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1 Introduction

Conformal Field Theory (CFT) is one of the cornerstones of theoretical physics. Among
other things, it plays an important role in the well celebrated gauge-gravity correspondence,
in explaining critical phenomena at phase transitions, and in defining quantum field theories
as deformations of theories with conformal symmetry.

One of the most successful approaches to studying CFT has been the conformal boot-
strap program in which one makes use of symmetries and imposes consistency conditions to
constrain the space of CFTs. The program was first successfully applied in two dimensions
in [2]. After several years of dormancy, the program was revived by the seminal work [3]
in which bootstrap techniques were successfully implemented to constrain CFTs in higher
dimensions. Since then a plethora of work has appeared (see [4–6] and references therein),
most of which has focussed on a position space analysis.

While an understanding of CFTs in momentum space is desirable especially because of
their applicability in the context of cosmology [7–16], it is far less developed compared to
its position space counterpart. One of the major obstacles is the lack of momentum space
analogue of position space cross-ratios [12, 17, 18].

Major steps in the study of momentum space correlators were initiated in [19, 20]. In
these papers and in works that followed, specific spinning correlators were computed by
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solving momentum space conformal Ward identities. For example, three-point spinning
correlators have been studied in [19–26]. An alternate approach is to use the technique
of weight-shifting and spin-raising operators of [27–29] adapted to the momentum space
context [11, 15, 16]. In the context of the AdS-CFT correspondence momentum space
correlators have been computed in [30–34].

Parity odd correlators in momentum space have not received much attention [1, 35–38].
See also the very recent work [39] in which we computed parity odd correlators by solving
momentum space conformal Ward identities and using weight-shifting and spin-raising
operators. In three dimensions, parity odd correlators are important as they arise in the
study of the free fermion theory and theories with slightly broken higher spin symmetry.
A class of theories with slightly broken higher spin symmetry is the Chern-Simons coupled
to matter theory [40–87]. Using momentum space conformal Ward identities to solve for
correlators gets inefficient when one has to deal with complicated parity odd three-point
correlators, and four or higher point correlators [17, 88–97]. We show that for theories with
a (broken) higher spin symmetry, one can use higher spin equations to obtain a large class
of spinning correlators including parity odd ones and higher point correlators.

In [1] we computed momentum space spinning correlators in free boson and free fermion
theory in three dimensions using Ward identities associated with exact higher spin symme-
try [44]. In the current work we extend our analysis to the case of interacting theories with
slightly broken higher spin symmetry [45, 46, 49]. Spinning correlators in these theories
have both a parity even part and a parity odd part [45], and the higher spin currents are not
exactly conserved but obey a non-conservation equation. We use the slightly broken Ward
identities associated with these currents [45] along with the modified higher spin algebra
to solve for the parity even and parity odd parts of two-, three- and four-point spinning
correlators. In our analysis we see that it is crucial to consider contact terms in various
correlators to solve the higher spin equations in momentum space. This is in contrast to
the case of higher spin equations in position space where one can ignore contact terms
by working at non-coincident points. Higher spin equations in position space were used
to determine spinning three-point correlators in [45] and for a specific four-point spinning
correlator in [85]. Our results for the spinning correlators match the results obtained by
explicit computation in special kinematic regimes using Feynman diagram approach and
other CFT techniques in [46, 49, 74, 98]. We also present arguments based on conformal
bootstrap to determine the five-point function of scalar operators in an interacting theory
with slightly broken higher spin symmetry.1

We then consider theories away from conformality through relevant deformations of the
conformal theory. In particular we consider mass deformed free boson theory and compute
the two-point function of spinning operators using higher spin equations. We also mention
an algorithm to compute arbitrary two-point functions in such theories using higher spin
equations.

1Although not fully rigorous we believe the arguments we present shed some light on the structure of
the five-point correlator.
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The rest of the paper is arranged as follows. In section 2 we review some details
of position space higher spin equations in free and interacting theories. We also discuss
the higher spin algebra and an example of higher spin equation in momentum space. In
section 3 we consider momentum space higher spin equations for two-, three-, and four-
point correlators in the free boson and fermion theories. In section 4 we consider interacting
theories with slightly broken higher spin symmetry such as the critical bosonic, quasi-
fermionic and quasi-bosonic theories and use broken higher spin equations to compute
spinning correlators in momentum space. In section 5 we move away from conformality
and use higher spin equations to determine two-point functions in the massive free boson
theory. In section 6 we give a summary our main results. We end with a conclusion and
discussion in section 7.

We collect a lot of technical details in six appendices. In appendix A we introduce
the notations and normalizations that we follow in this paper. In appendix B we give a
Schouten identity that was extremely useful in our computations. In appendix C we derive
an expression for the momentum space five-point function of the scalar operator in the
quasi-fermionic theory. In appendix D we give the derivation of a conformal partial wave
in momentum space. In appendix E we derive constraints for specific three- and four-
point parity odd spinning correlators in both quasi-bosonic and quasi-fermionic theories.
In appendix F we give some details involved in the computation of correlators in the free
massive bosonic theory.

2 Higher spin equations

In this section we begin with a brief review of higher spin equations in theories with slightly
broken higher spin symmetry.

2.1 Free theories

To begin with let us consider theories with exact higher spin symmetry. The operator
spectrum of these theories contain a tower of conserved currents Js for every integer spin
s > 0 [44]. Corresponding to each one of these currents there exists a conserved charge Qs
defined as follows:

Qs =
∫
x+=const

dx− dy J−− . . .−︸ ︷︷ ︸
s times

(2.1)

We work in light-cone coordinates in which the metric takes the form: ds2 = dx+dx−+dy2.
Let us now consider the action of such a charge Qs on the correlator 〈Js1(x1) . . . Jsi(xi) . . .
Jsn(xn)〉

n∑
i=1
〈Js1(x1) . . . [Qs, Jsi(xi)] . . . Jsn(xn)〉 = 0 (2.2)

The r.h.s. of the above equation vanishes only in theories with exact higher spin symmetry.
The algebra [Qs, Jsi ] is fixed by twist conservation as well as parity and charge conjugation
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symmetry. The equation obtained by utilizing the algebra of Qs with various operators Jsi
in the above equation is known as the higher spin equation. In this article, the theories with
exact higher symmetry we will consider are the free bosonic and free fermionic theories.
The momentum space higher spin equations in these theories is obtained by performing a
Fourier transform of (2.2).

We will use the action of two such conserved charges Q3 and Q4 on various correlators
in free theories to derive higher spin equations. While Q3 corresponds to the odd current
J3 which changes sign under charge conjugation, Q4 corresponds to the even current J4
which does not.2 Hence the algebra [Q3, J

odd
s ] must contain only even spins where as

[Q3, J
even
s ] must contain only odd spins to preserve charge conjugation symmetry. As the

notation has it clear, Jodd
s and Jeven

s correspond to spin s operators with odd and even
parity respectively. In [44] and in most of the studies that followed, the charge Q4 was
considered. In our work, we consider both Q3 and Q4.

2.1.1 Free boson theory

Free complex bosonic theory in three dimensions has a scalar operator J0 with dimension
∆ = 1 and an infinite tower of exactly conserved currents Js with integer spin s and
dimension ∆ = s+ 1. The algebra of charges Q3 and Q4 with J0 and J1 is given by:

[Q3, J0] = ∂−J−

[Q3, J−] = 4 ∂−T−− −
1
2 ∂

3
−J0 (2.3)

[Q4, J0] = ∂3
−J0 −

24
5 ∂−T−− (2.4)

Let us now come to the free fermion theory in three dimensions.

2.1.2 Free fermion theory

Free fermion theory in three dimensions has a pseudo-scalar operator J0 with dimension
∆ = 2 and an infinite tower of exactly conserved currents Js with integer spin s and
dimension ∆ = s+ 1. The algebra of charges Q3 and Q4 with J0 and J1 is as follows:

[Q3, J0] = ε−µν ∂
µ ∂−J

ν

[Q3, J−] = 2 i ∂−T−−
[Q4, J0] = ∂3

−J0 + ε−µν ∂− ∂
µ T ν− (2.5)

Using a dimension and spin analysis, keeping in mind parity and charge conjugation sym-
metry one can write down the algebra for higher spin charges Qs, for s > 4. However, we
will not use them in our work. Note that in free theories the algebra of the generators with
the operators can also be obtained by Wick contraction.

2In free fermion theory for example, charge conjugation is defined by ψ → iσ2ψ∗, ψ† → iψTσ2 (see
appendix of [67] for a detailed discussion on odd spins and charge conjugation).
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2.2 Interacting theories

In contrast to free theories, for theories with slightly broken higher spin symmetry the
currents Js, s > 3 obey a non-conservation equation and the corresponding charges are not
exactly conserved [45, 69]. The action of such a charge on 〈Js1(x1) . . . Jsi(xi) . . . Jsn(xn)〉
results in the following equation:
n∑
i=1
〈Js1(x1) . . . [Qs, Jsi(xi)] . . . Jsn(xn)〉 =

∫
x
〈∂µJµ− . . .−︸ ︷︷ ︸

(s−1) times

(x)Js1(x1) . . . Jsi(xi) . . . Jsn(xn)〉

(2.6)

In this article we mainly focus on specific interacting conformal field theories with slightly
broken higher spin symmetry as discussed in [45]. As in the case of theories with exact
higher spin symmetry, in most of the studies of theories with broken higher spin symme-
try [45, 85], the pseudo-charge Q4 was considered. In this article, we solve for spinning
correlators in momentum space using higher spin equations resulting from the action of Q3
and Q4 on specific correlators.

Below we consider interacting theories such as the critical bosonic theory, the quasi-
fermionic theory and the quasi-bosonic theory. Quasi-fermionic theory refers to two the-
ories, the regular fermion coupled to Chern-Simons theory and the critical boson coupled
to Chern-Simons theory, and the two theories are dual to each other. The strong coupling
limit of the quasi-fermionic theory is the critical bosonic theory. Quasi-bosonic theory
refers to two dual theories, the regular boson coupled to Chern-Simons theory as well as
the critical fermion coupled to Chern-Simons theory. In addition to the dualities, one
has in the large N limit that the regular boson coupled to Chern-Simons theory and the
critical boson coupled to Chern-Simons theory are related by a Legendre transformation.
Similarly, there is a Legendre transformation that relates the regular fermion coupled to
Chern-Simons theory and the critical boson coupled to Chern-Simons theory in the large-N
limit [46, 49, 69].

2.2.1 Critical bosonic theory
The spectrum of single trace primary operators in the critical bosonic theory contains a
spin-0 operator J̃0 with conformal dimension ∆ = 2+O( 1

N ), spin-one and spin-two currents
with dimensions 2 and 3 respectively and an infinite tower of spinning operators Js with
integer spin s > 3 and dimension ∆ = s + 1 +O( 1

N ). Here N is the number of scalars in
the free theory which we deform with a φ4 interaction to get the critical theory.

The action of Q4 on the scalar operator J̃0 is as follows [69]:[
Q4, J̃0

]
= ∂3

−J̃0 (2.7)

The non-conservation equation for the current J4 is:

∂µJ
µ
−−− =

(
s0∂−J̃0T−− + s1J̃0∂−T−−

)
(2.8)

where s0 and s1 are given by

s0 = 30
7 , s1 = −12

7 (2.9)
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2.2.2 Quasi-fermionic theory

The spectrum of single trace primary operators in this theory contains a spin-0 operator J̃0
with conformal dimension ∆ = 2 +O( 1

N ), spin-one and spin-two currents with dimensions
2 and 3 respectively and an infinite tower of spinning operators Js with integer spin s > 3
and dimension ∆ = s+ 1 +O( 1

N ). The algebra of Q3 and Q4 with J0 and J1 is given by

[Q3, J0] = ε−µν ∂
µ∂−J

ν

[Q3, J−] = 2 i ∂−T−−
[Q4, J0] = ∂3

−J0 + ε−µν ∂− ∂
µ T ν− (2.10)

For Q4 we utilize the algebra in [45] except for the normalisation of J0. Our normalisation
is such that J0 = JMZ

0 (1 + λ̃2
qf) where JMZ

0 is the scalar operator in [45]. In the limit
λ̃qf →∞ we get the critical bosonic algebra (2.7). For this we require J̃0 = 4πλfJ0.

The current non-conservation equations for J3 and J4 at the leading order in large N
are respectively given by [69]

∂µJ
µ
−− = −16 i (r0∂−J0J− + r1∂−J−J0) (2.11)

∂µJ
µ
−−− = 480

7 (c0∂−J0T−− + c1∂−T−−J0) (2.12)

where

r0 = 3λ̃qf

5Ñ(1 + λ̃2
qf)
, r1 = − 2λ̃qf

5Ñ(1 + λ̃2
qf)

(2.13)

c0 = λ̃qf

Ñ(1 + λ̃2
qf)
, c1 = − 2λ̃qf

5Ñ(1 + λ̃2
qf)

(2.14)

2.2.3 Quasi-bosonic theory

The spectrum of single trace primary operators in this theory contains a spin-0 operator J0
with conformal dimension ∆ = 1 +O( 1

N ), spin-one and spin-two currents with dimensions
2 and 3 respectively and an infinite tower of spinning operators Js with integer spin s > 3
and dimension ∆ = s+ 1 +O( 1

N ). The algebra of Q3 and Q4 with J0 and J1 is given by:

[Q3, J0] = ∂−J−

[Q3, J−] = 4 d̃12 ∂−T−− −
1
2 ∂

3
−J0, where d̃12 = 1 +

λ̃2
qb

1 + λ̃2
qb

(2.15)

[Q4, J0] = ∂3
−J0 −

24
5 ∂−T−− (2.16)

The free theory limit (λ̃ → 0) of the above algebra gives the algebra in the free boson
theory given in section 2.1.1. The current non-conservation equation for J3 at the leading
order in large N is given by [69]:

∂µJ
µ
−− = −εµν−10 [f0 J

µ ∂ν ∂−J0 + b1 ∂
ν Jµ ∂−J0 + f1 ∂−J

µ ∂νJ0 + b2 J0∂−∂
νJµ] (2.17)
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where bi and fi are given by:

b1 = − 512iλ̃qb

3Ñ (1 + λ̃2
qb)

, f1 = − 128iλ̃qb

3Ñ (1 + λ̃2
qb)

, f0 = 64iλ̃qb

Ñ (1 + λ̃2
qb)

, b2 = 128iλ̃qb

3Ñ (1 + λ̃2
qb)
(2.18)

The current equation for J4 at the leading order in large N is given by [69]:

∂µJ
µ
−−− = εµν−

[
f0 T

µ
− ∂

ν ∂−J0 + b1 ∂
ν Tµ− ∂−J0 + f1 ∂−T

µ
− ∂

νJ0 + b2 J0∂−∂
νTµ−

]
(2.19)

where bi and fi are given by:

b1 = − 192 i λ̃qb

Ñ (1 + λ̃2
qb)

, f1 = − 64 i λ̃qb

Ñ (1 + λ̃2
qb)

, f0 = 160 i λ̃qb

Ñ (1 + λ̃2
qb)

, b2 = 32 i λ̃qb

Ñ (1 + λ̃2
qb)

(2.20)

Let us now turn our attention to higher spin equations in momentum space which is the
main focus of our work.

2.3 Higher spin equations in momentum space

Momentum space higher spin equations are determined by performing a Fourier transform
of the corresponding position space equations (2.2) and (2.6). As a first simple example we
briefly describe one such momentum space higher spin equation constructed by the action
of Q4 on 〈J0J0J0〉 in the quasi-fermionic theory:

〈[Q4, J0(x1)]J0(x2)J0(x3)〉QF + 1↔ 2 + 1↔ 3 =
∫
x
〈∂µJµ−−−(x)J0(x1) J0(x2) J0(x3)〉QF

(2.21)

where 1 ↔ 2 and 1 ↔ 3 represent exchanges x1 ↔ x2 and x1 ↔ x3 respectively. Upon
utilizing the algebra in (2.10) and the current equation (2.11) we get:[
〈∂3
−J0(x1) J0(x2) J0(x3)〉QF + ε−µν 〈∂−∂µT ν−(x1)J0(x2)J0(x3)〉QF

]
+ 1↔ 2 + 1↔ 3

= 96 λ̃qf

1 + λ̃2
qf

∫
x
〈∂−J0 T−−(x)J0(x1) J0(x2) J0(x3)〉QF (2.22)

where we performed integration by parts on the r.h.s. . Upon performing the Fourier
transform we get the following equation in momentum space:

− i (k3
1− + k3

2− + k3
3−)〈〈J0(k1)J0(k2)J0(k3)〉〉QF

−
[
k1−ε−k1ν〈〈T ν−(k1)J0(k2)J0(k3)〉〉QF + 1↔ 2 + 1↔ 3

]
= 96 λ̃qf

1 + λ̃2
qf

[
k1− 〈J0(k1)J0(−k1)〉QF〈〈T−−(k1)J0(k2)J0(k3)〉〉QF + 1↔ 2 + 1↔ 3

]
(2.23)

where 1 ↔ 2 and 1 ↔ 3 represent exchanges k1 ↔ k2 and k1 ↔ k3 respectively. We
also used the large N factorisation of the five-point correlator that appears on the r.h.s.
of (2.22). Throughout this paper we will work in the large N limit and at the leading order
in N . This will help us use such factorisations of higher point correlation functions. The
double bracket in the above equation represents the momentum space correlator with the
momentum conserving delta function stripped off.
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3 Free theories

In this section we consider free theories with exact higher spin symmetry. In particular
we will consider the action of the conserved charges Q3 and Q4 on various momentum
space two-, three-, and four-point correlators in the free bosonic and the free fermionic
theories. Using the resulting higher spin equations, and some of the known results from [1]
we determine or constrain spinning correlators in these theories.

