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Abstract: We continue our study of the Kawai-Lewellen-Tye (KLT) factorization of wind-
ing string amplitudes in [1]. In a toroidal compactification, amplitudes for winding closed
string states factorize into products of amplitudes for open strings ending on an array of
D-branes localized in the compactified directions; the specific D-brane configuration is de-
termined by the closed string data. In this paper, we study a zero Regge slope limit of the
KLT relations between winding string amplitudes. Such a limit of string theory requires a
critically tuned Kalb-Ramond field in a compact direction, and leads to a self-contained cor-
ner called nonrelativistic string theory. This theory is unitary, ultraviolet complete, and its
string spectrum and spacetime S-matrix satisfy nonrelativistic symmetry. Moreover, the
asymptotic closed string states in nonrelativistic string theory necessarily carry nonzero
windings. First, starting with relativistic string theory, we construct a KLT factorization
of amplitudes for winding closed strings in the presence of a critical Kalb-Ramond field.
Then, in the zero Regge limit, we uncover a KLT relation for amplitudes in nonrelativistic
string theory. Finally, we show how such a relation can be reproduced from first principles
in a purely nonrelativistic string theory setting. We will also discuss connections to the
amplitudes of string theory in the discrete light cone quantization (DLCQ), a method that
is relevant for Matrix theory.
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1 Introduction

In string theory, the tree-level closed string amplitudes factorize into a sum of quadratic
products of open string amplitudes. This property is the well-known Kawai-Levellen-Tye
(KLT) relation [2], which is a consequence of the factorization of complex integrals in
closed string amplitudes into contour integrals in open string amplitudes. In the field
theory limit, the KLT relations induce a factorization of graviton amplitudes into Yang-
Mills amplitudes. Moreover, the KLT relations are also connected to the later discovered
Bern-Carrasco-Johansson (BCJ) relations among amplitudes in gauge theory [3]. Such
relations in both string theory and field theory not only bring simplifications in amplitude
calculations, but also reveal intriguing intimacies between gravity and Yang-Mills theories,
see also [4–7].

Recently, in [1], the KLT relations are generalized to amplitudes that involve winding
string states, which are responsible for some of the salient features of string theory such
as T-duality. For simplicity and concreteness, we will focus on the compactification over
a spacelike circle, and consider a factorization of the amplitude that describes an N -point
scattering between closed string states that carry both winding and momentum along the
compactified direction. This closed string amplitude is expressed by a quadratic product
of amplitudes for open strings that end on an array of D-branes, whose configuration
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(n1, w1)

(n2, w2)

(n4, w4)

(n3, w3)

incoming outgoing

n+ = n1 + n2

Figure 1. Closed string amplitude with momentum and winding data (ni, wi) obeying conservation
laws n1 + n2 + n3 + n4 = 0 and w1 +w2 +w3 +w4 = 0 . Here, n1 , n2 > 0 and n3 , n4 ≤ 0, splitting
the strings into incoming and outgoing states. The integer n+ is the total incoming momentum.

is determined by the closed string data as follows: these D-branes are localized in the
compact circle, and are equally separated by a distance that is T-dual to the circumference
of the compact circle. The total number of D-branes is determined by the total incoming
momentum of the closed string scattering in the compact circle. A closed string state that
carries a winding number w and a Kaluza-Klein (KK) momentum number n is mapped
to a winding open string state in the KLT relation. This corresponding open string state
describes an open string that winds w times around the spatial circle and, in addition,
traverses n − 1 D-brane. Here, n is associated with the fractional part of the open string
winding number, with the open string ending at two different D-branes. In other words,
the closed string winding and momentum in the compact circle are mapped to the integer
and fractional open string windings, respectively. Finally, the conservation of closed string
momenta in the compact circle is realized by open strings rejoining and splitting on D-
branes. The above configurations of closed and open string scatterings in KLT relations
between winding string amplitudes are illustrated by a four-point scattering process in
figure 1 and figure 2.1 See section 2.1 for a more thorough review.

The standard KLT relation for string amplitudes without winding has a well-defined
field theory limit at α′ → 0, with α′ the Regge slope. This limit leads to relations between
gravitational and Yang-Mills amplitudes. In contrast, for scatterings that involve winding
string states, such a field theory limit does not exist anymore, as all the winding states
are gapped out.2 However, there still exists a non-singular zero α′ limit of winding string
amplitudes, provided that a Kalb-Ramond B-field along the compact circle is present.
In this limit of string theory, the B-field is fined tuned to its critical value such that it
cancels the string tension [9–11].3 As a result, part of the states in the string spectrum
are decoupled, and all the remaining physical states carry nonzero windings and satisfy a
Galilean dispersion relation. This resulting theory is a string theory that has a unitary and

1See [1] for discussions on a T-dual interpretation of open strings ending on the D-brane array illustrated
in figure 2. After performing the T-duality transformation, the open strings live on a stack of spacetime-
filling D-branes in the presence of Wilson lines.

2Also see the recent work [8] on a field theory limit for KK string amplitudes on a spacetime compacti-
fication, where the winding is set to zero.

3Historically, this limit is known as the noncommutative open string (NCOS) limit [12, 13].
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Figure 2. A four-point open string amplitude with n1 = 1 , n2 = 3 , n3 = −2 , and n4 = −2 . The
vertical lines represent an array of equidistantly separated D-branes localized along the compact
circle of radius R . The seemingly noncompact direction along which the D-branes are localized
is understood to have an x ∼ x + 2πR identification. The distance between consecutive D-branes
in the array is 2πR̃ , where R̃ = α′/R is the radius of the T-dual circle. The blue wavy lines
represent fundamental strings with their ends residing on different D-branes. During the scattering
process, the two incoming strings join into one at the second D-brane from the left; then, the single
intermediate string splits at the third D-brane into two outgoing strings. The open strings may
also wind around the full compact circle for multiple times. There are n+ + 1 = 5 D-branes for this
choice of closed string quantum numbers.

ultraviolet (UV) finite spacetime S-matrix that enjoys nonrelativistic symmetry. We refer
to this theory as nonrelativistic string theory [10]. Naturally, KLT relations for nonrela-
tivistic strings can be uncovered by taking a limit of the KLT relations for winding string
amplitudes in relativistic string theory. Establishing such KLT relations is among the first
steps of unraveling new structures of amplitudes in nonrelativistic string theory.

It is also known that nonrelativistic string theory is related to relativistic string theory
in the discrete light cone quantization (DLCQ) via a T-duality transformation along the
compact circle [10, 11, 14–17].4 The DLCQ of quantum field theories (QFTs) and string the-
ory are important for various nonperturbative methods in quantum chromodynamics [22]
and Matrix theory [23], respectively. The zero α′ limit of winding string amplitudes is
therefore also relevant for Matrix string theory [24–26].

To facilitate such a zero Regge slope limit of KLT relations for relativistic string am-
plitudes, we first study in relativistic string theory a generalization of KLT factorization of
amplitudes for winding closed string states, coupled to a constant B-field in the compact
circle. This B-field has the effect of shifting the energy of both closed and open string
states, with the shift being proportional to the winding. Naively, the factorization gains
the interpretation as a product of amplitudes for open strings that end on the same array of
D-branes as illustrated in figure 2. However, since the closed string KK number is mapped
to the fractional part of the open string winding in the compact circle, the shift of the open
string energy due to the B-field also contains an extra contribution from this fractional
winding, which is absent on the closed string side of the KLT relation. This mismatch

4Also see [18–21] for related works on null reductions.
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n1 n3

n2
n4

incoming outgoing

Figure 3. The s-th D-brane in the array carries an electric gauge potential Vs = sB/R , and the
D-branes are separated by 2πR̃. Here, B denotes the value of the constant Kalb-Ramond field in
the compact direction.

between energies of closed and open string states requires an additional structure on the
D-brane array: each D-brane now carries a different electric gauge potential, whose value is
determined by the closed string momenta in the compactified direction. See figure 3 for an
illustration of this modified D-brane configuration, which resembles a series of capacitors
with a constant electric field between the plates. This electric field is only experienced by
open strings that end on different D-branes. See relevant discussions in section 2.2 for this
generalized KLT relations in a background B-field.

After developing this new KLT relation in B-field for relativistic string amplitudes, we
will finally set the B-field to its critical value and apply the zero Regge slope limit. As
we have indicated earlier, this procedure leads to a KLT relation in nonrelativistic string
theory. The amplitudes of asymptotic closed string states, which necessarily carry nonzero
windings in nonrelativistic string theory, factorize into a product of amplitudes for open
strings that end on a D-brane configuration that is determined by the zero α′ limit of the one
illustrated in figure 3. Recall that the consecutive D-branes in the array are separated by
a distance 2πR̃ that is T-dual to the circumference of the compact circle, and this distance
becomes zero after sending α′ to zero. Consequently, the D-branes become coincident. The
values of gauge potentials Vs are unaffected by the limit, but they now become the diagonal
entries of a single gauge field that is in the diagonal subgroup U(1)n++1 of U(n++ 1) . See
section 2.3 for further details.

The same KLT relation in nonrelativistic string theory can also be reproduced by
using a first principles approach, independent of the zero Regge slope limit. In [10], a
self-consistent worldsheet QFT that describes nonrelativistic string theory was formulated.
In flat spacetime, this worldsheet theory enjoys a (string)-Galilean invariant global sym-
metry. Due to recent analysis of this worldsheet theory and improved understanding of
non-Riemannian geometries, these years have witnessed a growing interest in nonrelativis-
tic string theory in curved spacetime, see e.g. [14, 27].5 It has been shown that this string
theory, being UV complete on its own, provides a quantization of the so-called (torsional)

5Also see [16] for more modern review.
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string Newton-Cartan geometry that is non-Riemannian, akin to how relativistic string
theory provides a quantization of Einstein gravity.6 Similar analysis has also been applied
to nonrelativistic open strings, from which a Dirac-Born-Infeld action that describes the
low-energy dynamics of D-branes in nonrelativistic string theory is derived [42].7

In parallel to the above successes in nonrelativistic string theory, the amplitude anal-
ysis remains under-explored other than the early works [10, 11] on nonrelativistic closed
string amplitudes. In section 3, we will use the worldsheet theory that is originally pro-
posed in [10] to derive the KLT relation in nonrelativistic string theory, and corroborates
the factorization that we derive from a limit of the relativistic KLT relation in section 2.3.
Finally, in section 3.4, we will study the T-dual interpretation of this KLT relation and its
connection to the DLCQ of string theory. As a further demonstration of the techniques de-
veloped through the paper, in appendix A, we apply these techniques to compute one-loop
amplitudes in nonrelativistic open string theory, generalizing properties of nonrelativistic
closed string amplitudes in [10, 11] to open strings. We conclusion the paper in section 4.

