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1 Introduction

The renormalization group (RG) plays an essential role in high-energy physics and the
theory of critical phenomena. In particle physics, one can use RG to re-sum specific
radiative corrections making theory predictions valid in a wide range of energy scales. In
the study of critical phenomena, the RG approach allows one to study phase transitions
and predict critical exponents of the second-order transitions with high accuracy.

A convenient tool to compute the RG functions that drive the dependence of model
parameters on the scale is to use a perturbative expansion of dimensional regularized
theory [1] together with modified minimal MS subtraction of infinities. The latter appear
in loop integrals and manifest themselves in d dimensions as poles in ε = (4 − d)/2. One
cancels the poles by a finite set of renormalization constants.

There is significant progress in the calculation of beta functions and anomalous dimen-
sions in the MS scheme. At the two-loop level, the RG functions are known in any general
renormalizable quantum field theory (QFT) in d = 4 dimensions [2–6]. Despite several
calculations of three-loop (and even four-loop) RG functions in particular particle-physics
models [7–17], general three-loop results are not yet available. Recently, an essential step
has been made in this direction [18–21]. The main idea is to enumerate all possible “tensor”
structures that can appear in the RG functions at a certain loop level and compute the
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corresponding unknown coefficients by matching them to specific models. Not long ago,
this approach allowed authors of the paper [19] to derive general three-loop RG functions
in a pure scalar model.

Our paper does not follow this strategy and extends the results for general scalar
theories up to six loops by more conventional technique, i.e., by computing contributions
from individual Feynman graphs. Such a leap in the loop level is due to the significant
progress in calculating critical exponents in scalar theories. Thanks to the authors of
ref. [22], the required renormalization constants can be found given the diagram-by-diagram
results of the KR′ operation. Application of the latter to a Feynman graph produces the
corresponding counter-term in the MS scheme.

We consider the following general renormalizable Lagrangian

L = 1
2∂µφa∂µφa −

m2
ab

2 φaφb −
habc
3! φaφbφc −

λabcd
4! φaφbφcφd − taφa − Λ (1.1)

for real scalar fields φa. The mass parameters m2
ab, cubic habc and quartic couplings λabcd

are symmetric in their indices. For completeness we also add the tadpole term proportional
to ta, and the vacuum energy term Λ.

Here we present the six-loop RG equations in the MS-scheme for the field φa and all
parameters of eq. (1.1). The RG function for a parameter A = {λabcd, habc,m2

ab, ta,Λ} is
defined as

βA ≡ µ
∂A

∂µ
=
∑
l

hlβ
(l)
A , h = 1

16π2 , (1.2)

where β
(l)
A corresponds to the l-loop contribution. The field anomalous dimension is

given by

φa,0 = Zabφb ⇒ γφab = Z−1
ac · µ

∂Zcb
∂µ

= −µ∂Z
−1
ac

∂µ
· Zcb (1.3)

and is related to the field renormalization constant Zab. It is worth pointing that the
latter can be multiplied by an arbitrary orthogonal matrix without spoiling divergence
cancellation in two-point functions. Due to this, the antisymmetric part of γφab is not fixed
and leads to ambiguities1 in the RG functions. Nevertheless, the ambiguity is related to
the freedom in the basis choice and does not affect physical observables (see discussions in
refs. [12, 23]). In what follows we use symmetric γφab.

The paper is organized as follows. Section 2 contains details of our calculation. In
section 3 we apply our general results to the cases known in the literature. In particular,
we consider vector (section 3.1), matrix (section 3.2), and tensor (section 3.3) models
possessing different kinds of symmetries. Also, we extend known three-loop results for
the Two-Higgs-Doublet Model (2HDM) to six loops in section 3.4. Section 4 contains a
discussion of the results and conclusions. In appendix A we provide a derivation of the RG
functions for dimensionful couplings in a general form.

1We are grateful to F. Herren for bringing our attention to this fact.
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2 Details of calculation

As the calculation method, we decided to use an approach similar to the one in ref. [22],
based on the direct computation of the necessary counter-terms from individual diagrams.
However, in our work, we avoid the calculation of any loop integrals. The authors of
ref. [22] considered all the required six-loop graphs in the context of the O(n)-symmetric
model2 and made the corresponding counter terms available in a computer-readable form.
One can adopt the latter for more complicated theories by changing model-dependent
prefactors. In this way, six-loop renormalization-group functions for O(n) theory with
cubic anisotropy [25] and O(n)×O(m) symmetric model [26] were derived.

To perform calculations with general Lagrangian (1.1), we prepare a DIANA [27] model
file. We use special mapping rules between its internal topology format and diagram
topologies, which are identified in ref. [22] and given in the Nickel index notation. After
generating all needed two- and four-point functions with DIANA and performing all needed
index contractions with FORM [28], we substitute actual values for momentum integrals by
counter-terms from the available tables [22]. It is trivial to extract the RG functions γφab
and βabcd ≡ βλabcd from the first ε pole in the sum of counter-terms.

The obtained results involve a certain number of tensor structures, i.e., products of
(up to 12) general couplings λabcd with all but four (two) indices contracted in βabcd (γφab).
We can simplify corresponding expressions by identifying tensor structures identical up
to the renaming of contracted indices. Also, since the corresponding numeric coefficient
depends only on the Feynman graph, we collect all the structures, which are different only
by permutations of external indices abcd. As a consequence, we can cast our main result
for βabcd into the form

βabcd =
6∑
l=1

hl
nl∑
i

T
(l)
i,abcdC

(l)
i , (2.1)

where nl = {1, 2, 7, 23, 110, 571} is the number of unique tensor structures T (l)
i,abcd at l loops.

