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1 Introduction

Recently, there has been renewed interest in the superconformal index of the four-
dimensional N = 4 SU(N) Yang-Mills theory, which captures the degeneracies (with signs)
of the 1/16th BPS spectrum. This interest is caused by the fact that, in contrast to the
conclusions of an earlier investigation [1], the index is able to reproduce the entropy of
supersymmetric black holes with AdS5 asymptotics [2–5]. More precisely, the first series
of works [6–8] aimed to reproduce a specific “entropy function” or free energy from the
index, which was previously shown in [9] to lead to the black hole entropy upon a Legendre
transformation. Apart from this success, the index is a rather rich mathematical object
and further study has among other things suggested the existence of unknown gravita-
tional saddles [8, 10, 11]. There are also indications of an interesting structure relating
these various saddles, perhaps akin to the SL(2,Z) family of BTZ black holes in three
dimensions [12–14].
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However, the comparison with AdS3/CFT2 is not obvious. In particular, this structure
arises from modularity of the CFT2 partition function defined on a two-torus. The present
work was originally geared toward exploring analogous structures in a four-dimensional
context. Specifically, it has been known for a while that certain four-dimensional supersym-
metric partition functions, including the superconformal index, have interesting SL(3,Z)
properties, as emphasized in [15–17]. These properties can be explained from the fact
that the manifolds on which such partition functions are defined can all be viewed as a
gluing of two solid three tori along their boundaries, which are identified up to an SL(3,Z)
transformation. The associated holomorphic block factorization [18–20] is central to the
SL(3,Z) modular property, which was explained in full generality in [21]. However, it turns
out that applying the general framework of [21] to the problem of interest requires a differ-
ent approach to the computation of the superconformal index as compared with existing
approaches. The main reason for this is that the previous works, which we briefly sum-
marize below, all lack a certain generality. This fact prohibits the application of the main
modular property of [21] to the existing expressions for the index. In the present work,
we will be mainly concerned with the computation of the index through residues and a
subsequent Cardy limit via the SL(3,Z) modular property. We postpone the investigation
of the aforementioned structure to a forthcoming publication [22].

Let us now turn to a summary of the recent developments. In the process, we will also
indicate their respective drawbacks for our purposes. Finally, we will briefly mention how
our method is able to avoid these specific drawbacks.

1. In [6], the gravitational on-shell action of charged and rotating AdS5 black holes is
computed, regularized through a background subtraction scheme.1 It was shown that
in the supersymmetric limit, this gravitational on-shell action precisely reproduces
the entropy function of [9], which upon Legendre transformation yields the black
hole entropy. This gravity computation clarifies the role of the complex chemical
potentials and the (complex) constraint they are subjected to, first noticed in [9],
as arising from regularity of a Killing spinor in the black hole background; it also
dictated the boundary background on which the authors of [6] then computed the
field theory partition function via a supersymmetric localization computation. The
resulting partition function has the form Z = e−FI, with I the superconformal index
and F a generalized supersymmetric Casimir energy,2 which turns out to equal minus
the on-shell action.3 The appearance of a Casimir like energy in the computation of
black hole entropy is reminiscent of AdS3/CFT2, where modularity in the field theory
connects the Casimir energy with the entropy of black hole states. We will see in
section 3 that indeed a modular property of the superconformal index precisely yields

1See [23] for a computation within the framework of holographic renormalization.
2See [24, 25] for the definition of the ordinary supersymmetric Casimir energy.
3In the large N or Cardy limit (and at the relevant complex values of the chemical potentials), log I

reproduces the entropy function [7, 8]. This indicates that the bulk computation corresponds to a scheme
in the field theory where the path integral gives rise to a partition function of the form Z = I, i.e. without
the Casimir energy prefactor [6].
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this generalized Casimir energy, thereby confirming this analogy in a more precise
manner (see also [21]).

From our perspective, the main disadvantage to this approach is the fact that the
gravitational solution plays a crucial role in the analysis. This makes it difficult to
see how this method will lead to insight into unknown gravitational solutions.

2. Various authors have considered a Cardy-like limit of the partition function [7, 10, 11,
26–30]. This limit sends the chemical potentials τ and σ, associated with the angular
momenta, to zero. It is analogous to the high temperature limit of the torus partition
function in two-dimensional CFT, hence the name. In this limit, the computation
of the index simplifies significantly, although one still has to rely on a saddle point
approximation of the gauge integral to obtain the final result. It was pointed out
in [21] that there is an interesting connection between this Cardy limit and a certain
modular property of the index. However, this modular property cannot be used for
all values of the gauge parameters, and therefore its use has to be justified a posteriori
by the precise value of the saddle. We believe that the implications of modularity will
be more transparent by first computing the gauge integral (exactly) and only then
applying the modular property. In this way, one can a priori justify its use and the
effect of the Cardy limit is not obscured by a subsequent saddle point approximation.