2 KLT factorizations in relativistic string theory

We start with a review of the KLT factorization of closed string amplitudes into open
string amplitudes in toroidal spacetime compactification, in relativistic string theory. We
will follow closely [1] for this review. For simplicity, we focus on the case where a single
spacial direction is compactified. We consider scattering between asymptotic closed string
states that carry both winding and momentum in the compactified direction. In the KLT
relations, the closed string winding and Kaluza-Klein numbers are mapped respectively to
the integer and fractional windings of open strings, which end on an array of D-branes
localized equidistantly along the compactified direction. The open string amplitudes in-
volved in the winding KLT relation are therefore associated with open strings ending on
such a D-brane configuration determined by the closed string quantum numbers. Then, we
move on to the construction of a winding KLT relation in the presence of a Kalb-Ramond
field, which is important for us to perform at the end a non-singular zero Regge slope
limit. Such a low energy limit of scattering amplitudes between winding states does not
lead to any field theory regime; instead, we show that the resulting amplitudes are physical
observables in the so-called nonrelativistic string theory, a unitary and UV-complete string
theory that has a string spectrum with a Galilean invariant dispersion relation.

2.1 KLT relations for winding string amplitudes

Consider relativistic string theory described by a sigma model that maps a two-dimensional
worldsheet Σ to a d-dimensional spacetime manifoldM . We will focus on bosonic strings
with d = 26 . The worldsheet fields Xµ , µ = 0, 1, · · · , d − 1 play the role of spacetime

6See [28–30] for studies of Weyl anomalies and [20, 21, 31–34] for torsional extensions. Supersymmetric
generalizations of the background geometries have been considered in [35–38]. For perspectives from Double
Field Theory, see, e.g., [31, 36, 37, 39–41].

7Also see the companion paper [43] for explorations of dual D-brane actions in nonrelativistic string
theory.
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coordinates. We compactify X1 over a circle of radius R , such that X1 ∼ X1 + 2πR . We
therefore split the target space into a two-dimensional longitudinal and (d−2)-dimensional
transverse sector, carrying the index A = 0, 1 and A′ = 2, · · · , d − 1 , respectively. We
parametrize the worldsheet Σ , which is isomorphic to the complex plane, by the complex
coordinates z and z̄ . Dividing the spacetime coordinates Xµ into the left- and right-moving
parts, we write

Xµ(z, z̄) = Xµ
L(z) +Xµ

R(z̄) . (2.1)

For a closed string state that carries a KK momentum number n and winding number w
in X1, with n,w ∈ Z , we have the general form of the closed string vertex operator

ei π w n̂ :∂k1
z X

µ1
L · · · ∂

kp
z X

µp
L ∂`1z X

ν1
R · · · ∂

`p
z X

νp
R eiKL·XL+iKR·XR : , (2.2)

where
KL =

(
ε ,

n

R
− wR

α′
, kA′

)
, KR =

(
ε ,

n

R
+ wR

α′
, kA′

)
. (2.3)

Here, α′ is the Regge slope. General BRST vertex operators can then be constructed
using the building blocks in (2.2) [1]. We define ε as the energy and kA′ the transverse
momentum. We also introduce the operator

n̂ = R

2πα′
∮
C

(
dz ∂zXL − dz̄ ∂z̄XR

)
, (2.4)

whose eigenvalues are the KK number n . The phase factor ei π w n̂ in (2.2) is the cocycle
factor that is introduced to ensure that the vertex operators commute with each other [44].

The simplest nontrivial case we will consider is the tree-level four-tachyon scattering
on a sphere. For tachyonic states, we have the dispersion relation K2

L = K2
R = 4/α′ and

the level-matching nw = 0 . Locations of the vertex operators on the complex plane are
denoted by zi , i = 1, · · · , 4 . We use the Möbius transformation to fix the locations of
three vertices, with z1 = 0 , z3 = 1 , and z4 = ∞ . The closed string amplitude is of the
Virasoro-Shapiro-type,

M(4)
c = C(1, 2, 3, 4)

×
∫
C
d2z z

1
2 α
′KL1·KL2 z̄

1
2 α
′KR1·KR2 (1− z)

1
2 α
′KL2·KL3 (1− z̄)

1
2 α
′KR2·KR3 ,

(2.5)

where z = z2 and

C(1, 2, 3, 4) = exp
(
iπ
∑4

i,j=1
i<j

niwj

)
(2.6)

comes from the cocycle factors and ensure that the vertex operators commute with each
other. We have omitted the Dirac deltas that impose various conservation laws for both
momenta and windings in the amplitude, in addition to other prefactors that are unim-
portant when the KLT relation is concerned. The closed string amplitude (2.5) factorizes
as [1]

M(4)
c = −C(1, 2, 3, 4)ML(2, 1, 3, 4) sin

(1
2 π α

′KL1 ·KL2

)
MR(1, 2, 3, 4) , (2.7)

– 6 –
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where

ML(2, 1, 3, 4) =
∫ 0

−∞
dy (−y)

1
2α
′KL1·KL2 (1− y)

1
2α
′KL2·KL3 , (2.8a)

MR(1, 2, 3, 4) =
∫ 1

0
dy y

1
2α
′KR1·KR2 (1− y)

1
2α
′KR2·KR3 . (2.8b)

Note that the KLT-like relation in (2.7) is invariant under swapping the subscripts “L”
and “R.” The quantitiesML,R can be interpreted as open string amplitudes. An intriguing
subtlety arises in this interpretation: the closed string state in the compactified space-
time can carry both momentum n/R and winding w along the compact circle in X1;8 in
contrast, an open string state can only carry momentum or winding along X1, but not
both of them, depending on which boundary condition (Neumann or Dirichlet) is imposed.
This observation implies that, in ML,R from (2.8) with KL,R defined in (2.3), we cannot
simultaneously interpret n/R as momentum and w as winding for any open string state.

In [1], it is shown that a particular D-brane configuration is required for interpret-
ing ML,R in (2.8) as open string amplitudes. While the winding number of the i-th
closed string corresponds to the winding number of the i-th open string obeying Dirichlet
boundary conditions, the closed string KK momentum number is encoded in the D-brane
configuration where open string amplitudes are defined. We elaborate on this D-brane
configuration below. Consider an array of D-branes that are localized in the compactified
X1-direction but extend in all the noncompact directions. Require that the s-th brane be
located in X1 at

xs = x0 + sL mod 2πR , s ∈ Z , (2.9)

where L = 2πα′/R is T-dual to the circumference of the compact circle. Consider the
i-th open string, and let one of its ends be anchored on the s-th D-brane. After wrapping
around the X1 circle for wi times, we fix the other end of the open string on the (s+ni)-th
D-brane. Then, the total winding number of the open string is

Wi = wi + niL

2πR , (2.10)

where ni L/(2πR) is generically fractional. Therefore, while wi corresponds to the integer
winding number of the i-th open string, the closed string KK number ni for the i-th closed
string is encoded by the fractional winding. The conservation law of the closed string
momentum in X1 is realized by open strings splitting and joining on the D-branes. The
number of D-branes involved in the scattering process is given by n+ + 1 , where n+ is
the sum of all positive ni , associated with the incoming closed strings. see figure 1 and 2

8Each individual tachyonic closed string state considered here cannot carry both winding and momentum
in the compact circle, due to the level-matching condition nw = 0 . However, in the same scattering process,
it is possible to have some asymptotic closed string states with nonzero windings and others with nonzero
momenta along the compact circle. Therefore, the four-tachyon amplitude still provides an interesting
example that exhibits most salient features of KLT relations for winding string amplitudes. If, instead,
the more general vertex operators of the form (2.2) are considered, then each individual closed string state
can in general carry both winding and momentum in the compact circle. See [1] for further discussions on
insertions of general vertex operators.
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for an illustration. For the given cyclic ordering (1, 2, 3, 4) of the vertex operators on the
boundary of a worldsheet disk, and after the rescalings,

α′ → α′

4 , R→ R

4 , L→ L

4 , (2.11)

the resulting four-point open string amplitude exactly reproduces MR in (2.8b). Analo-
gously, the same interpretation in terms of open string amplitudes applies toML in (2.8a),
but with a different cyclic ordering (2, 1, 3, 4) and an opposite sign in front of wi . In this
sense, (2.7) presents a factorization of closed string amplitudes into a quadratic product
of open string amplitudes, with the open strings ending on a D-brane configuration that
encodes the closed string winding and KK numbers.

Finally, consider an N -point closed string amplitude MNc that is defined up to an
overall coefficient and involves general vertex operators that consist of the ingredients
in (2.2). We use the Möbius transformation to fix the locations of three vertex operators
on the complex plane, with z1 = 0 , zN−1 = 1 and zN = ∞ . The KLT factorization of
MNc is [1]

MNc = (−1)N−3∑
ρ, σ

C(1, σ, N − 1, N )

×ML (ρ, 1, N − 1, N ) SL[ρ|σ]KL1MR (1, σ, N − 1, N ) ,
(2.12)

where ρ and σ denote permutations of the indices in {2, · · · , N − 2} , and

SL[i1 , . . . , ik|j1 , · · · , jk]P =
k∏
t=1

sin
[1

2 π α
′
(
P ·KLit +

k∑
q>t

θ(it, iq)KLit ·KLiq

)]
(2.13)

is the momentum kernel. The kinematic data KLi and KRi are already defined in (2.3), but
now dressed up with the subscript i that labels asymptotic string states in the scattering.
Moreover, (i1, . . . , ik) and (j1, . . . , jk) are permutations of {1, . . . , k} . If the ordering of it
and iq is the opposite in the ordered sets (i1, . . . , ik) and (j1, . . . , jk), we set θ(it, iq) = 1;
otherwise, we set θ(it, iq) = 0 . The cocycle factor takes the following form:

C(i1, . . . , iN ) = exp
(
iπ
∑N

p, q=1
p<q

nipwiq

)
, (2.14)

which is required for the commutativity of vertex operators. We also defined the N -point
open string amplitudes as we have described earlier for the four-point case.