3.1 Free boson theory

The currents Js, in particular J3 and J4 are conserved in the free theory and hence the
right hand side of the higher spin equation is always zero.

3.1.1 Two-point functions

We begin by considering the simple example of a higher spin equation involving two-point
functions resulting from the action of Q3 on the correlator 〈JµJ0〉 in the free boson theory.

Q3 on 〈J1J0〉FB: fixing 〈JµJν〉FB

Consider the action of Q3 on the two-point function 〈J−J0〉:

〈[Q3, J−(x1)]J0(x2)〉FB + 〈J−(x1)[Q3, J0(x2)]〉FB = 0 (3.1)

From the algebra in (2.3), we get the following higher spin equation:

−1
2 〈∂

3
−J0(x1)J0(x2)〉FB + 〈J−(x1)∂−J−(x2)〉FB = 0 (3.2)

where we have used the fact that the two-point function 〈TJ0〉 = 0. The higher spin
equation in momentum space is obtained through a Fourier transform of the above:

1
2k

3
1−〈J0(k1)J0(−k1)〉FB − k1−〈J−(k1)J−(−k1)〉FB = 0 (3.3)

Substituting for the scalar correlator 〈J0J0〉FB, we solve this to determine 〈J−J−〉FB:

〈J−(k1)J−(−k1)〉FB =
k2

1−
16k1

(3.4)

The transverse Ward identity fixes the form of the correlator to be:

〈Jµ(k1)Jν(−k1)〉FB = A1

(
gµν −

k1µk1ν
k2

1

)
(3.5)

We now compare the above equation with (3.4) and get the form factor A1 to be:

A1 = − 1
16k1 (3.6)

This completely fixes the two-point spinning correlator 〈JµJν〉FB in momentum space.
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3.1.2 Three-point functions
Recently in [1], we obtained a few momentum space spinning correlators in the free boson
theory by solving the higher spin equations resulting from the action of Q3 on 〈J−J0J0〉
and Q4 on 〈J0J0J0〉.

Q3 on 〈J1J1J1〉FB: constraining 〈TJ1J1〉FB

Consider the action of the charge Q3 on 〈J−J−J−〉:

〈[Q3, J−(x1)]J−(x2)J−(x3)〉FB + 1↔ 2 + 1↔ 3 = 0 (3.7)

Upon utilizing the higher spin algebra (2.3) we get:[
〈∂−T−−(x1)J−(x2)J−(x3)〉FB −

1
8〈∂

3
−J0(x1)J−(x2)J−(x3)〉FB + 1↔ 2 + 1↔ 3

]
= 0

(3.8)

Upon performing the Fourier transform of the above equation, we get[
k1−〈〈T−−(k1)J−(k2)J−(k3)〉〉FB + 1

8(k3
1− + k3

2− + k3
2−)〈〈J0(k1)J−(k2)J−(k3)〉〉FB

+1↔ 2 + 1↔ 3
]

= 0

(3.9)

One could check that the above equation is satisfied by the 〈TJ1J1〉 correlator obtained
by explicit computation. However, we cannot solve the above equation for 〈TJ1J1〉 as the
unknowns (including those coming from the exchanges) exceed the equations that constrain
them. However, we will use the above equation to simplify the higher spin equation in the
interacting theory. In the interacting theory we will once again see that there are not
enough number of equations to solve for 〈TJ1J1〉.

3.1.3 Four-point functions
In this subsection we derive constraints imposed by higher spin equations on four-point
correlators in the free boson theory. Note that the higher spin equation resulting from
action of Q4 on 〈J0J0J0J0〉FB was demonstrated to be satisfied in [1]. Here we consider a
different higher spin equation resulting from action of Q3 on 〈J1J0J0J0〉FB.

Q3 on 〈J1J0J0J0〉FB: constraining 〈J1J1J0J0〉FB

Consider the action of Q3 on the correlator 〈J−J0J0J0〉FB:

〈[Q3, J−(x1)]J0(x2)J0(x3)J0(x4)〉FB

+〈J−(x1)[Q3, J0(x2)]J0(x3)J0(x4)〉FB + 2↔ 3 + 2↔ 4 = 0 (3.10)

Upon utilizing the algebra in (2.3) this leads us to

4〈∂−T−−(x1)J0(x2)J0(x3)J0(x4)〉FB −
1
2〈∂

3
−J0(x1)J0(x2)J0(x3)J0(x4)〉FB

+〈J−(x1)∂−J−(x2)J0(x3)J0(x4)〉FB + 2↔ 3 + 2↔ 4 = 0 (3.11)
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Upon performing the Fourier transform we get

4 k1−〈〈T−−(k1)J0(k2)J0(k3)J0(k4)〉〉FB + 1
2k

3
1−〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉FB

+k2−〈〈J−(k1)J−(k2)J0(k3)J0(k4)〉〉FB + 2↔ 3 + 2↔ 4 = 0 (3.12)

The above equation could not be solved but verified to be satisfied in [1]. This is because
the number of unknowns were much more than the number of equations. We will see in
the next section that this will continue to be true in the interacting theory as well.

3.2 Free fermion theory

We will now proceed to derive some of the higher spin equations in the free fermion theory.

3.2.1 Two-point functions

Q3 on 〈J1J0〉FF: a consistency check

Consider the action of Q3 on 〈J−J0〉FF:

〈[Q3, J−(x1)]J0(x2)〉FF + 〈J−(x1)[Q3, J0(x2)]〉FF = 0 (3.13)

From the algebra in (2.5), we have the following higher spin equation

2 i 〈∂−T−−(x1)J0(x2)〉FF + ε−µν 〈J−(x1)∂µ ∂−Jν(x2)〉FF = 0 (3.14)

The first term is zero as the two-point function 〈TJ0〉 = 0 from conformal invariance. Upon
performing the Fourier transform we get:

ε−k1ν k1− 〈J−(k1)Jν(−k1)〉FF = 0 (3.15)

The contraction of the correlator with the Levi-Civita tensors ensures that the above higher
spin equation is trivially satisfied, and the analysis leads to no constraints. However, it
serves as a consistency check of the higher spin algebra (2.5).

3.2.2 Three-point functions

A few three-point spinning correlators in the free fermion theory were obtained by explicit
computation in [1].

Q3 on 〈J1J0J0〉FF: fixing the contact term in 〈TJ0J0〉FF

The action of Q3 on 〈J−J0J0〉 gives:

〈[Q3, J−(x1)]J0(x2)J0(x3)〉FF + (〈J−(x1)[Q3, J0(x2)]J0(x3)〉FF + 2↔ 3) = 0 (3.16)

Using the algebra in (2.5) and performing a Fourier transform of the resulting equation:

2 k1−〈〈T−−(k1)J0(k2)J0(k3)〉〉FF + (ε−k2ν k2− 〈〈J−(k1)Jν(k2)J0(k3〉〉FF + 2↔ 3) = 0
(3.17)
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The correlator 〈TJ0J0〉FF has a transverse part, a local part and we allow for a contact
term:

〈TJ0J0〉FF = 〈TJ0J0〉transverse
FF + 〈TJ0J0〉local

FF + 〈TJ0J0〉contact
FF (3.18)

The explicit expressions for the transverse and local parts of the correlator were obtained
in [1]. Solving the higher spin equation (3.17) requires:

〈TµνJ0J0〉contact
FF = 1

16
k1µk1ν
k1

(3.19)

Thus we see that the higher spin analysis in this case helps fix the contact term in the
〈TJ0J0〉 correlator in the free fermion theory. We note that this contact term is in addition
to the contact terms in the correlator which come from conservation Ward identities in
momentum space.

Q3 on 〈J1J1J1〉FF: constraining 〈J1J1T 〉

Consider the action of Q3 on 〈J−J−J−〉 in the free fermion theory. This gives us

〈[Q3, J−(x1)]J−(x2)J−(x3)]〉+ 1↔ 2 + 1↔ 3 = 0 (3.20)

Utilizing the algebra in (2.5) we get

〈∂−T−−(x1)J−(x2)J−(x3)〉FF + 1↔ 2 + 1↔ 3 = 0 (3.21)

Upon Fourier transforming we obtain the following equation in the momentum space:

k1−〈〈T−−(k1)J−(k2)J−(k3)〉〉FF + 1↔ 2 + 1↔ 3 = 0 (3.22)

As in the bosonic theory we will not solve the above equation. Instead, we will utilize it
to simplify the parity even part of the corresponding equation in the interacting theory.

3.2.3 Four-point functions
Let us now consider four-point functions in the free fermion theory.

Q4 on 〈J0J0J0J0〉FF

Consider the action of Q4 on 〈J0J0J0J0〉FF in the quasi-fermionic theory:

〈[Q4, J0(x1)]J0(x2)J0(x3)J0(x4)〉FF + 1↔ 2 + 1↔ 3 + 1↔ 4 = 0 (3.23)

Upon utilizing the algebra in (2.5), we obtain

〈∂3
−J0(x1) J0(x2) J0(x3)J0(x4)〉FF + 1↔ 2 + 1↔ 3 + 1↔ 4

+ε−µν 〈∂−∂µT ν−(x1)J0(x2)J0(x3)J0(x4)〉FF + 1↔ 2 + 1↔ 3 + 1↔ 4 = 0 (3.24)

Upon Fourier transforming we get the following equation in momentum space:

(k3
1− + k3

2− + k3
3− + k3

4−)〈〈J0(k1)J0(k2)J0(k3)〉〉FF + 1↔ 2 + 1↔ 3 + 1↔ 4

−i
[
k1−ε−k1ν〈〈T ν−(k1)J0(k2)J0(k3)J0(k4)〉〉FF + 1↔ 2 + 1↔ 3 + 1↔ 4

]
= 0 (3.25)

We will not solve the above higher spin equation here. However, this equation could be
checked to be satisfied from the free fermionic correlators. We will demonstrate that the
above higher spin equation is crucial to solving for the 〈TJ0J0J0〉 in quasi fermionic theory.
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Q3 on 〈J1J0J0J0〉FF: constraining 〈J1J1J0J0〉FF

Consider action of Q3 on the correlator 〈J−J0J0J0〉:

〈[Q3, J−(x1)] J0(x2)J0(x3)J0(x4)〉
+〈J−(x1) [Q3, J0(x2)] J0(x3)J0(x4)〉+ 2↔ 3 + 2↔ 4 = 0 (3.26)

Upon utilizing the algebra in (2.5) we obtain

2〈∂−T−−(x1)J0(x2)J0(x3)J0(x4)〉FF

−i ε−µν〈J−(x1)∂µ∂−Jν(x2)J0(x3)J0(x4)〉FF + 2↔ 3 + 2↔ 4 = 0 (3.27)

Fourier transforming the above equation we get[
2 i k1−〈〈T−−(k1)J0(k2)J0(k3)J0(k4)〉〉FF

+ i ε−k2νk2−〈〈J−(k1)Jν(k2)J0(k3)J0(k4)〉〉FF + 2↔ 3 + 2↔ 4
]

= 0 (3.28)

We will not solve the above equation here. However we will use it to simplify the parity
even part of the corresponding higher spin equation in the interacting theory.

4 Interacting theories

Having obtained the higher spin equations for various spinning correlators in the free theory
we will now proceed to do the corresponding analysis in interacting theories with slightly
broken higher spin symmetry. These theories were studied in [45] and approximate higher
spin equations were used to determine the structure of spinning correlators in position
space. The authors showed that three-point correlators in an interacting theory with
broken higher spin symmetry can be fixed in terms of three-point functions of the free
fermion theory, free boson theory and a parity odd part and they fixed the coefficients
of these terms. In our analysis we look at correlation functions in the momentum space.
Momentum space correlators unlike position space correlators are difficult to solve for in
general. We use the higher spin equations to solve for these correlators. One of the new
ingredients in our analysis that was missing in [45] is the local and contact terms3 in
correlators which turn out to be crucial in solving higher spin equations in momentum
space. While in our analysis we fix the contact terms for specific spinning correlators
we hope that our method can be systematised to obtain contact terms for any spinning
correlator. We leave this for future work.

In our discussion on interacting theories we will first consider the critical bosonic theory
which is obtained by a deformation of the free boson theory with a λ4φ

4 interaction term.
Following that we will use higher spin equations to determine momentum space correlators

3In two-point functions contact terms are polynomials in the momentum associated to the correlator.
As [38] clearly notes, the modulus p of the momentum is not a contact term since it comes under a square
root, p = √gµνpµ pν . In three-point functions one could have semi-local or local terms. Semi-local terms
are those terms that are polynomial in only one of the two momenta whereas local terms are polynomial in
both momenta associated to the correlator [38].
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in the quasi-fermionic and the quasi-bosonic theories. We first consider two-point spinning
correlators and fix the parity odd contribution whose coefficient turns out to be universal.
We then move on to solving three and four-point correlators in these theories. In this
process we recover results previously obtained by explicit Feynman diagram computations
which could only be done in specific kinematic regimes [46, 49] and also obtain new results.

4.1 Critical bosonic theory

In this subsection as a first example of the interacting theory with a slightly broken higher
spin symmetry, we will consider the critical bosonic theory obtained by deforming the free
boson theory with a φ4 interaction.

4.1.1 Three-point function

We begin by deriving a higher spin equation for the three-point correlator in this theory
constructed through the action of Q4 on the three-point function 〈J̃0J̃0J̃0〉.

Q4 on 〈J̃0J̃0J̃0〉CB: constraining 〈T J̃0J̃0〉CB

Let us begin by considering the action of the charge Q4 on the three-point function J̃0J̃0J̃0.

〈[Q4, J̃0(x1)]J̃0(x2)J̃0(x3)〉+ 1↔ 2 + 1↔ 3 =
∫
x
〈∂µJµ−−−J̃0(x1)J̃0(x2)J̃0(x3)〉 (4.1)

Upon utilizing the algebra in (2.7) and the current equation in (2.8) we obtain the high
spin equation in position space to be as follows

〈∂3
−J̃0(x1)J̃0(x2)J̃0(x3)〉+ (1↔ 2) + (1↔ 3) = 6

∫
x
〈∂−J̃0T−−(x)J̃0(x1)J̃0(x2)J̃0(x3)〉

(4.2)

Performing a Fourier transform of the above equation and using large N factorisation we
get the following equation in momentum space:

(k3
1− + k3

2− + k3
3−)〈〈J̃0(k1)J̃0(k2)J̃0(k3)〉〉CB

−6 k1−〈J̃0(k1)J̃0(−k1)〉CB〈〈T−−(k1)J̃0(k2)J̃0(k3)〉〉CB + (1↔ 2) + (1↔ 3) = 0 (4.3)

Although we will not solve this higher spin equation here, one could straightforwardly
check the above equation by obtaining the correlators in the critical bosonic theory by a
Legendre transformation of the free boson theory as described in [60].

4.1.2 Four-point functions

Having obtained a higher spin equation we now proceed to derive the higher spin equation
for the four-point function which we will show to be crucial for solving the same in quasi-
fermionic theory in a subsequent subsection.
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Q4 on 〈J̃0J̃0J̃0J̃0〉CB: constraining 〈T̃ J̃0J̃0J̃0〉CB

Let us consider the action of Q4 on the four-point function 〈J̃0J̃0J̃0J̃0〉:

〈[Q4, J̃0(x1)]J̃0(x2)J̃0(x3)J̃0(x4)〉+ (1↔ 2) + (1↔ 3) + (1↔ 4)

=
∫
x
〈∂µJµ−−−J̃0(x1)J̃0(x2)J̃0(x3)J̃0(x4)〉 (4.4)

Upon utilizing the algebra in (2.7), the current equation in (2.8) and large N factorization,
we obtain the high spin equation in position space to be as follows

〈∂3
−J̃0(x1)J̃0(x2)J̃0(x3)J̃0(x4)〉+ (1↔ 2) + (1↔ 3)

= 6
∫
x
〈∂−J̃0(x)J̃0(x1)〉〈T−−(x)J̃0(x2)J̃0(x3)J̃0(x4)〉+ (1↔ 2) + (1↔ 3) + (1↔ 4)

+ 6
∫
x
〈∂−J̃0(x)J̃0(x1)J̃0(x2)〉〈T−−(x)J̃0(x3)J̃0(x4)〉

+ (1↔ 3) + (1↔ 4) + (2↔ 3) + (2↔ 4) + (1, 2↔ 3, 4) (4.5)

A Fourier transform of the above equation gives in momentum space the following:

(k3
1− + k3

2− + k3
3 + k3

4)〈〈J̃0(k1)J̃0(k2)J̃0(k3)J̃0(k4)〉〉CB

= 6
[
k1−〈J̃0(k1)J̃0(−k1)〉CB〈〈T−−(k1)J̃0(k2)J̃0(k3)J̃0(k4)〉〉CB

+ (1↔ 2) + (1↔ 3) + (1↔ 4)
]

+ 6
[
(k1− + k2−)〈J̃0(−k1 − k2)J̃0(k1)J̃0(k2)〉CB〈T−−(−k3 − k4)J̃0(k3)J̃0(k4)〉CB

+ (1↔ 3) + (1↔ 4) + (2↔ 3) + (2↔ 4) + (1, 2↔ 3, 4)
]

(4.6)

We will not solve this higher-spin equation in the present article but we will demonstrate
that the above equation is crucial to the solve the corresponding higher spin equation in
the quasi-fermionic theory.