3. The Bethe Ansatz method [31–33] allows one to compute the gauge integral exactly
and can be used to evaluate the large-N limit of the index [8, 34]. Using this method,
the index can be expressed as a sum over “Bethe vacua” and is reminiscent of a sum
over saddles. The Bethe Ansatz method was the first to point out a rich phase
structure exhibited by the large-N limit of the index, by showing that in different
regimes of parameter space different Bethe vacua provide the dominant contribution
to the index. However, there are some unsatisfactory aspects such as the fact that
not all Bethe vacua are known (see however [28, 29]). Also, one requires a certain
specialization of the τ and σ chemical potentials. More precisely, the initial work [8]
required τ = σ, which was later generalized to τ/σ ∈ Q [34]. But even for the more
general setting, the modular property of [21] does not hold.4

4. Another line of work has attempted a saddle point approximation of the gauge integral
in the large-N limit, as opposed to the Cardy limit [11, 36].5 Due to an elliptic
extension of the gauge parameters, it is possible to find a large class of saddles
with interesting interrelations. In addition, this analysis makes it possible to study
the phase structure of the 1/16th BPS sector and predicts the existence of new
gravitational saddles. The main drawback of this approach is the apparent lack of
an a priori justification of the elliptic extension. Indeed, such ellipticity is naturally
associated with the presence of large gauge transformations along two non-trivial
one-cycles in the geometry, whereas S3 × S1 only has a single non-trivial one-cycle.

4However, a version of the modular property exists for this specialization, see Theorem 5.2 in [35]. This
property was in fact employed in [8, 34] to compute the large-N limit of the index.

5See also [37] for a different approach, based on a truncated version of the N = 4 matrix model.
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In addition, this approach so far has required the specialization τ = σ, which as we
already mentioned is problematic for the use of the full modular property.

5. Most recently, there have also been numerical efforts to study the superconformal
index [38, 39]. These methods both require specializations of the parameters and
truncations, which obscure modular properties.

The main issues we have pointed out with the existing methods can be summarized as:
specialization of parameters and/or working at the level of the gauge integrand. We obtain
another, exact representation of the index similar in structure to the Bethe Ansatz analysis.
In particular, we first evaluate the gauge integral through residues and therefore do not rely
on saddle point approximations. In addition, we do not require any specialization of the
parameters to perform the computation. However, as one varies the chemical potentials
some poles may enter or exit the contour of integration. Although this prohibits us from
finding a fully explicit expression for the index for general parameters, this is inconsequen-
tial for the study of the Cardy limit. The residue analysis is the same as the one that
relates the Higgs branch localization formulas of N = 1 gauge theories with fundamental
matter to the gauge integral expression of the index [18, 19, 40]. The term “Higgs branch
localization” in the case of the N = 4 is inappropriate, since the N = 4 theory does not
have a Higgs branch. We will therefore refrain from using this terminology, even though the
analysis and expressions will be completely analogous to those obtained in gauge theories
using Higgs branch localization.

The computation of the index is performed in section 2, first for SU(2) gauge group in
section 2.1 and then for SU(N) in section 2.2. Only after this step will we take the Cardy
limit of the resulting expression in section 3, using a modular property of the index. We
conclude and discuss our results in section 4. In appendix A we collect definitions and
some useful properties of special functions that appear in the index. In appendix B, we
compute the unrefined limit of the index, which requires special care, and its Cardy limit.
Finally, we collect the expression for the anomaly polynomial in appendix C and briefly
discuss how it is related to the standard expression of the entropy function used in the
main text.

2 Computation of the N = 4 index

In this section, we will perform the computation of the superconformal index for the N = 4
SU(N) Yang-Mills theory. We will warm-up with the SU(2) case and then proceed to
general N . Before turning to the computation, we will describe the index in some detail
and in the process set up notation. See [41] for a recent review.