ML,R(1, . . . ,N ) =
∫

0<y2<···<yN−1<1
dy2 · · · dyN−2 FL,R

N−1∏
i,j=1
i<j

|yi − yj |
α′
2 KL,Ri·KL,Rj , (2.15)

and similarly for open string amplitudes that involve different cyclic orderings of open
string vertex operators inserted on the boundary of the worldsheet disk. The factors FL,R
come from contracting with derivative terms in the open string vertex operators, and are
single-valued functions that do not contribute any branch points in the complex integrals.
For a four-point scattering, (2.12) reduces to (2.7). Again, the KLT-like relation in (2.12)
is invariant under swapping “L” and “R.” Other equivalent forms of the winding KLT
relation (2.12) can be found in [1].
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2.2 Winding KLT relations in Kalb-Ramond field

For later applications to nonrelativistic string theory, we now consider modifications to the
KLT factorization of winding string amplitudes in the presence of a constant Kalb-Ramond
B-field in the longitudinal sector. To realize such a KLT relation, in addition to the D-
brane configuration that we have discussed in section 2.1, we will show that the D-branes
also need to carry electric gauge potentials that are determined by closed string quantum
numbers.

We start with the sigma model that describes relativistic string theory in a constant
B-field in the compact circle. Consider a worldsheet Σ with the coordinates σα = (τ, σ) ,
where τ = i σ0 is the imaginary time. We take τ ∈ R and σ ∈ [0, 2π] . The worldsheet Σ is
mapped to a spacetime manifold M with the longitudinal coordinates XA, A = 0, 1 and
transverse coordinates XA′ , A′ = 2, . . . , d− 1 . As before, X1 is compactified over a circle
of radius R , such that for a state that carries the winding number w ,

X1(σ + 2π) = X1(σ)− 2πRw , w ∈ Z . (2.16)

The sigma model is

S = 1
4πα′

∫
Σ
d2σ

(
∂αX

µ ∂αXµ + +i εαβ ∂αXµ ∂βX
ν Bµν

)
, (2.17)

with

Bµν =
(
B εAB 0

0 0

)
, (2.18)

where B denotes the magnitude of the B-field in the compact circle, and the Levi-Civita
symbol εαβ is defined by ετσ = −εστ = 1 , while εAB is defined by ε01 = −ε10 = 1 . The
canonical momentum conjugate to X0 is

K0 = 1
2πα′

∫ 2π

0
dσ

(
i ∂τX

0 +B ∂σX
1
)

= ε− wR

α′
B , (2.19)

where
ε = i

2πα′
∫ 2π

0
dσ ∂τX

0 (2.20)

is the kinetic energy in the absence of any B-field. Therefore, the B-field in the compact
direction shifts the kinetic energy, with the shift being proportional to both the B-field
and winding. For a closed string state with winding number w and KK number n , the
associated dispersion relation picks up the same energy shift generated by the B-field, with(

ε− wR

α′
B

)2
− kA′kA′ = n2

R2 + 2
α′

(
N + Ñ − 2

)
, (2.21)

where N and Ñ are string excitation numbers for the left and right movers, respectively.
The factorization of winding closed string amplitudes is in form the same as (2.12), but with

KLi =
(
ε− wiR

α′
B ,

ni
R
− wiR

α′
, kA′, i

)
, (2.22a)

KR =
(
ε− wiR

α′
B ,

ni
R

+ wiR

α′
, kA′, i

)
, (2.22b)

for the i-th string state.
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In the above KLT factorization in the presence of a B-field, we have the same factor
ML,R defined by (2.15), but now with the new kinematic data in (2.22). For suchML,R
to receive an interpretation as open string amplitudes, we continue to consider the same
scattering in section 2.1 that involves open strings ending on the D-brane array localized in
X1 . For open strings, we take the worldsheet to be a strip with τ ∈ R and σ ∈ [0, π] . The
boundary ∂Σ of the worldsheet resides on σ = 0, π . The total winding number W for an
open string that wraps w times around X1 and ending on two different D-branes is given
in (2.10), with W = w + nL/(2πR) . After applying the rescaling (2.11), the associated
open string amplitude now takes the form ofMR in (2.15) but with

KR =
(
ε− WR

α′
B ,

WR

α′
, kA′

)
. (2.23)

Performing the rescaling (2.11), and then using L = 2πα′/R , we find

KR →
(
ε− wR

α′
B − nB

R
,
n

R
+ wR

α′
, kA′

)
. (2.24)

This is almost the same as (2.22b) but with an extra shift nB/R of the energy. To com-
pensate for this extra term, we are required to assign a constant electric potential Vs to the
s-th D-brane. The specific value of Vs is determined as follows. Consider an open string
with the end at σ = 0 residing on the s-th and the other end at σ = π residing on the
(s+ n)-th D-brane. It is convenient to write the boundary action in terms of the complex
coordinate z = eτ+iσ and its complex conjugate z̄ = eτ−iσ, under which the worldsheet
Σ is mapped to the upper half-plane of C : the boundary at σ = 0 is mapped to be the
positive part of the real axis, and the boundary at σ = π is mapped to be the negative
part of the real axis. In this convention, the boundary action takes the form

Sbdry = i

∫
∂Σ
dy Aµ ∂yX

µ = i

∫ ∞
0

dy Vs+n ∂yX
0 + i

∫ 0

−∞
dy Vs ∂yX

0 . (2.25)

Note that y = eτ for y ∈ (0,∞) , and y = eτ+iπ for y ∈ (−∞, 0) . In terms of τ , we find

Sbdry = i (Vs+n − Vs)
∫
R
dτ ∂τX

0. (2.26)

This boundary term contributes an extra shift in energy that is only experienced by open
strings that end on different D-branes, with

ε→ ε+ Vs+n − Vn . (2.27)

We require that

Vs = sLB

2πα′ , s ∈ Z . (2.28)

Performing the rescaling (2.11), and then using L = 2πα′/R , we find

Vs = sB

R
, s ∈ Z . (2.29)
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Taking the extra energy shift (2.27) into account, the kinematic data in (2.24) becomes

KR =
(
ε− wR

α′
B − nB

R
+ Vs+n − Vn ,

n

R
+ wR

α′
, kA′

)
. (2.30)

Plugging (2.29) into (2.30), we find that the same kinetic data in (2.22b) is recovered.
Similar considerations also apply to KL in (2.22a). Therefore, the amplitude for winding
closed strings in an electric B-field lying along the compactified direction factorizes into
a quadratic product of open string amplitudes, which involve open strings ending on an
array of D-branes, each carrying a different electric potential.

Generally, the closed string metric and Kalb-Ramond fields are mapped to the effec-
tive metric that is seen by the open strings via the Seiberg-Witten map, together with a
functional coupling that parametrizes spacetime noncommutativity [45]. In our case, the
D-branes are transverse to the compactified direction, along which the B-field lies. There-
fore, the B-field is orthogonal to the D-branes. In other words, the open strings satisfy
Dirichlet boundary conditions in the direction of the B-field. Consequently, the effective
field theories on the D-branes are not affected by the B-field and the Seiberg-Witten map
trivializes. This is different from the situation in [45], where Neumann boundary conditions
are assumed along the B-field.

2.3 A zero α′ limit of winding KLT relations

Unlike the conventional KLT relations in a noncompactified spacetime, there is no field
theory limit of the winding KLT relation (2.12) by sending the Regge slope α′ to zero. We
focus on the following kinematic variable that shows up in (2.12):

α′KLi ·KLj = α′
[
−εi εj +

(
ni
R
− wiR

α′

)(
nj
R
− wjR

α′

)
+ kA

′
i k

A′
j

]
. (2.31)

In small α′ , (2.31) becomes

α′KLi ·KLj →
1
α′

[
wiwj R

2 +O(α′)
]
, (2.32)

which blows up in the α′ → 0 limit and therefore leads to singular results. This is because
any winding state drops out of the spectrum in the field theory limit. However, as we have
preluded earlier, in the presence of an electric B-field that is tuned to its critical value with
B = −1 , there is a non-singular α′ → 0 limit that leads to nonrelativistic string theory.

We start with introducing such a nonrelativistic limit at the level of the string sigma
model in background fields,

S = 1
4πα′

∫
Σ
d2σ

(
∂αX

µ ∂αXν Gµν + i εαβ ∂αX
µ ∂βX

ν Bµν
)
, (2.33)

with

Gµν =

ηAB 0
0 α′

α′eff
δA′B′

 , Bµν =
(
−εAB 0

0 0

)
. (2.34)
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The coefficient α′eff will become the effective Regge slope in nonrelativistic string theory.
We continue to assume that X1 is compactified along a circle of radius R . Integrating in
a pair of auxiliary fields λ and λ̄ , the action (2.33) can be written equivalently as

S = 1
4πα′eff

∫
Σ
d2σ

(
∂αX

A′ ∂αXA′ + λ ∂̄X + λ̄ ∂X + α′

α′eff
λ λ̄

)
. (2.35)

We defined
∂ = i ∂τ + ∂σ , ∂̄ = −i ∂τ + ∂σ , (2.36)

and the lightlike coordinates

X = X0 +X1 , X = X0 −X1 . (2.37)

Integrating out λ and λ̄ in (2.35) gives back the original action (2.33). The zero α′ limit
leads to the low-energy sigma model that defines nonrelativistic string theory [10],

Seff = 1
4πα′eff

∫
Σ
d2σ

(
∂αX

A′ ∂αXA′ + λ ∂̄X + λ̄ ∂X
)
. (2.38)

The one-form fields λ and λ̄ are Lagrange multipliers that impose the (anti-)holomorphic
constraints ∂̄X = ∂X = 0 . The worldsheet theory (2.38) is invariant under the global
symmetry,

δGX
A = 0 , δGX

A′ = ΛA′AXA, (2.39)

supplemented with appropriate transformations acting on λ and λ̄ . This symmetry acting
on worldsheet fields corresponds to a stringy generalization of the Galilei boost in the
target space. The target space therefore enjoys a nonrelativistic isometry group. We
already required that X1 be compactified over a circle of radius R , which is essential for
the nonrelativistic closed string spectrum to be non-empty [9–11]. This can be seen by
applying the α′ → 0 limit to the dispersion relation for relativistic closed strings in the
background field configuration from (2.34). The relativistic dispersion relation is(

ε+ wR

α′

)2
− α′eff

α′
kA′kA′ = n2

R2 + w2R2

α′2
+ 2
α′

(
N + Ñ − 2

)
, (2.40)

together with the level-matching condition nw = Ñ − N . Here, ε is the closed string
energy in absence of the B-field. Recall that w is the winding number in X1, n is the KK
number, kA′ is the transverse momentum, and N and Ñ are string excitation numbers. In
the α′ → 0 limit, we find that (2.40) becomes

