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1 Introduction

One of the early goals of string phenomenology has been to successful embed the known
particle physics Standard Model (SM) in a certain Calabi-Yau compactification in string
theory. The earliest attempts were mainly focused on models from weakly coupled heterotic
string theory with gauge group E8 × E8. Later, with the discovery of D-branes the gauge
groups came to be understood as the stacks of coincident D-branes with open strings con-
necting them in various fashions in the context of type II string theory. However, getting
down from ten dimensions to positively curved (de Sitter) universe with observed three fam-
ilies of chiral fermions where all moduli are stabilized is still a distant goal. Importantly, the
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scale of supersymmetry breaking is still unknown. The situation provides ample room for
theorists to come up with semi-realistic models of standard model starting from any of the
ten dimensional heterotic string theory, type II theories or F-theory in twelve dimensions.

In the SM the light fermions appear in chiral representations of the SU(3)C×SU(2)W×
U(1)Y gauge group such that all gauge anomalies are canceled. The simplest case of parallel
D-branes in flat space does not yield chiral fermions. One way to realize the chiral fermions
is to place D-branes on orbifold singularities. Another way is to consider intersecting D-
branes on generalized orbifolds called orientifolds. In addition to the discrete internal sym-
metries of the world-sheet theory, that are gauged in orbifold constructions, the products
of internal symmetries with world-sheet parity reversal become also gauged in orientifolds.

In this paper we restrict ourselves to the study of intersecting D6-branes models from
the perspective of IIA string theory. Prior to string theory, within the context of non-
supersymmetric four dimensional GUT model building, there was no candidate gauge group
where the three chiral families of standard model could be put in one irreducible represen-
tation without introducing the “antifamilies” of opposite chirality [2]. Models in type IIA
string theory can achieve the family replication by the multiple intersections of intersecting
D6-branes. D6-branes fill the 4-dimensional spacetime and have 3 extra dimensions along
the compactified directions in IIA string theory. As the latter three extra dimensions are
exactly equal to half of the number of the compactified dimensions, thus two generic D6-
branes intersect at one point of the extra dimensions. This intersection is where the fields
arising from open strings stretched between two different D6-branes live.

The volume of the cycles that the D-branes wrap around determines the four dimen-
sional gauge couplings and the total internal volume yields the gravitational coupling. The
cubic couplings such as the Yukawa couplings may be calculated from open world sheet in-
stantons i.e., triangular fundamental worldsheets stretched between the three intersections
where the three fields involved in the cubic coupling reside. This is of great advantage since
open world sheet instanton effects are naturally suppressed with exp(−Aijk T ) where Aijk
is the worldsheet area of the triangle bounded by the intersections {i, j, k} and T is the
string tension. This exponential function takes care of the mass hierarchies and mixings
of the fermions. The general flavor structure and selection rules for intersecting D-brane
models has been investigated in [3, 4].

In the typical toroidal orientifold compactifications, not all of the fermions sit on the
localized intersections on the same torus which results in the rank-1 problem of the Yukawa
mass matrices. Later, a number of models were eventually found where the Yukawa mass
matrices do not have rank-1 problem [5]. Recently in ref. [6] some new supersymmetric
Pati-Salam models from intersecting D6-branes on a T6/(Z2×Z2) orientifold in IIA string
theory have been constructed using the methods of machine learning. Here, we discuss
the phenomenology of a particular class of these newly found models where one of the
wrapping numbers is 5.

The model exhibits approximate gauge coupling unification and contains nine Higgs
fields from the N = 2 subsector. Despite more freedom, all standard model fermion masses
cannot be exactly fitted in the simplest case where the Wilson fluxes are set to zero. We
find two interesting solutions in the parametric space where either all quarks and the heav-

– 2 –



J
H
E
P
0
4
(
2
0
2
2
)
0
8
9

iest charged lepton or all leptons and the heaviest quark masses; can be fitted with the
extrapolated values obtained from running RGEs up to the unification scale. Of course
exact matching may be achieved by turning on fluxes or invoking higher dimensional opera-
tors. Adding possible contributions from the classical four-point interactions, we explicitly
show exact matching of all SM fermion masses and mixings. We also discuss the F-term
breaking of the supersymmetry and calculate the soft terms from supersymmetry breaking
for the u-moduli dominant cases with and without the dilaton s. The t-moduli dominant
case is left-out as there the soft terms are not independent of the Yukawa couplings.

This paper is organized as follows. In section 2, we will extract minimal supersymmet-
ric standard model from intersecting D6-branes on a T6/(Z2 × Z2) orientifold. In section 3
we discuss the 4-dimensional effective field theory and the relevant soft terms from super-
symmetry breaking. In section 4 we derive Yukawa couplings in intersecting D6-brane
model on Type IIA T6/(Z2 × Z2) orientifold. Utilizing the obtained Yukawa mass matri-
ces we obtain the fermion masses and mixings for specific choices of the open and closed
string-moduli (VEVs) in section 5. We then discuss possible corrections to fermion masses
from higher-dimensional 4-point interactions in section 6. Finally, we conclude in section 7.
The soft terms from a previously studied model having exact guage coupling unification
are also computed in the appendix A.

2 The Pati-Salam model building from T6/(Z2 × Z2) orientifold

In the orientifold T6/(Z2 × Z2), T6 is a product of three 2-tori with the orbifold group
(Z2 × Z2) has the generators θ and ω which are respectively associated with the twist
vectors (1/2,−1/2, 0) and (0, 1/2,−1/2) such that their action on complex coordinates zi
is given by,

θ : (z1, z2, z3)→ (−z1,−z2, z3),
ω : (z1, z2, z3)→ (z1,−z2,−z3). (2.1)

Orientifold projection is the gauged ΩR symmetry, where Ω is world-sheet parity that
interchanges the left- and right-moving sectors of a closed string and swaps the two ends
of an open string as,

Closed : Ω : (σ1, σ2) 7→ (2π − σ1, σ2),
Open : Ω : (τ, σ) 7→ (τ, π − σ), (2.2)

and R acts as complex conjugation on coordinates zi. This results in four different kinds
of orientifold 6-planes (O6-planes) corresponding to ΩR, ΩRθ, ΩRω, and ΩRθω respec-
tively. These orientifold projections are only consistent with either the rectangular or
the tilted complex structures of the factorized 2-tori. Denoting the wrapping numbers
for the rectangular and tilted tori as nia[ai] +mi

a[bi] and nia[a′i] +mi
a[bi] respectively, where

[a′i] = [ai]+ 1
2 [bi]. Then a generic 1-cycle (nia, lia) satisfies lia ≡ mi

a for the rectangular 2-torus
and lia ≡ 2m̃i

a = 2mi
a +nia for the tilted 2-torus such that lia−nia is even for the tilted tori.
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The homology cycles for a stack a of Na D6-branes along the cycle (nia, lia) and their
ΩR images a′ stack of Na D6-branes with cycles (nia,−lia) are respectively given as,

[Πa] =
3∏
i=1

(
nia[ai] + 2−βi lia[bi]

)
,

[Πa′ ] =
3∏
i=1

(
nia[ai]− 2−βi lia[bi]

)
, (2.3)

where βi = 0 or βi = 1 for the rectangular or tilted ith 2-torus, respectively. The homology
three-cycles, which are wrapped by the four O6-planes, are given by

ΩR : [ΠΩR] = 23[a1]× [a2]× [a3],
ΩRω : [ΠΩRω] = −23−β2−β3 [a1]× [b2]× [b3],

ΩRθω : [ΠΩRθω] = −23−β1−β3 [b1]× [a2]× [b3],
ΩRθ : [ΠΩR] = −23−β1−β2 [b1]× [b2]× [a3]. (2.4)

The intersection numbers can be calculated as in terms of wrapping numbers as,

Iab = [Πa][Πb] = 2−k
3∏
i=1

(nialib − niblia),

Iab′ = [Πa] [Πb′ ] = −2−k
3∏
i=1

(nialib + nibl
i
a),

Iaa′ = [Πa] [Πa′ ] = −23−k
3∏
i=1

(nialia),

IaO6 = [Πa][ΠO6] = 23−k(−l1al2al3a + l1an
2
an

3
a + n1

al
2
an

3
a + n1

an
2
al

3
a), (2.5)

where k = ∑3
i=1 βi and [ΠO6] = [ΠΩR] + [ΠΩRω] + [ΠΩRθω] + [ΠΩRθ].

2.1 Constraints from tadpole cancellation and supersymmetry

Since D6-branes and O6-orientifold planes are the sources of Ramond-Ramond charges
they are constrained by the Gauss’s law in compact space implying the sum of D-brane
and cross-cap RR-charges must vanishes [7]∑

a

Na[Πa] +
∑
a

Na [Πa′ ]− 4[ΠO6] = 0, (2.6)

where the last terms arise from the O6-planes, which have −4 RR charges in D6-brane
charge units. RR tadpole constraint is sufficient to cancel the SU(Na)3 cubic non-Abelian
anomaly while U(1) mixed gauge and gravitational anomaly or [SU(Na)]2U(1) gauge
anomaly can be cancelled by the Green-Schwarz mechanism, mediated by untwisted RR
fields [8].

Let us define the following products of wrapping numbers,

Aa ≡ −n1
an

2
an

3
a, Ba ≡ n1

al
2
al

3
a, Ca ≡ l1an2

al
3
a, Da ≡ l1al2an3

a,

Ãa ≡ −l1al2al3a, B̃a ≡ l1an2
an

3
a, C̃a ≡ n1

al
2
an

3
a, D̃a ≡ n1

an
2
al

3
a.

(2.7)
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Orientifold Action O6-Plane (n1, l1)× (n2, l2)× (n3, l3)
ΩR 1 (2β1 , 0)× (2β2 , 0)× (2β3 , 0)

ΩRω 2 (2β1 , 0)× (0,−2β2)× (0, 2β3)
ΩRθω 3 (0,−2β1)× (2β2 , 0)× (0, 2β3)
ΩRθ 4 (0,−2β1)× (0, 2β2)× (2β3 , 0)

Table 1. The wrapping numbers for four O6-planes.

Cancellation of RR tadpoles requires introducing a number of orientifold planes also
called “filler branes” that trivially satisfy the four-dimensional N = 1 supersymmetry
conditions. The no-tadpole condition is given as,

−2kN (1) +
∑
a

NaAa = −2kN (2) +
∑
a

NaBa =

−2kN (3) +
∑
a

NaCa = −2kN (4) +
∑
a

NaDa = −16, (2.8)

where 2N (i) is the number of filler branes wrapping along the ith O6-plane. The filler
branes belong to the hidden sector USp group and carry the same wrapping numbers as
one of the O6-planes as shown in table 1. USp group is hence referred with respect to the
non-zero A, B, C or D-type.

Preserving N = 1 supersymmetry in four dimensions after compactification from ten-
dimensions restricts the rotation angle of any D6-brane with respect to the orientifold plane
to be an element of SU(3), i.e.

θa1 + θa2 + θa3 = 0 mod 2π, (2.9)

with θaj = arctan(2−βjχjlaj /naj ). θi is the angle between the D6-brane and orientifold-plane
in the ith 2-torus and χi = R2

i /R
1
i are the complex structure moduli for the ith 2-torus.