The superconformal index can be expressed as follows:

I(φ1,2; τ, σ) = trHQ(−1)F pJ1qJ2(pq)
r1−r3

2 f r2+r3
1 f r3

2 . (2.1)

Here,
p = e2πiσ, q = e2πiτ , f1 = e2πiφ1 , f2 = e2πiφ2 . (2.2)
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Our parametrization is equivalent to the one used in [8] upon identifying fi = yi. Further-
more, HQ is the 1/16th BPS Hilbert space corresponding to those states on which:

{Q,Q†} = E − J1 − J2 − 3
2

(
r1 + 2

3r2 + 1
3r3
)

(2.3)

vanishes. The charges J1,2 are the rotation generators along the Euler angles of S3 and
the ri correspond to the Cartan generators of SU(4). Thinking of the N = 4 theory in an
N = 1 language, the R-symmetry charges of the three chiral multiplets are given by:

(r1, r2, r3) = (0, 1, 0), (1,−1, 1), (1, 0,−1). (2.4)

The SO(6) Cartan generators Ri used in [8] are related to the ri via:

R1 = r1 + 2r2 + r3, R2 = r1 + r3, R3 = r1 − r3. (2.5)

Each Ri equals 2 for a single chiral multiplet and vanishes on the other two. Finally, the
N = 1 superconformal U(1) R-charge r corresponds to:

r = r1 + 2
3r2 + 1

3r3 (2.6)

Since the index is independent of continuous couplings, one can compute it at weak
coupling. In this case, the trace can be explicitly performed and the resulting expression
is given by:

IN = κN
N !

N−1∏
k=1

∮
|xk|=1

dxk
2πixk

∏
1≤i 6=j≤N

∏3
a=1 Γ(xijfa)

Γ(xij)
. (2.7)

The integral over the gauge fugacities xi = e2πiui (xij = xix
−1
j ) ensures the projection onto

gauge invariant states. Moreover, for notational convenience we have written the elliptic Γ
function Γ(u; τ, σ) as a function of fugacities:

Γ(x) ≡ Γ(u; τ, σ) =
∞∏

m,n=0

1− x−1pm+1qn+1

1− xpmqn = P.E.
(

x− x−1pq

(1− p)(1− q)

)

≡ exp
( ∞∑
l=1

1
l

xl − (x−1pq)l

(1− pl)(1− ql)

)
,

(2.8)

where the second equation indicates how the elliptic Γ function can be thought of as
a generating function for multiletter indices from a single letter index. More precisely,
writing the integrand of (2.7) in terms of plethystic exponentials, the argument of the
combined exponentials is 1− f with f the 1/16th single letter index of the N = 4 theory.
The additional 1 originates from the Vandermonde determinant obtained by replacing the
matrix integral with an integral over eigenvalues [1, 42].

In addition, we defined f3 = pqf−1
1 f−1

2 and xN = (x1 · · ·xN−1)−1, the latter corre-
sponding to the SU(N) constraint. Furthermore, κN consists of the Cartan factors of both
the chiral multiplets and the vector multiplet, and is given by:

κN = (p; p)N−1
∞ (q; q)N−1

∞ (Γ(f1)Γ(f2)Γ(f3))N−1 , (2.9)

where the q-Pochhammer symbol is defined in (A.2).
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Finally, for convergence of the product formula for the elliptic Γ function, one should
require |p|, |q| < 1. For the summation formula, one needs in addition:

|pq| < fa < 1. (2.10)

Notice that if the second requirement holds for f1,2, it automatically holds for:

f3 = pq(f1f2)−1. (2.11)

The domain of convergence of the Γ functions can be extended outside the unit disk. This
is discussed in more detail in appendix A.

2.1 SU(2) index

For SU(2) gauge group, the gauge integral consists of a single contour integral:

I2 = κ2
2

∮
|x|=1

dx

2πix

∏3
b=1 Γ(x±2fb)

Γ(x±2) , (2.12)

where we defined Γ(x±) ≡ Γ(x)Γ(x−1). The computation of this integral by residues
has already been done in [18]. More precisely, in that paper the index is computed for
an N = 1 SU(2) vector multiplet coupled to Nf fundamental chiral and Nf̄ anti-chiral
multiplets. Even though we consider adjoint chiral multiplets, for SU(2) gauge group
the only distinction at the level of the index is the power x2 instead of x appearing in
the argument of the Γ functions. Keeping this minor distinction in mind, the following
computation may be viewed as a special case of the computation in [18] for Nf = 3 chiral
multiplets and Nf̄ = 0 anti-chiral multiplets.

We will compute the integral by picking up residues from the poles of the integrand
inside the unit circle. From its definition (2.8), it is not difficult to see that the Γ(x)
function has simple poles at x = p−kq−l for k, l ∈ Z≥0. Therefore, each Γ(x2fa) in the
numerator has poles at:

x2 = f−1
a p−kq−l, (2.13)

whereas each Γ(x−2fa) factor has poles at:

x2 = fap
kql. (2.14)

Given our restriction (2.10), only the latter poles lie inside the unit circle and therefore
only these will contribute to the residue sum.

