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Abstract: We examine six-dimensional quantum field theories through the lens of higher-
form global symmetries. Every Yang-Mills gauge theory in six dimensions, with field
strength f (2), naturally gives rise to a continuous 1-form global symmetry associated with
the 2-form instanton current J (2) ∼ ∗Tr

(
f (2) ∧ f (2)

)
. We show that suitable mixed anoma-

lies involving the gauge field f (2) and ordinary 0-form global symmetries, such as flavor or
Poincaré symmetries, lead to continuous 2-group global symmetries, which allow two flavor
currents or two stress tensors to fuse into the 2-form current J (2). We discuss several fea-
tures of 2-group symmetry in six dimensions, many of which parallel the four-dimensional
case. The majority of six-dimensional supersymmetric conformal field theories (SCFTs)
and little string theories have infrared phases with non-abelian gauge fields. We show that
the mixed anomalies leading to 2-group symmetries can be present in little string theories,
but that they are necessarily absent in SCFTs. This allows us to establish a previously
conjectured algorithm for computing the ’t Hooft anomalies of most SCFTs from the spec-
trum of weakly-coupled massless particles on the tensor branch of these theories. We then
apply this understanding to prove that the a-type Weyl anomaly of all SCFTs with a tensor
branch must be positive, a > 0.
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1 Introduction and summary

The detailed study of string constructions in which gravity can be decoupled in a con-
trolled way strongly indicates the existence of many non-gravitational, interacting, and
UV complete theories in d = 6 spacetime dimensions. All known 6d theories in this class
preserve N = (1, 0), N = (2, 0), or N = (1, 1) supersymmetry (SUSY), as well as Poincaré
symmetry. This class of theories can be further divided into two subclasses:

1). Superconformal field theories (SCFTs) are renormalization group (RG) fixed points,
without an intrinsic scale, that are believed to obey the rules of local quantum field
theory (QFT) [1]. (See [2] for a modern discussion of some aspects related to this,
and [3] for a recent survey of string constructions for 6d SCFTs.) In particular,
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they possess a well-defined, local stress tensor Tµν(x). Together with unitarity and
superconformal symmetry, this restricts the allowed SUSY algebras to N = (1, 0)
and N = (2, 0) (see [4] and references therein), as realized in all known examples.

With the exception of free N = (1, 0) tensor or hyper multiplets, all known 6d SCFTs
are strongly coupled and do not appear to have a Lagrangian description. However, all
known interacting 6d SCFTs possess a tensor branch — a moduli space of vacua along
which conformal symmetry is spontaneously broken, parametrized by the vacuum
expectation values (vevs) of scalars residing in N = (1, 0) tensor multiplets. At low
energies, these tensor multiplets are weakly coupled, and they may be accompanied
by other weakly-coupled matter fields in N = (1, 0) hyper or vector multiplets. Note
that a free N = (1, 0) vector multiplet is not an SCFT, because a free Maxwell field
is not conformally invariant in six dimensions. Going onto the moduli space of vacua
by activating vevs is the only way to initiate a supersymmetric RG flow out of a
6d SCFT, since such theories do not possess SUSY-preserving relevant or marginal
operators [5, 6].

2). Little string theories (LSTs) are UV complete, interacting theories without gravity
that are not local quantum field theories. They can be obtained by taking MPlanck →
∞ while keepingMstring finite in suitable string or brane constructions [7] (see [8] for a
review). A typical signature for the non-locality of LSTs is the fact that they enjoy T-
duality [7] and an asymptotic Hagedorn density of states [9], both of which are stringy
features associated with energies E & Mstring. At low energies, E � Mstring, LSTs
flow to conventional local QFTs perturbed by irrelevant local operators, i.e. they are
described by a standard low-energy effective field theory. The low-energy QFT may
either be an SCFT, in which case the super-Poincaré symmetry must be N = (1, 0)
or N = (2, 0), or it may include IR free non-conformal sectors, such as SUSY Yang-
Mills theories constructed using only N = (1, 0) vector and hyper (but not tensor)
multiplets. In the latter case the super-Poincaré symmetry can also be N = (1, 1)
rather than N = (1, 0) or N = (2, 0).

The non-locality of LSTs obstructs the definition of well-behaved local operators,
such as a local stress tensor Tµν(x). For this reason, the basic observables in LSTs
are momentum-space correlators such as 〈Tµν(p)Tρσ(−p)〉. These correlators grow
exponentially at large momenta (roughly due to the Hagedorn density of states) and
this renders their Fourier transform to position space ill defined [10, 11]. However,
they appear to be sufficiently well behaved to allow for the definition of approximately
local macroscopic observables at distances much longer than M−1

string [12].

The 6d theories described above have been studied through a combination of string and
field theoretic techniques. Since these theories are typically difficult to analyze head on,
symmetries (as well as associated anomalies) have played an important role in elucidating
their properties.

In this paper we examine the 6d SUSY theories above, along with other (generally
non-UV-complete and non-SUSY) low-energy effective QFTs in 6d, through the lens of
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higher-form global symmetries [2, 13]. The reason these make a natural appearance here
is that every 6d gauge theory, with Yang-Mills field strength f (2), naturally gives rise to a
continuous1 1-form global symmetry U(1)(1) associated with the 2-form instanton current,2

J (2) ∼ ∗Tr
(
f (2) ∧ f (2)

)
, (1.1)

where ∗ is the Hodge star (see section 1.1 below). As was shown in [17], mixed anomalies
involving the gauge field f (2) and ordinary 0-form symmetries, such as flavor or Poincaré
symmetries, make it possible for the operator product expansion (OPE) of flavor currents
or stress tensors to contain 2-form currents such as J (2). This current algebra structure,
which mixes conserved currents associated with 0-form and 1-form global symmetries, was
termed continuous 2-group global symmetry in [17].3 The analysis in [17] focused on
d = 4, where continuous 1-form global symmetries, and hence continuous 2-group global
symmetries, only arise in a somewhat special subset of theories — most notably in abelian
gauge theories. Here we generalize this discussion to d = 6, where continuous 2-group
global symmetries can also occur in the substantially richer setting of non-abelian gauge
theories. Such non-abelian gauge theories are known to arise in many IR phases of 6d
SCFTs and LSTs. As we will see, a detailed understanding of 2-group global symmetries in
these theories will allow us to clarify some of their puzzling properties that have emerged
in recent years.

1.1 Continuous 1-form global symmetries in 6d gauge theories

As was already mentioned above, we are primarily interested in continuous 1-form global
symmetries in d = 6, but we begin by reviewing a few general facts about such symmetries
that apply to all d (see [2, 13] and references therein).

A continuous 1-form global symmetry U(1)(1)
B is associated with a conserved 2-form

current J (2)
B . It’s Hodge dual ∗J (2) is a closed (d− 2)-form, d ∗ J (2) = 0. In components,

JµνB = J
[µν]
B , ∂µJ

µν
B = 0 . (1.2)

Topological (and hence conserved) charge operators can be defined by integrating ∗J (2)
B

over a (d− 2)-surface Σd−2,4

QB(Σd−2) = −i
∫

Σd−2
∗J (2)

B . (1.3)

1Aspects of discrete 1-form symmetries in 6d SUSY theories were recently discussed in [14–16].
2We essentially follow the conventions of [17]. In particular, we work in Euclidean signature, and we use

a superscript X(n) to indicate that X is an n-form. Moreover, abelian gauge fields are taken to be hermitian,
while non-abelian ones are taken to be valued in the anti-hermitian Lie algebra of the gauge group.

3Just as there are discrete higher-form global symmetries [2, 13], there are also discrete 2-group global
symmetries. They were explicitly identified in [18] and further studied in [19–24]. There are useful parallels
between continuous and discrete 2-group global symmetries, e.g. both can be interpreted as variants of
the Green-Schwarz mechanism that mix ordinary and higher-form background gauge fields (see section 1.2
below). However, the interpretation in terms of current algebra only applies to the continuous case.

4The factor of i in (1.3), as well as in (1.7) below, is due to our Euclidean conventions.
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Note that J (2)
B naturally has dimension d− 2, so that the integrated charges QB(Σd−2) are

dimensionless. This is necessarily the case in CFTs, where unitarity bounds imply that
any operator J (2)

B satisfying (1.2) must have scaling dimension ∆(J (2)
B ) = d − 2 (see for

instance [4]). If the charges are quantized, QB ∈ Z, then the 1-form symmetry is compact
(i.e. it is U(1)(1)

B rather than R(1)
B ), and we will only consider the compact case here.

The operators or defects that carry QB charge must be line defects, which can be
linked by a closed Σd−2. If the QB symmetry is not spontaneously broken, the action of
such line operators on the vacuum creates a dynamical string that is charged under QB.
In this case Σd−2 are the d − 2 spatial dimensions transverse to the string worldsheet. In
supersymmetric theories, QB can appear in the SUSY algebra, which makes it possible
for strings that carry QB charge to be BPS. In this case J (2)

B resides in the stress-tensor
supermultiplet of the theory (see [25] and references therein).

It is useful to couple the current J (2)
B (as well as other currents or operators of interest)

to suitable classical sources. In general, conserved currents are sourced by background
gauge field, and the appropriate source for J (2)

B is a 2-form background gauge field B(2),5

S ⊃
∫
B(2) ∧ ∗J (2)

B . (1.4)

The fact that J (2)
B is a conserved current amounts to invariance under background gauge

transformations B(2) → B(2) + dΛ(1)
B , where Λ(1)

B is the corresponding 1-form gauge
parameter.6

Perhaps the simplest continuous higher-form symmetries arise as “magnetic” sym-
metries in standard Yang-Mills gauge theories, possibly with electrically charged matter,
which does not spoil the magnetic symmetries. As long as there are no dynamical magnetic
charges, the gauge-covariant Bianchi identity implies that the Yang-Mills field strength f (2)

is a covariantly closed 2-form. Every rank-k Casimir of the gauge algebra g gives rise to a
gauge-invariant Chern class; schematically,

ck(f (2)) ∼ Tr
(
(f (2))∧k

)
. (1.5)

Here k is a positive integer, which is bounded in terms of the spacetime dimension, 2k ≤ d.
Then ck(f (2)) is a closed (2k)-form of dimension 2k. It’s Hodge dual thus defines a conserved
(d− 2k)-form current,

J (d−2k) = i ∗ ck(f (2)) , d ∗ J (d−2k) = 0 . (1.6)

Since the ck(f (2)) are normalized so that their periods are quantized, the same is true
of the charges QB defined in (1.3). Thus the current J (d−2k) gives rise to a compact
(d− 2k − 1)-form symmetry U(1)(d−2k−1).

5As in [17], we denote background gauge fields such as B(2) with uppercase letters, while dynamical
gauge fields such as f (2) are denoted using lowercase letters.

6More precisely, Λ(1)
B is a 1-form gauge field, with quantized periods 1

2π

∫
Σ2
dΛ(1)

B ∈ Z.
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An even simpler variant occurs in dynamical U(1) gauge theory with Maxwell field
strength f (2). In the absence of dynamical magnetic charges, the Bianchi identity implies
that the first Chern class c1(f (2)) = 1

2πf
(2) is a closed, gauge-invariant 2-form with quan-

tized periods. Consequently, J (d−2) = i ∗ c1(f (2)) is a conserved (d− 2)-form current that
gives rise to a U(1)(d−3) symmetry. In the d = 4 examples studied in [17] this was a U(1)(1)

symmetry; in the d = 6 examples analyzed below it is a U(1)(3) symmetry. Moreover, U(1)
gauge theory in 6d also has a U(1)(1) symmetry associated with J (2) = i

4π2 ∗
(
f (2) ∧ f (2)

)
.7

In this paper, we are primarily interested in the U(1)(1)
B global symmetry that naturally

arises in IR free 6d Yang-Mills gauge theories, with gauge algebra g, via the second Chern
class c2(f (2)). This corresponds to setting d = 6 and k = 2 in (1.5) and (1.6). More
precisely,

J
(2)
B = i ∗ c2(f (2)) , c2(f (2)) = 1

8π2 Tr
(
f (2) ∧ f (2)

)
. (1.7)

Here Tr = 1
2h∨g

Tradj, where h∨g is the dual Coxeter number of g, while Tradj is the trace
in the adjoint representation. The normalization is chosen so that a minimal g-instanton
on S4 satisfies

∫
S4 c2(f (2)) = 1. In other words, c2(f (2)) is the conventionally normalized

instanton density. Therefore the U(1)(1)
B symmetry in 6d is associated with instantons

of the dynamical Yang-Mills gauge field. (For this reason, we will occasionally refer to
it as the instanton 1-form symmetry.) The dynamical charged string excitations are the
familiar instanton string solitons in 6d gauge theory. Perhaps less familiar are the charged
line defects: they are instanton disorder lines, which are defined by the requirement that
any small S4 linking the line should carry a certain fixed instanton number. Note that the
instanton symmetry U(1)(1)

B is not spontaneously broken in IR free 6d gauge theories. To
see this, note that the current J (2)

B ∼ Tr(f (2) ∧ f (2)) creates at least two gluons from the
vacuum, rather than a single Nambu-Goldstone (NG) particle. By contrast, the U(1)(d−3)

magnetic symmetry associated with an abelian gauge field (see above) is spontaneously
broken in the Coulomb phase, since the associated current J (d−2) ∼ ∗f (2) creates a single
NG particle — the photon — from the vacuum.

When a 6d theory with instanton 1-form symmetry is circle-compactified to 5d, it
gives rise to an ordinary 0-form symmetry associated with instanton particle solitons and
instanton disorder local operators. The latter are the 5d analogue of 3d monopole operators,
which are also associated with a particular 0-form symmetry. Monopole and instanton 0-
form symmetries play an important role in the dynamics of 3d and 5d gauge theories, and
they have been particularly well studied in the supersymmetric context. Even though these
symmetries are naturally abelian, they can combine with other 0-form symmetries into a
larger, non-abelian flavor symmetry [26, 27]. Somewhat reminicently, we will see below that
even though 6d instanton 1-form symmetries are (like all 1-form symmetries [2]) abelian,
they can combine with ordinary 0-form symmetries into a larger 2-group symmetry.

7Note that Q(M4) = 1
4π2

∫
M4

f (2)∧f (2) ∈ Z for any closed, oriented 4-manifoldM4, while Q(M4) ∈ 2Z
is even if M4 is also spin. For a general 4-cycle Σ4 ⊂ M6 inside a spin 6-manifold M6 we do not expect
a stronger quantization condition than Q(Σ4) ∈ Z. This explains our choice of normalization for J(2) in
abelian gauge theories.
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1.2 Review of continuous 2-group global symmetries

As was already mentioned above, it is possible for the conserved currents associated with
continuous 0-form symmetries to fuse into a 2-form current J (2)

B associated with a con-
tinuous 1-form symmetry U(1)(1)

B . The resulting structure is a continuous 2-group global
symmetry. Here we will review those aspects of continuous 2-group symmetries that we
will need below, following the discussion in [17], which contains many additional details
and examples. For now, we do not fix the spacetime dimension d.

