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1 Introduction

Two-dimensional pure (2,2) supersymmetric gauge theories with gauge group SU(k) were
studied in [1], which argued that the theory flows in the IR to a free theory of k−1 twisted
chiral multiplets. In our previous work [2, 3], we looked at the nonabelian mirrors [2] of
these theories, confirming the prediction of [1], and also extending to other gauge theories.
Specifically, [2] looked at two-dimensional pure SU(k), SO(k), and Sp(2k) gauge theories,
and [3] looked at pure G2, F4, and E6,7,8 gauge theories. In each case, computations in the
mirror suggested that the mirror flows in the IR to a theory of twisted chiral multiplets,
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as many as the rank of the theory, for precisely one value of the discrete theta angle1 (in
cases where the pure gauge theory has discrete theta angles), and gave the distinguished
value of the discrete theta angle.

To be completely clear, the nonabelian mirror analysis of [2, 3] can explicitly determine
for which discrete theta angles supersymmetric vacua exist, and the number of degrees of
freedom remaining in the IR in those discrete theta angles. However, the nonabelian mirror
analysis of [2, 3] did not explicitly exclude all possible interactions — it can count the
number of degrees of freedom, and for the same reasons as in [1] one may expect that those
degrees of freedom are free, but the mirror construction does not explicitly demonstrate
that the result is necessarily a free theory, a limitation shared by the current work.

In any event, the analyses of [1–3] still left a few groups unanalyzed, namely further
quotients of theories above in cases in which the gauge group has a nontrivial center.
These analyses require a deeper understanding of the difference between the mirror to a
G gauge theory and a G/K gauge theory, for K a subgroup of the center of G, and also
an understanding of the mirrors of more intricate discrete theta angles than described
in [2], which is the reason they were not previously discussed. In this paper, we develop
the technology of nonabelian mirrors further, to illustrate how to distinguish the mirror
to a G gauge theory from the mirror of a G/K gauge theory more generally, and by
determining mirrors to discrete theta angles in more complex cases. By applying this new
understanding, we can analyze pure gauge theories with more general gauge groups, and
finish analyzing the cases that were not previously studied in [1–3].

We begin in section 2 with a number of general remarks. We give a general analysis of
vacua of pure supersymmetric gauge theories in the language of the original gauge theories,
reducing questions about discrete theta angles to some discrete choices of FI parameters,
determined up to log branch cut ambiguities. In parallel, we also review the nonabelian
mirror proposal of [2], explain how to distinguish the mirror to a G gauge theory from that
of a G/K gauge theory, and show how the gauge theory results can be derived from the
mirror. To make the discrete theta angle computations meaningful, in both the original
gauge theory and in the mirror, one needs invariants on the set of discrete FI parameters
modulo log branch cuts, which must be computed on a case-by-case basis for each group.
In this section, we describe in general terms how such computations of invariants can be
performed, and leave the details for each case for later sections.

In the remaining sections of this paper, we focus on two goals. First, we apply non-
abelian mirrors in detail in examples, to illustrate the details of mirrors to gauge theories
with gauge groups of the form G/K for K a subgroup of the center of G, as this has not
been previously explained. Second, for each case, we also compute the invariants needed
to extract human-readable discrete theta angles from sets of discrete choices of FI param-

1Briefly, a discrete theta angle weights nonperturbative sectors of the path integral by phases deter-
mined by finite-group-valued degree-two characteristic classes, such as second Stiefel-Whitney classes w2

in (S)O(n) theories, just as an ordinary theta angle weights nonperturbative sectors by phases determined
by instanton numbers (typically Chern and Pontryagin classes). For semisimple gauge groups, possible
discrete theta angles in two-dimensional theories are determined by the fundamental group of the gauge
group. See [4–9] for discussions of discrete theta angles in two-dimensional theories.
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eters modulo log branch cuts (corresponding to points on the weight lattice modulo the
root lattice). In each case, we perform consistency checks, comparing results for different
representations of the same group, and also comparing to the predictions of decomposition,
which we shall explain momentarily.

In section 3, we discuss pure SU(k)/Zk gauge theories. As in all examples in this paper,
we compute the single discrete theta angle for which a pure SU(k)/Zk gauge theory has
supersymmetric vacua, and give evidence that the theory flows in the IR to a theory of as
many twisted chiral multiplets as its rank. For other discrete theta angles, the theory has
no supersymmetric vacua, and so supersymmetry is broken in the IR — a pattern followed
in all other examples we study in this paper.

In section 4 we discuss pure SO(2k)/Z2 gauge theories. Depending upon whether k
is even or odd, there is either a Z2 × Z2 or Z4 of discrete theta angles. We describe how
these two possibilities arise in the mirror, and compute for which discrete theta angles pure
SO(2k)/Z2 theories have supersymmetric vacua, giving evidence that the theory flows in
the IR to a theory of as many twisted chiral multiplets as the rank.

In section 5 we turn to pure Sp(2k)/Z2 gauge theories, repeating the same analyses
as above.

In sections 6 and 7 we turn to pure E6/Z3 and E7/Z2 gauge theories. For these cases, to
determine invariants computing discrete theta angles requires more careful consideration
of root and weight lattice structures, in a fashion introduced in earlier sections. Once
those invariants are determined, the rest of the analysis proceeds as before, determining
for which discrete theta angles one has supersymmetric vacua, and checking that results
are consistent with decomposition.

One of the properties we check is ‘decomposition.’ This is a property of two-dimensional
gauge theories with finite subgroups that act trivially on massless matter, or equivalently
two-dimensional theories with restrictions on nonperturbative sectors, have been discussed
in the literature since [10, 11]. Such theories possess discrete one-form symmetries, and so,
as a result, ‘decompose’ into disjoint unions of simpler theories. This was first discussed
in [12], and has since been applied to understand exotic phases of certain abelian GLSMs
(see e.g. [4, 13–15]), as well as to make predictions for Gromov-Witten invariants of certain
stacks, predictions which were checked in e.g. [16–18], see [19] for further references. See for
example [20] for a recent overview and discussion in terms of one-form symmetries, and [21]
for an analogous decomposition in four-dimensional theories with three-form symmetries.

The same ideas apply in principle to two-dimensional nonabelian gauge theories in
which the center of the gauge group acts trivially on massless matter, as discussed in [19].
The ‘nonabelian decomposition’ discussed there says that a two-dimensional G gauge theory
with center Z(G) and center-invariant massless matter decomposes into a disjoint union of
G/Z(G) gauge theories with various discrete theta angles. The simplest version of this is,
schematically, the statement

SU(2) = SO(3)+ + SO(3)−,

where SU(2) and SO(3) indicate gauge theories and the subscripts indicate discrete theta
angles. This decomposition and its analogues have been checked in many examples of
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many different kinds of two-dimensional theories with one-form symmetries, and we will
encounter many examples in this paper, in which we will sue decomposition as a consistency
check on existence of supersymmetric vacua for various discrete theta angles.

Finally, we mention that other proposals for nonabelian mirrors have appeared in the
math community in e.g. [22, 23], as reviewed in [2][section 4.9, appendix A].

2 Review and overview

In this section we will discuss vacua of pure gauge theories for general (connected) gauge
groups, both in the original gauge theory and the mirror. We will give general results
in both cases, illustrating how all supersymmetric vacua arise in a theory with a unique
discrete theta angle, and that the IR limit consists of as many twisted chiral multiplet
degrees of freedom as the rank of the gauge group. (For other discrete theta angles,
there are no supersymmetric vacua, hence supersymmetry is broken in the IR.) However,
to actually determine the discrete theta angle for which supersymmetric vacua exist in a
more meaningful, human-readable fashion in each case will require further group-dependent
work, which will be detailed in later sections.

2.1 Gauge theory

Consider a two-dimensional (2,2) supersymmetric gauge theory with gauge group G, where
we for the moment assume G is semisimple, connected and simply-connected.

For this theory, on the Coulomb branch, there is an effective one-loop twisted super-
potential given by [24, eqs. (2.17), (2.19)], [25, eq. (4.77)], [26, eq. (2.37)]

Weff = −
∑
a

∑
i

σaρ
a
i ln

(∑
b

σbρ
b
i − m̃i

)
+
∑
a

∑
i

σaρ
a
i −

∑
a

σata

−
∑
a

∑
µ̃

σaα
a
µ̃

[
ln
(∑

b

σbα
b
µ̃

)
− 1

]

+
∑
i

m̃i ln
(∑

b

σbρ
b
i − m̃i

)
, (2.1)

where σa are the adjoint-valued scalar of the vector multiplet, in a maximal torus, ρai are
the weights of the matter representations appearing in the theory, αaµ̃ are the roots of the
Lie algebra g of the gauge group G, and m̃i are twisted masses. For G semisimple, the ta
encode discrete theta angles, as we shall describe momentarily.

In principle, one should also take a Weyl-group orbifold of the effective theory of the
σa, and exclude certain points on the space of σ’s (the “excluded locus”). For a connected
gauge group, the Weyl orbifold group acts freely on the allowed σ, and so we shall suppress
those details in this analysis.

The terms involving the root vectors are often simplified as
n−r∑
µ̃=1

αaµ̃

(
ln
(∑

b

σbα
b
µ̃

)
− 1

)
=
∑
pos′

αaµ̃ ln
(∑

b

σbα
b
µ̃

)
−
∑
pos′

αaµ̃

(
ln
(∑

b

σbα
b
µ̃

)
− πi

)
,

=
∑
pos′

iπαaµ̃, (2.2)
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giving a shift of the theta angle matching that given in [27][eq. (10.9)]. This expression
glosses over branch cut subtleties arising in non-simply-connected semisimple groups, as
we shall see shortly.

Now, suppose K is a subgroup of the center of G, and we have K-invariant matter. We
can then consider a G/K-gauge theory with the same matter, for which we can work out an
analogue of the expression above. For simplicity, as in this paper we focus on pure gauge
theories, let us consider the case that there is no matter, and hence no twisted masses.
The effective one-loop superpotential in this case is

Weff = − 1
|K|

∑
a

∑
µ̃

σaα
a
µ̃

[
ln
(∑

b

σbα
b
µ̃

)
− 1

]
−
∑
a

σata, (2.3)

where the factor of 1/|K| arises from the fact that a maximal torus of G/K is |K| times
smaller than that of G.

In principle, because of the logarithms in the expression (2.3) above, there are branch
cuts, which have the effect of shifting the ta. Specifically, across a branch cut in the
logarithm associated to αaν , we see

ta 7→ ta + 2πi
|K|

αaν . (2.4)

Thus, we see that the ta are only defined up to shifts by root lattice vectors (rescaled by
2πi/|K|), and in particular are not uniquely defined.

Now, let us consider how to describe the discrete theta angles. Just as an ordinary
theta angle weights nonperturbative sectors by phases, a discrete theta angle also weights
nonperturbative sectors by phases. The difference is that discrete theta angles couple to
a characteristic class in H2(Σ, π1(G)) (over two-dimensional spacetime Σ). Specifically,
a discrete theta angle is a character of π1(G), giving a U(1) phase for every value of
the characteristic class above. Physically, along the Coulomb branch, we are restricting to
bundles whose structure groups are reducible to a maximal torus T ⊂ G. For such bundles,
the characteristic class in H2(Σ, π1(G)) can be represented by a collection of first Chern
classes c1 (as many as the dimension of T , the rank of G), and so we can represent the
discrete theta angles by a collection of ordinary theta angles, as many as the rank of G,
encoded in the ta. Mathematically, as we shall see later in equation (2.21), there is a short
exact sequence relating

1 −→ root lattice −→ weight lattice −→ characters −→ 1 (2.5)

We can therefore lift the discrete theta angles from characters to weight lattice elements,
which correlate with the ordinary theta angles encoded in ta along the Coulomb branch.

To summarize, for a given discrete theta angle, we take the ta to be (proportional to)
elements of the weight lattice, up to shifts by the root lattice. Later in subsection 2.3 we
will elaborate on how this will enable us to identify the ta with discrete theta angles.

