ Q0[F e] e
− i
∑

x

∑
µ<ν<ρ

Amx,µνρ(dn)x,µνρ . (4.28)

Note that for now we use the T = 0 discretization Q0[F e] from the family QT [F e] of possible
equivalent lattice forms of the topological charge we have introduced in subsection 4.1 in
eq. (4.3). We will generalize the θ-term further in the next subsection when we construct
the self-dual form of the Boltzmann factor.
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Both, the gauge field action and the topological charge Q0[F e] are quadratic in F e =
dAe + 2π n, such that we can combine them in a quadratic form. The Boltzmann factor
thus reads

Bβ,θ[Ae, Am] =
∑
{n}

e
−β2
∑

x,µ<ν
y,ρ<σ

F ex,µνMx,µν|y,ρσ F
e
y,ρσ

e
i
∑

x,µ<ν
(∂Am)x,µν nx,µν , (4.29)

where we used the partial integration formula (A.2) from appendix A to also rewrite the
exponent of the last exponential that upon integration over Am generates the constraints,
which in the absence of magnetically charged matter are the closedness constraints (2.7) or,
when magnetic matter is coupled, the modified constraints (4.12). The kernel Mx,µν|y,ρσ
of the quadratic form (4.29) is defined as (note that in our notation µ < ν and ρ < σ)

Mx,µν|y,ρσ = δµρ δνσ δ
(4)
x,y + i ξ εµνρσ δ

(4)
x−ρ̂−σ̂,y with ξ ≡ θ

4π2β
. (4.30)

Using Fourier transformation (see appendix C for our conventions) we may diagonalize the
lattice site dependence of M . Using (C.1) we find for the Fourier transform of M ,

M̂(p)µν|ρσ =
∑
x

eip·(x−y)Mx,µν|y,ρσ = δµρ δνσ + i ξ εµνρσ e
ipρ + ipσ . (4.31)

It is straightforward to see that for |ξ| < 1 (this is a sufficient condition) we have det M̂ 6= 0,
such that the matrix M̂ in Fourier space is invertible and thus also the real space matrix
M . One finds (see appendix C),

M̂(p) −1
µν|ρσ = δµρ δνσ − i ξ εµνρσ e

ipρ + ipσ

1 + ξ2 e ip·ŝ

=
∞∑
k=0

(−ξ2)k
[
δµρ δνσ e

ip·kŝ − i ξ εµνρσ e
ipρ + ipσ + ip·kŝ

]
, (4.32)

where ŝ = 1̂ + 2̂ + 3̂ + 4̂ and in the second step we have expanded the denominator using
the geometric series which converges exponentially for |ξ| < 1. Using this second form
and (C.2) we can evaluate M−1

x,µν|y,ρσ and obtain,

M−1
x,µν|y,ρσ =

∞∑
k=0

(−ξ2)k
[
δµρ δνσ δ

(4)
x−kŝ,y − i ξ εµνρσ δ

(4)
x−ρ̂−σ̂−kŝ,y

]
. (4.33)

We now apply the generalized Poisson resummation formula proven in appendix D for
N = 6V and find13 (use again eq. (2.14) to first rewrite the second exponent in (4.29))

Bβ,θ[Ae, Am] =

CM (β)
∑
{p}

e
− β̃2
∑

x,µ<ν
y,ρ<σ

(∂Am+2πp)x,µνM−1
x,µν|y,ρσ (∂Am+2πp)y,ρσ

e
−i
∑

x,µ<ν
(dAe)x,µν px,µν, (4.34)

13We remark that it is easy to show that for |ξ| < 1 all eigenvalues of M have positive real parts, which
guarantees the existence of the Gaussian integral in the Poisson resummation.
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with

β̃ ≡ 1
4π2β

,
∑
{p}
≡

∏
x,µ<ν

∑
px,µν∈Z

, CM (β) ≡ 1
(
√

2πβ)6V
√

detM
. (4.35)

∑
{p} denotes the sum over all configurations of plaquette occupation numbers px,µν ∈ Z.
Note that the first exponent in (4.34) with M−1

x,µν|y,ρσ given by (4.33) gives rise to a
lattice action that combines terms at arbitrary distances shifted relative to each other by
kŝ with k ∈ N0, such that this action is not ultra-local, i.e., it connects terms at arbitrary
distances kŝ. However, the corresponding terms are suppressed exponentially with k, due
to the condition |ξ| < 1. Such types of non-ultra local lattice actions with exponential
suppression of shifted terms are widely used, with prominent examples being fixed point
actions [35] or the overlap operator [25], and it is known that the exponential suppression
of distant terms guarantees a local continuum limit [36]. As already mentioned, such lattice
actions are referred to as local but non-ultra-local actions.

Let us now complete the duality transformation. The final step of the duality trans-
formation is to express the electric and the magnetic gauge fields, as well as the plaquette
occupation numbers in terms of their counterparts on the dual lattice, i.e., we again use
eqs. (2.21) and (2.22). We find

Bβ,θ[Ae, Am] = CM (β)
∑
{p}

e
− β̃2
∑

x̃,µ<ν
ỹ,ρ<σ

F̃mx̃,µν M̃x̃,µν|ỹ,ρσ F̃
m
ỹ,ρσ

e
− i
∑

x̃,µ<ν<ρ
Ãex̃,µνρ (dp̃)x̃,µνρ ,

(4.36)
where F̃mx̃,µν = (dÃm + 2πp̃)x̃,µν . The kernel M̃ x̃,µν|ỹ,ρσ is identified from M−1

x,µν|y,ρσ when
replacing (∂Am + 2πp)x,µν by the dual expression

∑
µ′<ν′ εµνµ′ν′(dÃm + 2πp̃)x̃−µ̂′−ν̂′,µ′ν′

in the exponent of (4.34) using (2.22), i.e.,

M̃ x̃,µν|ỹ,ρσ ≡
∑
µ′<ν′
ρ′<σ′

εµνµ′ν′M
−1
x+µ̂′+ν̂′,µ′ν′|y+ρ̂′+σ̂′,ρ′σ′ ερ′σ′ρσ

∣∣∣∣
x→x̃
y→ỹ

. (4.37)

Inserting the explicit form (4.33) of M−1
x,µν|y,ρσ and summing over the indices of the epsilon

tensors that appear in (4.37) we obtain in a few lines of algebra

M̃ x̃,µν|ỹ,ρσ =
∞∑
k=0

(−ξ2)k
[
δµρ δνσ δ

(4)
x̃−kŝ,ỹ − i ξ εµνρσ δ

(4)
x̃−ρ̂−σ̂−kŝ,ỹ

]
. (4.38)

It is important to note that as for the case without θ-term, the Boltzmann factor in
its dual form (4.36) is structurally similar to the original form (4.29) we started from. The
dual form lives on the dual lattice and the Villain variables n were replaced by the dual
plaquette occupation numbers p̃. The electric and magnetic gauge fields interchanged their
role, such that Ãm now appears in the quadratic form, while Ãe generates the constraints
for the dual plaquette occupation numbers.

