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1 Introduction

The algebra of symmetries of asymptotically flat four-dimensional spacetime is the infinite-
dimensional Bondi-Sachs-Metzner (BMS) algebra [1, 2], which consists of Lorentz trans-
formations and translations that depend on the positions on the celestial sphere called
supertranslations. This algebra can be further enlarged by including charges that do not
generate proper asymptotic symmetries (superrotations) [3] as well as other charges that
we shall not consider further in this paper. Supertranslations depend on the two angular
coordinates on the celestial sphere so they can be expanded in spherical harmonics, which
are labeled by the standard quantum numbers l = 0, 1, 2, . . . and −l ≤ m ≤ l. The four
generators l = 0,m = 0 and l = 1,m = −1, 0,+1 are the usual spacetime translations that
together with Lorentz transformations make up the Poincaré algebra. Neither the l = 0, 1
nor the l > 1 supertranslations commute with the Lorentz charges. The conserved l > 1
charges furthermore split into the sum of “hard” and “soft” charges, Ql,m = Ql,mhard +Ql,msoft,
which are not separately conserved. For l = 0, 1 the soft charges vanish identically and
for l > 1 they commute with all radiative variables, that is with all asymptotic dynamical
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modes of the metric and matter with finite wavelength. So, they are either constants on ir-
reducible representations of the algebra of radiative degrees of freedom or else that algebra
needs to be enlarged [4]. We will call the additional degrees of freedom necessary to make
the soft charge dynamical “boundary gravitons” [5]. These infinite-wavelength modes can
be represented by a real coordinate C lm for each l > 1, m = −l,−l + 1, . . . , l. Boundary
gravitons and soft charges are sometimes collectively called “soft hair.”

The canonically-conjugate pairs made of soft charges and boundary gravitons enlarge
the phase space of physical degrees of freedom of gravity in asymptotically flat spacetime
in a seemingly paradoxical way, because they imply that states with zero energy and
momentum are infinitely degenerate and carry arbitrary angular momentum. Let us briefly
review how to prove these properties, following [6]. Supertranslations commute among
themselves so they commute with spacetime translations. Therefore, after quantization
vacuum states (i.e. zero energy states) are degenerate and are L2 function Ψ(C) of the
boundary gravitons C ≡ {Clm}l>1. Boundary gravitons and supertranslations do not
commute for l > 1, so an l > 1 supertranslation generically transforms a vacuum, say an
L2 approximate eigenstate of Clm, into a different vacuum state. Lorentz transformations
do not commute with supertranslations so we find that the definition of the Lorentz charges
and in particular of the angular momentum ~J is ambiguous. This can be seen by considering
a vacuum with zero angular momentum, Ψ0. By definition ~JΨ0 = 0, but since [ ~J,Qlm] 6= 0
for l > 1, we have also other vacuum states, e.g. Ψ = (1+∑lm flmQ

lm)Ψ0,
∑
lm |flm|2 <∞.

Each one of them is also a vacuum but on them, generically, ~J(1 + ∑
lm flmQ

lm)Ψ0 =∑
lm flm[ ~J,Qlm]Ψ0 6= 0. So, even the apparently innocent question: “what is the angular

momentum of the vacuum in asymptotically flat spacetimes?” has no unique answer. The
argument given here uses commutators and Hilbert space states, but it is already present
at the classical level, as shown e.g. in [7].

An obvious yet important question is whether a definition of Lorentz charges exists
that commutes with l > 1 supertranslations. The answer is yes, as shown by a construction
given in [8]. The existence of an automorphisms of the algebra of observables that act as
Lorentz transformations on the radiative degrees of freedom and leave supertranslations
and boundary gravitons invariant was proven in [8]. The argument given there starts by
imposing the desired action of Lorentz transformations Q̃ξ, parametrized by the vector ξ.
It is summarized by the following equations

[Q̃ξ, N+
AB] = iLξN+

AB,

[Q̃ξ, C[g]] = 0,
[Q̃ξ, Q[f ]] = 0. (1.1)

Here Q[f ] ≡ ∑
l>1,−l≤m≤l flmQ

lm, C[g] ≡ ∑
l>1,−l≤m≤l glmC

lm, Lξ is the Lie derivative
along the vector ξ and the N+

AB are the radiative degrees of freedom (a.k.a. Bondi News)
that will be defined in section 2. The “improved Lorentz” defined in (1.1) commutes with
supertranslations by construction. To verify that definition (1.1) is consistent one must
also check that the Jacobi identity is satisfied. This was done in [8].
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A charge is an operator acting on a Hilbert space, so the construction reviewed above,
which proves the existence of an automorphism of the algebra of observables, shows that a
charge may exist, but it does not prove that it does. Moreover, an explicit form of a con-
served charge is indispensable to check that its value on known backgrounds (Minkowski
space, Schwarschild, Kerr, etc.) does indeed give what we usually call e.g. angular momen-
tum. Finally, the formula given in (1.1) obscures the fact that the construction of the new
Lorentz charge is a classical one. Quantum mechanics is, in this case, just a convenient lan-
guage. In fact, explicit formulas for angular momentum that have vanishing Poisson brack-
ets (or “commute” in short and without ambiguity) with l > 1 supertranslation and bound-
ary gravitons do exist. Using the dressing procedure described in eq. (1.1) an explicit for-
mula for an angular momentum charge that commutes with supertranslations was presented
in [6]. It is written as an integral on the future null infinity of Minkowski space, I+. The for-
mula can be written also as an integral over the past boundary of I+, where it coincides with
a formula previously found in [9] and also in [10–12] using methods introduced in [7, 13, 14].