4.2 Quasi-fermionic theory

We now turn our attention to the quasi-fermionic theory. We first consider the two-point
function of spinning operators and show how higher spin equations recover the known
parity-odd contributions [99, 100].

4.2.1 Two-point functions

〈J1 J1〉QF

Consider the action of the spin 2 generator Q3 on 〈J−J0〉QF. From the algebra in (2.10), we
see that this generates 〈J−J−〉QF which can then be obtained by solving the corresponding
higher spin equation. In position space the higher spin equation takes the following form:

〈[Q3, J−(x1)]J0(x2)〉QF + 〈J−(x1)[Q3, J0(x2)]〉QF =
∫
x
〈∂µJµ−−(x)J−(x1)J0(x2)〉QF (4.7)
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Using the algebra in (2.10) and the current equation (2.11) this becomes:

ε−µν 〈J−(x1)∂µ ∂−Jν(x2)〉QF = −16 i (r0 − r1)
∫
x
〈∂−J0J−(x)J−(x1)J0(x2)〉QF (4.8)

In momentum space the equation takes the form:

ε−k1ν〈J−(k1)Jν(−k1)〉QF = 16 i λ̃qf

Ñ(1 + λ̃2
qf)
〈J−(k1)J−(−k1)〉QF〈J0(k1)J0(−k1)〉QF (4.9)

where on the r.h.s. we have kept the leading order term from the large N factorization.
The two-point function of the scalar operator in quasi fermionic theory is [45]:

〈J0(k)J0(−k)〉QF = Ñ

2 (1 + λ̃2
qf)〈J0(k)J0(−k)〉FF

= −Ñ2 (1 + λ̃2
qf)×

k

8 (4.10)

The two-point function of the spin-one current in quasi fermionic theory has the following
structure:

〈Jµ(k) Jν(−k)〉QF = Ñ

2 [〈Jµ(k) Jν(−k)〉even + 〈Jµ(k) Jν(−k)〉odd]

= Ñ

2

[
kµ kν − gµν k2

16 k + c123 εµνk

]
(4.11)

where c123 is undetermined. We substitute the above expressions for the two-point func-
tions in the momentum space higher spin equation (4.9) and obtain the following for the
coefficient of the parity odd term in (4.11):

c123 = λ̃qf
16 (4.12)

Thus we see that the higher spin equation (4.9) fixes the coefficient of the parity-odd contact
term in the two-point function of the spin-one current in the quasi-fermionic theory. Notice
that this term vanishes in the free theory limit, λ̃→ 0 limit, consistent with the free theory
analysis in section 3.2.1.

〈T T 〉QF

We will now look at the two-point function of spin-two currents. From the algebra in (2.10),
we see that the action of Q4 on 〈J0 T−−〉QF generates 〈T−− T−−〉QF. The latter can then
be obtained by solving the resulting higher spin equation. Using the higher spin algebra
in (2.10) and the current equation (2.12) we get the following equation:4

ε−µν∂− ∂
µ 〈T ν− T−−〉QF = 96λ̃qf

Ñ(1 + λ̃2
qf)
〈∂−J0 J0〉QF 〈T−− T−−〉QF (4.13)

4The algebra of Q4 with the stress-tensor takes the form [Q4, T−−] ∝ ∂−J−−−− + ∂3
−T−−. It is easy to

eliminate by a dimension, spin, and parity analysis the possibility of a term proportional to the pseudo-scalar
J0. As a result the l.h.s. of (4.13) does not get any contribution from 〈J0 [Q4, T−−]〉.
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After taking a Fourier transform on both sides of the above equation we get the following
equation in momentum space:

ε−k1ν〈T ν− T−−〉QF = − 96 i λ̃qf

Ñ(1 + λ̃2
qf)
〈J0 J0〉QF 〈T−− T−−〉QF (4.14)

The two-point function of stress-tensor in quasi-fermionic theory takes the form [100]:

〈Tµν(k)Tρσ(−k)〉QF =Ñ

2

[
Πµνρσ(k)A(k) + Πµν(k) Πρσ(k)B(k) (4.15)

+ cTT
4 (εµρλΠνσ(k)+ ενρλΠµσ(k) + εµσλΠνρ(k) + ενσλΠµρ(k)) k2 kλ

]
where Πµνρσ(k) and Πµν(k) are the orthogonal projectors and

A(k) = k3, B(k) = 0 (4.16)

It can be easily seen that the trace Ward identities satisfied by the even and the odd parts
of the correlator (4.15) are trivial. We substitute the forms of the two-point functions of
the stress-tensor (4.15) and the scalar operator (4.10) in the higher spin equation (4.14)
and then separate the resulting equation into two independent equations: one proportional
to the Levi-Civita tensor and one without that. It can be easily checked that the former
is trivially satisfied while the latter fixes the coefficient of the parity odd contact term in
the 〈T T 〉 correlator (4.15) to be:

cTT = −6 λ̃qf (4.17)

We will now extend the above analysis to spin-4 currents.

〈J4 J4〉QF

To get a non-trivial equation we consider the action of Q4 on 〈J−y J−−−−〉QF instead of
〈J−− J−−−−〉QF.

From the higher spin algebra of the charge Q4 with spin s > 2 operators Js [45] we
obtain the following higher spin equation in momentum space:

k−〈J−−−y(k) J−−−−(−k)〉QF + k5
−〈T−y(k)T−−(−k)〉QF = 0 (4.18)

The r.h.s. of the above higher spin equation is zero as the large N factorization leads to
two-point functions of operators with different conformal dimensions.

To obtain the parity odd part of 〈J−−−y J−−−−〉QF we look at the part of the higher
spin equation (4.18) which contains the Levi-Civita tensor:

k−〈J−−−y(k) J−−−−(−k)〉QF,odd + k5
−〈T−y(k)T−−(−k)〉QF,odd = 0 (4.19)

To solve this equation, we use the following result from the analysis of the 〈TT 〉QF corre-
lator (4.15) and (4.17):

〈Ty−(k)T−−(−k)〉QF,odd = 3 λ̃qf k
2
− εy−k (4.20)
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Substituting the above correlator in (4.19) and solving for 〈J4J4〉 we obtain:

〈J−−−y(k) J−−−−(−k)〉QF,odd = 3 λ̃qf k
6
− εy−k (4.21)

Our analysis can be easily extended to obtain the parity odd term in the two-point function
of arbitrary higher spin currents.

We see that the coupling constant dependence of the coefficient of the parity-odd
contact term in the two-point function of higher spin currents is universal. We expect such
a universality because while the kinematic dependence of correlators is fixed by conformal
invariance, their coupling constant dependence is fixed by higher spin equations, which in
turn relate the two-point functions of various spinning operators.

This can be seen from the large frequency limit of transport coefficients. For example,
we expect a relation between the parity-odd part of shear viscosity i.e. Hall viscosity and
the parity-odd part of conductivity i.e. Hall conductivity. In fact this is indeed the case as
was shown in [64] (see equations 5.8 and 6.10 therein).

4.2.2 Three-point functions

Three-point correlators in the quasi-fermionic theory are given by the sum of contributions
from the free boson theory (FB), the free fermion theory (FF) and a parity odd piece
(odd) [44, 45]:5

〈Js1Js2Js3〉 =αs1s2s3〈Js1Js2Js3〉FB + βs1s2s3〈Js1Js2Js3〉FF + γs1s2s3〈Js1Js2Js3〉odd (4.22)

where si represents the spin of the operators. For the correlators that we encounter in our
computations these relations read as:

〈Tµν(k1)J0(k2)J0(k3)〉QF = β200

[
〈Tµν(k1)J0(k2)J0(k3)〉FF + c̃TOO

k1µ k1ν
16k1

]
(4.23)

〈Jµ(k1)Jν(k2)J0(k3)〉QF = β110〈Jµ(k1)Jν(k2)J0(k3)〉FF

+ γ110〈Jµ(k1)Jν(k2)J0(k3)〉odd + γ110〈Jµ(k1)Jν(k2)J0(k3)〉contact
(4.24)

〈J0(k1)J0(k2)J0(k3)〉QF = (1 + λ̃2
qf)

Ñ λ̃qf
8 (4.25)

Note that unlike in the free fermion theory where the momentum space three-point correla-
tor of the scalar operator vanishes, in the quasi-fermionic theory it is a contact term (4.25)
as shown by explicit computations in [49]. The coefficients β200, β110, and γ110 are given by:

β200 = Ñ

2 (1 + λ̃2
qf), β110 = Ñ

2 , γ110 = Ñ λ̃qf
2 (4.26)

and the details of the free fermion correlators are given in (A.12), (A.13) and (A.14).
5Following the general literature, we label the part of a correlator that does not come from the free

theory answer as odd. However this label need not always correspond to expressions that are odd under
parity.
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Note that in 〈TJ0J0〉QF in (4.23) we have included a contact term that corresponds to
the contact term in (3.19) that was required to solve the higher spin equation in the free
fermion theory in section 3.2.2. We will fix the coefficient of this term, viz. c̃TOO shortly.
In 〈J1J1J0〉QF in (4.24) we allow for a contact term which takes the following form:6

〈〈Jµ(k1) Jν(k2) J0(k3)〉〉contact
QF = cJJ0

gµν
k3

(4.27)

〈J1J1J0〉QF,odd and fixing the contact term in 〈TJ0J0〉QF

We will now obtain an expression for 〈JµJνJ0〉odd in the quasi fermionic theory by solving
a relevant higher spin equation in momentum space. Let us consider the Ward identity
arising from the action of Q3 on 〈J−J0J0〉QF:

〈[Q3, J−(x1)]J0(x2)J0(x3)〉QF + 〈J−(x1)[Q3, J0(x2)]J0(x3)〉QF

+ 〈J−(x1)J0(x2)[Q3, J0(x3)]〉QF =
∫
x
〈∂µJµ−−(x)J−(x1)J0(x2)J0(x3)〉QF (4.28)

Using the higher spin algebra (2.10), the current equation for the spin-3 current in (2.11),
and the large N factorization of correlators, we get after performing a Fourier transform
the following equation in momentum space:

(ε−k2ν k2− 〈J−(k1)Jν(k2)J0(k3)〉QF + ε−k3ν k3− 〈J−(k1)J0(k2)Jν(k3)〉QF)
+ 2 i k1−〈〈T−−(k1)J0(k2)J0(k3)〉〉QF

= − 16 λ̃qf

Ñ(1 + λ̃2
qf)

[
k1−〈J−(k1)J−(−k1)〉QF〈〈J0(k1)J0(k2)J0(k3)〉〉QF

+ k2−〈J0(k2)J0(−k2)〉QF〈〈J−(k1)J−(k2)J0(k3)〉〉QF

+ k3−〈J0(k3)J0(−k3)〉QF〈〈J−(k1)J0(k2)J−(k3)〉〉QF
]

(4.29)

We consider the following ansatz for 〈JµJνJ0〉odd
QF :

〈〈Jµ(k1)Jν(k2)J0(k3)〉〉odd
QF = 〈〈Jµ(k1)Jν(k2)J̃0(k3)〉〉CB

= −k3〈〈Jµ(k1)Jν(k2)J0(k3)〉〉FB (4.30)

This form of the odd part of 〈JµJνJ0〉QF is consistent with the result obtained in [49] in
the specific kinematic regime considered by the authors. This is also consistent with what
one expects from duality.

Upon utilizing the result for three-point correlators given in (4.23), (4.24) and (4.25)
and the result for two-point correlators given in (4.10) and (4.11), we observe that the
ansatz for the odd part of 〈J1J1J0〉QF in (4.30) solves the higher spin equation (4.29)
provided:

c̃TOO = 1
1 + λ̃2

(4.31)

6In (4.24) we have stripped off a factor of γ110 for convenience.

– 18 –



J
H
E
P
0
4
(
2
0
2
1
)
2
3
1

This coefficient for 〈TJ0J0〉 in (4.23) in the quasi-fermionic theory is in agreement with the
free fermion theory result (3.19).

Thus we see that the analysis via. momentum space higher spin equations helped us
verify the ansatz (4.30) for the odd part of 〈J1J1J0〉QF and fix the coefficient of the contact
term in 〈TJ0J0〉QF (4.23).

Further check of the contact term in 〈TJ0J0〉

Let us consider the action of the charge Q4 on 〈J0 J0 J0〉. The higher spin equation is:

〈[Q4, J0(x1)]J0(x2)J0(x3)〉QF + 1↔ 2 + 1↔ 3 =
∫
x
〈∂µJµ−−−(x)J0(x1) J0(x2) J0(x3)〉QF

(4.32)

Upon utilizing the algebra in (2.10), the current equation (2.12) and the large N factori-
sation we get:[
〈∂3
−J0(x1) J0(x2) J0(x3)〉QF + ε−µν 〈∂−∂µT ν−(x1)J0(x2)J0(x3)〉QF

]
+ 1↔ 2 + 1↔ 3

= 96λ̃qf

Ñ(1 + λ̃2
qf)

∫
x
〈∂−J0 T−−(x)J0(x1) J0(x2) J0(x3)〉QF (4.33)

In momentum space the equation takes the following form:

(k3
1− + k3

2− + k3
3−)〈〈J0(k1)J0(k2)J0(k3)〉〉QF (4.34)

−
[
i k1−ε−k1ν〈〈T ν−(k1)J0(k2)J0(k3)〉〉QF + 1↔ 2 + 1↔ 3

]
= − 96λ̃qf

Ñ(1 + λ̃2
qf)

[
k1− 〈J0(k1) J0(−k1)〉QF〈〈T−−(k1)J0(k2)J0(k3)〉〉QF + 1↔ 2 + 1↔ 3

]
It can be easily checked using the expressions for the three-point correlators in (4.23)
and (4.25) that the above higher spin equation is satisified. This analysis serves as a
consistency check of the contact term in 〈TJ0J0〉 (4.23).

Fixing the contact term in 〈J1J1J0〉QF

Using higher spin equations we verified our ansatz in (4.30) that the odd part of 〈J1J1J0〉
in the quasi fermionic theory is given by the correlator in the critical bosonic theory. We
will complete our analysis of 〈J1J1J0〉QF by computing the possible contact term in (4.27).

To compute the contact term we analyse the higher spin equation obtained by the
action of the generator Q3 on 〈JµJ0J0〉. This requires us to generalize the algebra in (2.10)
to the case where the generator acts on Jµ:

[Q3, Jµ] = ã1 ε−µν ∂− ∂
ν J0 + ã2 ∂µ T−− + ã3 ∂− Tµ− + ã4 η−µ ∂− T

ρ
ρ + ã5 η−µ ∂

α Tα−
(4.35)

In our analysis we will not need to fix the coefficients ãi that appear in the above algebra.
But it turns out from explicit computation that ã2 = ã4 = 0.
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Upon using the current equation (2.11) and the large N factorisation, the part of
the higher spin equation in momentum space which contains the Levi-Civita tensor takes
the form:

ã1 εµ−k1 k1− 〈〈J0(k1) J0(k2) J0(k3)〉〉QF − k2−εν−k2〈〈Jµ(k1)Jν(k2)J0(k3)〉〉odd
QF

− k3−εν−k3〈〈Jµ(k1)J0(k2)Jν(k3)〉〉odd
QF

= 16(r0 − r1)
[
k1− 〈〈J0(k1) J0(k2) J0(k3)〉〉QF〈Jµ(k1) J−(−k1)〉even

QF

−k3− 〈〈Jµ(k1) J0(k2) J−(k3)〉〉even
QF 〈J0(k3) J0(−k3)〉QF

−k2− 〈〈Jµ(k1) J−(k3) J0(k2) 〉〉even
QF 〈J0(k2) J0(−k2)〉QF

]
(4.36)

To determine the possible contact term (4.27) we project out the transverse parts of the
correlators by dotting the above equation with kµ1 . This retains only the local part of the
correlators, and we see that the equation is satisfied iff cJJO = −1

4 ((4.24) and (4.27)):

〈Jµ(k1)Jν(k2)J0(k3)〉contact
QF = −gµν4 (4.37)

We note that this contact term is in addition to the usual contact terms that come from
conservation Ward identities in momentum space. If one explicitly computes the three-
point function using Feynman diagram techniques, one obtains precisely such an additional
contact term [49]. Such contact terms can removed by adding appropriate terms in the
action.

The part of the higher spin equation without the Levi-Civita tensor is also solved if
〈J1J1J0〉QF has the contact term in (4.37).

4.2.3 Four-point functions

We will now turn our attention to four-point correlators in the quasi-fermionic theory.

〈J0J0J0J0〉QF

The scalar four-point function in the quasi-fermionic theory in position space was deter-
mined using the double discontinuity technique in [74] to be:7

〈J0(x1)J0(x2)J0(x3)J0(x4)〉QF = Ñ

2 (1 + λ̃2
qf)2〈J0(x1)J0(x2)J0(x3)J0(x4)〉FF (4.38)

The momentum space correlation function is straightforwardly obtained by taking the
Fourier transform on both sides of the above equation:

〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉QF = Ñ

2 (1 + λ̃2
qf)2〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉FF (4.39)

where the free fermion correlator was obtained by explicit computation in [1]. This matches
the result for the same obtained in a specific kinematic regime in [60].