Consider a continuous 0-form flavor symmetry G(0), which (for now) we take to be
a compact simple group. The corresponding conserved current is j(1)

G ; it is valued in the
Lie algebra of G(0). Another 0-form symmetry, which is present in every relativistic QFT,
is Poincaré symmetry P(0). The associated conserved current is the stress tensor Tµν .
In many examples, these 0-form symmetries are unaffected by the presence of the 1-form
symmetry U(1)(1)

B , which we emphasize by writing the global symmetry as an ordinary
product,

G(0) ×P(0) ×U(1)(1)
B . (1.8)

In this case the currents j(1)
G and Tµν satisfy conventional conservation laws,

d ∗ j(1)
G = 0 , Tµν = T(µν) , ∂µTµν = 0 . (1.9)

This in turn implies that they can be coupled to background fields in a standard way: a
background 1-form gauge field A

(1)
G for j(1)

G (both are valued in the Lie algebra of G(0)),
and a background Riemannian geometry for Tµν . We choose to describe the latter by a
background vielbein e(1)a = eaµdx

µ, so that the Riemannian background metric is gµν =
δabe

a
µe
b
ν . The conservation equations (1.9) for the currents are reflected in the following

transformation rules for the background gauge fields,

A
(1)
G → A

(1)
G + dAλ

(0)
G , e(1)a → e(1)a − θ(0)a

be
(1)b + Lξe(1)a . (1.10)

Here dA = d + [A(1)
G , · ] is the G(0)-covariant exterior derivative and λ

(0)
G parametrizes an

infinitesimal G(0) background gauge transformation, while θ(0)a
b parametrizes an infinites-

imal local Lorentz transformation and ξ = ξµ∂µ an infinitesimal diffeomorphism for the
background geometry. As in section 1.1, the 2-form current J (2)

B satisfies the conservation
equation

d ∗ J (2)
B = 0 , (1.11)

and couples to a background 2-form gauge field B(2) subject to background gauge trans-
formations parametrized by the 1-form gauge parameter Λ(1)

B ,

B(2) → B(2) + dΛ(1)
B . (1.12)

A 2-group global symmetry arises when the currents, and hence the background fields,
for 0-form and 1-form symmetries mix in a specific way. We emphasize this by writing the
global symmetry as a twisted product,(

G(0) ×P(0)
)
×κ̂G,κ̂P

U(1)(1) . (1.13)
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Here κ̂G, κ̂P are constants (in fact integers, see below) that characterize the 2-group sym-
metry. We refer to them as 2-group structure constants, in analogy with Lie algebra
structure constants. If there are additional 0-form or 1-form symmetries to consider, they
generally lead to additional 2-group structure constants.

The twisted natured of the 2-group symmetry (1.13) manifests in several closely related
ways. Perhaps the most easily recognizable one involves the background gauge fields:
while the background gauge transformations for A(1)

G and e(1)a are unchanged, and of the
form (1.10), the background gauge transformations for B(2) are modified: in addition to
the transformations parametrized by the 1-form gauge parameter Λ(1)

B in (1.12), B(2) also
shifts under the G(0) background gauge transformations parametrized by λ(0)

G and under
local Lorentz transformations parametrized by θ(0)a

b,8

B(2) → B(2) + dΛ(1)
B + κ̂G

4π Tr
(
λ

(0)
G dA

(1)
G

)
+ κ̂P

16π tr
(
θ(0)dω(1)

)
. (1.14)

Here κ̂G, κ̂P are the 2-group structure constants in (1.13), ω(1)a
b is the spin connection

associated with e(1)a, and tr denotes a trace over local Lorentz indices. Note that dA(1)

and dω(1) involve the ordinary exterior derivative, i.e. these expressions do not correspond
to the field strength of A(1)

G or the Riemann curvature of ω(1). The shift in (1.14) takes
exactly the same form as in the Green-Schwarz (GS) mechanism.9

A key difference is that the familiar GS mechanism applies to dynamical gauge fields
(i.e. all fields involved are dynamical), while all gauge fields in (1.14) are background gauge
fields.10 This leads to important conceptual and practical differences.

A familiar consequence of the modified transformation rule (1.14) is that dB(2) is no
longer invariant under background G(0) gauge transformations or local Lorentz transfor-
mations. Instead, it is standard to define a modified field strength H(3) via

1
2πH

(3) = 1
2πdB

(2) − κ̂G
8π2 CS(A(1)

G )− κ̂P

32π2 CS(ω(1)) . (1.15)

Here CS(A(1)
G ) and CS(ω(1)) are Chern-Simons terms for the background gauge and gravity

fields,

CS(A(1)
G ) = Tr

(
A

(1)
G ∧ dA

(1)
G + 2

3(A(1)
G )∧3

)
, CS(ω(1)) = tr

(
ω(1) ∧ dω(1) + 2

3(ω(1))∧3
)
,

(1.16)

8As in the familiar Green-Schwarz mechanism, there is some freedom in the choice of transformation rule
for B(2), which is related to local counterterms. For instance, we choose to shift B(2) under local Lorentz
transformations, but not under diffeomorphisms. By adding a local counterterm, we can instead have B(2)

shift under diffeomorphisms, but not under local Lorentz transformations. See [17] for additional details.
9From a mathematical point of view the GS transformation law (1.14) can be viewed as defining a

2-connection associated with the 2-group symmetry. See [28–31] for further details.
10There is also an intermediate variant of the GS mechanism, where B(2) is replaced by a dynamical

2-form gauge field b(2), while the gauge fields that appear in the GS shift of b(2) may be either dynamical
or background fields (see section 1.6 below).
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which transform as follows under background G(0) gauge transformations, and local Lorentz
transformations, respectively,

CS(A(1)
G )→ CS(A(1)

G ) + dTr
(
λ

(1)
G dA

(1)
G

)
, CS(ω(1))→ CS(ω(1)) + d tr

(
θ(0)dω(1)

)
.

(1.17)
It follows that H(3) is completely invariant under all background gauge and gravity trans-
formations, but it is no longer closed. Instead,

1
2πdH

(3) = −κ̂G c2(F (2)
G ) + κ̂P

4 p1(T ) , (1.18)

with c2(F (2)
G ) = 1

8π2 Tr
(
F

(2)
G ∧ F (2)

G

)
the second Chern class of the G(0) bundle (see (1.7)),

defined in terms of the field strength F (2)
G = dAA

(1)
G , and p1(T ) = − 1

8π2 tr
(
R(2) ∧R(2)

)
the

first Pontryagin density of the tangent bundle, defined in terms of the Riemann curvature
R(2)a

b = dω(1)a
b + ω(1)a

c ∧ ω(1)c
b. As explained in [17], the consistency of equations such

as (1.14), (1.15), and (1.18) require the 2-group structure constants κ̂G, κ̂P to be quantized,

κ̂G ∈ Z , κ̂P ∈ Z . (1.19)

An important difference between 2-group global symmetry and the familiar GS mecha-
nism is that 2-group symmetry implies modified conservation laws for the currents j(1)

A and
Tµν associated with the 0-form global symmetries G(0) and P(0). These modified conser-
vation laws, which can be read off from the GS shifts of B(2) in (1.14),11 involve the 2-form
current operator J (2)

B , whose conservation law is unchanged, as well as the background
gauge fields for G(0) and P(0),

dA ∗ j(1)
G = κ̂G

8π dA
(1)
G ∧ ∗J

(2)
B , ∗T[ab] = − κ̂P

16π dω
(1)
[ab] ∧ ∗J

(2)
B . (1.20)

These equations show that the standard conservation law for j(1)
A and the symmetry of Tµν

are violated in the presence of background fields. Moreover, these violations involve the
current J (2)

B , which is a non-trivial operator. On the other hand, these violations disappear
if we set the background fields to zero. The non-conservation equations in (1.20) are there-
fore somewhat in between conventional ’t Hooft anomalies (which involve only background
fields on the right-hand side) and Adler-Bell-Jackiw (ABJ) anomalies (which involve only
operators): the fact that the currents are unmodified in the absence of background fields
means that the corresponding symmetries are not broken (just as for ’t Hooft anomalies,
and unlike ABJ anomalies, since the latter explicitly break symmetries). As was explained
in [17], the modified conservation laws in the presence of background fields lead to a defor-
mation of the symmetry at the level of current algebra. This leads to an alternative, but
fully equivalent, presentation of 2-group symmetry.

11This is true up to a prefactor that depends on how we normalize the coupling of background fields to
currents. We use the conventions of [17, 32]: the variation of the (effective) action under a G(0) gauge trans-
formation parametrized by λ(0)

G is S → S − 2
∫

Tr
(
λ

(0)
G dA ∗ j(1)

G

)
+ (GS shift of B(2)); its variation under

a local Lorentz transformation parametrized by θ(0)
ab = θ

(0)
[ab] is S → S −

∫
θ(0)ab ∗ T[ab] + (GS shift of B(2)).
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To arrive at this presentation, we differentiate the modified conservation equa-
tions (1.20) with respect to the background gauge fields a second time, and then set the
background fields to zero. Doing this for j(1)

G leads to

∂µj
µa
G (x)jνbG (y) + fabcδ(d)(x− y)jνcG (x) = κ̂G

8π δ
ab ∂

∂xλ
δ(d)(x− y) JλνB (x) . (1.21)

Here a, b are G(0) adjoint indices, and fabc are the structure constants of its Lie algebra.
If κ̂G = 0, so that the right-hand side of (1.21) vanishes, this OPE captures the fact that
the current jνbG (y) transforms in the adjoint representation of G(0). Integrating (1.21) to
remove the derivative on jµaG (x), we recover the standard fact that the j(1)a

G (x)j(1)b
G (y) OPE

contains a term ∼ fabcj(1)c
G at separated points, which encodes the Lie algebra of G(0).

If the 2-group structure constant κ̂G 6= 0, the right-hand side of (1.21) implies
that ∂µjµaG (x)jνbG (y) contains the 2-form current operator J (2)

B . This implies that the
j

(1)a
G (x)j(1)b

G (y) OPE contains a term ∼ κ̂Gδ
abJ

(2)
B at separated points, which encodes the

2-group structure constant κ̂G. At this level, the 2-group current algebra is reminiscent
of the non-abelian G(0) structure among the j(1)

G currents discussed above. An important
difference is that the left-hand side of (1.21) contains a δ-function, while the right-hand
side contains the derivative of a δ-function. This reflects the fact that j(1)

G is itself charged
under G(0), while J (2)

B is not. By inserting (1.21) into correlation functions we can derive
the Ward identities of the 2-group global symmetry [17].

We can repeat the preceding discussion for the stress-tensor equation in (1.20). This
leads to a formula similar to (but more complicated than) (1.21) for T[µν](x)Tρσ(y), which
can be analyzed along similar lines. For instance, it implies that the Tµν(x)Tρσ(y) OPE
contains a term ∼ κ̂PJ

(2)
B at separated points.

1.3 Basic examples: 6d gauge theories with mixed gauge-global anomalies

Starting now, and for the remainder of this paper, we will only discuss theories in d = 6
spacetime dimensions. Adapting the discussion in [17] to six dimensions, we outline a
simple, general mechanism through which continuous 2-group global symmetries can arise
in 6d gauge theories with suitable anomalies. A more detailed discussion can be found in
section 2.1.

Consider a dynamical Yang-Mills theory in six dimensions, with gauge group g(0) and
field strength f

(2)
g , that couples to other degrees of freedom — either to matter charged

under g(0) (this could be weakly coupled scalars or fermions charged under g(0), or even
strongly-coupled charged sectors) or to dynamical 2-form gauge fields (e.g. via GS cou-
plings). Assume that the charged matter also enjoys a 0-form flavor symmetry G(0), with
background field strength F

(2)
G . To simplify this overview, we assume that g(0) and G(0)

are compact simple Lie groups.12
Via the standard descent procedure (see section 2.1), perturbative anomalies involving

g(0) and G(0) are conveniently summarized in terms of an anomaly 8-form polynomial I(8),
12For the most part, the global form of gauge and flavor groups will not play a prominent role below,

i.e. most of our results only depend on the Lie algebras of g(0) and G(0).
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which is constructed from the Chern classes ck(f (2)
g ) and ck(F (2)

G ) for the dynamical and
background gauge fields. (We will soon add background gravity fields as well.) It is useful
to separate I(8) into three terms,

I(8) = I(8)
gauge[f (2)

g ] + I(8)
global[F

(2)
G ] + I(8)

mixed[f (2)
g , F

(2)
G ] . (1.22)

We discuss each term in turn:

1). The first term I(8)
gauge only depends on the dynamical gauge field f (2)

g , i.e. it encodes
pure gauge anomalies. These must necessarily vanish for consistency of the gauge
theory, so that I(8)

gauge = 0.

2). The second term I(8)
global only depends on the background gauge field F (2)

G . Ordinarily,
this term would encode ’t Hooft anomalies of the global symmetry G(0), i.e. interest-
ing, scheme-independent observables of the theory that necessarily remain constant
along RG flows. As was shown in [17] (see also section 2.4), not all terms in I(8)

global
lead to meaningful ’t Hooft anomalies in the presence of 2-group symmetry.

3). The third term I(8)
mixed depends on the dynamical gauge field f (2)

g and the background
gauge field F (2)

G . If g(0) and G(0) are both non-abelian, as we are currently assuming,
the only possible term of this kind takes the form

I(8)
mixed[f (2)

g , F
(2)
G ] = kg2G2 c2(f (2)

g ) c2(F (2)
G ) . (1.23)

The anomaly coefficient kg2G2 encodes a possible mixed anomaly between the dy-
namical g(0) and the background G(0) gauge symmetry. In a theory where f (2)

g and
F

(2)
G only couple to free fermions, kg2G2 can be computed from a box diagram with

two external g(0) gluons, two external G(0) currents j(1)
G , and fermions running in the

loop. On general grounds, the anomaly coefficient must be quantized,13

kg2G2 ∈ Z . (1.24)

We will now argue that a genuinely six-dimensional theory with non-zero kg2G2 6= 0
necessarily has 2-group global symmetry (see section 2.1 for additional details). Typically,
theories with mixed anomalies such as (1.23) can be regularized in such a way to preserve
either one of the symmetries g(0), G(0) — but not both. The difference between two
such regularization schemes is accounted for by a 6d local counterterm constructed using
the gauge fields a(1)

g and A
(1)
G . Since g(0) is a gauge symmetry, it must necessarily be

anomaly free, even in the presence of G(0) background fields. This leads to the following
two possibilities:

13This can be seen by demanding that the 7d Chern-Simons terms SCS = 2πi
∫
M7
I(7), with dI(7) = I(8),

be properly quantized; equivalently, that
∫
M8
I(8) ∈ Z for 8-manifoldsM8 supporting g(0) and G(0) gauge

fields (see section 2.3).
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(a) The theory under consideration is genuinely six-dimensional,14 i.e. the dynamical
fields only propagate in 6d. In this case we must choose the aforementioned coun-
terterm such that the mixed anomaly I(8)

mixed is completely pushed into the global
G(0) symmetry. As we explain below, this leads to a 6d theory with 2-group global
symmetry.