However, the original kernel Mx,µν|y,ρσ eq. (4.30) and the dual kernel M̃ x̃,µν|ỹ,ρσ
eq. (4.38) differ. More specifically, the original kernel Mx,µν|y,ρσ is ultra-local, while the
dual kernel M̃ x̃,µν|ỹ,ρσ is a sum over terms that are shifted relative to each other by kŝ with

– 22 –



J
H
E
P
0
4
(
2
0
2
2
)
1
2
0

k ∈ N0. Comparing this form with our definition of QT in eq. (4.3) we find that for a fixed
k the second term in (4.38) gives rise to the topological charge QT [F̃m] with T = −kŝ, i.e.,
Q−kŝ[F̃m], with F̃mx̃,µν = (dÃm)x̃,µν + 2πp̃x̃,µν . Since integrating over Ãe in (4.36) generates
the closedness constraints for the dual plaquette occupation numbers p̃x̃,µν , the topological
charge Q−kŝ[F̃m] obeys all properties we showed for the original definition (4.3). In partic-
ular it is independent of T = −kŝ, such that Q−kŝ[F̃m] = Q0[F̃m] ∀k ∈ Z. Thus we may
sum up k in the term generated by the second factor of (4.38) such that the corresponding
term in the exponent reads

− β̃

2 8π2Q0[F̃m] (−iξ)
∞∑
k=0

(−ξ2)k = i
θ

4π2β2 + θ2/4π2 Q0[F̃m] = − i θ′Q0[F̃m] , (4.39)

where θ′ ≡ − θ/(4π2β2 + θ2/4π2). Thus we may rewrite the dual form (4.36) as

Bβ,θ[Ae, Am] =

CM
∑
{p}

e
− β̃2
∑∞

k=0(−ξ2)k
∑

x̃,µ<ν
F̃mx̃,µν F̃

m
x̃−kŝ,µν − iθ

′Q0[F̃m]
e
− i
∑

x̃,µ<ν<ρ
Ãex̃,µνρ (dp̃ )x̃,µνρ , (4.40)

where we have again used the partial integration formula to re-express the exponent in
the last factor. The dual form (4.40) has to be compared to the original form of the
Boltzmann factor (4.28). One sees that after interchanging the gauge fields with their dual
counterparts, multiplying the trivial overall factor, and replacing β by β̃ and θ by θ′, the
two expressions are almost identical. The only remaining difference is that the gauge field
action has the form

β̃

2

∞∑
k=0

(−ξ2)k
∑
x̃,µ<ν

F̃mx̃,µν F̃
m
x̃−kŝ,µν = β̃

2

∞∑
k=0

(−ξ2)k
∑
x̃,µ<ν

(dÃm+2πp̃ )x̃,µν(dÃm+2πp̃ )x̃−kŝ,µν ,

(4.41)
i.e., the gauge field action is a superposition of terms where the two factors of the field
strength F̃m are shifted relative to each other by kŝ with k ∈ N0. The k = 0 term
corresponds to the ultra-local action we have started from, but the duality transformation
has generated the non-ultra-local extension, which for |ξ| < 1 still gives rise to a local
continuum limit as we discussed above. We remark, however, that also the restriction
|ξ| < 1, which corresponds to β > |θ|/4π2, is an unphysical restriction for a proper self-
dual lattice version of U(1) lattice gauge theory with a θ-term we are aiming at.

4.4 Identification of the exactly self-dual theory

Having developed the duality transformation in the presence of a θ-term we are now ready
to identify the fully self-dual discretization that includes the θ-term. We have seen that the
duality transformation has converted the ultra-local lattice action of the original theory into
a non-ultra-local lattice action for the dual theory. The key insight is that in order to obtain
self-duality, we must not start with an ultra-local discretization for the original theory, but
with a more general ansatz that allows terms at arbitrary distances with exponentially
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decreasing coefficients. We write the Boltzmann factor in the form (compare (4.29))

Bβ,θ[Ae, Am] ≡
∑
{n}

e
−β2
∑

x,µ<ν
y,ρ<σ

F ex,µν Kx,µν|y,ρσ F
e
y,ρσ

e
i
∑

x,µ<ν
(∂Am)x,µν nx,µν , (4.42)

where K is a new kernel that we will specify below. Again the electric gauge field Ae

describes the dynamics and the magnetic gauge field Am generates the constraints.
The key step towards self-duality is to identify a kernel K that is form-invariant under

inversion. This can be done directly in momentum space, and from inspection of (4.31)
and (4.32) one finds that an ansatz of the form

K̂(p)µν|ρσ =
δµρ δνσ + i γ2 εµνρσ [e ipρ + ipσ + e−ipµ− ipν ]√

1 + γ2

2 [1 + cos(p · ŝ)]
, (4.43)

with
K̂(p)−1

µν|ρσ =
δµρ δνσ − i γ2 εµνρσ [e ipρ + ipσ + e−ipµ− ipν ]√

1 + γ2

2 [1 + cos(p · ŝ)]
, (4.44)

defines a gauge action and a topological term where the original kernel and the inverse
kernel that is used in the dual theory have the same momentum dependence, and thus
the same structure also in real space.14 Here γ is a real parameter that we do not need to
specify here and later will relate to the parameters β and θ. Note that we have symmetrized
the part that generates the topological charge in K to εµνρσ [e ipρ + ipσ + e−ipµ− ipν ], which
is related to a combination of Q0[F e] and Q−ŝ[F e]. With this choice the normalization
factor in the denominator is regular for all γ, i.e., the argument of the square root is always
positive, such that we have solved the problem of an unphysical restriction of β and θ we
faced in the naive attempt in the previous subsection.

It is obvious, that the non-trivial denominator
√

1 + γ2

2 [1 + cos(p · ŝ)] that appears in
the momentum space kernels (4.43) and (4.44) gives rise to non-ultra-local local real space
kernels K and K−1, which we now discuss. It is straightforward to identify the real space
equivalent of 1 + γ2

2 [1 + cos(p · ŝ)] which is the Helmholtz-type lattice operator

Hx,y = δ (4)
x,y + γ2

4
[
δ

(4)
x+ŝ,y + 2δ(4)

x,y + δ
(4)
x−ŝ,y

]
. (4.45)

Thus we find in real space,

Kx,µν|z,ρσ =
∑
z

H
− 1

2
x,y

[
δµρ δνσ δ

(4)
y,z + i

γ

2 εµνρσ
[
δ

(4)
y−ρ̂−σ̂,z + δ

(4)
y+ŝ−ρ̂−σ̂,z

] ]
, (4.46)

K −1
x,µν|y,ρσ =

∑
z

H
− 1

2
x,y

[
δµρ δνσ δ

(4)
y,z − i

γ

2 εµνρσ
[
δ

(4)
y−ρ̂−σ̂,z + δ

(4)
y+ŝ−ρ̂−σ̂,z

] ]
, (4.47)

where in real space the inverse square root H−
1
2 of the Helmholtz operator may be

implemented with the spectral theorem or a series expansion. Since the denominator
14Note that (4.43) is not the only choice of a kernel that keeps the electric-magnetic duality of the theory,

however, no ultra-local choice is possible. We remark that the choice (4.43) violates hypercubic symmetries.
This can indeed be corrected, as we discuss in appendix (F).
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√
1 + γ2

2 [1 + cos(p · ŝ)] in the momentum space kernels K̂(p) and K̂(p)−1 is regular for all
values of γ, the inverse Fourier transforms, i.e., the real space kernels K and K −1 will have
entries that decrease exponentially with increasing lattice distance, i.e., they are local (but
not ultra-local of course).

It is important to note that the operator H−
1
2

x,y is composed from simple operators
δx+nŝ,y for integers n. When applying these shifts on the terms with the epsilon tensor
in (4.46) and (4.47) this generates terms proportional to Q−ŝk[F e] for different values of k.
If there are no dynamical monopoles then we can replace all Q−kŝ[F e] by Q0[F e].

Thus for the terms with the epsilon tensor in (4.46) and (4.47) we may replace the
action of H−

1
2

x,y simply by multiplication with 1/
√

1 + γ2. We now use this fact to simplify
the topological part of the quadratic form of the Boltzmann factor.

We may write the Boltzmann factor (4.42) in the form

Bβ,θ[Ae, Am] ≡
∑
{n}

e−βSg [F e] − i θQ0[F e] e
i
∑

x,µ<ν
(∂Am)x,µν nx,µν , (4.48)

where the gauge field action is given by

Sg[F e] = 1
2
∑
x,µ<ν
y,ρ<σ

F ex,µν H
− 1

2
x,µν|y,ρσ F

e
y,ρσ , (4.49)

and using the simplification of H−
1
2

x,y for the topological part discussed above, we identify
the topological angle θ as

θ = β 4π2 γ√
1 + γ2 ⇒ γ = θ√

(4π2β)2 − θ2 . (4.50)

Note that while we obtained this for a model without dynamical magnetic matter, we can
take the above formulas as the definition of the θ term even in this case.