The Γ functions in the denominator do not contribute poles. One way to see this is to
note that:

1
Γ(x)Γ(x−1) = θp(x)θq(x−1), (2.15)

where the θq function is defined in (A.1). Now, the statement that the Γ functions in the
denominator do not contribute poles follows directly from the fact that the right hand side
of (2.15) only has zeros.
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For future use, we will now derive the following residue corresponding to a basic pole
(k = l = 0) of the elliptic Γ function:

Res
x=±f

1
2

(
Γ(x−2f)

x

)
=
∮
γ(±f

1
2 )

dx

2πix
1

(1− x−2f)
∏

m,n≥0

1− x2f−1pm+1qn+1

1− x−2fpm+1qn+1

×
∏
m≥0

1
1− x−2fpm+1

1
1− x−2fqm+1 = 1

2(p; p)∞(q; q)∞
,

(2.16)

where the contour γ(±f
1
2 ) is an infinitesimal circle around x = ±f

1
2 .

To compute the residues at the more general poles (2.14), we need the following two
properties of the Γ function (see appendix A for more details):

Γ(pkqlx) = Γ(x)
(
−xp

k−1
2 q

l−1
2
)−kl k−1∏

m=0
θq(xpm)

l−1∏
n=0

θp(xqn),

Γ(p−kq−lx) = Γ(x)(
−x−1p

k+1
2 q

l+1
2
)−kl∏k

m=1 θq(xp−m)
∏l
n=1 θp(xq−n)

.
(2.17)

Now we are ready to evaluate the contour integral. We deform the contour such that
it splits into a sum of three “towers” of contours, encircling the poles at x2 = fap

kql for
a = 1, 2, 3 and k, l ≥ 0. The sum of the residues of the integrand at the two basic poles
x2 = fa reads: ∏3

b=1 Γ(fbfa)
∏
b 6=a Γ(fbf−1

a )
Γ(fa)Γ(f−1

a )
1

(p; p)∞(q; q)∞
. (2.18)

On a general pole x2 = fap
kql, instead we have:6∏3

b=1 Γ(fbfapkql)
∏
b 6=a Γ(fbf−1

a p−kq−l)
Γ(fapkql)Γ(f−1

a p−kq−l)
× Resx2=fapkql

(
Γ(x−2fa)

x

)

=
∏3
b=1 Γ(fbfa)

∏
b 6=a Γ(fbf−1

a )
Γ(fa)Γ(f−1

a )
(pq)−kl

∏k
m=1 θq(f−1

a p−m)
∏l
n=1 θp(f−1

a q−n)∏k−1
m=0 θq(fapm)

∏l−1
n=0 θp(faqn)

×
3∏
b=1

(f2
b q
−1p−1)−kl

∏k−1
m=0 θq(fbfapm)

∏l−1
n=0 θp(fbfaqn)∏k

m=1 θq(fbf−1
a p−m)

∏l
n=1 θp(fbf−1

a q−n)
1

(p; p)∞(q; q)∞
.

(2.19)

Here, we used the shift properties of the Γ function listed above to extract the same
prefactor as on the basic pole. Noting that f1f2f3p

−1q−1 = 1 and that the 1
(p;p)∞(q;q)∞

cancels that same part in κ2, upon summing all residues one arrives at the final result:

I2 = Γ(f1)Γ(f2)Γ(f3)
2

3∑
a=1

∏3
b=1 Γ(fbfa)

∏
b 6=a Γ(fbf−1

a )
Γ(fa)Γ(f−1

a )
×

∑
k,l≥0

[∏k
m=1 θq(f−1

a p−m)
∏l
n=1 θp(f−1

a q−n)∏k−1
m=0 θq(fapm)

∏l−1
n=0 θp(faqn)

3∏
b=1

∏k−1
m=0 θq(fbfapm)

∏l−1
n=0 θp(fbfaqn)∏k

m=1 θq(fbf−1
a p−m)

∏l
n=1 θp(fbf−1

a q−n)

]
.

(2.20)

6We use the notation x2 = fap
kql to denote the collection of the two poles x = ±(fapkql)

1
2 . This is also

the reason why in the expression for the residue, the factor of 1
2 has disappeared with respect to (2.16).
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Let us note here that the sum over k, l factorizes into a part that only contains θq functions
and a part that only contains θp functions. In the Higgs branch localization literature,
these functions are called vortex partition functions. As already mentioned in the intro-
duction, the N = 4 theory strictly speaking does not have a Higgs branch. Despite this,
we will still use the terminology of vortex partition functions to indicate these products of
θ functions because of their similarity to the vortex partition functions of gauge theories
with fundamental matter. The final result can then be expressed as:

I2 = Γ(f1)Γ(f2)Γ(f3)
2

3∑
a=1

∏3
b=1 Γ(fbfa)

