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1 Introduction

Traditionally the AdS/CFT correspondence has been studied in the planar large Nc

limit [1]. Whether AdS/CFT holds true in a non-planar but still large Nc limit is a
challenging question. Such a nontrivial limit can be implemented by deforming the back-
ground theory or spacetime, or by introducing semiclassical objects carrying the dimensions
or energy of order Nc .

One of the most studied examples of AdS/CFT is the correspondence between string
theory on AdS5 × S5 and N = 4 super Yang-Mills (SYM) theory. We depart from the
planar region of N = 4 SYM by studying huge operators whose dimensions are comparable
to the rank of the gauge group Nc.1 The operators with O(N2

c ) dimensions correspond
to the Lin-Lunin-Maldacena (LLM) geometry at strong coupling [3], while those with
O(Nc) dimensions correspond to the giant graviton [4]. This correspondence continues
to non-BPS operators in both of the O(N2

c ) and O(Nc) cases. For the former case, an
isomorphism between non-BPS states was conjectured between the LLM geometry and
N = 4 SYM [5–9]. For the latter case, non-BPS states around the giant graviton are less
well-understood. This is the main subject of this paper.

Let us first review recent progress on the weak coupling side.
In AdS/CFT, the half-BPS operators with huge dimensions should be organized

through the operator basis labeled by a Young diagram [10]. Similarly, a convenient way
to describe non-BPS operators with huge dimensions is the restricted Schur basis, labeled
by a set of Young diagrams [11, 12]. The dilatation operator expressed in this basis mixes
the Young diagrams with different shapes.

For simplicity, consider the operators in the su(2) sector, which consists of complex
scalars Z and Y of N = 4 SYM. Suppose that a small number of Y ’s are added to a large
number of Z’s. If the Young diagram representing Z’s has p long columns, this type of
operators roughly corresponds to a system of p spherical giant gravitons in AdS5×S5. The
Young diagram representing Y ’s describes a small fluctuation of the giant gravitons.2

The one-loop mixing in this setup is remarkably simple. First, the number of columns
p does not change at large Nc , because giant gravitons are semi-classical objects at strong

1Another promising approach to a non-planar large Nc limit is the localization, which is valid at any Nc
and can extract non-BPS data [2].

2Here Y ’s and Z’s constitute a huge Young diagram whose shape wildly fluctuates due to the operator
mixing. This situation is different from a single-trace operator coupled to det(Z), where the operator mixing
does not spoil the color structure at the leading order of large Nc.
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coupling [13]. Second, the operator mixing splits into the mixing of Z’s and the mixing
of Y ’s. Third, the one-loop spectrum eventually reduces to a set of p decoupled har-
monic oscillators [14, 15]. The last observation is called the non-planar integrability in the
literature.

We should emphasize that the mixing problem of huge operators is quite different
from the planar mixing problem, and the development of sophisticated techniques has been
crucial. The mixing problem of Y ’s is solved by the Gauss graph basis, which counts the
number of open strings ending on different giant graviton branes [16]. The same technique
can be used to simplify the mixing in the su(3) and su(2|3) sectors [17, 18]. Explicit
computation of the mixing matrix has been given up to two loops in g2

YM in [19]. There are
also trial studies at higher loops [20, 21]. More generally, the mixing problem corresponding
to p giant gravitons can be described by an effective U(p) theory [22, 23]. The Hamiltonian
of the effective U(p) theory has the symmetry U(1)p in the distant corners approximation,
namely when the differences of the length of the adjacent columns are large.

Next, the key developments on the strong coupling side are summarized.
The D-brane motion is described by a low energy effective action which consists of

Dirac-Born-Infeld (DBI) and Chern-Simons (CS) terms [24]. The giant graviton is a clas-
sical solution of the D3-brane action moving in the AdS5 × S5 background. The spherical
giant graviton wraps S3 inside S5 [4], and the AdS giant wraps S3 inside AdS5 [25, 26]. The
quantum fluctuation modes around the giant graviton have been studied in [27].

The open strings ending on the giant graviton have been studied from two viewpoints.
In the first viewpoint, we replace open strings with U(1) flux and study the D-brane. The
classical motion of a D3-brane in such a background spacetime has been studied in the
flat space [28], in the pp-wave [29] and in AdS5 × S5 [30]. The U(1) gauge fields typically
become spiky, and they diverge at the location where open strings end on the D-brane. In
the second viewpoint, we study the open string as a classical integrable system [31], or a
boundary integrable system [32].3 In both points of view, the brane-string system typically
has divergent energy, which is canceled by a divergent angular momentum of open strings,
just like the giant magnon [36].

It is expected that the system of open strings with p giant gravitons corresponds to the
effective U(p) theory, but there is still obscurity in this understanding as AdS/CFT. The
purpose of this paper is to understand this theory more precisely by revisiting the analysis
both in gauge and string theories.

In section 2 and 3, we study the perturbative Hamiltonians of the effective U(p) the-
ory on the gauge theory side in detail. Possible forms of the effective Hamiltonian are
constrained by the GL(p) algebra, and by demanding that the perturbative Hamiltonians
at each loop order commute with each other. We find that there are at most (` + 1)
linearly-independent mutually-commuting operators at `-loops. In the continuum limit,
these candidate operators reduce to the harmonic oscillators at one loop, which allows us

3A coherent state description of open strings ending on a mixture of (generally non-maximal) giant
gravitons is studied in [33–35].
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to conjecture an all-loop ansatz,

∆− J = f̃(λ)
Nc

mn12(σ), n12(σ) ∈ Z≥0 , m = 1, 2, . . . ,
⌈
Nc −

nZ
2 + 1

⌉
(1.1)

where we put p = 2 for simplicity, and f̃(λ) is an unknown function of the ’t Hooft coupling
λ = Nc g

2
YM .

Our ansatz (1.1) predicts two remarkable consequences. First, the anomalous dimen-
sions remain non-zero at the leading order of large Nc , because m can be an integer of
O(Nc). Second, the excitations are gapless. Recall that the energy of an open string at-
tached on the Z = 0 giant gravitons is gapped, because the open string stretching on S5

carries non-zero energy, equal to the length times tension.4 This disagreement indicates
that the previous analyses on the LLM geometry do not immediately apply to the system
of multiple giant gravitons. What does the all-loop ansatz represent at strong coupling?

In section 4 we revisit a classical single D3-brane wrapping S3 inside AdS5 × S5, and
solve the equations of motion around the BPS spherical giant graviton. Following the steps
similar to the stability analysis of [27], we found two types of classical solutions oscillating
around the BPS giant gravitons. The first type is a point-like D-brane, and the second type
is a fuzzy D-brane with non-trivial KK modes on S3. The energy of the latter solution is

E − J = Nc

gs

[
ε2

c2
k (k + 1)2

8(1− j)(k + 2) +O(ε4)
]

(1.2)

where ck is a numerical constant that remains finite as k → ∞. We argue that the latter
solution (1.2) is a good candidate for the string theory state corresponding to the all-loop
harmonic oscillator (1.1) at strong coupling. Our reasoning will be presented in section 5.

This paper is supplemented by Mathematica files used for the computations in sec-
tions 3, 4.

2 Mixing of huge operators in N = 4 SYM

We collect known facts about the perturbative mixing of huge operators in N = 4 SYM.
Our notation and basis facts about the Gauss graph basis are summarized in appendix A.

2.1 Perturbative dilatation operator

We express the perturbative dilatation operator in the su(2) sector of N = 4 SYM by

D(gYM) =
∞∑
`=0

(
gYM
4π

)2`
D` (2.1)

where [37]

D0 = TrY Y̌ + TrZŽ (2.2)

D1 = −2 :Tr [Y, Z][Y̌ , Ž] : (2.3)

D2 = −2 :Tr
[
[Y,Z], Ž

][
[Y̌ , Ž], Z

]
:−2 :Tr

[
[Y, Z], Y̌

][
[Y̌ , Ž], Y

]
: −2 (Nc − 1)D1 . (2.4)

4Here the energy is measured in the unit of string tension
√
λ and not in the D3-brane tension Nc/gs ∼

N2
c /λ. The string with a finite length produces a gap in the dispersion relation, even if gs � 1 or λ� Nc.
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The fields (Φ, Φ̌) satisfy the U(Nc) Wick rules

Tr (AΦ̌BΦ) = Tr (A) Tr (B), Tr (AΦ̌) Tr (BΦ) = Tr (AB), Tr (1) = Nc . (2.5)

The explicit form of D` has been known up to five loops [38, 39],
We assume nZ = O(Nc), nY = O(1). The operators in the Gauss graph basis are

denoted by
OR,r(σ) = O(~l) = O(l1, l2, . . . , lp) (2.6)

as in (A.20), where ~l specifies the Young diagram for Z. Let us write D` acting on the
Gauss graph operators by DG

` . At the leading order of large Nc , these dilatation operators
are given by [13, 16, 19, 40]

DG
1 = −

p∑
i,j=1
i 6=j

nij(σ)∆(1)
ij DG

2 = −
p∑

i,j=1
i 6=j

nij(σ)
{

(L− 2Nc) ∆(1)
ij + ∆(2)

ij

}
(2.7)

where5

∆(1)
ij = ∆+

ij + ∆0
ij + ∆−ij

∆(2)
ij = (∆+

ij)2 + ∆0
ij∆+

ij + ∆+
ij∆−ij + ∆−ij∆+

ij + ∆0
ij∆−ij + (∆−ij)2 .

(2.8)

The difference operators ∆0
ij ,∆∓ij are defined by

∆0
ij O(~l) = −

(
h(i, li) + h(j, lj)

)
O(~l)

∆−ij O(~l) =
√
h(i, li)h(j, lj + 1)O(. . . , li − 1, . . . , lj + 1, . . . )

∆+
ij O(~l) =

√
h(i, li + 1)h(j, lj)O(. . . , li + 1, . . . , lj − 1, . . . )

(2.9)

where h(i, li) is the box weight for spherical giants,

h(i, li) ≡ Nc + i− li , h(i, li ∓ 1)− h(i, li) = ±1. (2.10)

We find it convenient to keep O(1) terms in (2.9) although h(i, li) ∼ h(i, li ∓ 1) at large
Nc . An important feature of DG

` is that it consists of a sum over a pair of indices (i, j),
and the third row/column does not show up.

We can simplify the difference operators in (2.9) by introducing

d−i O(~l) =
√
h(i, li)O(. . . , li − 1, . . . )

d+
i O(~l) =

√
h(i, li + 1)O(. . . , li + 1, . . . )

ĥiO(~l) = h(i, li)O(~l).