Aim of this paper is to find an explicit, BMS-invariant formula for all Lorentz charges:
rotations and boost. We will begin in section 2 by recalling the definition of asymptotically
flat spacetime in the Bondi gauge and introduce shear, Bondi news, boundary gravitons
and other quantities and notations used throughout the paper. Section 2 will also introduce
a regularization of Poisson bracket and charges that corresponds to truncating future null
infinity at finite values of the retarded time and is essential for writing well defined expres-
sions for the BMS and Lorentz charges in terms of three-dimensional integrals over future
null infinity. The 3D form of the charges is necessary to find their Poisson brackets with
canonical variables. The regularization introduced in section 2 is similar to the definition of
observable BMS charges given in ref. [16]. Finally, section 2 describes the proper boundary
conditions on the asymptotic degrees of freedom. The regularization of section 2 is used in
section 3 to define BMS-invariant Lorentz charges and check that they indeed act as Lorentz
transformation on the radiative degrees of freedom (that is the Bondi news and the matter
degrees of freedom) and satisfy the Lorentz algebra as well. Section 3 also introduces a new
regularization procedure in the frequency domain, which corresponds more clearly to the
standard infrared cutoff procedure used in the particle physics treatment of infrared singu-
larities. Section 4 evaluates Lorentz charges on known general-relativistic configurations.
To perform the computation we rewrite the charges, which are appropriately regulated in-
tegrals of 3D densities on the whole future null infinity, in terms of 2D densities integrated
on the celestial sphere at the past boundary of I+. The 2D formula for angular momentum
coincides with those of refs. [9, 11, 12] and the 2D formula for the center of mass (boost) re-
duces to that of [10, 12] when the Bondi news vanishes. Section 5 contains a comparison of
the different proposals for Lorentz charges, and particularly angular momentum, that have
been proposed in the literature. A few concluding observations are collected in section 6.

2 Regulated commutators and BMS-invariant Lorentz charges

In this section we construct regularized Lorentz charges. They are built in terms of the fields
that appear in the metric. The Bondi news, defined in eq. (2.5), is the only independent
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radiative degree of freedom and the shear, mass aspect and angular momentum aspect at
each point on I+ can all be written in terms of the Bondi news tensor once their boundary
values at I+

− are specified. When written as an integral over the future null infinity,
Lorentz charges only contain the Bondi news tensor. This is a better starting point for the
construction of the invariant charges because it does not involve soft degrees of freedom.
However, the 2D form of Lorentz charges, which is as an integral over the celestial sphere
and contains the angular momentum aspect and the Bondi mass aspect is more convenient
for evaluating the charge on a given configuration. Now, let us we briefly review here our
definitions and conventions.

2.1 Asymptotically flat spacetimes

The metric of an asymptotically flat spacetime in the Bondi gauge is

ds2 = V

r
e2βdu2 − 2e2βdudr + gAB(dxA − UAdu)(dxB − UBdu), (2.1)

where the Bondi gauge condition is given by

∂r

(det(gAB)
r4

)
= 0 (2.2)

and the falloff conditions that ensure asymptotic flatness are
V

r
= Ṽ + 2M

r
+O(r−2),

β = β̃

r2 +O(r−1),

gAB = r2qAB + rC+
AB +O(r0),

UA = ŨA

r2 −
2

3r3

[
NA − 1

2C
+ABDCC+

BC

]
+O(r−4).

(2.3)

(we are using the same conventions as ref. [9]). Here qAB is the metric of the S2 at null
infinity and DA is the covariant derivative compatible with qAB. M(u, xa) and NA(u, xA)
are the Bondi mass aspect and the angular momentum aspect. These fields are not dy-
namical degrees of freedom because they are related to the shear tensor C+

AB(u, xa) via the
constraint equations

∂uM=−1
8N

+
ABN

+AB+1
4DADBN

+AB+1
8DAD

AR̃,

∂uNA=DAM+ 1
16DA(N+

BCC
+BC)−1

4N
+BCDAC

+
BC−

1
4DBD

BDCC+
AC+1

4DBDADCC
+BC

−1
4DB(C+BCN+

AC−N
+BCC+

AC)+1
4C

+
ABD

BR̃, (2.4)

where R̃ is the scalar curvature of S2. The Bondi news is defined as the retarded-time
derivative of the shear tensor