(b) The 6d theory under consideration lives at the boundary of a dynamical 7d bulk
theory, or more generally on a 6d defect embedded in a higher-dimensional bulk
theory. In either case, the theory is not actually six-dimensional. Here it is not
necessary to tune the 6d counterterm to cancel the g(0) anomaly arising from I(8)

mixed
in the presence of G(0) background fields. Instead, this anomaly can be cancelled by
anomaly inflow from the dynamical higher-dimensional bulk fields. For instance, we
could extend the dynamical g(0) and background G(0) gauge fields into a 7d bulk. A
certain 7d Chern-Simons term (obtained from I(8)

mixed via descent) can then cancel the
mixed anomaly via inflow. In this case the mixed anomaly does not lead to 2-group
global symmetry on the 6d boundary.

In this paper we will not consider option (b) above, i.e. we take the view that all theories we
study are genuinely six-dimensional. However, even if a theory is genuinely six-dimensional,
with 2-group global symmetry in the deep IR, this symmetry may be emergent, i.e. it may
not be a symmetry of the full, microscopic 6d theory.15

Once the mixed anomaly in (1.23) has been regularized to preserve the dynamical g(0)

gauge symmetry, the conservation law for the global G(0) current j(1)
G in the presence of a

G(0) background field takes the following form (see section 2.1),

dA ∗ j(1)
G = −

ikg2G2

8π dA
(1)
G ∧ c2(f (2)

g ) . (1.25)

We identify ic2(f (2)
g ) = ∗J (2)

B , where J (2)
B is the 2-form current of the U(1)(1)

B instanton 1-
form symmetry defined in (1.7), which is conserved due to the Bianchi identity, d∗J (2)

B = 0.
Then (1.25) takes exactly the form of the first 2-group non-conservation equation in (1.25).
The 2-group structure constant κ̂G given in terms of the mixed anomaly coefficient,

κ̂G = −kg2G2 , (1.26)
14Below we will also consider string-inspired examples of 6d theories that are relative to (i.e. arise at

the boundary of) dynamical 7d TQFTs that are needed to account for certain global issues associated
with chiral two-form gauge fields. Our approach to continuous 2-group symmetry in 6d closely parallels
conventional GS anomaly cancellation for continuous gauge symmetries, and hence it is essentially local.
However, in both cases the presence of the bulk TQFT can lead to subtle global effects, e.g. the modification
of quantization conditions for certain anomaly coefficients. The same caveat applies if the GS mechanism
is used to cancel discrete anomalies, and hence also to discrete 2-group symmetry. See for instance [33, 34]
for an incomplete sampling of recent related discussions.

15There are interesting general constraints on emergent 2-group symmetries that are not present for
conventional product symmetries [17], e.g. consider a 2-group U(1)(0)

G ×κ̂G
U(1)(1)

B . Because B(2) shifts under

A
(1)
G gauge transformations, but not vice versa, it is not possible for the U(1)(0)

G symmetry to emerge unless
the U(1)(1)

B symmetry is already present. Therefore the energy scales EG, EB at which these symmetries
emerge must satisfy an inequality of the form EG . EB . See [35] for an application of a similar inequality
to axion models.
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which is compatible with the quantization conditions (1.19) and (1.24). Thus the mixed
anomaly in (1.23) fuses the global G(0) and U(1)(1)

B symmetries into the 2-group global
symmetry G(0) ×κ̂G U(1)(1)

B , with κ̂G given by (1.26). As explained around (1.14), this
requires the background gauge field B(2) that sources J (2)

B to undergo a GS shift under
G(0) background gauge transformations. In section 2.1 we show how this GS shift of B(2)

is simply inferred from the mixed anomaly.
Let us briefly mention several variants of the preceding discussion that will also make

an appearance below (some of these are spelled out in section 2.1, and others can be worked
out along similar lines):

• Analogously to (1.23), we can also consider a mixed anomaly between the dynamical
g(0) gauge symmetry and Poincaré symmetry P(0),

I(8)
mixed ⊃

kg2P2

24 c2(f (2)
g ) p1(T ) . (1.27)

Here p1(T ) is the first Pontryagin class of the tangent bundle, defined below (1.18),
and the normalization is such that the anomaly coefficient kg2P2 is always an integer,

kg2P2 ∈ Z . (1.28)

The presence of such a mixed anomaly leads to the 2-group symmetry P(0) ×κ̂P

U(1)(1)
B , with 2-group structure constant

κ̂P =
κg2P2

6 , (1.29)

along with the corresponding gravitational GS shift for B(2) in (1.14) and the second
2-group non-conservation equation in (1.20). Note that (1.29) is not obviously com-
patible with the quantization conditions (1.19) and (1.28). This apparent discrepancy
is explained in section 2.3.

• We can consider variants of the mixed anomaly (1.23) where either the dynamical
g(0) gauge symmetry or the global G(0) symmetry is a U(1) symmetry, in which case
we must replace c2(f (2)

g ) → 1
4π2

(
f

(2)
g ∧ f (2)

g

)
, and similarly for F (2)

G , in the formulas
above. (See section 2.3 for an abelian example.)
Since sections 3 and 4 are dedicated to 6d SUSY gauge theories, it is worth pointing
out that there are no N = (1, 0) U(1) gauge theories with charged hyper multiplets
that do not also contain dynamical gravity. The reason is that such charged hypers
necessarily lead to a non-vanishing, reducible U(1) gauge anomaly, whose sign is such
that the anomaly cannot be canceled using a GS mechanism involving chiral 2-form
gauge fields residing in dynamical N = (1, 0) tensor multiplets. The only N = (1, 0)
multiplet containing an anti-chiral 2-form gauge field that can cancel the anomaly is
the supergravity multiplet, which must therefore be dynamical.

• Consider a dynamical g(0) = U(1) gauge theory with a mixed anomaly I(8) = I(6)
global∧

c1(f (2)
g ), where I(6)

global is an anomaly 6-form constructed only from background G(0)
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or gravity fields. Such an anomaly gives rise to a 4-group global symmetry, in which
the U(1)(3) current J (4) = i ∗ c1(f (2)

g ) discussed below (1.6) mixes with the 0-form
symmetries. This case can be analyzed along similar lines as the 6d and 4d 2-group
cases discussed below and in [17], respectively, but we will not do so explicitly.

1.4 UV complete examples: 6d little string theories

The preceding discussion shows that 6d gauge theories with mixed anomalies such as (1.23)
and (1.27) have continuous 2-group global symmetries. However, such theories are gener-
ically not UV complete. In section 3 we present SUSY examples of precisely such gauge
theories that have UV completions as 6d LSTs, demonstrating that 6d theories with con-
tinuous 2-group global symmetry can be UV completed. It is possible that these 2-group
symmetries are emergent, i.e. that they are accidental symmetries of the gauge theories in
the deep IR, but not exact symmetries of the full LSTs.16 A more interesting possibility is
that the 2-group symmetries uncovered in the IR do extend to the full LSTs. See section 3
for some additional comments, as well as the upcoming work [36].

Rather than analyzing large classes of LSTs we focus on two examples studied in [7]:

• By taking the little-string decoupling limit for a stack of N NS 5-branes in type
IIB string theory, we obtain a 6d LST with N = (1, 1) SUSY. At low energies this
theory flows to maximally supersymmetric Yang-Mills (MSYM) theory in 6d with
gauge group U(N). Decoupling the center-of-mass mode we obtain an SU(N) gauge
theory, with gauge algebra AN−1. Other constructions also lead to N = (1, 1) LSTs
flowing to 6d MSYM theories with gauge algebras Dk and Ek (see for instance [8]
and references therein).
In addition to the N = (1, 1) super-Poincaré symmetry, all of these theories have an
SU(2)(0)

L × SU(2)(0)
R symmetry under which the supercharges transform in the spin

(1
2 ,

1
2) representation. We will show that these symmetries have mixed anomalies with

the gauge symmetry, of the form (1.23), and hence they combine with the U(1)(1)
B

instanton 1-form symmetry into a non-trivial 2-group.

• By taking the little-string decoupling limit for the theory describing N small, coin-
cident SO(32) instantons in the heterotic string, we find a 6d LST with N = (1, 0)
SUSY. At low energies it flows to an Sp(N) gauge theory with certain hyper multiplet
matter [37].
In addition to the N = (1, 0) super-Poincaré symmetry, these theories have an
SU(2)(0)

R symmetry under which the supercharges transform in the spin- 1
2 represen-

tation, as well as a G(0) = SU(2)(0)
L ×SO(32)(0) flavor symmetry that commutes with

the supercharges. We will show that both SU(2)(0)
R and G(0) have mixed anoma-

lies of the form (1.23), and that there is also a mixed gauge-gravity anomaly of the
form (1.27). Thus the SU(2)(0)

R ×G(0) symmetries, as well as the Poincaré symmetry
P(0), are fused into a larger 2-group symmetry together with the U(1)(1)

B instanton
1-form symmetry.

164d examples with emergent 2-group symmetries were presented in [17].
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1.5 Absence of continuous 1-form and 2-group global symmetries in 6d SCFTs

Unlike the LSTs discussed in section 1.4 above, 6d SCFTs do not support continuous
2-group global symmetries. This is because they do not even admit continuous 1-form
symmetries, which are necessary ingredients for continuous 2-group symmetries.

As explained in section 1.1, a continuous 1-form global symmetry is associated with
a 2-form current JµνB satisfying the conservation law ∂µJ

µν
B = 0 as an operator equation

(i.e. at separated points). In a unitary CFT, a non-trivial 2-form current must therefore
be the conformal primary of a short, unitary representation of the conformal algebra,17
where the shortening condition corresponds to the conservation law ∂µJ

µν
B = 0. The

representation theory of the 6d conformal algebra does indeed allow for precisely such a
short representation (i.e. the existence of conserved 2-form currents are not in principle
ruled out in 6d CFTs) as long as the operator JµνB has operator dimension ∆ = 4, which is
consistent with the discussion below (1.3).

However, in unitary SCFTs the local operators must reside in unitary representations
of the appropriate superconformal algebras. A systematic approach to the problem of
enumerating conformal primary operators residing in such superconformal representations
was presented in [4, 6]. In particular, in [4] we systematically analyzed all unitary short
multiplets of superconformal symmetry that contain conserved currents. For 6d SCFTs
we found that a non-trivial conserved 2-form current JµνB cannot reside in any unitary
superconformal multiplet. In short, 6d SCFTs do not allow conserved 2-form currents or
continuous 1-form symmetries.

This observation immediately shows that standard SUSY Yang-Mills gauge theories
in six-dimensions (i.e. theories based on N = (1, 0) vector multiplets, possibly with hyper
multiplet matter) cannot possibly be superconformal. As explained around (1.7), all such
theories possess a conserved 2-form current J (2)

B associated with a U(1)(1)
B instanton number

symmetry, which cannot be present in SCFTs. Indeed, it is a well known that gauge theories
with conventional Yang-Mills kinetic terms — and even free Maxwell theory — are not
conformally invariant in six dimensions (see for instance [38, 39] and references therein).18

From this point of view, it is therefore perhaps surprising that (following [1]) many
interacting 6d SCFTs have been studied via the weakly-coupled description available on
their tensor branches, which often contains Yang-Mills gauge fields residing in vector mul-
tiplets. In section 1.6 below we explain how these theories non-trivially avoid continuous
1-form and 2-group global symmetries, even though they contain Yang-Mills gauge fields.

1.6 Application 1: Green-Schwarz terms and ’t Hooft anomalies in 6d SCFTs

All known interacting 6d SCFTs have a tensor branch — a moduli space of vacua
parametrized by expectation values 〈φ〉 ∈ R+ of scalars φ residing in N = (1, 0) ten-

17A non-trivial current, whose charge integrals do not automatically vanish, cannot be the total derivative
of another well-defined local operator. In a CFT this means it cannot be a conformal descendant and must
therefore be a conformal primary.

18There are non-standard SUSY gauge theories with 4-derivative kinetic terms, but no Yang-Mills
terms [40, 41]. These theories are not unitary, and are therefore not in conflict with the preceding dis-
cussion.
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sor multiplets, which also contain a chiral 2-form gauge field b(2), with self-dual 3-form
field strength h(3) = db(2) = ∗h(3), and a chiral fermion ψiα in the spin-1

2 representation
of the SU(2)R symmetry. The largest number of tensor-multiplet scalars that can be ac-
tivated is called the rank of the tensor branch. For simplicity, we limit our discussion to
branches parametrized by a single tensor-multiplet scalar φ, which could either arise as the
full tensor branch of rank-1 SCFTs, or as one-dimensional sub-loci of higher-rank tensor
branches. The dimension-2 vev 〈φ〉 spontaneously breaks conformal invariance, and φ is
the dilaton — the NG boson of this symmetry breaking. As is typical of NG bosons, the
interactions of φ are highly constrained. This played an essential role in the proof of the
6d SUSY a-theorem in [42] (see section 1.7).

In particular, terms in the Lagrangian which would otherwise break conformally sym-
metry can be rendered conformally invariant by dressing them with suitable powers of the
dilaton φ. An important case arises if the low-energy theory on the tensor branch contains
dynamical Yang-Mills gauge fields f (2)

g , which is the case in many examples. The Yang-
Mills kinetic term ∼ Tr(f (2)

g ∧∗f (2)
g ) violates conformal symmetry, but dressing it with the

dimension-2 dilaton φ leads to a conformally-invariant kinetic term ∼ φTr(f (2)
g ∧ ∗f (2)

g ).
The vev 〈φ〉 ∼ 1

g2
YM

then sets the scale of the dimensionful Yang-Mills gauge coupling gYM.