(2.11)

These operators satisfy the relations

d+
i d
−
i = ĥi ,

[
d+
i , d

−
j

]
= δij (2.12)

5We slightly modified the result of [19] which computed only the first term of D2 in (2.4). We added
the third term of D2 and symmetrized ∆(2)

ij with respect to i↔ j, owing to nij(σ) = nji(σ). Note that we
sum over i 6= j and not i < j.
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which follow from [
d+
i , d

−
i

]
O(~l) =

{
h(i, li)− h(i, li + 1)

}
O(~l) = O(~l). (2.13)

Note that
p∑
i=1

(
Nc + i− ĥi

)
O(~l) = nZ O(~l). (2.14)

We can rewrite the difference operators in (2.8) as

∆(1)
ij = −

(
d+
i − d

+
j

) (
d−i − d

−
j

)
(2.15)

∆(2)
ij = −

(
d+
i − d

+
j

) (
1 + d+

i d
−
j + d+

j d
−
i

) (
d−i − d

−
j

)
. (2.16)

If we introduce

H1 =
p∑
i 6=j

nij(σ)H1,ij ≡
p∑
i 6=j

nij(σ)
(
d+
i − d

+
j

) (
d−i − d

−
j

)
(2.17)

H2 =
p∑
i 6=j

nij(σ)H2,ij ≡
p∑
i 6=j

nij(σ)
(
d+
i − d

+
j

) (
d+
i d
−
j + d+

j d
−
i

) (
d−i − d

−
j

)
(2.18)

we obtain
DG

1 = −H1 , DG
2 = − (L− 2Nc)H1 −H2 . (2.19)

The dilatation operator DG
` written in terms of {d+

i , d
−
i } can be regarded as the Hamilto-

nian of an effective U(p) theory. This is because Eij ≡ d+
i d
−
j satisfies the GL(p) commuta-

tion relations,6

[Eij , Ekl] = δjk Eil − δil Ekj . (2.20)

We assume that nij(σ) are general non-negative integers. Then the perturbative Hamilto-
nians in (2.17), (2.18) are invariant only under U(1)p.

2.2 Commutation relations

The one- and two-loop dilatations at p = 2 in (2.17), (2.18) satisfy the relation

[H1,ij ,H2,ij ] = 0 (2.21)

and the perturbative dilatation operators on the Gauss graph basis commute. This is a
surprising feature because the planar dilatation operators (on the single-trace operators)
at one- and two-loop do not commute [37].7

6Roughly speaking, Eij is a p × p matrix whose entries are zero except at the i-th row, j-th column.
The Hermitian combinations generate U(p).

7In general, the operator C(g) = A + gB has the eigenvectors independent of g when [A,B] = 0.
Conversely, if [A,B] 6= 0, the matrix elements of A and B in the eigenbasis of C(g) have off-diagonal
elements depending on g.
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Let us take a closer look at the situation for p > 2. The condition
[
DG

1 , D
G
2

]
= 0

reduces to [H1 ,H2] = 0. If we impose this condition for any {nij(σ)}, we get

0 =
∑
ij,i′j′

nij(σ)ni′j′(σ) [H1,ij ,H2,i′j′ ] (2.22)

=
∑
ij

nij(σ)2 [H1,ij ,H2,ij ] +
∑
ijk

nij(σ)nik(σ) ([H1,ij ,H2,ik] + [H1,ik ,H2,ij ]) (2.23)

giving us
0 = [H1,ij ,H2,ij ] = [H1,ij ,H2,ik] + [H1,ik ,H2,ij ]. (2.24)

By explicit computation, one finds

[H1,ij ,H2,ij ] = 0 but [H1,ij ,H2,ik] + [H1,ik ,H2,ij ] 6= 0 (2.25)

and hence
[
DG

1 , D
G
2

]
6= 0 for p > 2. We will see in section 3 that this is a generic feature of

effective U(p) theory Hamiltonians under some ansatz, and not due to potentially missing
terms in DG

2 .
This trouble can be solved in the following way. In the displaced corners approximation,

we truncate the Hilbert space to a fixed number of columns, then take the large Nc limit.
We obtained the Hamiltonians DG

` after the Hilbert space truncation, but without taking
the limit. In fact, in the continuum limit we find[

DG
1 , D

G
2

]
= 0 (2.26)

showing that taking the large Nc limit is a necessary step.
Note that there is a caveat in the displaced corners approximation. Even if we pick up

an operator in the distant region l1 � l2 , the difference (l1−l2) keeps decreasing due to the
operator mixing, until it hits the Young diagram constraints l1 ≥ l2 . The original one-loop
mixing matrix no longer takes the simple form (2.7) when two columns have comparable
lengths. We expect that these boundary effects on the anomalous dimensions are negligible
at the leading order of large Nc .

2.3 Continuum limit

We take the continuum limit following [14, 15, 19].
We begin with the ansatz for the dilatation eigenstates,

Of (σ) =
∑

l1,l2,...,lp

′ f(l1, l2, . . . , lp)OR,r1(σ), Nc ≥ l1 ≥ l2 ≥ · · · ≥ lp ≥ 0,
p∑
i=1

li = nZ

(2.27)
where we specify the column lengths of r1 by (l1, l2, . . . , lp), and Σ′ means the sum over
{li} under the constraints shown in (2.27). The action of the operators (2.11) on Of can
be written as

d−i Of (σ) '
∑

l1,l2,...,lp

′
√
h(i, li) f(. . . , li + 1, . . . )OR,r1(σ)

d+
i Of (σ) '

∑
l1,l2,...,lp

′
√
h(i, li + 1) f(. . . , li − 1, . . . )OR,r1(σ)

(2.28)

– 6 –
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where ' means that we neglect potential contributions from the boundary of the summa-
tion range.

Consider the following large Nc limit

nZ ∼ O(Nc), l1 ∼ O(Nc), li ∼ O(
√
Nc) (i = 2, 3, . . . , p) (2.29)

which is similar to the limit discussed in [13]. We prefer the square-root scaling li ∼ O(
√
Nc)

to the linear scaling li ∼ O(Nc), because the difference equations are rather trivial in the
latter limit. Physically, the system (2.29) consists of one nearly maximal, and (p − 1)
far-from maximal spherical giant gravitons. The constraint ∑i li = nZ becomes somewhat
trivial because nZ ∼ l1 .

We introduce the rescaled variables and functions

yi = li√
αNc

,

√
Nc

α
≥ y1 ≥ y2 ≥ · · · ≥ yp ≥ 0 (2.30)

F (y1, y2, . . . , yp) ≡ f
(

l1√
αNc

,
l2√
αNc

, . . . ,
lp√
αNc

)
. (2.31)

We keep y1 to simplify our notation, even though y1 = O(
√
Nc)� 1. It follows that

h(i, li) = Nc + i− yi
√
αNc

f(. . . , li ± 1, . . . ) = F

(
. . . , yi ±

1√
αNc

, . . .

)
.

(2.32)

In the continuum limit, the difference operators H1,ij ,H2,ij in (2.17), (2.18) become

H1,ij → Dij , H2,ij → 2NcDij , Dij ≡
α

4 y
2
ij −

1
α

∂2

∂y2
ij

(2.33)

where yij = yi − yj . This suggests that the one-loop and two-loop dilatations commute in
this limit, [

DG
1 , D

G
2

]
→ 0. (2.34)

The spectrum of DG
1 is discussed in detail in appendix B.

3 All-loop ansatz

We conjecture that perturbative dilatation operators at all loops in the continuum
limit (2.29) takes the form

DG = D0 + fc(λ)
p∑

i,j=1
i 6=j

nij(σ)Dij , λ ≡ Nc g
2
YM . (3.1)

A related argument was given in [20], where they showed that the mixing of Y ’s at higher
loops takes the same form as the one-loop mixing.

– 7 –
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3.1 Constraints on higher-loop dilatations

We expand the dilatation operator on the Gauss graph basis at weak coupling as

DG(gYM) =
∞∑
`=0

(
gYM
4π

)2`
DG
` (3.2)

and make the following ansatz for DG
` in the leading order of large Nc ,

DG
` =

∑̀
k=1

N `−k
c xkHk, H` =

p∑
i 6=j

nij(σ)H`,ij (3.3)

where {xk} are numerical constants of O(1). The first equation (3.3) means that the `-loop
dilatation contains lower-loop difference operators multiplied by powers of Nc . The second
equation means that H` depends only on a pair of column labels (i, j) coupled to nij(σ).
We impose this condition because nij(σ) should count the number of open string modes
stretching between the i-th and j-th giant graviton brane.

We further assume that

H`,ij ≡
∑
m

x̃`m P`,m(d†i , d
†
j , di, dj), P`,m contains ` d†’s followed by ` d’s (3.4)

where {x̃`,m} are numerical constants of O(1), and P`,m is a polynomial of the difference
operators. The form of P`,m originates from the perturbative dilatation operators of N = 4
SYM discussed in section 2.1. It is known that there is a correspondence between the terms
of ∆(2)

ij in (2.8) and those of D2 , according to the two-loop computation [19].8 Since the
`-loop dilatation operator D` should remove at most ` fields and add ` fields, we arrive at
the ansatz of P`,m in (3.4).9

Let us revisit the commutation relations in section 2.2. Now we impose

[DG(gYM), DG(g′YM)] = 0, (∀gYM, g
′
YM) ⇔ [DG

k , D
G
l ] = 0, (∀k, l) (3.5)

by generalizing (2.26). This is a crucial assumption in our discussion, and should be justified
in future. The equation (3.5) implies that the mixing problem can be “one-loop exact” in
the sense that the eigenvectors remain unchanged at higher loop orders.10

The first equation of (2.24) is generalized to

[H`,ij ,H`′,ij ] = 0 (∀`, `′). (3.6)

It is straightforward to enumerate all possible solutions of (3.6), or equivalently the general
form of P`,m , with the help of Mathematica.

8For example, (d†i )
2d2
j removes two boxes from the j-th column and add two boxes to the i-th column.

This term comes from (∆+
ij)

2 which roughly corresponds to Tr (ZZWŽŽW̌ ).
9We can also explain the powers of Nc in (3.3) from the fact that D` removes ` fields and adds ` fields.