In a similar way we may identify the bare electric charge parameter e through the
pre-factor of the F eµνF eµν term which gives rise to the relation (again replacing H

− 1
2

x,y by
1/
√

1 + γ2)
1
e2 = β√

1 + γ2 . (4.51)

Using (4.50) and (4.51) we may express the two auxiliary parameters β and γ in terms of
the bare charge parameter e and the topological angle θ,

β = 1
2π

√(2π
e2

)
+
(
θ

2π

)2
, γ = θ e2

4π2 . (4.52)

Repeating the steps of the duality transformation from the previous section we use the
generalized Poisson resummation formula and find the dual form of the Boltzmann factor

Bβ,θ[Ae, Am] = CK(β)
∑
{p}

e
− β̃2
∑

x̃,µ<ν
ỹ,ρ<σ

F̃mx̃,µν K̃x̃,µν|ỹ,ρσ F̃
m
ỹ,ρσ

e
i
∑

x̃,µ<ν
(∂Ãe)x̃,µν p̃x̃,µν , (4.53)
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where (it is straightforward to establish the result detK = 1 we use here)

β̃ ≡ 1
4π2β

and CK(β) ≡ 1
(
√

2πβ)6V
√

detK
= 1

(2πβ)3V . (4.54)

The dual kernel K̃x̃,µν|ỹρσ is identified in analogy to (4.37) and we find

K̃ x̃,µν|ỹ,ρσ ≡
∑
µ′<ν′
ρ′<σ′

εµνµ′ν′ K
−1
x+µ̂′+ν̂′,µ′ν′|y+ρ̂′+σ̂′,ρ′σ′ ερ′σ′ρσ

∣∣∣∣
x→x̃
y→ỹ

=
∑
z

H
− 1

2
x,y

[
δµρ δνσ δ

(4)
y,z − i

γ

2 εµνρσ
[
δ

(4)
y−ρ̂−σ̂,z + δ

(4)
y+ŝ−ρ̂−σ̂,z

] ]
. (4.55)

Obviously, up to the opposite sign of the imaginary part, also the dual kernel K̃x̃,µν|ỹ,ρσ has
the structure of the original kernel Kx,µν|y,ρσ in eq. (4.46), and comparing (4.42) and (4.53)
we find that we have indeed constructed a self-dual Boltzmann factor that also includes
the θ-term. Writing the dual form of the kernel as

Bβ,θ[Ae, Am] = CK(β)
∑
{p}

e−β̃Sg [F̃m] − i θ̃ Q0[F̃ e] e
i
∑

x̃,µ<ν
(∂Ãe)x̃,µν p̃x̃,µν , (4.56)

we here identify the dual topological angle as

θ̃ = − 4π2β̃
γ√

1 + γ2 . (4.57)

We now may summarize the self-duality relation of the Boltzmann factor with θ-term as

β
3V
2 Bβ,θ[Ae, Am] = β̃

3V
2 B̃

β̃,θ̃

[
Ãm, Ãe

]
, (4.58)

where we have again distributed the pre-factors symmetrically and use

β̃ = β f , θ̃ = − θ f where f ≡ 1
(2πβ)2 . (4.59)

Alternatively we may write the transformation of the couplings completely in terms of the
more physical parameters e and θ (use (4.50) and (4.51))

1
ẽ 2 = 1

e2 f , θ̃ = − θ f with f ≡ 1(
2π
e2

)2
+
(
θ

2π

)2 . (4.60)

These equations constitute the generalization of the duality relation eq. (2.26) to the case
of a Boltzmann factor that also includes the topological term. We remark at this point
that the self-duality of QED with a θ-term can be extended to an even more general
definition of the topological charge, that also fully implements all lattice symmetries. For
the corresponding discussion see appendix F.

As before we check that repeating the duality transformation provides the identity
map. This property follows from ˜̃

A
e = −Ae, ˜̃Am = −Am and the trivial identities

˜̃
β = β ,

˜̃
θ = θ and CK(β)CK(β̃) = 1 . (4.61)
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We may now use the Boltzmann factor (4.56) in the partition sum (4.27) and based
on (4.58) obtain the self-duality relation for full QED with a θ-term,

β
3V
2 Z(β, θ,M e, λe, qe, Mm, λm, qm) = β̃

3V
2 Z

(
β̃, θ̃, M̃ e, λ̃e, q̃ e, M̃m, λ̃m, q̃ m

)
, (4.62)

with β̃ = β f , θ̃ = −θ f , f = 1
4π2β2 ,

M̃ e = Mm , λ̃e = λm , M̃m = M e , λ̃m = λe ,

q̃ = S q , S =
(

0 1
−1 0

)
,

where again we use the vector of charges q = (qe, qm)t.
As before we can generate self-duality relations for observables by evaluating derivatives

of lnZ with respect to the couplings. When considering observables for the matter fields,
which are obtained from derivatives with respect to M e, λe, Mm or λm, the self-duality
relations generalize in a straightforward way. For example the relation (3.12) now reads,〈

|φe|2
〉
β,θ,Me, λe, q e,Mm, λm, qm

=
〈
|φm|2

〉
β̃,θ̃,M̃e, λ̃e,q̃ e, M̃m, λ̃m, q̃m

. (4.63)

However, self-duality relations for observables that contain the gauge fields, i.e., observables
that are generated by derivatives with respect to β or θ require a little more work, since via
γ as given in (4.50) the two parameters mix, and additional terms appear in the self-duality
relations. We derive two such self-duality relations which for notational convenience we
discuss without matter fields, i.e., we derive them for pure gauge theory with a θ-term
(adding matter fields is trivial).

Applying a derivative with respect to β on the Boltzmann factor in the form of
eq. (4.56) generates the insertion of the action Sg, such that we find (the matter couplings
were omitted as arguments in all expressions since we discuss the pure gauge case),

− ∂ lnZ(β, θ)
∂β

=
〈
Sg
〉
β,θ

+ β

〈
∂Sg
∂β

〉
β,θ

=
〈
Sg
〉
β,θ

+ β
∂γ

∂β

〈
Sg
〉
β,θ

=
〈
Sg
〉
β,θ
− Γ θ

β

〈
Sg
〉
β,θ
.

(4.64)
The second terms on the right hand sides come from the β-dependence of the action Sg
via the β-dependence of γ and we use the notation S′g = dSg/dγ. It is straightforward
to compute the derivative ∂γ

∂β that appears after the second step from the explicit expres-
sion (4.50), and we write the result in the form

∂γ

∂β
= −Γ θ

β
with Γ ≡ β3(4π2)2(

(4π2β)2 − θ2)3/2 = β̃3(4π2)2(
(4π2β̃)2 − θ̃2)3/2 ≡ Γ̃ , (4.65)

where we have factored out the combination Γ which is invariant under the duality trans-
formation as follows immediately from the transformation properties (4.59). Using the
self-duality relation (4.62) for the partition sum we can apply the derivative with respect
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to β also on the dual form,

−∂ lnZ(β, θ)
∂β

= − ∂

∂β
ln
(
(2πβ)−3V Z(β̃, θ̃)

)
= 3V

β
− dβ̃

dβ

∂ lnZ(β̃, θ̃)
∂β̃

= 3V
β
− 1

4π2β2

[〈
Sg
〉
β̃,θ̃
− Γ̃ θ̃

β̃

〈
S′g
〉
β̃,θ̃

]
. (4.66)

Setting equal the right hand sides of (4.64) and (4.66) one obtains after a few steps of
trivial reordering of terms (use also β̃ = 1/4π2β and Γ̃ = Γ) the final form of the self-
duality relation

β
〈
Sg
〉
β,θ
− Γ θ

〈
S′g
〉
β,θ

= 3V − β̃
〈
Sg
〉
β̃,θ̃

+ Γ θ̃
〈
S′g
〉
β̃,θ̃

. (4.67)

It is easy to check that for θ = 0 this self-duality relation reduces to the self-duality
relation (2.32) which we derived for pure gauge theory without θ-term (use θ = 0⇒ γ = 0,
the fact that Sg at γ = 0 reduces to the ultra-local action we used initially, and 〈F 2〉 =
〈Sg|γ=0〉/3V ). The generalization to the non-ultralocal action that is needed for θ 6= 0 then
generates the additional terms with S′g.