N+
AB = ∂uC

+
AB, (2.5)

and it characterizes gravitational radiation. The soft degrees of freedom C(xA) define the
boundary value of the shear as follows

lim
u→−∞

C+
AB(u, xA) = −2DADBC(xA) + qABD

2C(xA). (2.6)
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2.2 Conserved charges

The algebra of asymptotic charges, known as the Bondi-Metzner-Sachs (BMS) algebra,
is composed of Lorentz transformations and supertranslations. The generators of BMS
supertranslations and Lorentz transformations on I+ are given by

T (f) = 1
4πG

∫
I+
−

d2x
√
q f(xA)M,

Q(Y ) = 1
8πG

∫
I+
−

d2x
√
q Y A(xA)NA,

(2.7)

respectively. Here Y A(xA) are the six global conformal Killing vectors on S2, which can
be decomposed as follows

Y A = εAB∂BΦ + qAB∂BΨ. (2.8)
Φ(xA) describe rotations while Ψ(xA) describe boosts. The Lorentz charge is therefore a
sum of two terms

Q(Y ) = K(Ψ) + J (Φ), (2.9)
where

K(Ψ) = 1
8πG

∫
I+
−

d2x
√
q qAB NA∂BΨ,

J (Φ) = 1
8πG

∫
I+
−

d2x
√
q εAB NA∂BΦ.

(2.10)

The action of the Lorentz generator on the Bondi news is

{Q(Y ), N+
AB} = u

2 (D · Y ) ∂uN+
AB + LYN+

AB −
(
DADB −

1
2qAB∆

)
D · Y, (2.11)

where LY is the Lie derivative along Y and ∆ is the Laplacian on S2. In addition, the
Lorentz generator acts on the soft variable as

{Q(Y ), C} = −u (D · Y ). (2.12)

Finally, as we noticed in the introduction, the Lorentz transformations do not commute
with supertranslations

{Q(Y ), T (f)} 6= 0. (2.13)

2.3 Charges at past null infinity

The expansion of the metric around past null infinity I− takes a form similar to (2.1)–(2.3)

ds2 = V −

r
e2β−du2 + 2e2β−dvdr + g−AB(dxA + V Adu)(dxB + V Bdu), (2.14)

with the following falloff conditions on the different metric components
V −

r
= Ṽ − + 2M−

r
+O(r−2),

β− = β̃−

r2 +O(r−1),

g−AB = r2qAB + rC−AB +O(r0),

V A = Ṽ −A

r2 − 2
3r3

[
N−A − 1

2C
−ABDCC−BC

]
+O(r−4),

(2.15)
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where v is the advanced null coordinate. The Bondi news is

N−AB = ∂vC
−
AB, (2.16)

The soft degrees of freedom on I− define the boundary value of the shear by

lim
v→+∞

C−AB(v, xA) = −2DADBC
−(xA) + qABD

2C−(xA). (2.17)

The supertranslation and Lorentz charges are given by

T−(f−) = 1
4πG

∫
I+
−

d2x
√
q f−(xA)M−,

Q−(Y −) = 1
8πG

∫
I−+

d2x
√
q Y −AN−A .

(2.18)

Here again the Lorentz transformation parameter can be decomposed as

Y −A = εAB∂BΦ− + qAB∂BΨ−. (2.19)

Therefore, once again, the charge can be written in the form

Q−(Y −) = K−(Ψ−) + J −(Φ−), (2.20)

where
K−(Ψ−) = 1

8πG

∫
I+
−

d2x
√
q qAB N−A ∂BΨ−,

J −(Φ−) = 1
8πG

∫
I+
−

d2x
√
q εAB N−A ∂BΦ−.

(2.21)

2.4 Matching conditions at spatial infinity

The coordinates on the two sphere are antipodally matched between future and past null
infinity. The matching conditions proposed in ref. [15] are

C(xA)
∣∣∣
I+
−

= C−(xA)
∣∣∣
I−+
,

M(xA)
∣∣∣
I+
−

= M−(xA)
∣∣∣
I−+
,

NA(xA)
∣∣∣
I+
−

= N−A (xA)
∣∣∣
I−+
.

(2.22)

This conditions break the combined BMS+×BMS− group down to the diagonal subgroup
that preserves these conditions

f(xA)
∣∣∣
I+
−

= f−(xA)
∣∣∣
I−+
. (2.23)

In addition in order to preserve the conditions (2.22) the Lorentz transformation pa-
rameters should be matched as follows

Ψ(xA)
∣∣∣
I+
−

= +Ψ−(xA)
∣∣∣
I−+
,

Φ(xA)
∣∣∣
I+
−

= −Φ−(xA)
∣∣∣
I−+
.

(2.24)
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With these matching conditions boost and rotation charges are conserved

K(Ψ)
∣∣∣
I+
−

= +K−(Ψ−)
∣∣∣
I−+
,

J (Φ)
∣∣∣
I+
−

= +J −(Φ−)
∣∣∣
I−+
.