Since the coupling of φ to the Yang-Mills term for f (2)
g restores conformal invariance,

it is natural to assume that the couplings of their superpartners restore superconformal
invariance. In particular, these couplings must address the puzzle mentioned at the end of
section 1.5 above: the Yang-Mills theory naturally contains the conserved 2-form instanton
current J (2)

B = i ∗ c2(f (2)
g ), which is not compatible with superconformal symmetry. This

apparent conundrum is resolved by the fact that the dynamical chiral 2-form gauge field
b(2) couples to the instanton 2-form current J (2)

B via a GS term

SGS ∼
∫
b(2) ∧ ∗J (2)

B = i

∫
b(2) ∧ c2(f (2)

g ) , (1.30)

which is related by supersymmetry to the dilaton-dressed Yang-Mills term,

SYM ∼ φTr(f (2)
g ∧ ∗f (2)

g ) . (1.31)

The coupling of b(2) to J (2)
B implies that the latter is no longer a global symmetry current;

rather, it has been gauged. The equation of motion of the gauge field b(2) sets ∗J (2)
B ∼ dh(3),

which renders J (2)
B trivial as a global 2-form symmetry current (see footnote 17). In the

language of conformal operator representations, the fact that J (2)
B is a total derivative

makes it a conformal descendant, rather than a primary. Neither an SCFT operator that
flows to h(3) on the tensor branch, nor its descendent flowing to J (2)

B , need reside in short
representations of conformal or superconformal symmetry.19

The preceding discussion is closely related to anomaly cancellation on tensor branch,
which is enforced by a 6d analogue of the GS mechanism [1, 43–46] and involves modifying

19It is also worth contemplating the more extreme possibility that there is no well-defined local opera-
tor in the SCFT at the origin that flows to the abelian 3-form field strength h(3) on the tensor branch.
Loosely speaking, this could be the case if h(3) derives from some intrinsically non-abelian higher-form
gauge structure that may be present in the SCFT.
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the Bianchi identity for the field strength h(3) of b(2) as follows,

dh(3) = 0 =⇒ dh(3) = I(4) . (1.32)

Here the closed 4-form I(4) can contain both dynamical and background fields. Intuitively,
one can associate the GS-modified Bianchi identity (1.32) with a GS term ∼ i

∫
b(2) ∧ I(4)

in the action, but this is imprecise because b(2) is chiral.20 The fact that b(2) is chiral also
implies that (1.32) gives rise to a GS contribution I(8)

GS to the anomaly polynomial,

I(8)
GS = Ω

2 I
(4) ∧ I(4) , Ω > 0 . (1.33)

The positive constant Ω defines the Dirac quantization condition for the chiral gauge
field b(2), and we will refer to it as the Dirac pairing.21 It is useful to separate the full
anomaly polynomial I(8) into the GS contribution I(8)

GS in (1.33) and a remainder. If the
only massless degrees of freedom on the tensor branch are weakly-coupled tensor, vector,
and hyper multiplets then this remainder is computed from one-loop box diagrams with
external gauge bosons or global symmetry currents, and fermions running in the loop. For
this reason we will denote the remainder by I(8)

1-loop and write the full anomaly polynomial as

I(8) = I(8)
1-loop + I(8)

GS . (1.34)

More generally, the charged massless degrees of freedom that can contribute to I(8) may
also include strongly-coupled sectors.22 We will treat such sectors as additional charged
matter and include their contribution to the anomaly polynomial in I(8)

1-loop.
We now explain the two anomaly cancellation conditions involving dynamical gauge

fields that must be imposed on the tensor branch of any consistent, unitary SCFT:

(i) Gauge anomaly cancelation: as is the case for all consistent gauge theories, the term
I(8)
gauge ⊂ I(8) in the anomaly polynomial that only depends on the dynamical gauge

field f (2)
g must vanish,

I(8)
gauge = I(8)

1-loop, gauge + I(8)
GS, gauge = 0 in all 6d gauge theories . (1.35)

The 1-loop gauge anomaly, which arises from charged matter fermions and gauginos
(tensor multiplet fermions do not carry gauge charge), takes the general form

I(8)
1-loop, gauge = kg4 c4(f (2)

g ) + 1
2 k(g2)2 c2(f (2)

g )2 . (1.36)

Since the GS anomaly contribution (1.33) is necessarily reducible, the irreducible 1-
loop gauge anomaly coefficient must vanish, kg4 = 0. However, as emphasized in [1],
the mixed anomaly coefficient is necessarily strictly negative in SCFTs,

k(g2)2 < 0 , (1.37)
20As we saw above, precisely such a GS coupling with I(4) ∼ i ∗ J(2)

B ∼ c2(f (2)
g ) is responsible for gauging

the instanton 1-form symmetry and turning J(2)
B into a conformal descendant.

21The positivity of the Dirac pairing Ω is related to the fact that b(2) is a chiral 2-form gauge field. The
N = (1, 0) supergravity multiplet contains an anti-chiral 2-form gauge field whose Dirac pairing is negative.

22For instance, this is the case if we exploring the one-dimensional tensor sub-branch of a higher-rank
theory.
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and must be canceled using the GS mechanism. This fixes the part of I(4) in (1.33)
that depends on the dynamical gauge field f (2)

g ,

I(4) =
(
−k(g2)2

Ω

) 1
2

c2(f (2)
g ) + (background gauge fields) . (1.38)

This expression is meaningful thanks to (1.37), which also ensures that the GS and
Yang-Mills terms, both of which are proportional to

√
−k(g2)2 , are well defined.

(ii) Mixed anomaly cancellation: as explained in section 1.5 above, SCFTs do not al-
low continuous 1-form symmetries, and a fortiori no continuous 2-group symme-
tries. However, we also saw in section 1.3 that such 2-group symmetries necessarily
arise whenever the anomaly polynomial of a 6d gauge theory contains mixed gauge-
global terms I(8)

mixed = c2(f (2)
g ) ∧ (background gauge fields), where the background

gauge fields are associated with 0-form global symmetries (e.g. a flavor symmetry as
in (1.23), or Poincaré symmetry as in (1.27)). Together these two facts lead to the
inexorable conclusion that all such mixed gauge-global anomalies must vanish in 6d
SCFTs,23

I(8)
mixed = I(8)

1-loop, mixed + I(8)
GS, mixed = 0 in all 6d SCFTs . (1.39)

The 1-loop mixed anomaly only arises from charged matter fermions and gauginos
and takes the general form

I(8)
1-loop, mixed = kg2G2 c2(f (2)

g ) c2(F (2)
G ) +

kg2P2

24 c2(f (2)
g ) p1(T ) ≡ c2(f (2)

g ) ∧X(4)
global .

(1.40)
If the Lie algebra of G(0) is not compact and simple, but rather a direct sum of
compact, simple (or abelian) Lie algebras, then the term ∼ c2(F (2)

G ) in (1.40) is
replaced by a suitable sum of such terms. For instance, this happens if the SCFT has
a flavor symmetry that commutes with SUSY, in addition to the unavoidable SU(2)R
symmetry.

In order to satisfy (1.39), the reducible mixed gauge-global anomalies in (1.40) must
be cancelled by the GS contribution I(8)

GS, mixed. Together with (1.38), this completely
determines I(4), and hence the associated GS term ∼ i

∫
b(2) ∧ I(4),

I(4) =
(
−k(g2)2

Ω

) 1
2
(
c2(f (2)

g ) + 1
k(g2)2

X
(4)
global

)
. (1.41)

This in turn fixes the full GS contribution I(8)
GS = Ω

2 I
(4)∧I(4) in (1.33) to the anomaly

polynomial. Taking into account the vanishing of I(8)
gauge and I(8)

mixed from (1.35)
23Here we assume that the 0-form symmetries participating in I(8)

mixed are exact symmetries of the full
SCFT, rather than accidental symmetries that only emerge at low energies on the tensor branch. This is
true for Poincaré symmetry, but may not hold for all flavor symmetries. A candidate example of a 6d SCFT
with an emergent flavor symmetry on its tensor branch was discussed in [47].
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and (1.39), we find that the full anomaly polynomial in (1.34) reduces to

I(8) = I(8)
global = I(8)

1-loop, global −
1

2k(g2)2
X

(4)
global ∧X

(4)
global

= I(8)
1-loop, global −

1
2k(g2)2

(
kg2G2 c2(F (2)

G ) +
kg2P2

24 p1(T )
)2

.

(1.42)

Since there is no 2-group symmetry, all terms in I(8)
global represent meaningful ’t Hooft

anomalies of the SCFT (see section 2.4). All terms on the right-hand side of (1.42)
can be computed from anomaly coefficients in I(8)

1-loop, i.e. from the gauge and global
symmetry quantum numbers of massless degrees of freedom on the tensor branch.
Note in particular that the Dirac pairing Ω cancels out of the final expression for
I(8), even though it appeared throughout the preceding discussion.

The fact that setting all mixed gauge-global anomalies I(8)
mixed = 0 to zero fixes the

’t Hooft anomalies of 6d SCFTs according to (1.42) was understood in [45], where this
procedure was applied to many examples and subjected to numerous consistency checks.
However, the physical reason why I(8)

mixed = 0 should be imposed in the first place has
remained mysterious. Here we see that this condition need only be imposed if the gauge
theory under consideration descends from an SCFT in the UV, since the latter cannot
have continuous 1-form or 2-group global symmetries. By contrast, the non-conformal
gauge theories that arise in the IR of many 6d LSTs can have I(8)

mixed 6= 0, and thus do
enjoy 2-group symmetry (at the very least as an emergent symmetry in the deep IR, and
possibly beyond, see sections 1.4 and 3). This shows that no completely general consistency
condition, nor supersymmetry or UV completeness alone, can force I(8)

mixed = 0. Rather,
this condition follows from the stronger assumption of a superconformal UV fixed point.

1.7 Application 2: positivity of the a-type Weyl anomaly in 6d SCFTs

We now apply our improved understanding of ’t Hooft anomalies in 6d SCFT in the context
of the a-theorem for this class of theories. The Weyl anomalies of any 6d CFT are captured
by the (scheme-independent terms in) the anomalous trace of the stress tensor in the
presence of a background metric. In six dimensions [48], this trace takes the form

〈Tµµ 〉 ∼ aE6 +
3∑
i=1

ciIi + (scheme dependent) , (1.43)

where E6 is the six-dimensional Euler density and I1,2,3 are weight-6 Weyl invariants. All
four Weyl anomaly coefficients a, ci are interesting observables, but the a-anomaly plays
a privileged role — primarily due to its conjectured monotonicity properties under RG
flows. Following [49], this conjecture — commonly referred to as the a-theorem, despite
the absence of a general proof — states that the a-anomaly decreases for unitary RG flows
connecting conformal fixed points in the UV and IR,24

∆a = aUV − aIR > 0 . (1.44)
24The a-theorem is an established result in 2d [50] (where it is known as the c-theorem) and in 4d [51].
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If we use the a-anomaly as a proxy for the number of effective degrees of freedom in
a CFT, the inequality (1.44) captures the conventional RG intuition that this number
should decrease as we integrate out degrees of freedom along an RG flow. While a proof
of the 6d a-theorem for general, non-supersymmetric RG flows remains elusive,25 it has
been proved for all RG flows onto the tensor branch of 6d SCFTs [42, 54], and verified for
some examples of flows onto Higgs branches [55, 56]. As was already mentioned above,
such moduli space RG flows are the only SUSY-preserving flows out of 6d SCFTs [5, 6].

Another property that the a-anomaly is expected to have based on its interpretation
as counting effective degrees of freedom is that it should be positive in unitary CFTs,

a > 0 . (1.45)

This inequality is logically distinct from the a-theorem inequality (1.44), but it is closely
related. For instance, if there is an RG flow from a given CFT to a gapped theory, then
aIR = 0 and the a-theorem (1.44) implies that the a-anomaly of the CFT is positive, as
in (1.45). However, not all CFTs necessarily admit such flows to gapped phases.

In [42] we studied the a-theorem for RG flows of a 6d N = (1, 0) SCFT onto its tensor
branch. In addition to proving (1.44) in this context, we argued for a general anomaly
multiplet relation expressing the a-anomaly of the SCFT in terms of its ’t Hooft anomalies
for SU(2)R and Poincaré symmetries,26

aSCFT = 16
7 (α− β + γ) + 6

7 δ . (1.46)

For the purpose of this discussion we follow the notation and conventions of [42]: the
anomaly coefficients α, β, γ, δ are defined as follows,

I(8)
global ⊃

1
4!
(
αc2

2(R) + βc2(R)p1(T ) + γp2
1(T ) + δp2(T )

)
, (1.47)

where c2(R) ≡ c2
(
F

(2)
SU(2)R

)
is the second Chern class for the SU(2)R background gauge

field, while p1(T ) and p2(T ) are the first and second Pontryagin classes of the tangent
bundle. The overall normalization of the a-anomaly is chosen such that a free N = (2, 0)
tensor multiplet (consisting of one N = (1, 0) tensor and one N = (1, 0) hypermultiplet)
has a = 1. Table 1 lists the ’t Hooft anomaly coefficients α, β, γ, δ, as well as the value for
the a-anomaly computed using (1.46), for several N = (1, 0) and N = (2, 0) theories.

A surprising entry in table 1 is the a-anomaly for a free N = (1, 0) vector multiplet,
computed by substituting its ’t Hooft anomaly coefficients α, β, γ, δ into the superconformal
anomaly multiplet relation (1.46). The resulting number is negative, avector = −251

210 . As
emphasized in [42] this result is puzzling but not a contradiction: since the free N = (1, 0)
vector multiplet is not an SCFT, there is no immediate meaning to the a-anomaly (or any

25See [52] for an attempt at a proof along the lines of [51], and [53] for an attempt via the conformal
bootstrap.

26Similar N = (1, 0) anomaly multiplet relations for the ci-anomalies were proposed in [57, 58] and proved
in [59]. The corresponding results for N = (2, 0) theories were obtained in [54].
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Theory α β γ δ a

N = (1, 0) hyper multiplet 0 0 7
240 − 1

60
11
210

N = (1, 0) tensor multiplet 1 1
2

23
240 −29

60
199
210

N = (1, 0) vector multiplet −1 −1
2 − 7

240
1
60 “−251

210 ”

N = (2, 0) theory of ADE type g h∨g dg + rg
1
2rg

1
8rg −1

2rg
16
7 h
∨
g dg + rg

Table 1. ’t Hooft and a-anomalies for some SUSY theories. The negative entry for the a-anomaly
of the N = (1, 0) vector multiplet should not be taken at face value (hence the double quotes) and
is further discussed in the text. The N = (2, 0) theories are associated with an ADE Lie algebra g,
with rank rg, dimension dg, and dual Coxeter number h∨

g .

other Weyl anomaly), nor to the anomaly multiplet relation (1.46).27 More concerning is
the fact that many 6d SCFTs possess tensor branches with Yang-Mills gauge fields residing
in N = (1, 0) vector multiplets in the IR. If the massless spectrum on the tensor branch
consists of nH hyper, nT tensor, and nV vector multiplets, table 1 implies that the naive
low-energy contributions of these fields to the a-anomaly of the UV SCFT takes the form

aSCFT = aIR + ∆a , aIR = 11
210nH + 199

210nT −
251
210nV . (1.48)

If the IR theory contains sufficiently many vector multiplets, then aIR may be negative. In
this case the a-theorem ∆a > 0 is not sufficient to guarantee that aSCFT > 0.

In fact, this phenomenon is rather generic. Consider the N = (1, 0) SCFTs that can
be engineered in type IIA string theory using two NS 5-branes suspended inside a stack
of N ≥ 2 D6-branes [61–64]. Separating the NS 5-branes along the D6-branes opens up
a rank-1 tensor branch.28 The massless spectrum on the tensor branch consists of one
tensor multiplet (nT = 1), an SU(N) Yang-Mills theory with nV = N2 − 1, and Nf = 2N
fundamental hyper multiplets, so that nH = 2N2.29 Substituting into (1.48) we find that
the contribution of these massless fields to the a-anomaly of the SCFT is

aIR = 1
210

(
199 + 22N2 − 251(N2 − 1)

)
= 1

210
(
450− 229N2

)
< 0 . (1.49)

An intuitive reason why this phenomenon occurs quite frequently is that gauge-anomaly
cancellation limits the amount of hyper-multiplet matter for a given gauge group, so that
the negative vector-multiplet contribution to aIR in (1.48) is often significant.

27A direct interpretation of the formula avector = − 251
210 was pointed out in [60]: it correctly computes

the actual a-type Weyl anomaly of a superconformal, but non-unitary, theory constructed using a free
N = (1, 0) vector multiplet with 4-derivative kinetic terms, but no conventional 2-derivative kinetic terms.
Since the ’t Hooft anomalies α, β, γ, δ of this theory only depend on the massless spectrum (not the kinetic
terms), they agree with those computed for an ordinary free vector multiplet with Maxwell kinetic term.
This observation will not play a role in our discussion, since we only consider unitary theories.