∏
b 6=a Γ(fbf−1

a )
Γ(fa)Γ(f−1

a )
ZV (φa, σ; τ)ZV (φa, τ ;σ), (2.21)

where:

ZV (φ, σ; τ) =
∑
k≥0

∏k
m=1 θq(f−1

a p−m)∏k−1
m=0 θq(fapm)

3∏
b=1

∏k−1
m=0 θq(fbfapm)∏k

m=1 θq(fbf−1
a p−m)

. (2.22)

Let us make some final comments. First of all, notice that this computation is valid for
values of the chemical potentials obeying (2.10). In particular, we do not need to constrain
the values of τ and σ, which is required in the Bethe Ansatz formalism [33]. Secondly, the
unrefined limit f1 = f2 = f3 = (pq)

1
3 of our expression (2.21) is singular. This can be traced

to the fact that in this limit, the integrand develops cubic instead of simple poles. Therefore,
to access the unrefined limit in our formalism one has to redo the residue computation,
now taking into account the higher order poles. We defer this analysis to appendix B.

2.2 SU(N) index

We would now like to do a similar computation for SU(N) gauge group. The expression
for the index was given in (2.7). For convenience, we implement the SU(N) constraint such
that the index can be written as:

IN = κN
N !

N−1∏
k=1

∮
|xk|=1

dxk
2πixk

N−1∏
i<j

∏3
b=1 Γ(x±ijfb)

Γ(x±ij)

N−1∏
i=1

∏3
b=1 Γ((x1 · · ·x2

i · · ·xN−1)±fb)
Γ((x1 · · ·x2

i · · ·xN−1)±)
. (2.23)

To compute such multidimensional contour integrals, one cannot in general resort to
Cauchy’s theorem directly. The reason for this is that poles may not factorize in their
dependence on xi, as is indeed the case for the integrand at hand. Let us therefore briefly
review how to deal with such multivariate residue integrals.

Interlude on multivariate residues. Let g(x) =
(
g1(x), . . . , gn(x)

)
: Cn → Cn and

h : Cn → C be holomorphic functions. We are interested in computing the residue of the
meromorphic n-form ω:

ω = h(x)dx1 · · · dxn
g1(x) · · · gn(x) . (2.24)

A pole of ω is defined as an isolated point p ∈ Cn such that g(p) = 0. The residue of ω is
now computed by the integral:

Resx=p(ω) = 1
(2πi)n

∮
γp

h(x)dx1 · · · dxn
g1(x) · · · gn(x) , (2.25)

where γp is an n-torus centered around p.
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One can evaluate the following Jacobian determinant at a pole x = p:

Jp ≡ det
(
∂gi
∂xj

) ∣∣∣∣
x=p

. (2.26)

If Jp 6= 0, which will turn out to be true away from the unrefined limit,7 one can perform
the coordinate transformation yi = gi(x) such that the poles factorize in y coordinates.
Then, the residue can be evaluated as a product of one-dimensional residue integrals:

Resx=p(ω) = 1
(2πi)n

∮
γp

h
(
g−1(y)

)
dy1 · · · dyn

Jpy1 · · · yn
= h(p)

Jp
. (2.27)

We will apply this general formula to the computation of (2.23) by first classifying all the
poles of the integrand. Subsequently, we deform the contour such that it splits into a sum
of (N−1)-tori, each of which encircles a pole of the integrand p = (x1, . . . , xN−1) for which
all xi lie inside |xi| = 1. Other poles will not contribute to the resulting residue sum.

Back to the index. For the same reason as in the SU(2) case, all poles of the integrand
originate from the Γ functions in the numerator. The total number of Γ functions in the
numerator is equal to 3(N2 − N). A (simple) pole of the integrand is realized at those
points where N − 1 of these Γ functions have a pole. Therefore, poles of the integrand can
be found by selecting N − 1 Γ functions in the numerator Γ(yi) and subsequently solving
the system of equations yi = p−kiq−li for some ki, li ≥ 0.

The 3(N2 − N) pole equations are linear equations when written in terms of the
chemical potentials:

1 : ui−uj = φaij +kijσ+ lijτ, 1≤ i 6= j ≤N−1, aij = 1,2,3,
2 : u1 + . . .+2ui+ . . .+uN−1 =∓(φai +kiσ+ liτ), i= 1, . . . ,N−1, ai = 1,2,3,

(2.28)

for some kij , lij , ki, li ≥ 0. Selecting N − 1 of these equations and solving them for ui leads
to a pole of the integrand. At first sight, it may seem that for large-N this leads to a huge
number of poles to analyze. However, there turns out to be a significant reduction in the
number of poles that contribute non-trivially to the full residue sum as we will now argue.