(2.25)

We see that the two transformation parameters Ψ and Φ have different parity properties
under the antipodal map - Ψ is even while Φ is odd. These results suggest that the two
transformation parameters are independent and that therefore K and J are conserved
independently.

Notice that the matching conditions (2.24) also ensure the conservation of super-boosts
and super-rotations.

2.5 Regulated commutators

As emphasized e.g. in [16] memories defined on the whole retarded-time interval that spans
future null infinity are unrelated to physical finite-time memories, because the two can be
made to differ from each other by an arbitrary amount by paying an arbitrarily small cost
in energy. A similar issue is present for Lorentz charges and in fact even to properly define
them we should first regulate them. For instance we can define them on a finite interval
u ∈ [umin, umax] and then take the limit umin → −∞, umax → +∞. Besides being necessary
to define the charges, finite-interval charges are also a good approximation of their limit
for many physical configurations. So we introduce a regulating function f(u) such that
f(u) = 1 for |u| < R and f(u) = 0 for |u| > R + δ, where R defines the IR cut-off of the
system and δ is the width of the function f ′(u). Throughout this paper we will keep R

finite, particularly for the calculation of the commutators and only in the end we will take
the limit R→∞. As we will see this limit is a subtle one because some of the integrals of
the form

∫∞
R . . . stay finite even in the limit.

We define first a regulated Bondi news tensor NAB

NAB = f(u)N+
AB, (2.26)

and consequently from the definition of the shear tensor it follows that

CAB(u) =
∫ u

−∞
dvNAB(v). (2.27)

By construction CAB(−∞) = 0 and hence the regulated shear tensor differs from other
definitions, which are generically non-zero at I+

− . Later we will remove this restriction
and see how this would changes the equations but we are going to keep it for now. The
modification of the shear tensor will also modify its commutator with the original news
tensor

[CAB(u), N+
CD(u′)] =

∫ u

−∞
dvf(v)[N+

AB(v), N+
CD(u′)]

= 16πGPABCD
δ2(Ω− Ω′)
√
q

[
f(u)δ(u− u′)− f ′(u′)Θ(u− u′)

]
. (2.28)
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PABCD depends only on the metric qAB on S2 and its explicit form is

PABCD = 1
2(δACδBD + δACδ

B
D − qABqCD). (2.29)

Now take the limit that |u| � R and keep u′ < u; this is the commutator between what
we call “memory” and the news tensor. Since this commutator is not zero for |u′| ∈
[R,R + δ], the memory (which is not the soft charge anymore because of the appearance
of the regulating function in the integral of the news tensor) clearly differs from the soft
charge, whose commutator with the shear tensor is zero,

[CAB(u), Qsoft] ∝ DCDD[CAB(u),
∫
du′N+

CD(u′)] = 0. (2.30)

Later on we will define the charge and we will look at the charge algebra, the charge will
be defined in terms of the shear tensor and the modified news tensor, which from now on
we simply call “the news tensor.” The commutator of shear tensors is

[CAB(u), CIJ(u′)] = 16πGδ
2(Ω− Ω′)
√
q

PABCD

[1
2f

2(u)θ(u′ − u)− 1
2f

2(u′)θ(u− u′)
]
. (2.31)

This is important not only because it appears in many places, but also on physical grounds,
because it decays near the boundaries as it is required if we want to write a charge that
commutes with the soft charge.

2.6 Boundary conditions

Boundary conditions are crucial for the definition of the charge. Here we will consider
configurations with no radiations at large retarded times. This condition simply tells us
that near I+

+ spacetime reverts back to the vacuum, that is to Minkowski space. We also
only consider configurations with finite charge. Falloff conditions on different components
of the (unregulated) news tensor that satisfy the previous requirements are

N+
AB(u)|u�1 = O

( 1
u1+β

)
, β > 0. (2.32)

The phase space for the gravitational system can be built on I+ or I−. On I+ the charges
are defined on the celestial sphere at I+

− but also they can be equivalently expressed as
a 3D integral over the whole I+. This will be specially useful if we want to work with
canonical variables such as NAB instead of auxiliary fields such as NA or m. However the
explicit evaluation of the charge or its conservation are more conveniently studied using
the 2D form of the integrals. For instance, in section 2.4 we used the 2D definition of the
charge to find the matching conditions necessary to ensure their conservation.

3 Lorentz algebra

The Lorentz charges are conserved and their Poisson brackets with phase space variables
realize the Lorentz algebra. A priori there are no more constraints, but the question we
want to study is if we can find a representation of the Lorentz charges that commutes
with the soft fields, namely the boundary graviton and the soft charge. The way that we
construct the charge is by going through the following steps,

– 8 –
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• Use the regulating function to eliminate any factors of Qsoft.

• Eliminate the dependence on the boundary graviton by subtracting all the terms that
explicitly depend on this field.

• Verify that the charge so defined does indeed satisfy the Lorentz algebra.