The coefficients C(l)
i are pure numbers. To deduce the expressions for T (l)

i,abcd, we made use
of Nickel index notation [29] for graph representation of tensor contractions and utilized
the GraphState package [30]. As an example, we give here one of the three-loop structures

T
(3)
4,abcd ≡

1
4! [λai1i2i3λbi3i4i6λci2i4i5λdi1i5i6 + perm.] = , e123|e23|e3|e| (2.2)

where we indicate the corresponding Nickel index and emphasize the normalization of T (l)
i,abcd

together with the fact that the latter are symmetric in abcd.
We provide a table containing a minimal set of unique tensor structures formed by

different contractions between λabcd indices and the corresponding coefficients.3 Given these
tables, we derive the beta functions for dimensionful parameters entering (1.1) employing
the so-called dummy field method [6, 31, 32]. The core of the technique is to introduce

2Seven-loop RG functions for the O(n) model are also known due to O. Schnetz [24].
3Examination of the structures contributing to γφab leads us to the conclusion that in pure scalar theories

the ambiguity in RG functions can manifests itself starting from five loops.
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“dummy” non-propagating field(s) xa, e.g., by shifting all (or just one) components of the
vector φa → φa + xa. Contracting βabcd with one or more dummy fields xa, we can readily
obtain the expressions for βΛ, βa ≡ βta , βab ≡ βm2

ab
, and βabc ≡ βhabc (see appendix A).

Indeed, we consider4 βxxxx, βaxxx, βabxx, together with βabcx, and identify λabcx ≡ habc,
λabxx ≡ 2m2

ab, λaxxx ≡ 3!ta, λxxxx ≡ 4!Λ. The only subtlety here is that we have to
remove contributions from external leg renormalization, leading to tadpole diagrams in the
final answer (see ref. [6] for details). We can immediately identify corresponding tensor
structures in general expression for βabcd

= = = = 0, (2.3)

where dotted lines represent dummy field x. We use tilde to denote the quantities with
tadpole contribution removed, and write

βΛ = 1
4! · β̃xxxx, βa = 1

3! · β̃axxx, βab = 1
2 · β̃abxx, βabc = β̃abcx. (2.4)

The tensor structures, including the corresponding graphs and coefficients for all the
considered RG functions, can be found in the form of supplementary Mathematica files.

3 From general results to specific models

In this section we demonstrate the application of our general results to particular scalar
models. It is worth mentioning that we heavily rely on FORM [28] to deal with index
contractions and algebraic simplifications in the case of matrix fields.

3.1 Warming up with O(n)-symmetric model

Our first example is the well-known O(n) symmetric model, which has a long history in the
study of critical phenomena (see ref. [22] and reference therein). The following Euclidean
Lagrangian describes the theory

L = 1
2
~φ(−∂2 +m2)~φ+ λ

4!(
~φ · ~φ)2 + 1

2gφφdabφaφb, (3.1)

where ~φ = {φa}, a = 1, . . . , n is a n-component scalar field. We also add a quadratic oper-
ator involving traceless symmetric tensor dab multiplied by a source gφφ. The anomalous
dimension5 γφφ of the corresponding operator is related to the so-called crossover exponent
(see, e.g., refs. [33, 34]) and can be found in our approach as

γφφ = −βgφφ + 2γφ (3.2)

with βgφφ being the beta function of gφφ and γφ corresponding to the anomalous dimension
of the field computed via eq. (1.3). This and other RG functions can be easily obtained

4We use compact notation βxxxx ≡ βabcdxaxbxcxd, etc.
5In ref. [33] the notation γẼ = γφφ is used.
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from our general result by means of substitutions

λabcd = λ

3 (δabδcd + δacδbd + δadδbc) , (3.3)

m2
ab = m2δab + gφφdab. (3.4)

In our calculation we find perfect agreement with previous computations. Our new
result is related to the six-loop contribution to the beta function of the vacuum energy
βΛ for gφφ = 0 (see refs. [35, 36] for the five-loop expression). Using the notation g ≡ hλ

(cf. ref. [35]) we have6

βv ≡
1
2 ·

16π2

m4 βΛ

= n

4 + n(n+ 2)
96 g2 + n(n+ 2)g3

1296 (n+ 8)(12ζ3 − 25)

+ n(n+ 2)g4

82944
[
16ζ3(3n2 − 382n− 1700) + 96ζ4(4n2 + 39n+ 146)

− 1024ζ5(5n+ 22)− 319n2 + 13968n+ 64864
]

+ n(n+ 2)g5

1866240
[
384ζ2

3 (41n2 − 206n− 888)− 960ζ6(70n2 + 809n+ 2118)

+ 96ζ5(45n3 + 890n2 + 19348n+ 67440)− 288ζ4(n3 + 294n2 + 3088n+ 9496)
− 48ζ3(51n3 + 700n2 − 2964n+ 2024)− 1419n3 − 17124n2 − 2166136n

− 7308224 + 576ζ7(67n2 + 1405n+ 4306) + 1152ζ3ζ4(2n2 + 145n+ 582)
]
. (3.5)

By simple rescaling λ → 3!λ, one can easily get the six-loop contributions to the
RG functions for the Standard Model Higgs potential parameters (including the vacuum
energy) from the results of O(4) theory.

3.2 Matrix models

We consider matrix models with real and complex fields described by the following La-
grangians

L = 1
2Tr

[
φ(−∂2 + τ)φT

]
+ λ1

4!
(
Tr
[
φφT

] )2
+ λ2

4! Tr
[
φφTφφT

]
(3.6)

for real φ and

L = Tr[φ(−∂2 + τ)φ†] + λ1
4! (Tr[φφ†])2 + λ2

4! Tr[φφ†φφ†] (3.7)

for complex φ. To deal with matrix models we make use of the following decomposition
(see also ref. [37])

φ =
Na∑
a=1

χaTa, (3.8)

6In ref. [35] RG functions are defined as derivatives w.r.t. lnµ2 = 2 lnµ. The factor 1
2 in (3.5) is

introduced for convenience.
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where χa are real fields, and there are Na independent matrices Ta, which encode all the
degrees of freedom present in φ. Substituting (3.8) into either (3.6) or (3.7), we can rewrite
the Lagrangians in the form (1.1). One can see that we completely get rid of the initial
matrix indices of φ and replace them with a single one a = 1, . . . , Na. Given eqs. (3.6)
and (3.7), for the fields χa to be canonically normalized, we have to ensure that [(T a)† ≡ T̄ a]

Tr(TaT Tb ) + Tr(TbT Ta ) = 2δab, for real φ, (3.9)
Tr(TaT̄b) + Tr(TbT̄a) = δab, for complex φ. (3.10)

As a consequence, one can identify

m2
ab = −τδab, (3.11)

λabcd = λ1
4!
[
T abT cd + perm.

]
+ λ2

4!
[
T abcd + perm.