7Note that in [74] the authors have a factor of 1/Ñ instead of Ñ
2 (1 + λ̃2

qf)
2. This is because of our

definition of J0 which is related to theirs (JTZ0 ) through a rescaling J0 = JTZ0

√
Ñ(1+λ̃2

qf)

21/4 .
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〈TJ0J0J0〉QF

In this section we discuss the 〈TµνJ0J0J0〉 correlator in the quasi-fermionic theory. A direct
computation of this correlator using the Feynman diagram approach can only be done in
specific kinematic regimes [87] and a general analysis is out of reach. In the following
we illustrate how higher spin equations in momentum space can be used to obtain the
correlator.

Recently in [85] (see also [74] and [101]) the correlator 〈TµνJ0J0J0〉QF was studied
using higher spin equations in position space and it was shown that:

〈〈Tµν(x1)J0(x2)J0(x3)J0(x4)〉〉QF

= β2000〈〈Tµν(x1)J0(x2)J0(x3)J0(x4)〉〉even + γ2000〈〈Tµν(x1)J0(x2)J0(x3)J0(x4)〉〉odd
(4.40)

where

β2000 = Ñ

2 (1 + λ̃2
qf), γ2000 = Ñ

2 λ̃qf(1 + λ̃2
qf) . (4.41)

The even and odd parts8 of the correlator are given by [85]:

〈Tµν(x1)J0(x2)J0(x3)J0(x4)〉even = 〈Tµν(x1)J0(x2)J0(x3)J0(x4)〉FF

〈Tµν(x1)J0(x2)J0(x3)J0(x4)〉odd = 〈Tµν(x1)J0(x2)J0(x3)J0(x4)〉CB (4.42)

The position space analysis of [85] was quite involved and in the following we will verify
the results for the correlator using a rather simple analysis via momentum space higher
spin equations.9

Let us consider the action of Q4 on the four-point correlator 〈J0J0J0J0〉QF:

〈[Q4, J0(x1)]J0(x2)J0(x3)J0(x4)〉QF + 1↔ 2 + 1↔ 3 + 1↔ 4

=
∫
x
〈∂µJµ−−−(x)J0(x1) J0(x2) J0(x3)J0(x4)〉QF (4.43)

Upon utilizing the algebra in (2.10), the current equation for J4 in (2.12) and the large N

8Throughout this paper, to be consistent with the literature we call the part of the correlator multiplied
by β2000 as even and the part multiplied by γ2000 as odd.

9We feel that one can extend the arguments of [85] to any almost conserved higher spin current with
even spin in the quasi-fermionic theory, i.e.

〈〈J2s(k1)J0(k2)J0(k3)J0(k4)〉〉QF

= β2000〈〈J2s(k1)J0(k2)J0(k3)J0(k4)〉〉FF + γ2000〈〈J2s(k1)J0(k2)J0(k3)J0(k4)〉〉CB

However, we have not verified this for s > 1.
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factorisation we obtain:

∂3
−〈J0(x1)J0(x2)J0(x3)J0(x4)〉QF + ε−µν∂−∂

µ〈T ν−(x1)J0(x2)J0(x3)J0(x4)〉QF

+ (1↔ 2) + (1↔ 3) + (1↔ 4)

= 96λ̃qf

Ñ(1 + λ̃2
qf)

[ ∫
x
〈∂−J0(x)J0(x1)〉〈T−−(x)J0(x2)J0(x3)J0(x4)〉QF

+ (1↔ 2) + (1↔ 3) + (1↔ 4)

+
∫
x
〈∂−J0(x)J0(x1)J0(x2)〉QF〈T−−(x)J0(x3)J0(x4)〉QF

+ (1↔ 3) + (1↔ 4) + (2↔ 3) + (2↔ 4) + (1, 2↔ 3, 4)
]

(4.44)

The above equation in momentum space takes the form:

(k3
1− + k3

2− + k3
3 + k3

4)〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉QF

− i ε−µνk1−k
µ
1 〈〈T

ν
−(k1)J0(k2)J0(k3)J0(k4)〉〉QF + (1↔ 2) + (1↔ 3) + (1↔ 4)

= − 96λ̃qf

Ñ(1 + λ̃2
qf)

[
k1−〈J0(k1)J0(−k1)〉QF〈〈T−−(k1)J0(k2)J0(k3)J0(k4)〉〉QF

+ (1↔ 2) + (1↔ 3) + (1↔ 4)
+ (k1− + k2−)〈J0(−k1 − k2)J0(k1)J0(k2)〉QF〈T−−(−k3 − k4)J0(k3)J0(k4)〉QF

+ (1↔ 3) + (1↔ 4) + (2↔ 3) + (2↔ 4) + (1, 2↔ 3, 4)
]

(4.45)

Using the fact that the free fermionic and critical bosonic scalar four-point functions are
exactly equal as shown in [60] and using (4.39) we re-express the scalar four-point function
in the quasi-fermionic theory in the following form which will turn out to be useful:

〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉QF = Ñ

2
[
(1 + λ̃2

qf)〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉FF

+ λ̃2
qf(1 + λ̃2

qf)〈〈J̃0(k1)J̃0(k2)J̃0(k3)J̃0(k4)〉〉CB
]

(4.46)

We substitute (4.46) and the ansatz (4.40) for the correlator 〈TJ0J0J0〉 in (4.45) and after
a bit of rearranging the terms we get:

Ñ

2 (1 + λ̃2
qf)
[
(k3

1− + k3
2− + k3

3− + k3
4−)〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉FF

− iε−µνk1−k
µ
1 〈〈T

ν
−(k1)J0(k2)J0(k3)J0(k4)〉〉even + (1↔ 2) + (1↔ 3) + (1↔ 4)

]
+ Ñ

2 λ̃qf(1 + λ̃2
qf)
[
(k3

1− + k3
2− + k3

3− + k3
4−)〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉CB

− iε−µνk1−k
µ
1 〈〈T

ν
−(k1)J0(k2)J0(k3)J0(k4)〉〉odd + (1↔ 2) + (1↔ 3) + (1↔ 4)

]
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= 96λ̃qf

Ñ(1 + λ̃2
qf)

[
k1−β00β2000〈J0(k1)J0(−k1)〉FF〈〈T−−(k1)J0(k2)J0(k3)J0(k4)〉〉even

+ (1↔ 2) + (1↔ 3) + (1↔ 4)
]

96λ̃qf

Ñ(1 + λ̃2
qf)

[k1−
8 β00γ2000〈J̃0(k1)J̃0(−k1)〉CB〈〈T−−(k1)J0(k2)J0(k3)J0(k4)〉〉odd

+ (1↔ 2) + (1↔ 3) + (1↔ 4)
]

+ 96λ̃qf

Ñ(1 + λ̃2
qf)

[
〈J0(−k1 − k2)J0(k1)J0(k2)〉QF〈T−−(−k3 − k4)J0(k3)J0(k4)〉QF

+ (1↔ 3) + (1↔ 4) + (2↔ 3) + (2↔ 4) + (1, 2↔ 3, 4)
]

(4.47)

The higher spin equation (4.47) splits into two equations that correspond to the parity odd
and parity even terms. We will also utilize the relation between three-point functions in
quasi-fermionic and critical bosonic theories, which are as follows in our normalization:10

〈J0(k1)J0(k2)J0(−k1 − k2)〉QF = (1 + λ̃2
qf)

Ñ λ̃qf
8 〈J̃0(k1)J̃0(k2)J̃0(−k1 − k2)〉CB

〈T−−(−k3 − k4)J0(k3)J0(k4)〉QF = Ñ

2 (1 + λ̃2
qf)〈T−−(−k3 − k4)J̃0(k3)J̃0(k4)〉CB

〈J0(k1)J0(−k1)〉QF = β00〈J0(k1)J0(−k1)〉FF

=
Ñ(1 + λ̃2

qf)
16 〈J̃0(k1)J̃0(−k1)〉CB (4.48)

The parity even part of the higher spin equation (4.47) is given by

Ñ

2 (1 + λ̃2
qf)
[
(k3

1− + k3
2− + k3

3− + k3
4−)〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉FF

−iε−µνk1−k
µ
1 〈〈T

ν
−(k1)J0(k2)J0(k3)J0(k4)〉〉FF + (1↔ 2) + (1↔ 3) + (1↔ 4)

]
+Ñ

2 λ̃qf(1 + λ̃2
qf)
[
(k3

1− + k3
2− + k3

3− + k3
4−)〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉CB

−6k1−〈J̃0(k1)J̃0(−k1)〉CB〈〈T−−(k1)J̃0(k2)J̃0(k3)J̃0(k4)〉〉CB

+(1↔ 2) + (1↔ 3) + (1↔ 4)
−6〈J̃0(−k1 − k2)J̃0(k1)J̃0(k2)〉CB〈T−−(−k3 − k4)J̃0(k3)J̃0(k4)〉CB

+(1↔ 3) + (1↔ 4) + (2↔ 3) + (2↔ 4) + (1, 2↔ 3, 4)
]

= 0 (4.49)

10Note that for the critical bosonic theory we have used the following normalization for the scalar two-
point function

〈J̃0(k1)J̃0(−k1)〉CB = −k1

and the three-point function is a constant given as

〈J̃0(k1)J̃0(k2)J̃0(−k1 − k2)〉CB = 1
2

.
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The first two lines of the above equation correspond to the higher spin equation in the free
fermion theory (3.25) whereas the last five lines correspond to the higher spin equation of
the critical bosonic theory given in (4.6). We thus see that the momentum space ansatz for
〈TJ0J0J0〉QF motivated by its position space counter-part [85] in (4.40) satisfies the higher
spin equation corresponding to the even part.

The parity odd part of the higher spin equation (4.47) is given by:

ε−µνk1−k
µ
1 〈〈T

ν
−(k1)J̃0(k2)J̃0(k3)J̃0(k4)〉〉CB + (1↔ 2) + (1↔ 3) + (1↔ 4)

= 192 i k1−〈J0(k1)J0(−k1)〉FF〈〈T−−(k1)J0(k2)J0(k3)J0(k4)〉〉FF

+ (1↔ 2) + (1↔ 3) + (1↔ 4) (4.50)

It can be easily checked that the correlators of the free fermionic and the critical bosonic
theory satisfy this equation.

Thus through a simple algebraic manipulation of the higher spin equations we have
verified the ansatz (4.40) for 〈TJ0J0J0〉QF in momentum space.

4.3 Quasi-bosonic theory

We will now consider the quasi-bosonic theory. We will first discuss the two-point function
of the spin-one current.

4.3.1 Two-point functions

〈JµJν〉QB

In this subsection we utilize the higher spin equations in the quasibosonic theory to deter-
mine the correlator 〈JµJν〉QB. Let us consider the action of Q3 on 〈J−J0〉:

〈[Q3, J−(x1)]J0(x2)〉QB + 〈J−(x1)[Q3, J0(x2)]〉QB =
∫
x
〈∂µJµ−−(x)J−(x1)J0(x2)〉QB (4.51)

By using the algebra given by (2.15) we get

−1
2 〈∂

3
−J0(x1)J0(x2)〉QB + 〈J−(x1)∂−J−(x2)〉QB =

∫
x
〈∂µJµ−−(x)J−(x1)J0(x2)〉QB (4.52)

Making use of the current equation (2.17) and the large-N factorisation in the above
equation, after Fourier transforming we get the following equation in momentum space:

1
2 k

3
1−〈J0(k1)J0(−k1)〉QB − k1− 〈J−(k1)J−(−k1)〉QB

= 32 λ̃qb

Ñ(1 + λ̃2
qb)

εµν−k1−k
ν
1 〈J0(k1)J0(−k1)〉QB〈Jµ(k1)J−(−k1)〉QB (4.53)

The two-point function of the scalar operator in quasi bosonic theory is [45]:

〈J0(k)J0(−k)〉QB = Ñ

2 (1 + λ̃2
qb)〈J0(k)J0(−k)〉FB

= Ñ

2 (1 + λ̃2
qb)× 1

8k (4.54)
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The two-point function of the spin-one current in quasi bosonic theory has the following
structure:

〈Jµ(k)Jν(−k)〉QB = Ñ

2
[
〈Jµ(k)Jν(−k)〉FB + d123 εµνk

]
= Ñ

2

[
kµ kν − gµν k2

16 k + d123 εµνk

]
(4.55)

The first term on the r.h.s. corresponds to the correlator in the free theory which was
determined by solving the higher spin equation in the free theory in section 3.1.1, and the
second term is a parity odd contact term whose coefficient d123 is undetermined. Solving
the higher spin equation (4.53) we get:

d123 = λ̃qb
32 (4.56)

In the free theory limit (λ̃qb → 0), the coefficient of the parity odd term d123 vanishes as
expected.11

4.3.2 Three-point functions
In this subsection we utilize higher spin equations to determine 〈J1J1J0〉QB in the quasi-
bosonic theory. In [46], the authors obtained this correlator in a specific kinematic regime
through Feynman diagram methods. The result we obtain precisely matches theirs in the
specific kinematic regime explored by the authors.

As in quasi fermionic theory, three-point correlators in quasi-bosonic theory are given
by the sum of contributions from the free boson theory (FB), the free fermion theory (FF)
and a parity odd piece (odd) [44, 45]:

〈Js1Js2Js3〉 =αs1s2s3〈Js1Js2Js3〉FB + βs1s2s3〈Js1Js2Js3〉FF + γs1s2s3〈Js1Js2Js3〉odd (4.57)

where si represents the spin of the operator insertions. For the correlators of interest to us
we have:

〈〈Tµν(k1)J0(k2)J0(k3)〉〉QB = α200〈〈Tµν(k1)J0(k2)J0(k3)〉〉FB (4.58)
〈〈Jµ(k1)Jν(k2)J0(k3)〉〉QB = α110〈〈Jµ(k1)Jν(k2)J0(k3)〉〉FB + γ110〈Jµ(k1)Jν(k2)J0(k3)〉〉odd

QB

+ 〈〈Jµ(k1)Jν(k2)J0(k3)〉〉contact
QB (4.59)

〈〈J0(k1)J0(k2)J0(k3)〉〉QB = α000〈〈J0(k1)J0(k2)J0(k3)〉〉FB (4.60)

where the coefficients β200, α110, and γ110 are given by:

α200 = Ñ

2 (1 + λ̃2
qb), α110 = Ñ

2 , γ110 = Ñ λ̃qb
2 , α000 = Ñ

2 (1 + λ̃2
qb) (4.61)

The explicit form of the free boson theory correlators appearing on the r.h.s. of the equa-
tions above can be found in [1] (see also (A.12), (A.13) and (A.10) of appendix A). Note
that we allowed for a contact term in 〈J1J1J0〉QB. In the following we will demonstrate
that the higher spin equation could be utilized to fix the parity odd term as well as the
contact term in (4.59).

11Parity odd contribution to the 2-point function of the spin-one current is zero in the free theory.
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〈JµJνJ0〉QB

Let us look at the Ward-identity corresponding to the action of Q3 on 〈J−J0J0〉:

〈[Q3, J−(x1)]J0(x2)J0(x3)〉+ 〈J−(x1)[Q3, J0(x2)]J0(x3)〉+ 〈J−(x1)J0(x2)[Q3, J0(x3)]〉

=
∫
x
〈∂µJµ−−(x)J−(x1)J0(x2)J0(x3)〉 (4.62)

This leads to the following higher spin equation upon utilizing the algebra in (2.15)

4d̃12 〈∂−T−−(x1) J0(x2) J0(x3)〉QB −
1
2 〈∂

3
−J0(x1) J0(x2) J0(x3)〉QB

+ (〈J−(x1) ∂−J−(x2) J0(x3)〉QB + 2↔ 3) =
∫
x
〈∂µJµ−−(x)J−(x1)J0(x2)J0(x3)〉QB (4.63)

We now use the current equation (2.17) and the large N factorisation, and obtain the
following equation in momentum space after performing a Fourier transform of the above
equation:

4d̃12 k1−〈〈T−−(k1)J0(k2)J0(k3)〉〉QB + 1
2k

3
1−〈〈J0(k1)J0(k2)J0(k3)〉〉QB

+ (k2−〈〈J−(k1)J−(k2)J0(k3)〉〉QB + k3−〈〈J−(k1)J0(k2)J−(k3)〉〉QB)

= 32 λ̃qb

Ñ(1 + λ̃2
qb)

[
εµk1−k1−〈〈J0(k1) J0(k2) J0(k3)〉〉QB〈J−(k1)Jµ(−k1)〉QB

+ (εµk2−k2−〈J0(k2) J0(−k2)〉QB〈〈J−(k1)Jµ(k2)J0(k3)〉〉QB + 2↔ 3)
]

(4.64)

In this equation we substitute the form of the correlators 〈TJ0J0〉QB, 〈J1J1J0〉QB and
〈J0J0J0〉QB given in (4.58), (4.59) and (4.60) respectively. We consider the following ansatz
for 〈J1J1J0〉odd

QB which could be justified by a Legendre transformation:

〈〈Jµ(k1)Jν(k2)J0(k3)〉〉odd
QB = 1

k3
〈〈Jµ(k1)Jν(k2)J0(k3)〉〉FF (4.65)

The higher spin equation in (4.64) splits into two separate equations, one proportional to
the Levi-Civita tensor and the other without the Levi-Civita tensor. We need to satisfy
both the equations so that the higher spin equation (4.64) is solved consistently. Note that
the odd part of the correlator 〈J1J1J0〉QB in (4.59) contains a single Levi Cevita tensor
as it is determined in terms of the free fermionic correlator 〈J1J1J0〉FF (4.65). Hence, the
part of (4.64) with a Levi-Civita tensor gives the following equation:

γ110 k2−〈〈J−(k1)J−(k2)J0(k3)〉〉odd
QB + 2↔ 3

= 32 λ̃qb

Ñ(1 + λ̃2
qb)

[
εµk2−k2−α110〈〈J−(k1)Jµ(k2)J0(k3)〉〉FB〈J0(k2)J0(−k2)〉QB + 2↔ 3

]
(4.66)

In this equation, we use the known expressions for 〈J1J1J0〉FB from [1] and for 〈J0J0〉QB
from (4.54). For 〈J1J1J0〉odd

QB we substitute the ansatz from (4.65). Upon making these
substitutions we see that the higher spin equation (4.66) is exactly satisfied.
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Let us now consider the parity even part of the higher spin equation (4.64) which
contains terms without the Levi-Civita tensor:

4 d̃12 k1−α200〈〈T−−(k1)J0(k2)J0(k3)〉〉FB + 1
2 k

3
1−α000〈〈J0(k1)J0(k2)J0(k3)〉〉FB

+ [k2−α110〈〈J−(k1)J−(k2)J0(k3)〉〉FB + 2↔ 3]

= 32 λ̃qb

Ñ(1 + λ̃2
qb)

[
εµk2−k2−γ110〈〈J−(k1)Jµ(k2)J0(k3)〉〉odd

QBα00〈J0(k2)J0(−k2)〉FB + 2↔ 3

− α11k
3
1− d123 〈〈J0(k1)J0(k2)J0(k3)〉〉

]
(4.67)

We substitute the form of the correlators 〈TJ0J0〉QB and 〈J1J1J0〉QB given in (4.58)
and (4.59) respectively. For correlators in the free boson theory we utilize the results
from [1]. With these substitutions we see that the higher spin equation (4.67) is satisfied.