In exactly the same way we may also study derivatives i∂/∂θ that generate expecta-
tion values of the topological charge Q0, and following the same steps as above find the
corresponding self-duality relation

β
〈
Q0
〉
β,θ
− iΓβ

〈
S′g
〉
β,θ

= − β̃
〈
Q0
〉
β̃,θ̃

+ iΓ β̃
〈
S′g
〉
β̃,θ̃

. (4.68)

This self-duality relation vanishes for θ = 0 (as expected), since 〈Q0〉
∣∣
θ=0 = 0 and due to

θ = 0⇒ γ = 0 also the second term disappears because of S′g
∣∣
γ=0 = 0.

4.5 The SL(2,Z) structure of dyonic lattice QED with a θ-term

In the course of this paper we have identified two transformations of our self-dual lattice
version of QED with a θ-term. The first one is the duality transformation S itself, which
we here write in terms of the bare charge parameter e, the topological angle θ and the
vector of electric and magnetic charges q ≡ (qe, qm)t (compare (4.60)),

1
e2 →

1
ẽ 2 = 1

e2 f , θ → θ̃ = − θ f where f ≡ 1(
2π
e2

)2
+
(
θ

2π

)2 ,

q → q̃ = S q with S =
(

0 1
−1 0

)
. (4.69)

The second transformation we identified is T which shifts θ by 2π that was discussed
in subsection 4.2 in the context of the Witten effect. It acts only on θ and the charge vector
q and is defined as follows (see (4.26))

θ → θ = θ − 2π ,

q → q = T q with T =
(

1 1
0 1

)
. (4.70)

We begin the discussion of the overall duality structure by noting that the matrices S
and T are the generators15 of the group SL(2,Z), which is the group of 2× 2 matrices M

15See for example [37] for an elementary introduction to the group SL(2,Z).
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with integer-valued elements and determinant 1, i.e.,

M =
(
a b

c d

)
with a, b, c, d ∈ Z and ad− bc = 1 . (4.71)

And since they are generators, combinations of the matrices S and T implement arbitrary
SL(2,Z) transformations on the charge vector q.

Furthermore, also the action of the dualities S and T on 1/e2 and θ can be identified
with the group SL(2,Z). In order to see that, we combine the gauge coupling e and the
topological angle θ into a joint complex-valued coupling τ , the so-called modular parameter
of U(1) gauge theory (see, e.g., [19, 38, 39]), defined as

τ ≡ i 2π
e2 −

θ

2π . (4.72)

It is straightforward to see from (4.69) and (4.70) that our two generators S and T act as

S : τ → τ̃ = −1
τ

and T : τ → τ = τ + 1 . (4.73)

The action of a general SL(2,Z) transformation on a complex number τ is defined as16

τ → M τ ≡ aτ + b

cτ + d
, (4.74)

where a, b, c, d are the entries of an SL(2,Z) matrix M as given in (4.71). It is straight-
forward to see that choosing the generators M = S and M = T gives rise to the trans-
formations τ → −1/τ and τ → τ + 1, i.e., the action of our symmetries S and T as
stated in (4.73). Thus our transformations S and T generate the full set of group transfor-
mations (4.74). We conclude that combining our two transformations S and T as stated
in (4.69) and (4.70) gives rise to a full SL(2,Z) invariance of our self-dual lattice formulation
of QCD with a θ-term.

We now ignore the other couplings of the dyonic matter fields, such as M and λ, and
only focus on the couplings 1/e2 and θ combined into the complex coupling τ , as well as the
charge vector q. Only those couplings are now listed as arguments of the partition function.
Furthermore it is convenient to redefine the partition function as Z(τ, q) ≡ β

3V
2 Z(τ, q).

Then the S and T symmetry relations are written as

Z(τ, q) = Z(Sτ, Sq) and Z(τ, q) = Z(Tτ, Tq) , (4.75)

and according to the discussion above these two transformations generate the full SL(2,Z)
invariance given by

Z(τ, q) = Z(Mτ,Mq) with (4.76)

M =
(
a b
c d

)
, a, b, c, d ∈ Z , ad− bc = 1 , M τ = aτ + b

cτ + d
.

These equations describe the symmetry content of dyonic self-dual QED with a θ-term.
16Strictly speaking this implements the projected group PSL(2,Z), which is SL(2,Z) with matrices M

and −M identified.
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Figure 1. Mapping of theories in the complex τ plane that are related by different elements of
SL(2,Z). On the vertical axis we plot Im τ = 2π/e2 and on the horizontal axis Re τ = −θ/2π.
Theories that have θ = 0 and thus can be directly simulated are located on the positive vertical
axis (marked with a thick black line). Different elements of SL(2,Z) map this family of theories
to equivalent theories with non-zero θ which are represented by the semi-circles (see the legend for
which element M of SL(2,Z) was used).

As we have seen in section 3.2, dyonic theories generically have a sign problem. In
addition, also theories with a θ-term have a sign problem. However, the SL(2,Z) structure
we identified above allows us to map theories which can be recast in terms of wordlines
without the sign-problem (i.e., with the purely electric and/or purely magnetic matter, at
least one of which is bosonic and considered at θ = 0) onto other theories that naively
do have a sign problem. This map can be rather nontrivial. To illustrate the idea, let us
discuss an example. We consider a matrix M ∈ SL(2,Z) given by

M =
(

1 0
1 1

)
. (4.77)

We have seen that a theory described by (τ, q) is equivalent to a theory with parameters
(Mτ,Mq). Furthermore we can simulate the family of theories with τ = iy, y ∈ R+ and,
say a matter field with charge vector q = (n, 0)t with n ∈ Z. This family of theories is
dual to theories with τ̄ = Mτ = iy

iy+1 and q̄ = Mq = (n, n)t. Identifying Re(τ̄) = θ̄
2π and

Im(τ̄) = 2π
ē2 , we find that the dual theories have parameters and matter charges given by

(y ∈ R+)

ē2 = 2π1 + y2

y
, θ̄ = 2π y2

1 + y2 , and q̄ =
(
n

n

)
. (4.78)

Obviously this is a family of theories that has a complex action problem, which, using our
SL(2,Z) mapping we may study via simulating the corresponding sign free set of theories.
The above family of theories is shown as an orange semi-circle in the τ plane in figure 1,
or equivalently, in the (θ, e2) plane in figure 2 (again the orange curve). Note that in
particular the self-dual point of the original theory y = 1 is mapped to e2 = 4π and θ̄ = π

of the dual theory.
Figures 1 and 2 show several SL(2,Z) families of theories that are dual to the family

of theories which obeys Im(τ) = 0, i.e., the θ = 0 theories, that can be simulated as
long as the matter field is not dyonic, i.e., the matter fields are purely electric or purely
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Figure 2. The same as figure 1, but now plotted in the (θ, e2) plane.

magnetic. The legend shows the matrices M that need to be applied to the matter fields
in the exactly same manner as in the example above. Note that all the interesting theories
which are related to the sign-problem free theory are at strong electric coupling ē2 ≥ 4π,
as is evident from figure 2.

5 Concluding remarks

In this work we discussed the construction of U(1) gauge theories in 4d on the lattice with
θ-terms. We showed that modified Villain actions allow for a construction which admits
the inclusion of θ-terms in a natural way. However, a naive ultra-local θ-term ruins the
self-dual nature of the theory, mapping the ultra-local theory to a merely local one. We
showed that by generalizing the modified Villain actions to include non-ultra-local terms,
we can restore the exactly self-dual nature of the model. The construction is reminiscent
of the inability to regulate a lattice theory in an ultra-local way, while preserving the axial
symmetry in 4d lattice gauge theories. Indeed, the Nielsen-Ninomiya theorem [21–23]
prohibits a lattice regularization for which the matrix γ5 anti-commutes with the Dirac
operator, which is essential for the axial symmetry. However, using the Ginsparg-Wilson
relation [26] and its solution by Neuberger [25], Lüscher showed [24] that an axial symmetry
can be defined. But such constructions, while local, are not ultra-local. In fact 4d U(1)
gauge theories, both free and interacting, have anomalies [27–30] and it is not a priory a big
surprise that for maintaining the correct symmetry and anomaly structure on the lattice
one must resort to a local, but not ultra-local form of the action. Yet many examples
exist of lattice discretization of theories with anomalies, which maintain their ultra-local
form. One example is a θ = π 2d abelian gauge theory, whose lattice action was discussed
in [7–12], and may be chosen ultra-local, even though such models may have ‘t Hooft
anomalies involving their internal symmetries. Such models are also connected to half-
integral spin-chains, which furnish a regulator of the Hilbert space.