28We ignore the decoupled center of mass mode of the NS 5-branes, which does not affect our argument.
29Precisely this number of hypers is generically needed to cancel the irreducible quartic gauge anomaly,

i.e. to ensure that kg4 = 0.
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As the preceding example shows, it is not sufficient to rely on the a-theorem inequality
∆a > 0 to prove that aSCFT = aIR + ∆a > 0, since aIR may be negative. Instead, we must
control the actual magnitude of ∆a relative to aIR. Note that aIR can only be negative if
there are vector multiplets on the tensor branch.30 As we saw in section 1.6 above, this is
precisely the situation in which the absence of 2-group global symmetries (enforced via the
absence of mixed gauge-global anomalies) allows us to compute the full ’t Hooft anomalies
I(8)
global using only the low-energy spectrum on the tensor branch. If we apply the general

formula (1.42) with G(0) → SU(2)(0)
R and c2

(
F

(2)
G

)
→ c2(R), kg2G2 → kg2R2 , we find that

I(8)
global = I(8)

1-loop, global −
1

2k(g2)2

(
kg2R2 c2(R) +

kg2P2

24 p1(T )
)2

. (1.50)

Applying the formula (1.46) for the a-anomaly to I(8)
1-loop, global, we find the formula for aIR

in (1.48). Consequently, substituting the GS contribution on the right-hand side of (1.50)
into (1.46) computes ∆a,

∆a = − 192
7k(g2)2

(
kg2R2 −

kg2P2

24

)2
. (1.51)

Note that this expression is positive thanks to (1.37). It is not an accident that both the GS
terms in (1.50) and ∆a in (1.51) are very similar perfect squares (note, however, the relative
minus sign), since both are quadratically related to GS terms in the Lagrangian [42].

The explicit formula (1.51) allows us to compute ∆a from the massless spectrum on
the tensor branch precisely when there are IR gauge fields, where we must prove that
∆a is large enough to overwhelm a potentially negative value of aIR caused by vector-
multiplet contributions. In section 4 we prove this using (1.51) as well as other constraints,
such as conventional gauge-anomaly cancelation. As in our proof of the a-theorem [42],
our argument that aSCFT > 0 only relies on general consistency conditions and does not
depend on any explicit enumeration or classification of 6d SCFTs.

2 Further aspects of 6d theories with 2-group global symmetries

2.1 2-group background gauge fields from mixed gauge-global anomalies

Consider a 6d Yang-Mills gauge theory with gauge group g(0) and field strength f (2)
g . This

theory has a U(1)(1)
B instanton 1-form symmetry associated with the conserved 2-form

current in (1.7), which we repeat here,

J
(2)
B = i ∗ c2(f (2)) , c2(f (2)) = 1

8π2 Tr
(
f (2) ∧ f (2)

)
. (2.1)

As in (1.4), the coupling of J (2)
B to the corresponding background 2-form gauge field B(2)

takes the form
S ⊃

∫
B(2) ∧ ∗J (2)

B = i

∫
B(2) ∧ c2(f (2)

g ) . (2.2)

30In SCFTs whose low-energy description on the tensor branch only contains tensor and hyper multiplets,
such as the N = (2, 0) theories or the small E8 instanton SCFTs, aIR > 0 so that aSCFT > 0 does indeed
follow from the a-theorem [42].
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The conservation equation d ∗J (2)
B = 0 corresponds to invariance under background 1-form

gauge transformations (1.12), B(2) → B(2) + dΛ(1)
B .

We next turn to the effect of anomalies for gauge and global 0-form symmetries, en-
coded by an anomaly polynomial I(8) via the descent procedure. If we use δ to collectively
denote all dynamical and background gauge variations, then the total gauge variation δSeff
of the effective action31 is given by the following formulas,

δSeff = 2πi
∫
I(6) , I(8) = dI(7) , δI(7) = dI(6) . (2.3)

Let us apply these formulas to the case of mixed-global anomalies involving the dynamical
gauge group g(0), and various 0-form symmetries. As in the introduction, we consider
0-form flavor symmetries G(0) and Poincaré symmetry P(0) (see (1.23) and (1.27)),

I(8)
mixed = c2(f (2)

g ) ∧
(
kg2G2c2(F (2)

G ) +
kg2P2

24 p1(T )
)
. (2.4)

We are free to add 6d local counterterms to the action (and hence to Seff), whose gauge
variation may contribute to (2.3). (The freedom of adding local 6d counterterms is an
inherent ambiguity in the descent procedure.) Two important counterterms related to the
mixed anomalies in (2.4) are proportional to

∫
CS(a(1)

g )∧CS(A(1)
g ) and

∫
CS(a(1)

g )∧CS(ω(1)),
where the Chern-Simons terms were defined in (1.16), and their change under gauge trans-
formations can be found using (1.17). By tuning the coefficients of these counterterms, we
can make the mixed anomalies (2.4) appear either in dynamical g(0) gauge transformations,
or background G(0) gauge transformations and local Lorentz transformations.

Consistency of the path integral of e−Seff over the dynamical gauge field a(1)
g , modulo

g(0) gauge transformations, requires that these gauge transformations be completely free of
anomalies — even in the presence of background fields. This uniquely fixes the coefficients
of the counterterms mentioned above (see [17] for a detailed discussion of the 4d case), and
it leads to an unambiguous variation of Seff under background gauge transformations of
A

(1)
G , and under local Lorentz transformations (parametrized by λ(0)

G and θ(0), see (1.10)),

δSeff = i

4π

∫ (
kg2G2 Tr

(
λ

(0)
G dA

(1)
G

)
−
kg2P2

24 tr
(
θ(0)dω(1)

))
∧ c2(f (2)

g ) . (2.5)

Note that the effective action shifts by the operator c2(f (2)
g ) constructed out of the dynam-

ical gauge fields under background G(0) gauge transformations and local Lorentz transfor-
mations. If these transformations are associated with honest symmetries, Seff should be
invariant under these transformations (modulo possible c-number ’t Hooft anomalies). For-
tuitously, c2(f (2)

g ) is sourced by the 2-form background gauge field B(2) via (2.2). We can
therefore cancel the variation in (2.5) by postulating the following transformation rule for
B(2) under all background gauge transformations, which is exactly of the GS form (1.14),

B(2) → B(2) + dΛ(1)
B + κ̂G

4π Tr
(
λ

(0)
G dA

(1)
G

)
+ κ̂P

16π tr
(
θ(0)dω(1)

)
, (2.6)

31We permit ourselves an abuse of language and define the effective action Seff to be obtained by in-
tegrating out all dynamical fields in the path integral, except for dynamical gauge fields. Then Seff is a
(typically highly non-local) functional of both dynamical and background gauge fields, and we can discuss
its (non-) invariance under the associated gauge transformations.
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with
κ̂G = −kg2G2 , κ̂P =

kg2P2

6 . (2.7)

As was explained in section 1.2, this transformation law is one of several equivalent ways
of stating the fact that the 0-form symmetries G(0) and P(0) join with the instanton 1-
form symmetry U(1)(1)

B to form a non-trivial 2-group (i.e. a twisted product symmetry,
as in (1.13)). The 2-group structure constants κ̂G and κ̂P are determined by the mixed
gauge-global anomaly coefficients according to (2.7). All other consequences of 2-group
symmetry can be derived from (2.7). For instance, together with footnote 11 and the
invariance of Seff under background gauge transformations, we can use it to derive the
2-group non-conservation equations (1.20).

2.2 Anomaly polynomial and 2-group structure constants for free fermions

Throughout the remainder of this paper, we will need the anomaly polynomial for free
fermions transforming under various gauge and global symmetries. An immediate appli-
cation is that mixed gauge-global anomaly coefficients determine the 2-group structure
constants, as in (2.7), and we compute them here.

The anomaly polynomial for spin- 1
2 fermions can be extracted from [32, 65]. Consider

a chiral spin-1
2 (i.e. a left-handed Weyl) fermion in 6d, which transforms in a representation

ρg (of dimension |ρg|) of the dynamical gauge group g(0), and in a representation ρG (of
dimension |ρG|) of the flavor symmetry G(0). Altogether, the fermion transforms in the
product representation ρg ⊗ ρG, which has dimension |ρg||ρG|. Its anomaly polynomial is
then given by

I(8)
chiral(ρg, ρG) = Trρg⊗ρG

(
Â exp

(
i

2π
(
f (2)
g

∣∣
ρg⊗1G

+ F
(2)
G

∣∣
1g⊗ρG

))) ∣∣∣∣
8-form

, (2.8)

where we are instructed to expand the expression inside the trace and project it onto 8-
forms. The Â-genus can be expanded in Pontryagin classes pi(T ) of the tangent bundle;
the first few terms of the are given by

Â(R) = 1− 1
24p1(T ) + 1

236!
(
7p1(T )2 − 4p2(T )

)
+ · · · . (2.9)

Substituting into (2.8) and carrying out this procedure, we find that

I(8)
chiral(ρg,ρG) = |ρG|

4!(2π)4 Trρg(f (2)
g )4+ |ρg|

4!(2π)4 TrρG(F (2)
G )4+ 1

22(2π)4 Trρg(f (2)
g )2 TrρG(F (2)

G )2

+ 1
48(2π)2 p1(T )

(
|ρg|TrρG(F (2)

G )2+|ρG|Trρg(f (2)
g )2

)
+ |ρG||ρg|236!

(
7p1(T )2−4p2(T )

)
. (2.10)

The corresponding result for an anti-chiral spin- 1
2 (i.e. for a right-handed Weyl) fermion in

6d is identical up to an overall sign,

I(8)
anti-chiral(ρg, ρG) = −I(8)

chiral(ρg, ρG) . (2.11)
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We can rewrite the mixed anomaly terms in (2.10) in terms of second Chern classes,
which are normalized as in (1.7),

1
2 Trρg

(
f

(2)
g

2π

)2

= T2(ρg)c2(f (2)
g ) , 1

2 TrρG

(
F

(2)
G

2π

)2

= T2(ρG)c2(F (2)
G ) . (2.12)

Here the non-negative integer T2(ρ) ∈ Z≥0 is the quadratic (or Dynkin) index of the
representation ρ,32 normalized so that T2(adj) = 2h∨ for the adjoint representation, with
h∨ the dual Coxeter number (see for instance [66]). The fundamental representations �
of SU(N), SO(N ≥ 5), and Sp(N) (of dimensions N , N , and 2N , respectively) have
T2(�) = 1, T2(�) = 2, and T2(�) = 1 respectively. Comparing (2.10) with (2.4), we see
that the mixed gauge-global anomaly coefficients for a chiral fermion are given by

kg2G2 = T2(ρg)T2(ρG) , kg2P2 = T2(ρg)|ρG| . (2.13)

Both of these anomaly coefficients are integers, as advertised in (1.24) and (1.28). Substi-
tuting into (2.7), we find that the 2-group structure constants resulting from these mixed
gauge-global anomalies are

κ̂G = −T2(ρg)T2(ρG) , κ̂P = T2(ρg)|ρG|
6 . (2.14)

Note that κ̂G is quantized in accordance with (1.19), while this is not obviously the case
for κ̂P . See section 2.3 below for further discussion of this point.

2.3 Quantization of the Poincaré 2-group structure constant

Here we would like to explain why the 2-group structure constant κ̂P is always an integer,
even though this is not obvious from (2.7), which we repeat here,

κ̂P =
kg2P2

6 . (2.15)

Even though kg2P2 is always an integer, this integer is not manifestly divisible by 6. In order
to understand the physics underlying the resolution of this puzzle it is sufficient to consider
a simple example: take the gauge group to be abelian g(0) = U(1), the flavor symmetry
G(0) to be absent, and the only charged matter to be chiral fermions ψi of U(1) charge
qi ∈ Z or anti-chiral fermions ψ̃̃

i
of U(1) charge q̃̃

i
∈ Z. It is straightforward to extend

the discussion to non-abelian gauge groups (e.g. by considering their Cartan subgroups),
to include the flavor symmetry G(0), and to generalize the arguments to general anomaly
polynomials, beyond free fermion examples. A nearly identical puzzle about the integrality
of Poincaré 2-group coefficients arises in 4d; see [17] for a detailed discussion of that puzzle,
without simplifying assumptions.

32The index T2(ρ) is related to the quadratic Casimir C2(ρ) via T2(ρ) = C2(ρ)dim(ρ)
dim(g) , with C2(ρ) normalized

so that C2(adj) = 2h∨g . Note that T2(ρ) is the index of the 4d Dirac operator in the representation ρ. Thus
it counts the number of zero modes for a chiral fermion in the representation ρ in the presence of a unit
instanton in 4d.
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If we repeat the derivation leading to (2.10) and (2.11) for our abelian example, we
find that the anomaly polynomial is given by33

I(8) = Â

∑
i

e
qif

(2)
g

2π −
∑
ĩ

e
q̃
ĩ
f

(2)
g

2π

 ∣∣∣∣
8-form

. (2.16)

We focus on the gauge and mixed parts of I(8),

I(8)
gauge = 1

4!(2π)4

(∑
i

q4
i −

∑
ĩ

(q̃̃
i
)4
)

(f (2)
g )4 ,

I(8)
mixed =

(∑
i

q2
i −

∑
ĩ

(q̃̃
i
)2
)

1
8π2 f

(2)
g ∧ f (2)

g ∧
(
−p1(T )

24

)
.

(2.17)

Identifying 1
4π2 f

(2)
g ∧ f (2)

g as the properly normalized U(1) instanton density (see the dis-
cussion below (1.6)), we conclude that the mixed anomaly coefficient kg2P2 we are after is
given by

kg2P2 = −1
2

(∑
i

q2
i −

∑
ĩ

(q̃̃
i
)2
)
, (2.18)

while the pure U(1) gauge anomaly coefficient kg4 must be set to zero,

kg4 ∼
∑
i

q4
i −

∑
ĩ

(q̃̃
i
)4 = 0 . (2.19)

We will now show that the divisibility of the mixed anomaly coefficient kg2P2 in (2.18)
by 6 follows from the U(1) gauge-anomaly cancellation condition (2.19). To see this, it
is sufficient to observe that any integer n4 ≡ n2 modulo 2, 3, 4, and hence also modulo
12. In equations, n4 ≡ n2(mod 12). Reducing (2.19) modulo 12 and dividing the resulting
equation by 2, we conclude that the expression on the right-hand side of (2.18) vanishes
modulo 6. Thus the mixed anomaly coefficient kg2P2 is divisible by 6, and consequently
the 2-group structure constant κ̂P = kg2P2

6 is an integer.

2.4 ’t Hooft anomalies in the presence of 2-group global symmetries

In a 6d theory with symmetries G(0) and U(1)(1)
B , we can consider the following counterterm

for the background fields A(1)
G and B(2) (we will call it a GS counterterm),

SGS = in

∫
B(2) ∧ c2(FG) , n ∈ Z. (2.20)

33In the abelian example discussed here we depart from our convention of taking the field strength f (2)
g

to be anti-hermitian and take it to be real instead. This explains the missing factors of i in the exponents
of (2.16) relative to those in (2.8).
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Here the quantization condition on n stems from the requirement that the GS counterterm
be invariant under large U(1)(1)

B background gauge transformations. The choice of the
coefficient n amounts to a choice of regularization scheme, and is therefore not intrinsic to
the theory under discussion.34

If the symmetries (including Poincaré symmetry P(0)) are tied together in non-trivial
2-group

(
G(0)×P(0))×κ̂G,κ̂P

U(1)(1)
B , then B(2) shifts under G(0) background gauge trans-

formations and local Lorentz transformations as in (1.14),

B(2) → B(2) + κ̂G
4π Tr

(
λ

(0)
G dA

(1)
G

)
+ κ̂P

16π tr
(
θ(0)dω(1)

)
. (2.21)

Substituting into (2.20), we see that the GS counterterm shifts as follows,

SGS → SGS + in

∫ (
κ̂G
4π Tr

(
λ

(0)
G dA

(1)
G

)
+ κ̂P

16π tr
(
θ(0)dω(1)

))
∧ c2(F (2)

G ) . (2.22)

The variation of the GS counterterm therefore contributes to the anomaly polynomial as
follows,

∆I(8) = nκ̂Gc2(F (2)
G )2 − nκ̂P

4 p1(T )c2(F (2)
G ) . (2.23)

This is simply the GS mechanism for background fields at work: (2.20) is the GS term,
while the 2-group symmetry furnishes B(2) with GS shifts under background 0-form gauge
transformations, resulting in a reducible contribution (2.23) to the anomaly polynomial.