The charge that we propose is a bulk integral1

QY = 1
32πG

∫ ∞
−∞

du

(
u

2D · Y N
2 + Y ANBCDACBC + (DAYB −DBY

A)CBCNAC

)
. (3.1)

This charge enjoys already the first two properties, so it remains to check if the algebra of
these charges is the Lorentz algebra. To do so we first need to know the commutator of
the charge with other fields. The charge can be rewritten as

QY = −D · Y64πGČABČ
AB + 1

32πG

∫ ∞
−∞

du

(
D · Y u2N

2 +NBCLY CBC
)
. (3.2)

The last expression is used to compute the transformation rule for the fields with the help
of (2.31)

[QY , CIJ(u0)] = f(u0)2

4 LY ČIJ −
1
2(1 + f2(u0))

(1
2D · Y (uNIJ − CIJ) + LY CIJ

)
. (3.3)

The above equation shows that the shear tensor has a regulator-dependent transformation:
for |u| < R it transforms as the unregulated shear but near the boundaries it transforms
differently. This is interesting but not surprising because the regulator removes some of the
degrees of freedom that, although not relevant away from boundaries, do change the large-
time behavior of the fields. An important quantity that we introduced in eq. (3.2) is ČIJ ≡
CIJ(∞). For reasons that we are going to explain later we call ČIJ the “memory.” This
quantity is different from the soft charge. The memory is physical and we should be able
to measure it in a physical experiment in a finite amount of time, while the measurement
of the soft charge takes an infinite amount of time [16]. The memory transforms as

[QY , ČIJ ] = 1
4
(
D · Y ČIJ − 2LY ČIJ

)
. (3.4)

Now the commutator of the charges Q is

[QX , QY ] = Q[X,Y ] + 1
256πGDA[X,Y ]AČ2. (3.5)

The last term is a central term and can be eliminated by redefining the charge

Q′X = QX + 1
128πG

∫
I+
−

d2x
√
qD ·XČ2. (3.6)

1From now on we shall leave the integration on the celestial sphere implicit when this simplification
can be done unambiguously. In particualr in formulas that depend on a vector defined on S2, we write∫

du ≡
∫

du
∫
S2 d2x. We also define N2 ≡ NABNAB .

– 9 –
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The new charge Q′X satisfies the Lorentz algebra. To avoid clutter we drop the prime sign
and from now on call this charge QX . The final form of the charge is

QY = − D · Y
128πGČ

2 + 1
32πG

∫ ∞
−∞

du

(
D · Y u2N

2 +NBCLY CBC
)
, (3.7)

To summarize we have a found a representation of the Lorentz algebra that commutes
with both the boundary graviton and the soft charge. This charge is not however what
we want because it does not commute with the supertranslation charge. The way we solve
this problem is to use a dressing operator similar to that defined in [4, 8]. The dressing
operator is a unitary operator U that acts as a supertranslation on the news tensor and
also commutes with the boundary graviton,

UNIJ(u)U † = NIJ(u− C), (3.8)
UCU † = C. (3.9)

These two properties plus the fact that the news tensor commutes with the soft charge are
enough to show that the dressed soft charge is actually the supertranslation charge. This
also gives an unambiguous definition of the supertranslation operator

Qtotal ≡ UQsoftU
†. (3.10)

Moreover, the dressing operator gives us a natural way to separate soft degrees of freedom
from hard degrees of freedom. It is easy to see that for any operator A that commutes
with the soft charge the corresponding dressed operator commutes with the total charge

[Ã,Qtotal] = [UAU †, Qtotal] = U [A,Qsoft]U † = 0. (3.11)

Then to make the hard degrees of freedom invariant (commuting with the boundary gravi-
ton and its charge) we dress all the hard degrees of freedom. The next question is how
to construct this operator. To that end we first find the infinitesimal form of the dressing
operator and then we exponentiate it to get the dressing operator,

[H,NIJ ] = 16πG∂uNIJ , (3.12)

The solution of this equation can be easily found and the dressing operator that does satisfy
eqs. (3.8), (3.9) and (3.10) is a regularized version of the operator found in [4]

U = e−
1

16πG

∫
duCN+2(f2− 1

2 ). (3.13)

This construction highlights the relation between the total charge and the soft charge. This
definition of the total charge can be extended to any physical system that has soft degrees
of freedom. The explicit form of the dressing operator allows us to obtain the explicit form
of the total charge as

Qtotal[h] = Qsoft[h]− i
∫
duN+2

(
f2 − 1

2

)
[C,Qsoft[h]]. (3.14)
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Now we can calculate the commutator of the total charge with the elementary fields. First
we note that [∫

duN+2(f2 − 1)h,N IJ(u0)
]

= 0, (3.15)

then the commutators we are looking for are

[Qtotal[h], NIJ(u0)] = −h∂u0NIJ + hNIJ∂u0f(u0), (3.16)
[Qtotal[h], CIJ(u0)] = −hNIJ . (3.17)