It is well known, that the free abelian gauge theory has an SL(2,Z) structure in the
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continuum, generated by self-duality and shifts of the θ-angle by 2π. As Witten showed
in [40], the free U(1) gauge theory partition function transforms as a modular form, with a
modular weight determined by the Euler characteristic χ and the signature of the spin-for
manifold σ. In [31] this was interpreted as a ‘t Hooft anomaly (see section 4.2.2 of [31]) at
special points of the modular parameter τ , where the theory enjoys a Z6 symmetry, which is
a subgroup of SL(2,Z). As explained by Honda and Tanizaki in [31], this Z6 symmetry has
a mixed anomaly with gravity. On the other hand, the mixed axial-gravitational anomaly
of fermions is also well known (see, e.g., [41–43]). Furthermore, the role of gravitational
anomalies in lattice discretization was noted in [44], where it was proven (under some mild
assumptions) that there exists no lattice discretization17 in two dimensions unless its pure
gravitational anomaly vanishes. One may then naturally wonder if the inability to write
ultra-local actions is related to the involvement of mixed-gravitational anomalies.
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A Notation and results for lattice differential forms

In this appendix we summarize the notation and some basic results for differential forms
on the lattice, which we use in our paper. For a more general presentation see, e.g., [7, 33].
In the main part of the paper we work in d = 4 dimensions, but this appendix is kept
general with arbitrary d.

We consider a d-dimensional hypercubic lattice Λ and set the lattice spacing to a = 1.
The spatial extents of the lattice are denoted as Nµ, µ = 1, 2 . . . d and we use periodic
boundary conditions. Sites are denoted as x. Links are denoted as (x, µ), plaquettes as
(x, µν) with µ < ν, 3-cubes as (x, µνρ) with µ < ν < ρ et cetera.

We can identify these elements with r-cells: sites are 0-cells. A link (x, µ) is a 1-cell
and contains the 0-cells (sites) x and x+µ̂ where by µ̂ we denote the unit vector in direction
µ. A plaquette (x, µν) is a 2-cell and contains the sites x, x + µ̂, x + ν̂ and x + µ̂ + ν̂, as
well as the links (x, µ), (x + µ̂, ν), (x + ν̂, µ) and (x, ν). In an equivalent way 3-cells are
the 3-cubes that contain 8 sites, 12 links and 6 plaquettes and similarly for higher r-cells.
The site x in the definition of an r-cell we will sometimes refer to as root site or root.

We assign integers or real numbers to the r-cells and refer to these as r-forms. We
denote r-forms as fx, µ1µ2 ... µr ∈ R or Z with µ1 < µ2 < . . . < µr, i.e., the r-forms
are labelled by the root site and the ordered indices µj , j = 1, 2, . . . r that label the
corresponding r-cell. It is convenient to not only label the r-forms with the ordered in-
dices µ1 < µ2 < . . . < µr but allow for arbitrary ordering with the convention that
fx, µ1 ... µj ... µk ... µr = −fx, µ1 ... µk ... µj ... µr , i.e., r-forms are antisymmetric in their indices.

17The proof was for a lattice discretization of Hilbert space, where time is viewed as continuous.

– 32 –



J
H
E
P
0
4
(
2
0
2
2
)
1
2
0

This also implies that an r-form vanishes when two or more of the indices are equal. One
may use this generalized labelling with non-ordered indices also for the cells and the sign
of the permutation of the indices defines an orientation for the cells.

We define two discrete differential operators that act on r-forms, the exterior derivative
d that takes an r-form into an (r+1)-form with the definition that d acting on a d-form
gives zero. The other differential operator is the boundary operator ∂ that takes an r-form
into an (r−1)-form. When acting on a 0-form ∂ gives zero. The two differential operators
are defined as

(d f)x, µ1µ2 ... µr ≡
r∑
j=1

(−1)j+1
[
fx+µ̂j , µ1 ... µ

o
j ... µr

− fx, µ1 ... µ
o
j ... µr

]
,

(∂f)x, µ1µ2 ... µr ≡
d∑

ν=1

[
fx, µ1 ... µr ν − fx−ν̂, µ1 ... µr ν

]
, (A.1)

where in the first equation µ
o

j indicates that µj is dropped from the list of indices. We
remark that due to the antisymmetry of the r-forms with respect to interchange of their
indices, in the second line of (A.1) only those (r+1)-forms contribute to the sum where ν
is different from all indices µ1, µ2 . . . µr. The ordering of these indices and ν determines
the sign of the contribution.

Both differential operators are nilpotent, i.e., d 2 = 0 and ∂ 2 = 0. Furthermore one may
show the following partial integration formula, where f is an r-form and g an (r−1)-form,∑

x
µ1< ... <µr

fx, µ1 ... µr (d g)x, µ1 ... µr = (−1)r
∑
x

µ1< ... <µr−1

(∂f)x, µ1 ... µr−1 gx, µ1 ... µr−1 . (A.2)

The Hodge decomposition states that an arbitrary r-form f can be written as the sum of
the boundary operator ∂ acting on an (r+1)-form p, the exterior derivative operator d
acting on an (r−1)-form q and a harmonic or defect r-form h that obeys d h = 0 and
∂ h = 0,

fx, µ1 ... µr = (∂ p)x, µ1 ... µr + (d q)x, µ1 ... µr + hx, µ1 ... µr . (A.3)

The dual lattice Λ̃ is defined by a one-to-one identification of the r-cells of the original
lattice with the (d−r)-cells of the dual lattice. The sites x̃ of Λ̃ are at the centers of the
d-cells of Λ, i.e., x̃ = x+ 1

2(1̂ + 2̂ + . . .+ d̂ ). There is a natural identification of the r-forms
fx, µ1 ... µr on Λ with the (d−r)-forms on Λ̃. We denote these as f̃x̃, νr+1 ... νd but stress that
the numerical value is of course the same as the r-form fx, µ1 ... µr we identify it with. The
identification is given by

fx, µ1 ... µr =
∑

νr+1<νr+2< ...< νd

εµ1 ... µr νr+1 ... νd f̃x̃−ν̂r+1−ν̂r+2 ...−ν̂d, νr+1 ... νd . (A.4)

Finally, when switching between the original lattice Λ and the dual lattice Λ̃ the exterior
derivative d and the boundary operator are converted into each other,

(∂ f)x, µ1 ... µr =
∑

νr+1<νr+2< ...< νd

εµ1 ... µr νr+1 ... νd (d f̃)x̃−ν̂r+1−ν̂r+2 ...−ν̂d, νr+1 ... νd . (A.5)
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B Auxiliary results for the topological charge

In this appendix we collect some results for the topological charge QT [F ] which can be
obtained with elementary although lengthy algebra. As a first result we show (4.4), i.e.,
the fact that the topological charge QT [F ] is invariant when adding the exterior derivative
(dB)x,µν of an arbitrary 1-form Bx,µ to the field strength Fx,µν = (dAe)x,µν + 2π nx,µν , as
long as the Villain variables nx,µν obey the closedness condition (2.7), i.e., (dn)x,µνρ = 0.
The expression QT [F+dB] can be trivially decomposed into three contributions,

QT [F+dB] = 1
8π2

∑
x

∑
µ<ν
ρ<σ

(F + dB)x,µν εµνρσ (F + dB)x−ρ̂−σ̂+T,ρσ = QT [F ] + QT [(dB)]