ε = α′eff
2wR

[
kA′kA′ + 2

α′eff

(
N + Ñ − 2

)]
, (2.41)

which is the dispersion relation in nonrelativistic closed string theory. The level-matching
condition is unchanged under this limit. This dispersion relation is only well-defined for
states with nonzero windings. Note that the KK number n in X1 only shows up in the
level-matching condition but not the dispersion relation explicitly.
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A closed string amplitude in nonrelativistic string theory also factorizes into a quadratic
product of open string amplitudes. This nonrelativistic analog of the KLT relation can be
obtained by taking a zero α′ limit of the relativistic KLT relation for winding string ampli-
tudes in the presence of a critical B-field. We therefore start with the KLT relation (2.12)
that is supplemented with the kinematic data in (2.22), but now with B = −1 to match
with the B-field configuration in (2.34). Moreover, the transverse momentum kA′ in (2.22)
is rescaled by a factor

√
α′eff/α

′ , which takes into account the metric configuration in (2.34).
These lead to a new set of kinematic data,

KL =

ε+ wR

α′
,
n

R
− wR

α′
,

√
α′eff
α′

kA′

 , (2.42a)

KR =

ε+ wR

α′
,
n

R
+ wR

α′
,

√
α′eff
α′

kA′

 . (2.42b)

Using (2.42), we find that the kinematic variable in (2.31) is modified to be

α′KLi ·KLj = −α′
(
εi + wiR

α′

) (
εj + wjR

α′

)
+ α′

(
ni
R
− wiR

α′

)(
nj
R
− wjR

α′

)
+ α′eff k

A′
i k

A′
j ,

(2.43)

which, unlike (2.32), is now non-singular under the limit α′ → 0 , with

α′KLi ·KLj → − (wi εj + wj εi)R+ α′eff k
A′
i k

A′
j − (niwj + nj wi) , (2.44a)

Similarly, we have in the α′ → 0 limit,

α′KRi ·KRj → − (wi εj + wj εi)R+ α′eff k
A′
i k

A′
j + (niwj + nj wi) , (2.44b)

where the sign of each winding number is flipped. Therefore, the KLT factorization of
a nonrelativistic closed string amplitude is in form the same as (2.12), except that the
kinematic variables α′KLi ·KLj and α′KRi ·KRj are replaced with the ones in (2.44). Note
that the factors FL,R in (2.15), and the corresponding factor in the closed string amplitude,
from contractions with derivative terms in vertex operators can also contain the kinematic
data KLi and KRi . To correctly take the α′ → 0 limit of these factors will necessarily
involve reparametrizations of various polarization factors, which can be rather nontrivial.
However, as we will see later in section 3, if we instead start with nonrelativistic string
theory, then it is manifest that the factorization of such factors works out in the standard
way as in [2].

We already learned in section 2.1 that, in the KLT relation for winding string ampli-
tudes, the open string amplitudes involve open strings that end on an array of D-branes,
which are equidistantly localized along the compactified circle. The separation between
each consecutive D-branes is L = 2πα′/R , which is T-dual to the circumference of the
compactified circle. In the α′ → 0 limit, this distance L becomes zero, giving rise to
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a stack of n+ + 1 coinciding D-branes, where n+ is the total momentum number of the
incoming closed strings (see figure 1).

We also learned from section 2.2 that, in the presence of a B-field, the relativistic
KLT relation involves amplitudes with open strings ending on D-branes carrying electric
potentials. Namely, the s-th D-brane carries an electric potential Vs = sB/R as in (2.29).
To make contact with nonrelativsitic string theory, we set B = −1 followed by sending α′

to zero. However, since Vs is independent of α′ , it remains unchanged under the limit. As
we have seen before, the U(n+ + 1) gauge group on the stack of n+ + 1 D-branes is broken
into its Cartan subalgebra U(1)n++1, with the gauge potential A0 = diag

(
V1, · · · , Vn++1

)
.

To summarize, the KLT relations in nonrelativistic string theory is in form the same
as (2.12), but with the kinematic variables α′KLi ·KLj and α′KRi ·KRj replaced with the
expressions in (2.44). Moreover, the open string amplitudes involved in the KLT relation
consist of open strings that end on a stack of coinciding n+ + 1 D-branes, with each D-
brane carrying an electric potential such that there is a constant electric field between the
D-branes. In the next section, we will derive the same KLT relations in nonrelativistic
string theory from first principles, without resorting to the zero α′ limit.

3 KLT factorizations in nonrelativistic string theory

We now switch our attention away from relativistic string theory and give a brief review
of nonrelativistic string theory. We will take the defining action (2.38) for nonrelativistic
string theory as the starting point, without relying on the low energy limit discussed in
section 2.3.

3.1 Nonrelativistic closed string theory

We first focus on the closed string sector. As preluded in section 2.3, nonrelativistic string
theory in flat spacetime is defined by the action principle (2.38), i.e.,

S = 1
4πα′eff

∫
Σ
d2σ

(
∂αX

A′ ∂αXA′ + λ ∂̄X + λ̄ ∂X
)
, (3.1)

We briefly summarize the definitions that we already gave earlier in section 2 for the
action (3.1) below. Here, σα = (τ, σ) are coordinates on the relativistic worldsheet, with
τ the imaginary time. The worldsheet Σ is mapped to a foliated spacetime manifold M
by the worldsheet coordinates Xµ = (XA, XA′), with A = 0, 1 and A′ = 2, . . . , d− 1 . The
coordinates XA and XA′ define the longitudinal and transverse sectors, respectively. The
derivatives ∂ and ∂̄ are defined in (2.36) and the lightlike coordinates X and X are defined
in (2.37). The one-form fields λ and λ̄ are Lagrange multipliers that impose the (anti-
)holomorphic constraints ∂̄X = ∂X = 0 . The target space enjoys a nonrelativistic global
isometry group, including the string Galilei boost symmetry in (2.39) that relates the
transverse and longitudinal sectors. We also recall that the compactification of X1 over a
circle of radius R is necessary for the closed string spectrum to be non-empty. The closed
string spectrum enjoys a Galilean invariant dispersion relation (2.41), which we transcribe

– 14 –



J
H
E
P
0
4
(
2
0
2
2
)
0
6
8

below:
ε = α′eff

2wR

[
kA′kA′ + 2

α′eff

(
N + Ñ − 2

)]
, (3.2)

where ε is the energy, w is the winding number in X1, kA′ is the transverse dispersion
relation, and N and Ñ are string excitation numbers. The KK number n in X1 enters the
dispersion relation via the level-matching condition nw = Ñ −N .

In radial quantization, we use the conformal mapping, z = eτ+iσ and z̄ = eτ−iσ, in
terms of which the string action (3.1) becomes

S = 1
4πα′eff

∫
C
d2z

(
2 ∂zXA′ ∂z̄X

A′ + λz ∂z̄X + λz̄ ∂zX
)
, (3.3)

where

λz = −iλ/z , ∂z = 1
2(∂τ − i∂σ) , (3.4a)

λz̄ = iλ̄/z̄ , ∂z = 1
2(∂τ + i∂σ). (3.4b)

The operator product expansions (OPEs) between different worldsheet fields are

:λz(z1)X(z2) : ∼ − 2α′eff
z1 − z2

, :λz̄(z̄1)X(z̄2) :∼ − 2α′eff
z̄1 − z̄2

, (3.5a)

:XA′(z1 , z̄1)XB′(z2 , z̄2) : ∼ −α
′
eff
2 δA

′B′ ln |z1 − z2|2. (3.5b)

Following [33], these OPEs can be written in a compact way as follows. First, we introduce
a local redefinition of the one-form fields λ and λ̄ ,

λz = −2 ∂zX ′ , λz̄ = 2 ∂z̄X ′ . (3.6)

The auxiliary coordinates X ′ = X ′(z) andX ′ = X ′(z̄) are T-dual toX andX , respectively.
The field redefinitions (3.6) involve time derivatives and need to be treated with care in
the path integral. Nevertheless, it is valid to perform a direct substitution of (3.6) in the
operator formalism. We further define

ϕ0
L(z) = 1

2(X +X ′) , ϕ0
R(z̄) = 1

2(X −X ′) , (3.7a)

ϕ1
L(z) = 1

2(X −X ′) , ϕ1
R(z̄) = 1

2(X +X ′) , (3.7b)

together with XA′ = ϕA
′(z) + ϕ̄A

′(z̄) . In terms of the new variables ϕµ, the OPEs in (3.5)
become

ϕµL(z1)ϕνL(z2) ∼ −α
′
eff
2 ηµν ln

(
z1 − z2

)
, ϕµR(z̄1)ϕνR(z̄2) ∼ −α

′
eff
2 ηµν ln

(
z̄1 − z̄2

)
, (3.8)

which take the same form of the OPEs between the worldsheet fields that play the role of
the target-space coordinates in relativistic string theory. These OPEs coincide with the
ones from the string action for relativistic string theory,

Sϕ = 1
4πα′eff

∫
d2σ ∂αϕ

µ ∂αϕµ , (3.9)
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where ϕµ = ϕµL + ϕµR . With appropriate spacetime compactifications, the closed string
tachyon vertex operator takes the same form as in (3.13), with the left- and right-moving
momentum KL and KR , respectively. In practice, when the OPEs are concerned, physical
quantities in nonrelativistic string theory can be obtained from relativistic string theory
by plugging in the mappings in (3.7).

The vertex operators can be constructed using the variables ϕµL,R as well. We start with
a detour to first identify different quantum numbers. Define the quantum numbers q and
q̄ that are respectively conjugate to X ′ and X ′ . These quantum numbers are eigenvalues
of the operators,

q̂ = − 1
2πα′eff

∮
C
dz ∂zX , ˆ̄q = − 1

2πα′eff

∮
C
dz̄ ∂z̄X , (3.10)

where C is a contour that encloses the vertex operator counterclockwise. In our case, only
X1 is compactified, and q = −q̄ = wR/α′eff. We also define the quantum numbers p and p̄
that are respectively conjugate to X and X . These quantum numbers are eigenvalues of
the momentum operators

p̂ = − 1
2πα′eff

∮
C
dz ∂zX

′ , ˆ̄p = − 1
2πα′eff

∮
C
dz̄ ∂z̄X

′
. (3.11)

Writing p = 1
2(p0 + p1) and p̄ = 1

2(p0− p1) , we observe that pA is the longitudinal momen-
tum. Note that p0 = ε is the energy. As X1 is compactified, p1 = n/R is quantized, with
n ∈ Z the KK number. Therefore, the closed string tachyon vertex operator is

V = exp
(
iπ n ŵ

)
: exp

(
iKA′ X

A′ + i pAX
A + i qAX ′A

)
: . (3.12)

We defined X ′0 = 1
2

(
X ′ +X ′

)
and X ′1 = 1

2

(
X ′ −X ′

)
. Moreover, q0 = q+ q̄ and q1 = q− q̄ .