The above analysis for 〈JµJνJ0〉QB is blind to any contact term in the correlator that is
proportional to gµν as we worked with 〈J−J−J0〉. In the following we compute this contact
term in 〈JµJνJ0〉QB.

Fixing contact term in 〈JµJνJ0〉QB

In this section we will demonstrate that higher spin equation is sensitive to the contact
term in 〈JµJνJ0〉QB and it could be used as a tool to fix such contact terms. To do so let
us first consider the algebra in quasi-bosonic theory

[Q3, J0] = ∂−J−

[Q3, Jµ] = −1
2∂µ∂

2
−J0 + 4 d̃12 ∂−Tµ− − 4 d̃12 gµ−∂

αTα− + d̃10
2 gµ−�∂−J0 (4.68)

Let us consider the action of Q3 on 〈JµJ0J0〉QB

〈[Q3, Jµ(x1)]J0(x2)J0(x3)〉QB + 〈Jµ(x1)[Q3, J0(x2)]J0(x3)〉QB

+ 〈Jµ(x1)J0(x2)[Q3, J0(x3)]〉QB =
∫
x
〈∂µJµ−−(x)Jµ(x1)J0(x2)J0(x3)〉QB (4.69)

Utilizing the algebra in (4.68), the current equation (2.17) and the large N factorisation,
the above equation gives the following in momentum space after Fourier transforming:

1
2k1µk

2
1−〈〈J0(k1)J0(k2)J0(k3)〉〉QB + 4 k1−〈〈Tµ−(k1)J0(k2)J0(k3)〉〉QB

− 4gµ−kα1 〈〈Tα−(k1)J0(k2)J0(k3)〉〉QB −
1
2 gµ−k

2
1k1−〈〈J0(k1)J0(k2)J0(k3)〉〉QB

+ (k2−〈〈Jµ(k1)J−(k2)J0(k3)〉〉QB + 2↔ 3)

= 32 λ̃qb

Ñ(1 + λ̃2
qb)

[
εαk1−k

ν
1k1−〈Jµ(k1)Jα(−k1)〉QB〈〈J0(k1)J0(k2)J0(k3)〉〉QB

+ εαk2−k2−〈〈Jµ(k1)Jα(k2)J0(k3)〉〉QB〈J0(k2)J0(−k2)〉QB + 2↔ 3
]

(4.70)
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The equation can be split into even and odd parts depending on the presence or absence of
the Levi-Civita tensor. The parity odd part of the above higher spin equation is given by:

(k2−〈〈Jµ(k1)J−(k2)J0(k3)〉〉odd
QB + 2↔ 3)

= 32 i λ̃qb

Ñ (1 + λ̃2
qb)

εαν−
[
kν1k1−〈Jµ(k1)Jα(−k1)〉even

QB 〈〈J0(k1)J0(k2)J0(k3)〉〉QB

+ kν2k2−〈〈Jµ(k1)Jα(k2)J0(k3)〉〉even
QB 〈J0(k2)J0(−k2)〉QB + 2↔ 3

]
(4.71)

Since we have already determined the form of 〈J1J1J0〉FB and 〈J1J1J0〉odd
QB and are now in-

terested in determining 〈J1J1J0〉contact
QB we project out the transverse parts of the correlators

and keep only the local terms by contracting (4.71) with kµ1 . This leads to:

(k2−k
µ
1 〈〈Jµ(k1)J−(k2)J0(k3)〉〉odd

QB + 2↔ 3)

= 32 i λ̃qb

Ñ (1 + λ̃2
qb)

εαν−
[
kν1k1−k

µ
1 〈Jµ(k1)Jα(−k1)〉QB〈〈J0(k1)J0(k2)J0(k3)〉〉QB

+ kν2 k2− k
µ
1 〈〈Jµ(k1)Jα(k2)J0(k3)〉〉even

QB 〈J0(k2)J0(−k2)〉QB + 2↔ 3
]

(4.72)

We substituted the form of various correlators that appear in the above equation and found
that the ansatz in (4.65) for 〈JµJνJ0〉odd

QB solves the above equation provided we allow for
a contact term of the following form:

〈〈Jµ(k1)Jν(k2)J0(k3)〉〉contact
QB = −2 γ110

gµν
k3

(4.73)

The even part of the higher spin equation (4.70) is given by:

i

2 k1µk
2
1−〈〈J0(k1)J0(k2)J0(k3)〉〉QB + 4 i k1−〈〈Tµ−(k1)J0(k2)J0(k3)〉〉QB

− 4 gµ−kα1 〈〈Tα−(k1)J0(k2)J0(k3)〉〉QB −
i

2 gµ−k
2
1k1−〈〈J0(k1)J0(k2)J0(k3)〉〉QB

+ k2−〈〈Jµ(k1)J−(k2)J0(k3)〉〉even
QB + k3−〈〈Jµ(k1)J0(k2)J−(k3)〉〉even

QB

= 32 i λ̃qb

Ñ (1 + λ̃2
qb)

εαν−
[
εαk1−k1−〈Jµ(k1)Jα(−k1)〉contact

QB 〈〈J0(k1)J0(k2)J0(k3)〉〉QB

+ εαk2−k2−〈J0(k2)J0(−k2)〉QB〈〈Jµ(k1)Jα(k2)J0(k3)〉〉odd
QB + 2↔ 3

]
(4.74)

Once again since we are only interested in determining the contact terms, we project out
the transverse parts of the correlators and keep only the local terms by contracting the
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above equation with kµ1 . This gives:

i

2k
2
1k

2
1−〈〈J0(k1)J0(k2)J0(k3)〉〉QB + 4 i k1−k

µ
1 〈〈Tµ−(k1)J0(k2)J0(k3)〉〉QB

− 4k1−k
α
1 〈〈Tα−(k1)J0(k2)J0(k3)〉〉QB −

i

2k
2
1k

2
1−〈〈J0(k1)J0(k2)J0(k3)〉〉QB

+ k2−k
µ
1 〈〈Jµ(k1)J−(k2)J0(k3)〉〉QB + k3−k

µ
1 〈〈Jµ(k1)J0(k2)J−(k3)〉〉QB

= 32 i λ̃qb

Ñ (1 + λ̃2
qb)

[
εαk1−k1−k

µ
1 〈Jµ(k1)Jα(−k1)〉contact

QB 〈〈J0(k1)J0(k2)J0(k3)〉〉QB

+ εαk2−k2−k
µ
1 〈〈Jµ(k1)Jα(k2)J0(k3)〉〉odd

QB 〈J0(k2)J0(−k2)〉QB + 2↔ 3
]

(4.75)

We checked that the above equation is satisfied by the ansatz in (4.65) for 〈JµJνJ0〉odd
QB

provided we have also considered the contact term in (4.73).
To summarize, we verified the ansatz for 〈J1J1J0〉odd

QB in (4.65) by showing that it solves
the higher spin equation constructed from the action of Q3 on 〈J−J0J0〉. We also fixed the
contact term in 〈JµJνJ0〉QB (4.73) utilizing the action of Q3 on 〈JµJ0J0〉QB. Our result
matches the results in [46] obtained by explicit Feynman diagram techniques in a specific
kinematic regime.

Q4 on 〈J0J0J0〉QB

Let us now consider the action of Q4 on 〈J0J0J0〉. This gives:

〈[Q4, J0(x1)]J0(x2)J0(x3)〉+ 〈J0(x1)[Q4, J0(x2)]J0(x3)〉+ 〈J0(x1)J0(x2)[Q4, J0(x3)]〉

=
∫
x
〈∂µJµ−−−(x)J−(x1)J0(x2)J0(x3)〉 (4.76)

This leads to the following higher spin equation upon utilizing the algebra in (2.16)

〈∂3
−J0(x1) J0(x2) J0(x3)〉QB −

24
5 〈∂−T−−(x1) J0(x2) J0(x3)〉QB + 1↔ 2 + 1↔ 3

=
∫
x
〈∂µJµ−−−(x)J−(x1)J0(x2)J0(x3)〉QB (4.77)

We now use the current equation (2.19) and large N factorisation, and obtain the following
equation in momentum space after performing a Fourier transform of the above equation:(

k3
1− + k3

2− + k3
3−

)
〈〈J0(k1) J0(k2) J0(k3)〉〉QB

+
[24

5 〈〈T−−(k1) J0(k2) J0(k3)〉〉QB + 1↔ 2 + 1↔ 3
]

= 0 (4.78)

In this equation we substitute the form of the correlators 〈TJ0J0〉QB and 〈J0J0J0〉QB given
in (4.58) and (4.60) respectively and see that the equation is satisfied.

4.3.3 Four-point function

In this subsection we compute in momentum space the four-point correlation function of
the scalar primary operator J0 = φ̄φ in the quasi-bosonic theory utilizing the corresponding
results in position space [74].
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〈J0J0J0J0〉QB

In [1] we obtained the momentum space four-point function of the scalar operator J0 in
the free boson theory. Here we will determine the same for the quasi-bosonic theory.
The correlator has been studied in a specific kinematic and parameter regime in [60, 77].
Recently, it was demonstrated that in the large-N limit, this correlation function in position
space is determined by the free theory answer upto a conformal partial wave which is given
by a D function as follows [74]:

〈J0(x1)J0(x2)J0(x3)J0(x4)〉QB = Ñ(1 + λ̃2
qb)2 fqb(u, v)

x2
13x

2
24

+ disc (4.79)

where

fqb(u, v) = ffb(u, v)−
λ̃2
qb

1 + λ̃2
qb

8
π5/2

(
D̄1,1, 12 ,

1
2
(u, v) + D̄1,1, 12 ,

1
2
(v, u) + 1

u
D̄1,1, 12 ,

1
2

(1
u
,
v

u

))
(4.80)

and disc represents the disconnected part. The difference in the prefactor with [74] is due
to the normalization that we have chosen for the scalar operator in (A.7). The function
ffb(u, v) in the above equation is the corresponding function in the free boson theory
defined through the corresponding four-point correlator as follows

〈J0(x1)J0(x2)J0(x3)J0(x4)〉FB = ffb(u, v)
x2

13x
2
24

+ disc (4.81)

The D̄ function in (4.80) is related to the conformal partial wave Ψ∆t

∆,0 as follows

D̄ d−∆
2

d−∆
2

∆
2

∆
2

(u, v) = x2∆i
12 x2∆i

34
Γ
(

∆
2

)2
Γ
(
d−∆

2

)2

πd/2
u−

d−∆
2 Ψ∆t

∆,0 (4.82)

where ∆i corresponds to the scaling dimension of the external operator whereas ∆ cor-
responds to the scaling dimension of the exchange operator. The conformal partial wave
Ψ∆t

∆,0 is defined as:

Ψ∆i

∆,0 =
∫
ddx〈O1(x1)O2(x2)O(x)〉〈Õ(x)O3(x3)O4(x4)〉 (4.83)

where O corresponds to the exchange/intermediate operator with dimension ∆ whereas
Õ corresponds to the corresponding shadow operator of dimension ∆̃ = d −∆ defined in
appendix D. Since we are interested in the scalar operator of the bosonic theory, ∆i = 1
and it was shown in [74] that the exchange that has to be added corresponds to ∆ = 1 and
d = 3, and therefore we get the relation between the required partial wave and the D̄11 1

2
1
2

to be as follows:
1

x2
13x

2
24
D̄11 1

2
1
2
(u, v) = 1

π
1
2

Ψ1
1,0 (4.84)

Note that the first term in (4.80) corresponds to that of the free boson theory and hence
upon Fourier transform it just turns into the momentum space correlation function of the
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free boson theory. On the other hand we see from the above equation that the Fourier
transform of the D̄ function is simply related to the Fourier transform of the conformal
partial wave Ψ1

1,0 which we denote as Ψ̃1
1,0. Note that D̄ function does not have a simple

closed form expression. However as we show in the appendix D the conformal partial wave
in momentum space is very simple and is equal to the product of two three-point functions
multiplied by a two-point function.

Substituting (4.84) in (4.79) and performing a Fourier transform of the D̄ functions as
shown in the appendix D, we get the final result for the four-point scalar correlator of the
quasi-bosonic theory to be as follows:

〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉QB

= Ñ2(1 + λ̃2
qb)2

[ 1
Ñ
〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉FB

− 8
π3

λ̃2
qb

Ñ(1 + λ̃2
qb)

(
Ψ̃1

1,0(k1, k2, k3, k4) + (2↔ 3) + (2↔ 4)
)]

(4.85)

where

Ψ̃1
1,0(pi) = π2

|p3 + p4||p1 − p2||p3 − p4||2p1 + p2||2p2 + p1||2p3 + p4||2p4 + p3|
. (4.86)

has been derived in (D.11), and for 〈J0(k1)J0(k2)J0(k3)J0(k4)〉 see [1]. In appendix C we
attempt a derivation of the five-point function of the scalar operator in the quasi-fermionic
theory based on conformal block expansion.

5 Higher spin equations away from conformal fixed point

In previous sections of this article we focussed on solving higher spin equation explicitly
at the conformal fixed point. We have seen that, at the conformal fixed point higher spin
symmetry is highly constraining. However one can ask how effective is higher spin equation
when we deform CFT with relevant or marginal deformations away from fixed point. In
this section we examine this interesting question by considering a prototypical example
of the massive free boson theory. We will demonstrate that one may use the higher spin
equation to determine some of the two-point functions of conserved higher spin operators
in this theory. We demonstrate this through an example where we determine 〈JµJν〉 by
using 〈T−−J0〉 and 〈J0J0〉 in the free massive bosonic theory. We also comment on how
one could determine several such two-point correlators. This leads us to propose that the
corresponding higher spin equations could be used to constrain spinning correlators even
in theories away from conformal fixed point.