N = 1 supersymmetry conditions are given as,

xAÃa + xBB̃a + xCC̃a + xDD̃a = 0,
Aa
xA

+ Ba
xB

+ Ca
xC

+ Da

xD
< 0, (2.10)

where xA = λ, xB = 2β2+β3 · λ/χ2χ3, xC = 2β1+β3 · λ/χ1χ3, xD = 2β1+β2 · λ/χ1χ2.
Orientifolds also have discrete D-brane RR charges classified by the Z2 K-theory

groups, which are subtle and invisible by the ordinary homology [9–12], which should
also be taken into account [13]. The K-theory conditions are,∑

a

Ãa =
∑
a

NaB̃a =
∑
a

NaC̃a =
∑
a

NaD̃a = 0 mod 4 . (2.11)

In our case, we avoid the nonvanishing torsion charges by taking an even number of D-
branes, i.e., Na ∈ 2Z.

– 5 –



J
H
E
P
0
4
(
2
0
2
2
)
0
8
9

Sector Representation
aa U(Na/2) vector multiplet

3 adjoint chiral multiplets
ab+ ba M(Na2 ,

Nb
2 ) = Iab( a, b)

ab′ + b′a M(Na2 ,
Nb
2 ) = Iab′( a, b)

aa′ + a′a M(aS) = 1
2(Iaa′ − 1

2IaO6)
M(aA) = 1

2(Iaa′ + 1
2IaO6)

Table 2. General spectrum for intersecting D6-branes at generic angles, whereM is the multiplicity,
and aS and aA denote respectively the symmetric and antisymmetric representations of U(Na/2).
Positive intersection numbers in our convention refer to the left-handed chiral supermultiplets.

Model 16 U(4)×U(2)L ×U(2)R ×USp(2)2

stack N (n1, l1)× (n2, l2)× (n3, l3) n n b b′ c c′ 2 3

a 8 (1,−1)× (1, 1)× (1,−1) 0 -4 3 0 -3 0 -1 1
b 4 (−2, 5)× (−1, 0)× (1, 1) 3 -3 - - 0 -1 -5 0
c 4 (−1,−2)× (0,−1)× (−1,−1) -1 1 - - - - 0 -1
2 2 (1, 0)× (0,−1)× (0, 2) χ1 =

√
5

5 , χ2 = 7
√

5
5 , χ3 =

√
5

3 2 (0,−1)× (1, 0)× (0, 2) βg2 = 1, βg3 = −3

Table 3. D6-brane configurations and intersection numbers in Model 16, and its MSSM gauge
coupling relation is g2

a = 5
6 g

2
b = 35

32 ( 5
3 g

2
Y ) = 8×53/4√7

27 π eφ4 [6].

2.2 Particle spectrum

To have three families of the SM fermions, we need one torus to be tilted, which is chosen
to be the third torus. So we have β1 = β2 = 0 and β3 = 1. Several supersymmetric
Pati-Salam models from intersecting D6-branes on a T6/(Z2×Z2) orientifold in IIA string
theory were constructed in ref. [5] up to the wrapping number 3. The phenomenology of
such models up to the wrapping number of 3 was first studied in ref. [1]. The general
particle representations for intersecting D6-branes models at angles are shown in table 2.

Here we study the phenomenology of the newly found models where one of the
wrapping numbers is 5. For concreteness, we choose Model 16 from ref. [6], which
is T-dual to Model 18, see table 3. The model exhibits approximate gauge coupling
unification with three-generations of chiral fermions together besides the hidden sector
with gauge group USp(2)2. The detailed spectrum of chiral and vectorlike super-
fields of the model with their respective quantum numbers under the gauge symmetry
U(4)C ×U(2)L ×U(2)R ×USp(2)1 ×USp(2)2 is listed in table 4.

Placing the a′, b and c stacks of D6-branes on the top of each other on the third 2-
torus results in additional vector-like particles from N = 2 subsectors [5]. The anomalies
from three global U(1)s of U(4)C , U(2)L and U(2)R are cancelled by the Green-Schwarz

– 6 –



J
H
E
P
0
4
(
2
0
2
2
)
0
8
9

Quantum Number Q4 Q2L Q2R Field
ab 3× (4, 2, 1, 1, 1) 1 -1 0 FL(QL, LL)
ac 3× (4, 1, 2, 1, 1) -1 0 1 FR(QR, LR)
a2 1× (4, 1, 1, 2, 1) -1 0 0 Xa2

a3 1× (4, 1, 1, 1, 2) 1 0 0 Xa3

b2 5× (1, 2, 1, 2, 1) 0 -1 0 Xb2

c3 1× (1, 1, 2, 1, 2) 0 0 -1 Xc3

aA 4× (6, 1, 1, 1, 1) -2 0 0 SiC

bS 3× (1, 3, 1, 1, 1) 0 2 0 T iL

bA 3× (1, 1, 1, 1, 1) 0 -2 0 SiL

cS 1× (1, 1, 3, 1, 1) 0 0 -2 T iR

cA 1× (1, 1, 1, 1, 1) 0 0 2 SiR

bc′ 1× (1, 2, 2, 1, 1) 0 -1 -1 H ′u, H ′d
1× (1, 2, 2, 1, 1) 0 1 1

Table 4. The chiral and vector-like superfields, and their quantum numbers under the gauge
symmetry SU(4)C × SU(2)L × SU(2)R ×USp(2)1 ×USp(2)2.

mechanism, and the gauge fields of these U(1)s obtain masses via the linear B∧F couplings.
Thus, the effective gauge symmetry is SU(4)C × SU(2)L × SU(2)R.

3 Supersymmetry breaking and N = 1 effective theory

Pati-Salam gauge group SU(4)× SU(2)L × SU(2)R is higgsed down to the standard model
gauge group SU(3)C×U(2)L×U(1)I3R×U(1)B−L by assigning vacuum expectation values
to the adjoint scalars which arise as open-string moduli associated to the stacks a and c,
see figure 1,

a → a1 + a2,

c → c1 + c2. (3.1)

Moreover, the U(1)I3R × U(1)B−L gauge symmetry may be broken to U(1)Y by giving
vacuum expectation values (VEVs) to the vector-like particles with the quantum numbers
(1,1,1/2,−1) and (1,1,−1/2,1) under the SU(3)C × SU(2)L×U(1)I3R ×U(1)B−L gauge
symmetry from a2c

′
1 intersections [5, 14].

This brane-splitting results in standard model quarks and leptons as [15],

FL(QL, LL) → QL + L,

FR(QR, LR) → UR +DR + ER +N. (3.2)
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a

bc

ν E L

U Q

Hu

Hd

D

b
c1

c2

a1

a2

Figure 1. Pati-Salam gauge group SU(4) × SU(2)L × SU(2)R is broken down to the standard
model gauge group SU(3)C × U(2)L × U(1)I3R × U(1)B−L via the process of brane splitting that
corresponds to assigning VEVs to the adjoint scalars, which arise as open-string moduli associated
with the positions of stacks a and c in the internal space.

Three-point Yukawa couplings for the quarks and the charged leptons can be read from
the following superpotential,

WY = Y U
ijkQ

i
LU

j
RH

k
U + Y D

ijkQ
i
LD

j
RH

k
D + Y L

ijkL
iEjHk

D. (3.3)

The additional exotic particles must be made superheavy to ensure gauge coupling
unification at the GUT scale. Similar to refs. [1, 16] we can decouple the additional exotic
particles except the four chiral multiplets under SU(4)C anti-symmetric representation.
And these four chiral multiplets can be decoupled via instanton effects in principle [17–19],
and we will present the detailed discussions elsewhere.

We now turn our attention toward the four dimensional low energy effective field theory.
N = 1 supergravity action is encoded by three functions viz. the gauge kinetic function
fx, the Kähler potential K and the superpotential W [20]. Each of these functions in turn
depend on dilaton S, complex T , and Kähler U moduli.

The complex structure moduli U can be obtained from the supersymmetry conditions
as,

U i = iRi2
Ri1 + βi

2 iR
i
2

= iχi

1 + βi
2 iχ

i
, ∵ χi ≡ Ri2

Ri1
. (3.4)

These upper case moduli in string theory basis can be transformed in to lower case s, t, u

– 8 –
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moduli in field theory basis as [21],

Re (s) = e−φ4

2π

(√
ImU1 ImU2 ImU3

|U1U2U3|

)
,

Re (uj) = e−φ4

2π

√ ImU j

ImUk ImU l

 ∣∣∣∣∣Uk U lU j

∣∣∣∣∣ , (j, k, l) = (1, 2, 3),

Re(tj) = iα′

T j
, (3.5)

where j denotes the jth two-torus, and φ4 is the four dimensional dilaton which is related
to the supergravity moduli as1

2πeφ4 =
(
Re(s) Re(u1) Re(u2) Re(u3)

)−1/4
. (3.6)

Inverting the above formulas we can solve for U moduli in string theory basis in terms of
s and u as,

|U j |2

Im (U j) =
√

Re (uk) Re (ul)
Re (uj)Re (s) , (j, k, l) = (1, 2, 3). (3.7)

The holomorphic gauge kinetic function for any D6-brane stack x wrapping a calibrated
3-cycle is given as [23],

fx = 1
2π`3s

[
e−φ

∫
Πx

Re(e−iθxΩ3)− i
∫

Πx
C3

]
, (3.8)

where the integral involving 3-form Ω3 gives,∫
Πx

Ω3 = 1
4

3∏
i=1

(nixRi1 + 2−βiilixRi2). (3.9)

It can then be shown that,

fx = 1
4κx

(
n1
x n

2
x n

3
x s−

n1
x l

2
x l

3
x u

1

2(β2+β3) −
l1x n

2
x l

3
x u

2

2(β1+β3) −
l1x l

2
x n

3
x u

3

2(β1+β2)

)
, (3.10)

where the factor κx is related to the difference between the gauge couplings for U(Nx) and
Sp(2Nx), SO(2Nx). κx = 1 for U(Nx) and κx = 2 for Sp(2Nx) or SO(2Nx) [24]. Since, the
standard model hypercharge U(1)Y is a linear combination of several U(1)s,

QY = 1
6Qa1 + 1

2Qa2 −
1
2Qc1 −

1
2Qc2 . (3.11)

Therefore, the holomorphic gauge kinetic function for the hypercharge is also taken as a
linear combination of the kinetic gauge functions from all of the stacks as [25, 26],

fY = 1
6fa1 + 1

2fa2 + 1
2fc1 + 1

2fc2 . (3.12)

1There was a typo in [22] in the paragraph after equation (18) where φ4 is related to the supergravity
moduli.
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The Kähler potential to the second order for the moduli M and open string matter fields
Ci, Cθ is given by:

K(M, M̄,C, C̄) = K̂(M, M̄) +
∑

untwisted i,j
K̃CiC̄j

(M, M̄)CiC̄j

+
∑

twisted, θ
K̃CθC̄θ

(M, M̄)CθC̄θ, (3.13)

where Ci correspond to the D-brane positions and the Wilson lines moduli arising from
strings having both ends on the same stack while Cθ correspond to strings stretching
between different stacks comprising 1/4 BPS branes. The untwisted moduli fields Ci, C̄j
are not present in MSSM and must become heavy via higher dimensional operators.2