+ 1
8π2

∑
x

∑
µ<ν
ρ<σ

[
Fx,µν(dB)x−ρ̂−σ̂+T,ρσ + Fx−ρ̂−σ̂+T,ρσ(dB)x,µν

]
εµνρσ . (B.1)

For proving the claimed independence of dB we need to show that the second and third
terms on the right hand side vanish. We begin with the third term: after inserting the
explicit definition of the exterior derivatives (dB)x,µν and reshuffling the summation indices
the third term can be written in the form (a factor 1/8π2 was dropped)∑
x

∑
µ<ν
ρ<σ

εµνρσ
[
Bx,ρ (Fx+ρ̂+σ̂−T,µν − Fx+ρ̂−T,µν) − Bx,σ (Fx+ρ̂+σ̂−T,µν − Fx+σ̂−T,µν) +

Bx,µ (Fx−ρ̂−σ̂+T,ρσ − Fx−ρ̂−σ̂−ν̂+T,ρσ) − Bx,ν (Fx−ρ̂−σ̂+T,ρσ − Fx−ρ̂−σ̂−µ̂+T,ρσ )
]
. (B.2)

For a fixed site x we now may identify all the contributions that multiply Bx,µ for a fixed
value of µ. For example, the terms that multiply Bx,1 are given by

Fx+T−3̂−4̂,34 − Fx+T−2̂−3̂−4̂,34 − Fx+T−2̂−4̂,24 + Fx+T−2̂−3̂−4̂,24 + Fx+T−2̂−3̂,23

−Fx+T−2̂−3̂−4̂,23 + Fx−T+1̂+4̂,23 − Fx−T+1̂,23 − Fx−T+1̂+3̂,24 (B.3)
+Fx−T+1̂,24 + Fx−T+1̂+2̂,34 − Fx−T+1̂,34 = (dF )x+T−2̂−3̂−4̂,234 − (dF )x−T+1̂,234 = 0,

where in the last line we have combined the contributions into the exterior derivatives
(dF )x,µνρ = (d2A)x,µνρ + 2π(dn)x,µνρ = 0, which vanish due to d2 = 0 and the closedness
condition (dn)x,µνρ = 0 we implemented for the Villain variables. The same steps can be
repeated for the factors that multiply the other Bx,µ thus establishing that the third term
on the r.h.s. of (B.1) vanishes.

Let us now explore the second term on the right hand side of (B.1), i.e., the term
Q[(dB)]. Dropping again a factor of 1/8π2 the term reads∑

x

∑
µ<ν
ρ<σ

(dB)x,µν εµνρσ (dB)x−ρ̂−σ̂+T,ρσ =
∑
x

∑
µ<ν
ρ<σ

(dB)x+ρ̂+σ̂−T,µν εµνρσ (dB)x,ρσ =

∑
x

∑
µ<ν
ρ<σ

εµνρσ
[
Bx+ρ̂,σ −Bx,σ −Bx+σ̂,ρ +Bx,ρ

]
(dB)x+ρ̂+σ̂−T,µν =

∑
x

∑
µ<ν
ρ<σ

εµνρσ
[
Bx,ρ

(
(dB)x+ρ̂+σ̂−T,µν − (dB)x+ρ̂−T,µν

)

−Bx,σ
(
(dB)x+ρ̂+σ̂−T,µν − (dB)x+σ̂−T,µν

)]
, (B.4)
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where we performed trivial shifts of site indices, explicitly wrote out one of the exterior
derivatives, and organized the terms such that we identify the factors multiplying Bx,ρ and
Bx,σ. As with the third term we now collect all factors that multiply Bx,µ for a fixed µ.
For the case of Bx,1 this factor is given by

(dB)x−T+1̂+4̂,23 − (dB)x−T+1̂,23 − (dB)x−T+1̂+3̂,24 + (dB)x+T+1̂,24 (B.5)

+(dB)x−T+1̂+2̂,34 − (dB)x−T+1̂,34 = (d2B)x−T+1̂,234 = 0 .

In the second line we have identified the terms with (d2B)x−T+1̂,234, which vanishes due
to the nilpotency of the exterior derivative. In a similar way one can treat the terms that
multiply Bx,µ for all values of µ and show that also the second term on the r.h.s. of (B.1)
vanishes. Thus we have proven (4.4), i.e., QT [F+dB] = QT [F ] for configurations of the
Villain variables that obey the closedness condition (dn)x,µνρ = 0.

The second result we show in this appendix is the fact that when using the Hodge
decomposition (4.6) for the Villain variables the result for the topological charge QT [F ] at
arbitrary T is given by (4.8) when the harmonic contribution is parameterized as in (4.7).
Obviously

QT [F ] = QT [2πn] = QT [2πdl + 2πh] = QT [2πh] = 1
2
∑
x

∑
µ<ν
ρ<σ

εµνρσhx,µνhx−ρ̂−σ̂+T,ρσ ,

(B.6)
where in the first step we used (4.5), then inserted the Hodge decomposition (4.6) and
subsequently used (4.4). In the final step QT [2πh] was written explicitly. Inserting the
parametrization (4.7) for the harmonic contribution h we find

QT [2πh] = 1
2
∑
x

∑
µ<ν
ρ<σ

εµνρσ ωµν ωρσ

Nρ∑
i=1

Nσ∑
j=1

δx, iρ̂+jσ̂

Nµ∑
n=1

Nν∑
l=1

δx−ρ̂−σ̂+T, nµ̂+lν̂ (B.7)

= 1
2
∑
µ<ν
ρ<σ

εµνρσ ωµν ωρσ

Nµ∑
n=1

Nν∑
l=1

Nρ∑
i=1

Nσ∑
j=1

δiρ̂+jσ̂−ρ̂−σ̂+T,nµ̂+lν̂

= 1
2
∑
µ<ν
ρ<σ

εµνρσ ωµν ωρσ

Nµ∑
n=1

Nν∑
l=1

Nρ∑
i=1

Nσ∑
j=1

δ0,(n−tµ)µ̂+(l−tν)ν̂+(1−i)ρ̂+(1−j)σ̂ .

In the first step we summed over x to remove the first Kronecker delta. In the second
step we used that T = tµµ̂ + tν ν̂ + tρρ̂ + tσσ̂ for mutually distinct µ, ν, ρ, σ. Then it is
obvious that only a single term remains where the Kronecker deltas give 1, such that the
topological charge reduces to

QT [2πh] = 1
2
∑
µ<ν
ρ<σ

εµνρσ ωµν ωρσ = ω12ω34 − ω13ω24 + ω14ω23 ∈ Z , (B.8)

which is the result (4.8).
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C Properties of the kernels M and K from Fourier transformation

In sections 4.1 and 4.3 we combine the gauge field action and the θ-term into quadratic
forms with kernels Mx,µν|y,ρσ defined in eq. (4.30) and similarly in section 4.3 with a new
kernel Kx,µν|y,ρσ defined in eq. (4.46). In order to diagonalize the space-time dependence of
these kernels, which we here generically denote as Ax,µν|y,ρσ, we use Fourier transformation,
i.e., a similarity transformation with the unitary matrices Up,x ≡ V −1/2e−ip·x, where the
momenta are given by pµ = 2πnµ/Nµ , nµ = 0, 1, 2 . . . Nµ − 1 (we use periodic boundary
conditions). We find ∑

x,y

U?p,xAx,µν|y,ρσ Uq,y = δ (4)
p,q Â(p)µν|ρσ , (C.1)

such that
A −1
x,µν|y,ρσ = 1

V

∑
p

eip(y−x) Â(p)−1
µν|ρσ . (C.2)

The Fourier transform Â(p)µν|ρσ is a 6 × 6 matrix (we order the indices µ < ν, ρ < σ).
Both, the Fourier transforms of M and of K have a similar structure given by18 (again we
use the generic notation Â for both kernels),

Â(p)µν|ρσ = f(p)[δµρ δνσ + i a εµνρσ e
ipρ + ipσ ] , (C.3)

where f(p) is some function of the momenta and a ∈ R some real-valued parameter. It is
straightforward to show that∑
ρ<σ

[δµρ δνσ + i a εµνρσ e
ipρ + ipσ ][δρτ δσω − i a ερστω e ipτ + ipω ] = δµτ δνω(1+a2eip·ŝ) , (C.4)

where again we use ŝ ≡ 1̂ + 2̂ + 3̂ + 4̂. As a consequence, the inverse momentum space
kernel is given by

Â(p) −1
µν|ρσ = δµρ δνσ − i a εµνρσ e

ipρ + ipσ

f(p)(1 + a2eip·ŝ) , (C.5)

and with (C.2) one finds the inverse kernel in real space.