]
, (3.12)

where

T ab = Tr(TaT Tb ) ≡ T ab, T abcd = Tr(TaT Tb TcT Td ) ≡ T abcd, for real φ, (3.13)
T ab = Tr(TaT̄b) ≡ T ab, T abcd = Tr(TaT̄bTcT̄d) ≡ T abcd, for complex φ. (3.14)

In eq. (3.12) all 24 permutations of the indices abcd are taken into account. Obviously,
the number of terms can be reduced in specific models. In the following subsections we
provide some details of our calculations for the cases discussed in the literature.

3.2.1 Real anti-symmetric field

The Lagrangian of the model is given by eq. (3.6) with φ being an antisymmetric n × n
matrix, φT = −φ. The model was considered in refs. [38, 39] and the four-loop results can
be found in ref. [40].

To use our general formulae, we utilize the decomposition (3.8) with Na = n(n−1)
2 and

Ta = ta corresponding to antisymmetric generators of SO(n). The latter satisfy

Tr(tatb) = Tfδab, taijt
a
kl = Tf

2 (δilδjk − δikδjl) . (3.15)

To keep the standard normalization for the fields χa, we use Tf = 1 (see eq. (3.9)). The
number of terms in eq. (3.12) can be reduced (Trtatb . . . ≡ T ab...)

λabcd = λ1
3
[
T abT cd + T acT bd + T adT bc

]
+ λ2

3
[
T abcd + T abdc + T acbd

]
, (3.16)

where we used the cyclic symmetry of the trace operation and the fact that tTa = −ta.
By means of eq. (3.15) we write down the rules, which allow one to simplify the products

of traces involving ta with some of the indices contracted. Substituting (3.16) into the
general expression for βabcd, and performing the above-mentioned algebraic simplifications,
we obtain βabcd of the form

4!βabcd = f1(λ1, λ2, n)
[
T abT cd + perm.

]
+ f2(λ1, λ2, n)

[
T abcd + perm.

]
, (3.17)
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where f1,2(λ1, λ2, n) are some polynomials of their arguments. It is possible to extract the
beta functions for λ1 and λ2 from eq. (3.17) by applying suitable projectors. However, one
can also use the fact that by construction βabcd is symmetric in all the indices. Setting the
latter equal to each other in the end of calculation, we have

βaaaa = f1(λ1, λ2, n)[T aa]2 + f2(λ1, λ2, n)[T aaaa], no sum over a. (3.18)

Comparing eqs. (3.18) and (3.16) with b = c = d = a, one can easily deduce that

βλ1 = f1(λ1, λ2, n), βλ2 = f2(λ1, λ2, n). (3.19)

We utilize this approach to obtain relevant RG functions up to the six-loop level. Our
results agree with that given in refs. [39, 40].7 It is worth noting that for n = 2 and n = 3
the model is equivalent to one-component φ4 and the O(3)-vector theory considered in
section 3.1, respectively. Indeed, combining λ = λ1 + 1

2λ2 and computing βλ = βλ1 + 1
2βλ2

for n = 2 and n = 3 we get the expected results.
Full six-loop beta functions and anomalous dimensions are available online as supple-

mentary material. For convenience, we present here our expressions for the one-loop

β
(1)
λ1

= λ2
1

6 (n2 − n+ 16) + λ1λ2
3 (2n− 1) + λ2

2
2 , (3.20)

β
(1)
λ2

= 4λ1λ2 + λ2
2

6 (2n− 1), (3.21)

γ(1)
τ ≡ −β(1)

τ /τ = −λ1
6 (n2 − n+ 4)− λ2

6 (2n− 1), (3.22)

and two-loop RG functions

γ
(2)
φ = 1

288
[
4λ2

1 + λ2
2

]
(n2 − n+ 4) + λ1λ2

36 (2n− 1), (3.23)

β
(2)
λ1

= λ3
1

6 (3n− 3n2 − 28)−
[

11λ2
1λ2

9 + λ3
2

12

]
(2n− 1)− λ1λ

2
2

72 (5n2 − 5n+ 164), (3.24)

β
(2)
λ2

= λ2
1λ2
18 (5n− 5n2 − 164)− 11λ1λ

2
2

9 (2n− 1) + λ3
2

24(n− n2 − 20), (3.25)

γ(2)
τ = 5

144
[
4λ2

1 + λ2
2

]
(n2 − n+ 4) + 5λ1λ2

18 (2n− 1). (3.26)

3.2.2 O(n) × O(m) model

Let us now consider a matrix model, which is invariant under O(n) × O(m) group. It
describes the critical thermodynamics of frustrated spin systems with noncollinear and
noncoplanar ordering (see, e.g., ref. [26] and references therein). In refs. [41] five-loop
results are presented in terms of u = λ1 + λ2, and v = λ2. Six-loop RG functions are also
known [26] in terms of gi = λi.

The Landau-Wilson Lagrangian can be written in the form (3.6) with φ = {φαi} being
n×m real matrix field, and α = 1, . . . , n, i = 1, . . . ,m.

7Note that in ref. [39] the notation λi = gi is used and the RG functions are expanded in gi/(8π2).
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To compute relevant RG functions from our general result we interpret χa in eq. (3.8)
as Na = n ·m matrix elements of φ, so that each of n ×m real matrices T a has only one
non-zero element

(Ta)αi =
√
Tf · δα,((a−1) div m)+1δi,((a−1) mod m)+1, (3.27)

where we introduce Tf = 1 for convenience. As a consequence,8 we have

Tr(TaT Tb ) = Tr(T Tb Ta) = Tfδab, T aαiT
a
βj = Tfδαβδij . (3.28)

The quartic self-coupling is given by

λabcd = λ1
3
[
T abT cd + T acT bd + T adT bc

]
+ λ2

6
[
T abcd + T abdc + T acbd + T acdb + T adbc + T adcb

]
, (3.29)

where to reduce the number of terms in l.h.s. , we use the fact that

Tr(A) = Tr(AT ), (TaT Tb TcT Td )T = TdT
T
c TbT

T
a

so

T abcd ≡ Tr(TaT Tb TcT Td ) = Tr(TdT Tc TbT Ta ) ≡ T dcba. (3.30)

To extract the RG functions, we substitute (3.29) together with (3.11) into βabcd, βab and
γab and use the rules (3.28) to simplify the products of traces involving Ta and T Tb .