Setting aside the precise meaning of the ta for a moment, we now turn to finding the
vacua in the gauge theory. Using the simplification (2.2), it is straightforward to read off
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from (2.3) the equations of motion for σa, which are simply a constraint on the ta:

ta = − πi

|K|
∑
pos′

αaµ̃, (2.6)

with no constraint on the σa. Thus, for precisely the value of the discrete theta angle
determined by the ta above (modulo log branch cuts), the pure G/K gauge theory has
supersymmetric vacua, described by as many twisted chiral multiplet degrees of freedom
as the number of σ fields. (To go further and determine whether this is a free theory would
require knowledge of the metric, which we do not have.)

In passing, in the original pure G gauge theory, one has a very similar result. The
effective superpotential is nearly the same as (2.3), albeit without the factor of 1/|K|. The
equations of motion imply

ta = −πi
∑
pos′

αaµ̃, (2.7)

with no constraint on the σa. Here, the ta are weight lattice elements times 2πi, and are
only defined up to root lattice shifts

ta 7→ ta + 2πiαaν (2.8)

for various ν. If G is not simply-connected, then there will be discrete theta angles to be
found amongst the possible ta, in the same fashion as we will describe shortly.

To finish the analysis, we need to understand more precisely how to map the ta to
discrete theta angles. In the next several sections of this paper, we will compute the
invariants on the weight lattice quotients that compute discrete theta angles from values
of ta, to give a more meaningful answer. Before doing that analysis, we will now turn to
the mirror theories, to see how the corresponding analysis is performed there. We will see
that the mirror analysis is very similar to the analysis in the original gauge theory.

2.2 Mirror

Given a two-dimensional (2,2) supersymmetric G-gauge theory, G connected, with matter
chiral superfields in a (typically reducible) representation ρ, it was proposed in [2] that the
mirror is a Weyl-group orbifold of a Landau-Ginzburg model with fields

• σa, a ∈ {1, · · · , r ≡ rankG},

• Yi, i ∈ {1, · · · , N ≡ dim ρ}, each of periodicity 2πi as in [28, section 3.1],

• Xµ̃, corresponding to nonzero roots of the Lie algebra g of G,

and superpotential

W =
r∑

a=1
σa

 N∑
i=1

ρai Yi −
n−r∑
µ̃=1

αaµ̃ lnXµ̃ − ta


−

N∑
i=1

m̃i

(
Yi −

∑
a

ρai ta

)

+
N∑
i=1

exp (−Yi) +
n−r∑
µ̃=1

Xµ̃, (2.9)
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where n is the dimension of G, the ρai are the weight vectors for the representation ρ, and
the αaµ̃ are root vectors for the Lie algebra g of G. The m̃i are twisted masses. The ta
are mirror to Fayet-Iliopoulos parameters and/or discrete theta angles, depending upon
G. (We also sometimes write Z = − lnX for notational convenience.) This proposal
satisifes a wide variety of tests, including reproducing the quantum cohomology/Coulomb
branch relations, excluded loci, and dualities of two-dimensional nonabelian gauge theories
studied in [4] and correlation functions obtained from supersymmetric localization (see
e.g. [26]), and has been extended to (0,2) supersymmetric theories [29]. For connected
gauge groups, the Weyl group orbifold acts freely on the critical locus, so as we only
consider connected gauge groups in this paper, we shall largely ignore the orbifold, except
to take Weyl-invariant combinations of fields. (Mirrors to gauge theories whose gauge
groups have multiple components were discussed in [30, 31].)

Let us elaborate on the mirrors of the Fayet-Iliopoulos parameters, the ta. In cases in
which the gauge group has a U(1) factor, the corresponding linear combination of the ta’s
decouples from the lnX branch cut ambiguities, and is a free parameter. In other cases,
the ta are constrained by those same lnX branch cuts, meaning that in crossing a branch
cut, the (ta) are shifted by 2πi times a root lattice vector. Specifically, under

Xµ̃ 7→ Xµ̃ exp(2πi), (2.10)

the ta are shifted by
ta 7→ ta − 2πiαaµ̃. (2.11)

Only those linear combinations of the ta which can be ‘disentangled’ from the α’s can be
free parameters; the rest are only defined up to addition of root lattice vectors. We take the
discrete theta angles to be defined by (ta) living on2 2πi times the weight lattice, modulo
shifts by the root lattice.

The mirror to a G/K gauge theory of the same form, with matter assumed K-invariant,
is given by a Landau-Ginzburg model with the same fields and the superpotential

W = 1
|K|

r∑
a=1

σa

 N∑
i=1

ρai Yi −
n−r∑
µ̃=1

αaµ̃ lnXµ̃ − ta


−

N∑
i=1

m̃i

(
Yi −

∑
a

ρai ta

)

+
N∑
i=1

exp (−Yi) +
n−r∑
µ̃=1

Xµ̃, (2.12)

where for semisimple G the (ta) are now taken to live on 2πi/|K| times the weight lattice,
and log branch cuts generate shifts by root lattice elements in the form

ta 7→ ta −
2πi
|K|

αaµ̃. (2.13)

2In principle, from our description, each ta lives on a torus, which we interpret as the mirror to a theta
angle in the U(1)r gauge theory on the Coulomb branch. In this paper we only consider discrete theta
angles, hence we restrict to ta on the weight lattice (mod shifts by root lattice vectors).
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In other words, to describe the mirror to a G/K gauge theory, where G is semisimple and
simply-connected, we begin with the mirror to the G gauge theory, divide the weight and
root lattice vectors by a factor of |K|, and then the discrete theta angles are encoded in
ta ∈ (2πi/|K|)W, modulo shifts by elements of (2πi/|K|)R, where W denotes the weight
lattice and R ⊂ W the root lattice.

If we were to add matter that is not invariant under K, and set aside for the moment
the fact that the original gauge theory would not be well-defined, then due to the Y

periodicities, the mirror’s parameters ta would be shifted, and so the discrete theta angles
would not be well-defined. Only if there is no matter that transforms under K are G/K
discrete theta angles defined, as indeed the G/K gauge theory itself is not well-defined in
that case.

Now, let us turn to a formal analysis of the vacua in the mirror to a pure G/K-gauge
theory. The mirror superpotential has the form

W = − 1
|K|

∑
a

σa
∑
µ̃

αaµ̃ lnXµ̃ −
∑
a

σata +
∑
µ̃

Xµ̃. (2.14)

The critical locus equations
∂W

∂Xµ̃
= 0 = ∂W

∂σa
(2.15)

imply

Xµ̃ = − 1
|K|

∑
a

σaα
a
µ̃, (2.16)

ta = − 1
|K|

∑
µ̃

αaµ̃ lnXµ̃. (2.17)

It is straightforward to show that∑
µ̃

αaµ̃ lnXµ̃ = iπ
∑
pos′

αaµ̃, (2.18)

hence we find on the critical locus that

ta = − πi

|K|
∑
pos′

αaµ, (2.19)

which matches equation (2.6) that was derived from the pure gauge theory. As there, these
ta are only defined up to log branch cuts, so to extract a human-readable expression for
the discrete theta angle, one must compute lattice invariants, as we shall do in examples
later in this paper.

The remainder of the analysis now follows the same form as in [2]: along the criti-
cal locus, there are as many twisted chiral degrees of freedom as the rank of G/K, and
the superpotential vanishes. As in the gauge theory, our analysis comes slightly short of
necessarily demonstrating that the IR limit is a free field theory, as for example we do
not have any control over the metric. However, our results are certainly consistent with
getting a set of free fields, for the one value of the discrete theta angle determined by the
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ta above. (For other discrete theta angles, the G/K gauge theory has no supersymmetric
vacua, as is visible both in the mirror as well as in the previous analysis of the original
gauge theory. Thus, for most discrete theta angles, we see that the pure gauge theory
breaks supersymmetry in the IR.)

2.3 Discrete theta angles

So far we have given a general analysis of vacua in pure G/K gauge theories and their
mirrors, and come to the same conclusion: for precisely one value of the discrete theta
angle, there are supersymmetric vacua (in fact, a family), and no supersymmetric vacua
(hence supersymmetry breaking) for other discrete theta angles. However, our expressions
for the discrete theta angles, in terms of the ta, are subject to log branch cut ambiguities,
and so by themselves are not very illuminating. To better understand how to interpret the
ta, we need to construct invariants, maps from the weight lattice modulo the root lattice
to the finite groups describing the discrete theta angles more usefully. In this section, we
will describe the general procedure for constructing such maps, and in later sections of this
paper, we will construct them explicitly and perform consistency checks on the results.

For semisimple groups, we have described the ta as (proportional to) weight lattice
elements, modulo shifts by root lattice elements generated by log branch cuts. Mathemat-
ically, for semisimple Lie groups, the quotient of weight and root lattices corresponds3 to
the center of the universal cover of the gauge group. In other words, for any Lie group
G, if G̃ denotes its universal cover, then the center Z(G̃) coincides with the weight lattice
modulo shifts by root sublattice vectors. Then, the fundamental group of G̃/Z(G̃) is Z(G̃),
and corresponds [4–9] to possible discrete theta angles in a two-dimensional G̃/Z(G̃) gauge
theory. It is for this reason that we can associate the ta with discrete theta angles.

More formally, if we let T̃ denote a maximal torus in G̃ and T its projection into
G̃/Z(G̃), we have a commuting diagram

1 // Z(G̃) // G̃ // G̃/Z(G̃) // 1

1 // Z(G̃) // T̃
?�

OO

// T
?�

OO

// 1,

(2.20)

hence

1 // Hom(T,U(1)) // Hom(T̃ ,U(1)) // Hom(Z(G̃),U(1)) // 1. (2.21)

In passing, Hom(T,U(1)) can be identified with the root lattice and Hom(T̃ ,U(1)) with
the weight lattice. Here again we see the possible discrete theta angles as defining the
difference between the weight spaces of G̃ and G̃/Z(G̃). We also see that in principle the
weights of one are a rescaling of the weights of the other by |Z(G̃)|, which we will also
encounter in examples.

Concretely, for semisimple gauge factors, if we let A denote an integer matrix encod-
ing a basis of root vectors in the weight vector space, then using integer row reduction, we

3This is a standard old result. See for example [32, section V.7] for an overview.
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can diagonalize it, with the diagonal entries determining the center and the basis deter-
mining invariants. Specifically, there exist invertible integer matrices P , Q (necessarily of
determinant ±1) such that

Q−1AP = D, (2.22)

where D is a diagonal integer matrix, chosen so that the diagonal entries are {d1, · · · , dr},
with all di ∈ Z, di ≥ 1, and di ≤ di+1. (Technically, this is known as a Smith decomposition
of A.) Then, the center is Zd1 ×Zd2 × · · · ×Zdr . Furthermore, one can construct a map to
any Zd factor as follows. Let v = [x1, · · · , xr]T denote the basis element corresponding to
diagonal entry d, then in the basis in which A is diagonal, we can map weight vectors to Zd
by contracting a weight vector with the corresponding eigenvector, and taking the result
mod d. We shall see this in examples later. In this fashion, we can construct invariants
which map the ta to elements of a finite group, and so read off the discrete theta angle in
a useful form.

In the rest of this paper, we will explore the realizations of discrete theta angles via
constructing such invariants, and complete our analyses of two-dimensional pure (2,2)-
supersymmetric gauge theories.

3 Pure SU(k)/Zk gauge theories

In [1], it was suggested that a two4 dimensional (2,2) supersymmetric pure SU(k) gauge
theory should flow to a theory of k − 1 free twisted chiral multiplets. This was verified
from nonabelian mirrors in [2, section 12.3]. In this section, we will use nonabelian mirrors
to analyze the IR behavior of pure SU(k)/Zk gauge theories, and see that supersymmetry
is unbroken in the IR for precisely one value of the discrete theta angle. We have already
given a quick general analysis of vacua, but we still need to compute lattice invariants
needed to give a human-readable version of the discrete theta angles, and at the same
time, we will also walk through the mirror computations in greater detail, as they may be
less familiar to many readers. Furthermore, we will check the result by applying nonabelian
decomposition [12, 19, 20]. Pure SU(k) gauge theory decomposes into a disjoint union of
SU(k)/Zk gauge theories with different theta angles, and we shall see that k− 1 multiplets
arise in exactly one of those SU(k)/Zk theories, whereas component theories with other
discrete theta angles have no supersymmetric vacua at all.