10The author thanks an anonymous referee of JHEP for correcting mistakes in the previous version and
emphasizing this point.
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It turns out that at `-loop, there are (`+1) independent solutions of the equation (3.6).
At one-loop, there are two solutions

Pij,10 = d†idj + d†jdi ≡ Jij (3.7)

Pij,11 = d†ij dij = H1,ij (3.8)

where H1,ij is given in (2.17) and

d†ij = d†i − d
†
j , dij = di − dj . (3.9)

We also define
Iij ≡ d†idi + d†jdj = d†ij dij − Jij (3.10)

which satisfies
[Iij ,Jij ] = 0. (3.11)

At two-loop, there are three solutions,

Pij,20 = (d†i )2(dj)2 + 2 d†id
†
jdidj + (d†j)2(di)2 = J (2)

ij (3.12)

Pij,21 = d†ij Jij dij = H2,ij (3.13)

Pij,22 = (d†ij)2 (dij)2 = : H2
1,ij : (3.14)

where H2,ij is given in (2.18) and

J (n)
ij ≡ : (Jij)n : =

n∑
m=0

(
n

m

)
(d†i )m(d†j)n−m (di)n−m(dj)m. (3.15)

At higher loops, we find that all solutions at `-loop can be written in the form

Qab = Qab,ij ≡ (d†ij)a J
(b)
ij (dij)a , (a = `− b = 0, 1, . . . , `). (3.16)

We checked that no more solutions exist up to four-loop. The two-parameter family of
difference operators (3.16) mutually commute,

[Qab ,Qa′b′ ] = 0 (∀a, b, a′, b′) (3.17)

which follows from (3.10) and (3.11). Our ansatz for the `-loop dilatation in (3.3) becomes

H`,ij =
∑̀
m=0

x̃`mQ`−m,m . (3.18)

The second equation of (2.24) generalized to higher loops reads

[H`,ij ,H`′,ik] + [H`,ik ,H`′,ij ] = 0 (∀`, `′). (3.19)

Some of Qab,ij in (3.16) up to two loops satisfy these conditions. At three-loops, no lin-
ear combinations of (Q3,0 ,Q2,1 ,Q1,2 ,Q0,3) satisfy (3.19) against the two-loop dilatation.
Thus, we should trust the discrete form of our all-loop ansatz (3.3) only at p = 2.
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This conclusion is not surprising. The effective Hamiltonian H`,ij is a linear combina-
tion of Qab,ij in (3.16), which are polynomials of Jij . However, J12 and J23 as the su(p)
generators (2.20) do not commute:

[J12 ,J23] ∼


0 1 0

1 0 0
0 0 0

 ,
0 0 0

0 0 1
0 1 0


 =

 0 0 1
0 0 0
−1 0 0

 6= 0 (3.20)

which makes it hard to solve (3.19). See also the discussion in section 2.2.
We can determine the numerical coefficients in (3.3), (3.18) up to two loops. By

comparing Qab with the perturbative results (2.19), we find

DG
1 = −

∑
i 6=j

nij(σ) {0 · Q0,1 + 1 · Q1,0}

DG
2 = −

∑
i 6=j

nij(σ) {0 · Q0,1 + (L− 2Nc)Q1,0 + 0 · Q0,2 + 1 · Q1,1 + 0 · Q2,0}
(3.21)

implying that most coefficients vanish in N = 4 SYM. This result is also consistent with
our assumption in (3.3) that {x̃`m} are numerical constants of O(1).

3.2 Continuum limit at higher loops

By combining (3.3) and (3.18), we obtain a conjecture of the `-loop dilatation operator,

DG
` =

p∑
i 6=j

nij(σ)
∑̀
k=1

k∑
m=0

N `−k
c Ck,mQk−m,m , Ck,m = xk x̃km = O(N0

c ). (3.22)

The terms with k < ` are part of the dilatation at lower loop orders, combined with powers
of Nc .

Let us take the continuum limit (2.29). The commuting operators Qab in (3.16)
scale as11

Q`−m,m ∼ Nm
c (3.23)

and in particular

Q0,m = (2Nc)m +O(Nm−1/2
c )

Q1,m = (2Nc)mDij +O(Nm−1/2
c )

Q2,m = (2Nc)m
(
α2

16 y
4
ij −

y2
ij

2
∂2

∂y2
ij

+ 1
α2

∂4

∂y4
ij

)
+O(Nm−1/2

c )

Q3,m = (2Nc)m
(
α3

64 y
6
ij −

3 y4
ij

16
∂2

∂y2
ij

+
3 y2

ij

4
∂4

∂y4
ij

− 1
α2

∂6

∂y6
ij

)
+O(Nm−1/2

c )

(3.24)

where Dij is given in (2.33). From this observation, we can refine (3.23) as

Q`,m = (2Nc)m : D`ij : +O(Nm−1/2
c ) (3.25)

where : D`ij : means that the derivative (∂/∂yij) should not hit yij in the subsequent Dij ’s.
11Before the continuum limit, Qab scales as Na+b

c .
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Then, our conjectured dilatation operator (3.22) becomes

DG
` =

p∑
i 6=j

nij(σ)
∑̀
k=1

k∑
m=0

N `−k+m
c (2mCk,m) : Dk−mij : . (3.26)

We find that the terms m = k are leading at large Nc . However, the perturbative
data (3.21) shows that Ck,k = 0. The terms m = k − 1 gives the first non-vanishing
term, which is proportional to the one-loop result DG

1 . The terms m ≤ k− 2 are negligible
as long as Ck,m = O(N0

c ).
Given (3.26) we can formally sum up the perturbation series,

DG = D0 +
∞∑
`=1

g2`
YMDG

` → D0 +N−1
c fc(λ)

∑
i 6=j

nij(σ)Dij (3.27)

where λ = Nc g
2
YM is the ’t Hooft coupling and

fc(λ) =
∞∑
`=1

λ`
∑̀
k=1

2k−1Ck,k−1 . (3.28)

This is the result quoted in (3.1). According to appendix B.1, the operator D ≡∑
nij(σ)Dij has the eigenvalues (B.14). Thus

DG −D0 = N−1
c fc(λ)

nY + 2
p−1∑
a=1

(2ma + 1) λ̃a({nij})

 (3.29)

where λa depends on nij(σ) and has the same order as nY . We will see in appendix B.2
that the non-negative integers ma should be bounded from above, and at most O(Nc).
Neglecting O(1) quantities, the equation (3.29) becomes

DG → D0 + f̃(λ)
p−1∑
a=1

ma

Nc
λ̃a({nij}) (3.30)

with f̃(λ) = 4fc(λ). When p = 2, we obtain

DG = L+ f̃(λ) m
Nc

n12(σ), f̃(λ) = λ

2π2 +O(λ2)

n12(σ) ∈ Z≥0 , m = 1, 2, . . . ,
⌈
Nc −

nZ
2 + 1

⌉ (3.31)

where we used (2.1) and (B.37).
The factor ma/Nc in (3.30) has the spacing of order 1/Nc , which becomes continuous

at large Nc . If fc(λ) remains non-zero at λ � 1, then the above ansatz should describe
(semi)classical motion of the system with D-branes and strings. Importantly, this excitation
spectrum should be gapless.

4 Strong coupling

We want to reproduce the dilatation spectrum (3.30) at strong coupling. Since the energy
of excited states is continuously connected to the BPS state, we take a classical D3-brane
action and study the solution around the BPS giant graviton.
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4.1 D3-brane action

The action for a single D3-brane is given by

S = SDBI + SCS = −T3

∫
Σ4
d4ξ e−ϕ

√
− det (Gab +Bab + 2πα′Fab) + T3

∫
Σ4
C(4) (4.1)

where Σ4 is the worldvolume, Gab = gµν ∂aX
µ∂bX

ν is the induced metric. We consider a
D3-brane wrapping S3 inside AdS5 × S5,

D3 : Σ4 → R× S3 ⊂ AdS5 × S5 (4.2)

which includes the spherical giant graviton. There is no Bab and Fab in the background,
and the dilaton is constant, eϕ = gs . The constant T3 is given by [4]

T3 = 2π
gs(4π2α′)2 = Nc

R4 Ω3
(4.3)

where R is the radius of AdS5× S5 and Ω3 = 2π2 is the volume of S3 with the unit radius.
Our notation for the AdS5 × S5 geometry is explained in appendix D.1.

The induced metric is written as

Gab = R2
{
− ∂at ∂bt+ ∂aρ ∂bρ

4(ρ− 1)ρ2 + (ρ− 1) ∂aφ∂bφ
ρ

+ ∂aη ∂bη + cos2 η ∂aθ1 ∂bθ1 + sin2 η ∂aθ2 ∂bθ2
ρ

}
. (4.4)

We choose the static gauge

t = ξ0, θ1 = ξ1 , θ2 = ξ2 , η = ξ3 (4.5)

and assume the ansatz
ρ = ρ(t, η), φ = φ(t, η). (4.6)

The D3-brane action effectively becomes two-dimensional,12

S ≡
∫
R×S3

d4ξ L = Nc

gs Ω3

∫
d4ξ

(
−
√
− detG+ δa0 sin η cos η (∂aφ)

ρ2

)
. (4.7)

The conserved charges can be computed in the standard way,

J =
∫ π/2

0
dη j0(t, η) =

∫
dη

δS

δ∂0φ

E =
∫ π/2

0
dη h(t, η) =

∫
dη

 ∑
X=ρ,φ

∂aX
δS

δ∂aX
− L

 . (4.8)

12We chose the CS coupling so that the ground state satisfies E = J including the sign, which can be
flipped by φ→ −φ. The physical brane tension is proportional to Nc/gs.
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4.2 Classical solutions

We study the effective two-dimensional action (4.7) around the spherical giant graviton
solution as follows. We assume the static gauge, introduce the deformation parameter ε,
and solve the equations of motion (EoM) as a formal series of small ε. The linearized EoM
are given by a set of homogeneous partial differential equations, whose coefficients may
depend on η. We remove the η dependence by the separation of variables for the deformed
degrees of freedom.

This procedure looks similar to the analysis of one-loop fluctuation [27, 29]. Gener-
ally, however, not all off-shell fluctuations become the deformed solutions of the classical
equations of motion.

Other deformations of the spherical giant graviton solution might be possible if the
ansatz and the gauge choice are generalized.13 One can try to study the deformation in the
AdS directions, and to search for the solutions with non-zero U(1) field strength or other
components of SO(6) angular momenta.