Let us determine the Kähler metric K̃CθC̄θ
(M, M̄) for the twisted moduli. We denote

the Kähler potential arising from strings stretching between stacks x and y as K̃xy and
θjxy ≡ θjy − θjx denotes the angle between the cycles wrapped by the branes x and y on the
jth two-torus with the constraint ∑j θ

j
xy = 0. Following [21, 28, 29], we find two cases for

the Kähler metric in type IIA theory:

• θjxy < 0, θkxy > 0, θlxy > 0

K̃xy = eφ4e
γE(2−

∑3
j=1 θ

j
xy)

√√√√ Γ(θjxy)
Γ(1 + θjxy)

√√√√Γ(1− θkxy)
Γ(θkxy)

√√√√Γ(1− θlxy)
Γ(θlxy)

×(tj + t̄j)θ
j
xy(tk + t̄k)−1+θkxy(tl + t̄l)−1+θlxy . (3.14)

• θjxy < 0, θkxy < 0, θlxy > 0

K̃xy = eφ4e
γE(2+

∑3
j=1 θ

j
xy)

√√√√Γ(1 + θjxy)
Γ(−θjxy)

√√√√Γ(1 + θkxy)
Γ(−θkxy)

√√√√ Γ(θlxy)
Γ(1− θlxy)

×(tj + t̄j)−1−θjxy(tk + t̄k)−1−θkxy(tl + t̄l)−θlxy . (3.15)

The Kähler metric for the branes parallel to at least one torus which give rise to non-chiral
matter in bifundamental representations (1/2 BPS scalar) like the Higgs doublet is,

K̂higgs =
[
(s+ s̄)(t1 + t̄1)(t2 + t̄2)(u3 + ū3)

]−1/2
. (3.16)

The superpotential is given as,

W = Ŵ + 1
2µαβ(M)CαCβ + 1

6 Yαβγ(M)CαCβ Cγ + . . . (3.17)

and the minimum of the tree-level F-term supergravity scalar potential is given by3

V (M, M̄) = eG(GMKMNGN − 3)
= (FMKMNF

N − 3eG), (3.18)
2D-branes wrapping rigid cycles can freeze such open string moduli [27], however such rigid cycles

without discrete torsion are not present in T6/(Z2 × Z2).
3In our analysis we assume that D-terms do not affect the soft terms [30, 31].
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where GM = ∂MG, KMN = ∂M∂NK, KMN is the inverse Kähler metric, and the auxiliary
fields FM are,

FM = eG/2KMNGN . (3.19)

Thus supersymmetry is broken via F-terms from some of the hidden sector fields M ac-
quiring VEVs, thereby generating soft terms in the observable sector [1, 22, 28]. Gravitino
gets massive by absorbing Goldstino via the superhiggs mechanism.

m3/2 = eG/2. (3.20)

The normalized soft parameters viz. the gaugino mass, squared scalar mass and trilinear
parameters are given by [32],

Mx = 1
2 Re fx

(FM ∂M fx),

m2
xy = (m2

3/2 + V0)−
∑
M,N

F̄ M̄FN ∂M̄ ∂N log(K̃xy),

Axyz = FM [K̂M + ∂M log(Yxyz)− ∂M log(K̃xyK̃yzK̃zx)], (3.21)

where K̂M is the Kähler metric for branes parallel to at least one torus and FM denotes
auxiliary fields.

Although it appears that soft terms may depend on the Yukawa couplings via the super-
potential, however these are not the physical Yukawa couplings which exponentially depend
on the worldsheet area as discussed in section 4. Both are related by the following relation,

Y phys
xyz = Yxyz

Ŵ ∗

|Ŵ |
eK̂/2 (K̃xK̃yK̃z)−1/2. (3.22)

To calculate the soft terms from supersymmetry breaking we ignore the cosmological
constant V0 and introduce the following VEVs for the auxiliary fields (3.19) for the s, t and
u moduli [33],

F s = 2
√

3Cm3/2Re(s)Θse
−iγs ,

F {u,t}
i = 2

√
3Cm3/2

(
Re(ui)Θu

i e
−iγui + Re(ti)Θt

ie
−iγti

)
, (3.23)

Here, the factors γs and γi denote the CP violating phases of the moduli. The constant C
is given by the gravitino-mass m2

3/2 and the cosmological constant V0 as C2 = 1 + V0
3m2

3/2
.

Θs and Θt,u
i are the goldstino angles which determine the degree to which supersymmetry

breaking is being dominated by any of the dilaton s, complex structure (ui) and Kähler
(ti) moduli constrained by the relation,

3∑
i=1

(|Θu
i |2 + |Θt

i|2) + |Θs|2 = 1. (3.24)

Unlike the s- or u-moduli dominant supersymmetry breaking, the case of t-moduli dominant
susy breaking depends on the physical Yukawa couplings via the area of the triangles and
thus we shall only concentrate on the following two scenarios:
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1. The u-moduli dominated supersymmetry breaking with the goldstino angle Θs set to
zero, such that F s = F t

i = 0.

2. The u and s-moduli supersymmetry breaking with F s 6= 0 .

The cosmological constant, V0 is taken to be zero in all cases.

3.1 Supersymmetry breaking with u-moduli dominance

In the u-moduli dominant susy breaking Θs = 0 and the auxiliary fields (3.23) become,

F u
i =
√

3m3/2(ui + ūi)Θie
−iγi , i = 1, 2, 3. (3.25)

To calculate the soft terms, we need to know the derivatives of the Kähler potential with re-
spect to u. Defining K̃xy ≡ eφ4 K̃0

xy and using (3.14) and (3.15), we compute the derivatives
with respect to ui as,

∂ log K̃xy

∂ui
=

3∑
j=1

∂ log K̃0
xy

∂θjxy

∂θjxy
∂ui

− 1
4(ui + ūi) , (3.26)

∂2 log K̃xy

∂ui∂,̄uj
=

3∑
k=1

(
∂ log K̃0

xy

∂θkxy

∂2θkxy
∂ui∂ūj

+
∂2 log K̃0

xy

∂(θkxy)2
∂θkxy
∂ui

∂θkxy
∂ūj

+ δij
4 (ui + ūi)2

)
.

From the Kähler potential in (3.15), we have

Ψ(θjxy)≡
∂ logK̃0

xy

∂θjxy
= γE + 1

2
d

dθjxy
logΓ(1−θjxy)−

1
2

d

dθjxy
logΓ(θjxy)− log(tj + t̄j), (3.27)

Ψ′(θjxy)≡
∂2 logK̃0

xy

∂(θjxy)2
=
dΨ(θjxy)
dθjxy

. (3.28)

The angles θjxy ≡ θjy − θjx are related to the u moduli as,

tan(πθjx) = 2−βj ljx
njx

√
Reuk Reul
Reuj Res where (j, k, l) = (1, 2, 3). (3.29)

And the derivative of the angles are defined as,

θj,kxy ≡ (uk + ūk)
∂θjxy
∂uk

=


[
− 1

4π sin(2πθj)
]x
y

when j = k[
1

4π sin(2πθj)
]x
y

when j 6= k
(3.30)

where [f(θj)]xy = f(θjx)− f(θjy). And the second order derivatives become,

θj,kl̄xy ≡ (uk + ūk)(ul + ūl)
∂2θjxy
∂uk∂ūl

=



1
16π

[
sin(4πθj) + 4 sin(2πθj)

]x
y when j = k = l

1
16π

[
sin(4πθj)− 4 sin(2πθj)

]x
y when j 6= k = l

− 1
16π

[
sin(4πθj)

]x
y when j = k 6= l or j = l 6= k

1
16π

[
sin(4πθj)

]x
y when j 6= k 6= l 6= j

(3.31)
We can now substitute the parametrizations (3.25)–(3.28) in the general expressions (3.21)
to calculate the soft terms:
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• Gaugino mass parameters:4

Mx =
−
√

3m3/2
4Refx

3∑
j=1

(
Reuj Θj e

−iγj 2−(βk+βl)njxl
k
xl
l
x

)
,

(j, k, l) = (1, 2, 3). (3.32)

Bino mass parameter is then related to the linear combination of the gaugino masses
for each stack as,

MY = 1
fY

∑
x

cxfxMx, (3.33)

where the coefficients cx correspond to the linear combination of U(1) factors which
define the hypercharge, U(1)Y = ∑

cxU(1)x, cf. (3.12).

• Trilinear parameters:

Axyz = −
√

3m3/2

3∑
j=1

[
Θje

−iγj

(
1
2 +

3∑
k=1

θk,jxy Ψ(θkxy) +
3∑

k=1
θk,jzx Ψ(θkzx)

)]

+
√

3
2 m3/2Θ3e

−iγ1 , (3.34)

where x, y, and z label those stacks of branes whose intersections define the corre-
sponding fields present in the trilinear coupling. Since the differences of the angles
may be negative θxy = θy − θx, it is useful to define the sign parameter,

ηxy =
∏
i

(−1)1−H(θixy), H(x) =

0, x < 0
1, x ≥ 0

(3.35)

where the value ηxy = −1 indicates that only one of the angle differences is negative
while ηxy = +1 indicates that two of the angle differences are negative.

• Squarks and sleptons mass-squared (1/4 BPS scalars):

m2
xy=m2

3/2

1−3
3∑

m,n=1
ΘmΘne

−i(γm−γn)

δmn
4 +

3∑
j=1

(
θj,mn̄xy Ψ(θjxy)+θj,mxy θj,n̄xy Ψ′(θjxy)

).
(3.36)

Here, the functions Ψ(θxy) = ∂ log(e−φ4K̃xy)
∂θxy

in the case of ηxy = −1 are

if θxy < 0 : (3.37)

Ψ(θjxy) = −γE + 1
2

d

dθjxy
log Γ(−θjxy)−

1
2

d

dθjxy
log Γ(1 + θjxy) + log(tj + t̄j)

if θxy > 0 :

Ψ(θjxy) = −γE + 1
2

d

dθjxy
log Γ(1− θjxy)−

1
2

d

dθjxy
log Γ(θjxy) + log(tj + t̄j),

4There was a typo in [1] in equation (29), the factor 2−(βk+βl) was missed.
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and in the case of ηxy = +1 are

if θxy < 0 : (3.38)

Ψ(θjxy) = γE + 1
2

d

dθjxy
log Γ(1 + θjxy)−

1
2

d

dθjxy
log Γ(−θjxy)− log(tj + t̄j)

if θxy > 0 :

Ψ(θjxy) = γE + 1
2

d

dθjxy
log Γ(θjxy)−

1
2

d

dθjxy
log Γ(1− θjxy)− log(tj + t̄j),

and Ψ′(θxy) is just the derivative Ψ′(θjxy) = dΨ(θjxy)
dθjxy

.