Before describing the general case, we will first review the special cases of SU(2) and
SU(3) theories.

3.1 SU(2)/Z2 = SO(3) theory

The case of pure SU(2) and SO(3) theories has already been discussed in [2, section 12.1],
but we will quickly review the mirror to SO(3) cases as a warm-up exercise.

It is convenient to describe this in terms of two σ̃ fields obeying the constraint∑
a

σ̃a = 0. (3.1)

4In passing, for four-dimensional analogues, the reader may find [9, 33] interesting.
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The mirror superpotential to a pure SO(3) theory then takes the form [2]

W = (1/2)
∑
a

σ̃a
∑
µ 6=ν

αaµνZµν + tσ̃1 +
∑
µ 6=ν

Xµν , (3.2)

where
αaµν = −δaµ + δaν ,

and where t ∈ {0, πi} encodes the discrete theta angle in the theory. This can be simpli-
fied to

W = σ̃1 (lnX12 − lnX21) + tσ̃1 + X12 + X21. (3.3)

The critical loci are given by

X12
X21

= exp(−t), (3.4)

X12 = −2σ̃1 = −X21. (3.5)

In the case t = 0, these equations contradict one another, so there is no solution, and no
supersymmetric vacuum. In the case t = πi, these equations consistently require X12 =
−X21. After integrating out σ1, the superpotential becomes W = 0, and identifying X12
with −X21, we see that we have one field remaining.

Now, to be clear, to completely verify the claim of [1] in this case, more is required. We
have explicitly computed for which discrete theta angle supersymmetric vacua can exist,
and we have verified that for that one discrete theta angle, there is one field remaining, a
twisted chiral multiplet degree of freedom, for which the superpotential vanishes. However,
reference [1] claimed that the IR theory is a free twisted chiral multiplet, and although we
can explicitly check that there is one twisted chiral multiplet degree of freedom, with
vanishing superpotential, we do not have enough control over the Kähler potential to
exclude the possibility of a nontrivial kinetic term. Thus, although we can confirm that
for the correct discrete theta angle the expected number of degrees of freedom are present,
we cannot explicitly exclude the possibility of a nontrivial interaction. Our results are
therefore certainly consistent with the claim of [1], and we can confirm many details, but
not all.

Now let us recast this description in terms of the general formalism described in sec-
tion 2, to illustrate concretely how the abstract definition works in this case. First, the
weight lattice corresponds to the integers Z, and the root lattice to the even integers 2Z.
This is implicit in the mirror construction. For example, for a single fundamental, the
mirror superpotential contains the terms∑

a

σ̃aρ
a
bYb = σ̃1 (Y1 − Y2) , (3.6)

using the identity (3.1). Thus, fields correspond to weights as follows:

Y1 ∼ +1, Y2 ∼ −1, (3.7)
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Figure 1. Schematic illustration of weight and root lattice for SU(2). Solid circles indicate points
on both lattices; empty circles indicate points on the weight lattice that are not also on the root
lattice.

and the lattice generated by these weights is precisely the integers. Analogously, from the
roots, the superpotential of the mirror to an SU(2) gauge theory contains the terms∑

a

σ̃aα
a
µνZµν = σ̃1

(
α1
µν − α2

µν

)
Zµν = σ̃2 (−2Z12 + 2Z21) , (3.8)

from which we see that fields correspond to weights as follows:

Z21 ∼ +2, Z12 ∼ −2, (3.9)

generating 2Z ⊂ Z. We have sketched this one-dimensional lattice in figure 1.
To get the SO(3) mirror, we divide the weights by a factor of |Z(SU(2))| = |Z2|, and

then the possible discrete theta angles emerge as choices t ∈ 2πiZ/2 modulo root lattice
shifts by elements of 2πi(2/2)Z. That leaves the possible values of t as {0, πi}, modulo
shifts by 2πi, agreeing with the description reviewed above from [2].

For completeness, in terms of the general expression (2.6) for the values of ta for which
the theory has supersymmetric vacua, plugging in |K| = 2 and α = 2, we have

t = −πi2 (2) = −πi, (3.10)

which given the periodicity

t ∼ t + 2πi
2 (2) = t + 2πi, (3.11)

corresponds to the nontrivial discrete theta angle, matching the computation above.
To summarize, we have reviewed how a pure supersymmetric SO(3) gauge theory in

two dimensions has supersymmetric vacua for one value of the discrete theta angle, but
not the other, and how there is one associated degree of freedom in the IR.

Now, let us briefly compare to the prediction of decomposition [10–12, 19, 20]. Briefly,
this predicts that a pure two-dimensional supersymmetric SU(2) gauge theory will de-
compose as a disjoint union of two SO(3) theories with each discrete theta angle, or
schematically

SU(2) = SO(3)+ + SO(3)−. (3.12)

In [1, 2] it was argued that the pure SU(2) gauge theory will flow in the IR to a theory of
one twisted chiral multiplet, and using mirrors, we have reviewed how precisely one of the
two SO(3) theories will do the same, while the other has no supersymmetric vacua at all.
Thus, our results are consistent with decomposition.

In passing, we should add that these results are consistent with elliptic genus compu-
tations in [34, appendix A]. There, it was shown that the elliptic genus of both the pure
SU(2) and the SO(3)− theories have the same elliptic genus, namely

θ1(τ | − z)
θ1(τ | − 2z) , (3.13)
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while the elliptic genus of SO(3)+ is identically zero. Thus, if we let Z denote elliptic
genera, we have

Z(SU(2)) = Z(SO(3)+) + Z(SO(3)−), (3.14)

as expected from decomposition, and furthermore, since the elliptic genus of SO(3)+ van-
ishes, we have immediately that the Witten index of this theory vanishes, which is consistent
with the computation of supersymmetry breaking in SO(3)+ above.

3.2 SU(3)/Z3 theory

Now, we will repeat the same analysis for the pure SU(3)/Z3 theory, which has a few
technical complications relative to SU(2) and SO(3).

Following section 2, we begin with the mirror to a pure SU(3) theory, which was given
in [2, section 12.2] as a Landau-Ginzburg model with superpotential

W = σ̃1 (−Z12 − Z13 + Z21 + Z31)
+ σ̃2 (−Z21 − Z23 + Z12 + Z32)
+ σ̃3 (−Z31 − Z32 + Z13 + Z23)
+X12 +X13 +X21 +X23 +X31 +X32, (3.15)

= σ̃1 (−Z12 + Z21 − 2Z13 + 2Z31 + Z32 − Z23)
+ σ̃2 (−Z21 + Z12 − 2Z23 + 2Z32 + Z31 − Z13)
+X12 +X13 +X21 +X23 +X31 +X32, (3.16)

where we have used the constraint ∑
a

σ̃a = 0 (3.17)

to write
σ̃3 = −σ̃1 − σ̃2. (3.18)

In these conventions, the weight lattice of SU(3) is W = Z2, which we can see as follows.
The mirror to a single fundamental contains the superpotential terms∑

a

σ̃aρ
a
bYb = σ̃1 (Y1 − Y3) + σ̃2 (Y2 − Y3) , (3.19)

(using equation (3.1),) from which we deduce the following correspondence between fields
and weights on the weight lattice:

Y1 ∼ (1, 0), Y2 ∼ (0, 1), Y3 ∼ (−1,−1). (3.20)

These span the lattice Z2. Similarly, the superpotential terms corresponding to the roots
gives the following correspondence between fields and weights:

Z21 ∼ (1,−1), Z31 ∼ (2, 1), Z32 ∼ (1, 2), (3.21)
Z12 ∼ (−1, 1), Z13 ∼ (−2,−1), Z23 ∼ (−1,−2). (3.22)
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As expected, roots span a sublattice of the weight lattice. Points on the root sublattice R
include, for example,

(0, 3) = (1, 2) + (−1, 1), (3.23)
(3, 0) = (2, 1) + (1,−1), (3.24)

and points which are not on the root sublattice include

(1, 0), (2, 0), (1, 1), (0, 1), (0, 2), (−1,−1). (3.25)

Following the general analysis of section 2, the mirror to the pure SU(3)/Z3 theory
should be obtained by multiplying the lattice vectors by a factor of 1/|Z3| = 1/3, and also
adding potential discrete theta angles, which correspond to a set of Fayet-Iliopoulos-like
parameters (ta) ∈ (2πi/3)W modulo shifts by elements of (2πi/3)R. Concretely, write each

ta = ma
2πi
3 (3.26)

for some integer ma. The individual values of ma and ta are not uniquely defined —
in addition to root lattice shifts, the Weyl group can rotate individual choices into one
another, without changing the physics. The overall quantity∑

a

ma mod 3, (3.27)

however, is both permutation (Weyl)-invariant and also invariant under root lattice shifts
(which shift the sum by multiples of 3). We can therefore take this sum mod 3 to be a
compact representation of the discrete theta angle.

We can recover this invariant more formally using the procedure discussed in section 2.
One matrix that encodes a basis of root vectors in the weight lattice is

A =
[

2 1
1 2

]
. (3.28)

It is straightforward to check that[
1 −1
−1 2

] [
2 1
1 2

] [
1 1
0 1

]
=
[

1 0
0 3

]
. (3.29)

This is consistent with the result that SU(3) has center Z3, and the map from the weight
lattice to Z3 is given by contracting with the basis element corresponding to the last
diagonal entry:

(ma) 7→ (1, 1) · (m1,m2) mod 3 = m1 +m2 mod 3, (3.30)

agreeing with the result above.
Putting this together, the mirror to a pure (supersymmetric) SU(3)/Z3 gauge theory

with any choice of discrete theta angle is defined by the superpotential

W = (1/3)σ̃1 (−Z12 − Z13 + Z21 + Z31)
+ (1/3)σ̃2 (−Z21 − Z23 + Z12 + Z32)
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+ (1/3)σ̃3 (−Z31 − Z32 + Z13 + Z23)
+ t1σ̃1 + t2σ̃2 + X12 +X13 +X21 +X23 +X31 +X32, (3.31)

= (1/3)σ̃1 (−Z12 + Z21 − 2Z13 + 2Z31 + Z32 − Z23)
+ (1/3)σ̃2 (−Z21 + Z12 − 2Z23 + 2Z32 + Z31 − Z13)
+ t1σ̃1 + t2σ̃2 + X12 +X13 +X21 +X23 +X31 +X32, (3.32)

where
t1, t2 ∈ {0, 2πi/3, 4πi/3} (3.33)

define a discrete theta angle via the invariant (3.27), and where we have for convenience
written the result in terms of three σ̃’s, related by∑

a

σ̃a = 0. (3.34)

The critical locus is given by

X12 = −X21, X13 = −X31, X23 = −X32, (3.35)

X13 − X23 = X12. (3.36)[(
X12
X21

)(
X13
X31

)2 (X23
X32

)]1/3

= exp(−t1), (3.37)

[(
X21
X12

)(
X23
X32

)2 (X13
X31

)]1/3

= exp(−t2). (3.38)

Let us check that the branch cuts in the last pair of equations are compatible with
the definition of the discrete theta angles given earlier. From the critical locus equations,
we know that X12/X21 = −1. If we write X12/X21 = exp(+iπ), then change to exp(−iπ),
then (X12/X21)1/3 changes by exp(−2πi/3), hence m1 increases by 1. At the same time,
m2 decreases by 1, for the same reason, hence we see that the sum over mi is invariant
under choices of branch cuts. If we perform the same transformation on X13/X31, m1
increases by 2 and m2 increases by 1 — so the sum of the mi is invariant mod 3. The same
change on X23/X32 increases m1 by 1 and m2 by 2, so that again the sum of the mi is
invariant mod 3. Thus, the discrete theta angle (as defined above) does not depend upon
choices of branch cuts.

Picking the branch Xij/Xji = exp(iπ) for i < j, we see that equations (3.35), (3.37),
(3.38) have a solution when

exp(−t1) = exp(4πi/3), exp(−t2) = exp(2πi/3), (3.39)

which corresponds to the case m1 = −2,m2 = −1, hence

m1 +m2 ≡ 0 mod 3, (3.40)

so in order for the critical locus to be nonempty, the discrete theta angle must vanish.
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More compactly, we can use the invariant (3.27) and compute on the critical locus

exp(−t1 − t2) = X13
X31

X23
X32

= +1, (3.41)

which manifestly does not have any root-branch-cuts, and demonstrates explicitly that one
only has supersymmetric vacua for vanishing discrete theta angle in this case.