Eq. (3.17) is the integral over retarded time of eq. (3.16). Now the mass aspect transforms
as

[Qtotal[h],M(u)] = −h∂uM −
1
4NIJD

IDJh− 1
2D

INIJD
Jh. (3.18)

The angular momentum aspect also transforms under the total charge as

[Qtotal[h],NA(−∞)]=−
[
DA

(
hM− 1

2CIJD
IDJh− 1

2D
ICIJD

Jh

)
−DI(CIJFAJ−CJAFIJ)

+CIJDAFIJ+2
(
M+ 1

4DIDJC
IJ
)
DAh

]
. (3.19)

The next step is to dress the charges (3.7); this gives the dressed charge Q̃Y in the form

Q̃Y = QY + 1
64πG

∫ ∞
−∞

duN2
(
D · Y C − 2Y ADAC

)
. (3.20)

The effect of the dressing is the appearance of the last term in (3.20), which can be simplified
further if we use the equation of motion for the mass aspect,

Q̃Y = QY + 1
8πG

∫
I+
−

d2x
√
q

(
m(−∞) + 1

4DCDBČBC

)(
D · Y C − 2Y ADAC

)
. (3.21)

We are now ready to write the 2D expression for the charge by a straightforward application
of the equation of motion for the angular momentum aspect in conjunction with the identity
DADBDCY

C = −qBCDCY
C and the fact that shear tensor is traceless.

QY = 1
8πG lim

u→−∞

∫
S2
d2x
√
qY A(NA(u)− uDAm(u)). (3.22)

However it should be noted that the shear tensor used in the equation of motion to ar-
rive at eq. (3.22) is, as mentioned before, different from the conventional definition since
CAB(−∞) = 0. To restore the degrees of freedom of the shear tensor at I+

− we have to
replace the shear tensor CAB(u) by CAB(u) + C0

AB. Luckily, this tensor does not enter
explicitly in the 2D expression of the charge so now we have all the ingredients to write
the formal expression for the dressed

QY = 1
8πG lim

u→−∞

∫
S2
d2x
√
qY A(NA(u)−DA((u+C)m(u)))− 1

4πG

∫
S2
d2x
√
qm(−∞)Y ADAC

+ 1
32πG

∫
S2
DAC D·Y DCČAC+ 1

64πG

∫
S2
D·Y DBDCČBCC. (3.23)
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It is important to note that this charge does not commute with Qsoft anymore, in other
words it is not invariant under a shift in C, but this is something that we already have
expected because it is the undressed charge that commute with both Qsoft and C, af-
ter dressing the charge will commute with Qtotal and C. As noted before, the dressed
charge (3.23) commutes with the supertranslation charge by construction but it is less ob-
vious from (3.23); however, a straightforward but tedious calculation shows that (3.23) is
indeed invariant and commutes with supertranslation charge.

3.1 Regulating the charge in the frequency domain

Another way of dealing with the soft mode is by imposing an IR cutoff in the frequency
domain. We start with the expression for the charge in the frequency domain, to fix our
notations

Ñ+
IJ(ω) =

∫ ∞
−∞

due−iωuN+
IJ(u), (3.24)

N+
IJ(u) = 1

2π

∫ ∞
−∞

dωeiωuÑ+
IJ(ω). (3.25)

Using the convolution theorem we relate C̃+(ω) to Ñ+(ω),

C̃+
IJ(ω) = Ñ+

IJ(ω)
iω

+ πÑ+
IJ(0)δ(ω). (3.26)

Now we can write the undressed charge in the frequency domain as

QY = i

32π2G

∫ ∞
0

dω

(
D · Y

2 Ñ+
IJ(−ω)∂ωÑ+IJ(ω)− 1

ω
Ñ+IJ(−ω)LY Ñ+

IJ(ω)
)

(3.27)

+ i

64π2G

∫ ∞
0

dω
D · Y
ω

Ñ+IJ(−ω)Ñ+
IJ(ω) + 1

144πG

∫ ∞
−∞

dωδ(ω)Ñ+2(0)D · Y.

This charge can be regulated by limiting the integral to the range (ε,∞) instead of (0,∞)
so that ε is the IR cut-off of the theory. The regulated charge is

QεY = i

32π2G

∫ ∞
ε

dω

(
D · Y

2 Ñ+
IJ(−ω)∂ωÑ+IJ(ω)− 1

ω
Ñ+IJ(−ω)LY Ñ+

IJ(ω)
)

+ i

64π2G

∫ ∞
ε

dω
D · Y
ω

Ñ+IJ(−ω)Ñ+
IJ(ω). (3.28)

At this point one might ask about the relation between this charge and the undressed charge
we derived previously by using a regulating function, the answer is that (3.28) and (3.7)
are the same in the limit ε → 0, R → ∞ and hence the two regulating scheme produce
the same charge. This should not be surprising at all because the undressed charge when
written in terms of elementary fields does not contain the soft charge or its conjugate and
is made of only hard degrees of freedom and is unique.