First of all, for the system of N − 1 equations to be solvable, at least one of the
equations has to be of the type in the second line of (2.28). In particular, the system is
solvable when choosing the N − 1 equations to be all of the second type. More generally,
given some number of equations of the second type, the system remains solvable as long
as one adds equations of the first line such that the system can be rewritten in the form
of N − 1 equations of the second type. For example, say we choose the ith equation from
the second line, while the rest of the equations come from the first line. Then, the system
is solvable when we choose the N − 2 ui − uj equations for 1 ≤ j ≤ N − 1 and j 6= i, since
subtracting these equations from the ith equation of the second line brings us back to the
system with N − 1 equations of the second type.

7A more general formula for the residue in the case of Jp = 0 is given in appendix B.2.
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Now comes the first main simplification of the analysis. Suppose that at least one of the
equations in the (solvable) system is of the first type. For definiteness, let this equation be:

ui − uj = φaij + kijσ + lijτ. (2.29)

For each such equation of the first type in the system, there exists another system of N −1
equations where in all equations the labels i and j are exchanged and such that φaij = φaji ,
kij = kji and lij = lji. The solutions to these two systems are identical, up to an exchange
of ui and uj . Together with the fact that the residue formula (2.27) is odd under the ex-
change of two integration variables xi and xj , this implies that the residues corresponding
to these two systems are equal but of opposite sign. Therefore, they will cancel in the sum
over residues.

This leaves us with the analysis of the class of unpaired poles: the solution to the
system of N − 1 equations of the second type. Let us consider first the N − 1 equations
with the + sign on the right hand side, since these poles have the best chance of lying
inside the unit circles. The solution of this system is as follows:

p(n) : xNi =
fNai p

Nki−
∑

j
kjq

Nli−
∑

j
lj∏

j faj
. (2.30)

Here, we indicate by p(n) with n = 1, . . . , N , the N distinct solutions for the xi.
If one wishes to replace the + sign in the ith equation with a − sign, the solution can

be obtained from (2.30) by taking:

fai → f−1
ai , (ki, li)→ −(ki, li). (2.31)

Let us now check whether the pole (2.30) indeed lies within all unit circles. First of all,
it is easy to see that a pole with all ki equal and all li equal lies inside all unit circles
for comparable values of the fa. This is because in this case the net power of fugacities
is positive for every i. However, we will quickly see that poles with all ki equal or all li
equal have a vanishing residue. In fact, for the residue to be non-vanishing all but a few ki
have to be distinct and similarly for the li. A minimal choice of a pole with non-vanishing
residue would for example be:

ki = i− 1, li = N − 1− i. (2.32)

This specific choice leads to the following absolute value:

|xNi | =

∣∣∣∣∣∣f
N
ai p

N(i+ 1
2 )− 1

2N
2−1qN(i+ 1

2 )+ 1
2N

2−1∏
j faj

∣∣∣∣∣∣ . (2.33)

One may convince oneself that there is a finite domain in parameter space where all xi are
inside their unit circles. For example, when |p| ≈ |q|, one finds that:

|xNi | =
∣∣∣∣∣fNai pN−2∏

j faj

∣∣∣∣∣ . (2.34)
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For comparable values of the |fa|, this point will lie inside all unit circles, while at large-N
the point lies inside all unit circles for all values of the |fa|.

Furthermore, the domain for which (2.33) lies inside all unit circles can also be made
parametrically large by considering the following shift:

(ki, li)→ (ki + n1, li + n2), n1, n2 > 0. (2.35)

This new pole will have an additional factor of pn1qn2 in the numerator, thus enlarging the
domain in parameter space for which the pole lies inside all unit circles. For large enough
n1,2, one does not need to take |p| ≈ |q| for this to be true.

A complete analysis of all poles lying inside the unit circles, including systems of
equations with some + signs are replaced with − signs, is beyond the scope of this paper. In
fact, for our purposes, i.e. computing the Cardy limit of the index using a modular property,
it will be sufficient to know that there is at least one pole with non-vanishing residue. As
argued above this is always the case, irrespective of where we are in parameter space.

We will now continue to compute the residues for the poles where all N − 1 equations
are taken with a + sign. Other poles originating from a set of equations including − signs
can be obtained from these residues through the transformation (2.31).