For that one choice of discrete theta angle, the critical locus is nonempty. Integrating
out the X fields as in [2, section 12] reduces the theory to a set of k − 1 σ̃ fields (of
which one takes Weyl-orbifold-invariant combinations), with vanishing superpotential —
two (plausibly IR free) twisted chirals in the IR. For other choices of discrete theta angle,
the equations for the critical locus have no solutions, and there is no supersymmetric
vacuum, hence supersymmetry is broken in the IR.

For completeness, let us also verify that the same result can be obtained from equa-
tion (2.6). Taking the positive roots to be

(1,−1), (2, 1), (1, 2), (3.42)

we have
t1 = −iπ4

3 , t2 = −iπ2
3 , (3.43)

hence
t1 + t2 = −2πi ∼ 0, (3.44)

matching the computation above, that supersymmetric vacua exist in this case only for the
trivial Z3 discrete theta angle.

Now, let us apply nonabelian decomposition [12, 19, 20]. We write, schematically,

SU(3) =
(SU(3)

Z3

)
0

+
(SU(3)

Z3

)
1

+
(SU(3)

Z3

)
2
, (3.45)

where the subscripts indicate discrete theta angles (written as integers mod 3). We argued
in [2, section 12.2] that a pure SU(3) gauge theory seems to flow in the IR to two twisted
chiral superfields, and we have argued in this section that for precisely one value of the
discrete theta angle (the trivial case), a pure SU(3)/Z3 gauge theory also flows in the IR to
two twisted chiral superfields. Pure SU(3)/Z3 gauge theories for nontrivial discrete theta
angles have no supersymmetric vacua (so supersymmetry is broken in the IR). Thus, we
find our results are consistent with decomposition: the IR behavior of a pure SU(3) theory
matches that of the disjoint union above of pure SU(3)/Z3 gauge theories.

3.3 General SU(k)/Zk theories

Now, let us turn to mirrors of pure SU(k)/Zk theories for more general k. Following the
general analysis of section 2, we start with the mirror to an SU(k) gauge theory (given
in [2, sections 8, 12]), rescale the lattices by a factor of 1/|Zk| = 1/k, and add ta to allow
for the possibility of discrete theta angles.
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From [2, sections 8, 12], the mirror to a pure SU(k) gauge theory is a Landau-Ginzburg
model with superpotential

W = σ̃1
[
−Z12 − Z13 − · · · − Z1(k−1) − 2Z1k − Z2k − · · · − Z(k−1)k

+Z21 + Z31 + · · ·+ Z(k−1)1 + 2Zk1 + Zk2 + · · ·+ Zk(k−1)
]

+ σ̃2
[
−Z21 − Z23 − Z24 − · · · − Z2(k−1) − 2Z2k − Z1k − Z3k − · · · − Z(k−1)k

+Z12 + Z32 + Z42 + · · ·+ Z(k−1)2 + 2Zk2 + Zk1 + Zk3 + Zk4 + · · ·+ Zk(k−1)
]

+ · · · +
∑
µ 6=ν

Xµν . (3.46)

In these conventions, the weight lattice of SU(k) is W = Zk−1. For example, the mirror
superpotential to a single fundamental of SU(k) has terms∑

a

σ̃aρ
a
bYb = σ̃1Y1 + σ̃2Y2 + · · ·+ σ̃k−1Yk−1 + (−σ̃1 − σ̃2 − · · · − σ̃k−1)Yk, (3.47)

from which we deduce the following correspondence between fields and weights on the
root lattice:

Y1 ∼ (1, 0, · · · , 0), Y2 ∼ (0, 1, 0, · · · , 0), · · · , Yk ∼ (−1, · · · ,−1). (3.48)

These span W = Zk−1. Following the same procedure, we associate Zµν and roots
as follows:

Z12 ∼ (−1,+1, 0, · · · , 0), (3.49)
Z13 ∼ (−1, 0,+1, 0, · · · , 0), (3.50)

...
Z1,k−1 ∼ (−1, 0, · · · , 0, 1), (3.51)
Z1k ∼ (−2,−1, · · · ,−1), (3.52)

and so forth for others. This defines a sublattice of the weight lattice, as expected. Points
on the root lattice include

(k, 0, · · · , 0) ∼ Z21 + Z31 + · · ·+ Zk−1.1 + Zk1, (3.53)

but not
(1, 0, · · · , 0), (2, 0, · · · , 0), · · · , (k − 1, 0, · · · , 0), (3.54)

for example. More generally, points on the root sublattice R have the distinguishing
property that the sum of their coordinates (in the basis above) is an integer multiple of k.

Following the general analysis of section 2, the mirror to a pure SU(k)/Zk theory
should be obtained by multiplying the lattice vectors by a factor of 1/|Zk| = 1/k, and also
adding potential discrete theta angles, which correspond to a set of Fayet-Iliopoulos-like
parameters (ta) ∈ (2πi/k)W modulo shifts by elements of (2πi/k)R. Concretely, write each

ta = ma
2πi
k

(3.55)
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for some integer ma. The individual values of ma and ta are not uniquely defined —
in addition to root lattice shifts, the Weyl group can rotate individual choices into one
another, without changing the physics. However, the quantity∑

a

ma mod k (3.56)

is invariant under both permutations (the Weyl group) as well as under root lattice shifts
(which add multiples of k to the sum). We can use this invariant to compactly compute
the discrete theta angle corresponding to a given set of ta, and so we take the discrete theta
angle to be

n mod k ≡
∑
a

ma mod k. (3.57)

We can also derive this invariant using the general procedure discussed in section 2.
Consider, for example, the following (k − 1)× (k − 1) matrix of root lattice basis vectors:

2 1 1 · · · 1
1 2 1 · · · 1
1 1 2 · · · 1
... . . .

1 1 1 · · · 2


. (3.58)

We can integer diagonalize as follows:

1 0 0 · · · −1
0 1 0 · · · −1
0 0 1 · · · −1
... · · ·
−1 −1 −1 · · · k





2 1 1 · · · 1
1 2 1 · · · 1
1 1 2 · · · 1
... . . .

1 1 1 · · · 2





1 0 0 · · · 1
0 1 0 · · · 1
0 0 1 · · · 1
... · · ·
0 0 0 · · · 1


=



1 0 0 · · · 0
0 1 0 · · · 0
0 0 1 · · · 0
... · · ·
0 0 0 · · · k


, (3.59)

naturally generalizing the SU(3) discussion. Almost all of the diagonals of this matrix
are 1; the one different diagonal is k. The basis element corresponding to diagonal k is
(1, 1, · · · , 1)T . This basis gives rise to the invariant above, which defines the map from the
weight lattice to Zk.

Putting this together, the mirror to a pure (supersymmetric) SU(k)/Zk gauge theory
with any choice of discrete theta angle is defined by the superpotential

W = (1/k)σ̃1
[
−Z12 − Z13 − · · · − Z1(k−1) − 2Z1k − Z2k − · · · − Z(k−1)k

+Z21 + Z31 + · · ·+ Z(k−1)1 + 2Zk1 + Zk2 + · · ·+ Zk(k−1)
]

+ (1/k)σ̃2
[
−Z21 − Z23 − Z24 − · · · − Z2(k−1) − 2Z2k − Z1k − Z3k − · · · − Z(k−1)k

+Z12 + Z32 + Z42 + · · ·+ Z(k−1)2 + 2Zk2 + Zk1 + Zk3 + Zk4 + · · ·+ Zk(k−1)
]

+ · · · +
k−1∑
a=1

taσ̃a +
∑
µ 6=ν

Xµν , (3.60)
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where
t1, t2, · · · , tk−1 ∈ {0, 2πi/k, 4πi/k, · · · , (k − 1)2πi/k}, (3.61)

It is straightforward to see that the critical locus equations take the form

Xµν = −Xνµ, (3.62)

and [
X12
X21

X13
X31
· · ·

X1(k−1)
X(k−1)1

(
X1k
Xk1

)2 X2k
Xk2
· · ·

X(k−1)k
Xk(k−1)

]1/k

= exp(−t1), (3.63)

[
X21
X12

X23
X32

X24
X42
· · ·

X2(k−1)
X(k−1)2

(
X2k
Xk2

)2 X1k
Xk1

X3k
Xk3
· · ·

X(k−1)k
Xk(k−1)

]1/k

= exp(−t2), (3.64)

and so forth. Each of these equations involves a product of 2(k−1) ratios of X’s associated
to positive and negative roots.

As in the SU(3) case, it is straightforward to check that branch cuts change the ta but
not the discrete theta angle. The most efficient general argument is to observe that

∏
a

exp(−ta) = X1k
Xk1

X2k
Xk2
· · ·

X(k−1)k
Xk(k−1)

, (3.65)

making it explicit that there is no branch cut ambiguity in

exp
(∑

a

ta

)
, (3.66)

hence the discrete theta angle is well-defined. (In principle, this is closely related to the
fact that the discrete theta angle is well-defined under root lattice shifts, realized as log
branch cuts in the mirror superpotential.)

Now, let us find the value(s) of the discrete theta angle for which the critical locus
admits solutions. From equation (3.65), and the fact that on the critical locus each ratio is
−1, we find that the unique discrete theta angle for which a solution exists is determined by

exp
(
−
∑
a

ta

)
= (−)k−1, (3.67)

or equivalently, ∑
a

ma = −1
2k(k − 1) mod k. (3.68)

Thus, a pure SU(k)/Zk gauge theory will have supersymmetric vacua for one value of the
discrete theta angle, given by

− 1
2k(k − 1) mod k. (3.69)

For one example, for SO(3) = SU(2)/Z2, this is −1 mod 2, and so we confirm that
the pure SO(3) gauge theory has supersymmetric vacua for the one nontrivial choice of
discrete theta angle, matching the results of [2, section 12.1].
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For another example, for SU(3)/Z3, this is −3 ≡ 0 mod 3, and so the pure SU(3)/Z3
gauge theory has vacua for only the vanishing discrete theta angle, correctly reproducing
our result from section 3.2.

For later use, for SU(4)/Z4, this is −6 ≡ 2 mod 4, and so only for this discrete theta
angle does the pure SU(4)/Z4 theory have vacua. (We will later see the same result for the
pure SO(6)/Z2 theory, as one should expect since the two groups are the same.)

Consider that one choice of discrete theta angle for which the critical locus equations
have solutions. Of the fields Xµν for µ < ν, since they are all determined by k − 1 σ̃’s,
there can be only k − 1 independent Xµν ’s. Integrating out the σ̃’s results in a vanishing
superpotential, so we find that the mirror is (plausibly) consistent with k−1 free superfields.

For completeness, let us also verify that the same result can be obtained from equa-
tion (2.6). Taking the positive roots to be those associated with Zµν for µ < ν, and our
previous expressions for those in equations (3.49) through (3.52), it is straightforward to
demonstrate that ∑

pos′

αaµ = −2k + 2a, (3.70)

hence
ta = −πi

k

∑
pos′

αaµ = 2πi
k

(k − a), (3.71)

or equivalently
ma = k − a. (3.72)

For the discrete theta angle, we compute

∑
a

ma =
k−1∑
a=1

(k − a) = +1
2k(k − 1) ≡ −1

2k(k − 1) mod k, (3.73)

which matches the result obtained above for the discrete theta angle.
As a consistency check, we apply decomposition [12, 19, 20], which states that two-

dimensional theories with one-form symmetries decompose. In this case, it implies that a
pure SU(k) gauge theory decomposes into a disjoint union of k SU(k)/Zk gauge theories,
one with every possible discrete theta angle, or schematically,

SU(k) =
k−1⊕
n=0

(SU(k)
Zk

)
n
. (3.74)

Since the pure SU(k) theory is believed to flow in the IR to a set of k−1 free twisted chiral
superfields [1, 2], the disjoint union of pure SU(k)/Zk gauge theories should also flow in the
IR to k−1 free twisted chiral superfields. We have argued above that most of the SU(k)/Zk
theories have no vacua (and so break supersymmetry in the IR); for the single SU(k)/Zk
theory (with the right choice of discrete theta angle) for which vacua exist, we have seen
evidence that it flows to k − 1 (plausibly free) twisted chiral superfields. Thus, a disjoint
union of k SU(k)/Zk gauge theories with every possible discrete theta angle appears to
have the same IR limit as the SU(k) gauge theory, as expected from decomposition.
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3.4 SU(4)/Z2

So far we have considered quotients of SU(k) by all of its center, but very similar consider-
ations also apply when quotienting by subsets of the center. To illustrate the details, and
also to provide a consistency check, we will work through one example, namely SU(4)/Z2.