We can similarly consider a GS counterterm involving p1(T ) rather than c2(F (2)
G ),

S′GS = in′

4

∫
B(2) ∧ p1(T ) , n′ ∈ Z . (2.24)

As before the quantization of n′ follows by demanding invariance of this GS term under
large B(2) gauge transformations.35 (A very similar quantization condition was discussed
in [46], albeit in the context of GS terms for dynamical, self-dual 2-form gauge fields.)
Substituting (2.21) into this counterterm leads to another reducible contribution to the
anomaly polynomial,

∆I(8) = n′κ̂G
4 c2(F (2)

G )p1(T )− n′κ̂P

16 p1(T )2 . (2.25)

34The situation is more intricate if the theory under discussion is a low-energy effective theory, as is
often the case in this paper. Then the coefficient nIR with which the counterterm appears in the IR
Wilsonian effective action need not be the same as the UV coefficient nUV. Even though nIR inherits the
scheme ambiguity of nUV, their difference nUV − nIR is a meaningful physical quantity, which arises from
integrating out massive degrees of freedom. Moreover, integrating out massless or topological degrees of
freedom in the IR may lead to an effective non-integral value for nIR. See [67, 68] for a detailed discussion
of these points in the context of 3d Chern-Simons terms, and [17] for a closely related discussion of GS
terms in 4d.

35Under such a gauge transformation, B(2) shifts by F (2)
Λ = dΛ(1)

B with Λ(1)
B a conventionally normalized

U(1)(0) gauge field and F
(2)
Λ its Maxwell field strength, i.e. 1

2πF
(2)
Λ defines an integral cohomology class.

To show that 1
8π

∫
F

(2)
Λ ∧ p1(T ) ∈ Z on a spin 6-manifold we combine the integrality of 1

2πF
(2)
Λ with the

Atiyah-Singer index theorem, which states that the index of a unit-charge Dirac operator is given by

index =
∫ (

1
3!

(
F

(2)
Λ
2π

)3

− 1
24

(
F

(2)
Λ
2π

)
p1(T )

)
∈ Z .
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Adding (2.23) and (2.25), we obtain the full form of the terms in the anomaly polynomial
that are rendered scheme dependent by the GS counterterms (2.20) and (2.24),

∆I(8)
total = nκ̂Gc2(F (2)

G )2 + n′κ̂G − nκ̂P

4 c2(F (2)
G )p1(T )− n′κ̂P

16 p1(T )2 . (2.26)

Only the remainder of the anomaly polynomial I(8) modulo the counterterm ambiguity
∆I(8)

total encodes genuine ’t Hooft anomalies that are subject to ’t Hooft anomaly matching
(see [17] for a detailed discussion with examples in 4d).

2.5 Example of a 6d sigma model with continuous 2-group symmetries

Given a sigma model with target space X, the Hodge dual of an integral cohomology class
in Hp(X,R), pulled back to spacetime, gives rise to a conserved (d− p)-from current with
quantized charges in d spacetime dimensions. In d = 6, this means that continuous U(1)(1)

X

1-form symmetries can arise if X has non-trivial H4(X,R). The corresponding 2-form
current is J (2)

B = i ∗ e4, with e4 the pullback to spacetime of the H4(X,R) class. An
example is the sigma model with target space X = S4, which has a unique H4(X,R) class
given by the volume form.

To see that the S4 sigma model can be modified so that its U(1)(1)
X symmetry partic-

ipates in a 2-group, it is convenient to engineer an RG flow from a 6d gauge theory with
2-group symmetry that realizes the S4 sigma model in the IR. This can be done using a dy-
namical g(0) = SU(2) gauge theory coupled to two complex scalar Higgs fields H1, H2, each
of which is in the doublet representation of SU(2). Prior to gauging the SU(2) symmetry,
the Higgs fields comprise eight real scalars transforming in the vector representation of an
SO(8) flavor symmetry. We can add an SO(8)-invariant potential V (H†1H1 + H†2H2) that
induces a vev H†1H1 +H†2H2 = v2. Prior to gauging, this vev breaks the SO(8) symmetry
to SO(7), leading to an S7 sigma model for the massless NG bosons in the deep IR. The
gauged SU(2) symmetry acts on S7 via the Hopf action, and performing the gauge quotient
reduces S7 to S4. In the Higgs phase, topologically non-trivial configurations of the SU(2)
gauge fields are tied to winding configurations of the scalars Hi (i = 1, 2). (One way to see
this is to demand that the action be finite, which requires the gauge-covariant derivatives
DµHi to vanish at infinity.) Consequently, the instanton density c2(f (2)

g ) of the SU(2) gauge
theory flows to e4, the pullback to spacetime of the unit S4 volume form. This means that
the SU(2) instanton number in the UV flows to the sigma-model winding number in the
IR. In summary, the continuous U(1)(1)

X 1-form symmetry of the S4 sigma model descends
from the instanton 1-form symmetry of the SU(2) gauge theory we started with.

It is now straightforward to enrich the preceding model so that the U(1)(1)
X symmetry

participates in a 2-group. For instance, we could add Nf fundamental Dirac fermions to the
SU(2) gauge theory. This leads to a new G(0) = SU(Nf )(0)

L × SU(Nf )(0)
R flavor symmetry

acting on the chiral and anti-chiral parts of the Dirac fermions. Since G(0) has mixed
anomalies with the g(0) = SU(2) gauge symmetry, we obtain a 2-group of the form (here
we use (2.14))(

SU(Nf )(0)
L × SU(Nf )(0)

R

)
×κ̂L,κ̂R U(1)(1)

X , κ̂L = −κ̂R = −1, κ̂P = 0 . (2.27)
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Since anomalies are invariant under continuous deformations and RG flow, the non-zero
kg2G2 mixed anomaly of the UV theory must be matched in the IR sigma model, analogous
to the pure sigma-model anomalies discussed in [69]. This is accomplished by a WZW
term ∼ kg2G2

∫
Σ7
e4 ∧ CS(A(1)

G ) in the sigma-model action, which leads to the 2-group
non-conservation equation (1.25) for j(1)

G , with e4 taking the place of c2(f (2)
g ).

2.6 2-group symmetries and ’t Hooft anomalies on string worldsheets

For completeness we mention that (just as in four dimensions [17]) 2-group symmetry fixes
certain ’t Hooft anomalies on the 2d world sheets of strings charged under the U(1)(1)

B 1-form
symmetry. This can be seen by integrating the 2-group non-conservation equations (1.20)
over the four-dimensional space Σ⊥ transverse to the world sheet. Then

∫
Σ⊥ ∗J

(2)
B = Q

measures the U(1)(1)
B charge of the string.

A quick way to obtain the world sheet anomalies in the form of a 4-form anomaly
polynomial I(4)

string involves looking at the instanton strings in the gauge theory examples
discussed in section 2.1. If we integrate the anomaly 8-form polynomial I(8)

mixed in (2.4) over
Σ⊥ we can replace

∫
Σ⊥ c2(f (2)

g )→ Q. We therefore find that

I(4)
string = Q

(
kg2G2c2(F (2)

G ) +
kg2P2

24 p1(T )
)

= Q

(
−κ̂Gc2(F (2)

G ) + κ̂P

4 p1(T )
)
. (2.28)

In the second equation we have substituted the anomaly coefficients by the 2-group struc-
ture constants using (2.7), and this equation is a model-independent relation for the world-
sheet ’t Hooft anomalies of a charge-Q string in any 6d theory with 2-group symmetry.

Note that 6d SCFTs also have strings, but they are not charged under a global U(1)(1)
B

symmetry, given that such a symmetry does not exist in these theories (see section 1.5).
Rather, the strings in 6d SCFTs carry gauge charge under dynamical 2-form gauge fields,
and the GS terms for these gauge fields determine the ’t Hooft anomalies on the string world
sheet (see for instance [70, 71] and references therein). As explained in section 1.6, and
following [45], these GS terms must be chosen to cancel any apparent 2-group symmetry
of the low-energy gauge theory.

3 6d little string theories and 2-group global symmetries

In this section we examine the SUSY gauge theories that describe the deep IR of 6d LSTs
(focusing on the examples mentioned in section 1.4) and show that they possess continuous
2-group global symmetries arising from mixed gauge-global anomalies, as in sections 1.3
and 2.1. We do not know the extent to (and the precise sense in) which these 2-group
symmetries may extend to the full LSTs. At worst, they may only be accidental symmetries
that emerge in the deep IR, but are not present microscopically. The basic challenge is that
2-group symmetry is not immediately visible at the level of the symmetry charge algebra.
In fact, all symmetries that we will discuss in the context of LSTs are believed to be global
symmetries at the level of global charges. This holds for the (super-) Poincaré symmetries,
the flavor and R-symmetries, and even for the instanton 1-form symmetry U(1)(1)

B , whose
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charge can act as a higher-form version of a central charge in the SUSY algebra, where it
leads to a BPS bound for instanton strings (see [25] for an in-depth discussion).

By contrast, continuous 2-group symmetries are based on the local notion of current
algebra. On one hand, it is not clear to what extent this notion retains meaning in the
fundamentally non-local LSTs. On the other hand, the 2-group Ward identities (as ex-
plained in [17], these follow from the 2-group non-conservation equations in (1.20)) can
be Fourier transformed to yield well-defined relations between momentum-space Green
functions, which are also meaningful in LSTs (see for instance [8, 12]). We view it as an
interesting problem to elucidate the status of the 2-group global symmetries we identify
below (using the low-energy gauge theory description) for the full LSTs. (See [36] for some
upcoming work in this direction.) Similar caveats apply to the notion of ’t Hooft anomalies
in LSTs (which we will also analyze using the low-energy gauge theory description).

3.1 Anomalies and 2-group structure constants in supersymmetric theories

In this section we summarize the anomaly polynomials (see appendix A of [45] for a useful
summary), and compute the 2-group structure constants, of weakly-coupled 6d N = (1, 0)
theories containing hyper, vector, and tensor multiplets. We do not consider the contribu-
tion of possible GS terms for tensor multiplets, which will be absent in the LST discussed
in this section, but will play an important role in our discussion of SCFTs in section 4.

The theories we consider have a compact simple dynamical gauge group g(0), and hence
an associated U(1)(1)

B instanton 1-form symmetry. In addition to Poincaré symmetry P(0)

and its supersymmetric extension, all theories also have an SU(2)R symmetry under which
the supercharges transform in the fundamental � representation. In addition, they can
also have a non-R flavor symmetry G(0), which commutes with the supercharge.

Hyper multiplets contain chiral fermions, which can transform in a representation ρg⊗
ρG of the gauge and non-R flavor symmetry, but are neutral under the SU(2)R symmetry.
The anomaly polynomial of such a hyper multiplet is thus given by (2.10), which can be
simplified using (2.12),

I(8)
hyper(ρg, ρG) = |ρG|

4!(2π)4 Trρg(f (2)
g )4 + |ρg|

4!(2π)4 TrρG(F (2)
G )4 + T2(ρg)T2(ρG)c2(f (2)

g )c2(F (2)
G )

+ 1
24 p1(T )

(
|ρg|T2(ρG)c2(F (2)

G ) + |ρG|T2(ρg)c2(f (2)
g )

)
+ |ρG||ρg|236!

(
7p1(T )2 − 4p2(T )

)
. (3.1)

Vector multiplets contain anti-chiral fermions (i.e. gauginos) that transform in the
adjoint representation of the gauge group g(0) and in the spin- 1

2 fundamental representation
� of SU(2)R. (They are neutral under the non-R flavor symmetry G(0).) Moreover, the
gauginos (just like the 6d supercharges) obey a symplectic-Weyl reality condition, which
requires us to multiply the anomaly polynomial by 1

2 . Bearing in mind that anti-chiral
fermions contribute anomalies of opposite sign (as in (2.11)), that adjoint representation
of g(0) has T2(adj) = 2h∨g and dimension dim(g(0)), and the SU(2)R group theory relation
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Tr�(F (2)
R )4 = 1

2(Tr�(F (2)
R )2)2, we find that the anomaly polynomial of a vector multiplet is

Ivector(g(0)) = − 1
4!(2π)4 Tradj(f (2)

g )4 − h∨g
(
c2(R) + 1

12 p1(T )
)
c2(f (2)

g )

− dim(g(0))
( 1

4!c2(R)2 + 1
48c2(R)p1(T ) + 1

236!(7p1(T )2 − 4p2(T ))
)
.

(3.2)

For future reference, we write down the anomaly polynomial for a tensor multiplet. In
addition to a chiral fermion transforming in the � of the SU(2)R symmetry (but neutral
under g(0), G(0), this also receives a purely gravitational contribution from the chiral 2-form
gauge field residing in the tensor multiplet [65]. Altogether (see for instance the second
line in table 1, or equation (A.4) in [45]),

Itensor = 1
4!c2(R)2 + 1

48c2(R)p1(T ) + 1
236!

(
23p1(T )2 − 116p2(T )

)
. (3.3)

In order to compute the 2-group structure constants, we need the following mixed
anomaly coefficients,

I(8)
mixed = c2(f (2)

g )
(
kg2G2c2(F (2)

G ) + kg2R2c2(R) +
kg2P2

24 p1(T )
)
. (3.4)

Only the hyper and vector multiplets in (3.1) and (3.2) contributed to these mixed anoma-
lies. Summing over all hyper multiplet representations (ρg,i, ρG,i), we find

kg2G2 =
∑

hypers i
T2(ρg,i)T2(ρG,i) , kg2R2 = −h∨g , kg2P2 = −2h∨g +

∑
hypers i

|ρG,i|T2(ρg,i) .

(3.5)
The 2-group structure constants are then given in terms of these mixed anomalies by (2.7),

κ̂G = −kg2G2 = −
∑

hypers i
T2(ρg,i)T2(ρG,i) ,

κ̂R = −kg2R2 = h∨g ,

κ̂P =
kg2P2

6 = −
h∨g
3 + 1

6
∑

hypers i
|ρG,i|T2(ρg,i) .

(3.6)

Whenever any of these structure constants are non-zero, the global symmetries form a non-
trivial 2-group. As discussed in section 2.4, this subjects the ’t Hooft anomalies I(8)

global to
scheme-dependent shifts of the form (2.26), which are proportional to the 2-group structure
constants.