• Higgs (1/2 BPS scalar) mass-squared is computed using the Kähler metric (3.16) as:

m2
H = m2

3/2

(
1− 3

2 |Θ3|2
)
. (3.39)

3.2 Supersymmetry breaking via u-moduli and dilaton s

Now we also include a non-zero VEV for the dilaton s in the auxiliary fields (3.23) to get,

F s,u
i =
√

3m3/2[(s+ s̄)Θse
−iγs + (ui + ūi)Θie

−iγi ]. (3.40)

Substituting above parametrization (3.40) and the expressions (3.25)–(3.28) in the general
formulas (3.21), the soft parameters are found as follows:

• Gaugino mass parameters:

Mx =
−
√

3m3/2
4Refx

[ 3∑
j=1

Re(uj) Θj e
−iγj 2−(βk+βl)njxl

k
xl
l
x + ΘsRe(s)e−iγ0n1

x n
2
x n

3
x

]
,

(j, k, l) = (1, 2, 3). (3.41)

and the Bino mass parameter is similarly defined as (3.33).

• Trilinear parameters:

Axyz = −
√

3m3/2

4∑
j=1

[
Θje

−iγj

(
1
2 +

3∑
k=1

θk,jxy Ψ(θkxy) +
3∑

k=1
θk,jzx Ψ(θkzx)

)]

+
√

3
2 m3/2

(
Θ3e

−iγ3 + Θse
−iγs

)
, (3.42)

where j = 4 corresponds to Θs.

• Squarks and sleptons mass-squared (1/4 BPS scalars):

m2
xy=m2

3/2

1−3
4∑

m,n=1
ΘmΘne

−i(γm−γn)

δmn
4 +

3∑
j=1

(
θj,mn̄xy Ψ(θjxy)+θj,mxy θj,n̄xy Ψ′(θjxy)

),
(3.43)
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where now Θ4 ≡ Θs is also included in the sum while the functions Ψ(θxy),
Ψ′(θxy) and the terms θj,kxy , θj,kl̄xy are defined similarly as before in equa-
tions (3.27), (3.28), (3.30) and (3.31). While the terms associated with the dilaton s
are given as,

θj,sxy ≡ (s+ s̄)
∂θjxy
∂s

= − 1
4π
[
sin(2πθj)

]x
y
, (3.44)

θj,ks̄xy ≡ (uk + ūk)(s+ s̄)
∂2θjxy
∂uk∂s̄

=


1

16π
[
sin 4πθj

]x
y when j = k

− 1
16π

[
sin 4πθj

]x
y when j 6= k,

(3.45)

and
θj,ss̄xy ≡ (s+ s̄)(s+ s̄)

∂2θjxy
∂s∂s̄

= 1
16π

[
sin 4πθj + 4 sin(2πθj)

]x
y
, (3.46)

where k, l 6= s.

• Higgs mass-squared (1/2 BPS scalar):

m2
H = m2

3/2

[
1− 3

2
(
|Θ3|2 + |Θs|2

)]
. (3.47)

3.3 Soft terms from susy breaking

We now systematically compute the soft terms from susy breaking in the general case of
u-moduli dominance with dilaton modulus s turned on. The complex structure moduli U
from (3.4) are,

{U1, U2, U3} =
{
i√
5
,

7i√
5
,

2
9
(
5 + 2i

√
5
)}

, (3.48)

and the corresponding u-moduli and s-modulus in supergravity basis from (3.5) are,

{u1, u2, u3} =
{

4√5
√

7e−φ4

2π ,
4√5e−φ4

2
√

7π
,

√
7e−φ4

2 53/4π

}
,

s =
4√5e−φ4

2
√

7π
. (3.49)

Using (3.10) and the values from the table 3, the gauge kinetic function becomes,

{fa, fb, fc} =
{

27e−φ4

8 53/4
√

7π
,

9 4√5e−φ4

16
√

7π
,

9
√

7e−φ4

16 53/4π

}
, (3.50)

To calculate gaugino masses M1,2,3 respectively for U(1)Y , SU(2)L and SU(3)c gauge
groups, we first compute Ma,b,c using (3.41) as,

Ma =
m3/2

18
√

3

(
35Θ1e

iγ1 − 5Θ2e
−iγ2 + 14Θ3e

−iγ3 − 10Θ4e
−iγ4

)
,

Mb =
m3/2

3
√

3

(
5e−iγ2Θ2 − 4e−iγ4Θ4

)
,

Mc =
m3/2

3
√

3

(
5e−iγ1Θ1 + 4e−iγ3Θ3

)
. (3.51)
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πθ1 πθ2 πθ3

a − tan−1
(

1√
5

)
tan−1

(
7√
5

)
− tan−1

(√
5

2

)
b − tan−1

(√
5

2

)
0 tan−1

(√
5

2

)
c tan−1

(
2√
5

)
−π

2 tan−1
(√

5
2

)
Table 5. The angles (in multiples of π) with respect to the orientifold plane made by the cycle
wrapped by each stack of D-branes on each of the three two-tori.

Bino mass parameter MY (3.33) is then computed as,

MY =
m3/2

99
√

3

(
175Θ1e

−iγ1 − 10Θ2e
−iγ2 + 112Θ3e

−iγ3 − 20Θ4e
−iγ4

)
. (3.52)

Therefore, the gaugino masses for U(1)Y , SU(2)L and SU(3)c gauge groups are,

M1 ≡MY =
m3/2

99
√

3

(
175Θ1e

−iγ1 − 10Θ2e
−iγ2 + 112Θ3e

−iγ3 − 20Θ4e
−iγ4

)
,

M2 ≡Mb =
m3/2

3
√

3

(
5e−iγ2Θ2 − 4e−iγ4Θ4

)
,

M3 ≡Ma =
m3/2

18
√

3

(
35Θ1e

iγ1 − 5Θ2e
−iγ2 + 14Θ3e

−iγ3 − 10Θ4e
−iγ4

)
. (3.53)

Next, to compute the trilinear coupling and the sleptons mass-squared we require the
angles, the differences of angles and their first and second order derivatives with respect to
the moduli. In table 5 we show the angles made by the cycle wrapped by each stack D6
branes with respect to the orientifold plane,

πθix = tan−1
(

2−βi lixχi
nix

)
. (3.54)

The differences of the angles, θixy ≡ θiy − θix are,
{0., 0., 0.} {−0.13386,−0.401581, 0.535441} {0.36614,−0.901581, 0.535441}

{0.13386, 0.401581,−0.535441} {0., 0., 0.} {0.5,−0.5, 0.}
{−0.36614, 0.901581,−0.535441} {−0.5, 0.5, 0.} {0., 0., 0.}


(3.55)

To account for the negative angle differences it is convenient to define the sign function
σixy, which is −1 only for negative angle difference and +1 otherwise,

σixy ≡ (−1)1−H(θixy) =


{1, 1, 1} {−1,−1, 1} {1,−1, 1}
{1, 1,−1} {1, 1, 1} {1,−1, 1}
{−1, 1,−1} {−1, 1, 1} {1, 1, 1}

 , (3.56)

where H(x) is the unit step function. And the function ηxy can thus be defined by taking
the product on the torus index i as,

ηxy ≡
∏
i

σixy =


1 1 −1
−1 1 −1
1 −1 1

 . (3.57)
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Using above defined σixy and ηixy, we can readily write the four cases of functions Ψ(θxy)
defined in (3.37) and (3.38) into a single expression as,

Ψ(θjxy) = ηxy

(1
2ψ

(0)(σixyθjxy) + 1
2ψ

(0)(1− σixyθjxy) + γE − log(tj + t̄j)
)
, (3.58)

where ψ(0)(z) is called the digamma function defined as the derivative of the logarithm
of the gamma function. The successive derivatives of the log Γ(z) yield the polygamma
function ψ(n)(z) as,

ψ(n−1)(z) = d(n)

dz(n) log Γ(z) , (3.59)

with the following properties,

d

dz
ψ(0)(±z) = ±ψ(1)(±z),

d

dz
ψ(0)(1± z) = ±ψ(1)(1± z). (3.60)

Similarly, the derivative Ψ′(θjxy) = dΨ(θjxy)
dθjxy

can be expressed succinctly as,

Ψ′(θjxy) = ηxyσ
i
xy

(1
2ψ

(1)(σixyθjxy) + 1
2ψ

(1)(1− σixyθjxy)
)
, (3.61)

where we have utilized the property (3.60) and have neglected the contribution of the
t-moduli.

Lastly, by making use of appropriate Kronecker deltas and defining u4 ≡ s, we can
express the various cases of the first and second derivatives of the angles as,

θi,mxy ≡ (um + ūm)
∂θixy
∂um

= (−1)δm,4(−1)δi,j sin(2πθi)
4π

∣∣∣∣x
y

,

i = 1, 2, 3; m = 1, 2, 3, 4. (3.62)

θi,mnxy ≡ (um + ūm)(un + ūn)
∂2θixy
∂um∂ūn

= δm,n
sin(4πθi) + (−1)(1−δ4,m)(1−δi,m)4 sin(2πθi)

16π

∣∣∣∣x
y

+ (1− δm,n)(−1)(1−δ4,m)(1−δ4,n)(δi,m+δi,n)(−1)1−δi,m−δi,n sin(4πθi)
16π

∣∣∣∣x
y

i = 1, 2, 3; m,n = 1, 2, 3, 4. (3.63)

Utilizing above results while ignoring the CP-violating phases γi, the gaugino masses,
trilinear coupling (3.42) and sleptons and squarks mass-squared (3.43) parameters are
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obtained as follows,

M1 = m3/2(1.02057Θ1 − 0.0583182Θ2 + 0.653164Θ3 − 0.116636Θ4),
M2 = m3/2(0.96225Θ2 − 0.7698Θ4),
M3 = m3/2(1.12263Θ1 − 0.160375Θ2 + 0.44905Θ3 − 0.32075Θ4),

A0 ≡ Aabc = Aacb = m3/2
(
− 1.65515Θ1 − 0.0769026Θ2 + 0.210438Θ3 − 0.210438Θ4

)
,

m2
L ≡ m2

ab = m3/2
2
(
1− 0.691918Θ1

2 − 0.251923Θ1Θ2 + 1.38697Θ1Θ3 + 0.297487Θ1Θ4

− 0.730464Θ2
2 + 1.38697Θ2Θ3 + 1.05521Θ2Θ4 − 2.46331Θ3

2

− 0.104624Θ3Θ4 − 1.61046Θ4
2
)
,

m2
R ≡ m2

ac = m3/2
2
(
1 + 0.672202Θ1

2 + 0.024956Θ1Θ2 − 2.83616Θ1Θ3 + 0.335005Θ1Θ4

− 2.02285Θ2
2 − 0.113933Θ2Θ3 − 1.68771Θ2Θ4 + 0.712303Θ3

2

− 0.122343Θ3Θ4 + 0.588437Θ4
2
)
. (3.64)

All above results are subject to the constraint,

Θ2
1 + Θ2

2 + Θ2
3 + Θ2

4 = 1. (3.65)

In appendix A, we also compute the soft terms for the model with exact gauge coupling
unification that was previously studied in ref. [1].