Following our previous analysis, the mirror superpotential will multiply the σZ terms
by a factor of 1/|Z2| = 1/2, and the FI parameters ta ∈ {0, πi}. The mirror superpotential
then takes the form

W = (1/2)σ̃1
[
−Z12 − Z13 − 2Z14 − Z24 − Z34

+Z21 + Z31 + 2Z41 + Z42 + Z43
]

+ (1/2)σ̃2
[
−Z21 − Z23 − 2Z24 − Z14 − Z34

+Z12 + Z32 + 2Z42 + Z41 + Z43
]

+ · · · +
3∑

a=1
taσ̃a +

∑
µ 6=ν

Xµν . (3.75)

If we write
ta = 2πi

2 ma, (3.76)

then the discrete theta angle is given as∑
a

ma mod 2. (3.77)

The critical locus equations are[
X12
X21

X13
X31

(
X14
X41

)2 X24
X42

X34
X43

]1/2

= exp(−t1), (3.78)

[
X21
X12

X23
X32

(
X24
X42

)2 X14
X41

X34
X43

]1/2

= exp(−t2), (3.79)

[
X31
X31

X32
X23

(
X34
X43

)2 X14
X41

X24
X42

]1/2

= exp(−t3). (3.80)

Plugging into the discrete theta angle equation, we find

exp(−t1 − t2 − t3) =
[
X14
X41

X24
X42

X34
X43

]2
, (3.81)

which is +1 on the critical locus (and which does not have any square-root branch cut
ambiguities). Thus, we see pure SU(4)/Z2 gauge theories have supersymmetric vacua only
for the case of vanishing discrete theta angle.

As a consistency check, recall that SO(6) = SU(4)/Z2, and it was argued in [2, section
13.1] that pure SO(6) gauge theories also only have supersymmetric vacua for vanishing
discrete theta angles, which is consistent with our computation here.
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4 Pure SO(2k)/Z2 gauge theories

Pure two-dimensional supersymmetric SO(2k) and SO(2k+ 1) gauge theories were consid-
ered in [2, sections 13.1, 13.2], which argued that for the nontrivial discrete theta angle,
they admit vacua, but not for theories with no discrete theta angle. (Since π1(SO) = Z2,
they admit two possible discrete theta angles.) Now, the groups SO(2k + 1) have no cen-
ter, so there are no further quotients to consider, but the groups SO(2k) have center Z2,
and so we can consider gauge theories with gauge group SO(2k)/Z2. These groups have
(depending upon k) fundamental group either Z4 or Z2 × Z2, and hence SO(2k)/Z2 gauge
theories have discrete theta angles counted by either Z4 or Z2 × Z2.

In this section, we will discuss the mirrors to such theories, including the realization
of the discrete theta angles in the mirror, and the IR behavior of pure SO(2k)/Z2 theories.

4.1 Basics

Building on [2, section 13.1], the mirror superpotential to a pure SO(2k)/Z2 gauge theory is

W = (1/2)
k∑
a=1

σa

∑
ν>2a

(Z2a,ν − Z2a−1,ν) +
∑

µ<2a−1
(Zµ,2a − Zµ,2a−1) − 2ta


+
∑
µ<ν

Xµν , (4.1)

where ta describe the discrete theta angle (in an intricate fashion we shall detail later),
Xµν = X−1

νµ , and Xµν are defined for µ, ν ∈ {1, · · · , 2k}, excluding X2a−1,2a. The critical
loci are given by5

X2a,2b = −X2a−1,2b−1, X2a−1,2b = −X2a,2b−1, (4.2)( ∏
ν>2a

X2a−1,ν
X2a,ν

)1/2
 ∏
µ<2a−1

Xµ,2a−1
Xµ,2a

1/2

= exp(−ta). (4.3)

The ta define the possible discrete theta angles, in a fashion we shall describe after walking
through the form of the root and weight lattices next.

To compute possible vacua, we need a more systematic understanding of the discrete
theta angles and their relation to values of ta, to which we now turn.

4.2 Weight and root lattices

Now, let us consider lattice vectors, following the abstract considerations of section 2. In
the conventions of [2, sections 13.1, 13.2], the root lattice is generated by vectors of the form

(0, · · · , 0,±1, 0, · · · , 0,±1, 0, · · · 0), (4.4)

in a basis defined by the weights of the vector representation. Points on the root lattice
include

(±2, 0, · · · , 0), (0,±2, 0, · · · , 0), (4.5)
5This corrects an error in the critical locus equations given in our earlier work [2, section 13.1]. Although

the critical locus equations are slightly different, the conclusions of [2, section 13.1] are unaffected.
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and so forth, but not
(±1, 0, · · · , 0), (0,±1, 0, · · · , 0), (4.6)

and so forth.
If we write a root lattice basis in terms of the vector representation basis above, such as[

1 1
−1 1

]
(4.7)

for SO(4), we find a minor puzzle — this matrix has determinant two, and its Smith
decomposition gives a diagonal matrix with entries 1, 2, rather than the expected center
of the universal cover (in this case, Z2 × Z2). This is because a basis built from vector
representation weights does not span the weight lattice, in particular it does not include
weights of the spinor representations, which are of the form

(1/2)(±1,±1,±1, · · · ). (4.8)

In the case of SO(4) above, if we write the root lattice basis (1, 1), (−1, 1) in terms of a
basis for the complete weight lattice, including spinor representations, such as (1/2)(1, 1),
(1/2)(−1, 1), then we find that the new matrix is just[

2 0
0 2

]
, (4.9)

reflecting the fact that Spin(4) has center Z2 × Z2.
In principle, lattice invariants can be read off from the diagonalizing matrices in the

Smith decomposition of the matrix giving a basis of root vectors. For one example, for
SO(6), such a matrix of a basis of root vectors (in a basis of spinor weights) takes the form

A =

 2 −1 −1
0 1 −1
−1 1 2

 . (4.10)

A Smith decomposition is defined by

Q−1 =

 1 0 1
1 0 2
1 −1 2

 , P =

 1 0 −1
0 1 −3
0 0 1

 , (4.11)

where
detQ−1 = 1 = detP, (4.12)

and
Q−1AP = diag(1, 1, 4), (4.13)

reflecting the fact that the center of Spin(4) is Z4. The last column of P indicates that an
invariant function can be obtained from

~γ · ~n mod 4, (4.14)
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where in the basis of spinor weights,

~γ = (−1,−3,+1). (4.15)

Converting from the basis of spinor weights

(1/2)(1, 1, 1), (1/2)(−1, 1, 1), (1/2)(1,−1, 1) (4.16)

to the original basis, we have6

~γ = (2,−2,−2), (4.17)

which gives the invariant

~γ · ~n = 2n1 − 2n2 − 2n3 mod 4 (4.18)

in conventions in which na ∈ (1/2)Z. If we rescale to integer-valued vectors ~m, this becomes

m1 −m2 −m3 ≡
∑
a

ma mod 4, (4.19)

with a basis for the root lattice now of the form

(2, 2, 0), (−2, 2, 0), (0,−2, 2). (4.20)

We will see in the next section on different grounds that such a sum defines the Z4-valued
discrete theta angle for mirrors to SO(4k + 2) gauge theories.

For one more example, consider SO(8). A basis of root vectors, in a basis of spinor
weights, is encoded in the rows of the matrix

A =


2 −1 −1 0
0 1 −1 0
0 0 1 −1
−2 1 1 2

 . (4.21)

This has a Smith decomposition given by

Q−1 =


1 0 1 1
0 0 0 1
0 −1 0 1
−1 −1 −2 0

 , P =


1 0 −1 0
0 1 −1 −1
0 0 1 −1
1 0 −1 1

 , (4.22)

where
detQ−1 = 1 = detP, (4.23)

and
Q−1AP = diag(1, 1, 2, 2), (4.24)

6It may be useful to observe that the coordinate change is

n1 = y1 − y2, n2 = y1 − y3, n3 = y2 + y3.
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as expected since the center of SO(8) is Z2 × Z2. We can read off a pair of Z2 valued
functions from the last two columns of P , given by

~γ1 · ~n mod 2, ~γ2 · ~n mod 2, (4.25)

where in the basis of spinor weights,

~γ1 = (−1,−1,+1,−1), ~γ2 = (0,−1,−1,+1). (4.26)

Converting from the basis of spinor weights

(1/2)(1, 1, 1, 1), (1/2)(−1, 1, 1, 1), (1/2)(1,−1, 1, 1), (1/2)(1, 1,−1, 1) (4.27)

to the original basis, we have7

~γ1 = (0,−2, 0, 0), ~γ2 = (1, 1,−1,−1) (4.29)

which gives the invariants

~γ1 · ~n = −2n2 mod 2, ~γ2 · ~n = n1 + n2 − n3 − n4 mod 2 (4.30)

in conventions in which na ∈ (1/2)Z. If we rescale to integer-valued vectors ~m, these
become

m2 mod 2,
∑
a

ma mod 4, (4.31)

where, because of the structure of the weight lattice,∑
a

ma mod 4 ∈ {0, 2}, (4.32)

and hence defines a Z2 invariant.
We will see in the next section on different grounds that such sums define the Z2×Z2-

valued discrete theta angle for mirrors to SO(4k) gauge theories.

4.3 Discrete theta angles

In this subsection we shall describe how the ta encode discrete theta angles of the SO(2k)/Z2
gauge theory. The form of the result depends upon the value of k:

• for k odd, possible discrete theta angles are classified by Z4,

• for k even, possible discrete theta angles are classified by Z2 × Z2.

In particular, for gauge groups SO(4` + 2)/Z2, there is a single (Z4) discrete theta angle,
whereas for gauge groups SO(4`)/Z2, there are a pair of (Z2) discrete theta angles. We
will discuss each of these cases.

7It may be useful to observe that the coordinate change is

n1 = y1 − y2, n2 = y1 − y3, n3 = y1 − y4, n4 = −y1 + y2 + y3 + y4. (4.28)
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First, write each
ta = ma

2πi
4 . (4.33)

Possible values of ma are encoded in the weight lattice of the Lie algebra, from our ansatz
in section 2. As discussed in the previous subsection, allowed weights on the weight lattice
have one of the following two forms: either all of the ma are odd, or all of the ma are even.
In particular, the weights corresponding to spinor representations are

(m1,m2,m3, · · · ) = (±1,±1,±1, · · · ) (4.34)

in this normalization convention, or (1/2)(±1,±1, · · · ) in the conventions of [35]. Similarly,
root lattice vectors are of the form

(m1,m2,m3, · · · ) = (· · · , 0,±2, 0, · · · , 0,±2, 0, · · · ), (4.35)

and so shifts by root lattice elements shift pairs of ma by ±2.
Given the structure of possible weight lattice elements (ma) above, we can now define

two functions that are invariant under root lattice shifts:∑
a

ma mod 4, (4.36)

m1 mod 2. (4.37)

(The reader should note that there is nothing special about m1, the invariant can be defined
for any onema, and gives the same value for any choice.) The second invariant tells whether
the weight lattice element is one for which all of the ma are odd or even.

Now, in the case that k is even, more can be said. In this case, for all weight lattice
elements, ∑

a

ma ≡ 0 mod 2. (4.38)

Put another way, the sum ∑
a

ma ∈ {0, 2} mod 4. (4.39)

As a result, in this case, the two invariants (4.36), (4.37) define two separate Z2-valued
invariants, and so we can naturally identify discrete theta angles with elements of Z2×Z2.