We use known results [26, 41] to cross-check our expressions, which at the one-loop
order are given by

β
(1)
λ1

= λ2
1

3 (8 + nm) + 2λ1λ2
3 (1 + n+m) + λ2

2, (3.31)

β
(1)
λ2

= 4λ1λ2 + λ2
2

3 (4 +m+ n), (3.32)

γ(1)
τ ≡ −β(1)

τ /τ = −λ1
3 (2 + nm)− λ2

3 (1 +m+ n), (3.33)

while at two loops we have

γ
(2)
φ = λ2

1
36(2 +mn) + λ1λ2

18 (1 +m+ n) + λ2
2

72(3 +mn+m+ n), (3.34)

β
(2)
λ1

= − λ3
1

3 (14 + 3mn)− 22λ2
1λ2

9 (1 +m+ n)

− λ1λ
2
2

18 (87 + 5(mn+m+ n))− λ2
3

3 (3 +m+ n), (3.35)

β
(2)
λ2

= − λ2
1λ2
9 (82 + 5mn)− 2λ1λ

2
2

9 (11(n+m) + 29)− λ3
2

6 (17 +mn+ 3(m+ n)), (3.36)

γ(2)
τ = 5λ2

1
18 (2 +mn) + 5λ1λ2

9 (1 +m+ n) + 5λ2
2

36 (3 +mn+m+ n). (3.37)

8Notice here that TaTTb are n× n matrices, while TTa Tb have m×m dimension.

– 8 –



J
H
E
P
0
4
(
2
0
2
1
)
2
3
3

In addition, we extend to the six-loop order the anomalous dimensions of quadratic oper-
ators considered in refs. [42, 43]:

Q
(1)
αiβj = φαiφβj − φαjφβi, (3.38)

Q
(2)
αiβj = 1

2 (φαiφβj + φαjφβi)−
1
n
δαβφδiφδj −

1
m
δijφαkφβk + 1

nm
δαβδijφδkφδk, (3.39)

Q
(3)
ij = φδiφδj −

1
m
δijφδkφδk ≡ Q̃

(3)
αβijδαβ , (3.40)

Q
(4)
αβ = φαkφβk −

1
n
δαβφδkφδk ≡ Q̃

(4)
αβijδij (3.41)

and belonging to different representations of O(n)×O(m). The operators can be treated in
our approach in a similar fashion. We assume that the perturbations can be added to the
Lagrangian with the corresponding sources (“masses”) and rewritten in terms of χ-fields
as, e.g.,[

m̃2
1,αiβj

] [
Q

(1)
αiβj

]
=
[
m̃2

1,cdT
c
αiT

d
βj

] [
χaχb

(
T aαiT

b
βj − T aαjT bβj

)]
≡ m2

1,abχ
aχb (3.42)

m2
1,ab = 1

2m̃
2
1,cd

[
T acT bd − T adbc + (a↔ b)

]
. (3.43)

Since the operators (3.41) do not mix under renormalization, we use the following
substitutions9

Q
(1)
αiβj : m2

ab ⇒
m̃2

1,cd
2

[
T acT bd − T adbc + (a↔ b)

]
, (3.44)

Q
(2)
αiβj : m2

ab ⇒
m̃2

2,cd
4

[
T acT bd + T adbc − 2

n
T acdb

− 2
m
T abcd + (a↔ b)

]
+
m̃2

2,cd
nm

T abT cd, (3.45)

Q
(3)
ij : m2

ab ⇒ m̃2
3,cd

[1
2
[
T acdb + (a↔ b)

]
− 1
m
T abT cd

]
, (3.46)

Q
(4)
αβ : m2

ab ⇒ m̃2
4,cd

[1
2
[
T abcd + (a↔ b)

]
− 1
n
T abT cd

]
(3.47)

and extract the beta functions (βm̃2
i
)cd ≡ −γ̃i ·m̃2

i,cd of m̃2
i,cd, i = 1, 4 from the corresponding

terms in βab. The RG functions for the operators Q(i) (3.41) are obtained by adding the
contribution from the field anomalous dimension γχ = γφ:

γQi = γ̃i+2γφ. (3.48)

A welcome check of the result is the fact that for v = 0 all γQi coincide. We also compare
our expressions with that given in ref. [43] and find perfect agreement up to five loops.10

9Given eq. (3.30), one can prove that tensors multiplying m̃2
i,cd are symmetric in a↔ b and c↔ d.

10The results of ref. [43] are written in terms of (u, v)/(8π2).
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We present here our one-loop,

γ
(1)
Q1

= −2λ1 − λ2
3 , (3.49)

γ
(1)
Q2

= −2λ1 + λ2
3 , (3.50)

γ
(1)
Q3

= −2λ1 + (1 + n)λ2
3 , (3.51)

γ
(1)
Q4

= −2λ1 + (1 +m)λ2
3 , (3.52)

and two-loop results

γ
(2)
Q1

= λ2
1

9 (6 +mn) + 2λ1λ2
9 (1 +m+ n) + λ2

2
18(1−m− n), (3.53)

γ
(2)
Q2

= λ2
1

9 (6 +mn) + 2λ1λ2
9 (3 +m+ n) + λ2

2
18(9 +m+ n), (3.54)

γ
(2)
Q3

= λ2
1

9 (6 +mn) + 2λ1λ2
9 (3 +m+ 3n) + λ2

2
18(9 +mn+m+ 3n), (3.55)

γ
(2)
Q4

= λ2
1

9 (6 +mn) + 2λ1λ2
9 (3 + 3m+ n) + λ2

2
18(9 +mn+ 3m+ n). (3.56)

The six-loop expressions are available as supplementary material.

3.2.3 Complex anti-symmetric field

Let us now generalize the model discussed in section 3.2.1 and consider complex anti-
symmetric n × n matrices φ. The corresponding Lagrangian (3.7) can be used to study
phase transitions in quantum Fermi systems within the RG approach (see ref. [44]). We
decompose the field via (3.8) with Na = n(n− 1) and antisymmetric

T a =

ta a = 1, . . . , n(n− 1)/2,
ita a = 1 + n(n− 1)/2, . . . , n(n− 1).