The phase factor eiπ n ŵ is a cocycle factor that is required for the vertex operators to
commute. In terms of ϕµL,R in (3.7), the vertex operator (3.12) becomes

V = exp
[
i

4 πα
′
eff
(
KL −KR

)
·
(
K̂L + K̂R

)]
exp

(
iKL · ϕL + iKR · ϕR

)
, (3.13)

where
KLµ = (p+ q , p− q , kA′) , KRµ = (p̄− q̄ , p̄+ q̄ , kA′) . (3.14)

For later use, we also note that it is possible to define the vertex operator as

V = exp
[
i

4 πα
′
eff
(
KL +KR

)
·
(
K̂L − K̂R

)]
exp

(
iKL · ϕL + iKR · ϕR

)
, (3.15)

where we chose to remove the branch cuts from permuting vertex operators differently.
This change in the definition of vertex operators only contributes an overall sign in front
of the amplitude and thus not affecting the associated cross section. Finally, higher-order
vertex operators are constructed from dressing (3.13) up with derivatives acting on ϕµL,R .
Since the factorization of contributions from the derivative terms proceeds in the same way
as in the standard KLT relation [2], we will mostly be agnostic about the detailed form of
these derivative factors in the vertex operators in this paper.
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3.2 Nonrelativistic open strings

Now, we consider in nonrelativistic string theory a D-brane that is transverse to the longi-
tudinal spatial direction X1 , which is compactified. Open strings ending on such a D-brane
satisfy the Dirichlet boundary condition,

δX1∣∣
∂Σ = 0 . (3.16)

At tree level, we require that the worldsheet Σ is a strip with τ ∈ R and the boundary
∂Σ resides at σ = 0 , π . For simplicity, we require that all the other directions satisfy the
Neumann boundary conditions, with ∂σX0∣∣

∂Σ = ∂σX
A′
∣∣
∂Σ = 0 . Varying the action (3.1)

with respect to Xµ further requires

λ+ λ̄
∣∣
∂Σ = 0 . (3.17)

The (anti-)holomophic conditions ∂̄X = ∂X = 0 induce an extra boundary condition,

∂σX
1 − i ∂τX0 ∣∣

∂Σ = 0 . (3.18)

This theory has a nonrelativistic open string spectrum, with

ε = α′eff
2wR

[
kA′kA′ + 1

α′eff
(N − 1)

]
. (3.19)

Here, the winding number w describes how many times an open string wraps around X1,
with both the ends of the string anchored on the same D-brane. In the case where the
open string ends on different D-branes, w can be fractional.

In terms of the complex variables z = eτ+iσ and z̄ = eτ−iσ , the strip is mapped to
be the upper half of the complex plane, with the boundary being the real axis at z = z̄ .
Using the definitions from (3.4), the boundary conditions on XA become [46]

∂zX − ∂z̄X
∣∣
z=z̄ = 0 , λz − λz̄

∣∣
z=z̄ = 0 , (3.20)

supplemented with the (anti-)holomorphic conditions ∂z̄X
∣∣
z=z̄ = ∂zX

∣∣
z=z̄ = 0 . Using the

local field redefinitions in (3.6), we find

∂zX
′ + ∂z̄X

′∣∣
z=z̄ = 0 , (3.21)

also supplemented with the (anti-)holomorphic conditions ∂z̄X ′
∣∣
z=z̄ = ∂zX

′∣∣
z=z̄ = 0 . Fi-

nally, also taking into account the Neumann boundary conditions ∂σXA′
∣∣
∂Σ = 0 , and in

terms of the variables ϕµL,R in (3.7), we find that the above boundary conditions become

∂zϕ
µ
L(z)− ∂z̄ϕµR(z̄)

∣∣
z=z̄ = 0 , (3.22)

which imply that ∂σϕµ
∣∣
∂Σ = 0 , with ϕµ = ϕµL +ϕµR . Therefore, in terms of the variable ϕµ

that mixes XA and X ′A, all ϕµ directions effectively satisfy Neumann boundary conditions.
We emphasize that, even though various expressions in terms of ϕµ are formally the same
as the associated ones in relativistic string theory, physically, this is only the consequence
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of a redefinition of the target-space coordinates and their duals in nonrelativistic string
theory.

The OPEs that satisfy the Dirichlet boundary condition in X1 and Neumann boundary
conditions in the remaining directions are

:λz(z1)X(z2) : ∼ − 2α′eff
z1 − z2

, :λz̄(z̄1)X(z̄2) :∼ − 2α′eff
z̄1 − z̄2

, (3.23a)

:XA′(z1 , z̄1)XB′(z2 , z̄2) : ∼ −α
′
eff
2 δA

′B′
(
ln |z1 − z2|2 + ln |z1 − z̄2|2

)
. (3.23b)

In terms of ϕµL,R , the open string OPEs on the worldsheet boundary ∂Σ are obtained by
restricting the following expressions to z = z̄ = y on ∂Σ , with y ∈ R :

:ϕµ(z1 , z̄1)ϕν(z2 , z̄2) :∼ −α
′
eff
2 ηµν

(
ln |z1 − z2|2 + ln |z1 − z̄2|2

)
. (3.24)

The same boundary OPEs can be reproduced by using the action (3.9) with the Neumann
boundary condition ∂σϕµ

∣∣
∂Σ = 0 .

The open string vertex operators can be constructed by restricting the closed string
vertex operators section 3.1 to be on the boundary. In the simplest case, we consider an
open string tachyonic state, with the ends of the open string anchored on two D-branes
located in the compactified direction X1 and separated by a distance L . The associated
vertex operator is

Vopen = :exp
[
iKL · ϕL(y) + iKR · ϕR(y)

]
: , (3.25)

where KL,Rµ can be read off from (3.14) by setting p1 = 0 and q = −q̄ = WR/α′eff , with

KLµ = KRµ = Kµ ≡
(
ε

2 + WR

α′eff
,
ε

2 −
WR

α′eff
, kA′

)
, W = w + L

2πR . (3.26)

Here, ε = p0 is the energy and W is the total winding number. We defined w to be the
integer part that counts how many times the open string wraps around the compactified
circle in X1 . Note that the momentum p1 in the compactified direction is set to zero since
an open string with Dirichlet boundary conditions on both ends cannot carry any collective
momentum. As a result, the vertex operator (3.25) reduces to

Vopen = g0 : exp
[
iK · ϕ(y)

]
: , (3.27)

where ϕ = ϕL + ϕR satisfies the OPE

:ϕµ(y1)ϕν(y2) :∼ −2α′eff ηµν ln
(
y1 − y2

)
. (3.28)

The string amplitude then takes the same form as in relativistic string theory, except
that the kinematic data is now given by (3.26). Again, higher-order vertex operators are
constructed by introducing additional factors that contain derivatives acting on ϕ .
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3.3 KLT factorization of nonrelativistic closed string amplitudes

The above rewriting of the OPEs and vertex operators in terms of ϕµL,R is particularly useful
for evaluating string amplitudes in nonrelativistic string theory: we simply need to take
well-known results of relativistic string amplitudes and plug in the kinematic data (3.14)!
For example, the N -point closed string amplitude takes the Virasoro-Shapiro form,

M̃Nc = C̃(1, . . . , N )
∫
CN−3

d2z2 · · · d2zN−2 F̃ (z2 , · · · , zN−2 ; z̄2 , · · · , z̄N−2)

×
N−1∏
i,j=1
i<j

z
1
2α
′
effKLi·KLj

ji z̄
1
2α
′
effKRi·KRj

ji .
(3.29)

We have applied the Möbius transformation to fix z1 = 0 , zN−1 = 1 and zN = ∞ . The
factor F̃ comes from contractions with derivative terms in the associated closed string vertex
operators. The factor C̃(1, . . . , N ) comes from the cocycle factors in vertex operators, and
takes the following form:

C̃(i1, . . . , iN ) = exp
(
iπ
∑N

p, q=1
p<q

wipniq

)
. (3.30)

Using the mapping in (3.14), we find

α′effKLi ·KLj = − (wi εj + wj εi)R+ α′eff k
A′
i k

A′
j − (niwj + nj wi) , (3.31a)

α′effKRi ·KRj = − (wi εj + wj εi)R+ α′eff k
A′
i k

A′
j + (niwj + nj wi) . (3.31b)

Note that the above expressions agree with (2.44), which we obtained by taking a zero
Regge slope limit in relativistic string theory. We will return to this point later after
examining the open string amplitudes.

We apply the same procedure as we did for nonrelativistic closed strings to obtain
amplitudes in nonrelativistic open string theory. In the simplest example, we consider
amplitudes for scattering of nonrelativistic open strings, which end on a single D-brane
located at x1 in the compactified X1 direction. Such open strings satisfying the Dirichlet
boundary condition in X1 carry nonzero winding numbers that describe how many times
the open string wraps around X1, with the ends anchored on D-branes that are transverse
to X1. However, the momentum along X1 is zero, required by the Dirichlet boundary
condition. According to section 3.1, we can equivalently calculate relativistic open string
amplitudes with Neumann boundary conditions in all directions, but with the kinematic
data in (3.14), which now becomes

KM
L,R = KM =

(
ε

2 + wR

α′eff
,
ε

2 −
wR

α′eff
, kA′

)
. (3.32)

Here, w is fractional if the open string ends on two D-branes that are separated by a
distance L along X1. The N -point open string amplitude is

M̃o(1, . . . ,N ) =
∫

0<y2<···<yN−1<∞
dy2 · · · dyN−2 F̃o(y2, · · · , yN−2)

N−1∏
i,j=1
i<j

|yij |2α
′
effKi·Kj ,

(3.33)
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where yij = yi − yj . The factor F̃o comes from contractions with derivative terms in
the associated open string vertex operators. We have used the SL(2, R) symmetry to fix
y0 = 1 , yN−1 = 1 and yN = ∞ . The kinematic data KM

i for the i-th string is defined
in (3.32).