In the case that k is odd, the first invariant (4.36) can take any value (mod 4), and
so defines a map to Z4. The second invariant, (4.37), merely tells us whether the first
invariant will be even or odd, and so does not provide independent information. Thus, we
see that in this case, the possible discrete theta angles are characterized by Z4.

Finally, let us check this prescription for the discrete theta angle is consistent with the
Weyl group. The Weyl group W of any SO(2k) is [36, section 18.1] the extension

1 −→ K −→ W −→ Sk −→ 1, (4.40)

where K ⊂ (Z2)k is the subgroup with an even number of nontrivial generators. Each Z2
factor multiplies the corresponding σa by −1, and hence also multiplies ta by −1. (There
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is also an action on the Xµν , see [2, section 9] for details.) Since there are an even number
of sign flips, and each sign flip changes ma 7→ ma + 2, we see that

∑
ma mod 4 is well-

defined under K, and since it is permutation-invariant, it is also invariant under all of
the Weyl group W . Similarly, since all the ma are either even or odd, m1 mod 2 is also
permutation-invariant, and as it is a mod 2 invariant, it is also invariant under K and so
invariant under all of the Weyl group.

4.4 Vacua

Now that we understand the discrete theta angles in the mirror, we can turn to computing
the vacua.

Recall that the critical loci of the mirror superpotential (4.1) to a pure SO(2k)/Z2
gauge theory are given by

X2a,2b = −X2a−1,2b−1, X2a−1,2b = −X2a,2b−1, (4.41)

( ∏
ν>2a

X2a−1,ν
X2a,ν

)1/2
 ∏
µ<2a−1

Xµ,2a−1
Xµ,2a

1/2

= exp(−ta). (4.42)

Because of the square root branch cuts, the ta are not themselves uniquely defined,
so we shall turn to the discrete theta angles, for which we will be able to get well-defined
expressions. There are two cases, k even or odd, with related invariants, which we consider
in turn.

First, we consider the discrete theta angle defined by∑
a

ma mod 4, (4.43)

so we consider the corresponding product of the exp(−ta). (For k odd, this takes values in
Z4, but for k even, the sum lies in {0, 2}, and so for k even this is only Z2-valued.) It is
straightforward to show that on the critical locus, from equation (4.42),

∏
a

exp(−ta) =
∏
a<b

X2a−1,2b−1
X2a,2b

. (4.44)

(Note that the square roots have disappeared — those factors which did not cancel out,
came in pairs, giving a well-defined expression.) Furthermore, on the critical locus, each
of the ratios is −1, and so we find∏

a

exp(−ta) = (−1)N , (4.45)

where
N =

(
k

2

)
= k(k − 1)

2 . (4.46)

Put another way, the discrete theta angle for which the theory has supersymmetric vacua is∑
a

ma ≡ 2N mod 4 ≡ k(k − 1) mod 4. (4.47)
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For example, a pure SO(6)/Z2 gauge theory can only have vacua for the case that

∑
a

ma ≡ 2
(

3
2

)
mod 4 ≡ 2 mod 4. (4.48)

(As a consistency check, recall that SO(6)/Z2 = SU(4)/Z4, and for the latter, we also
found that vacua exist only for the same discrete theta angle as above.)

The second invariant is
m1 mod 2. (4.49)

For k odd, this merely defines the cokernel of the map Z2 ↪→ Z4 but for k even, this
defines a distinct independent Z2 invariant. Since the ta ∈ (πi/2)Z, to get this invariant
we consider

exp(−2t1) =
∏
ν>2

X1ν
X2ν

=
∏
a>1

X1,2a
X2,2a−1

X1,2a−1
X2,2a

. (4.50)

On the critical locus, each ratio is −1, and there are 2k − 2 such factors, hence

exp(−2t1) = +1, (4.51)

and so
m1 ≡ 0 mod 2. (4.52)

and for the case k is even, this is an independent Z2 invariant.
So far, we have computed discrete theta angles for which pure SO(2k)/Z2 gauge theo-

ries admit vacua. (There is a unique choice of discrete theta angle for which the theory has
supersymmetric vacua, meaning there are no supersymmetric vacua for different discrete
theta angles.) For the case when there are vacua, the same arguments that have appeared
elsewhere suggest that the IR limit is a theory of free twisted chiral superfields, as many
as the rank.

This is consistent with decomposition [12, 19, 20]: a pure SO(2k) gauge theory admits
a Z2 one-form symmetry, and decomposes into a pair of SO(2k)/Z2 gauge theories, with
two of the possible four discrete theta angles, for example

SO(2k)0 = (SO(2k)/Z2)0 + (SO(2k)/Z2)2 (4.53)

(where subscripts on the right indicate
∑
ama, mod 4). We argued in [2, section 13.1] that

the pure SO(2k) gauge theory only has supersymmetric vacua for the case of vanishing
discrete theta angle, and we have seen above that pure SO(2k)/Z2 gauge theories only
have supersymmetric vacua for one of two discrete theta angles, for which

∑
ama ∈ {0, 2}.

Precisely those two SO(2k)/Z2 gauge theories appear in the decomposition of SO(2k)0,
and as the structure of the vacua is the same in both cases, we see that our results are
consistent with decomposition.

4.5 Pure SO(2k) gauge theories

Now that we have given a complete picture of discrete theta angles in SO(2k)/Z2 gauge
theories, let us re-examine the picture of discrete theta angles in SO(2k) gauge theories
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given in [2]. There, instead of multiple ta, only a single t was specified, taking values in
{0, πi}. Although this description is rather different from the more sophisticated descrip-
tion of discrete theta angles used elsewhere in this paper, we shall see that it is appropriate
for that case.

In principle, we can derive discrete theta angles for SO(2k) gauge theories using the
same methods we have applied elsewhere in this paper. In principle, we have a set of
ta, as many as the rank, and since the discrete theta angles here take values in Z2, each
ta ∈ {0, πi}. As before, write

ta = 2πi
2 ma, (4.54)

for ma ∈ Z.
As before, the weight lattice consists of sets of integers (ma) that are either all even or

all odd. Since we are only interested in the integers mod two, the all-even case is equivalent
to taking all of the ma to be zero, and the all-odd case is equivalent to taking all of the
ma to be one. In either case, note that all of the ma are identical, hence all of the ta are
identical, agreeing with the description in [2]. Furthermore, the discrete theta angle can
be encoded as

m1 mod 2, (4.55)

which is equivalent to the description in [2].
Next, let us check that our results are consistent with decomposition of pure SO(2k)

gauge theories [12, 19, 20]. First, consider the case that k is even, k = 2k′. The original
SO(2k) = SO(4k′) gauge theory has a Z2 discrete theta angle, and denoting Z2 discrete
theta angles by a subscript ±, decomposition predicts8

SO(4k′)+ = (SO(4k′)/Z2)++ ⊕ (SO(4k′)/Z2)+−, (4.56)
SO(4k′)− = (SO(4k′)/Z2)−− ⊕ (SO(4k′)/Z2)−+. (4.57)

In [2, section 13.1], it was argued that the pure SO(4k′)+ theory (with vanishing discrete
theta angle) flows in the IR to 2k′ twisted chiral multiplets, whereas the SO(4k′)− theory
has no supersymmetric vacua. In this section we have argued that only for either the ++
discrete theta angle or the +− discrete theta angle (depending upon k′) does the pure
SO(4k′)/Z2 theory admit supersymmetric vacua, in which case it flows in the IR to 2k′

twisted chiral multiplets. We see from the statement of decomposition above that the de-
composition of the SO(4k′)+ theory (with the free IR endpoint) includes an (SO(4k′)/Z2)++
summand, so both sides of the equalities above have the same IR endpoints, as expected.

Next, consider the case that k is odd, k = 2k′ + 1. The original SO(4k′ + 2) gauge
theory has a Z2 discrete theta angle, and only for the case that the discrete theta angle is

8In fact, we can see this structure from the mirror. In the mirror to the pure SO(4k′) theory, the +
discrete theta angle corresponds to the ma all even, and the − to the ma all odd. In the mirror to the pure
SO(4k′)/Z2 theory, the ++ case corresponds to all-even ma with a sum that vanishes mod 4, the −− case
corresponds to all-odd ma with a sum that is 2 mod 4, the +− case corresponds to all-even ma with a sum
that is 2 mod 4, and the −+ case corresponds to all-odd ma with a sum that vanishes mod 4. The terms
are simply being grouped by the common Z2 invariant.
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trivial does the theory have supersymmetric vacua (for which case, it flows in the IR to a
set of twisted chiral multiplets). Decomposition predicts

SO(4k′ + 2)+ = (SO(4k′ + 2)/Z2)0 ⊕ (SO(4k′ + 2)/Z2)2, (4.58)
SO(4k′ + 2)− = (SO(4k′ + 2)/Z2)1 ⊕ (SO(4k′ + 2)/Z2)3. (4.59)

and we argued earlier that only for either the 0 discrete theta angle or the 2 discrete theta
angle (depending upon k′) does the pure SO(4k′ + 2)/Z2 gauge theory admit supersym-
metric vacua. Thus, both sides of each equality above flow in the IR to the same endpoint,
as expected.

5 Pure Sp(2k)/Z2 gauge theories

The IR behavior of pure supersymmetric two-dimensional Sp(2k) gauge theories was dis-
cussed with nonabelian mirrors in [2, section 13.3], using nonabelian mirrors. In this section
we will discuss the IR behavior of pure Sp(2k)/Z2 gauge theories.

The center of Sp(2k) is Z2, hence we can consider pure gauge theories with gauge
group Sp(2k)/Z2, which have two possible discrete theta angles.

Drawing upon the mirror to pure Sp(2k) gauge theories discussed in [2, section 13.3],
the mirror superpotential is given by

W = (1/2)
k∑
a=1

σa

(∑
µ≤ν

(δµ,2a − δµ,2a−1 + δν,2a − δν,2a−1)Zµν − 2ta

)

+
∑
µ

Xµµ +
∑
a<b

(X2a,2b +X2a−1,2b−1 +X2a−1,2b +X2a,2b−1) , (5.1)

where ta ∈ {0, πi} encodes the discrete theta angle, as we shall elaborate momentarily, and
the Xµν are defined for µ ≤ ν, excluding X2a−1,2a. The critical locus is given by

X2a,2b = −X2a−1,2b−1, X2a−1,2b = −X2a,2b−1, (5.2)

(
X2a−1,2a−1
X2a,2a

)∏
b>a

X2a−1,2b−1
X2a,2b

X2a−1,2b
X2a,2b−1

1/2∏
b<a

X2b−1,2a−1
X2b,2a

X2b,2a−1
X2b−1,2a

1/2

= exp(−ta).

(5.3)

To classify possible solutions, we need first to understand the discrete theta angles.
Write ta = maπi, for ma ∈ {0, 1}, then the discrete theta angle is given by∑

a

ma mod 2. (5.4)

This expression is essentially fixed by the Weyl group. (We will also give a systematic
derivation from weight and root lattices momentarily.) Recall that the Weyl group W of
Sp(2k) is [36, section 16.1] an extension

1 −→ (Z2)k −→ W −→ Sk −→ 1. (5.5)
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The (Z2)k acts on the σa (and hence ta) by sign flips, and Sk interchanges the σa (and ta).
(There is also an action on Xµν , as discussed in [2, section 11].) Note that since t = πi is
equivalent to t = −πi, invariance under the (Z2)k fixes allowed ta to be either zero or πi,
and invariance under permutations requires that the discrete theta angle be determined
by a sum of ma (up to irrelevant signs), mod 2. Thus, the discrete theta angle given in
expression (5.4) is invariant under the Weyl group, and in fact is fixed by Weyl invariance.

Now, let us determine for which discrete theta angles there are supersymmetric vacua.
From equation (5.3), it is straightforward to show that∏

a

exp(−ta) =
(∏

a

X2a−1,2a−1
X2a,2a

)(∏
a<b

X2a−1,2b−1
X2a,2b

)
, (5.6)

an expression which does not have any square root branch cuts and hence is unambiguous.
Each of the ratios appearing above is −1 on the critical locus, and since there are

k +
(
k

2

)
= 1

2k(k + 1) (5.7)

factors, we see that a necessary condition for the existence of supersymmetric vacua is that∑
a

ma mod 2 ≡ 1
2k(k + 1) mod 2. (5.8)

Only for that discrete theta angle does the pure Sp(2k)/Z2 theory admit supersymmet-
ric vacua.