4.2.1 Ground state

The ansatz for the ground (or BPS) state of a spherical giant graviton is [4]

ρ = constant, φ = t. (4.9)

The energy as a function of ρ has a local minimum at ρ = Nc/(gsJ), and the minimum
value is

E = J. (4.10)

4.2.2 Excited states

We are interested in the non-BPS states which are continuously connected to the BPS
state. Let us generalize the ansatz by expanding around the ground state solution as

ρ = 1
j

+ ε ρ1(t, η), φ = t+ ε φ1(t, η), j ≡ gsJ

Nc
. (4.11)

We consider the EoM for three cases, j = 0, 0 < j < 1 and j = 1. No non-trivial
solutions are found for the cases j = 0, 1, as discussed in appendix D.3. When 0 < j < 1,
the EoM for φ and ρ take the form

j2∂tρ1
j − 1 + ∂2

t φ1 = ∂2
ηφ1 + 2 cot(2η)∂ηφ1 (4.12)

−4(j − 1)∂tφ1
j2 + ∂2

t ρ1 = ∂2
ηρ1 + 2 cot(2η)∂ηρ1 (4.13)

which can be solved by separation of variables. The r.h.s. of (4.12), (4.13) are identical
to the Laplacian on S3, whose normalizable solutions are given by the spherical harmon-
ics (D.6). Since our φ1 and ρ1 are independent of θ1 , θ2 , we set

ρ1(t, η) = ρ̃1(t) Φk,0,0(η), φ1(t, η) = φ̃1(t) Φk,0,0(η). (4.14)
13The gauge choice may change the CS term.
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Then the general solution of the equations (4.12), (4.13) is given by

ρ̃1(t) = 1
j2

[
c(1)

(
(k + 2) cos(kt) + k cos((k + 2)t)

)
+ c(2) cos t sin((k + 1)t)

+ c(3)
(
k sin((k + 2)t)− (k + 2) sin(kt)

)
+ c(4) sin t sin((k + 1)t)

]
(4.15)

φ̃1(t) = 1
2(j − 1)

[
c(1)

(
(k + 2) sin(kt)− k sin((k + 2)t)

)
− c(2) sin t sin((k + 1)t)

+ c(3)
(
(k + 2) cos(kt) + k cos((k + 2)t)

)
+ c(4) cos t sin((k + 1)t)

]
(4.16)

where c(i) (i = 1, 2, 3, 4) are integration constants.
Let us compute the corrections to the conserved charges from (4.14),

E =
∑
n=0

εnE(n) =
∑
n=0

εn
∫ π/2

0
dη h(n) , J =

∑
n=0

εn J(n) =
∑
n=0

εn
∫ π/2

0
dη j0

(n) . (4.17)

It follows that

h(1) = j0
(1) = Nc

gs Ω3
sin η cos η Φk,0,0(η)

{
(1− j)∂tφ̃1 − j2ρ̃1(t)

}
. (4.18)

Only the k = 0 term remains non-zero after the integration over S3 owing to the orthogo-
nality (D.9). We remove the first-order correction to the conserved charges by setting

E(1) = J(1) ∝ (4c(1) + c(4)) = 0. (4.19)

The difference (E − J) is non-zero at the second order in the ε expansion,

h(2) − j0
(2) = Nc

gs Ω3

sin 2η
16(1− j)

{
Φk,0,0(η)2

(
j4(∂tρ̃1)2 + 4(j − 1)2(∂tφ̃1)2

)
− (∂ηΦk,0,0)2

(
j4 ρ̃2

1 + 4(j − 1)2 φ̃2
1

)}
(4.20)

' Nc

gs Ω3

sin 2ηΦk,0,0(η)2

16(1− j)
{(
j4(∂tρ̃1)2 + 4(j − 1)2(∂tφ̃1)2

)
− k(k + 2)

(
j4 ρ̃2

1 + 4(j − 1)2 φ̃2
1

)}
where ' denotes the equality after the integration over S3 coming from (D.10).

Here we encounter apparent inconsistency. The corrections to the conserved
charges (4.20) may depend on t even after the integration over S3. This is partly be-
cause our ansatz (4.11) solves the EoM only at O(ε) whereas the corrections are O(ε2).
This explanation is not entirely correct because the solutions at O(ε2) do not seem to
change E − J at O(ε2). Fortunately we can remove the t dependence either by adjusting
the constants {ci}, or by setting k = 0.

The general k > 0 solutions are given by

ρ1(t, η) = ck(k + 1)
j2(k + 2) sin((k + 2)t) Φk,0,0(η)

φ1(t, η) = ck(k + 1)
2(j − 1)(k + 2) cos((k + 2)t) Φk,0,0(η)

(4.21)
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which has the dispersion relation

E − J = Nc

gs

ε2 c2
k (k + 1)2

8(1− j)(k + 2) . (4.22)

Here k should be a positive even integer as in appendix D.2, and ck should remain finite
as k � 1 in order to keep (4.21) finite. The general k = 0 solution is

ρ1(t, η) =
c(2) sin(2t)− c(4) cos(2t)

2
√

2πj2 , φ1(t, η) =
(4c(3) − c(2)) + c(2) cos(2t) + c(4) sin(2t)

4
√

2π(j − 1)
(4.23)

with the dispersion relation

E − J = Nc

gs

ε2
(
c2

(2) + c2
(4)

)
32π2(1− j) . (4.24)

In (4.23), the parameter c(3) is redundant because it just shifts the origin of φ. Also, the
terms proportional to c(2) coincide with the k = 0 case of the previous solution (4.21).

The profile of those with KK modes is depicted in figure 1, and the profile of the
oscillating giant gravitons without KK modes is in figure 2. The former solutions expand
and shrink over the area of O(ε2). The latter solutions are point-like and oscillate around
the BPS configuration.

4.2.3 Excited states at higher orders

We can take a linear combination of the solutions at O(ε) and proceed to higher orders,

ρ = 1
j

+ ε

{
C0 cos(2t)
2
√

2π j2 −
∑
k

ck (1 + k) sin((k + 2)t) Φk,0,0(η)
j2(k + 2)

}
+
∑
n=2

εn ρn(t, η)

φ = t+ ε

{
C0 sin(2t)

4
√

2π (1− j)
−
∑
k

ck (1 + k) cos((k + 2)t) Φk,0,0(η)
2(1− j)(k + 2)

}
+
∑
n=2

εn φn(t, η).

(4.25)
When ∂ηρ = ∂ηφ = 0, or equivalently if ck = 0 for k > 0, we could solve EoM at higher

orders of ε. In this case, φ(t) is fixed by the angular momentum (4.8),

j = 1
ρ2 + (ρ− 1)Rφ̇

ρ5/2

(
κ2 − R2ρ̇2

4(ρ− 1)ρ2 −
(ρ− 1)R2φ̇2

ρ

)−1/2

. (4.26)

We can solve the EoM for ρ(t) as

ρ = 1
j

+ ε {c cos(2t) + d sin(2t)}+ ε2
j(2j − 3)(c2 + d2)

2(j − 1)

− ε3 3j2(c2 + d2)
4(j − 1) {(d + 4c t) sin(2t) + (c− 4d t) cos(2t)}

− ε4 j
3(c2 + d2)
8(j − 1)3

{
(2j(j(4j − 9) + 6)− 3)(c2 + d2)

+ 2(j − 1)2((d2 − c2) cos(4t)− 2cd sin(4t))
}

+O(ε5). (4.27)
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Figure 1. The trajectory of oscillating giant gravitons with KK modes. The green lines denote the
BPS ground states. We set (j, k) = (0.4, 2) for top left, (j, k) = (0, 4, 4) for top right, (j, k) = (0.2, 2)
for bottom left, (j, k) = (0, 2, 6) for bottom right. Other parameters are R = 1, ε = 0.15, ck = 1.

Figure 2. Giant gravitons at the vacuum (blue) and excited (orange) states. We put j = 0.8 for
the left and j = 0.4 for the right figure. Other parameters are R = 1, ε = 0.05, c = 1, d = 0.

The parameters (c, d) are arbitrary constants of O(1) which may depend on ε. The energy
of an oscillating D3 brane is

E = Nc

gs

{
j + ε2

(c2 + d2)j4

2(1− j) − ε4 (c2 + d2)2j6 (7(j − 3)j + 15)
8(1− j)3 +O(ε6)

}
. (4.28)
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The solution (4.27) contains secular terms like

(polynomial of t) × cos(2mt), (polynomial of t) × sin(2mt), (m ∈ Z). (4.29)

We should renormalize the frequencies in order to keep ρ(t) finite at large t.
When the first-order solution has KK modes, namely if ck 6= 0, we do not find higher-

order classical solutions. One possible interpretation is that the solutions with non-trivial
KK modes on S3 are not purely classical, and hence they cannot produce E−J = O(Nc) >
0. If we think of ε & λ/Nc ∼ gs , then the higher-order corrections are mixed up with gs
corrections.

5 Comments on AdS/CFT

We look for the strong coupling counterpart of the all-loop ansatz (3.30)

∆− J = f̃(λ)
Nc

p−1∑
α=1

mα λα({nij}) (5.1)

where α labels the eigenvalues of the (p−1) coupled oscillators, and nij(σ) is a non-negative
integer satisfying

nij(σ) = ni→j(σ) + nj→i(σ),
p∑
j=1

ni→j =
p∑
j=1

nj→i , nY =
p∑
i=1

p∑
j=1

ni→j(σ). (5.2)

The second equation is the Gauss law constraints (A.13), which suggests that nij(σ) is the
number of open strings stretching between the i-th and j-th branes.

At p = 2, the ansatz (5.1) becomes

∆− J = f̃(λ)
Nc

mn12 , n12(σ) ∈ Z≥0 , m = 1, 2, . . . ,
⌈
Nc −

nZ
2 + 1

⌉
. (5.3)

5.1 Comparison with the oscillating D3-brane

In section 4, we found that there are two types of classical D-brane motion around the BPS
configuration, whose energies are given by

E − J =



Nc

gs

[
ε2

(c2 + d2)j4

2(1− j) − ε4 (c2 + d2)2j6 (7(j − 3)j + 15)
8(1− j)3 +O(ε6)

]
(k = 0)

Nc

gs

[
ε2 c2

k (k + 1)2

8(1− j)(k + 2) +O(ε4)
]

(k ≥ 2).

(5.4)
The first solution can be easily extended to higher orders of ε, whereas the second solution
cannot be extended to the next order by means of the simple separation of variables.

We argue that the oscillating D-brane should correspond to the harmonic oscillator of
the effective U(p) theory. More explicitly, we relate the energy of oscillating D-brane (5.4)
at large k and the all-loop ansatz (5.3) at p = 2 and large m,

E − J ' N2
c ε

2

λ

π c2
k

2(1− j) k ↔ ∆− J = f̃(λ)
Nc

n12(σ)m. (5.5)
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=⇒

Figure 3. (Left) Open string stretching between two D3-branes as a probe. (Right) D3-branes
start expanding and shrinking.

where we used λ ≡ R4/α′2 = 4πgsNc . We regard ε as the quantity of O(1/Nc), which is
an effect of the fundamental strings moving around the D3-brane. Then k should be less
than O(ε−1/2) to keep the corrections to (E − J) small. This bound corresponds to the
fact that the mode number m is bounded from above at O(Nc).

Let us present several lines of reasoning behind this identification.
Firstly, both dispersion relations are gapless, and one can excite the BPS state by

supplying an arbitrarily small amount of energy.
Secondly, let us recall the AdS/CFT correspondence for the half-BPS states. At weak

coupling, the Young diagrams with different shapes start mixing at one-loop. The column
length of a Young diagram can be interpreted as the radial direction of droplet patterns in
the LLM plane [3]. This interpretation shows that the D-brane itself should oscillate.