3.2 N = (1, 1) little string theories

As was briefly reviewed in section 1.4, theN = (1, 1) LSTs flow at low energies to maximally
supersymmetric Yang-Mills theory with ADE gauge group g(0). (The anomaly coefficients
and 2-group structure constants listed below are valid for any g(0).) In N = (1, 0) language,
these are theories with vector multiplet and a hyper multiplet in the adjoint representation
of g(0). Together the chiral and anti-chiral adjoint fermions in these two multiplets form
an Dirac fermion in the adjoint of g(0), so that all gauge anomalies automatically vanish.
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The 0-form symmetries are the super-Poincaré symmetry, as well as an SU(2)(0)
L ×

SU(2)(0)
R symmetry under which the supercharges transform in the bi-fundamental repre-

sentation (�,�) (i.e. in the spin (1
2 ,

1
2) representation). From the N = (1, 0) point of view,

SU(2)(0)
L (abbreviated by “L”) is a flavor symmetry (it commutes with the N = (1, 0) super-

charges), while SU(2)(0)
R (abbreviated “R”) is the N = (1, 0) R-symmetry. The N = (1, 0)

hyper multiplet is a half-hyper-multiplet in the � of SU(2)L, i.e. there are four real hyper-
multiplet scalars transforming as bi-fundamentals of SU(2)(0)

L ×SU(2)(0)
R . Referring to (3.1)

(multiplied by 1
2 because we have a half-hyper-multiplet) and (3.2), we obtain the mixed

and global anomalies of the theory,

I(8)
mixed = h∨g

(
c2(L)− c2(R)

)
c2(f (2)

g ) ,

I(8)
global = dim(g(0))

( 1
4!
(
c2(L)2 − c2(R)2

)
+ 1

48 (c2(L)− c2(R)) p1(T )
)
.

(3.7)

Comparing with (3.6), we find the following 2-group structure constants,

κ̂L = −κ̂R = −h∨g , κ̂P = 0. (3.8)

Thus the SU(2)(0)
L ×SU(2)(0)

R symmetry participates in a 2-group with the U(1)(1)
B instanton

1-form symmetry, but the Poincaré symmetry does not. As we briefly recalled below (3.6)
above (see section 2.4 for more detail) this truncates those ’t Hooft anomalies in I(8)

global that
can be (partially) absorbed using GS counterterms involving the background field B(2).

3.3 The N = (1, 0) little string theory of small SO(32) instantons

As was shown in [7, 37], the low-energy gauge theory that describes the deep IR of the 6d
LST obtained by decoupling gravity for N coincident small heterotic SO(32) instantons is
an N = (1, 0) gauge theory with gauge group g(0) = Sp(N), a global SU(2)(0)

R symmetry
under which the supercharges transform in the fundamental � representation, and a G(0) =
SU(2)(0)

L × SO(32)(0) flavor symmetry that commutes with the supercharges. The matter
consists of a half-hyper-multiplet in the bi-fundamental representation (�,�) of Sp(N)×
SO(32), and another half-hyper-multiplet in the irreducible two-index antisymmetric tensor
representation of the Sp(N) gauge group and the � representation of SU(2)L.

It was shown in [72] that this matter content cancels all gauge anomalies. The mixed
anomalies can be computed by substituting the above matter content into (3.5), taking
care to multiply by 1

2 for the half-hyper-multiplets,36

kg2L2 = N − 1 , kg2R2 = −h∨g = −(N + 1) , kg2(SO(32))2 = 1 , kg2P2 = 12 . (3.9)

This leads to the following 2-group structure constants,

κ̂L = −kg2L2 = −(N − 1) , κ̂R = −kg2R2 = h∨g ,

κ̂SO(32) = −kg2(SO(32))2 = −1 , κ̂P =
kg2P2

6 = 2 ,
(3.10)

36Here we need the fact that T2 = 2(N−1) for the irreducible two-index antisymmetric tensor representa-
tion of Sp(N). Note the simple special cases N = 1, where this representation is a singlet with T2 = 0, and
N = 2, where this representation is equivalent to the fundamental SO(5) vector representation, with T2 = 2.
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all of which are integers. In the case of κ̂P , this is non-trivial, but ultimately guaranteed by
the fact that the matter content cancels all pure Sp(N) gauge anomalies (see section 2.3).
We see that all possible 2-group structure constants are generically non-zero (for N ≥ 2),
so that all continuous 0-form symmetries (including the Poincaré symmetry) participate
in a non-trivial 2-group with the instanton 1-form symmetry U(1)(1)

B . As in the discussion
below (3.8), this has the effect of truncating certain ’t Hooft anomalies of the theory (see
also section 2.4).

4 Positivity of the a-type Weyl anomaly in 6d SCFTs

In this section we argue that a unitary N = (1, 0) SCFT with a tensor branch has positive
a-type Weyl anomaly, aSCFT > 0. As in section 1.7 we first focus on the rank-1 case, before
discussing the generalization to higher rank.

4.1 Proof for rank-1 theories

Recall from section 1.7 that the a-type Weyl anomaly aSCFT of a 6dN = (1, 0) SCFT with a
rank-1 tensor branch (described in the deep IR by nT = 1 tensor multiplets, nV = dim(g(0))
vector multiplets in the adjoint representation of a compact simple gauge group g(0), and
hyper multiplet matter) is given by (1.48) and (1.51), which we repeat here,

aSCFT = aIR + ∆a ,

aIR = 11
210nH + 199

210nT −
251
210nV ,

∆a = − 192
7k(g2)2

(
kg2R2 −

kg2P2

24

)2
> 0 .

(4.1)

The fact that ∆a can be computed in this way non-trivially follows from the absence
of continuous 2-group symmetries in 6d SCFTs (see sections 1.5 and 1.7 for details and
references).

We would like to show that aSCFT is positive, i.e. that ∆a > 0 is always sufficiently large
to overpower any potentially negative contribution to aIR coming from vector multiplets.
We will show that this follows from general properties of the low-energy theory on the
tensor branch. To this end, we must compute the 1-loop anomaly coefficients k(g2)2 , kg2R2 ,
and kg2P2 due to massless vector and hyper multiplets on the tensor branch that appear
in (4.1), normalized as in (1.36) and (1.40),

I(8)
1-loop ⊃

1
2 k(g2)2 c2(f (2)

g )2 + kg2R2 c2(f (2)
g ) c2(R) +

kg2P2

24 c2(f (2)
g ) p1(T ) . (4.2)

We have already computed the anomaly coefficients kg2R2 and kg2P2 in (3.5),37

kg2R2 = −h∨g , kg2P2 = −2h∨g +
∑

hypers i
T2(ρg,i) . (4.3)

37Here we ignore the flavor symmetry G(0) and take ρG to be the trivial representation, but still sum
over all hyper multiplets. In other words, if IR gauge theory does in fact have a G(0) symmetry, we treat a
hyper multiplet transforming in the ρG representation as |ρG| singlets and sum over all of them.
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g(0) SU(N ≥ 4) SO(N ≥ 5) Sp(N) SU(2) SU(3) G2 F4 E6 E7 E8

dim(g(0)) N2 − 1 N(N−1)
2 N(2N + 1) 3 8 14 52 78 133 248

h∨g N N − 2 N + 1 2 3 4 9 12 18 30

ug 2 4 1 8
3 3 10

3 5 6 8 12

Table 2. Dimension dim(g(0)), dual Coxeter number h∨
g , and ug coefficient (defined in (4.7)) for all

compact simple gauge groups g(0). The groups SU(2) and SU(3) require special treatment because
they do not have quartic Casimirs.

Since T2(ρ) ≥ 0, we obtain the following lower bound for the quadratic expression that
appears in the formula (4.1) for ∆a,(

kg2R2 −
kg2P2

24

)2
≥
(

11h∨g
12

)2

. (4.4)

Note that this lower bound only depends on the gauge group g(0), but not on the hyper
multiplet matter content. The value of h∨g is tabulated in table 2 for all compact simple
gauge groups.

We must now extract the reducible gauge-anomaly coefficient k(g2)2 in (4.2) from the
anomaly polynomials (3.1) and (3.2) for hyper and vector multiplets,

I(8)
gauge, hyper+vector = 1

4!(2π)4

∑
hypers i

Trρg ,i(f (2)
g )4 − 1

4!(2π)4 Tradj(f (2)
g )4 . (4.5)

Recall from (1.37) that the reducible gauge anomaly coefficient k(g2)2 must be negative in
6d SCFTs, k(g2)2 < 0, since only such a negative anomaly can be canceled using a field-
theoretic GS mechanism with a N = (1, 0) tensor multiplet. It follows from (4.5) that
hyper multiplets contribute positively to the gauge anomaly, and hence to k(g2)2 , while
vector multiplets contribute negatively.38 This leads to the bounds

kvector(g2)2 ≤ k(g2)2 < 0 , (4.6)

where kvector(g2)2 is the vector-multiplet contribution to the reducible gauge anomaly coefficient.
To compute kvector(g2)2 , we must expand Tradj(f (2)

g )4 in terms of Chern classes and ex-
tract the reducible term ∼ c2(f (2)

g )2, which involves a group-theoretic factor. Following
appendix A of [45], we define a constant ug > 0 (which only depends on the gauge group
g(0)) via

Tradj(f (2)
g )4

∣∣∣∣
reducible

≡ 3ug(Tr(f (2)
g )2)2 . (4.7)

The coefficient ug is listed in table 2 for all compact simple gauge groups. Since
c2(f (2)

g ) = 1
8π2 Tr(f (2)

g )2 (see (1.7)), we find that

kvector(g2)2 = −ug . (4.8)
38This bounds the overall amount of charged hyper-multiplet matter that is possible for a given gauge

group, as originally pointed out in [1].
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We can now put everything together: substituting (4.8) into the bound (4.6), and
combining the latter with the previously obtained bound in (4.4), we deduce a lower bound
for ∆a in (4.1) that only depends on the gauge group g(0),

∆a ≥ 192
7ug

(
11h∨g

12

)2

≈
23.05 (h∨g )2

ug
. (4.9)

Omitting the manifestly positive hyper and tensor multiplet contributions to aIR in (4.1),
and using nV = dim(g(0)), we also obtain a (crude but sufficient) lower bound on aIR,

aIR > −
251
210dim(g(0)) ≈ −1.20 dim(g(0)) . (4.10)

In order to show that aSCFT is positive, we must therefore verify that

23.05 (h∨g )2

ug
> 1.20 dim(g(0)) , (4.11)

or equivalently that
ugdim(g(0))

(h∨g )2 < 19.21 . (4.12)

This is comfortably true for all gauge groups listed in table 2 and completes the proof that
aSCFT > 0 for rank-1 theories.

4.2 Generalization to higher rank

We now generalize the proof that aSCFT > 0 for unitary N = (1, 0) SCFTs of rank r = 1
in section 4.1 above to SCFTs of rank r ≥ 2. We follow the same general approach, but
the argument is significantly more involved and requires new ingredients. In particular, we
will use some results from [59].

As a first step, we activate all r tensor-multiplet vevs φi (i = 1, . . . , r) and assume
that the resulting low-energy theory on the tensor branch is described by weakly-coupled
tensor, vector, and hyper multiplets.39 The vector multiplets transform in the adjoint rep-
resentation of a semi-simple Yang-Mills gauge algebra ⊕`a=1 ga, where each ga is a compact
simple Lie algebra.40 Here the number ` of simple gauge algebras ga must be less than the
number r of tensor multiplets, i.e. ` ≤ r, because every such gauge algebra must be paired
with at least one tensor multiplet. The reasons are entirely analogous to those explained
for the rank-1 case in section 1.6.

Flux quantization for the self-dual 3-form field-strengths h(3)
i = ∗h(3) of the 2-form

gauge fields b(2)
i residing in the same tensor multiplets as the φi defines natural integral

bases for the tensor multiplets.41 In such an integral basis, the Dirac pairing Ωij = Ω(ij)

39This amounts to the assumption that there are no interacting rank-0 theories. This assumption is
motivated by the fact that the only known N = (1, 0) SCFTs without a tensor branch are theories of free
hyper multiplets.

40Recall that gauge-anomaly cancellation considerations and supersymmetry imply that abelian gauge
fields do not occur on the tensor branch of 6d SCFTs.

41An integral basis is not unique, since a transformation in O(r,Z) preserves the integrality of the basis.
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for the tensor multiplets is a real, symmetric matrix with integer entries. Moreover, Ωij

defines a positive-definite bilinear form, since all the b(2)
i are chiral 2-form gauge fields with

self-dual 3-form field-strengths h(3)
i . In such a basis, the GS modification of the Bianchi

identities dh(3)
i takes the form

dh
(3)
i = I(4)

i , (4.13)

and the GS contribution I(8)
GS to the anomaly polynomial is given by the following general-

ization of (1.33),
I(8)
GS = 1

2 Ωij I(4)
i ∧ I

(4)
j . (4.14)

In general, the I(4)
i take the form

I(4)
i =

∑̀
a=1

Kiac2(f (2)
a ) + (background gauge fields) . (4.15)

Here f (2)
a is the Yang-Mills field strength for the gauge algebra ga, while the coefficients

Kia determine the Yang-Mills and GS terms, i.e. the generalizations of (1.30) and (1.31),

SYM+GS ∼ Kia

∫ (
φi Tr(f (2)

a ∧ ∗f (2)
a ) + ib

(2)
i ∧ c2(f (2)

a )
)
. (4.16)

Here the requirement that every simple gauge algebra ga be paired with at least one tensor
amounts to the statement that the r × ` matrix Kia has maximal rank `. Moreover,
invariance of the GS terms in (4.16) under large gauge transformations of the b(2)

i imposes
quantization conditions on the coefficients Kia.

We now argue that we can reduce our problem to the case where r = ` and Kia is
a square matrix of maximal rank (i.e. it is an invertible matrix). To see this, note that
in general, there are r − ` tensor multiplets that are not paired with Yang-Mills gauge
fields. If we only activate tensor-multiplet vevs lying in this (r − `)-dimensional subspace
of the full tensor branch, while setting the remaining ` tensor-multiplet vevs to zero, then
the only low-energy degrees of freedom are weakly-coupled tensor and hyper multiplets, as
well as an interacting rank-` SCFT at the origin — but no vector multiplets. In this case
we can apply the a-theorem (together with the fact that tensor and hyper multiplets have
positive a-anomalies) to conclude that the rank-r SCFT in the UV has positive a-anomaly
if the rank-` SCFT at the origin in the IR has positive a-anomaly.