The commutator of the radiative degrees of freedom is

[Ñ+
IJ(ω), Ñ+

BC(ω′)] = 32π2iGPABCDωδ(ω + ω′). (3.29)
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Now the news tensor transforms as (assuming |ω′| > ε),

[QεY , Ñ+
BC(ω′)] = D · Y

2 ∂ω′(ω′Ñ+
BC(ω′))− LY Ñ+

BC(ω′). (3.30)

Finally, it is straightforward to check that the algebra of the regulated charge is

[QY , QY ′ ] = Q[Y,Y ′]. (3.31)

This shows that the algebra of the regulated charges is precisely the Lorentz algebra,
without any central terms. The action of the dressing operator on the news tensor in the
frequency space is very simple and is given by

UÑ+
IJ(ω)U † = e−iωCÑ+

IJ(ω). (3.32)

One can proceed from this point and find the expression for the dressed charge in the
frequency space. We leave this relatively straightforward computation as an exercise for
the interested reader.

3.2 Poincaré algebra

What we have achieved so far is to make the charge invariant under supertranslations, but
we have to remember that we only want to have invariance under proper supertranslations
and not ordinary translations. The four translations of the Poincaré group, translation in
time and translation in spatial directions correspond respectively to the l = 0 and l = 1
modes of the boundary graviton C. It is easy to find a charge that commutes only with
l > 1 supertranslations by repeating the procedure used before. The expression for the
charge is now

QY = 1
8πG lim

u→−∞

∫
S2
d2x
√
qY A(NA(u)−DA((u+ C|l>1)m(u)))

− 1
4πG

∫
S2
d2x
√
qm(−∞)Y ADAC|l>1 + 1

32πG

∫
S2
DAC|l>1D · Y DCČAC

+ 1
64πG

∫
S2
D · Y DBDCČBCC|l>1, (3.33)

As it has been pointed out e.g. in [9] the charge is a function of the non-local function
C|l>1. This is the only price that we have to pay for the invariance of the charge. Then the
Poincaré algebra generated by QY in (3.33) and Qtotal[h|l=0,1] will be the Poincaré algebra
and it will commute with proper l > 1 supertranslations. This means that the asymptotic
symmetry algebra is the direct sum of the Poincaré group and proper supertranslations.
We stress here that this asymptotic symmetry group is different from BMS and is already
different at the level of algebra.

This is a good place to discuss the difference between charges corresponding to boosts
and rotations. For the rotation generators we haveD·Y = 0 and therefore the last two terms
in eq. (3.33) vanish. For boosts, however, D·Y 6= 0 so we need to evaluate the last two terms.
The hardest part is the evaluation of ČAC because it requires information on the news tensor
for u ∈ [−R,R]. Since usually we don’t have access to that information we cannot evaluate
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the boost charge in general. Recall that we are looking at the configurations that revert
back to the vacuum at I+

− . Since these are evaporating black holes, the evaluation of ČAC
requires details that are not known without additional information besides the initial and
final spacetime metrics at I+

± .

4 Evaluation of the charge on some known configurations

So far we found a prescription for constructing unambiguously defined conserved charges of
asymptotically flat spacetime. In gravity it means in particular that the angular momentum
is well-defined and commutes with supertranslations. The goal of this section is to evaluate
our charges on some known physical configurations and show that the results coincide with
our intuition and expectations. The two example that we study are the Minkowski vacuum
and the Kerr black hole.

4.1 Invariance of the charge under the addition of soft radiation

We start by studying the dressed Lorentz charge for a configuration made by adding soft
radiation to Minkowski space. The setup that we are going to consider is a uniform outgoing
radiation flux in an interval of length L. We also keep NABL constant, so if we change
L NABL will not change. It is important to know what defines a soft radiation mode
in this case. The answer is easy however, since we already have an IR cutoff defined by
the regulating function. Any mode with wavelength smaller than R will be called “hard,”
therefore the soft regime is defined by L � R and in this limit the charge decays as R2

L2 ,
which is expected since our Lorentz charges are independent of the soft degrees of freedom
by construction. This example shows the difference between the soft charge, which is
NABL, and the memory

ČAB = R

L
NABL. (4.1)

The soft charge is defined in the limit L � R, and in this limit the soft charge is O(1)
while the memory decays as R

L . Therefore, the news tensor is not a hard degree of freedom
in the limit L =∞. This example shows how the IR cutoff separates soft and hard degrees
of freedom. One can also explicitly check that all the Lorentz charges are proportional to
O(RL ) and therefore vanish in the limit L→∞. This is a corollary of the invariance of the
Lorentz charges under supertranslations.