Thirdly, we cannot deform the j = 1 solution, i.e. the maximal giant graviton. This
corresponds to the fact that one cannot attach a box representing Y to the Gauss graph
operator OR,r(σ) if r has the column of length equal to Nc in (A.9).

We make some comments on the parameter ni→j(σ) in (5.2).
On the weak coupling side, the parameter ni→j(σ) is interpreted as the number of

open strings from the i-th brane to the j-th brane. On the strong coupling side, it is not
clear whether we can introduce an open string as a probe, because non-maximal giants
start oscillating by perturbing with infinitesimal energy; see figure 3. Moreover, the length
of the probe string must be negligibly small, in order to maintain the gapless property of
the dispersion relation. We will discuss a related issue in section 5.2.

The parameter ni→j(σ) also counts the number of Y -fields, which should correspond
to (part of) the angular momentum in S3 denoted by JY = nY . At strong coupling, the
D-branes wrapping S3 inside S5 have the zero angular momentum in θ1 due to the static
gauge (4.5). This conclusion is reasonable because we do not see JY ∼ O(1) at strong
coupling, in agreement with the assumption nY � nZ ∼ O(Nc) in the all-loop ansatz. If
we still want to explain JY , we may also add a point particle rotating S3 carrying JY .
This particle does not interact with D-branes at the leading order of large Nc.14

When p > 2 as in (5.1), we should find p D3-branes oscillating individually, correspond-
ing to the U(1)p symmetry of the effective U(p) theory. The symmetry can be enhanced
to non-abelian, e.g. U(2) × U(1)p−2, if some D-branes stay on top of each other at strong
coupling, or if we give up the distant corners approximation at weak coupling. This point
will be discussed in appendix E.

14If we think of the point particle as a closed string, this may also correspond to the term nii(σ) in the
effective U(p) theory Hamiltonian, which shows up in the subleading order of large Nc [22, 41].
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5.2 On reflecting magnons

At strong coupling, there is another known situation of open strings ending on a giant
graviton, called the reflecting magnons in the literature [32]. An example can be depicted as

(
Spinning open strings ending on the
Z = 0 maximal giant graviton

)
= (5.6)

where the red dashed lines represent boundary magnons, and the blue thick lines represent
bulk magnons. This figure is the same as the top view of figure 2 if the angular momentum
Jφ takes the maximal value at r = 0. The energy of open strings in (5.6) having a large
angular momentum Jstring is given by the energy of an integrable open spin chain with
su(2|2) symmetry [42] as

E − Jstring =
∑

α=L,R

√
Q2
α + λ

π2 +
M∑
i=1

√
1 + λ

π2 sin2 pi
2 , (Nc � Jstring � 1) (5.7)

whereM is the number of bulk magnons. Note that the boundary terms can be interpreted
as extra magnons with p = π.

At strong coupling λ � 1, the magnon energy (5.7) is equal to the sum of the open
string length multiplied by the string tension. This dispersion relation cannot be gapless,
because an open string should connect the equator and the north pole of S5.

At weak coupling, the system (5.6) is expected to be dual to a long operator attached
to the determinant of Z’s,

Odet =
Nc∑

i1,i2,...,iNc ,
j1,j2,...,jNc=1

ε
i1i2...iNc
j1j2...jNc

Zj1i1 Z
j2
i2
. . . Z

jNc−1
iNc−1

(χL . . . ZZ . . . ψ1 . . . ψ2 . . . ZZ . . . χR)jNciNc

(5.8)
where χL , χR represent the boundary magnons and ψ1 , ψ2 , . . . represent the bulk magnon.

Consider the expansion of the determinant-like operator (5.8) in the Gauss graph basis.
It is known that the determinant of Z corresponds to r = JNcK, a single column of length
Nc , and a single-trace operator is a linear combination of single hook Young diagrams [43].15

Thus we expect that the determinant-like operator (5.8) should be expanded by OR,r(σ),
where both R and r consist of a single hook attached to the column of length O(Nc). We
can generalize this system by introducing multiple giant gravitons. The Young diagrams

15This observation is true for the Schur polynomials, or the operators made out of Z’s only. The single-
trace operators with magnons may correspond to the restricted Schur polynomials whose R is almost (but
not exactly) a single-hook.
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(R, r) for Gauss graph basis (A.9) should be modified as

r1 =

l1

...

lp

, R =

1

...

p

(5.9)

Recall that in the distant corners approximation, we can neglect the mixing of Y fields
in the different columns. Thus, the mixing matrix of the system (5.9) at large Nc should
factorize between the single-trace part and the effective U(p) theory part,

∆− nZ = ∆(Reflecting magnons) + ∆(Oscillating giants). (5.10)

We can interpret the first term as (5.7) and the second term as (5.5) if Jstring (the length
of a single-hook) is large.

Below are a few remarks on the su(2|2) symmetry.
We expect that the giant graviton possesses the residual superconformal symmetry

psu(2|2)2, based on the κ-symmetric formulation of the D3-brane action on AdS5×S5 [44].
However, we do not find any reasons that this symmetry should be promoted to the
centrally-extended su(2|2). In other words, it is likely that the oscillating D-brane so-
lutions are intrinsically non-BPS, and not centrally-extended BPS.

In [45], they constructed the su(2|2) generators of the effective U(p) theory. They
proposed the central extension by

{(Qαa)i, (Qβb)j} = εαβεab Pij {(Saα)i, (Sbβ)j} = εαβε
abKij (5.11)

and interpreted ∆±ij as the centers

Pij = α(d+
i − d

+
j ), Kij = β(d−i − d−j ), ∆− J ?= 1

2
∑
ij

√
1 + Pij Kij (5.12)
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which correspond to the second term of (5.10). However, the proposal (5.12) is inconsistent
because l.h.s. of (5.11) is symmetric under (a, α, i) ↔ (b, β, j) whereas the r.h.s. is anti-
symmetric.16

An alternative approach to the question of the central extension is as follows. Here
we gave several expressions of the D-brane energy; the conjectured all-loop formula (5.1),
∆(Oscillating giants) in (5.10), and the boundary term in the spin chain energy (5.7). Only
the last expression takes the square-root form inherited from the centrally extended su(2|2)
symmetry.17 For the other cases we do not find square-roots, and one possible reason is
the wrapping corrections to the Z = 0 brane [46]. Roughly speaking, the oscillating giants
without open strings would correspond to the Jstring → 0 limit of the integrable spin chain.
In other words, it may be possible to refine the proposal (5.12) by studying the states
like (5.9) in the limit of Jstring � 1.18

6 Summary

In this paper, we studied a non-planar large Nc limit of N = 4 SYM as a new example
of the AdS/CFT correspondence. First, we reviewed the Hamiltonian of an effective U(p)
theory coming from the perturbative dilatation operator acting on the Gauss graph basis.
When p = 2, this model is related to the finite harmonic oscillator. Second, we proposed an
all-loop ansatz based on the effective U(p) theory. We found mutually commuting charges
generated by the difference operators. By taking the continuum limit, we argue that higher
loop terms should be proportional to the one-loop result.

In our all-loop ansatz, the harmonic oscillators remain non-vanishing in the large Nc

limit, giving a gapless dispersion relation. In particular, it indicates that non-BPS excited
giant gravitons should be continuously connected to the BPS giant graviton at strong
coupling.

We investigated the classical D3-brane action on AdS5 × S5 and found that a non-
maximal spherical giant graviton can be excited in a gapless way. We argued that this new
oscillating brane with KK modes on S3 is a good candidate for the AdS/CFT dictionary
which corresponds to the harmonic oscillator in the effective U(p) theory.

Possible future directions are sketched as follows.
One direction is to investigate this correspondence further. At weak coupling, the

mixing matrix on the Gauss graph basis should be evaluated in a more general setup. This
includes higher loop effects, a larger set of operators including the sl(2) sector [47], and
the corrections from higher orders in nY /nZ [48]. At strong coupling, the dynamics of
D3-brane on AdS5× S5 should be studied in a comprehensive way. This includes to resum
the ε series in the k = 0 solution (4.27), and to investigate the non-abelian DBI action [49].
The non-abelian analysis of the pp-wave background [29], the F1-D3 system [50] and the
D1-D3 system [51] may be helpful. A closely related method is the matrix regularization
of the worldvolume theory in the pp-wave background [52–54], which should capture part
of the energy spectrum at strong coupling.

16In addition, (5.12) lacks nij(σ), and disagrees with the two-loop result if αβ = O(1).
17The bulk and boundary terms are essentially the same in the collective coordinate approach [33–35].
18We thank an anonymous referee of JHEP for this comment.
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It is interesting to generalize the computation of the three-point function between two
giants and one graviton, into the correlators with oscillating giants [55–57], which serves
as a non-trivial check of our proposal.

Another direction is to determine the general spectrum of the Hamiltonian of the
effective U(p) theory. This includes solving the finite oscillator for p > 2, finding consistent
wave-functions for AdS giants, and understanding the structure of 1/Nc corrections.

The role of the superconformal symmetry needs to be examined. In particular, the
N = 4 SYM theory can be deformed while keeping su(2|2)2 [58]. It is worth investigating
the corresponding deformation at strong coupling and finding the relation to the system of
giant gravitons in AdS5 × S5.

A challenging question is whether the “non-planar integrability” can be found at strong
coupling. One starting point is the κ-symmetric D3-brane action in AdS5 × S5 [44]. Then,
through the reduction to two-dimensions (4.7), we may be able to find a classical integrable
system. The two-dimensional reduction may not be necessary if one can construct an
integrable system in 4d along the line of [59–61].
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A Review of the Gauss graph basis

We briefly review the construction of the Gauss graph basis, and how it simplifies the
action of the perturbative one-loop dilatation operators of N = 4 SYM.

A.1 Notation

Let SL be a permutation group of degree L. Its irreducible representations are labeled by
a partition (Young diagram) R ` L, whose dimensions are denoted by dR . DR

IJ(σ) denotes
the matrix representation of σ in the irreducible representation R with the component
(I, J), where I, J = 1, 2, . . . , dR .