4 Yukawa couplings

Yukawa couplings arise from open string world-sheet instantons that connect three D-
brane intersections [34]. Intersecting D6-branes at angles wrap 3-cycles on the compact
space T6 = T2 ×T2 ×T2. For instance in the case of three stacks of D-branes wrapping
on a T2 the 3-cycles can be represented by the wrapping numbers in a vector form as:

[Πa] = (na, la)→ za = R(na + τ la) · xa,
[Πb] = (nb, lb)→ zb = R(nb + τ lb) · xb,
[Πc] = (nc, lc)→ zc = R(nc + τ lc) · xc, (4.1)

where τ is the complex structure parameter, (na, la) ∈ Z2 is the wrapped 1-cycle, x ∈ R
and za ∈ C respective to the brane a. The triangles bounded by the triplet of D-branes
(za, zb, zc) will contribute to the Yukawa couplings [35]. A closer condition,

za + zb + zc = 0, (4.2)

ensures that triangles are actually formed by the three branes. The Diophantine equa-
tion (4.1) together with the closer condition can be solved to get the following solution:

xa = Ibc
d
x,

xb = Ica
d
x, x = x0 + l,

xc = Iab
d
x, (4.3)
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where Iab is the intersection number, d = g.c.d.(Iab, Ibc, Ica) is the greatest common divisor
of the intersection numbers, l ∈ Z arises from triangles connecting different points in
the covering space T6 but the same points under the lattice T2 of the triangles and
x0 ∈ R depends on the relative positions of the branes and the particular triplet (i, j, k) of
intersection points,

i = 0, 1, · · · , |Iab| − 1,
j = 0, 1, · · · , |Ibc| − 1,
k = 0, 1, · · · , |Ica| − 1, (4.4)

such that x0 can be written as

x0(i, j, k) = i

Iab
+ j

Ibc
+ k

Ica
. (4.5)

Relaxing the condition that all branes intersect at the origin, we can introduce brane shifts
εα, α = a, b, c to write a general expressions for x0 as

x0(i, j, k) = i

Iab
+ j

Ibc
+ k

Ica
+ d(Iabεc + Icaεb + Iabεa)

IabIbcIca
, (4.6)

where we can absorb these three parameters into only one as,

ε = Iabεc + Icaεb + Ibcεa
IabIbcIca

. (4.7)

This is obvious due to the reparametrization invariance in T2 since we can always choose
two branes to intersect at the origin and the only remaining freedom left is the shift of
third brane. The formula of the areas of the triangles can then be expressed using (4.6) as,

A(za, zb) = 1
2

√
|za|2|zb|2 − (Rezaz̄b)2

→ Aijk(l) = 1
2(2π)2A|IabIbcIca|

(
i

Iab
+ j

Ibc
+ k

Ica
+ ε+ l

)2
, (4.8)

where A is the Kähler structure of the torus. Finally, the Yukawa coupling for the three
states localized at the intersections indexed by (i, j, k) is given as,

Yijk = hquσabc
∑
l∈Z

exp
(
−Aijk(l)2πα′

)
, (4.9)

where the real phase σabc = sign(IabIbcIca) comes from the full instanton contribution [35]
and hqu is due to quantum correction as discussed in [29]. For the ease of numerical
computation real modular theta function is used to re-express the summation as

ϑ

 δ
φ

 (t) =
∑
l∈Z

e−πt(δ+l)
2
e2lπi(δ+l)φ, (4.10)
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where the corresponding parameters are related as,

δ = i

Iab
+ j

Ibc
+ k

Ica
+ ε,

φ = 0,

t = A

α′
|IabIbcIca|. (4.11)

Notice that the theta function ϑ is real, however t can be complex while φ is an overall
phase.

4.1 Adding a B-field and Wilson lines

Strings being one dimensional naturally couple to a 2-form B-field in addition to the metric.
To incorporate the turning on of this B-field leads to a complex Kähler structure of the
compact space T2 such that,

J = B + iA, (4.12)

and the otherwise real parameter t is changed to a complex parameter κ as,

κ = J

α′
|IabIbcIca|. (4.13)

Secondly, we can also add Wilson lines around the compact directions wrapped by the D-
branes. However, to avoid breaking any gauge symmetry Wilson lines must be chosen corre-
sponding to group elements in the centre of the gauge group, i.e., a phase [35]. For a triangle
formed by three D-branes a, b and c each wrapping a different 1-cycle inside of T2, the Wil-
son lines can be given by the corresponding phases exp(2πiθa), exp(2πiθb), and exp(2πiθc)
respectively. The total phase picked up by an open string sweeping such triangle will
depend upon the relative longitude of each segment, determined by the intersection points:

e2πixaθae2πixbθbe2πixcθc = e2πix(Ibcθa+Icaθb+Iabθc). (4.14)

In general, considering both a B-field as well as Wilson lines we get a complex theta
function as

ϑ

 δ
φ

 (κ) =
∑
l∈Z

eπiκ(δ+l)2
e2πi(δ+l)φ, (4.15)

where

δ = i

Iab
+ j

Ibc
+ k

Ica
+ ε,

φ = Iabθc + Ibcθa + Icaθb,

κ = J

α′
|IabIbcIca|. (4.16)

4.2 O-planes and non-prime intersection numbers

To cancel the RR-tadpoles we need to introduce the orientifold O-planes that are objects
of negative tension. In addition for each D-brane a, we must include its mirror image a′
under ΩR. Such mirror branes will in general wrap a different cycle Πa∗, related to Πa
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by the action of R on the homology of the torus. Consequently we also need to include
the triangles formed by either of the branes or their images. As an example the Yukawa
coupling from the branes a, b′, and c will depend on the parameters Iab′ , Ib′c, and Ica,
where the primed indexes are independent of the unprimed ones.

Furthermore, the three intersection numbers may not be coprime in general. Therefore,
to avoid overcounting we need to involve the g.c.d. of the intersection numbers as d =
g.c.d.(Iab, Ibc, Ica).

Finally, to ensure that triangles are bounded by D-branes, the intersection indices must
satisfy the following condition [35]

i+ j + k = 0 mod d. (4.17)

4.3 The general formula of Yukawa couplings

Therefore, the most general formula for Yukawa couplings for D6-branes wrapping a com-
pact T2 ×T2 ×T2 space can be written as, compact space as

Y{ijk} = hquσabc

3∏
r=1

ϑ

 δ(r)

φ(r)

 (κ(r)), (4.18)

where

ϑ

 δ(r)

φ(r)

 (κ(r)) =
∑
lr∈Z

eπi(δ
(r)+lr)2κ(r)

e2πi(δ(r)+lr)φ(r)
, (4.19)

with r = 1, 2, 3 denoting the three 2-tori. And the input parameters are defined by

δ(r) = i(r)

I
(r)
ab

+ j(r)

I
(r)
ca

+ k(r)

I
(r)
bc

+ d(r)(I(r)
ab ε

(r)
c + I

(r)
ca ε

(r)
b + I

(r)
bc ε

(r)
a )

IabIbcIca
+ s(r)

d(r) ,

φ(r) = I
(r)
bc θ

(r)
a + I

(r)
ca θ

(r)
b + I

(r)
ab θ

(r)
c

d(r) ,

κ(r) = J (r)

α′
|I(r)
ab I

(r)
bc I

(r)
ca |

(d(r))2 . (4.20)

The theta function defined in (4.15) is in general complicated to evaluate numerically.
However, for the special case without B-field, defining J ′ = −iJ = A and κ′ = −iκ the ϑ
function takes a more manageable form,

ϑ

 δ
φ

 (κ′) =
∑
l∈Z

e−πκ
′(δ+l)2

e2πi(δ+l)φ,

redefine−→ ϑ

 δ
φ

 (κ) = e−πκδ
2
e2πiδφϑ3(π(φ+ iκδ), e−πκ), (4.21)

in terms of ϑ3, the Jacobi theta function of the third kind.
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a1

a2

b′b

c′2

c′1

c1

c2

a

b

c
a b

c

Figure 2. Brane configuration for the three 2-tori where the third 2-torus is tilted. Fermion mass
hierarchies result from the intersections on the first 2-torus.

5 Semi-realistic Yukawa textures

Yukawa matrices for the Model 18 depicted in table 3 are of rank 3 and the three inter-
sections required to form the disk diagrams for the Yukawa couplings all occur on the first
torus as shown in figure 2. The second and third tori only contribute an overall constant
that has no effect in computing the fermion mass ratios. Thus, it is sufficient for our
purpose to only focus on the first torus to nearly reproduce the correct the masses of the
standard model fermions.

5.1 Mass matrices from 3-point functions

For the wrapping numbers listed in table 3, the intersection numbers on each torus are
given as,

I
(1)
ab = 3, I

(2)
ab = 1, I

(3)
ab = 1,

I
(1)
bc = 9, I

(2)
bc = 1, I

(3)
bc = 0,

I(1)
ca = 3, I(2)

ca = 1, I(3)
ca = 1.

(5.1)

As the intersection numbers are not coprime, we define the greatest common divisor, d(1) =
g.c.d.(I(1)

ab , I
(1)
bc , I

(1)
ca ) = 3. Thus, the arguments of the modular theta function as defined
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in (4.20) can be written as,

δ(1) = i(1)

3 + j(1)

9 + k(1)

3 + ε
(1)
c + 3ε(1)

a + ε
(1)
b

9 + s(1)

3 , (5.2)

φ(1) = 3θ(1)
a + θ

(1)
b + θ(1)

c , (5.3)

κ(1) = 9J (1)

α′
, (5.4)

and recalling (4.4), we have i = {0, . . . , 2}, and j = {0, . . . , 2} and k = {0, . . . , 8} which
respectively index the left-handed fermions, the right-handed fermions and the Higgs fields.
Clearly, there arise nine Higgs fields from the bc sector.