5.1 Massive free boson

Let us begin by considering the action of Q4 on 〈J0J0〉 in the free massive bosonic theory

〈[Q4, J0(x1)]J0(x2)〉FMB + 〈J0(x1)[Q4, J0(x2)]〉FMB = 0 (5.1)
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The subscript FMB in the above equation represent that the correlator is computed in the
free massive bosonic theory. It may be observed that algebra for the massive case remains
the same as that of the free theory. Utilizing the algebra in (2.3) the higher spin equation
takes the form:

〈∂3
−J0(x1)J0(x2)〉FMB −

24
5 〈∂−T−−(x1)J0(x2)〉FMB + 1↔ 2 = 0 (5.2)

Note that the due to the absence of conformal symmetry the two-point correlators of
difference spins need not be zero in general. In momentum space this leads to

(k3
1− + k3

2−)〈J0(k1)J0(k2)〉FMB + 24
5 (k1−〈T−−(k1)J0(k2)〉FMB

+k2−〈J0(k1)T−−(k2)〉FMB) = 0 (5.3)

Utilizing momentum conservation we see that the above equation is trivially satisfied.
As the above higher spin equation did not constrain the correlators, let us consider a

different higher spin equation obtained by the action of Q3 on 〈J−J0〉:

〈[Q3, J−(x1)]J0(x2)〉FMB + 〈J−(x1)[Q3, J0(x2)]〉FMB = 0 (5.4)

Utilizing the algebra in (2.3) the momentum space higher spin equation takes the form:

4k1−〈T−−(k1)J0(−k1)〉FMB + 1
2k

3
1−〈J0(k1)J0(−k1)〉FMB − k1−〈J−(k1)J−(−k1)〉FMB = 0

(5.5)

We can use the above equation to determine the 〈JµJν〉FMB correlator by using the expres-
sions for 〈J0J0〉FMB and 〈T−−J0〉FMB obtained by direct computation given as follows (see
appendix F):

〈J0(k)J0(−k)〉FMB = 1
4πk arctan

(
k

2m

)
〈T−−(k)J0(−k)〉FMB =

k2
−

16πk3

[
2m2 arctan

(
k

2m

)
− km

]
〈J−(k)J0(−k)〉FMB = 0 (5.6)

Upon utilizing (5.5) and (5.6) the above correlators we obtain

〈J−(k)J−(−k)〉FMB =
k2
−

8πk3

[
(k2 + 4m2) arctan

(
k

2m

)
− 2 km

]
(5.7)

We could use this to determine 〈JµJν〉FMB. This because JµJν is a conserved current and
hence the reconstruction formula fixes the ansatz for this to be

〈Jµ(k)Jν(−k)〉FMB = 〈Jµ(k)Jν(−k)〉transverse
FMB + 〈Jµ(k)Jν(−k)〉local

FMB (5.8)

〈Jµ(k)Jν(−k)〉transverse
FMB = A

[
gµν −

kµkν
k2

]
(5.9)

〈Jµ(k)Jν(−k)〉local
FMB = 2kµkν

k2 〈J0(k)〉FMB

= − m

2k2π
kµkν (5.10)
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Comparing (5.7) and (5.8), the form factor A is fixed from higher spin equation to be

A = − 1
8πk

[
(k2 + 4m2) arctan

(
k

2m

)
+ 2 km

]
(5.11)

The form of the correlator thus fixed by the higher spin equation exactly matches with
that obtained by explicit computation details of which are given in the appendix.

This precisely matches the result obtained from direct computation. We emphasize
here one could do a similar analysis to obtain some of the higher spin correlators through
the correlators of the lower spin to build up a lot of data. For example one could determine
the correlator 〈J3J1〉 through a similar analysis as above by considering the action of Q4
on 〈JµJν〉 which results in a higher spin equation involving 〈J3J1〉 and 〈J1J1〉.

6 Summary

In this section we summarise the results we obtained for various correlators and comment
on duality.

6.1 〈J1J1J0〉 in quasi-fermionic theory

In the quasi-fermionic theory we have

〈Jµ(k1)Jν(k2)J0(k3)〉QF

= Ñ

2 〈Jµ(k1)Jν(k2)J0(k3)〉FF + Ñ λ̃qf
2

(
〈Jµ(k1)Jν(k2)J0(k3)〉odd −

gµν
4

)
(6.1)

where12

〈Jµ(k1)Jν(k2)J0(k3)〉odd = 〈Jµ(k1)Jν(k2)J̃0(k3)〉CB (6.2)

We will now express the above in terms of Nf and λf which are given by the following
relations:

Ñ = 2Nf
sin(πλf )
πλf

λ̃qf = tan (πλf/2) (6.3)

We then have:

〈Jµ(k1)Jν(k2)J0(k3)〉QF = Nf
sin(πλf )
πλf

〈Jµ(k1)Jν(k2)J0(k3)〉FF

+
2Nf sin2

(
πλf

2

)
πλf

(
〈Jµ(k1)Jν(k2)J0(k3)〉odd −

gµν
4

)
(6.4)

It can be checked that this result (including the contact term) matches the result for the
correlator available in the kinematic regime where the + and − components of momenta
are zero (see equations 40 and 41 of [49]). The contact term can however be removed by
adding suitable counter-terms to the action.

12As noted in section 4.2.2, following the general literature, we label the part of a correlator that does not
come from the free theory answer as odd. However this label need not always correspond to expressions that
are odd under parity. This terms is multiplied by λ̃qf which is odd under parity, and hence the labelling
odd for this term in the correlator.
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Duality with critical bosonic theory

The parameters of the quasi-fermionic theory are related to those of the critical bosonic
theory as follows:

Ñ = 2Nf
sin (πλf )
πλf

= 2Nb
sin (πλb)
πλb

(6.5)

λ̃qf = tan
(
πλf

2

)
= − cot

(
πλb
2

)
(6.6)

The duality transformation on the parameters is given by

λf = λb − 1, κf = −κb (6.7)

where κf/b = Nf/b
λf/b

. Implementing these transformations on the correlator (6.4) one can
check that it gives the critical bosonic theory answer [46] for the special kinematic regime
considered therein.

6.2 〈J1J1J0〉 in quasi-bosonic theory

In the quasi-bosonic theory we have

〈Jµ(k1)Jν(k2)J0(k3)〉QB = Ñ

2 〈Jµ(k1)Jν(k2)J0(k3)〉FB

+ Ñ λ̃qb
2

[ 1
k3
〈Jµ(k1)Jν(k2)J0(k3)〉FF − 2 gµν

k3

]
(6.8)

We will now express the above in terms of Nb and λb which are given by the following
relations:

Ñ = 2Nb
sin(πλb)
πλb

λ̃qb = tan (πλb/2) (6.9)

We then obtain:

〈Jµ(k1)Jν(k2)J0(k3)〉QB = Nb
sin(πλb)
πλb

〈Jµ(k1)Jν(k2)J0(k3)〉FB

+
2Nb sin2

(
πλb

2

)
πλb

[ 1
k3
〈Jµ(k1)Jν(k2)J0(k3)〉FF − 2 gµν

k3

]
(6.10)

It can be checked that this matches the results for the correlator available in the kinematic
regime where the + and − components of momenta are zero (see equations 54 and 56
of [46]). An exactly similar analysis as in the quasi-fermionic theory can be performed here
to obtain the critical fermionic theory results.

6.3 Summary of remaining correlators

In this section we summarise the results for the rest of the correlators we study in this
paper.
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Quasi-fermionic theory

The two-point function of spin-one currents in the quasi-fermionic theory is given by:

〈Jµ(k) Jν(−k)〉QF = Ñ

2

[
kµ kν − gµν k2

16 k + λ̃qf
16 εµνρ k

ρ

]
(6.11)

For two-point function of even-spin currents there are both parity even and parity odd
contributions:

〈J2s(k) J2s(−k)〉 = c1 〈J2s(k) J2s(−k)〉even + c2 〈J2s(k) J2s(−k)〉odd (6.12)

where c1 and c2 are given by:

c1 = Ñ

32 , c2 = −3
2Ñ λ̃qf . (6.13)

The three-point spinning correlators 〈TJ0J0〉 is given by:

〈Tµν(k1)J0(k2)J0(k3)〉QF = Ñ

2

[
(1 + λ̃2

qf) 〈Tµν(k1)J0(k2)J0(k3)〉FF + k1µ k1ν
16k1

]
(6.14)

The scalar four-point function 〈J0J0J0J0〉 is given by:

〈J0(k1)J0(k2)J0(k3)J0(k4)〉QF = Ñ

2 (1 + λ̃2
qf)2 〈J0(k1)J0(k2)J0(k3)J0(k4)〉FF (6.15)

We will now present the results for the four-point correlator 〈Tµν(k1)J0(k2)J0(k3)J0(k4)〉QF.
Let us rescale back our scalar operator as J0 −→ J0

1+λ̃2 aligning with [45]. We then have:

〈Tµν(k1)J0(k2)J0(k3)J0(k4)〉QF = Ñ

2(1 + λ̃2
qf)2
〈Tµν(k1)J0(k2)J0(k3)J0(k4)〉FF

+ Ñ λ̃qf

2(1 + λ̃2
qf)2
〈Tµν(k1)J0(k2)J0(k3)J0(k4)〉CB (6.16)

Written explicitly in terms of λ̃qf and Ñqf makes the duality manifest. In the λ̃qf → 0 limit
one gets the free fermion results:

〈Tµν(k1)J0(k2)J0(k3)J0(k4)〉QF = Nf [〈Tµν(k1)J0(k2)J0(k3)J0(k4)〉FF] (6.17)

Quasi-bosonic theory

The two-point function of spin-one currents in the quasi-bosonic theory is given by:

〈Jµ(k1)Jν(−k1)〉QB = Ñ

2

[
〈Jµ(k1)Jν(−k1)〉FB + λ̃qb

32 εµνρ k
ρ
1

]
(6.18)

The four-point function of the scalar operator in the quasi-bosonic theory is given by:

〈J0(k1)J0(k2)J0(k3)J0(k4)〉QB

= Ñ2(1 + λ̃2
qb)2

[ 1
Ñ
〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉FB

− 8
π3

λ̃2
qb

Ñ(1 + λ̃2
qb)

(
Ψ̃1

1,0(k1, k2, k3, k4) + (2↔ 3) + (2↔ 4)
)]

(6.19)
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where

Ψ̃1
1,0(pi) = π2

|p3 + p4||p1 − p2||p3 − p4||2p1 + p2||2p2 + p1||2p3 + p4||2p4 + p3|
. (6.20)

We give the results for the 〈TJ0J0〉 correlator with the scalar operator rescaled as J0 −→
J0

1+λ̃2 aligning with [45]:

〈Tµν(k1)J0(k2)J0(k3)〉QB = Ñ

2(1 + λ̃2
qb)
〈Tµν(k1)J0(k2)J0(k3)〉FB (6.21)

In the limit λ̃qb → 0 we get the free boson result:

〈Tµν(k1)J0(k2)J0(k3)〉QB = Nb 〈Tµν(k1)J0(k2)J0(k3)〉FB (6.22)

Free massive bosonic theory

The scalar two-point function is given by:

〈J0(k)J0(−k)〉FMB = 1
4πk arctan

(
k

2m

)
(6.23)

The two-point function of the spin-one current is given by:

〈Jµ(k)Jν(−k)〉FMB = 〈Jµ(k)Jν(−k)〉transverse
FMB + 〈Jµ(k)Jν(−k)〉local

FMB (6.24)

where

〈Jµ(k)Jν(−k)〉transverse
FMB = A

(
gµν −

kµkν
k2

)
(6.25)

〈Jµ(k)Jν(−k)〉local
FMB = 2kµkν

k2 〈J0(k)〉FMB

= − m

2k2π
kµkν (6.26)

and

A = − 1
8πk

[
(k2 + 4m2) arctan

(
k

2m

)
+ 2km

]
(6.27)

The two-point function of the stress tensor with the scalar operator is given by:

〈T−−(k)J0(−k)〉 = −
k2
−m

(
k − 2m arctan

(
k

2m

))
16k3π

(6.28)

The correlators given in (6.23), (6.24) and (6.28) are consistent with the higher spin
equation.
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7 Conclusion and discussion

In this paper we presented momentum space higher spin Ward identities as an efficient
technique to determining spinning correlators in interacting theories such as the quasi-
bosonic and quasi-fermionic theories. Starting from two-point spinning correlators, we
demonstrated that one can solve higher spin equations to obtain the parity odd contri-
bution to spinning correlators. We then solved higher spin equations to obtain three-
and four-point spinning correlators and matched earlier results obtained by other means.
It would be interesting to extend our analysis to correlators with more spinning opera-
tors whose computation via Feynman diagrams is rather intricate (see for example [87]
in which the computation of 〈J1J1J0J0〉 was performed in a specific kinematic region for
certain components). We emphasize that higher spin equations in momentum space are
sensitive to contact terms in correlators. These include new contact terms in addition to
those that come from conservation Ward identities in momentum space. Interestingly, if
one explicitly computes three-point functions such as 〈J1J1J0〉 in Chern-Simons matter
theories, one obtains such additional contact terms [46, 49].

It will be interesting to determine momentum space correlators in terms of analogues of
higher spin invariants in position space examined in [102–108]. Furthermore it will be inter-
esting to study the higher spin constraints beyond the large-N approximation [75, 109–113].

As the higher spin equations are not restricted to conformal fixed points, one could
imagine them to be useful in theories obtained by marginal and relevant deformations of
conformal fixed points. We examined this interesting new direction briefly through the
example of the massive free boson theory. It would be interesting to extend this analysis
to solve for higher-point correlators in such theories. This would pave way to a new
understanding of conformal perturbation theory.

Furthermore, it would be exciting to study the constraints imposed by higher spin
symmetry on correlators in the presence of chemical potential or at finite temperature
when the conformal symmetry is broken. In such cases the correlators are once again
extremely hard to evaluate directly. Such theories exhibit interesting phases such as the
Higgs phase, Fermi sea etc. at both zero and finite temperature [114]. At finite temperature
one deals with thermal expectation values as opposed to vacuum expectation values. It will
be interesting to understand how one applies the higher spin equations in these contexts.

We saw in our computations that higher spin equations can be solved to obtain corre-
lators that are conformally invariant. Hence it would be an interesting direction of study
to understand how higher spin equations subsume conformal invariance. It will be inter-
esting to study spin-raising and weight-shifting operators in conjunction with higher spin
equations. We hope to come back to these exciting issues in the near future.
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A Notations and normalizations

In this section of the appendix we explain the normalizations and notations we will be
utilizing in this article. Through out this article we have used the following notation for
the three and four-point momentum space correlators of operators Oi

〈O1(k1)O2(k2)O3(k3)O4(k4)〉 = (2π)3δ (k1 + k2 + k3 + k4) 〈〈O1(k1)O2(k2)O3(k3)O4(k4)〉〉
〈O1(k1)O2(k2)O3(k3)〉 = (2π)3δ (k1 + k2 + k3) 〈〈O1(k1)O2(k2)O3(k3)〉〉 (A.1)

where the bold symbol k represent four vectors. It is well known from [44, 45] that the
slightly broken higher spin symmetry constraints the structure of three-point functions in
the quasi-fermionic and quasi-bosonic theory to be of the following form:

〈Js1Js2Js3〉 =αs1s2s3〈Js1Js2Js3〉FB + βs1s2s3〈Js1Js2Js3〉FF + γs1s2s3〈Js1Js2Js3〉odd (A.2)

where for the coefficients α and β are determined completely in terms of two parameter Ñ
and λ̃qb/qf . We will utilize the normalization used in [45] for all the higher spin operators
Js for s > 0 i.e the two-point functions in the interacting theory are related to the free
theory as follows

〈Js(k)Js(−k)〉QF = Ñ

2 〈Js(k)Js(−k)〉FF (A.3)

〈Js(k)Js(−k)〉QB = Ñ

2 〈Js(k)Js(−k)〉FB (A.4)

The difference in the overall factor of 1
2 from [45] is because we will be working with a

complex scalar. Also observe that in the λ→ 0 limit the quasi-fermionic and quasi-bosonic
theory results go to the free fermionic and free bosonic two-point functions respectively.
The normalization of the free bosonic and free fermion theory two-point functions of the
spin one current will be relevant to our computations and these are given as

〈Jµ(k)Jν(−k)〉FB = 〈Jµ(k)Jν(−k)〉FF = 1
16k (kµkν − gµνk2) (A.5)

On the other hand for the scalar operators J0, we utilize the normalization

〈J0(k)J0(−k)〉QF = Ñ

2 (1 + λ̃2
qf)〈J0(k)J0(−k)〉FF (A.6)

〈J0(k)J0(−k)〉QB = Ñ

2 (1 + λ̃2
qb)〈J0(k)J0(−k)〉FB (A.7)
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Note that the normalization of the scalar operator J0 which we will utilize here differs
from [45] by J0 = JMZ

0 (1 + λ̃2). We will be using the following normalization for the two
functions for the scalar operators in free bosonic and free fermion theory

〈J0(k)J0(−k)〉FB = 1
8k (A.8)

〈J0(k)J0(−k)〉FF = −k8 (A.9)

The three-point functions of the scalar operators in the free theories are given as

〈〈J0(k1)J0(k2)J0(k3)〉〉FB = 1
4k1k2k3

(A.10)

〈〈J0(k1)J0(k2)J0(k3)〉〉FF = 0 (A.11)

The reconstruction formulas for the three-point functions of the higher-spin operators fix
the local and transverse parts of the correlators upto a form factor as shown below [20]

〈〈Tµν(k1) J0(k2) J0(k3)〉〉FB/FF = 〈Tµν(k1) J0(k2) J0(k3)〉transverse

+ 〈Tµν(k1) J0(k2) J0(k3)〉local (A.12)
〈〈Jµ(k1) Jν(k2) J0(k3)〉〉FB/FF =〈Jµ(k1) Jν(k2) J0(k3)〉transverse +〈Jµ(k1) Jν(k2) J0(k3)〉local

(A.13)

The transverse parts are given as

〈Jµ(k1)Jν(k2)J0(k3)〉transverse
FB = πµα (k1)πνβ (k2)

[
A1(k1, k2, k3)kα2 k

β
3 +A2(k1, k2, k3)gαβ

]
〈Jµ(k1)Jν(k2)J0(k3)〉transverse

FF =2εµk1α
ενk2β (k1, k2) [A (k1, k2, k3) k1ρ+B (k1, k2, k3) k2ρ] εαβρ

〈Tµν(k1) J0(k2) J0(k3)〉transverse
FB/FF = A1(FB/FF ) (k1, k2, k3) Παβ

µν (k1) kα2 k
β
2 (A.14)

The explicit form of the form factors and the local parts for the free theories may be found
in [1] where they were determined by direct computation as well as by solving momentum
space higher spin equations in the free boson and the free fermion theories.