D Generalized Poisson resummation

In this appendix we present a short derivation of the generalized Poisson resummation
formula. We consider a function b(x1, x2, . . . xN ) of N real variables xj that has the form

b(x1, x2, . . . xN ) ≡

 N∏
j=1

∑
nj∈Z

 e−β2 ∑N

j,k=1(xj+2πnj)Mjk (xk+2πnk)
e
−i
∑N

j=1 ζj(xj+2πnj) .

(D.1)
18For K we actually use a symmetrized version of the term with the ε-tensor, but the inversion strategy

is identical to the one outlined here.
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Mjk is an invertible matrix that has eigenvalues with positive real parts and ζj are some real
parameters. The generalized Poisson resummation formula states that b(x1, x2 , . . . xN ) can
be expressed as

b(x1, x2 . . . xN )=
( 1√

2πβ

)N 1√
detM

 N∏
j=1

∑
pj∈Z

e− 1
2β
∑N

j,k=1(ζj+pj)M−1
jk

(ζk+pk)
e
i
∑N

j=1 pj xj .

(D.2)
To prove (D.2) we first note that b(x1, x2 . . . xN ) given in (D.1) is 2π-periodic in each of
its arguments. This implies that it has the Fourier representation

b(x1, x2 . . . xN ) =

 N∏
j=1

∑
pj∈Z

 b̂ (p1, p2 . . . pN ) e i
∑N

j=1 pj xj , (D.3)

with the Fourier transforms b̂ (p1, p2 . . . pN ) given by

b̂ (p1, p2 . . . pN ) =

 N∏
j=1

∫ π

−π

dxj
2π

 b(x1, x2 . . . xN ) e−i
∑N

j=1 pj xj . (D.4)

Inserting the explicit form (D.1) we find

b̂ (p1, p2 . . . pN ) =

 N∏
j=1

∑
nj∈Z

∫ π

−π

dxj
2π

e−β2 ∑N

j,k=1(xj+2πnj)Mjk(xk+2πnk)
e
−i
∑N

j=1(ζj+pj)(xj+2πnj)

=

 N∏
j=1

∫ ∞
−∞

dyj
2π

e−β2 ∑N

j,k=1 yjMjk yk e
−i
∑N

j=1(ζj+pj)yj

=
( 1√

2πβ

)N 1√
detM

e
− 1

2β
∑N

j,k=1(ζj+pj)M−1
jk

(ζk+pk)
, (D.5)

where in the first step we have inserted factors e−i2πpjnj = 1 (note that the pj are integer)
and in the second step have switched to new integration variables yj = xj + 2πnj . In
the last step the N -dimensional Gaussian integral was solved. Inserting this result for
b̂ (p1, p2 . . . pN ) in (D.3) completes the proof of (D.2).

E The dual worldline formulation

In the section 3 we have generalized the self-dual U(1) gauge theory from section 2 to include
electric and magnetic matter and showed that the construction is self-dual. However, the
form of self-dual lattice QED discussed in section 3 is not directly suitable for a numerical
simulation, since the gauge field Boltzmann factor (2.13) obviously is complex and does not
give rise to a real and positive weight factor that may be used in a Monte Carlo simulation.
In this apppendix we now show that for bosonic matter this complex action problem can
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be overcome by switching to a worldline formulation for the magnetic matter.19 First
numerical results for self-dual QED based on this representation were presented in [13].

In order to prepare the Boltzmann factor (2.13) for the worldline formulation we rewrite
the second exponent in (2.13) by switching to the dual lattice using (2.21) and the identity

(dn)x,µνρ = −
∑
σ

εµνρσ ( ∂ ñ )x̃−σ̂,σ , (E.1)

which is a direct consequence of (A.5). Thus the gauge field Boltzmann factor assumes
the form

Bβ [Ae, Am] =
∑
{n}

e
−β2
∑

x

∑
µ<ν

(
F ex,µν

)2 ∏
x̃,µ

e iÃ
m
x̃,µ(∂ñ)x̃,µ , (E.2)

where we have converted the sum in the second exponent of the Boltzmann factor into a
product over all links of the dual lattice.

The second step is to use the well known worldline representation of the charged scalar
in a background U(1) gauge field (see, e.g., [46, 47]). It is straightforward to convert this
worldline representation to the dual lattice where the magnetic matter partition sum (3.4)
is defined. The worldline representation then reads (compare the appendix of [7] for the
notation used here)

Z̃Mm, λm, qm
[
Ãm

]
≡
∑
{k̃}

WMm, λm
[
k̃
] [∏

x̃

δ
((
∂k̃
)
x̃

)]∏
x̃,µ

e i q
m Ãmx̃,µ k̃x̃,µ

 . (E.3)

The partition function is a sum over configurations of the dual flux variables k̃x̃,µ ∈ Z

assigned to the links (x̃, µ) of the dual lattice, where∑
{k̃}

≡
∏
x̃,µ

∑
k̃x̃,µ∈Z

. (E.4)

The flux variables are subject to vanishing divergence constraints

(
∂k̃
)
x̃
≡

d∑
µ=1

[
k̃x̃,µ − k̃x̃−µ̂,µ

]
= 0 ∀x̃ , (E.5)

which in (E.3) are implemented with the product of Kronecker deltas. These constraints
enforce flux conservation at each site x̃ of the dual lattice, such that the k̃x̃,µ form closed
loops of flux on the dual lattice. At every link (x̃, µ) of the dual lattice the dual magnetic
gauge field Ãmx̃,µ couples in the form e i q

m Ãmx̃,µ k̃x̃,µ , which gives rise to the second product
in (E.3).

19We remark that also for fermionic matter one may switch to a worldline formulation that solves the
complex action problem from the gauge field Boltzmann factor. However, for fermions the worldline con-
figurations come with signs that are due to the Pauli principle and the spinor properties of the fermions.
Thus the worldline formulation of fermions generates its own challenges that for some examples could be
overcome with other techniques such as resummation or density of states techniques (see, e.g., [45]).
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The configurations of the dual flux variables k̃x̃,µ come with real and positive weight
factors WMm, λm

[
k̃
]
, that are themselves sums (defined analogously to (E.4)) over config-

urations
∑
{ã} of auxiliary variables ãx̃,µ ∈ N0. The weights are given by

WMm, λm
[
k̃
]
≡
∑
{ã}

∏
x̃,µ

1(
|k̃x̃,µ|+ãx̃,µ

)
! ãx̃,µ!

[∏
x̃

IMm, λm (fx̃)
]

with (E.6)

IMm, λm(fx̃)≡
∫ ∞

0
dr rfx̃+1e−M

mr2−λmr4
, fx̃ ≡

∑
µ

[
|k̃x̃,µ|+|k̃x̃−µ̂,µ|+ 2 (ãx̃,µ+ãx̃−µ̂,µ)

]
.

The fx̃ are non-negative integer-valued combinations of the flux variables k̃x̃,µ and the
auxiliary variables ãx̃,µ. For a numerical simulation the integrals IMm, λm(fx̃) may be pre-
computed numerically and stored for sufficiently many values of fx̃. The updates of the
auxiliary variables can be implemented with standard techniques (see, e.g., [48, 49] for
details).