The computation of the residue makes use of the formula (2.27). So, we first have to
evaluate the Jacobian of the pole (2.30). For the functions gi(x), we take:

gi(x) = xi

(
1− faip

kiqli

x1 · · ·x2
i · · ·xN−1

)
. (2.36)

Then, for each of the N poles (2.30) the Jacobian consists of:

(
∂gi
∂xj

) ∣∣∣∣
x=p(n)

=


2, j = i,
faip

kiqli

faj p
kj qlj

, j 6= i.
(2.37)

It is not difficult to check that this implies:

Jp(n) = det
(
∂gi
∂xj

) ∣∣∣∣
x=p(n)

= N. (2.38)

Notice that the Jacobian is independent of n. In addition, the function h(x) in our case
can also be seen to be equal on each of the N poles in (2.30). Therefore, upon summing
the contributions of the N poles, the residue formula:

Res∑ p(n)(ω) ≡
N∑
n=1

h(p(n))
N

= h(p(m)), (2.39)

has a trivial contribution from the Jacobian and one just has to evaluate h(x) on any of
the N poles p(m).
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To finish the computation of the residue, we first note that on any of the N poles (2.30):

xij = faif
−1
aj p

ki−kjqli−lj . (2.40)

Now we can straightforwardly evaluate the residue:

Res∑ p(n)

 1
x1x2 · · ·xN−1

N−1∏
i<j

∏3
b=1 Γ(x±ijfb)

Γ(x±ij)

N−1∏
i=1

∏3
b=1 Γ((x1 · · ·x2

i · · ·xN−1)±fb)
Γ((x1 · · ·x2

i · · ·xN−1)±)


=

N−1∏
i<j

∏3
b=1 Γ((faif−1

aj p
ki−kjqli−lj )±fb)

Γ((faif−1
aj p

ki−kjqli−lj )±)

N−1∏
i=1

∏3
b=1 Γ((faipkiqli)±fb)

Γ(p−kiq−li)Γ((faipkiqli)±)

× Res∑ p(n)

(
N−1∏
i=1

(x1 · · ·x2
i · · ·xN−1)−1fai)

xi

)

=
N−1∏
i<j

∏3
b=1 Γ((faif−1

aj p
ki−kjqli−lj )±fb)

Γ((faif−1
aj p

ki−kjqli−lj )±)

N−1∏
i=1

∏3
b=1 Γ((faipkiqli)±fb)

Γ(p−kiq−li)Γ((faipkiqli)±)

× 1
(p; p)N−1

∞ (q; q)N−1
∞

N−1∏
i=1

1
Ci
∏ki
m=1 θq(p−m)

∏li
n=1 θp(q−n)

(2.41)

In the second line, second product, we kept the product over b complete, even though N−1
of these factors are used in the residue. The reason for this is to keep notation simple.
The price is that we have to add to the denominator a factor of Γ(p−kiq−li) to cancel those
superfluous factors in the numerator. In addition, the θ functions in the last line originate
from using the shift properties (2.17) for the Γ functions contributing to the pole in order
to evaluate the residue in terms of q-Pochhammer symbols. This also results in Ci, which
is given by:

Ci =
(
−p

ki+1
2 q

li+1
2

)−kili
. (2.42)

Summing the result over ki and li gives us the final result for the class of poles (2.30).
Before stating the (form of) the final result, let us make the following remark. As alluded
to above, for specific values of ki and li, the residues may be vanishing. This is caused by
the Γ functions in the denominator of the first factor of the residue. To see this explicitly,
let us first note that (see (2.15)):

1
Γ((faif−1

aj p
ki−kjqli−lj )±)

= θp(faif−1
aj p

ki−kjqli−lj )θq(f−1
ai fajp

kj−kiqlj−li) (2.43)

Since the ai only takes three different values, for N > 4 there are necessarily terms where
the fai fugacities in the argument of the θ functions cancel. If in addition for these values
of i and j either ki = kj or li = lj , one of the θ functions on the right hand side has a
zero. Therefore, generically one has to require distinct ki and distinct li for the residue to
be non-vanishing. In particular, this implies that the basic pole (ki, li = 0) necessarily has
a vanishing residue for N > 4.
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We are now in a position to state the full residue sum for the class of poles (2.30):

I ′N = (Γ(f1)Γ(f2)Γ(f3))N−1

N !