Consider the restriction SL ↓ (Sm ⊗ Sn) with m + n = L. We denote the irreducible
decomposition by

R =
⊕
r`m
s`n

g(r,s;R)⊕
ν=1

(r ⊗ s)ν (A.1)

where ν is a multiplicity label and g(r, s;R) is the Littlewood-Richardson coefficient. The
branching coefficients are defined by the overlap between the components

(BT )R→(r,s),ν
I→(i,j) =

〈
R

I

∣∣∣ r s
i j

ν

〉
, B

R→(r,s),ν
I→(i,j) =

〈
r s
i j

ν
∣∣∣R
I

〉
. (A.2)

See [9] for the properties of these quantities.
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We denote partitions of an integer, or Young diagrams, in two ways. The symbol
y = Jl1, l2, . . . , lpK means that the i-th column of the Young diagram y has the length li .
The symbol y = [m1,m2, . . . ,mq] means that the j-th row of y has the length mj . It
follows that

y ` L =
p∑
i=1

li =
q∑
j=1

mj , l1 ≥ l2 ≥ · · · ≥ lp , m1 ≥ m2 ≥ · · · ≥ mq . (A.3)

A.2 Distant corners approximation

We introduce the collective index

(Z⊗n)~ı~ = Zi1j1 Z
i2
j2
. . . Zinjn , (Uα)~~k = δj1kα(1)

δj2kα(2)
. . . δjnkα(n)

(α ∈ Sn) (A.4)

with ip, jp = 1, 2, . . . , Nc . The matrix Uα satisfies the composition rules

(Uα)~ı~ (Uβ)~k~ı = (Uαβ)~k~ , (Uα)~ı~ (Uβ)~~k = (Uβα)~ı~ktrn(Uα) = NC(α)
c . (A.5)

We denote multi-trace operators in the su(2) sector by

trL
(
Uα · Y ⊗nY Z⊗nZ

)
=

Nc∑
i1,i2,...,iL=1

Y i1
iα(1)

Y i2
iα(2)

. . . Y
inY
iα(nY )

Z
inY +1
iα(nY +1)

Z
inY +2
iα(nY +2)

. . . ZiLiα(L)

(A.6)
with L = nY + nZ and α ∈ SL . We define the restricted Schur basis of operators by

OR,(r,s),ν+,ν− = 1
nY !nZ !

∑
α∈SL

χR,(r,s),ν+,ν−(α) trL
(
Uα · Y ⊗nY Z⊗nZ

)
(A.7)

χR,(r,s),ν+,ν−(α) =
dR∑

I,J=1

dr∑
i=1

ds∑
j=1

B
R→(r,s)ν+
I→(i,j) (BT )R→(r,s),ν−

J→(i,j) DR
IJ(α) (A.8)

coming from the restriction SL ↓ (SnY ⊗ SnZ ).

It is expected that the half-BPS operators dual to p spherical giant gravitons consist
of p long columns, with nZ = O(Nc) with Nc � 1. Non-BPS operators can be constructed
by attaching Y fields. We write r = Jl1, l2, . . . , lpK where li is the length of the i-th column.
In the distant corners approximation, we assume that li − li−1 � 1, so that the corners of
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r are well separated. Therefore, we typically work with Young diagrams

r =

l1

l2

...

lp

, R =

1

2

...

p

(A.9)

where we construct R by adding s ` nY (gray boxes) to r ` nZ (white boxes).

A.3 Gauss graph basis

We introduce the Gauss graph basis following [16].

A.3.1 Skew Young diagrams

We can specify the representation of Y fields in two ways, s or R/r. The states of s are
labeled by the standard Young tableaux, and those of R/r are by the skew Young tableaux.
In the restricted Schur polynomial (A.8), we may keep track of which box of s goes to which
box of R/r, before summing over the indices (I, J, i, j).

In the distant corners approximation, R/r consists of p columns well separated from
each other. This indicates that only the column position, 1, 2, . . . , p, should be important
in finding the eigenstates of the perturbative dilatation operator of N = 4 SYM.
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Consider an example of p = 3, with s = J4, 2, 1K and R/r = J3, 2, 2K. We parameterize
a state of s and R/r using only the column labels, as

s =

1 2 3
1 2
1
1

, R/r =

1
2

1
2

1
1
3

(A.10)

In other words, we project the standard Young diagrams of shape s ` nY onto the trivial
(totally symmetric) representation of

H = Ss1 ⊗ Ss2 ⊗ . . . Ssp ⊂ SnY , s = Js1, s2, . . . , spK . (A.11)

The group H is an extra symmetry that emerges in the distant corners approxima-
tion [23]. We should refine the label of the restricted Schur operator OR,(r,s),ν+,ν− by adding
~s = (s1, s2, . . . , sp) which specifies how s ` nY shows up in the skew Young diagram R/r.

A.3.2 Adjacency matrix

We can define the adjacency matrix ni→j by counting how many i’s appear in the j-th
column of the skew tableau R/r. In the above example (A.10) we find

{ni→j} =

2 1 1
0 1 1
1 0 0

 . (A.12)

The adjacency matrix satisfies a conservation law. When a box with the label i goes to
the j-th column (j 6= i), then there must be a box k which comes to the i-th column. This
implies the relation called the Gauss law constraints,

p∑
j=1

ni→j =
p∑
j=1

nj→i . (A.13)

Intuitively, we may regard the diagonal elements ni→i as the number of closed strings on
the i-th brane, and the off-diagonal elements ni→j as the number of open strings between
the i-th and j-th brane.

Here we defined the adjacency matrix from a skew Young diagram. The skew Young
diagram is in one-to-one correspondence with the Gelfand-Testlin basis, as discussed in [15].

A.3.3 Permutation and the double coset

We can determine the adjacency matrix {ni→j} from a permutation element σ ∈ SnY as
follows. Given s = Js1, s2, . . . , spK, we introduce a state

|~s〉 ≡ | 1 ⊗̄ . . . ⊗̄ 1 〉 ⊗ | 2 ⊗̄ . . . ⊗̄ 2 〉 ⊗ · · · ⊗ | p ⊗̄ . . . ⊗̄ p 〉

=
∣∣∣ 1⊗̄s1 ⊗ 2⊗̄s2 ⊗ · · · ⊗ p⊗̄sp

〉 (A.14)

– 25 –



J
H
E
P
0
4
(
2
0
2
1
)
2
9
3

where ⊗̄ represents the symmetrized tensor product and ⊗ is the usual tensor product. The
symmetrization is equivalent to a sum over the states in V ⊗nYp where Vp = {1, 2, . . . , p}.
We can permute the state |~s〉 by applying σ ∈ SnY to each summand as

|σ ,~s〉 = |σ(1)⊗ σ(2)⊗ · · · ⊗ σ(nY )〉symm (A.15)
≡ |σ(1) ⊗̄ . . . ⊗̄σ(s1)〉 ⊗ |σ(s1 + 1) ⊗̄ . . . ⊗̄σ(s1 + s2)〉 ⊗ . . .
⊗ |σ(nY − sp + 1) ⊗̄ . . . ⊗̄σ(snY )〉 .

This result consists of p tensor product of symmetrized components. It makes sense to
count the number of i’s in the j-th symmetrized component, and call it ni→j .

Owing to the symmetrization, the action of the permutation σ ∈ SnY reduces to the
action of an element in the double coset σ̄ ∈ H\SnY /H,

σ̄ = 1
|H|

∑
γ1,γ2∈H

γ1σγ2 , σ ∈ SnY . (A.16)

We can compute ni→j graphically as

1 2 3 4 5 (nY − 1) nY

σ

. . .

. . .

γ
(1)
2 γ

(2)
2 γ

(p)
2

γ
(1)
1 γ

(2)
1 γ

(p)
1

ni→j(σ) ∼
1

|H|2
∑

γ1,γ2∈H (A.17)

which corresponds to (s1, s2, . . . , sp) = (3, 2, . . . , 2).

A.3.4 Operator mixing in the Gauss graph basis

We define operators in the Gauss graph basis by19

OR,r(σ) = |H|
√
nY !

∑
j,k

∑
s`nY

∑
ν−,ν+

Ds
jk(σ)Bs→1H ,ν−

j (BT )s→1H ,ν+
k OR,(r,s),ν+,ν− . (A.18)

We consider the case nZ = O(Nc) and nY = O(1), which should correspond to excited
multiple giant gravitons. The one-loop dilatation acting on the restricted Schur polynomial
factorizes into the mixing of Y ’s and the mixing of Z’s at the leading order of large Nc.20

As shown in [16], the mixing of Y ’s can be solved by taking the Gauss graph basis. The
eigenvalues are labeled by the symmetrized adjacency matrix,

nij(σ) ≡ ni→j(σ) + nj→i(σ), nij(σ) = nji(σ). (A.19)
19Our definition looks slightly different from [16] because our restricted Schur basis (A.7) is not normal-

ized.
20The factorization property is violated at the subleading order of nY /nZ [48].
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The mixing of Z’s changes the shape of r = Jl1, l2, . . . , lpK. We use the simplified notation

O(~l) = O(l1, l2, . . . , lp),
p∑
i=1

li = nZ (A.20)

in place of (A.18).

B Explicit one-loop spectrum

We studying the spectrum of DG
1 = −H1 following [14, 15] with minor improvement.

We consider both continuum and discrete cases. The dilatation operator reduces to
a set of harmonic oscillators with boundary conditions in the continuum limit (2.29). In
order to determine the dilatation spectrum before taking the limit, we solve the discrete
case. The discrete case has been solved for p = 2 by using the finite oscillator [62, 63]. The
spectra of the two cases agree, implying that the one-loop dimensions do not depend on
the details of the continuum limit.

B.1 Continuum case

The spectrum of one-loop dilatation in the continuum limit for general p has been studied
in [15]. In this limit, we find DG

1 = −H1 → −D where

D F (~y) = E({nij})F (~y), D ≡
p∑
i 6=j

nij(σ)Dij . (B.1)

We solve this equation in the region of {yi} given in (2.30). We rewrite the differential
operator Dij in (2.33) as

Dij F =
(
A+(yij)A−(yij) + 1

2

)
F, A±(y) = 1√

α

{
αy

2 ±
∂

∂y

}
(B.2)

where yij = yi − yj . The new differential operators {A±(y)} satisfy

[A+(yij), A−(ykl)] = δik + δjl − δil − δjk . (B.3)

The operator Dij has the symmetry

[Dij ,Λ±] = 0, Λ+ ≡
p∑
i=1

yi , Λ− ≡
p∑
i=1

∂

∂yj
. (B.4)

Thus, Λ± represent the zero modes of D. Roughly speaking, Λ± correspond to the addition
or removal of a box from each of the p columns, suggesting that the spectrum of H1 depends
only on the difference of column lengths.

From (B.2) one finds that the eigenvalues of Dij are written as (m + 1
2). The

mode number m should be chosen so that the variables yij satisfy the Young dia-
gram constraints (2.30). These constraints are expressed in terms of the variables
(y12 , . . . , yp−1,p , yp) as

y12 ≥ 0, y23 ≥ 0, . . . , yp−1,p ≥ 0, yp ≥ 0. (B.5)
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Consider the operator21

D̃ ≡ D − nY = 2
p∑
i<j

nij(σ)A+(yij)A−(yij), A±(yij) =
j−1∑
k=i

A±(yk,k+1). (B.6)

This operator can be written as the following quadratic form

D̃ = 2
p−1∑
u,v=1

Mu,v A
+(yu,u+1)A−(yv,v+1) (B.7)

where

Mu,v =



v∑
k=1

p∑
l=u+1

nk,l (u ≥ v)

u∑
k=1

p∑
l=v+1

nk,l (u < v).
(B.8)

Note that M is a (p − 1) × (p − 1) matrix which depends on {ni,j} with i < j. By
diagonalizing M , we obtain the non-zero eigenvalues of D̃ .