The second-last term in the right side of (5.2) can be used to redefine the shift on each
torus as

ε(1) ≡
ε
(1)
c + 3ε(1)

a + ε
(1)
b

9 . (5.5)

It can be noted from (5.1) that the intersection numbers on the second and third tori are
either one or zero whose effect on the Yukawa couplings will be an over-all constant. The
selection rule for the occurrence of a trilinear Yukawa for a given set of indices is given as,

i(1) + j(1) + k(1) = 0 mod 3. (5.6)

Then, the mass matrices will take the following form for the specific values of s(1):

Ms(1)=0 ∼


v1A+ v4D + v7G v9C + v3F + v6Q v5B + v8E + v2P

v9C + v3F + v6Q v5B + v8E + v2P v1A+ v4D + v7G

v5B + v8E + v2P v1A+ v4D + v7G v9C + v3F + v6Q

 , (5.7)

Ms(1)=−i ∼


v1A+ v4D + v7G v3C + v6F + v9Q v2B + v5E + v8P

v9C + v3F + v6Q v8B + v2E + v5P v7A+ v1D + v4G

v5B + v8E + v2P v4A+ v7D + v1G v6C + v9F + v3Q

 , (5.8)

Ms(1)=−k ∼


v1A+ v4D + v7G v9C + v3F + v6Q v5B + v8E + v2P

v3C + v6F + v9Q v8B + v2E + v5P v4A+ v7D + v1G

v2B + v5E + v8P v7A+ v1D + v4G v6C + v9F + v3Q

 , (5.9)

Ms(1)=−j/3 ∼


v1A+ v4A+ v7A v3D + v6D + v9D v2G+ v5G+ v8G

v3D + v6D + v9D v2G+ v5G+ v8G v1A+ v4A+ v7A

v2G+ v5G+ v8G v1A+ v4A+ v7A v3D + v6D + v9D

 , (5.10)
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where vi = 〈Hi〉 and the Yukawa couplings A, B, C, D, E, F , G, P , and Q are given by

A≡ϑ

 ε(1)

φ(1)

(9J (1)

α′

)
, B≡ϑ

 ε(1)+ 1
9

φ(1)

(9J (1)

α′

)
, C≡ϑ

 ε(1)+ 2
9

φ(1)

(9J (1)

α′

)
,

D≡ϑ

 ε(1)+ 1
3

φ(1)

(9J (1)

α′

)
, E≡ϑ

 ε(1)+ 4
9

φ(1)

(9J (1)

α′

)
, F ≡ϑ

 ε(1)− 4
9

φ(1)

(9J (1)

α′

)
,

G≡ϑ

 ε(1)− 1
3

φ(1)

(9J (1)

α′

)
, P ≡ϑ

 ε(1)− 2
9

φ(1)

(9J (1)

α′

)
, Q≡ϑ

 ε(1)− 1
9

φ(1)

(9J (1)

α′

)
. (5.11)

The cases (5.7), (5.8) and (5.9) have a similar structure whereas the last case (5.10) ap-
pears to forbid three different real eigenvalues. Thus, we only choose the case s(1) = −i as a
representative scenario for the first three cases and will ignore the last possibility. The mass
matrices for up quarks, down quarks and charged leptons are respectively given as follows:

(Mu)ij∼


H1
uAu+H4

uDu+H7
uGu H3

uCu+H6
uFu+H9

uQu H2
uBu+H5

uEu+H8
uPu

H9
uCu+H3

uFu+H6
uQu H8

uBu+H2
uEu+H5

uPu H7
uAu+H1

uDu+H4
uGu

H5
uBu+H8

uEu+H2
uPu H4

uAu+H7
uDu+H1

uGu H6
uCu+H9

uFu+H3
uQu

, (5.12)

(Md)ij∼


H1
dAd+H4

dDd+H7
dGd H

3
dCd+H6

dFd+H9
dQd H2

dBd+H5
dEd+H8

dPd

H9
dCd+H3

dFd+H6
dQd H8

dBd+H2
dEd+H5

dPd H
7
dAd+H1

dDd+H4
dGd

H5
dBd+H8

dEd+H2
dPd H

4
dAd+H7

dDd+H1
dGd H

6
dCd+H9

dFd+H3
dQd

, (5.13)

(Me)ij∼


H1
dAe+H4

dDe+H7
dGe H

3
dCe+H6

dFe+H9
dQe H2

dBe+H5
dEe+H8

dPe

H9
dCe+H3

dFe+H6
dQe H8

dBe+H2
dEe+H5

dPe H
7
dAe+H1

dDe+H4
dGe

H5
dBe+H8

dEe+H2
dPe H

4
dAe+H7

dDe+H1
dGe H

6
dCe+H9

dFe+H3
dQe

, (5.14)

Notice that the two light Higgs mass eigenstates will arise from the linear combination of
the VEVs of the nine Higgs fields present in the model as,

Hu,d =
∑ viu,d√∑(viu,d)2

H i
u,d , (5.15)

with viu,d = 〈H i
u,d〉.

Pati-Salam gauge symmetry is broken down to the standard model by the process
of brane-splitting as schematically shown in figure 1, where the standard model particles
are localized at their respective brane intersections. The mass hierarchies of the standard
model are then easily explained by the relative shifting of the brane stacks. For instance,
the left-handed quarks are localized at the intersections between the stacks {a1, b} while
the right-handed up-type and down-type quarks are respectively localized between stacks
{a1, c1} and {a1, c2}. Thus, if we shift stack c2 in the orientifold by an amount εc2 while the
stack c1 is unshifted (εc1 = 0), then the down-type quark masses are naturally suppressed
relative to the up-type quarks. Similarly, because the left-handed and the right-handed
charged leptons are respectively localized at the intersection between stacks {a2, b} and
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stacks {a2, c2}, the shifting of stack a2 by some amount εa2 will result in the suppression of
the charged lepton masses relative to the down-type quarks. Hence, the following observed
mass hierarchy is a consequence of pure geometry of the internal space,

mu > md > me. (5.16)

By running the RGE’s up to unification scale, we can determine the desired mass
matrices for quarks and leptons. For example, considering tan β ≡ vu/vd = 50, the CKM
matrix at the unification scale µ = MX has been determined as [36, 37],

VCKM =


0.9754 0.2205 −0.0026i

−0.2203e0.003◦i 0.9749 0.0318
0.0075e−19◦i −0.0311e1.0◦i 0.9995

 . (5.17)

The diagonal mass matrices for up-type and down-type quarks are respectively denoted as
Du and Dd, and are given as,

Du = mt


0.0000139 0 0

0 0.00404 0
0 0 1.

 , (5.18)

Dd = mb


0.00141 0 0

0 0.0280 0
0 0 1.

 , (5.19)

and obey the following relations,

VCKM = UuLU
d
L
†
,

Du = UuLMuU
u
R
†, Dd = UdLMdU

d
R
†
, (5.20)

where U i are the unitary matrices and MuM
†
u andMdM

†
d are the squared mass matrices of

the up and down-type quarks. Similarly, the charged leptons mass eigenvalues at tan β = 50
are given as,

De = mτ


0.000217 0 0

0 0.0458 0
0 0 1.

 . (5.21)

where we have taken the ratio mτ/mb = 1.58 from the previous study of soft terms [1].

5.2 Fitting the quark masses and mixings

In the standard model, the quark matrices Mu and Md can always be made Hermitian by
suitable transformation of the right-handed fields. We consider the case that Md is very
close to the diagonal matrix for down-type quark, which effectively means that UdL and UdR
are very close to the unit matrix with very small off-diagonal terms, then

VCKM ' UuUd† ' Uu, (5.22)
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where we have transformed away the right-handed effects and made them the same as the
left-handed ones. Thus, the mass matrix of the up-type quarks becomes,

Mu ∼ V †CKMDuVCKM. (5.23)

And the absolute value of Mu is given as,

|Mu| = mt


0.000265544 0.0010868 0.00746948
0.0010868 0.00480762 0.0309592
0.00746948 0.0309592 0.999004

 . (5.24)

Henceforth, we need to fit (5.24) and (5.19) to explain the mixing and the eigenvalues of
the up-type and down-type quarks by fine-tuning the coupling parameters and the Higgs
VEVs in (5.12) and (5.13). It looks at the first glance that the solution can be easily found,
but we should keep in mind that the nine parameters from the theta function controlled by
the D-brane shifts and Wilson-line phases are not independent. Examining (5.24) and (5.8)
it is clear that we are tightly constrained by the off-diagonal terms. For instance, consider
the ratio of the terms (12) and (33),

v3C + v6F + v9Q

v3Q+ v6C + v9F
≈ 0.001, (5.25)

which is only possible if we have C
Q � 1, FC � 1, and Q

F � 1.
Comparing (5.12) and (5.13) with the up-type quarks matrix Mu and the diagonal

down-type quarks matrix Dd, we obtain an exact fitting by expending the nine up-type
Higgs VEVs and the nine down-type Higgs VEVs respectively.

|M3u| = |Mu|,
|M3d| = Dd. (5.26)

Here, we have set the Kähler modulus on the first 2-torus defined in (5.4) as κ(1) = 45 and
evaluate the couplings functions (5.11) by setting geometric brane position parameters as
ε
(1)
u = 0 and ε(1)

d = 2/9 which yields in an exact fitting for the following VEVs,

v1
u = 0.000265535 v1

d = 4.57419× 10−9

v2
u = 0.0426383 v2

d = 0
v3
u = 5.72205 v3

d = 0.114556
v4
u = 0.0309592 v4

d = −8.59558× 10−7

v5
u = 0.0425567 v5

d = 0.00056
v6
u = 0.00635385 v6

d = −0.000609616
v7
u = 0.0309592 v7

d = 0.000161524
v8
u = 0.0273106 v8

d = 0
v9
u = −0.0242253 v9

d = 3.24411× 10−6.

(5.27)
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Figure 3. Log plot of the spectrum of eigenvalues of the charged leptons mass as a function of brane
position parameter ε(1)

e for κ(1) = 45. The dashed colored horizontal lines correspond to the mass
eigenvalues of tau, muon and electron {1, 0.0458, 0.000217}mτ from (5.21). The exact solution will
only be obtained if the respective colored lines touch the dashed grid-lines for a specific value of ε(1)

e .
The nearest-fit is obtained at ε(1)

e = 0.206558 with eigenvalues {0.999993, 0.0171119, 0.00053237}mτ .

5.3 Fitting the charged lepton masses

Note that the down-type quark mass matrix and the lepton mass matrix both involve the
same down-type Higgs VEVs. Thus, once the parameters needed to fit the down-type mass
matrix are fixed, the only freedom in calculating the charged lepton mass matrix is from
the geometric position ε(1)

e of each brane against the set value of the parameter κ(1). We
have calculated the spectrum of mass eigenvalues for charged leptons by varying ε(1)

e from
0 to 1 for various values of κ(1). Figure 3 shows one such spectrum for the specific value of
κ(1) = 45. It can be easily seen that the nearest match is obtained for ε(1)

e = 0.206558,

|M3e| = mτ


0.000526961 −0.00410568 8.71084× 10−9

0.0000218487 0.0171173 −5.03921× 10−8

−1.99023× 10−9 9.46941× 10−6 0.999993

 (5.28)

with eigenvalues {0.999993, 0.0171119, 0.00053237}mτ , where tau lepton is fitted exactly
while the muon’s mass comes out to be only 37% while the electron is about 2.45 times
heavier than (5.21). Notice, that these results are only at the tree-level and there could
indeed be other corrections, such as those coming from higher-dimensional operators, which
may contribute most greatly to the electron and muon masses since they are lighter.

6 Yukawa couplings from 4-point functions

We now turn our attention to the discussion of four-point functions that affect more greatly
to the masses of the lighter fermions. We are looking for four-point interactions such as

φiabφ
j
caφ

k
b′cφ

l
bb′ or φiabφ

j
caφ

k
cc′φ

l
bc′ , (6.1)

where φixy are the chiral superfields at the intersections between stack x and y D6-branes.
The formula for the area of a quadrilateral in terms of its angles and two sides and the solu-
tions of diophantine equations for estimating the multiple areas of the quadrilaterals from
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u
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Q

σ

ν

1− ν

S

λ

1− λ

H ′

uQ 1− σ 1− ρ

Figure 4. A picture of two quadrilaterals with different field orders. The red brane repeats in
a next cycle and can still form a similar quadrilateral with the blue brane. This coupling also
contributes to the four-point function.

non-unit intersection numbers are given in [38, 39]. In addition to these formulae, there is
a more intuitive way to calculate the area for these four-sided polygons. A quadrilateral
can be always taken as the difference between two similar triangles. Therefore, since we
know the classical part is

Z4cl ∼ e−Aquad , (6.2)

it is equivalent to write [40],

Z4cl ∼ e−|Atri−A
′
tri|. (6.3)

Taking the absolute value of the difference reveals that there are two cases: Atri > A′tri
and Atri < A′tri, as shown in figure 4. From the figure we can see the two quadrilaterals
are similar with different sizes, but the orders of the fields corresponding to the angles are
different, which is under an interchange of θ ↔ 1 − θ, θ = ν, λ, ρ, σ. These different field
orders may cause different values for their quantum contributions. Here, we shall only
consider the classical contribution from the 4-point interaction and ignore the quantum
part which was shown to be further suppressed, consult [40] and references therein for
details. Therefore, we are able to employ the same techniques which have developed for
calculating the trilinear Yukawa couplings.