B Schouten identity

In our computation the following Schouten identity turned out to be helpful:

εµνk1(k1 · k2) + εµk1k2kν1 = εµνk2k2
1 + ενk1k2kµ1

εµνk1k2
2 + εµk1k2kν2 = εµνk2(k1 · k2) + ενk1k2kµ2 (B.1)

The Schouten identity can be used to eliminate two of the ε structures in favour of the
other two:

εµνk1 = k2
1 (−εµk1k2k2ν + ενk1k2k2µ) + k1 · k2 (−ενk1k2k1µ + εµk1k2k1ν)

k2
1 k

2
2 − (k1 · k2)2

εµνk2 = k2
2 (−ενk1k2k1µ + εµk1k2k1ν) + k1 · k2 (ενk1k2k2µ − εµk1k2k2ν)

k2
1 k

2
2 − (k1 · k2)2 (B.2)
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C Five-point function: 〈J0J0J0J0J0〉QF

In this section we will derive an expression for the momentum space five-point function
of the scalar operator in the quasi-fermionic theory. We will demonstrate that this five-
point correlator may expressed in terms of three, four and five-point scalar correlators in
the free fermionic and the critical bosonic theory.Note that the three-point function of the
scalar correlator in the quasi-fermionic theory is a contact term. To begin with let us first
demonstrate that the free fermionic scalar five-point point correlator 〈J0J0J0J0J0〉FF is
non-zero whereas the three-point correlator 〈J0J0J0〉FF vanishes.

Three-point: 〈J0J0J0〉FF

The three-point function of J0 operators in free fermion theory is given by:

〈J0(k1)J0(k2)J0(k3)〉 =
∫
l1l2l3
〈ψ̄(l1)ψ(k1 − l1)ψ̄(l2)ψ(k2 − l2)ψ̄(l3)ψ(k3 − l3)〉 (C.1)

Wick contraction: 12̄23̄31̄+13̄32̄21̄

G1 = −
∫
l1l2l3

Tr(/l1 /l2 /l3)
l21l

2
2l

2
3

δ(k1 − l1 + l2)δ(k2 − l2 + l3)δ(k3 − l3 + l1)

= −
∫
l

Tr(γµγνγρ)(l + k1)µlν(l − k2)ρ
l2(l + k1)2(l − k1)2 (C.2)

The numerator simplifies upon

G1 =
∫
l

2iεµνρk1µlνk2ρ
l2(l + k1)2(l − k2)2 (C.3)

Now we know that the integral is of the form∫
l

lν
l2(l + k1)2(l − k2)2 = Ak1ν +Bk2ν (C.4)

where A and B are functions of k1, k2 and k3. Due to the above form of the required
integral, G1 vanishes due to the presence of εµνρ as follows

G1 = 2iεµνρk1µk2ρ(Ak1ν +Bk2ν) = 0 (C.5)

Similarly it can be shown that the term arising due to other Wick contraction also vanishes.
Hence,

〈J0(k1)J0(k2)J0(k3)〉FF = 0 (C.6)

Five-point function: 〈J0J0J0J0J0〉FF

The five-point function of J0 operators in free fermion theory is given by

〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉FF

=
∫
l1l2l3
〈ψ̄(l1)ψ(k1 − l1)ψ̄(l2)ψ(k2 − l2)ψ̄(l3)ψ(k3 − l3)ψ̄(l4)ψ(k4 − l4)ψ̄(l5)ψ(k5 − l5)〉

(C.7)
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Figure 1. Schematic for the conformal block expansion of the 5-point correlator.

Firstly we will check that this correlator does not straightforwardly vanish as three-point
function. Subsequently we will derive the form of the five-point correlator without doing
an explicit computation.

Consider the Wick contraction 12̄23̄34̄45̄

H1 = −
∫
l1l2l3

Tr(/l1 /l2 /l3 /l4 /l5)
l21l

2
2l

2
3l

2
4l

2
5

δ(k1 − l1 + l2)δ(k2 − l2 + l3)δ(k3 − l3 + l4)

× δ(k4 − l4 + l5)δ(k5 − l5 + l1)

= −
∫
l

Tr(γµγνγργσγδ)(l + k1)µlν(l − k2)ρ(l − k2 − k3)σ(l + k1 + k5)δ
l2(l + k1)2(l − k2)2(l − k2 − k3)2(l + k1 + k5)2 (C.8)

The trace of the five gamma matrices in three dimensions is given as follows

Tr (γµγνγργσγδ) = 2iεµνρgσδ + 2iεσδm (gµνgρm − gµρgνm + gµmgνρ) (C.9)

Upon utilizing the above identity in (C.8)) it is easy to check that the trace of the gamma
matrices contracted with the momentas is non-zero unlike the three-point function.

Five-point function 〈J0J0J0J0J0〉QF

In this section we will compute the momentum space five-point correlator of the scalar
primary J0 in the quasi-fermionic theory. It is well known from the study of conformal
blocks that a given five-point function could be expanded in terms of the four-point function
as depicted in the diagram above for the scalar primary which we are interested in. This
can also be understood as an insertion of a complete set of states as expressed below

〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉

=
∑
O
〈J0(k1)J0(k2)O(−k1 − k2)〉〈O(k1 + k2)J0(k3)J0(k4)J0(k5)〉 (C.10)

Note that the sum
∑
O runs over all the primary and descendant operators in the theory.

However, it is known that the descendants do not contribute in the momentum space.
Hence the sum is over all the primary operators which in Chern Simons matter theories
are the scalar and the almost conserved spinning operators which we denote here as Js.
Therefore the above sum for the momentum space correlators reduced to

〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉QF

=
∞∑
s=0
〈J0(k1)J0(k2)Js(−k1 − k2)〉QF〈Js(k1 + k2)J0(k3)J0(k4)J0(k5)〉QF (C.11)
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Let us now separate the contributions to the five-point function from the scalar and the
higher spin intermediate operators

〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉QF

= 〈J0(k1)J0(k2)J0(−k1 − k2)〉QF〈J0(k1 + k2)J0(k3)J0(k4)J0(k5)〉QF

+
∞∑
s=1
〈J0(k1)J0(k2)J2s(−k1 − k2)〉QF〈J2s(k1 + k2)J0(k3)J0(k4)J0(k5)〉QF (C.12)

Note that the contributions form the odd spin correlators are zero. We can now substitute
the result we obtained for the scalar four-point function 〈J0J0J0J0〉QF for quasi-fermionic
theory in (4.39) and 〈J2sJ0J0J0〉QF given in footnote 9 in terms of the corresponding
correlators in free fermion theory and critical bosonic theories as follows

〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉QF

= β0000〈J0(k1)J0(k2)J0(−k1 − k2)〉QF〈J0(k1 + k2)J0(k3)J0(k4)J0(k5)〉FF

+
∞∑
s=1
〈J0(k1)J0(k2)J2s(−k1 − k2)〉QF

[
β2000〈J2s(k1 + k2)J0(k3)J0(k4)J0(k5)〉FF

+ γ2000〈J2s(k1 + k2)J0(k3)J0(k4)J0(k5)〉CB
]

(C.13)

From [44, 45] we know that the three-point functions in the quasi fermionic theory are
given by

〈J0(k1)J0(k2)J2s(−k1 − k2)〉QF = βs00〈J0(k1)J0(k2)J2s(−k1 − k2)〉FF

= βs00〈J̃0(k1)J̃0(k2)J2s(−k1 − k2)〉CB (C.14)

where βs00 Substituting the above three-point functions in (C.13) we get

〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉QF

= β0000〈J0(k1)J0(k2)J0(k1 + k2)〉QF〈J0(−k1 − k2)J0(k3)J0(k4)J0(k5)〉FF

+
∞∑
s=1

βs00〈J0(k1)J0(k2)J2s(k1 + k2)〉FF
[
β2000〈J2s(−k1 − k2)J0(k3)J0(k4)J0(k5)〉FF

+ γ2000〈J2s(−k1 − k2)J̃0(k3)J̃0(k4)J̃0(k5)〉CB
]

(C.15)

where we have used our expectation for the four-point correlator 〈J2sJ0J0J0〉QF given in
footnote 9. We re-express the above equation using (C.14) as follows:

〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉QF

= β0000〈J0(k1)J0(k2)J0(k1 + k2)〉QF〈J0(−k1 − k2)J0(k3)J0(k4)J0(k5)〉FF

+ βs00

[
β2000

∞∑
s=1
〈J0(k1)J0(k2)J2s(−k1 − k2)〉FF〈J2s(k1 + k2)J0(k3)J0(k4)J0(k5)〉FF

+ γ2000

∞∑
s=1
〈J̃0(k1)J̃0(k2)J2s(−k1 − k2)〉CB〈J2s(k1 + k2)J̃0(k3)J̃0(k4)J̃0(k5)〉CB

]
(C.16)
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We will now utilize the conformal block expansion in (C.10) to re express the summation
in the last two lines of (C.16) in terms of the free fermion theory and the critical bosonic
theory five-point correlators. To do so consider the conformal block expansion for scalar
five-point correlators in critical bosonic theory and free fermion theory

〈J̃0(k1)J̃0(k2)J̃0(k3)J̃0(k4)J̃0(k5)〉CB

= 〈J̃0(k1)J̃0(k2)J̃0(−k1 − k2)〉CB〈J̃0(k1 + k2)J̃0(k3)J̃0(k4)J̃0(k5)〉CB

+
∞∑
s=1
〈J̃0(k1)J̃0(k2)J2s(−k1 − k2)〉CB〈J2s(k1 + k2)J̃0(k3)J̃0(k4)J̃0(k5)〉CB

〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉FF

=
∞∑
s=1
〈J0(k1)J0(k2)J2s(−k1 − k2)〉FF〈J2s(k1 + k2)J0(k3)J0(k4)J0(k5)〉FF (C.17)

where in the last line we have used the fact that 〈J0J0J0〉FF = 0. Upon using the above
conformal block expansions for the scalr five-point function of the free fermionic and the
critical bosonic in (C.16) we arrive at our final expression for the five-point scalar operator
in quasi-fermionic theory in terms of the correlators of free fermionic and critical bosonic
theories which is as follows:

〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉QF

= β0000〈J0(k1)J0(k2)J0(k1 + k2)〉QF〈J0(−k1 − k2)J0(k3)J0(k4)J0(k5)〉FF+
− γ2000βs00〈J̃0(k1)J̃0(k2)J̃0(−k1 − k2)〉CB〈J̃0(k1 + k2)J̃0(k3)J̃0(k4)J̃0(k5)〉CB

+ βs00
[
β2000〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉FF

+ γ2000〈J̃0(k1)J̃0(k2)J̃0(k3)J̃0(k4)J̃0(k5)〉CB
]

(C.18)

Substituting the above in (C.16) we get

〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉QF

= s0〈J0(k1)J0(k2)J0(k1 + k2)〉QF〈J0(−k1 − k2)J0(k3)J0(k4)J0(k5)〉FF

− s2〈J̃0(k1)J̃0(k2)J̃0(−k1 − k2)〉CB〈J̃0(k1 + k2)J̃0(k3)J̃0(k4)J̃0(k5)〉CB

+ s1〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉FF + s2〈J̃0(k1)J̃0(k2)J̃0(k3)J̃0(k4)J̃0(k5)〉CB
(C.19)

The coefficients s0, s1 and s2 in our normalization are given by:

s0 = β0000 = Ñ(1 + λ̃2
qf)2

s1 = β2000βs00 =
Ñ2(1 + λ̃2

qf)2

2 (C.20)

s2 = γ2000βs00 = λ̃qf
Ñ2(1 + λ̃2

qf)2

2 (C.21)
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The three-point function of the scalar operator in the quasi-fermionic theory vanishes in
the limit λ̃qf → 0 [78]13 and in this limit one obtains from (C.19):

〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉QF = 2N2
f 〈J0(k1)J0(k2)J0(k3)J0(k4)J0(k5)〉FF (C.22)

To summarize, in this section of the appendix we have provided a possible derivation for
the momentum space scalar five-point function in the quasi-fermionic theory in terms of the
momentum space scalar three, four and five-point functions in free fermionic and critical
bosonic theory. In this analysis we are not fully sure of the contribution from the double
trace operators. We will come back to this in future.

D Conformal partial wave in momentum space

In this appendix we briefly describe the derivation of the conformal partial wave in mo-
mentum space. In order to define confromal partial wave we require the concept of the
shadow operator which is defined in the embedding space as follows [115]

Õ(X) =
∫
DdY

1
(−2X · Y )d−∆O(Y ) (D.1)

where X and Y are coordinates in the embedding space. In configuration space this may
be expressed as

Õ(x) =
∫
Ddy

1
(x− y)2(d−∆)O(y) (D.2)

The conformal partial wave in position space is defined in terms of the shadow operator as

Ψ∆i

∆,0 =
∫
ddx〈O1(x1)O2(x2)O(x)〉〈Õ(x)O3(x3)O4(x4)〉 (D.3)

We will utilize the definition of shadow operator in (D.2) in the above equation for conformal
partial with J0 in the quasi-bosonic theory (i.e ∆ = 1) as the external and intermediate
operator to obtain

Ψ∆
∆,0 =

∫
d3xd3y

1
(x− y)2 〈J0(x1)J0(x2)J0(x)〉〈J0(y)J0(x3)J0(x4)〉

We express the field in the momentum space to obtain

Ψ∆
∆,0 =

∫
d3xd3yd3kd3k1Π4

i=1d
3pi

ei(k.x+k1. y+
∑4

i=1 pi.xi)

(x− y)2

× 〈J0(p1)J0(p2)J0(k)〉〈J0(k1)J0(p3)J0(p4)〉 (D.4)
13This is because the scalar operator in the theory is odd under parity and therefore so is any correlator

with an odd number of scalar operators. The three-point function in particular is proportional to λf which
is also odd under parity and therefore the correlator vanishes in the limit λf → 0. Explicitly one has [78]

〈J0(q1)J0(q2)J0(q3)〉QF = (2π)3δ3(q1 + q2 + q3)8π2Nf
π2

κ̃3
f

λf

where κ̃f = Nf

λf
.
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Note that this is not the Fourier transform of the conformal partial wave which we do at
the end. Following this we perform a change of variables to z = x−y

2 and z̄ = x+y
2 and

perform z̄, k1 integration to obtain

Ψ∆i

∆,0 =
∫
d3kd3zΠ4

i=1d
3pi

e−2ik.z+i
∑4

i=1 pi.xi

(z)2 〈J0(p1)J0(p2)J0(k)〉〈J0(−k)J0(p3)J0(p4)〉

(D.5)

We first perform the z integral which we know to be∫
d3z

e−2ik.z

z2 = π2

k
(D.6)

where we have used ∫
ddxe−ip·x 1

x2∆ =
πd/22d−2∆Γ

(
d−2∆

2

)
Γ(∆) p2∆−d (D.7)

with ∆ = 1 and d = 3. Substituting (D.6) in (D.5) we obtain

Ψ1
1,0(xi) = π2

∫
d3kΠ4

i=1d
3pie

i
∑4

i=1 pi.xi〈J0(p1)J0(p2)J0(k)〉〈J0(−k)J0(p3)J0(p4)〉1
k

(D.8)

This is the conformal partial wave in position space and hence the fourier transform of it
which we denote as Ψ̂1

1,0(qi) is given by

Ψ̂1
1,0(qi) =

∫
Π4
j=1d

3xjΨ1
1,0(xi)e−i

∑4
i=1 qi·xi (D.9)

Substituting (D.8) in (D.9) we obtain

Ψ̂1
1,0(qi) = π2

∫
d3k〈J0(q1)J0(q2)J0(k)〉〈J0(−k)J0(q3)J0(q4)〉1

k
(D.10)

Utilizing the form of the three-point function in free boson theory to be (A.10) we obtain
the required conformal partial wave to be:

Ψ̂1
1,0(pi) = π2

16

∫
d3k

δ3(p1 + p2 + k)δ3(p3 + p4 − k)
k|p1 − p2||p1 − k||p2 − k||p3 − p4||p3 + k||p4 + k|

= π2δ3(p1 + p2 + p3 + p4)
|p3 + p4||p1 − p2||p3 − p4||2p1 + p2||2p2 + p1||2p3 + p4||2p4 + p3|

. (D.11)

In the main text we define Ψ̃1
1,0 using Ψ̂1

1,0(pi) = Ψ̃1
1,0(pi) δ3(p1 + p2 + p3 + p4).