The latter are written in terms of generators ta of SO(n). Given Tr(tatb) = Tfδab, one can
derive [(T a)† ≡ T̄ a]

Tr(T aT̄ b) + Tr(T bT̄ a) = −2Tfδab, T aijT
a
kl =

Na/2∑
b=1

(
tbijt

b
ij + i2tbijt

b
ij

)
= 0,

T aij T̄
a
kl =

Na/2∑
b

(
tbij(−tbkl) + itbij(+itbkl)

)
= −Tf (δilδjk − δikδjl) . (3.57)

One can see from eq. (3.10) that for Tf = −1/2 the fields χa are canonically normalized.
The self-coupling (3.12) is given by

λabcd = λ1
12
[
T abT cd + 11 permutations

]
+ λ2

6
[
T abcd + T abdc + T acbdT cadb + T bacd + T badc

]
. (3.58)

– 10 –



J
H
E
P
0
4
(
2
0
2
1
)
2
3
3

In writing the latter we take into account that

Tr(A) = Tr(AT ), (T aT̄ bT cT̄ d)T = (T d)∗(T c)T (T b)∗(T a)T = T̄ dT cT̄ bT a,

so, e.g.,

T abcd ≡ Tr(T aT̄ bT cT̄ d) = Tr(T̄ dT cT̄ bT a) = Tr(T aT̄ dT cT̄ b) ≡ T adcb.

The expressions for the RG functions are available in literature up to the five-loop
level11 [45]. We extend these results up to six loops. The one-loop contributions read

β
(1)
λ1

= λ2
1

12(n2 − n+ 8) + λ1λ2
3 (n− 1) + λ2

2
4 , (3.59)

β
(1)
λ2

= λ1λ2 + λ2
2

12(2n− 5), (3.60)

γ(1)
τ ≡ −β(1)

τ /τ = −λ1
12(n2 − n+ 2)− λ2

6 (n− 1), (3.61)

while two-loop corrections are

γ
(2)
φ = λ2

1
576(n2 − n− 2) + λ1λ2

144 (n− 1) + λ2
2

1152(n2 − 3n+ 4), (3.62)

β
(2)
λ1

= λ3
1

48(3n− 3n2 − 14)− 11λ2
1λ2

36 (n− 1) + λ1λ
2
2

288 (15n− 5n2 − 92)− λ3
2

24(n− 2), (3.63)

β
(2)
λ2

= λ2
1λ2

144 (5n− 5n2 − 82) + λ1λ
2
2

36 (20− 11n) + λ3
2

96(7n− n2 − 20), (3.64)

γ(2)
τ = 5λ2

1
288(n2 − n− 2) + 5λ1λ2

72 (n− 1) + 5λ2
2

576(n2 − 3n+ 4). (3.65)

All results at six loops are available online as supplementary material.

3.2.4 U(n) × U(m) model

Consider now eq. (3.7) with general complex n×m matrix field φ = {φαi}. The model can
be used to study phase transitions in massless QCD and five-loop RG functions are available
in literature [46]. We compute the six-loop contributions by means of decomposition (3.8)
with Na = 2nm and T a being complex n×m matrices (cf. eq. (3.27))

(Ta)αi =
√
Tf


δα,((a−1) div m)+1δi,((a−1) mod m)+1, a = 1, . . .mn

iT a−mnαi , a = mn+ 1, . . . 2mn,
(3.66)

satisfying

Tr(TaT̄b) + Tr(TbT̄a) = 2Tfδab,

and

T aαjT
a
βk = 0, T̄ ajαT̄

a
kβ = 0, T aαj T̄

a
kβ = 2Tfδαβδjk. (3.67)

11In terms of gi = λi/6.
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The calculations are carried out with Tf = 1/2 and the following representation of general
self-coupling

λabcd = λ1
12
[
T abT cd + 11 perms

]
+ λ2

12
[
T abcd + 11 perms

]
, (3.68)

where among all 24 permutations we exclude only those that correspond to the swapping
between pairs of indices.

Our calculation employs eq. (3.67) and renders at one loop

β
(1)
λ1

= λ2
1

6 (4 + nm) + λ1λ2
3 (n+m) + λ2

2
2 , (3.69)

β
(1)
λ2

= λ1λ2 + λ2
2

6 (n+m), (3.70)

γ(1)
τ ≡ −β(1)

τ /τ = −λ1
6 (1 + nm)− λ2

6 (n+m), (3.71)

and at two loops

γ
(2)
φ = 1

288(λ2
1 + λ2

2)(1 +mn) + λ1λ2
144 (n+m), (3.72)

β
(2)
λ1

= −λ
3
1

24(7 + 3mn)− 11λ2
1λ2

36 (m+ n)− λ1λ
2
2

72 (41 + 5mn)− λ2
3

12(m+ n), (3.73)

β
(2)
λ2

= −λ
2
1λ2
72 (41 + 5mn)− 11λ1λ

2
2

36 (m+ n)− λ2
3

24(5 +mn), (3.74)

γ(2)
τ = 5

144(λ2
1 + λ2

2)(1 +mn) + 5λ1λ2
72 (n+m). (3.75)

The full results are available as supplementary material. It is worth noting that for m = n

we get the four-loop results obtained in ref. [19] for the case of U(n)×U(n) model.12

3.2.5 Field in the adjoint representation of SU(n)

In recent ref. [47] a model with φ being hermitian matrix field in the adjoint representation
of SU(n) is analyzed both with perturbative and non-perturbative methods. In addition,
the model was also considered as an example of application of the ARGES code [20]. We
generalize the Lagrangian of ref. [47] and include also a cubic term13 (see also refs. [37, 48,
49]) together with the vacuum energy (we rescale f and λ2 for convenience)

L = 1
2Tr

[
φ(−∂2 +m2)φ

]
+
√
nf

3! Trφ3 + λ1
4
(
Trφ2

)2
+ nλ2

4! Trφ4 + Λ. (3.76)

Obviously, we can easily treat the model in our approach by means of the decomposi-
tion (3.8) with Ta being SU(n) generators. The latter satisfy the well-known relations [50]

Tr(TaTb) = Tfδab, T aijT
a
kl = Tf

(
δilδkl −

1
n
δijδkl

)
. (3.77)