λ̃u δuv =
(
S MS T

)
uv
, D̃ = 2

p−1∑
a=1

λ̃aA
+(z̃a)A−(z̃a). (B.9)

The new coordinates {z̃a} are written as

ya,a+1 =
p∑
b=1

(S T )ab z̃a . (B.10)

We define the vacuum of H1 by requiring

A−(z̃a) |0〉 = 0 (∀a) (B.11)

and define excited states by applying the creation operators A+(z̃a). We solve the Young
diagram constraints (B.5) as follows. The boundary of the constraints lies on ya,a+1 = 0, or
equivalently z̃a = 0. The wave function ψ({z̃a}) should vanish at z̃a = 0 for all a, because
it is ill-defined in the region ya,a+1 < 0. Recall that the creation operators are parity odd,

A+(−z̃a) = −A+(z̃a). (B.12)

The physical states should contain an odd number of creation operators for each a. Thus,
the spectrum of D̃ is

D̃ψ~m({z̃a}) = 2
p−1∑
a=1

(2ma + 1) λ̃a ψ~m({z̃a}), ma ∈ Z≥0 . (B.13)

The eigenvalues of the original equation (B.1) are

E({nij}) = nY + 2
p−1∑
a=1

(2ma + 1) λ̃a({nij}). (B.14)

21We used
∑

i 6=j nij(σ) = 2nY .
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B.2 Discrete case

The main difficulty in computing the discrete spectrum lies in how to impose the Young
diagram constraints. The Fock space created by the oscillator representation of H1 in (2.17)
is not useful, because it does not immediately solve the constraints. Instead, we directly
look for the wave functions. Some functional identities are summarized in appendix C.

For simplicity, we consider the case of p = 2. We take the linear combination of
O(l1, l2) in (2.9) as

Of =
d(l1−l2)/2e∑
x=−l2

f(x)O(l1 − x, l2 + x). (B.15)

The operator H1,12 in (2.17) acts on Of as

H1,12Of =
(
h(1, l1) + h(2, l2)

)
Of −

√
h(1, l1)h(2, l2 + 1)

∑
x

f(x)O(l1 − x− 1, l2 + x+ 1)

−
√
h(1, l1 + 1)h(2, l2)

∑
x

f(x)O(l1 − x+ 1, l2 + x− 1) (B.16)

which gives the following discrete eigenvalue equation

H1,12 = h(1, l1) + h(2, l2)−
√
h(1, l1)h(2, l2 + 1) e−∂x −

√
h(1, l1 + 1)h(2, l2) e+∂x

H1,12 f(x) = E f(x). (B.17)

This equation determines the eigenvalue of DG
1 = −H1 at p = 2 as

DG
1 = −2n12E (B.18)

where we used n12 = n21 .
We solve (B.17) by relating it to a finite oscillator [62, 63]. Let us take a basis of states

in the irreducible representations of su(2),

J3 |j, j3〉 = j3 |j, j3〉 , (j3 = −j,−j + 1, . . . , j) (B.19)

and a rotated basis

J1 |j, j1〉1 = j1 |j, j1〉1 , (j1 = −j,−j + 1, . . . , j). (B.20)

In view of the effective U(p) theory, the su(2) generators can be interpreted as

J1 = 1
2
(
d+

1 d
−
2 + d+

2 d
−
1

)
, J2 = i

2
(
d+

1 d
−
2 − d

+
2 d
−
1

)
, J3 = 1

2
(
d+

1 d
−
1 − d

+
2 d
−
2

)
. (B.21)

The generator (2J1) is identical to J12 in (3.7). The rotation matrix is given by

1〈j, j1
∣∣ j, j3〉 = (−1)j+j3

2j

√√√√( 2j
j + j3

)(
2j

j + j1

)
2F1(−j − j3,−j − j1;−2j; 2). (B.22)

The su(2) generators acts on the states |j, j1〉1 in the standard way,

J1 |j, j1〉1 = j1 |j, j1〉1 , J± |j, j1〉1 =
√

(j ∓ j1)(j ± j1 + 1) |j, j1 ± 1〉1 . (B.23)
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We define
nZ ≡ l1 + l2 , l12 = l1 − l2 (B.24)

and assume nZ ≤ 2Nc , which is trivial at p = 2. Let us assign

j = Nc −
nZ − 1

2 , j1 = −l12 − 1
2 , j + j3 = m− 1 (B.25)

where the new variables run the ranges

nZ − 2Nc − 2 ≤ l12 ≤ 2Nc − nZ , 1 ≤ m ≤ 2Nc − nZ + 2. (B.26)

Note that

l12 = nZ − 2Nc − 2 ⇔ l2 = Nc + 1, l12 = 2Nc − nZ ⇔ l1 = Nc . (B.27)

The equations (B.23) become

J1
∣∣∣Nc −

nZ − 1
2 ,

−l12 − 1
2

〉
1

= −l12 − 1
2

∣∣∣Nc −
nZ − 1

2 ,
−l12 − 1

2
〉

1

J+
∣∣∣Nc −

nZ − 1
2 ,

−l12 − 1
2

〉
1

=
√

(Nc − l2 + 1)(Nc − l1 + 1)
∣∣∣Nc −

nZ − 1
2 ,

−l12 + 1
2

〉
1

J−
∣∣∣Nc −

nZ − 1
2 ,

−l12 − 1
2

〉
1

=
√

(Nc − l1)(Nc − l2 + 2)
∣∣∣Nc −

nZ − 1
2 ,

−l12 − 3
2

〉
1
.

(B.28)
The last two lines agree with the off-diagonal terms in (B.17) with the help of (2.10).

We can immediately solve (B.17) by relating the wave function to the rotation ma-
trix (B.22). If we define

Fm(l1, l2) = (−1)m−1 2−Nc+
1
2 (nZ−1)

√√√√(2Nc − nZ + 1
m− 1

)(
2Nc − nZ + 1

Nc − l1

)
×

2F1 (−m+ 1,−Nc + l1;−2Nc + nZ − 1; 2) . (B.29)

this function satisfies the recursion relation√
h(1, l1)h(2, l2 + 1)Fm(l1 − 1, l2 + 1) +

√
h(1, l1 + 1)h(2, l2)Fm(l1 + 1, l2 − 1)

−
(
h(1, l1) + h(2, l2)

)
Fm(l1, l2) = −2mFm(l1, l2) (B.30)

which is equivalent to the discrete eigenvalue equation (B.17) with E = 2m.
We should impose the Young diagram constraints at p = 2, namelyNc ≥ l1 ≥ l2 ≥ (Nc − l1) (nZ ≥ Nc)

l1 ≥ l2 ≥ 0 (nZ ≤ Nc).
(B.31)

Note that the operator mixing does not change the value of nZ = l1 + l2 . It turns out that
our solution (B.29) can solve these constraints only in limited cases.
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Figure 4. Plotting the function Fm(l1, l2) against l1, l2 (above) and m,x (below).

Generally, the function Fm(l1, l2) does not vanish even if l2 < 0, and it slowly decreases
to zero when l2 is large and negative. This function has a special zero at22

0 = F2m′(l, l + 1) (l,m′ ∈ Z≥0) (B.32)

meaning that we can solve the Young diagram constraints if all of the following three
conditions are satisfied,

• The mode number m is even,

• nZ = l1 + l2 is odd,

• nZ ≥ Nc .

The last condition may circumvented by using the translation symmetry of the recursion
relation23

(l1 , l2 , Nc) → (l1 + x , l2 + x ,Nc + x) (B.33)

although this operation changes the value of Nc . See figure 4 for the behavior of Fm(l1, l2).
One finds that Fm(l1, l2) for l1, l2,m ∈ Z≥0 satisfies

0 = Fm(l1, l2) (l1 > Nc) (B.34)
0 = Fm(l1, l2) (m < 0 or m > 2Nc − nZ + 2) (B.35)

22There are other loci of zeroes, such as F2m(l1, 1 −Nc) = 0 if m ≤ 2Nc and l2 ≥ Nc −m + 2, which is
not meaningful. Practically there is no lower bound for l2.

23This is different from the symmetry
[
H1 ,

∑p

i=1 d
†
i

]
= 0.
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as well as (B.32). This suggests that the mode number m in the eigenvalue equation (B.30)
should be chosen from

m = 2m′, m′ = 1, 2, . . . ,
⌈
Nc −

nZ
2 + 1

⌉
. (B.36)

We can derive the identities (B.32), (B.34) and (B.35) from the hypergeometric identities
in appendix C.

In summary, at p = 2 we find

DG
1 OF2m′ = 8m′ n12 OF2m′ , OF2m′ =

d(l1−l2)/2e∑
x=−l2

F2m′(l1 − x, l2 + x)O(l1, l2) (B.37)

where m′ runs over the range (B.36). The result (B.37) reproduces [19], and is valid for any
scaling of (l1, l2) with respect to Nc . In particular, the eigenvalues are O(1) ∼ O(λ/Nc) as
long as m ∼ O(1).

B.3 Examples of the eigenvalues

If we introduce a reference point 0 so that all edges pass through that point, we can write

nij = ni0 + nj0 ≡ ñi + ñj , ñE ≡
p∑

k=1
ñk (B.38)

where nE is the total number of edges. Then Nij simplifies a bit,

Nij = ñE δij + ˜Nij , ˜Nij ≡

(p− 2) ñi (i = j)
− (ñi + ñj) (i 6= j).

(B.39)

Consider some special cases. The first case is

ni = m, (B.40)

then

λa =

2pm (a = 1, 2, . . . p− 1)
0 (a = p).

(B.41)

The residual symmetry is SO(p− 1). The second case is

ñ1 � 1, ñi ∼ O(1) for (i 6= 1). (B.42)

Then

Nij ∼


(p− 1)ñ1 (i = j = 1)
ñ1 (j = j ≥ 2)
−ñ1 (i = 1, j 6= 1 or i 6= 1, j = 1)

(B.43)

whose eigenvalues are
pñ1 , ñ1, ñ1, . . . , ñ1︸ ︷︷ ︸

p−2

, 0 (B.44)

neglecting O(1) corrections. The residual symmetry is SO(p− 2).
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C Identities of hypergeometric functions

A special case of Gauss hypergeometric function 2F1 is called the Kravchuk (or Krawtchouk)
polynomial used in [62],

Kn(x; p, q) ≡ 2F1
(
− n,−x;−q; 1/p

)
= 1(n−q−1

n

) n∑
j=0

p−j
(
x

j

)(
n− q − 1
n− j

)
(C.1)

which satisfies the recursion relation

0 = n(1− p)Kn−1(x; p, q) + {x− n(1− p)− p(q − n)}Kn(x; p, q) + p(q − n)Kn+1(x; p, q).
(C.2)

The function 2F1(a, b; c; 2) is related to 2F1(a, b; c;−1) by

2F1(a, b; c; z) = Γ(c) Γ(c− a− b)
Γ(c− a) Γ(c− b) 2F1(a, b; a+ b+ 1− c; 1− z) (C.3)

+ Γ(c) Γ(a+ b− c)
Γ(a) Γ(b) (1− z)c−a−b2F1(c− a, c− b; 1 + c− a− b; 1− z).