We therefore proceed to prove that aSCFT > 0 for rank-r SCFTs with ` = r simple
gauge algebras ga on their tensor branch, so that every gauge algebra is paired with precisely
one tensor multiplet. In particular, the square matrix Kia (with i = 1, . . . , r and a =
1, . . . , ` = r) appearing in (4.15) and (4.16) must be invertible. We can now simplify
further by performing a change of basis on the tensor-multiplet fields,

φ̂a =
r∑
i=1

Kiaφi , b̂(2)
a =

r∑
i=1

Kiab
(2)
i , (4.17)

and similarly for their fermionic superpartners. Note that this change of basis potentially
obscures the flux-quantization properties of the 2-form gauge fields, but this will not affect
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our argument below. In the new basis (4.17), the Yang-Mills and GS terms in (4.16) take
the following simple, diagonal form,

SYM+GS ∼
r∑

a=1

∫ (
φ̂a Tr(f (2)

a ∧ ∗f (2)
a ) + ib̂(2)

a ∧ c2(f (2)
a )

)
, (4.18)

while the Dirac pairing Ω̂ab of the b̂(2)
a is given by

Ω̂ab =
r∑

i,j=1
ΩijKiaKjb . (4.19)

Comparing with (4.14) and (4.15), we see that Ω̂ab is nothing but the matrix of reducible
gauge anomalies contributed by the GS terms,

I(8)
GS = 1

2Ω̂abc2(f (2)
a ) ∧ c2(f (2)

b ) . (4.20)

Since this GS contribution must cancel the reducible 1-loop gauge anomalies contributed
by vector and hyper multiplets on the tensor branch, we conclude that

I(8)
1-loop, gauge = (irreducible) + 1

2(k(g2)2)abc2(f (2)
a ) ∧ c2(f (2)

b ) , (k(g2)2)ab = −Ω̂ab . (4.21)

Since the Dirac pairing Ω̂ab is a positive-definite bilinear form, it follows that (k(g2)2)ab
must be negative definite. (Recall the analogous discussion around (1.37) for the rank-1
case.) Note that consistency of the low-energy theory demands that the irreducible gauge
anomalies indicated in (4.21), which are of the form (kg4)a c4(f (2)

a ), must vanish in their
own right.

As explained in section 1.6, we can fix the background-field dependence of the I(4)
i

in (4.15), and hence the GS contribution to the ’t Hooft anomalies of the SCFT, by de-
manding the absence of mixed gauge-global anomalies (and thus the absence of continuous
2-group symmetries). We will do this explicitly for the SU(2)R and gravitational ’t Hooft
anomalies, which are needed to compute aSCFT. The relevant gauge-R and gauge-gravity
anomaly coefficients are defined as follows,

I(8)
1-loop, mixed = (kg2R2)a c2(f (2)

a ) c2(R) +
(kg2P2)a

24 c2(f (2)
a ) p1(T ) . (4.22)

We thus arrive at the following generalization of (1.42) (with G(0) replaced by SU(2)(0)
R )

to the higher-rank case,

I(8) = I(8)
1-loop, global

− 1
2
(
k(g2)2

)−1
ab

(
(kg2R2)a c2(R)+

(kg2P2)a
24 p1(T )

)(
(kg2R2)b c2(R)+

(kg2P2)b
24 p1(T )

)
.

(4.23)

Here
(
k(g2)2

)−1
ab

is the matrix inverse of
(
k(g2)2

)
ab
. Note that

(
k(g2)2

)
ab

is invertible because
its eigenvalues are strictly negative. Together with (1.46) and (1.47), this leads to the
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following generalization of (4.1) to the higher-rank case,

aSCFT = aIR + ∆a ,

aIR = 11
210nH + 199

210nT −
251
210nV ,

∆a = −192
7
(
k(g2)2

)−1
ab
XaXb > 0 , Xa =

(kg2P2)a
24 − (kg2R2)a .

(4.24)

As for the rank-1 case analyzed in section 4.1, showing that aSCFT > 0 amounts to
proving that the explicit, positive expression for ∆a in (4.24) is always sufficiently large to
overwhelm the negative contribution to aIR that arises from the

nV =
r∑

a=1
dim(ga) (4.25)

vector multiplets on the tensor branch. We begin by proving that each Xa that appears in
the formula (4.24) for ∆a satisfies the following bound,

Xa =
(kg2P2)a

24 − (kg2R2)a ≥
11h∨a

12 > 0 , (4.26)

where h∨a is the dual Coxeter number of ga. This is analogous to the bound (4.4) obtained
in the rank-1 case.

To prove the lower bound (4.26) for Xa, we collapse all r − 1 tensor-multiplet vevs
except φ̂a to the origin, i.e. we study a one-dimensional tensor sub-branch on which only
φ̂a is activated. The low-energy degrees of freedom on this φ̂a-branch are a single tensor
multiplet (containing φ̂a), vector multiplets transforming in the adjoint representation of ga,
hyper multiplet matter, and an interacting rank-(r−1) SCFT Ta at the origin of the tensor
branch. In general, the ga gauge fields couple to both the weakly-coupled vector and hyper
multiplets and to the SCFT Ta, i.e. they weakly gauge a ga subgroup of the (non-R)
flavor symmetry of Ta. Consequently, anomalies involving the gauge-algebra ga can receive
contributions from any of these sources. We can therefore express the 1-loop gauge-R and
gauge-gravity anomalies contributed by the low-energy degrees of freedom as follows (this
formula generalizes (4.3)),

(kg2R2)a = −h∨a + kg2R2(Ta) , (kg2P2)a = −2h∨a +
∑

hypers i
T2(ρa,i) + kg2P2(Ta) . (4.27)

Here kg2R2(Ta) and kg2P2(Ta) are the mixed ga-R and ga-gravity anomaly coefficients
contributed by the SCFT Ta, while the ρa,i denote the ga representations of the weakly-
coupled hyper multiplets.

Viewed intrinsically from the point of view of the SCFT Ta, the anomaly coefficients
kg2R2(Ta) and kg2P2(Ta) are mixed flavor-R and flavor-gravity ’t Hooft anomalies, which
are converted into mixed gauge-global anomalies once the ga vector multiplets on the tensor
branch weakly gauge a ga subgroup of Ta’s flavor symmetry.42 In order to derive the lower

42Note that one can make the gauging arbitrarily weak by giving the tensor-multiplet scalar φ̂a an
arbitrarily large vev. This does not affect the anomaly coefficients we need.
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bound (4.26) for Xa, we compute, using (4.27),

Xa =
(kg2P2)a

24 − (kg2R2)a

= 11h∨a
12 +

 1
24

∑
hypers i

T2(ρa,i) +
( 1

24kg2P2(Ta)− kg2R2(Ta)
) .

(4.28)

The bound (4.26) now follows from the fact that the expression {· · · } on the right-hand
side of (4.28) is non-negative. For the hyper-multiplet terms this immediately follows from
the fact that T2(ρ) ≥ 0. We now explain why the contribution from the interacting SCFT
Ta is also non-negative.

In [59] we showed that in any N = (1, 0) SCFT Ta with a non-R flavor symmetry ga,
the corresponding flavor current j(1)

a has a 2-point function 〈j(1)
a (x)j(1)

a (0)〉 ∼ τa
x10 , whose

coefficient τa can be expressed in terms of the mixed ’t Hooft anomalies of the ga flavor
symmetry with the SU(2)R symmetry and gravity,

τa = (positive number)
( 1

24kg2P2(Ta)− kg2R2(Ta)
)
. (4.29)

Here the positive prefactor depends on the precise normalization of τa and will not be
important for us. (It can be found in [59].) Since the 2-point function coefficient τa is
necessarily non-negative in a unitary SCFT, τa ≥ 0, it follows that

1
24kg2P2(Ta)− kg2R2(Ta) ≥ 0 . (4.30)

Upon weakly gauging the ga flavor-symmetry of the SCFT Ta using the ga vector multi-
plets on the one-dimensional tensor sub-branch parametrized by φ̂a, it follows from (4.30)
(together with T2(ρ) ≥ 0) that the expression {· · · } on the right-hand side of (4.28) is non-
negative. This proves the lower bound for Xa in (4.26), and it concludes our discussion of
the φ̂a-branch and the rank-(r − 1) SCFT Ta residing at its origin. We now return to the
full r-dimensional tensor branch of the rank-r SCFT for which we are trying to prove that
aSCFT > 0.

In order to obtain a useful lower bound for ∆a, we must control the matrix
(
k(g2)2

)−1
ab

that appears in (4.24). Recall from (4.21) that
(
k(g2)2

)
ab

is the matrix of reducible 1-loop
gauge anomalies contributed by the weakly-coupled vector and hyper multiplets on the
rank-r tensor branch of the SCFT under consideration. It can therefore be computed
explicitly from the generalization of the anomaly polynomial (4.5) to the higher-rank case
we are considering here, and it takes the following form,(

k(g2)2
)
ab

= −uaδab +Hab , ua > 0 , Hab = Hba ≥ 0 . (4.31)

Here ua is the group-theory coefficient defined in (4.7) for the gauge algebra ga, and it
encodes the contribution of the ga vector multiplets to

(
k(g2)2

)
ab
. The symmetric matrix

Hab encodes the hyper-multiplet contributions. While it can be determined explicitly, we
will only need the fact that all of its entries Hab are non-negative, i.e. Hab ≥ 0 for all
a, b = 1, . . . , r.
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In order to invert the matrix
(
k(g2)2

)
ab

in (4.31), we define the matrices

U = diag(u1, . . . , ur) , M = U−
1
2 H U−

1
2 . (4.32)

Here the matrix U only depends on the gauge algebras ga, while M also depends on the
hyper-multiplet matter content through H. Due to the properties of ua and Hab in (4.31)
it follows that the matrix M is symmetric, and that its matrix elements are non-negative,

Mab = 1
√
ua

Hab
1
√
ub

= Mba ≥ 0 . (4.33)

SinceMab is real and symmetric it can be diagonalized, with real eigenvalues ma. Note that
the positivity of the matrix elements Mab in (4.33) does not guarantee that the eigenvalues
ma are positive. Using (4.32), we can express the matrix

(
k(g2)2

)
ab

as

k(g2)2 = −U
1
2 (1−M)U

1
2 . (4.34)

Assume, for now, that all eigenvalues ma ofMab satisfy |ma| < 1. (Below we will prove
that this is indeed the case.) We can then invert k(g2)2 by expanding (1 −M)−1 as an
absolutely convergent power series,

k−1
(g2)2 = −U−

1
2 (1−M)−1U−

1
2 = −U−

1
2

( ∞∑
n=0

Mn

)
U−

1
2 . (4.35)

Since the matrix elements of M and U are all non-negative (see (4.32) and (4.33)), we see
that the same is true for the matrix elements of −k−1

(g2)2 . This allows us to substitute the
lower bound Xa ≥ 11h∨a

12 from (4.26) into (4.24) to obtain the following lower bound for ∆a,

∆a ≥ −192
7
(
k(g2)2

)−1
ab

(11h∨a
12

)(11h∨b
12

)
= 192

7

∞∑
n=0

(
U−

1
2 Mn U−

1
2
)
ab

(11h∨a
12

)(11h∨b
12

)
.

(4.36)
Since every term on the right-hand side of the lower bound (4.36) for ∆a are non-

negative, we can obtain a weaker (but simpler, and sufficient) lower bound for ∆a by only
keeping the n = 0 term in the sum,

∆a ≥ 192
7
(
U−1

)
ab

(11h∨a
12

)(11h∨b
12

)
= 192

7

r∑
a=1

1
ua

(11h∨a
12

)2
. (4.37)

This is an exact analogue of the lower bound (4.9) previously obtained in the rank-1 case.
As was the case there, we see from (4.24) that aSCFT > 0 follows from the inquality

∆a ≥ 251
210nV = 251

210

r∑
a=1

dim(ga) . (4.38)

The rank-1 proof relied on the fact that 192
7

1
ua

(
11h∨a

12

)2
> 251

210 dim(ga) for every compact
simple Lie algebra ga. (See the discussion below (4.9), and in particular (4.11).) Summing
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this inequality over a = 1, . . . , r and substituting into the lower bound (4.37), we conclude
that the inequality (4.38) is indeed satisfied, and hence that aSCFT > 0.

To complete the proof, we must go back and show that the eigenvalues ma of the
matrix M defined in (4.32) satisfy

|ma| < 1 (a = 1, . . . , r) , (4.39)

so that we can invert 1 − M using a convergent power-series expansion in M . To
prove (4.39), first note that all eigenvalues satisfy ma < 1, because 1 − M must be
a positive-definite matrix. This follows from the expression k(g2)2 = −U 1

2 (1−M)U 1
2

in (4.34), together with the facts that k(g2)2 is a negative-definite matrix and U is a posi-
tive diagonal matrix (see (4.32)).

We now make use of the fact (4.33) that all entries of the matrix M are non-negative,
Mab ≥ 0. This implies that tr(Mn) ≥ 0. Since we can express tr(Mn) in terms of the
eigenvalues ma of M , we obtain the inequality

tr(Mn) =
r∑

a=1
mn
a =

∑
|ma|<1

mn
a +

∑
ma≤−1

mn
a ≥ 0 . (4.40)

Here we have partitioned the sum over eigenvalues ma into those satisfying |ma| < 1 and
those that satisfy ma ≤ −1. (We have already argued that all eigenvalues must satisfy
ma < 1.) If we take n→∞, the sum over eigenvalues |ma| < 1 vanishes and (4.40) reduces
to ∑ma≤−1m

n
a ≥ 0. If there are any eigenvalues satisfying ma ≤ −1, then the left-hand

side of this inequality is strictly negative for odd n. The only way to avoid a contradiction
is to conclude that there are no such eigenvalues. Thus all eigenvalues satisfy |ma| < 1,
which proves (4.39).

To summarize, we have proved that all unitary 6d SCFTs with a tensor branch have
positive a-type Weyl anomaly, aSCFT > 0.

Let us illustrate some of the ingredients that enter the proof above in an example:
the rank-r SCFTs constructed in [61–63]. On their tensor branches, they are described
by a linear su(n) quiver gauge theory associated with the Ar Dynkin diagram (see for
instance [73]), i.e. the gauge algebra is ⊕ra=1su(n)a. There are bi-fundamental hyper multi-
plets for every link in the quiver, i.e. for every pair of adjacent su(n)a and su(n)a+1 gauge
nodes (for a = 1, . . . , r − 1). In addition, there are N additional fundamental flavors for
the su(n)1 and su(n)r nodes at the ends of the quiver. Every gauge node has 2N funda-
mental flavors, as is required for cancelling the irreducible gauge anomalies.43 The Dirac
pairing Ω̂ab, and hence the matrix

(
k(g2)2

)
ab

of reducible gauge anomalies, is given by the

43These SCFTs can be embedded into LSTs [74]. At low energies on their tensor branches, these LSTs
flow to circular quiver gauge theories associated with the affine Dynkin diagram Âr. There is an extra
su(n)0 gauge node, and the extra flavors at the ends of the Ar quiver arise from bi-fundamentals between
this extra su(n)0 gauge node and the su(n)1 or su(n)r nodes. The su(n)0 gauge node is not paired with a
tensor multiplet and decouples from the Ar SCFT at low energies.
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Ar Cartan matrix C(Ar)
ab ,

Ω̂ab = −
(
k(g2)2

)
ab

= C
(Ar)
ab =


2 (a = b)
−1 (|a− b| = 1)
0 (otherwise)

. (4.41)

Comparing with (4.34), we see that C(Ar) = U
1
2 (1−M)U 1

2 with Uab = 2δab, while the only
non-zero entries of M are Ma,b=a±1 = 1

2 . The eigenvalues ma of the matrix M are given by
ma = cos(aπ/(r+ 1)) (a = 1, . . . , r) and hence satisfy the bound |ma| < 1 in (4.39) above.
Also note that the elements of the inverse Cartan matrix (C(Ar))−1

ab = min{a, b}− ab
r+1 > 0

are strictly positive, in line with the discussion below (4.35).
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