With the gauge field Boltzmann factor in the form (E.2) and the dependence of the
partition sum Z̃Mm, λm, qm on the dual magnetic gauge field Ãmx̃,µ given by the last factor
in (E.3) we can now completely integrate out the dual magnetic gauge field. The corre-
sponding integral reads (compare (3.1) and use

∫
D[Am] =

∫
D[Ãm] )

∫
D[Ãm]

∏
x̃,µ

e iÃ
m
x̃,µ(∂n)x̃,µ

∏
x̃,µ

e i q
m Ãmx̃,µ k̃x̃,µ

 =
∏
x̃,µ

∫ π

−π

dÃmx̃,µ
2π e iÃ

m
x̃,µ

[
qm k̃x̃,µ+(∂ñ)x̃,µ

]
=
∏
x̃,µ

δ
(
qm k̃x̃,µ + (∂ñ)x̃,µ

)
. (E.7)

Integrating out the dual magnetic gauge fields has generated link-based constraints that
relate the flux variables and the dual Villain variables via

qm k̃x̃,µ = − (∂ñ)x̃,µ ∀(x̃, µ) . (E.8)

Note that the constraints (E.8) are consistent with the vanishing divergence constraints
∂k̃ = 0 from (E.5), due to ∂2 = 0 (see appendix A).

Thus we may summarize the final form of self-dual scalar lattice QED with a worldline
representation for the magnetic matter:

Z(β,M e, λe, qe, Mm, λm, qm) =
∫
D[Ae]

∑
{n}

∑
{k̃}

∑
{ã}

∏
x̃,µ

δ
(
qm k̃x̃,µ + (∂ñ)x̃,µ

) (E.9)

e
−β2
∑

x

∑
µ<ν

(
F ex,µν

)2

ZMe, λe, qe [Ae]

∏
x̃,µ

1(
|k̃x̃,µ|+ãx̃,µ

)
! ãx̃,µ!

[∏
x̃

IMm, λm (fx̃)
]
,

with F ex,µν = (dAe + 2π n)x,µν and

fx̃ =
∑
µ

[
|k̃x̃,µ|+|k̃x̃−µ̂,µ|+ 2 (ãx̃,µ+ãx̃−µ̂,µ)

]
. (E.10)
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Obviously all weight factors in (E.9) are real and positive, such that this form now is
accessible to numerical Monte Carlo simulations. Note that for qm = ±1 one may use
the constraints (E.8) to completely eliminate the flux variables k̃x̃,µ such that in that case
the Villain variables are not subject to any constraints, which in some aspects makes a
numerical simulation of (E.9) simpler than the simulation of the pure gauge theory (2.8),
where configurations of the Villain variables need to obey the closedness constraint (2.7).

We conclude the discussion of the worldline form by expressing the expectation value〈
|φm|2

〉
that appears in the duality relation (3.12) in terms of the worldline variables.

The expectation value is obtained from a derivative of lnZ with respect to Mm, and this
derivative can of course also be applied to Z in the form (E.9), (E.10). A few lines of
algebra give (use −∂/∂MmIMm, λm (fx̃) = IMm, λm (fx̃ + 2)),

〈
|φm|2

〉
β,Me, λe, qe,Mm, λm, qm

= − 1
V

∂

∂Mm
lnZ(β,M e, qe, λe, Mm, λm, qm)

= 1
V

〈∑
x̃

IMm, λm (fx̃ + 2)
IMm, λm (fx̃)

〉
β,Me, λe, qe,Mm, λm, qm

. (E.11)

F Self-duality with a generalized topological charge

In this appendix we briefly discuss how the construction of the self-dual theory with a
θ-term in subsection 4.4 can be generalized further, such that the topological charge fully
implements all lattice symmetries.

The general form of the self-dual kernel we consider (this generalizes the kernel defined
in (4.43)) is in momentum space written as

K̂µν|ρσ(p) = 1
Ĝ(p)

(
δµρδνσ − i

∑
T

γT εµνρσ e
ipρ+ipσ+iT ·p

)
, (F.1)

where T =
∑
µ tµµ̂ with tµ ∈ Z, and γT are some coefficients. Now note that (compare also

appendix C)(
δµρδνσ + i

∑
T

γT εµνρσ e
ipρ + ipσ − iT ·p

)(
δρµ′δσν′ − i

∑
T

γT ερσµ′ν′ e
ip′µ + ip′ν − iT ·p

)
= δµµ′δνν′ +

∑
T,T ′

γT γT ′ εµνρσ ερσµ′ν′ e
ipρ + ipσ + ipµ + ipν − iT ·p−iT ′·p

= δµµ′δνν′

1 +
∑
T,T ′

γTγT ′e
iŝ·p− iT ·p− iT ′·p

 , (F.2)

where again ŝ = 1̂ + 2̂ + 3̂ + 4̂. So by choosing

Ĝ(p) =
√

1 +
∑
T,T ′

γTγT ′e i(ŝ−T−T
′)·p , (F.3)
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we find that K̂ is form-covariant under inversion, i.e.,

K̂µν|ρσ(p) = δµρδνσ + i
∑
T γT εµνρσ e

ipρ+ipσ+iT√
1 +

∑
T,T ′ γTγT ′e

i(ŝ−T−T ′)·p
, (F.4)

K̂−1
µν|ρσ(p) = δµρδνσ − i

∑
T γT εµνρσ e

ipρ+ipσ+iT√
1 +

∑
T,T ′ γTγT ′e

i(ŝ−T−T ′)·p
. (F.5)

Now a convenient choice of the coefficients γT is such that γ−T+ŝ = γT , which implies that
the argument in the square root of Ĝ(p) is real. This argument is given by

1 +
∑
T,T ′

γTγT ′e
i(ŝ−T−T ′)·p = 1 +

∣∣∣∣∑
T

γT e
−iT ·p

∣∣∣∣2 . (F.6)

In real space this corresponds to the operator

Hx,y =
∑
T,T ′

γT γT ′ δ
(4)
x+T,y+T ′ , (F.7)

which generalizes the Helmholtz lattice operator introduced in (4.45).
We point out that the above result does not depend on the vector ŝ which singles out

a direction on the lattice, such that now, with a suitable choice of the coefficients γT the
lattice symmetries can be implemented in H. The full θ-term, however, does not seem to be
manifestly invariant due to the appearance of the vectors σ̂ and ρ̂ in (F.1). In a free theory,
however, the θ-term is topological, and hence lattice symmetries are exact in this case too.

The action density is now given by∑
y

∑
µ<ν

∑
ρ<σ

Fx,µν(H−1/2)x,z
(
δy,z + i

∑
T

γT εµνρσ δy,z−ρ̂−σ̂+T

)
Fz,ρσ . (F.8)

As announced, the theory can be made fully invariant under all lattice symmetries if, in
addition to the conditions γ−T+ŝ = γT from above, we implement the following relations
among the coefficients,20

γT = γ
R
(
T− ŝ2

)
+ ŝ

2
, (F.9)

where R is an arbitrary lattice rotation.
20This is easiest to see as follows: the generic θ-term is defined as QW =

∑
p
FpF?W (p), where W

is an arbitrary translation operator from the lattice to the dual lattice, p is a plaquette of the lattice
and ? is the Hodge-star analogue mapping of the lattice to the dual lattice (compare [7]). The lattice
rotation R commutes with the ? operator, but not with W . We now consider R : Fp → FR(p), but
then QW →

∑
p
FR(p)FR(?WR−1R(p)) = QRWR−1 . So if we now define a general topological charge as∑

W
κWQW , with coefficients κW that respect κRWR−1 = κW , the θ-term will obey the lattice symmetries.

Writing explicitly ∑
W

κWQW =
∑
x

∑
µ<ν

∑
ρ<σ

∑
W

κWFx,µνεµνρσFx+ ŝ
2 +W−ρ̂−σ̂ ,

whereW is now a vector which corresponds to the map W . Now, setting a lattice vector, T = W + ŝ
2 , this

form can be written as ∑
W

κWQW =
∑
x

∑
µ<ν

∑
ρ<σ

∑
T

κTFx,µνεµνρσFx+T−ρ̂−σ̂ ,

where κT− ŝ
2

= κT , and the condition κR(W ) = κW translates to γT = γR(T− ŝ
2 )+ ŝ

2
as stated in (F.9).
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