For a quadrilateral formed by the stacks a, b, b′, c, we can calculate it as the difference
between two triangles formed by stacks a, b, c and b′, b, c. In other words, they share the
same intersection Ibc. Therefore, if we use this method to calculate the quadrilateral area,
we should keep in mind that the intersection index k for Ibc remains the same for a certain
class of quadrilaterals when varying other intersecting indices. Here we set indices i for
Iab, j for Ica, ı for Ibb′ , and  for Icb′ , as shown in figure 5. We may calculate the areas of
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ı

k

i

ȷ

j

b c1

c2

a1

a2

b′

Figure 5. A diagram showing the areas bounded by stacks of D-branes which give rise to the
Yukawa couplings for quarks and leptons via world-sheet instantons. The Yukawa couplings of the
up-type quarks are from the areas by stack a1, b, c1, the down-type quarks by stack a1, b, c2, and
the leptons by a2, b, c2. The four-point function corrections to the Yukawa couplings of the up-type
quarks are from the areas by stack a1, b, b′, c1, the down-type quarks by stack a1, b, b′, c2, and the
leptons by a2, b, b′, c2.

the triangles as we did in the trilinear Yukawa couplings above [35]

Aijk = 1
2(2π)2AT2 |IabIbcIca|

(
i

Iab
+ j

Ica
+ k

Ibc
+ ε+ l

)2
,

Aık = 1
2(2π)2AT2 |Ib′bIbcIcb′ |

(
ı

Ib′b
+ 

Icb′
+ k

Ibc
+ ε+ `

)2
, (6.4)

where i, j, k and ı, , k are using the same selection rules as eq. (5.6). Thus, the classical
contribution of the four-point functions is given by

Z4cl =
∑
l,`

e−
1

2π |Aijk−Aık|. (6.5)

Note that this formula will diverge when Aijk = Aık, which is due to over-counting the zero
area when the corresponding parameters in eq. (6.4) are the same. In such a case, Z4cl =
1+∑l 6=` e

− 1
2π |Aijk−Aık|. We will not meet this special situation in our following discussion.

We will consider both types of possible interactions (6.1) coming from considering b′
or from considering c′ independently.
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6.1 Mass corrections from 4-point functions considering b′

In the model of table 3, in addition to the intersection numbers in eq. (5.1), we have

I
(1)
cb′ = 1, I

(2)
cb′ = −1, I

(3)
cb′ = 1;

I
(1)
bb′ = 20, I

(2)
bb′ = 0, I

(3)
bb′ = −1;

I
(1)
cc′ = −4, I

(2)
cc′ = 0, I

(3)
cc′ = −1; (6.6)

There are twenty SM singlet fields SiL and one Higgs-like state H ′u,d. Similar to the Higgs
fields H i

u,d, only three linear combinations of the twenty SiL can contribute to the four-
point Yukawa couplings. Considering the following parameters with shifts l = −k/3 and
` = −k/9 taken along the index k,

δ = i

I
(1)
ab

+ j

I
(1)
ca

+ k

I
(1)
bc

+ l,

= i

3 + j

3 , (6.7)

d = ı

I
(1)
cc′

+ 

I
(1)
cb′

+ k

I
(1)
bc

+ `,

= ı

20 + , (6.8)

the matrix elements ai,j,ı on the first torus from the four-point functions can be expressed as
∑6
i=0 a1,1,3i+1

∑5
i=0 a1,2,3i+3

∑6
i=0 a1,3,3i+2∑5

i=0 a2,1,3i+3
∑6
i=0 a2,2,3i+2

∑6
i=0 a2,3,3i+1∑6

i=0 a3,1,3i+2
∑6
i=0 a3,2,3i+1

∑5
i=0 a3,3,3i+3

 , (6.9)

and the classical 4-point contribution to the mass matrix given as,

Z4cl =


u1
∑6
i=0w3i+1A3i u2

∑5
i=0w3i+3A3i+2 u3

∑6
i=0w3i+2A3i+1

u1
∑5
i=0w3i+3A3i+2 u2

∑6
i=0w3i+2A3i+1 u3

∑6
i=0w3i+1A3i

u1
∑6
i=0w3i+2A3i+1 u2

∑6
i=0w3i+1A3i u3

∑5
i=0w3i+3A3i+2

 , (6.10)

where ui, wj are the VEVs and the couplings are defined as,

Ai ≡ ϑ

 ε(1) + i

20
φ(1)

(9J (1)

α′

)
, i = 0, . . . , |I(1)

bb′ | − 1. (6.11)

Since, we have already fitted the up-type quark matrix |M3u| exactly, so its 4-point
correction should be zero,

|M4u| = 0, (6.12)

which is true by setting all up-type VEVs uiu and wiu to be zero. Therefore, we are essentially
concerned with fitting charged leptons in such a way that corresponding corrections for the
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down-type quarks remain negligible. The desired solution can be readily obtained by setting
ε
(1)
4e = 0 and ε(1)

4d = 1/20 with the following values of the VEVs,

u1
d = −1/27, u2

d = 1, u3
d = 1/100,

wid = 0, i = 1, . . . , 14,
w15
d = 0.172138, w16

d = 0.0858488 w17
d = 0.0247877,

w18
d = −0.0000123476, w19

d = −0.0000513328, w20
d = −0.000123552.

(6.13)

The 4-point correction to the charged leptons masses is given by,

|M4e| = mτ


−0.000309961 0.000697239 0.000286827
−0.0000258237 0.0286827 0.0000836895
−0.00106232 0.00836895 6.97239× 10−6

 (6.14)

which can be added to the matrix obtained from 3-point functions (5.28) as,

|M3e|+ |M4e| = mτ


0.000217 −0.00340844 0.000286835

−3.97501× 10−6 0.0458 0.0000836391
−0.00106232 0.00837842 1.

 (6.15)

that can be readily diagonalized as,

mτ


0.00217014 0 0

0 0.0457996 0
0 0 1.

 ∼ De , (6.16)

which exactly reproduces the correct masses of all three charged leptons cf. (5.21). Also,
the corrections to down-type quarks are kept to almost zero by setting ε(1)

4d = 1/20,

|M4d| ∼ 0. (6.17)

which preserves our previously obtained exact fit using 3-point functions (5.26).

6.2 Mass corrections from 4-point functions considering c′

There are four SM singlet fields SiL and one Higgs-like state H ′u,d. Similar to the Higgs
fields H i

u,d, only three linear combinations of the twenty SiL can contribute to the four-
point Yukawa couplings. Considering the following parameters with shifts l = −k/3 and
` = −k/9 taken along the index k,

δ = i

I
(1)
ab

+ j

I
(1)
ca

+ k

I
(1)
bc

+ l,

= i

3 + j

3 , (6.18)

d = ı

I
(1)
cc′

+ 

I
(1)
cb′

+ k

I
(1)
bc

+ `,

= − ı4 + , (6.19)
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k

ij

b c1

c2

a1

a2

ı

ȷ

c′2

c′1

Figure 6. A diagram showing the areas bounded by stacks of D-branes which give rise to the
Yukawa couplings for quarks and leptons via world-sheet instantons. The Yukawa couplings of the
up-type quarks are from the areas by stack a1, b, c1, the down-type quarks by stack a1, b, c2, and
the leptons by a2, b, c2. The four-point function corrections to the Yukawa couplings of the up-type
quarks are from the areas by stack a1, b, c′, c1, the down-type quarks by stack a1, b, c′, c2, and the
leptons by a2, b, c′, c2.

the matrix elements ai,j,ı on the first torus from the four-point functions can be expressed as,
a1,1,4 + a1,1,1 a1,2,3 a1,3,2

a2,1,3 a2,2,2 a2,3,1 + a2,3,4

a3,1,2 a3,2,1 + a3,2,4 a3,3,3

 . (6.20)

and the classical 4-point contribution to the mass matrix given as,

Z4cl =


u1(w4A1 + w1A0) u2w3A2 u3w2A3

u1w3A2 u2w2A3 u3(w4A1 + w1A0)
u1w2A3 u2(w4A1 + w1A0) u3w3A2

 , (6.21)

where ui, wj are the VEVs and the couplings are defined as,

Ai ≡ ϑ

 ε(1) + i

4
φ(1)

(9J (1)

α′

)
, i = 0, . . . , |I(1)

cc′ | − 1. (6.22)

Since, we have already fitted the up-type quark matrix |M3u| exactly, so its 4-point
correction should be zero,

|M4u| = 0, (6.23)

which is true by setting all up-type VEVs uiu and wiu to be zero. Therefore, we are essentially
concerned with fitting charged leptons in such a way that corresponding corrections for the
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down-type quarks remain negligible. The desired solution can be readily obtained by setting
ε
(1)
4e = 1/4 and ε(1)

4d = 3/4 with the following values of the VEVs,

u1
d = −1/27, u2

d = 1, u3
d = 1/100,

w1
d = 1.8183, w2

d = 0.000906372,
w3
d = 0.151488, w4

d = −0.000264.
(6.24)

The 4-point correction to the charged leptons masses is given by,

|M4e| = mτ


−0.000309961 0.000697239 0.000286827
−0.0000258237 0.0286827 0.0000836895
−0.00106232 0.00836895 6.97239× 10−6

 , (6.25)

which can be added to the matrix obtained from 3-point functions (5.28) as,

|M3e|+ |M4e| = mτ


0.000217 −0.00340844 0.000286835

−3.97501× 10−6 0.0458 0.0000836391
−0.00106232 0.00837842 1.

 , (6.26)

that can be readily diagonalized as,

mτ


0.00217014 0 0

0 0.0457996 0
0 0 1.

 ∼ De , (6.27)

which exactly reproduces the correct masses of all three charged leptons cf. (5.21). Also,
the corrections to down-type quarks are kept to almost zero by setting ε(1)

4d = 3/4,

|M4d| =


−8.49479× 10−7 0.00110164 0
−0.0000408014 0 2.29359× 10−7

0 0.0000229359 0.0000110164

 ∼ 0, (6.28)

which preserves our previously obtained exact fit using 3-point functions (5.26).
In summary, we can correctly reproduce, the correct masses and mixings of quarks

and the masses of charged leptons at the electroweak scale. Finally, by choosing suitable
Majorana mass matrix for the right-handed neutrinos the suitable masses of neutrinos and
their mixings can be generated by type I seesaw mechanism.