4.2 Boosted Kerr solution

Now we look at the charges for the boosted Kerr solution. Our setup is as follows: in
the past of future null infinity I+, the metric is the same as boosted Kerr with angular
momentum aspect [9]

NA = −3J sin2 θ′∂Aφ
′

γ2(1− ~v.~n)2 + 3m∂AC+ (u+C)∂Am−
3
32∂A(ĈBCĈBC)− 1

4 ĈABDCĈ
CB, (4.2)

while in the future of I+ the metric is same as supertranslated Minkowski. For angular
momentum D · Y = 0, so the charge can be evaluated only with the information of the
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metric at I+
− . The last term in eq. (4.2) makes it unclear if eq. (3.23) coincides with the

angular momentum of the Kerr black hole, because its integral is not generically zero, but
on I+

− it is actually zero, because on that surface we have

ĈAB(−∞) = C0
AB = (−2DADB + qAB∆)C, (4.3)

and consequently the resulting term in the charge is

1
2

∫ ∞
−∞

duD · Y (∆C + 2C)2, (4.4)

which vanishes for angular momentum generators. The angular momentum QY is defined
by the vector fields Y A on the celestial sphere whose algebra is so(3), explicitly

QY = Qintrinsic
Y +Qcm

Y = 1
8π

∫
S2
Y A

(
−3J sin2 θ′∂Aφ

′

γ2(1− ~v.~n)2 + Jcm
A

)
, (4.5)

where Jcm
A and Qcm

Y are the center of mass angular momentum aspect and the center of
mass angular momentum. The orbital part Qcm

Y can be set to zero by a suitable choice of
coordinates but for generality we kept it.

5 Comparison with known prescriptions

Since many notations are being used in the literature it is important to understand the
difference between them. The metric and the angular momentum aspect we are using in
this paper are the same as in ref. [3], while they differ from those given in [9] (see also [18]
and [12]). The relation between the two notations is (NA denotes the angular momentum
aspect in this paper)

N̄A = NA + 1
4 ĈABDCĈ

CB + 3
32∂A(ĈBCĈBC). (5.1)

The prescription for the charge is not unique since it has ambiguities. Specifically, any
total derivative can be added to the angular momentum without changing it, so we have a
two parameter family of charges Q(α,β) and every prescription in the literature correspond
to a specific pair of (α, β), as mentioned in [9]

Q
(α,β)rotation
Y = 1

8πG

∫
I+
−

d2x
√
qY A

(
NA −

α

4 ĈABDCĈ
CB
)
, (5.2)

Q
(α,β)boost
Y = 1

8πG

∫
I+
−

d2x
√
qY A

(
NA −

α

4 ĈABDCĈ
CB − β

16∂A(ĈBCĈBC)
)
. (5.3)

The last term in eq. (5.1) is exactly a total derivative and the term just before it is also a
total derivative on I+

− (which is the point where we evaluate the charges). This means that
all of the different prescriptions give the same angular momentum if the charge is defined
on I+

− . Despite having the same angular momentum they give different boost charges and
this can give rise to a central term in the Lorentz algebra. The requirement of having zero
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central term fixes the remaining ambiguity and in fact a careful selection of the parameters
(α, β) that gives zero central extension is that which we made in (3.33).

We can show that the invariant charge (3.23) can be written as

QY = BY (u)|u→−∞ −BY (u)|u→∞, (5.4)

where the quantity BY (u) is not invariant under supertranslation and is defined as

BY (u) ≡ 1
8πG

∫
S2
d2x
√
qY A

(
NA(u)−DA((u+ C|l>1)m(u)) + 1

32DA(ĈIJ(u)ĈIJ(u))
)

− 1
4πG

∫
S2
d2x
√
qm(u)Y ADAC|l>1, (5.5)

When written in this form it is easy to see that in the case of rotations the invariant charge
QY coincides with the invariant charge in [9, 11, 12]. For boosts, QY reproduces the invari-
ant center of mass formula of [10, 12] when the Bondi news vanishes. The advantage of QY is
that we derived it by going through our universal procedure, which we can call in short “re-
move boundary gravitons and dress.” This procedure works in principle for any observable.

6 Discussion

Now we can use our results to compare the soft charge to the memory. The soft charge
is made from the original news tensor by integrating over I+ and it commutes with the
undressed charge, explicitly

[Qundressed
Y , Qsoft] = 0. (6.1)

This means that if we expand the undressed charge in terms of the elementary fields, the
undressed charge does not contain the boundary graviton C. Moreover, the presence of the
regulator removes any dependence on Qsoft. The memory DADBČ

AB does not commute
with the charge. The commutator of the memory with the charge is

[BY , ČIJ ] = 1
8
(
D · Y ČIJ − 2LY ČIJ

)
. (6.2)

This is an interesting result because the memory is the regulated version of the soft charge
and after taking the limit the expression for both looks the same, however they are different
as operators. The memory is physical and observable. It contains only modes with energy
larger than 1

R , while the soft charge contains all the soft modes as well. To highlight this
difference consider the following commutators

[Qsoft −DADBČ
AB, C] 6= 0, (6.3)

[Qsoft −DADBČ
AB, QY ] 6= 0. (6.4)

In these examples the r.h.s. is nonzero even after taking the limit R → ∞, so the l.h.s.
cannot vanish.
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