The N -point KLT relation is given by the following factorization of the closed string
amplitude (3.29):

M̃Nc = (−1)N−3∑
ρ, σ

C̃(1, σ, N − 1, N )SL[ρ|σ]KL1

× M̃L (ρ, 1, N − 1, N ) M̃R (1, σ, N − 1, N ) ,
(3.34)

whereMNc is given in (3.29) andML,R is essentially given by (3.33), but with the rescaling
α′eff → 1

4 α
′
eff and R→ 1

4 R , such that

M̃L,R(1, . . . ,N ) =
∫

0<y2<···<yN−1<1
dy2 · · · dyN−2 F̃L,R

N−1∏
i,j=1
i<j

|yi − yj |
1
2 α
′
effKL,Ri·KL,Rj ,

(3.35)
and the momentum kernel is the same as in (2.13). Note that F̃L ,R come from splitting F̃
in (3.29) as

F̃ (z2 , · · · , zN−2 ; z̄2 , · · · , z̄N−2)→ F̃L(z2 , · · · , zN−2) F̃R(z̄2 , · · · , z̄N−2) , (3.36)

using the standard trick in [2] to split polarization tensors. This KLT relation is in form
the same as the standard ones, except that KL,Ri have the form of (3.32). We start with
the kinematic quantities KL,Ri from the closed string side, as defined in (3.14), with

KM
L =

(
ε

2 + n

2R + wR

α′eff
,
ε

2 + n

2R −
wR

α′eff
, kA′

)
, (3.37a)

KM
R =

(
ε

2 −
n

2R + wR

α′eff
,
ε

2 −
n

2R −
wR

α′eff
, kA′

)
, (3.37b)

where we suppressed the subscript i that labels different string states. To answer which
open string amplitudes (3.35) are associated with the expressions in (3.35), we focus onML
therein for concreteness. We consider nonrelativistic open strings that end on D-branes
located in X1. Then, in the KLT relation, the winding number wi of the i-th closed string
is mapped to the winding number of the i-th open string that ends on the same D-brane
after wrapping around X1 circle for wi times. Such open strings have zero momentum in
X1. We thus have p = p̄ = ε/2 and q = −q̄ = wR/α′eff . The associated kinematic data KM

is the same as in (3.32). To identify this KM for an open string state with KM
L in (3.37a),

we need to further shift the energy by n/R . This is achieved by introducing a stack of
D-branes that are transverse to X1 and located at the same point in X1. We also have to
assign to the s-th D-brane an electric potential Vs = −sL/(2πα′eff) , where L = 2πR̃ , with
R̃ the T-dual of the radius of the compact circle. Consider an open string with its two
ends anchored on the s-th and (s+ n)-th D-brane. In this case, we find the following shift
in the energy:

ε→ ε+ n

R
. (3.38)
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Upon rescaling α′eff → α′eff/4 and R→ R/4 , together with L→ L/4 such that Vs remains
unchanged, the resulting amplitude that involves nonrelativistic open strings ending on a
tack of electrically charged D-branes matches withML in (3.35). To getMR , we just need
to consider the D-brane configuration but with an opposite sign in the electric potential
Vs . We furthermore see that the KLT relation in (3.34) is the same as the one derived in
section 2.3 from taking a low energy limit of a KLT relation in relativistic string theory
that involves a spacelike compactification along a constant B-field.9 However, the cocycle
contribution C̃ in (3.30) that we now have is different from the one that we called C

in (2.14), with the latter being used in section 2.3. This difference only introduces an
overall sign in front of the full amplitude, because

C(i1, · · · , ik) C̃(i1, · · · , ik) = exp
(
−iπ

k∑
i=1

niwi

)
(3.39)

is independent of the ordering of vertex operators.

3.4 String theory in discrete light cone quantization

It is not a coincidence that nonrelativistic string theory can be recast in the form of
relativistic string theory when the OPEs in (3.24) are concerned. This hidden relativistic
nature is made manifest by transforming the theory into a T-dual frame, where the discrete
light cone quantization (DLCQ) of relativistic string theory arises. The DLCQ of string
theory refers to relativistic string theory compactified on a lightlike circle. We now give an
elementary review on how this lightlike compactification can be defined as a subtle infinite-
boost limit [47] and its relation to nonrelativistic string theory [14]. Via the T-duality, a
KLT relation in the DLCQ of string theory can be established, using the factorization of
nonrelativistic closed string amplitudes considered in section 3.3. For simplicity, we will
focus on scatterings between tachyonic states when it comes to the DLCQ string amplitudes
in this subsection, but the general idea applies to more complicated cases.

We start with the sigma model for relativistic string theory in flat spacetime,

Srel. = 1
4πα′

∫
d2σ ∂αY

µ ∂αYµ . (3.40)

where the Euclidean worldsheet Σ with coordinates σα = (τ, σ) is mapped to the target
space M by a set of worldsheet fields Y µ(τ, σ), µ = 0, 1, . . . , d − 1 . We now compactify
the spatial Y 1 direction and impose the periodic boundary condition,

Y 1 ∼ Y 1 + 2πR0 . (3.41)

Consider a large boost transformation at speed v in Y 1,

Y ′0 = γ
(
Y 0 + v Y 1

)
, Y ′1 = γ

(
Y 1 + v Y 0

)
, (3.42)

9It is also possible to construct KLT relations in nonrelativistic string theory in the presence of a B-field
along the compact circle. Since the KLT relation in nonrelativistic string theory requires a stack of D-branes
that are located at the same point in the compact circle, introducing a B-field in X1 shifts the energies
of the closed and open strings by the same amount. Therefore, unlike the situation in relativistic string
theory, no extra ingredients are required in the presence of a B-field now.
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where γ = 1/
√

1− v2 � 1 . Define the lightlike coordinates Y = Y 0+Y 1 and Y = Y 0−Y 1.
Similarly, define Y ′ = Y ′0 + Y ′1 and Y ′ = Y ′0 − Y ′1. Using (3.42), we find

Y ′ = 2 γ Y +O(γ−1) , Y ′ = Y

2 γ +O(γ−3) . (3.43)

The lightlike coordinates Y ′ and Y ′ satisfy the boundary conditions,

Y ′ ∼ Y ′ + 4R0
[
γ π +O(γ−1)

]
, Y ′ ∼ Y ′ −R0

[
π

2 γ +O(γ−3)
]
. (3.44)

In the double-scaling limit γ → ∞ and R0 → 0 , while holding R̃ ≡ 2 γR0 fixed, we find
the periodic boundary condition

Y ′ ∼ Y ′ + 2πR̃ , Y ′ ∼ Y ′, (3.45)

i.e., Y ′ is a lightlike direction that is compactified over a lightlike circle of radius R̃ . This
subtle limit is the typical procedure that is used to define the DLCQ of string theory in
the literature. For example, see [47].

As we have preluded earlier, the exotic physics of relativistic string theory in the target-
space is related to nonrelativistic string theory via a T-duality relation [14]. To see this
explicitly, we rewrite the string action (3.40) in terms of the lightcone coordinates Y ′ and
Y
′ that satisfy the boundary conditions in (3.45), such that

Srel. = 1
4πα′

∫
d2σ

(
2 ∂αY ′ ∂αY ′ + ∂αY

A′ ∂αY A′
)
. (3.46)

Recall that Y ′ is compactified over a circle of radius R̃ . We will focus on the closed string
case, but generalizations to a worldsheet with boundaries are straightforward and can be
found in [42]. The action (3.46) is equivalent to the following “parent” action:

Sparent = 1
4πα′

∫
Σ
d2σ

(
∂αY

A′ ∂αY A′ + 2Vα ∂αY ′ + i εαβ X1 ∂αVβ
)
, (3.47)

upon integrating out the auxiliary field X1. Alternatively, we rewrite (3.47) as

Snonrel. = 1
4πα′

∫
Σ
d2σ

[
∂αY

A′ ∂αY A′ + λ ∂̄
(
Y ′ +X1

)
+ λ̄ ∂

(
Y ′ −X1

)]
, (3.48)

where we defined λ = iVτ + Vσ and λ̄ = −iVτ + Vσ . Identifying Y A′ = XA′ and Y ′ = X0 ,
this becomes the string action for nonrelativistic string theory in (3.1), where the T-dual
circle is spacelike. In this sense, nonrelativistic string theory provides a first principle
definition of the DLCQ of relativistic string theory via a T-duality along a spacelike circle.

It is also instructive to see how the double scaling limit and the T-duality relation work
at the level of dispersion relations. We start with applying the double-scaling limit to the
dispersion relation of relativistic closed strings. Before any limit is taken, the closed strings
carry quantum numbers including the frequency K0 , the transverse momentum KA′ , with
A′ = 2, · · · , d − 1 , and the string excitation numbers N and Ñ . Since we compactified
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Y 1 over a circle of radius R0 , we also have the KK number ñ and the winding number w̃ .
The dispersion relation before the double-scaling limit takes the following form:

K2
0 −KA′KA′ = ñ2

R2
0

+ w̃2R2
0

α′2
+ 2
α′

(
N + Ñ − 2

)
. (3.49)

The finite-energy states in the double-scaling limit are determined by a large γ expansion,

K0 −
ñ

R0
= ε

2 γ +O(γ−2) . (3.50)

where ε is the effective energy of the physical state in the string spectrum. Plugging (3.50)
into the dispersion relation (3.49), we find

ε2

4 γ2 + ñ ε

γ R0
−KA′KA′ = w̃2R2

0
α′2

+ 2
α′

(
N + Ñ − 2

)
. (3.51)

In the double-scaling limit, we obtain the DLCQ dispersion relation

ε = R̃

2 ñ

[
KA′KA′ + 2

α′

(
N + Ñ − 2

)]
, (3.52)

which enjoys a Galilei boost symmetry. T-dualizing this DLCQ dispersion relation (3.52)
by using the maps R̃ = α′/R and ñ = w , and followed by replacing α′ with α′eff , we recover
the dispersion relation (2.41) for nonrelativistic closed string theory on the T-dual side.

The same double limit can also be applied to relativistic open string states, which can
be mapped to nonrelativistic open string states after performing a T-duality transforma-
tion. We consider relativistic open strings in a spacetime-filling D-brane background, with
Neumann boundary conditions applied in all directions. Consider the component A1 of a
constant gauge potential that lies along X1, associated with U(m) Chan-Paton factors of
the relativistic open strings. By a gauge transformation, we diagonalize A1 such that it is
in the Cartan subalgebra U(1)m, with

A1 = − 1
2πR0

diag (θ1 , · · · , θm) . (3.53)

The relativistic open string in the Chan-Paton state |ij〉 has the dispersion relation

K2
0 −KA′KA′ = (2π ñ+ θi − θj)2

4π2R2
0

+ N − 1
α′

. (3.54)

States with a finite energy ε in the double-scaling limit are now associated with

K0 −
2π ñ+ θi − θj

2πR0
= ε

2 γ +O(γ−2) . (3.55)

Therefore, in the double-scaling limit, the DLCQ dispersion relation is

ε = π R̃

2π ñ+ θi − θj

[
KA′KA′ + 1

α′
(N − 1)

]
. (3.56)
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Now, applying the same T-duality relations that we have for closed strings, and with
θi − θj mapped to a fractional winding number of the dual open string, we find that the
open string dispersion relation (3.56) in the DLCQ is mapped to the nonrelativistic open
string dispersion relation (3.19).