As a consistency check, for the special case

SO(3) = SU(2)/Z2 = Sp(2)/Z2, (5.9)

we see the discrete theta angle is nontrivial (since (1/2)k(k+ 1) ≡ 1 mod 2), which agrees
with the results of section 3.1.

As another consistency check, for the special case

SO(5) = Sp(4)/Z2, (5.10)

to get supersymmetric vacua, the discrete theta angle must be (1/2)k(k + 1) ≡ 1 mod 2,
which agrees with results for SO(5) in [2, section 13.2].

Next, let us turn to weight and root lattices, to confirm our description of the discrete
theta angle, and also help set up the more complex E6 and E7 cases we will discuss later.
Following the conventions and notation of [2], for Sp(2k), the weight lattice can be identified
with Zk, with the standard basis. Root vectors are of the form

(0, · · · ,±2, · · · , 0), (0, · · · , 0,±1, 0, · · · , 0,±1, 0, · · · ). (5.11)

We can take a basis for the root lattice to be the vectors forming the rows of the matrix

A =



1 1 0 0 · · · 0 0
1 −1 0 0 · · · 0 0
0 1 −1 0 · · · 0 0
0 0 1 −1 · · · 0 0
... · · · 0
0 0 0 0 · · · 1 −1


. (5.12)
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A Smith decomposition of A is given by

Q−1 =



1 0 −1 −1 · · · −1
1 −1 −1 −1 · · · −1
1 −1 −2 −1 · · · −1
1 −1 −2 −2 · · · −1
... · · · −1
1 −1 −2 −2 · · · −2


, P =



1 0 0 0 · · · −1
0 1 0 0 · · · −1
0 0 1 0 · · · −1
0 0 0 1 · · · −1
... · · · −1
0 0 0 0 · · · +1


. (5.13)

It is straightforward to check that

detQ−1 = ±1, detP = 1, (5.14)

and
Q−1AP = diag(1, 1, · · · , 1, 2), (5.15)

as expected since the center of Sp(2k) is Z2.
We can construct an invariant of the weight lattice, a map to Z2, as

~γ · ~m mod 2, (5.16)

where ~γ is determined from the matrix P to be

γ = (−1,−1,−1, · · · ,−1,+1). (5.17)

In particular,
~γ · ~m ≡

∑
a

ma mod 2, (5.18)

agreeing with the expression given earlier for the discrete theta angle.
So far we have derived for which discrete theta angles a pure Sp(2k)/Z2 gauge theory

has supersymmetric vacua. Following the same analysis as [2, section 13.3], one can in-
tegrate out the X fields to find a theory of (Weyl-orbifold-invariant combinations of) k σ
fields, with vanishing superpotential. As elsewhere in this paper, that does not suffice to
uniquely specify that the IR theory is a free theory, but it is certainly consistent with that
possibility.

Let us conclude this section by briefly commenting on decomposition [12, 19, 20],
which in this case says that a pure two-dimensional Sp(2k) gauge theory can be written
as the disjoint union of a pair of Sp(2k)/Z2 gauge theories, one for each choice of discrete
theta angle. We have learned that precisely one of those pure Sp(2k)/Z2 gauge theories
flows in the IR to the same endpoint as the pure Sp(2k) gauge theory, as discussed in [2,
section 13.3]. The other Sp(2k)/Z2 gauge theory has no supersymmetric vacua, breaking
supersymmetry in the IR. Thus, we see that these computations are consistent with the
prediction of decomposition.
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6 Pure E6/Z3 gauge theories

Next, we turn to pure gauge theories with exceptional gauge groups. Pure gauge theories
with gauge groups G2, F4, E6,7,8 were considered in [3]. Two of these groups — E6 and
E7 — have a nontrivial center, but only those two [37, appendix A]. Specifically, E6 has
center Z3 and E7 has center Z2.

In this section we will consider the case E6/Z3. As the pertinent equations are ex-
tremely lengthy, we shall be brief, referring to [3, section 5] for details.

Following the same method as before, the mirror superpotential to a pure E6/Z3 gauge
theory is of the form

W = (1/3)
6∑

a=1
σa
∑
µ̃

αaµ̃Zµ̃ −
∑
a

taσa +
∑
µ̃

Xµ̃, (6.1)

where the ta determine discrete theta angles, in a fashion to be discussed briefly.
Briefly, using the results of [3], the critical locus equations for the mirror superpotential

are of the form
[Ra]1/3 = exp(−ta), (6.2)

where a ∈ {1, · · · , 6}, and each Ra is a product of 22 ratios (including multiplicities), in
which on the critical locus each ratio is −1. Because of the cube root, the ta themselves are
ambiguous. To determine the necessary conditions for supersymmetric vacua to exist, we
first need to find an expression for discrete theta angles, and then using that expression,
we will find an expression for the discrete theta angle arising on the critical locus.

Now, to finish classifying solutions, we need to understand how the possible ta cor-
respond to the three possible discrete theta angles. Unlike our previous examples, this
cannot be done merely by inspection, as the lattice is more complicated. To understand
the discrete theta angles, we need to work more systematically.

Thus, we now turn to weight and root lattices, to understand how the ta correspond
to possible discrete theta angles. Following the conventions and notation of [3], a basis for
the weight lattice can be given as

Y1 ∼ (1, 0, 0, 0, 0, 0), (6.3)
Y2 ∼ (−1, 1, 0, 0, 0, 0), (6.4)
Y3 ∼ (0,−1, 1, 0, 0, 0), (6.5)
Y25 ∼ (0, 0,−1, 1, 0, 0), (6.6)
Y26 ∼ (0, 0, 0,−1, 1, 0), (6.7)
Y7 ∼ (0, 0, 0, 0,−1, 1). (6.8)

We can then write a basis of root lattice vectors as

X1 ∼ (0, 0, 0, 0, 0, 1) = Y1 + Y2 + Y3 + Y25 + Y26 + Y7, (6.9)
X2 ∼ (0, 0, 1, 0, 0,−1) = −Y25 − Y26 − Y7, (6.10)
X3 ∼ (0, 1,−1, 1, 0, 0) = Y1 + Y2 + Y25, (6.11)
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X4 ∼ (0, 1, 0,−1, 1, 0) = Y1 + Y2 + Y26, (6.12)
X5 ∼ (1,−1, 0, 1, 0, 0) = Y1 + Y3 + Y25, (6.13)
X6 ∼ (−1, 0, 0, 1, 0, 0) = Y2 + Y3 + Y25, (6.14)

which can be encoded in the matrix

A =



1 1 1 1 1 1
0 0 0 −1 −1 −1
1 1 0 1 0 0
1 1 0 0 1 0
1 0 1 1 0 0
0 1 1 1 0 0


. (6.15)

A Smith decomposition of A is given by

Q−1 =



3 1 1 −2 −1 −2
3 1 1 −2 −2 −1
3 1 0 −2 −1 −1
2 0 1 −2 −1 −1
2 0 0 −1 −1 −1
4 1 1 −3 −2 −2


, P =



1 0 0 0 0 −2
0 1 0 0 0 −2
0 0 1 0 0 −2
0 0 0 1 0 −2
0 0 0 0 1 −2
0 0 0 0 0 1


. (6.16)

It is straightforward to check that

detQ−1 = 1 = detP, (6.17)

and
Q−1AP = diag(1, 1, 1, 1, 1, 3), (6.18)

as expected since the center of E6 is Z3. From the description above, we see that the Z3
invariant is defined by

~γ · ~m mod 3, (6.19)

where ~m = (m1, · · · ,m6), and in the basis of Y ’s,

~γ = (−2,−2,−2,−2,−2,+1). (6.20)

Now,

y1 = n1, (6.21)
y2 = −n1 + n2, (6.22)
y3 = −n2 + n3, (6.23)
y25 = −n3 + n4, (6.24)
y26 = −n4 + n5, (6.25)
y7 = −n5 + n6. (6.26)
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hence

n1 = y1, (6.27)
n2 = y1 + y2, (6.28)
n3 = y1 + y2 + y3, (6.29)
n4 = y1 + y2 + y3 + y25, (6.30)
n5 = y1 + y2 + y3 + y25 + y26, (6.31)
n6 = y1 + y2 + y3 + y25 + y26 + y7, (6.32)

so in the original basis, we have

~γ = (−2,−4,−6,−8,−10,−9), (6.33)

so the predicted invariant is

~γ · ~m ≡ m1 + 2m2 +m4 + 2m5 mod 3. (6.34)

It is straightforward that all the root vectors ~m have ~γ · ~m ≡ 0 mod 3, in the basis
conventions of [3].

We take the ta to be of the form

ta = 2πi
3 ma, (6.35)

where ma ∈ Z. From the weight/root lattice analysis above, we see that the element of Z3
defined by a set of ma is

m1 + 2m2 +m4 + 2m5 mod 3. (6.36)

Now that we have determined the discrete theta angles, we are ready to compute
for which discrete theta angles there are supersymmetric vacua. Using the critical locus
equations from [3, section 5], with exponents of 1/3 as in equation (6.2), it is straightforward
to compute that

exp(−t1 − 2t2 − t4 − 2t5) = R3R4
R10

R11
R12

R13R15R17
R23R27R28

R29R30R31
R32

R35, (6.37)

where each Rn indicates a ratio of the form Xn/Xn+36, and all such ratios are −1 on the
critical locus, from [3, section 8]. (We should emphasize that the fact that integer powers
of the Rn appear, so that there is no cube root branch cut ambiguity, is itself a highly
nontrivial check, as the critical locus equations themselves involve factors of the form R1/3.
All factors of R either cancel out or appear in multiples of three.) Since there are sixteen
such factors, an even number of factors of −1, we see that

exp(−t1 − 2t2 − t4 − 2t5) = 1 (6.38)

on the critical locus, so that supersymmetric vacua only exist in the case

m1 + 2m2 +m4 + 2m5 ≡ 0 mod 3, (6.39)

i.e. for vanishing discrete theta angle.
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For that discrete theta angle, as in the analysis in [3, section 5.4] for a pure E6 theory,
the critical locus is described by six twisted chiral multiplets with vanishing superpotential.

Putting this together, and comparing to our earlier results, a pure E6/Z3 gauge theory
has vacua (corresponding to six twisted chiral multiplets) in the case that all ta vanish,
which is the case of vanishing discrete theta angle. As before, this is consistent with
decomposition: a pure E6 gauge theory decomposes into a sum of pure E6/Z3 theories,
and precisely one of those E6/Z3 theories has a nontrivial IR limit, the same as the pure
E6 theory, while the others break supersymmetry in the IR.

7 Pure E7/Z2 gauge theories

In this section we will consider the case E7/Z2. As the pertinent equations are extremely
lengthy, we shall be brief, referring to [3, section 6] for details.

Briefly, the critical locus equations for the mirror superpotential are of the form

[Ra]1/2 = exp(−ta), (7.1)

where a ∈ {1, · · · , 7}, and each Ra is a product of 68 ratios (including multiplicities), in
which on the critical locus each ratio is −1. Because of the square root branch cuts, the
values of exp(−ta) are not uniquely determined on the critical locus; however, we will find
a unique value of the discrete theta angle for which solutions exist.

To complete the analysis, we need to describe how the ta encode discrete theta angles.
As for E6, this is too complex to perform by inspection, so we work systematically through
weight and root lattices.