7 Discussion and conclusion

We have studied the phenomenology of a new class of supersymmetric Pati-Salam intersect-
ing D6-brane model on a T6/(Z2 × Z2) orientifold in type IIA string theory. The defining
characteristic of this new-class is that one of the wrapping numbers is 5 and models ex-
hibit approximate gauge coupling unification. We have discussed the SM fermion masses
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and mixings and supersymmetry breaking soft terms in the u-moduli dominated case and
the u-moduli dominant case together with the s-moduli turned on, where the soft terms
remain independent of the Yukawa couplings and the Wilson lines. The results depend on
the brane wrapping numbers as well as supersymmetry breaking parameters.

Although we are able to reproduce the extrapolated GUT-scale mass hierarchies and
the mixings of the standard model fermions in our intersecting brane model on a IIA
orientifold setting exactly, several issues remain to be addressed. The values of various
couplings and other parameters are not determined uniquely within the model and are
rather put by hand. All such parameters are the functions of open and closed string
moduli. For instance the Yukawa couplings depend on the geometric position of the stacks
of branes and the Kähler moduli. Once we fix these moduli, the only freedom left is the
Higgs sector, i.e. finding a specific linear combination of nine pairs of Higgs states which
may be fine-tuned to yield the two Higgs eigenstates Hu and Hd of the MSSM.

Fixing the brane positions is thus equivalent to fixing the open string moduli. Unless
these open string moduli are fixed, the low energy spectrum will contain non-chiral open
string states associated to the brane positions and the Wilson lines. We do not see such
scalar particles in Nature. Luckily so, otherwise they will also spoil the gauge coupling
unification in the MSSM. Therefore, it is tempting to eliminate such non-chiral fields by
considering intersecting D-brane models wrapping on rigid cycles. In the case of type II
compactifications, T6/(Z2 × Z′2) is the only known toroidal background possessing such
rigid cycles, see ref. [27] for details. This may be explored in a future study.
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A Soft terms from susy breaking for model in ref. [1]

Table 6 shows the well-studied previous model with wrapping number up to 3 with exact
gauge coupling unification. This model has been extensively discussed in refs. [1, 41–44].
The gaugino masses, trilinear coupling and the squared masses of sleptons and squarks
for this model computed in [44] did not take into account the fact that the third torus is
tilted. Consequently, there was some discrepancy in the trilinear coupling and the squared
sleptons and squarks masses. Below we perform the computation making use of Kronecker
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U(4)C ×U(2)L ×U(2)R ×USp(2)4

N (n1, l1)× (n2, l2)× (n3, l3) nS nA b b′ c c′ 1 2 3 4
a 8 (0,−1)× (1, 1)× (1, 1) 0 0 3 0 -3 0 1 -1 0 0
b 4 (3, 1)× (1, 0)× (1,−1) 2 -2 - - 0 0 0 1 0 -3
c 4 (3,−1)× (0, 1)× (1,−1) -2 2 - - - - -1 0 3 0
1 2 (1, 0)× (1, 0)× (2, 0) χ1 = 3, χ2 = 1, χ3 = 2
2 2 (1, 0)× (0,−1)× (0, 2) βg1 = −3, βg2 = −3
3 2 (0,−1)× (1, 0)× (0, 2) βg3 = −3, βg4 = −3
4 2 (0,−1)× (0, 1)× (2, 0)

Table 6. D6-brane configurations and intersection numbers for the model on Type IIA T6/Z2×Z2
orientifold.

deltas and the sign matrix σixy defined in (3.56), which conveniently takes into account the
signs in the derivative of the angles and the Ψ-functions.

From table 6, the complex structure moduli U from (3.4) can be calculated as,

{U1, U2, U3} = {3i, i, 1 + i}, (A.1)

and the corresponding u-moduli and s-modulus in supergravity basis from (3.5) are,

ui =
{
e−φ4
√

6π
,

√
3
2e
−φ4

π
,

√
3
2e
−φ4

2π

}
,

s = e−φ4

2
√

6π
. (A.2)

Using (3.10) and the values from the table 6, the gauge kinetic function becomes,

fx =

√
3
2e
−φ4

4π , x = a, b, c. (A.3)

To calculate gaugino masses M1,2,3 respectively for U(1)Y , SU(2)L and SU(3)c gauge
groups, we first compute Ma,b,c using (3.41) as,

Ma =
√

3
2 m3/2

(
e−iγ2Θ3 + e−iγ3Θ2

)
,

Mb =
√

3
2 m3/2

(
e−iγ2Θ2 − e−iγ4Θ4

)
,

Mc =
√

3
2 m3/2

(
e−iγ1Θ1 + e−iγ3Θ3

)
. (A.4)

Bino mass parameter MY (3.33) is then computed as,

MY = 1
fY

(2
3faMa + fcMc)

= 3
√

3
10 m3/2

(
e−iγ1Θ1 + 1

5e
−iγ2Θ2 + 1

2e
−iγ3Θ3

)
. (A.5)

– 35 –



J
H
E
P
0
4
(
2
0
2
2
)
0
8
9

θ1 θ2 θ3

a −1/2 1/4 1/4
b 1/4 0 −1/4
c −1/4 1/2 −1/4

Table 7. The angles (in multiples of π) with respect to the orientifold plane made by the cycle
wrapped by each stack of D-branes on each of the three two-tori.

Therefore, the gaugino masses for U(1)Y , SU(2)L and SU(3)c gauge groups are,

M1 ≡MY = 3
√

3
10 m3/2

(
e−iγ1Θ1 + 1

5e
−iγ2Θ2 + 1

2e
−iγ3Θ3

)
,

M2 ≡Mb =
√

3
2 m3/2

(
e−iγ2Θ2 − e−iγ4Θ4

)
,

M3 ≡Ma =
√

3
2 m3/2

(
e−iγ2Θ3 + e−iγ3Θ2

)
. (A.6)

We now require the angles, the differences of angles and their first and second order
derivatives with respect to the moduli to compute the trilinear coupling and the sleptons
mass-squared. In table 7 we show the angles made by the cycle wrapped by each stack D6
branes with respect to the orientifold plane in multiples of π,

θix = 1
π

tan−1
(

2−βi lixχi
nix

)
. (A.7)

The differences of the angles are,

θiy − θix ≡ θixy =


{0, 0, 0}

{
3
4 ,−

1
4 ,−

1
2

} {
1
4 ,

1
4 ,−

1
2

}
{
−3

4 ,
1
4 ,

1
2

}
{0, 0, 0}

{
−1

2 ,
1
2 , 0
}

{
−1

4 ,−
1
4 ,

1
2

} {
1
2 ,−

1
2 , 0
}

{0, 0, 0}

 . (A.8)

To account for the negative angle differences we make use of the σixy function (3.56)
which is −1 only for negative angle difference and +1 otherwise,

σixy ≡ (−1)1−H(θixy) =


{1, 1, 1} {−1,−1, 1} {1,−1, 1}
{1, 1,−1} {1, 1, 1} {1,−1, 1}
{−1, 1,−1} {−1, 1, 1} {1, 1, 1}

 , (A.9)

where H(x) is the unit step function. And the function ηxy can thus be defined by taking
the product on the torus index i as,

ηxy ≡
∏
i

σixy =


1 1 −1
−1 1 −1
1 −1 1

 . (A.10)
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Using above defined σixy and ηixy, we can readily write the four cases of functions Ψ(θxy)
defined in (3.37) and (3.38) into a single expression as,

Ψ(θjxy) = ηxy

(1
2ψ

(0)(σixyθjxy) + 1
2ψ

(0)(1− σixyθjxy) + γE − log(tj + t̄j)
)
, (A.11)

where ψ(0)(z) is called the digamma function defined as the derivative of the logarithm
of the gamma function. The successive derivatives of the log Γ(z) yield the polygamma
function ψ(n)(z) as,

ψ(n−1)(z) = d(n)

dz(n) log Γ(z), (A.12)

with the following properties,
d

dz
ψ(0)(±z) = ±ψ(1)(±z),

d

dz
ψ(0)(1± z) = ±ψ(1)(1± z). (A.13)

Similarly, the derivative Ψ′(θjxy) = dΨ(θjxy)
dθjxy

can be expressed succinctly as,

Ψ′(θjxy) = ηxyσ
i
xy

(1
2ψ

(1)(σixyθjxy) + 1
2ψ

(1)(1− σixyθjxy)
)
, (A.14)

where we have utilized the property (A.13) and have neglected the contribution of the
t-moduli.

Lastly, by making use of appropriate Kronecker deltas and defining u4 ≡ s, we can
express the various cases of the first and second derivatives of the angles as,

θi,mxy ≡ (um + ūm)
∂θixy
∂um

= (−1)δm,4(−1)δi,j sin(2πθi)
4π

∣∣∣∣x
y

,

i = 1, 2, 3; m = 1, 2, 3, 4. (A.15)

θi,mnxy ≡ (um + ūm)(un + ūn)
∂2θixy
∂um∂ūn

= δm,n
sin(4πθi) + (−1)(1−δ4,m)(1−δi,m)4 sin(2πθi)

16π

∣∣∣∣x
y

+ (1− δm,n)(−1)(1−δ4,m)(1−δ4,n)(δi,m+δi,n)(−1)1−δi,m−δi,n sin(4πθi)
16π

∣∣∣∣x
y

,

i = 1, 2, 3; m,n = 1, 2, 3, 4. (A.16)

Substituting above results in (3.42) and ignoring the CP-violating phases γi, we obtain
the following the trilinear couplings,

A0 ≡ Aabc = Aacb =
√

3m3/2
4π

[
−Θ1

(
2π + 2γE + ψ(0)

(1
4

)
+ ψ(0)

(3
4

))

+ Θ2

(
−2π + 2γE + ψ(0)

(1
4

)
+ ψ(0)

(3
4

))

+ Θ3

(
2γE + ψ(0)

(1
4

)
+ ψ(0)

(3
4

))
−Θ4

(
2γE + ψ(0)

(1
4

)
+ ψ(0)

(3
4

))]
. (A.17)
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Ignoring the CP-violating phases γi, the gaugino masses, trilinear coupling and sleptons
and squarks mass-squared (3.43) parameters are obtained as,

M1 =m3/2(0.519615Θ1 +0.34641Θ2 +0.866025Θ3),
M2 =m3/2(0.866025Θ2−0.866025Θ4),
M3 =m3/2(0.866025Θ2 +0.866025Θ3),
A0 =m3/2(−0.292797Θ1−1.43925Θ2−0.573228Θ3 +0.573228Θ4),

m2
ab≡m2

L =m3/2
2
(
1−2.02977Θ1

2 +0.75Θ1Θ2−1.5Θ1Θ4−0.0440466Θ2
2−1.5Θ2Θ3

+0.286907Θ3
2 +0.75Θ3Θ4 +0.286907Θ4

2
)
,

m2
ac≡m2

R =m3/2
2
(
1−0.0880932Θ1

2−1.5Θ1Θ2 +0.75Θ1Θ3 +0.75Θ1Θ4−0.0880932Θ2
2

+0.75Θ2Θ3 +0.75Θ2Θ4−0.419047Θ3
2−1.5Θ3Θ4−2.40477Θ4

2
)
. (A.18)

All above results are subject to the constraint,
4∑
i=1

Θ2
i = 1. (A.19)
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