E Parity odd correlators

E.1 Quasi-fermionic theory

It was shown in [45] that if all the three operators appearing in a three-point correlator
have spin s > 0, they contain three structures: the free bosonic, the free fermionic, and
the parity odd structure. In this sub-section we attempt to constrain such parity odd
structures of the correlators 〈TJ1J1〉 and 〈J1J1J0J0〉 through higher spin equations.
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E.1.1 Constraining 〈TJ1J1〉odd
QF

Consider the action of Q3 on 〈J−J−J−〉:

〈[Q3, J−(x1)]J−(x2)J−(x3)]〉+ 1↔ 2 + 1↔ 3 =
∫
x
〈∂µ Jµ−−(x)J−(x1)J−(x2)J−(x3)〉 (E.1)

Upon utilizing the algebra in (2.10), the current equation (2.11) and large N factorization,
we get after a Fourier transform of the above equation:

− 2 k1−〈〈T−−(k1)J−(k2)J−(k3)〉〉QF + 1↔ 2 + 1↔ 3

= 16λ̃qf

Ñ(1 + λ̃2
qf)
k1−〈〈J0(k1)J−(k2)J−(k3)〉〉QF〈〈J−(k1)J−(−k1)〉〉QF + 1↔ 2 + 1↔ 3 (E.2)

Note that 〈J1J1J0〉QF is as given in (4.24) and β110 and γ110 are as given in (4.26). From
the results of [45] the correlator 〈TJ1J1〉 appearing in the above equation has the following
structure:

〈T−−(k1)J−(k2)J−(k3)〉QF = α211〈T−−(k1)J−(k2)J−(k3)〉FB

+ β211〈T−−(k1)J−(k2)J−(k3)〉FF

+ γ211〈T−−(k1)J−(k2)J−(k3)〉odd (E.3)

where

α211 = Ñ

2(1 + λ̃2
qf)
, β211 =

Ñ λ̃2
qf

2(1 + λ̃2
qf)
, γ211 = Ñ λ̃qf

2(1 + λ̃2
qf)

(E.4)

Substituting in (E.2) we get:

− 2
[
α211k1−〈〈T−−(k1)J−(k2)J−(k3)〉〉FB + β211k1−〈〈T−−(k1)J−(k2)J−(k3)〉〉FF

+ γ211k1−〈〈T−−(k1)J−(k2)J−(k3)〉〉odd
]

+ 1↔ 2 + 1↔ 3

= 16λ̃qf

Ñ(1 + λ̃2
qf)

[
β110k1−〈〈J0(k1)J−(k2)J−(k3)〉〉FF〈〈J−(k1)J−(−k1)〉〉QF

+ γ110k1−〈〈J0(k1)J−(k2)J−(k3)〉〉odd〈〈J−(k1)J−(−k1)〉〉QF
]

+ 1↔ 2 + 1↔ 3 (E.5)

The free theory equation (3.22) implies that terms proportional to β211 add up to zero.
Using (3.9) terms proportional to α211 simplify and we get:

− 2
[
− α211

8 k3
1−〈〈J0(k1)J−(k2)J−(k3)〉〉FB + 1↔ 2 + 1↔ 3

+ γ211k1−〈〈T−−(k1)J−(k2)J−(k3)〉〉odd + 1↔ 2 + 1↔ 3
]

= 16λ̃qf

Ñ(1 + λ̃2
qf)

[
β110k1−〈〈J0(k1)J−(k2)J−(k3)〉〉FF〈〈J−(k1)J−(−k1)〉〉QF

+ γ110k1−〈〈J0(k1)J−(k2)J−(k3)〉〉odd〈J−(k1)J−(−k1)〉QF
]

+ 1↔ 2 + 1↔ 3 (E.6)
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We now separate the above equation into terms that contain parity even and parity odd
structures. The even part gives the following equation:[
α211

4 k3
1−〈〈J0(k1)J−(k2)J−(k3)〉〉FB

]
+ 1↔ 2 + 1↔ 3

= 16λ̃qf

Ñ(1 + λ̃2
qf)

[
γ110k1−〈〈J0(k1)J−(k2)J−(k3)〉〉odd〈J−(k1)J−(−k1)〉FF

]
+ 1↔ 2 + 1↔ 3

(E.7)

We verified that the free theory correlators derived in [1] and our ansatz for the odd part
of 〈J1J1J0〉QF (4.30) solve the above equation. The odd part of (E.6) gives:

− 2
[
γ211k1−〈〈T−−(k1)J−(k2)J−(k3)〉〉odd

]
+ 1↔ 2 + 1↔ 3

= 16λ̃qf

Ñ(1 + λ̃2
qf)

[
β110k1−〈〈J0(k1)J−(k2)J−(k3)〉〉FF〈J−(k1)J−(−k1)〉FF

]
+ 1↔ 2 + 1↔ 3

(E.8)

The above higher spin equation which involves the odd part of the 〈TJJ〉 correlator leads
to five equations for the form factors, one from each of the momentum coefficients. We will
address the parity odd structures to this correlator in momentum space in future.

E.1.2 Constraining 〈J1J1J0J0〉odd
QF odd

In this subsection we attempt to constrain the parity odd structure of the correlator
〈J1J1J0J0〉QF. We consider the action of Q3 on 〈J−J0J0J0〉QF:

〈 [Q3, J−(x1)] J0(x2)J0(x3)J0(x4)〉QF + 〈J−(x1) [Q3, J0(x2)] J0(x3)J0(x4)〉QF +2↔3+2↔4

=
∫
x
〈∂µJµ−−(x)J−(x1)J0(x2)J0(x3)J0(x4)〉QF (E.9)

Upon utilizing the algebra in (2.10), the current equation (2.11) and large N factorization,
we get after Fourier transforming:

− 2 k1−〈〈T−−(k1)J0(k2)J0(k3)J0(k4)〉〉QF

− ε−k2νk2−〈〈J−(k1)Jν(k2)J0(k3)J0(k4)〉〉QF + 2↔ 3 + 2↔ 4

= 16 λ̃qf

Ñ(1 + λ̃2
qf)

[
k1−〈J−(k1)J−(−k1)〉QF〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉QF

− (k3− + k4−)〈〈J−(−k1 − k2)J−(k1)J0(k2)〉〉QF〈J0(−k3 − k4)J0(k3)J0(k4)〉QF

+ 2↔ 3 + 2↔ 4

− k2−〈〈J−(k1)J−(k2)J0(k3)J0(k4)〉〉QF〈〈J0(k2)J0(−k2)〉QF + 2↔ 3 + 2↔ 4
]

(E.10)

From recent results [85] and our analysis in section 4.2.3 we know that the correlator
〈TJ0J0J0〉QF appearing in above equation has two structures given by (4.40) and (4.42).
The four-point function of the scalar operator in terms of the corresponding free theory
correlator is as in (4.39).
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Let us consider the following ansatz for the correlator 〈J1 J1 J0 J0〉:

〈〈Jµ(k1)Jν(k2)J0(k3)J0(k4)〉〉QF

= α1100〈〈Jµ(k1)Jν(k2)J0(k3)J0(k4)〉〉FF + β1100〈〈Jµ(k1)Jν(k2)J0(k3)J0(k4)〉〉FB

+ γ1100〈〈Jµ(k1)Jν(k2)J0(k3)J0(k4)〉〉odd (E.11)

We substitute this ansatz for 〈J1J1J0J0〉 and separate the equations arising from parity
odd and even structures. The parity even structures lead to the following equation:

− 2β2000k1−〈〈Tµν(k1)J0(k2)J0(k3)J0(k4)〉〉CB (E.12)
− ε−k2ν(k2−γ1100〈〈J−(k1)Jν(k2)J0(k3)J0(k4)〉〉odd) + 2↔ 3 + 2↔ 4

= 16 λ̃qf

Ñ(1 + λ̃2
qf)

[
β0000k1−〈J−(k1)J−(−k1)〉QF〈〈J0(k1)J0(k2)J0(k3)J0(k4)〉〉FF

− α1100k2−〈〈J−(k1)J−(k2)J0(k3)J0(k4)〉〉FF〈J0(k2)J0(−k2)〉QF

− β1100k2−〈〈J−(k1)J−(k2)J0(k3)J0(k4)〉〉FB〈J0(k2)J0(−k2)〉QF + 2↔ 3 + 2↔ 4
]

whereas the odd structures give the following equation:

− 2α2000k1−〈〈T−−(k1)J0(k2)J0(k3)J0(k4)〉〉FF (E.13)
− ε−k2ν(k2−α1100〈〈J−(k1)Jν(k2)J0(k3)J0(k4)〉〉FF

+ k2−β1100〈〈J−(k1)Jν(k2)J0(k3)J0(k4)〉〉FB)

= 16 λ̃qf

Ñ(1 + λ̃2
qf)

[
− (k3− + k4−)〈J−(−k1 − k2)J−(k1)J0(k2)〉QF

× 〈〈J0(−k3 − k4)J0(k3)J0(k4)〉〉QF + 2↔ 3 + 2↔ 4

− γ1100k2−〈〈J−(k1)J−(k2)J0(k3)J0(k4)〉〉odd〈J0(k2)J0(−k2)〉QF + 2↔ 3 + 2↔ 4
]

Thus we obtain an equation for 〈J1J1J0J0〉odd in terms of free theory correlators and
〈J1J1J0〉QF which we studied in detail in section 4.2.2. We leave the study of finding the
form factors of 〈JµJνJ0J0〉odd to a future work.

E.2 Quasi-bosonic theory

As discussed in the appendix A, it was shown in [45] that a correlator 〈Js1Js2Js3〉 with
s1 6= 0, s2 6= 0, s3 6= 0 in a theory with slightly broken higher spin symmetry has three
non-trivial structure the free bosonic, the free ferimionic and the parity odd structure. In
this subsection we derive the higher spin equations involving such a correlator 〈TJ1J1〉QB
and in particular we attempt to solve for the parity odd structures in this correlator.

E.2.1 Constraining 〈TJ1J1〉odd
QB

Consider the action of Q3 on 〈J−J−J−〉. This gives:

〈[Q3, J−(x1)]J−(x2)J−(x3)]〉+ 1↔ 2 + 1↔ 3 =
∫
x
〈∂µJµ−−(x)J−(x1)J−(x2)J−(x3)〉

(E.14)

– 48 –



J
H
E
P
0
4
(
2
0
2
1
)
2
3
1

Utilizing the algebra (2.15), the current equation (2.17) and large N factorization, we
obtain after Fourier transforming:

4k1−〈〈T−−(k1)J−(k2)J−(k3)〉〉QB +
k3

1−
2 〈〈J0(k1)J−(k2)J−(k3)〉〉QB + 1↔ 2 + 1↔ 3

= 32 λ̃qb

Ñ(1+λ̃2
qb)

[
εµk1−k1−〈〈J0(k1)J−(k2)J−(k3)〉〉QB〈J−(k1)Jµ(−k1)〉QB + 1↔ 2 + 1↔ 3

]
(E.15)

We know from the results of [45], that these correlators have the following structure:

〈〈J0(k1)J−(k2)J−(k3)〉〉QB = α110〈〈J0(k1)J−(k2)J−(k3)〉〉FB

+ γ110〈〈J0(k1)J−(k2)J−(k3)〉〉odd
QB

〈〈T−−(k1)J−(k2)J−(k3)〉〉QB = α211〈〈T−−(k1)J−(k2)J−(k3)〉〉FB

+ β211〈〈T−−(k1)J−(k2)J−(k3)〉〉FF

+ γ211〈〈T−−(k1)J−(k2)J−(k3)〉〉odd
QB

〈J−(k1)Jµ(−k1)〉QB = α11〈J−(k1)Jµ(−k1)〉FB + 〈J−(k1)Jµ(−k1)〉contact
QB

〈J−(k1)Jµ(−k1)〉contact
QB = α11d123ε−µk1 (E.16)

α211 = Ñ

2(1 + λ̃2
qb)

, β211 =
Ñ λ̃2

qb

2(1 + λ̃2
qb)

, γ211 = Ñ λ̃qb

2(1 + λ̃2
qb)

α11 = Ñ

2 (E.17)

Substituting the above expressions in (E.15) and then utilizing the higher spin equations
for free fermion and free boson theories derived in (3.9) and (3.22) gives:

4
[
− α211

8d01
k3

1−〈〈J0(k1)J−(k2)J−(k3)〉〉FB + γ211k1−〈〈T−−(k1)J−(k2)J−(k3)〉〉odd
QB +1↔2+1↔3

]
+ 1

2

[
α110k

3
1−〈〈J0(k1)J−(k2)J−(k3)〉〉FB + γ110k

3
1−〈〈Jµ(k1)Jν(k2)J0(k3)〉〉odd

QB + 1↔ 2 + 1↔ 3
]

= 32 λ̃qb

Ñ(1 + λ̃2
qb)

[
α110 εµk1−k1−〈〈J0(k1)J−(k2)J−(k3)〉〉FB〈J−(k1)Jµ(−k1)〉QB

+ γ110 εµk1−k1−〈〈J0(k1)J−(k2)J−(k3)〉〉odd
QB 〈J−(k1)Jµ(−k1)〉QB + 1↔ 2 + 1↔ 3

]
(E.18)

The equation splits into two equations: one for the parity odd and the other for the parity
even structures. The parity even part gives:

− α211
2
[
k3

1−〈〈J0(k1)J−(k2)J−(k3)〉〉FB + 1↔ 2 + 1↔ 3
]

+ α110
2
[
k3

1−〈〈J0(k1)J−(k2)J−(k3)〉〉FB + 1↔ 2 + 1↔ 3
]

= 32 λ̃qb

Ñ(1 + λ̃2
qb)

[
α110εµk1−k1−〈〈J0(k1)J−(k2)J−(k3)〉〉FB〈J−(k1)Jµ(−k1)〉contact

QB

+ 1↔ 2 + 1↔ 3
]

(E.19)
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where α211 and α110 are as given in (E.17). Note that the term proportional to
εµk1−〈J−(k1)Jµ(−k1)〉FB and their corresponding exchanges on the r.h.s. simply vanish
due to contraction. Upon utilizing the results for the free boson correlator, we have veri-
fied that the above higher spin equation is exactly satisfied.

The parity odd part of the higher spin equation gives:

4γ211
[
k1−〈〈T−−(k1)J−(k2)J−(k3)〉〉odd

QB + 1↔ 2 + 1↔ 3
]

+ γ110
2
[
k3

1−〈〈Jµ(k1)Jν(k2)J0(k3)〉〉odd
QB + 1↔ 2 + 1↔ 3

]
= 32λ̃qb

Ñ(1 + λ̃2
qb)

[
γ110 εµk1−k1−〈〈Jµ(k1)Jν(k2)J0(k3)〉〉odd

QB 〈J−(k1)Jµ(−k1)〉contact
QB

+ 1↔ 2 + 1↔ 3
]

(E.20)

We will address the problem of solving for the parity odd structures in this correlator in a
future work.

F Correlation functions in free massive bosonic theory

In this section of the appendix we provide brief details of the computation of some of the
correlators in the free massive bosonic theory and the integrals required to evaluate them.

Required integrals

Note that we will use the following identities to derive the required integrals:

Ĩµ =
∫
l

lµ
((l − k)2 +m2) = Dkµ (F.1)

S̃µ =
∫
l

lµ
(l2 +m2) = 0 (F.2)

Ĩ0 =
∫
l

1
((l − k)2 +m2) =

∫ 1
(l2 +m2) (F.3)

Iµν =
∫
l

lµlν
(l2 +m2)((l − k)2 +m2) = Akµkν +Bgµν (F.4)

Iµ =
∫
l

lµ
(l2 +m2)((l − k)2 +m2) = Ckν (F.5)

I0 =
∫
l

1
(l2 +m2)((l − k)2 +m2) =

arctan
(
k

2m

)
4πk (F.6)

where we introduced the following notation

∫
l
≡
∫
d3l

(2π)3 , (F.7)
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and

D = Ĩ0 = −m4π (F.8)

C = I0
2 (F.9)

A = 2Ĩ0 + (3k2 +m2)I0
8k2 (F.10)

B = 2Ĩ0 − (k2 + 4m2)I0
8k2 (F.11)

〈J0〉FMB

〈J0(k)〉 =
∫
l

1
(l2 +m2) = Ĩ0 (F.12)

〈J0J0〉FMB

〈J0(k)J0(−k) =
∫
l

1
(l2 +m2)((l − k)2 +m2) = I0 (F.13)

〈JµJν〉FMB

Jµ(k) =
∫
d3l (2l − k)µ φ̄(l)φ(k − l) (F.14)

Hence the Wick contraction gives:

〈Jµ(k1)Jν(−k1)〉 =
∫
l1l2

(2l1µ − k1µ)(2l2µ − k2µ)
(l21 +m2)(l22 +m2)

δ(l1 + k2 − l2)δ(l2 + k1 − l1) (F.15)

This in turn is given by

〈Jµ(k)Jν(−k)〉 =
∫
l

(2lµ − kµ)(2lν − kν)
(l2 +m2)((l − k)2 +m2)

= 4 Iµν − 2 kµ Iν − 2 kν lµ + kµ kν I0 (F.16)

〈TµνJ0〉FMB

Tµν(k) =
∫
d3lHµν(l, k) φ̄(l)φ(k − l)

Hµν =− 3
8(lµ(k − l)ν + (k − l)µlν) + 1

8((k − l)µ(k − l)ν + lµlν)

+ 1
4ηµν l · (k − l)−

ηµν
24 (l2 + (k − l)2) + ηµν

m2

3 (F.17)

Hence the correlator is given as

〈Tµν(k1)J0(k2)〉 =
∫
l1l2
〈φ̄(l1)Hµνφ(k1 − l1)φ̄(l2)φ(k2 − l2)〉
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The relevant Wick contractions 12̄ 23̄ 31̄ and 13̄ 32̄ 21̄ together give:

〈Tµν(k)J0(−k)〉 = m

48k3π

[
6gµνk3 − 3kkµkν + (7gµνk2 + 6kµkν)m arctan

(
k

2m

)]
(F.18)

In particular

〈T−−(k)J0(−k)〉 = −
k2
−m

(
k − 2m arctan

(
k

2m

))
16k3π

(F.19)
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