12In ref. [19] the RG functions are written in terms of au ≡ hnλ2/24 and av ≡ hn2λ1/24.
13The term breaks Z2 symmetry φ→ −φ imposed in ref. [47].
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We utilize the normalization Tf = 1 and substitute

λabcd = λ1
3
[
T abT cd + T acT bd + T adT bc

]
+ nλ2

6
[
T abcd + T abdc + T acbd + T acdb + T adbc + T adcb

]
(3.78)

together with

habc =
√
nf

2
[
T abc + T bac

]
. (3.79)

We obtain the RG functions up to the six-loop level, and at one loop we have

β
(1)
λ1

= λ2
1

3 (7 + n2) + λ1λ2
3 (4n2 − 6) + λ2

2(3 + n2), (3.80)

β
(1)
λ2

= 4λ1λ2 + λ2
2

3 (2n2 − 18), (3.81)

β
(1)
f = f

[
2λ1 + λ2(n2 − 6)

]
, (3.82)

β
(1)
m2 = m2

3
[
λ1(n2 + 1) + λ2(2n2 − 3)

]
+ f2

2 (n2 − 4), (3.83)

β
(1)
Λ = m4

2 (n2 − 1). (3.84)

The two-loop expressions are given by

γ
(2)
φ = λ2

1
36(1 + n2)− λ1λ2

18 (3− 2n2) + λ2
2

72(18− 6n2 + n4), (3.85)

β
(2)
λ1

= − λ3
1

3 (11 + 3n2) + 22λ2
1λ2

9 (3− 2n2)

− λ1λ
2
2

18 (306 + 42n2 + 5n4) + λ3
2

3 (36 + 9n2 − 2n4), (3.86)

β
(2)
λ2

= λ2
1λ2
9 (77 + 5n2) + 2λ1λ

2
2

9 (123− 22n2)− λ3
2

6 (174− 16n2 + n4), (3.87)

β
(2)
f = f

24
[
4λ1λ2(105− 22n2)− 2λ2

1(35 + 3n2)− λ2
2(630− 138n2 + 11n4)

]
(3.88)

β
(2)
m2 = 5m2

36
[
4λ1λ2(3− 2n2)− 2λ2

1(1 + n2)− λ2
2(18− 6n2 + n4)

]
+ f2

12
[
λ1(36− 5n2 − n4)− 3λ2(36− 17n2 + 2n4)

]
, (3.89)

β
(2)
Λ = − m2f2

4 (n2 − 1)(n2 − 4). (3.90)

To compare our results with that of ref. [47], one has to take into account that the
latter correspond to f = 0 and are written in terms of gi/(8π2) with g1 = (nλ2)/6 and
g2 = λ1/6. We also use the expressions obtained by means of ARGES [20] to cross-check γφ
and the beta functions for λ1, λ2, and m2 up to 4 loops.

– 13 –



J
H
E
P
0
4
(
2
0
2
1
)
2
3
3

3.3 Higher rank O(n) × O(n) × O(n) tensor model

To give an example how to apply our general result to models with more complicated index
structure, we consider evaluation of the beta functions in the model with O(n)×O(n)×O(n)
symmetry [51]. The model Lagrangian is

L = 1
2∂µφabc∂µφabc + λ1

4! T
t
φ1φ2φ3φ4 + λ2

4! T
p
φ1φ2φ3φ4

+ λ3
4! T

ds
φ1φ2φ3φ4 , (3.91)

where we follow the naming scheme from ref. [51] for the interaction terms as “tetrahedral”,
“pillow” and “double-sum”. Again, we use fields as tensor indices of the structures T i to
indicate contractions of triplets of indexes with φabc. For convenience, we present the tensor
structures in the following pictorial form:

T t =
a1
b1
c1

a2 b2 c2

c3
b3
a3

c4 b4 a4

, T ds =
a1
b1
c1

a2 b2 c2

c3
b3
a3

c4 b4 a4

, (3.92)

T p = 1
3


a1
b1
c1

a2 b2 c2

c3
b3
a3

c4 b4 a4

+
a1
b1
c1

a2 b2 c2

c3
b3
a3

c4 b4 a4

+
a1
b1
c1

a2 b2 c2

c3
b3
a3

c4 b4 a4


(3.93)

To map the model onto our general result, we associate open indices in general model (1.1)
with multi index ik = {ak, bk, ck}, and rewrite the self-coupling (3.91) in the form:

λi1i2i3i4 = λ1T
t
(i1i2i3i4) + λ2T

p
(i1i2i3i4) + λ3T

ds
(i1i2i3i4) (3.94)

where (i1i2i3i4) denotes symmetrization. At one loop we get

β
(1)
1 = 2λ1λ2

3 (1 + n) + 4λ1λ3 + 4λ2
2

9 , (3.95)

β
(1)
2 = λ2

1(2 + n) + 4λ1λ2
3 (2 + n) + 4λ2λ3 + λ2

2
9 (12 + 5n+ n2), (3.96)

β
(1)
3 = 2λ1λ2

3 + 2λ1λ3n+ 2λ2λ3
3 (1 + n+ n2) + λ2

2
9 (3 + 2n) + λ2

3
3 (8 + n3). (3.97)

while two-loop contribution renders

β
(2)
1 = λ3

1
18(n3 − 15n− 10)− 2λ2

1λ2
9 (n2 + 4n+ 13)− 10λ2

1λ3
3 n

− λ1λ
2
2

54 (n3 + 15n2 + 93n+ 101)− 2λ1λ2λ3
9 (5n2 + 17n+ 17)

− λ1λ
2
3

9 (5n3 + 82)− 2λ3
2

81 (2n2 + 13n+ 24)− 16λ2
2λ3

9 , (3.98)
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β
(2)
2 = − 2λ3

1
3 (n2 + n+ 4)− λ2

1λ2
18 (n3 + 12n2 + 99n+ 98)− 4λ2

1λ3(n+ 2)

− 2λ1λ
2
2

9 (4n2 + 18n+ 29)− 2λ1λ2λ3
3 (13n+ 16)− λ3

2
162(5n3 + 45n2 + 243n+ 343)

− 2λ2
2λ3
9 (7n2 + 15n+ 29)− λ2λ

2
3

9 (5n3 + 82), (3.99)

β
(2)
3 = − λ3

1n

3 − 2λ2
1λ2
9 (n2 + n+ 4)− 5λ2

1λ3
18 (n3 + 3n+ 2)− 8λ1λ

2
2

9 (n+ 1)

− 2λ1λ2λ3
9 (5n2 + 5n+ 17)− 22λ1λ

2
3

3 n− 7λ3
2

81 (n2 + 3n+ 5)

− λ2
2λ3
54 (5n3 + 15n2 + 93n+ 97)− 22λ2λ

2
3

9 (n2 + n+ 1)− λ3
3

3 (3n3 + 14). (3.100)

Modulo rescaling λi = 6gi, the obtained expressions coincide with those given in
ref. [51]. Six-loop14 results can be found in the form of supplementary material.