Finally, we apply the double scaling limit to closed string amplitudes, which leads to
the DLCQ amplitudes. These DLCQ amplitudes are T-dual to the tachyon amplitudes in
nonrelativistic string theory. To demonstrate this, we start with the N -point relativistic
closed string amplitude that is in form the same as (3.29), but with F̃ = 1 and the kinematic
data in (3.31) replaced with

α′KLi ·KLj = −K0, iK0, j +
(
ñi

R̃
− w̃iR̃

α′

)(
ñj

R̃
− w̃jR̃

α′

)
+ ki · kj (3.57a)

α′KRi ·KRj = −K0, iK0, j +
(
ñi

R̃
+ w̃iR̃

α′

)(
ñj

R̃
+ w̃jR̃

α′

)
+ ki · kj , (3.57b)

which, under the expansion of K0 with respect to a large γ in (3.50), reduces to (3.31) after
performing the double scaling limit and then replacing R̃→ α′eff/R , ñi → wi , w̃i → ni and
α′ → α′eff . This shows that the relavitivistic string amplitude in the DLCQ is identical to
the nonrelativistic closed string amplitude (3.29). Even though we only explicitly examined
the amplitudes for tachyons here, this statement applies to more general amplitudes that
involve higher order vertex operator insertions on the worldsheet.

Unlike the usual treatment of the DLCQ of relativistic string theory, where no winding
in the lightlike circle is considered, now, a nonzero winding number along the lightlike circle
is also introduced. In the T-dual frame, this winding number is mapped to a KK number
in the spacelike X1 circle in nonrelativistic string theory. Therefore, taking the inverse
T-duality transformation of the nonrelativistic KLT relation (3.34) by replacing ni → w̃i ,
wi → ñi and R→ α′eff/R̃ in (3.34), we obtain a KLT relation for the DLCQ of relativistic
string theory. This resulting KLT relation factorizes general amplitudes of relativistic closed
strings in the DLCQ into amplitudes of relativistic open strings in the DLCQ; these open
strings propagate on a stack of spacetime-filling D-branes, carrying the electric potentials
in the same way as specified in (2.29).

4 Conclusions

In this paper, we studied various novel KLT relations in both relativistic and nonrelativistic
string theories. Despite intense studies of KLT relations in string theory and QFTs, the
introduction of winding states still brings new twists to the KLT relations, where the open
strings are required to end on intriguing D-brane configurations that are determined by the
closed string data. This suggests that a richer structure of winding string amplitudes still
awaits to be discovered, which may eventually constitute essential ingredients for analyzing
string compactification, a subject that is important for understanding the extended nature
of strings. Moreover, the analogs of KLT relations in nonrelativistic string theory provide
useful simplifications for further exploration of nonrelativistic closed string amplitudes.
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This is among the first steps towards generalizing the modern S-matrix program developed
for relativistic string theory and QFTs to nonrelativistic physics.
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A One-loop amplitudes in nonrelativistic open string theory

Loop amplitudes in nonrelativistic bosonic closed string theory have been studied in [10],
where it is shown that, as in relativistic string theory, there exists a standard perturbative
expansion with respect to the genera of worldsheet Riemann surfaces. At one-loop order,
integrating out the zero modes of the one-form field λ in the path integral constrains X
to be a holomorphic map from the worldsheet to the longitudinal sector of the target
space. For example, in the bosonic one-loop free energy at a finite temperature, i.e.,
the thermodynamic partition function of free closed strings, the path integral over the
zero modes of λ (and λ̄) restricts the moduli space to a set of discrete points in the
fundamental domain of SL(2,C) . Similar constraints are also generalized to higher-loops
and general N -point nonrelativistic string amplitudes, restricting the moduli space to a
lower dimensional submanifold [10]. Nonrelativistic closed string amplitudes have been
shown to match relativistic string amplitudes in the DLCQ [11, 48]. The finiteness of the
DLCQ string amplitudes now become manifestly true when posed in the T-dual language
of nonrelativistic string theory.

However, nonrelativistic open string amplitudes have not yet been studied in the liter-
ature.10 In section 3.2, we gave the prescriptions for evaluating nonrelativistic open string
amplitudes in general, and then in section 3.3 we considered tree-level nonrelativistic open
string amplitudes in the context of KLT relations. In this section, we will employ our tech-
niques developed through the evaluation of tree-level amplitudes in nonrelativistic string
theory to one-loop bosonic open string amplitudes, and show that similar localization theo-
rems in the moduli space arise. We will also compare these results derived in nonrelativistic
string theory with relativistic string amplitudes in the DLCQ. We start with the evaluation
of the one-loop planar amplitude for the scattering of N open string tachyons that end on
D-branes transverse to the compactified X1 circle. Then, we compute the one-loop free
energy that represents the ensemble of free open string states at a finite temperature.

A.1 N -point planar scattering for tachyons

At one loop, the open string worldsheet is parametrized as a cylinder, given by region

0 ≤ σ ≤ π , τ ∼ τ + 2π t , (A.1)
10For amplitudes of NCOS, see [9] for example.
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σ

τ×××

π

τN

. . .
τ1τ2

ρi = eτi

× ××
1

. . .
ρN ρ1ρ2

Figure 4. The relation ρi = eτi , i = 1, · · · ,N maps the strip it to the part of the annulus in the
upper half plane. The vertex operators lying on the strip at σ = 0 are mapped to the right side of
the annulus. Here, τN = −2π t and ρN = e−2πt are fixed. See [49].

with τ the Euclidean time. The cylinder is formed by identifying the ends at σ = 0 , π .
Here, t ∈ R+ is the modulus. In terms of the complex coordinate w = σ+ i τ , the cylinder
is a rectangle in the complex plane. We take this rectangular region to be 0 ≤ σ ≤ π and
−2π t ≤ τ ≤ 0 in figure 4, with the edges parallel to the σ-axis identified. Consider the
radial coordinates with z = eτ+i σ , which maps the rectangular region to be the upper half
of an annulus as in figure 4.

We now consider a planar diagram for an N -point open string scattering process, by
inserting N vertex operators on the same boundary of the cylinder at σ = 0 as in figure 4.
On the cylinder, there is a conformal Killing vector that is the translation parallel to the
boundary. Using this symmetry we fix the N -th vertex operator to be at the bottom left
corner of the rectangle, with σ = 0 and τN = −2π t . Other vertex operators are located
at τ1, · · · , τN−1 along the τ -axis. The open strings are required to end on D-branes that
are transverse to the X1 circle. Therefore, boundaries of the worldsheet are joined to such
D-brane configurations, satisfying Dirichlet boundary conditions. Mapping to the half
annulus, the vertex operators are located at ρi = eτi , with i = 1, · · · , N and ρN = e−2πt .

Nonrelativistic open string amplitudes. In nonrelativistic open string theory, since
the open string OPEs in (3.28) and the tachyonic vertex operators in (3.27) are in form
the same as in relativistic string theory, the string amplitudes also take the same form as
the ones for scattering between relativistic string tachyons,11

A(N )
1-loop = g(N )

o

∫ ∞
0
dt
[
η(it)

]−24
∫ 1

0

N−1∏
i=1

dρi
ρi

Θ(ρi − ρi+1)
∏
j<k

ψ
2α′effKj ·Kk
jk I , (A.3)

11We follow [49] for one-loop planar amplitudes of N relativistic open strings. If one replaces I in (A.4b)
by

I =
∫
d26K exp

[
−2π α′eff t

(
K +

∑
i
Ki ln ρi
2π t

)]
=
(

1
2α′eff t

)13

, (A.2)

then A(N )
1-loop becomes identical to eq. (8.1.63) in [49]. In eq. (8.1.63), w = e−2πt in our terminology, and the

relation between f(w) therein and the Jacobi theta function θ1(ν|τ) is given in eq. (8.A.26) in [49].
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where

ψij = −2π i exp
(
π t−1 ν2

ij

)θ1(νij | it)
θ′1(0 | it) , (A.4a)

I =
∑
w

∫
dε d24kA

′ exp

−2π α′eff t
(
K +

∑N
i=1Ki ln ρi

2π t

)2
 . (A.4b)

Here, νij = ln (ρi/ρj) /(2πi) ; K and Ki are given in (3.26), with

K =
(
ε

2 + WR

α′eff
,
ε

2 −
WR

α′eff
, kA′

)
, Ki =

(
εi
2 + WiR

α′eff
,
εi
2 −

WiR

α′eff
, kA

′
i

)
, (A.5)

and W and Wi the total winding numbers for open strings ending on D-branes that are
transverse to the compactified X1 circle. Note that only the integer winding w is summed
over. The notation Θ(ρi− ρi+1) is the Heaviside function that specifies the cyclic ordering
of the open string vertex operators on the boundary of the cylinder at σ = 0 . Moreover,
θ1(ν|τ) is a Jacobi theta function and θ′1(ν|τ) = ∂νθ1(ν|τ) . Using (A.5), we find

α′effKi ·Kj = −(εiWj + εjWi)R+ α′eff ki · kj , (A.6)

and

I = 1
(2α′eff t)12

∑
w

∫
dε exp

[
4πR

(
ε+

∑
i εi ln ρi
2πt

)(
W t+

∑
jWj ln ρj

2π

)]
. (A.7)

In order for the integral over ε to be well defined, we promote this integral to be over
the complex plane, followed by performing a Wick rotation as in [48]. Integrating over ε ,
we find

I → π

(2α′eff t)12

∑
w

1
R
δ

(
2πtW +

∑
i

Wi ln ρi
)
. (A.8)

Therefore,

A(N )
1-loop = π g

(N )
o
R

∫ ∞
0

dt

(2α′eff t)12
[
η(it)

]−24
∫ 1

0

N−1∏
i=1

dρi
ρi

Θ(ρi − ρi+1)

×
∏
j<k

ψ
2α′eff kj ·kk−2 (εjWk+εkWj)R
jk

∑
w

δ

(
2πtW +

∑
`

W` ln ρ`
)
.