Following the conventions and notation of [3], a basis for the weight lattice can be
given as

Y1 ∼ (0, 0, 0, 0, 0, 1, 0), (7.2)
Y2 ∼ (0, 0, 0, 0, 1,−1, 0), (7.3)
Y3 ∼ (0, 0, 0, 1,−1, 0, 0), (7.4)
Y4 ∼ (0, 0, 1,−1, 0, 0, 0), (7.5)
Y6 ∼ (0, 1, 0, 0, 0, 0,−1), (7.6)
Y7 ∼ (1,−1, 0, 0, 0, 0, 1), (7.7)
Y36 ∼ (1, 0, 0, 0, 0, 0,−1). (7.8)

We can then write a basis of root lattice vectors as

X1 ∼ (1, 0, 0, 0, 0, 0, 0) = Y6 + Y7, (7.9)
X2 ∼ (−1, 1, 0, 0, 0, 0, 0) = Y6 − Y36, (7.10)
X3 ∼ (0,−1, 1, 0, 0, 0, 0) = Y1 + Y2 + Y3 + Y4 − 2Y6 − Y7 + Y36, (7.11)
X4 ∼ (0, 0,−1, 1, 0, 0, 1) = −Y4 + Y6 + Y7 − Y36, (7.12)
X5 ∼ (0, 0, 0,−1, 1, 0, 1) = −Y3 + Y6 + Y7 − Y36, (7.13)
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X6 ∼ (0, 0, 0, 1, 0, 0,−1) = Y1 + Y2 + Y3 − Y6 − Y7 + Y36, (7.14)
X7 ∼ (0, 0, 0, 0,−1, 1, 1) = −Y2 + Y6 + Y7 − Y36, (7.15)

which can be encoded in the matrix

A =



0 0 0 0 1 1 0
0 0 0 0 1 0 −1
1 1 1 1 −2 −1 1
0 0 0 −1 1 1 −1
0 0 −1 0 1 1 −1
1 1 1 0 −1 −1 1
0 −1 0 0 1 1 −1


. (7.16)

A Smith decomposition of A is given by

Q−1 =



0 −1 −1 −1 1 2 1
1 0 0 0 0 0 −1
1 0 0 0 −1 0 0
1 0 0 −1 0 0 0
1 0 −1 −1 0 1 0
1 −1 0 0 0 0 0
1 −1 −1 −1 0 1 0


, P =



1 0 0 0 0 0 −1
0 1 0 0 0 0 −1
0 0 1 0 0 0 −1
0 0 0 1 0 0 −1
0 0 0 0 1 0 −1
0 0 0 0 0 1 −1
0 0 0 0 0 0 1


. (7.17)

It is straightforward to check that

detQ−1 = 1 = detP, (7.18)

and
Q−1AP = diag(1, 1, 1, 1, 1, 1, 2), (7.19)

as expected since the center of E7 is Z2.
The invariant, the map to Z2, is given from the right column of P by

γ · ~m mod 2, (7.20)

where in a basis of Y ’s,

~γ = (−1,−1,−1,−1,−1,−1,+1). (7.21)

Converting to the basis in [3], we have

~γ = (−2,−4,−4,−3,−2,−1,−3), (7.22)

which gives the invariant

~γ · ~m ≡ m4 +m6 +m7 mod 2. (7.23)

It is straightforward to check that for every root ~m, in the basis used in [3], ~γ · ~m ≡ 0
mod 2.
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As before, we take the ta to be of the form

ta = 2πi
2 ma, (7.24)

where ma ∈ Z. From the weight/root analysis above, we see that the Z2 discrete theta
angle defined by a set of ma is

m4 +m6 +m7 mod 2. (7.25)

We are now ready to determine for which discrete theta angle the pure E7/Z2 gauge
theory has supersymmetric vacua. Using the critical locus equations9 from [3, section 7],
with exponents of 1/2 as in equation (7.1), it is straightforward to compute that

exp(−t4 − t6 − t7) = R4R7R13
R8R12R20

R18R19
R26

R27
R28

R29
R36
R38

R37
R40

R39
R48

R47
R50

R49
R51

R59
R58

R60
R61

R62, (7.26)

where each Rn indicates a ratio of the form Xn/Xn+63, and all such ratios are −1 on the
critical locus, from [3, section 6]. (We should emphasize that the fact that integer powers
of the Rn appear, rather than square roots, is itself a highly nontrivial check, as the critical
locus equations themselves involve factors of R1/2.) Since there are 27 such factors, an odd
number of factors of −1, we see that

exp(−t4 − t6 − t7) = −1 (7.27)

on the critical locus, so that supersymmetric vacua only exist in the case

m4 +m6 +m7 ≡ 1 mod 2, (7.28)

i.e. for the nontrivial Z2 discrete theta angle.
So far we have determined for which discrete theta angle a pure E7/Z2 gauge theory has

supersymmetric vacua. If we repeat the same analysis of [3, section 6.4], one finds that the
critical locus is described by seven twisted chiral multiplets with vanishing superpotential,
just as in the case of a pure E7 gauge theory.

Putting this together, and comparing to our earlier results, a pure E7/Z2 gauge theory
has vacua (corresponding to seven fields) in the case of a nontrivial discrete theta angle.
We note this is consistent with decomposition: a pure E7 gauge theory decomposes as the
sum of two pure E7/Z2 gauge theories with either value of the discrete theta angle. One
has no supersymmetric vacua, the other evidently flows to the same fixed point as the pure
E7 gauge theory, and so decomposition is consistent.

8 Summary and comparison with prior results

Briefly, our results here together with the analysis of [2, 3] demonstrates that nonabelian
mirrors are consistent with the statement that pure (2,2) supersymmetric G gauge theories

9There are some typos in the factors multiplying σ7 in [3, eq. (6.16)], which we have corrected when
performing the computation given here.
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admit supersymmetric vacua for precisely one choice of discrete theta angle, for which they
flow in the IR to a set of free twisted chiral superfields, as many as the rank of G, and
break supersymmetry in the IR for other values of the discrete theta angle. We will walk
through the details, and also verify that the results are consistent with decomposition.

First, these results correctly reproduce the result of [1], [2, section 12.1] that pure
supersymmetric SU(2) gauge theories and SO(3) = SU(2)/Z2 theories with nontrivial dis-
crete theta angle have supersymmetric vacua, but the pure SO(3) theory with vanishing
discrete theta angle does not have any supersymmetric vacua.

More generally, pure supersymmetric SU(k) gauge theories have [2, section 12.3] vacua,
flowing in the IR to k − 1 degrees of freedom, as do SU(k)/Zk gauge theories for precisely
one choice of discrete theta angle, namely∑

a

ma ≡ −
k(k − 1)

2 mod k, (8.1)

as we argued in section 3.3.
Pure supersymmetric SO(2k) gauge theories were argued in [2, section 13.1] to have

supersymmetric vacua (and k IR degrees of freedom) for exactly one choice of (Z2) discrete
theta angle, namely the trivial one. We studied pure SO(2k)/Z2 gauge theories in section 4,
and argued that they also have supersymmetric vacua (and k degrees of freedom) for exactly
one choice of discrete theta angle (either Z2 × Z2 or Z4), given by∑

a

ma ≡ k(k − 1) mod 4, m1 ≡ 0 mod 2. (8.2)

As a consistency check, note that SU(4)/Z4 and SO(6)/Z2 both have supersymmetric
vacua (and the same number of IR degrees of freedom) in the descriptions above for the
same discrete theta angle, ∑

a

ma ≡ 2 mod 4, (8.3)

as expected since SU(4)/Z4 = SO(6)/Z2. (Similarly, we checked in section 3.4) that SO(6)
and SU(4)/Z2 also have supersymmetric vacua for the same discrete theta angle, as ex-
pected since they are the same group.)

Pure supersymmetric SO(2k + 1) gauge theories were studied in [2, section 13.2], and
argued to have supersymmetric vacua for the one nontrivial discrete theta angle, with as
many IR degrees of freedom as the rank. (Note that this is consistent with SU(k)/Zk
results, which also flow in the IR to a free field theory for a nontrivial discrete theta angle,
as SO(3) = SU(2)/Z2.) As SO(2k + 1) has no center, no further quotients exist.

Pure supersymmetric Sp(2k) gauge theories were studied in [2, section 13.3], and ar-
gued to have supersymmetric vacua, with as many IR degrees of freedom as the rank. We
studied pure Sp(2k)/Z2 gauge theories in section 5, where we argued that they have su-
persymmetric vacua with as many degrees of freedom as the rank for precisely one discrete
theta angle. This matches the results reviewed in section 3.1 for pure SO(3) = Sp(2)/Z2
gauge theories, for which supersymmetric vacua exist for the nontrivial discrete theta an-
gle. This also matches the results in [2, section 13.2] for pure SO(5) = Sp(4)/Z2 gauge
theories, for which supersymmetric vacua exist for the nontrivial discrete theta angle.
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Pure E6 gauge theories were discussed in [3, section 5.4], which argued that they have
supersymmetric vacua with six (twisted chiral) IR degrees of freedom. We discussed pure
E6/Z3 gauge theories in section 6, where we discovered that these also flow to the same IR
theories for a single choice of discrete theta angle.

Similarly, pure E7 gauge theories were discussed in [3, section 6.4], which argued
that they have supersymmetric vacua with seven (twisted chiral) degrees of freedom. We
discussed pure E7/Z2 gauge theories in section 7, where we discovered that these also flow
to the same IR theories for a single choice of discrete theta angle.

Pure supersymmetric G2, F4, and E8 gauge theories were discussed in [3], which argued
that they have supersymmetric vacua and as many (twisted chiral) IR degrees of freedom
as the rank. However, these groups have no center, so there are no further quotients
to consider.

These results, for G and G/K gauge theories, are intimately related: a pure G/K
gauge theory flows in the IR to the same endpoint, the same free field theory, as a pure
G gauge theory, but for a single value of the G/K discrete theta angle. This is consistent
with nonabelian decomposition in two-dimensional theories [12, 19, 20]: briefly, a two-
dimensional G gauge theory with center K ‘decomposes’ into a sum of G/K gauge theories
with various discrete theta angles. Schematically:

G-gauge theory = ⊕α∈K (G/K-gauge theory)α . (8.4)

(Technically this decomposition reflects the existence of a BK one-form symmetry in
the original two-dimensional theory; see [21] for an analogous decomposition in four-
dimensional theories with three-form symmetries.) Any IR endpoint of the G gauge theory
must therefore be shared amongst the G/K gauge theories appearing in the decomposition,
which must reproduce that endpoint amongst their sum. The results above are consistent
with this decomposition: for each G above, exactly one of the G/K theories (corresponding
to one discrete theta angle) has an IR fixed point, a free field theory, the same as that of
the G gauge theory.

We can also use decomposition to make predictions for the IR behavior of pure Spin(n)
gauge theories, based on our results for pure SO(n) theories. Recall pure SO(n) theories
with precisely one discrete theta angle have an IR limit (a free theory, with as many
twisted chiral superfields as the rank), and the other discrete theta angles prohibit any
supersymmetric vacua. Since a Spin(n) theory decomposes as a union of those SO(n)
theories, we see that a pure supersymmetric two-dimensional Spin(n) theory flows in the
IR to the same free theory, with as many twisted chiral superfields as the rank.

As consistency checks, let us compare some special cases:

• Spin(3) = SU(2). It was argued in [1] that pure SU(2) theories flow in the IR to a
theory with one twisted chiral superfield, consistent with the claim above for Spin(3).

• Spin(4) = SU(2)×SU(2). Each of the pure SU(2) theories flows in the IR to a theory
of one twisted chiral superfield, hence the Spin(4) theory must flow in the IR to a
theory of two such superfields, which is consistent with the claim above for Spin(4).
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• Spin(5) = Sp(4). As discussed in [2, section 13.3], a pure supersymmetric Sp(4) gauge
theory in two dimensions flows in the IR to a theory of two twisted chiral multiplets,
which matches the prediction above for Spin(5).

• Spin(6) = SU(4). As discussed in [2, section 12.3], a pure supersymmetric SU(4)
gauge theory in two dimensions flows in the IR to a theory of three twisted chiral
multiplets, which matches the prediction above for Spin(6).

9 Conclusions

In this paper we have taken another step towards understanding the IR behavior of pure
two-dimensional (2,2) supersymmetric gauge theories, following [1–3]. Specifically, both di-
rectly in gauge theories and in parallel with nonabelian mirror symmetry we have examined
pure SU(k)/Zk, SO(2k)/Z2, Sp(2k)/Z2, E6/Z3, and E7/Z2 gauge theories. The possible
discrete theta angles in these theories are considerably more complicated than those ap-
pearing in examples studied previously in [1–3], which we have worked out in detail, and
in parallel we have also extended and tested the technology of nonabelian mirrors.
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