3.4 Two-Higgs Doublet Model

Motivated by three-loop calculation [13] in 2HDM model (see, e.g., refs. [52, 53] for review),
we consider the following general renormalizable Higgs potential

V2HDM =m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −
(
m2

12Φ†1Φ2 + h.c.
)

+ 1
2λ1

(
Φ†1Φ1

)2
+ 1

2λ2
(
Φ†2Φ2

)2
+ λ3

(
Φ†1Φ1

) (
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

) (
Φ†2Φ1

)
+
[1

2λ5
(
Φ†1Φ2

)2
+ λ6

(
Φ†1Φ1

) (
Φ†1Φ2

)
+ λ7

(
Φ†2Φ2

) (
Φ†1Φ2

)
+ h.c.

]
, (3.101)

where Φ1,2 are SU(2) doublets. The self-couplings λ1−4 and the mass parameters m2
11,

m2
22 are real, while λ5−7, and m2

12 can be complex. Due to the freedom in redefinition
of Higgs-field basis, only 11 of 14 real parameters in eq. (3.101) are independent. In
ref. [13] convenient variables [52, 53] and the so-called reparametrization invariants (see,
e.g., ref. [54] for a comprehensive study) were used to compute the RG functions.

In this work, we use another strategy and directly calculate the beta function of λ1−7
together with the anomalous dimensions ofm2

11,m2
22, andm2

12 from our general expressions.
We enumerate all real components of two doublets Φ1,2 and rewrite eq. (3.101) in the general
form (1.1) with indices a, b, etc. running from one to eight. We find full agreement with
previous results and extend the latter up to six loops. We have checked that our expressions
for βλ2(βλ7) can be obtained from βλ1(βλ6) via the replacement λ1 ↔ λ2 and λ6 ↔ λ7.
One can use the same substitutions together with m2

11 ↔ m2
22 to get βm2

22
from βm2

11
. We

make the six-loop results available as supplementary material.

4 Conclusion

We considered the general renormalizable scalar QFT model and directly computed the
RG functions for the quartic and cubic self-couplings, mass parameter, tadpole term, and

14Due to the large number of indices in λi1i2i3i4 (3.94), we use the JINR supercomputer “Govorun” to
compute the required 571 six-loop tensors in parallel.
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vacuum energy. In deriving our results for dimensionless quantities, we used the expressions
for the KR′ operation applied to individual Feynman integrals. The latter are publicly
available thanks to lengthy and non-trivial calculations of ref. [22]. To compute the RG
functions of dimensionful parameters, we utilize the powerful dummy field technique.

To validate our general results, we considered several scalar models discussed in the
theory of critical phenomena. We found perfect agreement with known results and extend
them by computing several missing six-loop contributions. Among the latter are the vac-
uum energy beta function in the O(n) model, the anomalous dimensions of quadratic per-
turbations in the O(n)×O(m) model, and the self-coupling beta functions for U(n)×U(m),
and O(n)×O(n)×O(n) models and the model with the Higgs field in the adjoint represen-
tation of the SU(n) group. Additionally, we extend the three-loop results for the general
Two-Higgs-Doublet Model scalar sector to six loops.

We believe that the obtained state-of-the-art RG functions are of immediate interest
to the condensed-matter community. On the contrary, present six-loop results can hardly
find their applications in phenomenological analyses of the Standard Model extensions in
the near future. However, it is convenient to estimate the influence of the high-order terms
on extended Higgs sector studies, which currently rely on the two- or three-loop RG. Public
codes for RG analyses [21, 37, 55–57] can be equipped with our results to carry out this
kind of computations.

We also note that the expression for vacuum energy beta function is relevant for ef-
fective potential Veff(φ) RG improvement (see, e.g., ref. [58]). Moreover, in recent ref. [59],
the vacuum energy function’s role is emphasized in the effective field theory approach to
Veff(φ) computation in models with many different scales.

Let us also mention here that seven-loop results [24] can not be directly used in our ap-
proach. We expect that in the future when the corresponding diagram-by-diagram counter-
terms will be available, one can almost immediately extend our general expressions to one
more loop. However, our experience tells us that the calculation of tensor structures in
specific models can be very time-consuming.
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a
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d a

b c

x a

b x

x a

x x

x

λabcd habc m2
ab ta

Figure 1. Representation of vertices corresponding to the parameters of the Lagrangian (1.1). The
index “x” denotes the contraction with a dummy field.

A Deriving dimensionful couplings RG with dummy field method

The author of ref. [19] introduced a convenient representation for four-loop quartic-coupling
beta function with all the self-couplings involving external indices explicitly factorized. We
adopt this ansatz to all loops

βabcd =
[
λabcfγ

φ
fd + λabdfγ

φ
fc + λacdfγ

φ
fb + λbcdfγ

φ
fa

]
+
[
λabefλcdgh©ef |gh +5 perm.

]
+
[
λabefλcghiλdjkl 4ef |ghi|jkl +11 perm.

]
+
[
λaefgλbhijλcklmλdnop�efg|hij|klm|nop + 23 perm.

]
(A.1)

and re-derive the RG functions for the dimensionful parameters entering the La-
grangian (1.1). In eq. (A.1) “perm.” denotes the terms, which can be obtained from the
respective expressions via non-equivalent permutations of external indices. It is convenient
to represent eq. (A.1) in the following pictorial form:

βabcd =


c

a

b dγ + 3 perm.

+


b

a

c

d

1 2 + 5 perm.



+


b

a

c

d

1 2
3 + 11 perm.

+


b

a

c

d

1

2 3

4
+ 23 perm.