(A.9)

The Dirac delta function constrains the moduli space to be a submanifold that satisfies the
condition

2πtW +
N∑
i=1

Wi ln ρi = 0 . (A.10)

Zero α′ limit of relativistic string amplitudes. The same result in (A.9) can be
reproduced by taking a zero α′ limit of winding string amplitudes in relativistic open
string theory, in the presence of an electric B-field. This zero α′ limit has been reviewed in
section 2.3. Consider string amplitudes for scatterings between open strings in relativistic
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string theory with the background field configuration specified in (2.34). The open strings
are required to end on D-branes that are localized in the compactified X1 direction. These
D-branes extend in all the other directions. The vertex operator for a tachyonic open
string is

Vopen = go : exp
(
iKL ·XL + iKR ·XR

)
: (A.11)

with KL,R defined similarly as in (2.23) but now in the critical background field configu-
ration specified in (2.34),12 with

KLµ =

ε− WR

α′
B , −WR

α′
,

√
α′eff
α′

kA′

 , (A.12a)

KRµ =

ε− WR

α′
B ,

WR

α′
,

√
α′eff
α′

kA′

 . (A.12b)

Here, α′ is the Regge slope in relativistic string theory, and W refers to the total open
string winding number. Moreover, Xµ

L,R are (anti-)holomorphic coordinates. We impose
Neumann boundary conditions in X0,A′ and Dirichlet boundary condition in X1 . In the
critical field configuration, we set B = −1 as in section 2.3. The associated open string
amplitude is

Ã(N )
1-loop = g̃(N )

o

∫ ∞
0
dt
[
η(it)

]−24
∫ 1

0

N−1∏
i=1

dρi
ρi

θ(ρi − ρi+1)
∏
j<k

ψ
α′
(
KLj ·KLk+KRj ·KRk

)
jk Ĩ ,

(A.13)

where

Ĩ =
∑
w

∫
dε d24kA

′ exp
[
−α′π t

(
KL +

∑
iKLi ln ρi

2πt

)2 ]

× exp

−α′π t(KR +
∑
j KRj ln ρj

2πt

)2
 . (A.14)

Performing a Wick rotation for the energy ε , we are able evaluate the integrals,

Ĩ → 1
(2α′eff t)12

∑
w

1√
2α′ t

exp
[
− R2

2πα′ t

(
2πtW +

∑
i

Wi ln ρi
)2]

(A.15)

Applying the limit α′ → 0 , and noting that

lim
σ→0

1√
2πσ

exp
(
− χ2

2σ2

)
= δ(χ) , (A.16)

and
α′
(
KLi ·KLj +KRi ·KRj

)
→ −2

(
εiWj + εjWi

)
R+ α′eff ki · kj (A.17)

we find that Ĩ becomes I in (A.8) and ÃN1-loop becomes A(N )
1-loop in (A.9). Therefore, the

nonrelativistic open string amplitude (A.9) is reproduced in the α̂′ → 0 limit.
12Only KR is given in (2.23), from which KL can be obtained by flipping the signs in front of the total

winding number in the second entry.
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DLCQ amplitudes from an infinite boost limit. In the T-dual picture, the theory
is described by the DLCQ of relativistic string theory on a compactification over a lightlike
circle of radius R̃ . As discussed in section 3.4, this is usually defined by starting with
relativistic string theory on a spacelike circle followed by performing a subtle infinite boost
limit [47]. We therefore first consider open string amplitudes on spacetime-filling D-branes
with the spatial direction Y 1 compactified over a circle of radius R0 , with Y 1 satisfying
the periodic boundary condition in (3.41). The double scaling limit in section 3.4 requires
R̃ = 2γR0 , where we hold R̃ fixed while taking the limits γ → ∞ and R0 → 0 . Consider
open string tachyon insertions all on one boundary of the worldsheet cylinder. These open
string tachyon states carry quantized momenta p1 = ñ/R0 , ñ ∈ Z along the Y 1 direction.
The resulting N -point amplitude takes the same form of (A.3), but the kinematic data
now becomes

K =
(
K0 ,

ñ

R0
, kA′

)
, Ki =

(
K0, i ,

ñi
R0

, kA′

)
. (A.18)

The effective energies ε and εi are defined in (3.50), with

K0 −
ñ

R0
= ε

2γ +O(γ−2) , K0, i −
ñi
R0

= εi
2γ +O(γ−2) . (A.19)

We also have to replace the factor in (A.3) with

I ′ =
∑
ñ

∫
dε d24kA

′ exp

−2π α′
(
K +

∑N
i=1Ki ln ρi

2π t

)2
 (A.20)

Consequently, performing a Wick rotation for the intermediate energy ε , we find

I ′ → R̃

(2α′t)25/2

∑
ñ

1
R0

exp
[
− α′

2πR2
0 t

(
2πt ñ+

∑
i

ñi ln ρi
)2]

. (A.21)

Using (A.16), we perform the double scaling limit by sending R0 → 0 while holding R̃

fixed,

I ′ → π

(2α′ t)12

∑
ñ

R̃

α′
δ

(
2πt ñ+

∑
i

ñi ln ρi
)
. (A.22)

We already learned in section 3.4 that the DLCQ of relativistic string theory related to
nonrelativistic string theory via a T-duality transformation. Identifying α′ with α′eff , and
plugging in the T-dual relations R̃ = α′/R and ñ = w into (A.22), we find that I ′ becomes
I in (A.8) with Wi = wi . The fractional part of open string windings in (A.8) can also
be recovered by including associated Wilson lines on the DLCQ side. Moreover, similar
to the discussion around (3.57) for closed strings, the kinematic variable Ki ·Kj reduces
to the desired one in (A.6) after performing the double scaling limit followed by plugging
in the T-dual relations. We therefore obtain the same one-loop string amplitude (A.9) for
nonrelativistic open strings from the DLCQ of relativistic string theory.
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A.2 Free energy

In order to compute the one-loop free energy at the inverse temperature β = 1/T in
nonrelativistic open string theory, we first perform a Wick rotation of the target-space
time direction from X0 to X0

E = iX0 , and then compactify X0
E over an imaginary timelike

circle of period β, with X0
E ∼ X0

E + β . In addition, as in section 3, we also compactify
the longitudinal spatial direction X1 over a circle of radius R . These lead to the periodic
boundary conditions,

X0
E(σ , τ + 2πt) = X0 +mβ , X1(σ , τ + 2πt) = X1 , (A.23a)

X0
E(σ + π , τ) = X0 , X1(σ + π , τ) = X1 − 2πRW . (A.23b)

Here, m ∈ Z and W contains an integer part w ∈ Z . The boundaries of the worldsheet
cylinder is attached to D-branes that are transverse to X1 , while the worldsheet imaginary
time direction is wrapped around the Euclidean time direction X0

E in the target space.
Together with the Dirichlet boundary condition ∂τX

1 = 0 and the Neumann boundary
conditions ∂σX0 = 0 at σ = 0, π , we find the following zero modes for the worldsheet
fields XA:

X0
E = x0

E + mβ

4πt log(zz̄) + oscillations , X1 = x1 + iWR log
(
z

z̄

)
+ oscillations . (A.24)

Using (3.10), we find the eigenvalues

q = −q̄ = WR

α′eff
− mβ

4πα′eff t
. (A.25)

Moreover, since the momentum in X1 is zero, we have p = p̄ = i ε/2 , where ε is the
“momentum” conjugate to X0

E and is quantized as ε = 2πs/β . The one-loop free energy
for nonrelativistic string theory can be computed by borrowing the analogous expression
for relativistic string theory and then plugging in the kinematic data defined in (3.14), with

Kµ = KLµ = KRµ =
(
i πs

2β + WR

α′eff
− mβ

4πα′eff t
,
i πs

2β −
WR

α′eff
+ mβ

4πα′eff t
, kA′

)
. (A.26)

To proceed, we first recall the one-loop vacuum amplitude for relativistic open string
theory, where a general physical state takes the form [44]

|N ;Kµ〉 =
[ 25∏
A′=2

∞∏
n=1

c−1
A′, n

(
αA
′
−n
)NA′, n] |0;Kµ〉 , cA′, n =

√
nNA′,n NA′,n! . (A.27)

Here, NA′, n denotes the occupation number for the mode (A′, n) in the lightcone quanti-
zation, and N is the level of the state, with

N =
25∑

A′=2

∞∑
n=1

nNA′, n . (A.28)
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The state |0;Kµ〉 is annihilated by any lowering operator αA′n . Then, the vacuum planar
amplitude from the worldsheet cylinder is

Z =
∫ ∞

0

dt

2t Tr
′
(
e−2πtH

)
=
∫ ∞

0

dt

2t

∏
A′, n

∞∑
NA′, n=0

e−2πt (nNA′, n−1)

 I , (A.29)

where we denoted the zero-mode contribution by

I =
∑
m,w,s

∫
d24kA′ e

−2π α′eff tK
2
. (A.30)

Note that we have introduced the open string Hamiltonian H, and the prime in the trace
implies that we already omitted the unphysical states that are canceled by the ghosts.
Moreover, since we do not have any vertex operator insertions, the conformal Killing group
is no longer used to fix any position of the vertex operators. Instead, a measure (2 t)−1 has
been introduced in (A.29) so that the volume of the conformal Killing group is divided out.
Performing the sum over n and NA′, n in (A.29) brings the vacuum amplitude to the same
form as (A.13), by rewriting the sum over all oscillating modes in terms of the Dedekind
eta functions as

∏
A′, n

∞∑
NA′, n=0

e−2πt (nNA′, n−1) =
[
eπt/12

∞∏
n=1

(
1− e−2πt n

)−1
]24

=
[
η(it)

]−24
. (A.31)

To produce the desired vacuum amplitude in nonrelativistic string theory, we
plug (A.26) into (A.30). Then, the factor I is evaluated to be

I =
∑
m,w,s

∫
d24kA′ exp

[
πi

(4πRW
β

t−m
)
s− 2π α′eff t k2

]
. (A.32)

By using a representation of the Dirac delta in terms of the Fourier series,

2πδ (x) =
∑
s

eisx , (A.33)

we obtain

I =
∑
m,w

β

2πRW δ

(
t− βm

4πRW

)∫
d24kA′ exp

(
−α
′
eff βmk2

2RW

)
. (A.34)

Integrating over the modulus t in (A.29) yields

Z =
∫
d24kA′

25∏
A′=2

∞∏
n=1

∞∑
w,m=1

∞∑
NA′, n=0

1
m

exp
(
−β m

α′eff k
2 + nNA′, n − 1

2RW

)
. (A.35)

Using the identity in (A.31), we find that the vacuum amplitude takes the following form:

Z =
∑
m,w

1
m

(
2πRW
α′eff βm

)12 [
η

(
iβm

4πRW

)]−24
. (A.36)
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Alternatively, we perform the sum over m in (A.35) and compute the Helmholtz free energy
as follows:

F = −TZ = T
∑
ε

D(ε) ln
(
1− e−β ε

)
, ε = α′eff

2wR

[
kA′kA′ + 1

α′eff
(N − 1)

]
. (A.37)

Here, ε takes the same form as in (3.19), which is the energy of a free open string. We
also used D(ε) to denote the density of states associated with the energy ε . Manifestly,
F in (A.37) is the free energy of free bosonic nonrelativistic open strings. This is the
nonrelativistic open string analog of the result in [10], where the Hagedorn temperature
that signals a phase transition at high energies is also given.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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