As a corollary,

2F1(−a, b; c; z) = (c− b)a
(c)a 2F1(−a, b; b− c− a+ 1; 1− z), (a = 0, 1, 2, . . . ) (C.4)

where (x)a = Γ(x+ a)/Γ(x). We also have

2F1(a, b; 1 + a− b;−1) =
Γ(1 + a− b) Γ(1 + a

2 )
Γ(1 + a) Γ(1 + a

2 − b)
(C.5)

Now we can rewrite the rotation matrix (B.22) as

1〈j, j1
∣∣ j, j3〉 = (−1)j+j3

2j

√√√√( 2j
j + j3

)(
2j

j + j1

)
×

(j1 − j)j+j3
(−2j)j+j3

2F1(−j − j3,−j − j1;−j3 − j1 + 1;−1). (C.6)

and (B.29) as

Fm(l1, l2) = (−1)m−1 2−Nc+
1
2 (nZ−1)

√√√√(2Nc − nZ + 1
m− 1

)(
2Nc − nZ + 1

Nc − l1

)
×

(l2 −Nc − 1)m−1
(nZ − 2Nc − 1)m−1

2F1 (−m+ 1,−Nc + l1;Nc − l2 −m+ 3;−1) . (C.7)

Note that the original expression in terms of 2F1(a, b; c; 2) is more suitable for numerical
evaluation. By combining the above identities, we find

F2m′(s, s+ 1) = 2−3Nc−2+2m′+3s

√√√√(2Nc − 2s
Nc − s

)(
2Nc − 2s
2m′ − 1

)
×

Γ
(
s−Nc + 1

2

)
Γ (−Nc − 1 + 2m′ + s) Γ (Nc + 2− 2m′ − s)

Γ(1−m′)Γ (−2Nc − 1 + 2m′ + 2s) Γ
(
Nc + 3

2 −m′ − s
) (C.8)

which vanishes at m′ = 0, 1, 2, . . . due to Γ(1−m′) =∞.
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D Details of strong coupling analysis

D.1 Geometry

We parametrize S5 by using the embedding coordinates as

X1 = R/
√
ρ cos η cos θ1 X2 = R/

√
ρ cos η sin θ1

X3 = R/
√
ρ sin η cos θ2 X4 = R/

√
ρ sin η sin θ2 (D.1)

X5 = R
√

1− 1/ρ cosφ X6 = R
√

1− 1/ρ sinφ

where ρ ≥ 1, η ∈ [0, π/2] and φ, θ1 , θ2 ∈ [0, 2π). The polar coordinates on S3 spanned by
(X1, X2, X3, X4) make the symmetry of SO(4) = SU(2)× SU(2) manifest. The metric on
Rt × S5 is

ds2 = R2
{
−dt2 + dρ2

4(ρ− 1)ρ2 + (ρ− 1) dφ2

ρ
+ dη2 + cos2 η dθ2

1 + sin2 η dθ2
2

ρ

}
(D.2)

and the Laplacian is

∆ = 1
R2

{
− ∂2

∂t2
+ 4(ρ− 1)ρ2 ∂2

∂ρ2 + 4ρ ∂

∂ρ
+ ρ

ρ− 1
∂2

∂φ2 + ρ

R2 ∆S3

}

∆S3 = ∂2

∂η2 + 2 cot(2η) ∂

∂η
+ 1

cos2 η

∂2

∂θ2
1

+ 1
sin2 η

∂2

∂θ2
2
.

(D.3)

The Jacobian is
dΩ5 = R5 sin(2η)

4ρ3 dρ dφ dη dθ1dθ2 (D.4)

and thus
T3

∫
Σ4

R5 sin(2η)
2ρ2 dφ dη dθ1dθ2 = Nc

∫
R
dt
∂tφ

ρ2 (D.5)

where (4.3) is used. The RR four-form satisfies dC4 ∝ (dΩ5 +∗dΩ5), and the normalization
is chosen so that the BPS configuration satisfies E = J .

D.2 Spherical harmonics

The scalar spherical harmonics on S3 is [64, 65]

∆S3Φk,m1,m2 = −k(k + 2) Φk,m1,m2 (D.6)

where ∆S3 is given in (D.3) and

Φk,m1,m2(η, θ1, θ2) = Ck,m1,m2

(
eiθ1 cos η

)m1−m2 (
eiθ2 sin η

)m1+m2
Pm1+m2,m1−m2
k/2−m1

(cos 2η)

Ck,m1,m2 =
√
k + 1
2π2

√
(k/2 +m1)! (k/2−m1)!
(k/2 +m2)! (k/2−m2)! ,

k

2 −mi = 0, 1, . . . , k, k ∈ Z≥0

(D.7)
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and P a,bn (x) is the Jacobi polynomial.24 Note that {mi} are half-integers when k is odd,
and Φk,m1,m2 is complex-valued,

(Φk,m1,m2)∗ = (−1)m1+m2 Φk,−m1,−m2 . (D.8)

The spherical harmonics satisfy the orthogonality∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ π/2

0
dη

sin 2η
2 (−1)m1+m2 Φk,m1,m2 Φl,−n1,−n2 = δl,k δm1,n1 δm2,n2 (D.9)

and the integrated spherical harmonics satisfy

∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ π/2

0
dη

sin 2η
2

{
(∂ηΦk,m1,m2) (∂ηΦl,−n1,−n2) + (∂θ1Φk,m1,m2) (∂θ1Φl,−n1,−n2)

cos2 η

+ (∂θ2Φk,m1,m2) (∂θ2Φl,−n1,−n2)
sin2 η

}
= k(k + 2)δl,k δm1,n1 δm2,n2 . (D.10)

The first few eigenfunctions are

Φ0,0,0 = 1√
2π2

, Φ1, 1
2 ,

1
2

= eiθ2 sin η
π

, Φ1, 1
2 ,−

1
2

= eiθ1 cos η
π

, (D.11)

Φ2,0,0 =
√

3
2π2 cos(2η), Φ2,1,0 =

√
3

4π2 e
i(θ1+θ2) sin(2η), Φ2,0,1 =

√
3

4π2 e
i(θ1−θ2) sin(2η).

The functions Φ2`,0,0 are equal to the Legendre polynomial P`(cos 2η).

D.3 Classical solutions at j = 0, 1

Consider the classical D3-brane solutions around j = 0, 1, or equivalently J = 0, Nc/gs .
For this purpose, we use the coordinate r = 1/√ρ with 0 ≤ r ≤ 1. The metric (D.2)
becomes

ds2 = R2
{
−dt2 + dr2

1− r2 + (1− r2) dφ2 + r2
(
dη2 + cos2 η dθ2

1 + sin2 η dθ2
2

)}
. (D.12)

We expand the equations of motion around

r =
√
j + ε r1(t, η), φ = t+ ε φ1(t, η), (j = 0, 1). (D.13)

First, consider the case j = 1. The EoM for φ becomes ∂tr1 = 0. If we write r1 ≡
−e−s(η), the EoM for r becomes

0 = 1
4
(
s′2 − 4 cot(2η)s′ − 2s′′

)
(D.14)

− ε
{

2 ∂tφ1 −
e−s(η)

16
(
6s′′(s′2 + 2)− 3s′2(s′2 + 4) + 4 cot(2η) s′(s′2 + 6)

)}
+O(ε2).

24Our convention is same as JacobiP[n,a,b,x] in Mathematica.
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The general solution at O(ε0) is

e−s(η) =
(
c(2) + c(1) log cot η

4

)2
. (D.15)

To maintain r ∈ [0, 1] we need c(1) = 0. Then, the equation (D.14) produces ∂tφ1 = 0.
Thus there is no non-trivial solution.

Next, consider the case j = 0. The EoM’s give us

0 = r1 (cot(2η)r1 + ∂ηr1) = r1 ∂ηφ1 . (D.16)

The non-trivial solution of the first equation is

r1 = c√
sin 2η (D.17)

for a constant c. This function diverges around η = 0, π/2, and is inconsistent with
r ∈ [0, 1]. Again, we find no non-trivial solution.

E On non-abelian DBI

The symmetry of the effective U(p) theory becomes non-abelian if some of the column
lengths become equal, li = li+1 for some i in (A.9). Correspondingly, some of the p giant
graviton branes coincide at strong coupling. Let us make a short digression about non-
abelian DBI action to examine this situation.25

The DBI action is a low energy effective action of closed and open string massless
modes on the brane. As a worldvolume theory, the DBI action without U(1) flux is also
an example of 4d conformal theory. In AdS5 × S5, the conformal symmetry of the target
spacetime is nonlinearly realized [66, 67]. The DBI action can be made supersymmetric
in the sense of κ symmetry [44, 68, 69] and of the worldvolume symmetry [70, 71]. The
fundamental strings can be coupled to multiple coincident D-branes by introducing non-
abelian flux Fµν [72]. The addition of the CS term to the non-abelian DBI induces dielectric
effects [49].

One way to define non-abelian DBI is to expand the DBI action in a formal series of F ,

det(G+ 2πα′F ) = detG
(

1− (2πα′)2

2 GabFbcG
cdFda + . . .

)
. (E.1)

Then we promote F to a non-abelian field, and take the trace. This procedure suffers
from the ordering ambiguity, which should be fixed by the consistency with the open string
amplitude [73–76].

In section 4, we want to find classical solutions continuously connected to the spherical
giant graviton. From the above prescription for the non-abelian DBI in (E.1), we do not
see any significant difference between U(1)p and U(p) theories at the order of α′2.

25The author thanks A. Tseytlin for his comments on abelian and non-abelian DBI.
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The induced metric Gab should not have the U(p) structure for the following reasons.
First, the induced metric comes from closed string massless modes, which do not see non-
abelian symmetry. Second, the attempts to make Gab a matrix-valued field suffer from
various difficulties [77, 78]. Third, in our deformation problem, we are only interested in
the corrections of O(α′2), and the commutator terms do not show up at this order. Then,
all matrices are simultaneously diagonalizable, unless they couple to other objects.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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