 , (A.2)

where external self-couplings are denoted by blue vertices (see figure 1) and we use the
notation given in figure 2 for the non-external parts of four-point functions. It is worth
noting that ©ab|cd, 4ab|cde|fgh, and �abc|def |ghi|jkl do not need to be symmetric w.r.t.
permutations of (group of) indices. Each group of indices is contracted with symmetric
couplings, and, thus, does not need to be explicitly symmetrized. However, we explicitly
take into account that an external index a, b, c, or d can be attached to any group via a
quartic vertex (this corresponds the permutations indicated, e.g., in eq. (A.2)). Due to
this, we distinguish index groups and mark them by numbers (cf., figure 2).
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e

f

g

h

1
2
3

e

f

k

hg

i

l
j

1

2 3

4g

f e op

n

m
lkji

h

©ef |gh 4ef |ghi|jkl �efg|hij|klm|nop

Figure 2. Graphical representation of the structures entering βabcd (A.1). The numbers encode
the positions of index groups (separated by vertical lines) in the corresponding expressions.

Let us now contract the expression (A.2) with external dummy field xd and exclude
the tadpole graphs discussed in section 2:

βabc =


x

a

b cγ + 2 perm.



+




b

a

c

x

1 2 +

b

a

c

x

2 1

+ 2 perm.



+




b

a

c

x

1 2
3 +

b

a

c

x

1 3
2

+ 2 perm.



+


x

a

b

c

1 2
3 + 5 perm.

+




b

a

c

x

1

2 3

4
+

b

a

c

x

2

3 4

1

+

b

a

c

x

3

4 1

2
+

b

a

c

x

4

1 2

3

+ 5 perm.

 (A.3)

Here the trilinear couplings correspond to red vertices (see figure 1) and again we have to
explicitly take into account permutations of external indices. The analytic expression is
given by

βabc =
[
habfγ

φ
fc + hacfγ

φ
fb + hbcfγ

φ
fa

]
+
[
λabefhcgh

(
©ef |gh +©gh|ef

)
+ 2 perm.

]
+
[
λabefλcghihjkl

(
4ef |ghi|jkl +4ef |jkl|ghi

)
+ 2 perm.

]
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+
[
haefλbghiλcjkl 4ef |ghi|jkl +5 perm.

]
+
[
λaefgλbhijλcklmhnop

(
�efg|hij|klm|nop

+�nop|efg|hij|klm + �klm|nop|efg|hij + �hij|klm|nop|efg
)

+ 5 perm.
]

(A.4)

To obtain the beta function for mass parameter we contract eq. (A.3) with one more dummy
field xc. Dividing the result by the factor of two, we get

βab =


x

a

x bγ +

x

b

x aγ



+


b

a

x

x

1 2 +

b

a

x

x

2 1



+


a

x

b

x

1 2 +

a

x

b

x

2 1



+


b

a

x

x

1 2
3 +

x

x

a

b

1 2
3 +

x

x

a

b

1 3
2



+




x

a

x

b

1 2
3 +

x

a

x

b

1 3
2

+ (a↔ b)



+




b

a

x

x

1

2 3

4
+

x

a

b

x

1

2 3

4
+

x

a

x

b

1

2 3

4

+

a

x

b

x

1

2 3

4
+

a

x

x

b

1

2 3

4
+

x

x

a

b

1

2 3

4

+ (a↔ b)

 , (A.5)
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where red dots denote mass parameter m2
ab insertions (cf. figure 1). The corresponding

analytic expression is given by15

βab =
[
m2
afγ

φ
fb +m2

bfγ
φ
fa

]
+
[(
λabefm

2
gh + haefhbgh

) (
©ef |gh +©gh|ef

)]
+
[
λabefhghihjkl 4ef |ghi|jkl +m2

efλaghiλbjkl
(
4ef |ghi|jkl +4ef |jkl|ghi

)]
[
haefhghiλbjkl

(
4ef |ghi|jkl +4ef |jkl|ghi

)
+ (a↔ b)

]
+
[
λaefgλbhijhklmhnop

(
�efg|hij|klm|nop + �efg|klm|hij|nop + �efg|klm|nop|hij

+�klm|efg|hij|nop + �klm|efg|nop|hij + �klm|nop|efg|hij
)

+ (a↔ b)
]
. (A.6)

We proceed further and obtain the RG function for the tadpole term. Contracting
eq. (A.5) with xb and dividing by the factor of 3, we get

βa =


x

x

x aγ

+


x

a

x

x

1 2 +

x

x

x

a

1 2



+


x

a

x

x

1 2
3 +

x

x

a

x

1 2
3 +

x

x

x

a

1 2
3



+




x

a

x

x

1

2 3

4
+

a

x

x

x

1

2 3

4
+

x

x

a

x

1

2 3

4
+

x

x

x

a

1

2 3

4



 ,
(A.7)

where the orange vertex corresponds the tadpole parameter ta of the Lagrangian (1.1).
The analytic form of eq. (A.7) looks like

βa = tfγ
φ
fb + haefm

2
gh

[
©ef |gh +©gh|ef

]
+
[
haefhghihjkl 4ef |ghi|jkl +m2

efλaghihjkl
(
4ef |ghi|jkl +4ef |jkl|ghi

)]
+ λaefghhijhklmhnop

[
�efg|hij|klm|nop + �nop|efg|hij|klm

+�klm|nop|efg|hij + �hij|klm|nop|efg
]
. (A.8)

15We correct a couple of misprints in the corresponding expression in the published version of ref. [19].
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One more contraction with the dummy field xa gives the beta function of the vacuum
energy:

βΛ =


x

x

x

x

1 2 +

x

x

x

x

1 2
3 +

x

x

x

x

1

2 3

4

 (A.9)

corresponding to

βΛ = m2
efm

2
gh©ef |gh +m2

efhghihjkl 4ef |ghi|jkl +hefghhijhklmhnop�efg|hij|klm|nop. (A.10)

Loop expansion of the structures

©ab|cd =
6∑
l=1
©(l)
ab|cd, (A.11)

4ab|cde|fgh =
6∑
l=1
4(l)
ab|cde|fgh, (A.12)

�abc|def |ghi|jkl =
6∑
l=1

�(l)
abc|def |ghi|jkl. (A.13)

can be found in a supplementary .pdf file.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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