′∑
(ai)

′∑
(ki),(li)≥(0)

(
N−1∏
i<j

∏3
b=1 Γ((faif−1

aj p
ki−kjqli−lj )±fb)

Γ((faif−1
aj p

ki−kjqli−lj )±)

×
N−1∏
i=1

∏3
b=1 Γ((faipkiqli)±fb)

Γ(p−kiq−li)Γ((faipkiqli)±)
1

Ci
∏ki
m=1 θq(p−m)

∏li
n=1 θp(q−n)

) (2.44)

Before simplifying this expression, let us make some comments. First of all, the sum over
(ai) is similar to the sum over a in the SU(2) case and should be thought of as a sum over
all possible N − 1 tuples (a1, . . . , aN−1) for ai = 1, 2, 3. Similarly, by (ki), (li) and (0) we
indicate the N − 1 tuples (k1, . . . , kN−1), (l1, . . . , lN−1) and (0, . . . , 0). Secondly, the prime
on the index indicates that we have only considered the poles (2.30). Two other comments
pertaining to the expression are:

1. As discussed around (2.33), not all poles considered in the sum will fall inside all unit
circles for generic values of the fugacities. Poles which do not should not be included
in the residue sum. This necessary omission is indicated by the primes on both
sums. The explicit prescription would depend on where one evaluates the residue in
fugacity space. Finding this prescription seems a complicated problem, and we will
not consider it in the present paper.

2. Similarly, we have not considered any of the poles where some of the + signs are
replaced with − signs in the pole equations in the second line of (2.28). Some of
these poles may still lie inside all unit circles in some regime of parameter space and
therefore could be included into a full expression for the index.

For our purposes, these two issues are not consequential for the following two reasons
respectively:

1. To leading order in the Cardy limit of the index, we will show that there is a universal
contribution (at large-N) for all poles (in a specific parameter regime). Hence, to
compute the Cardy limit one really only relies on the fact that the residue sum
contains at least one non-vanishing residue.

2. Suppose there is a pole inside all unit circles after having replaced some of the +
signs with − signs. Then, one can obtain its residue from the residue of the pole
with all + signs upon using the transformation (2.31). Now, it is not difficult to see
that the O(N2) part of I ′N , captured by the

∏
i<j part of (2.44), is invariant under

this transformation. Therefore, at large-N the residues for this more general class of
poles are indistinguishable from the residues of poles with only + signs.
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With the above comments in mind, we proceed to simplify the expression. We will make use
again of the shift properties of the Γ functions (see (A.15)). Without further ado, we have:

N−1∏
i<j

∏3
b=1 Γ((faif−1

aj p
ki−kjqli−lj )±fb)

Γ((faif−1
aj p

ki−kjqli−lj )±)

N−1∏
i=1

( ∏3
b=1 Γ((faipkiqli)±fb)

Γ(p−kiq−li)Γ((faipkiqli)±)

× 1
Ci
∏ki
m=1 θq(p−m)

∏li
n=1 θp(q−n)

)

=
N−1∏
i<j

3∏
b=1

Γ((faif−1
aj )±fb)

N−1∏
i=1

∏3
b=1 Γ(f±aifb)

Γ(1) × Z(ki)
V (φai , σ; τ)Z(li)

V (φai , τ ;σ).

(2.45)

The precise form of the vortex partition functions of the numerator ZV depends on the
sign of ki − kj and li − lj . For example, if both are positive or both negative for all i < j,
then the vortex partition function is given by:8

Z
(ki)
V (φai , σ; τ) =

N−1∏
i<j

∏ki−kj
m=1 θq(f−1

ai fajp
−m)∏ki−kj−1

m=1 θq(faif−1
aj p

m)

N−1∏
i=1

∏ki
m=1 θq(f−1

ai p
−m)∏ki−1

m=1 θq(faipm)

×
3∏
b=1

(
N−1∏
i<j

∏ki−kj−1
m=0 θq(faif−1

aj fbp
m)∏ki−kj

m=1 θq(f−1
ai fajfbp

−m)

N−1∏
i=1

∏ki−1
m=0 θq(faifbpm)∏ki
m=1 θq(f

−1
ai fbp

−m)

)
.

(2.46)

Here we used, as in the SU(2) case, f1f2f3p
−1q−1 = 1. Moreover, note that the products

in the denominator of the first line start at m = 1. This is because the m = 0 terms cancel
the 1

Γ((faif
−1
aj

)±) and 1
Γ(f±ai )

terms, originating from the Γ functions in the denominators of

the first line of (2.45). We find it more transparent to cancel these terms against each
other directly, instead of defining ZV including the relevant m = 0 terms and keeping the
Γ functions in the expression for the index.

For more general signs of ki − kj and li − lj , one has to make use also of the second
and third line of (A.15). The net effect is a shuffling of θ functions between denominator
and numerator. Since this is not consequential for our purposes, we refrain from providing
the precise formulas. The precise form only depends on (ki) or (li), and is summarized in
that label on the vortex partition function.

Summing over all residues, we find a final expression for the index:9

I ′N = (Γ(f1)Γ(f2)Γ(f3))N−1

N !Γ(1)N−1

′∑
(ai)

3∏
b=1

N−1∏
i<j

Γ((faif−1
aj )±fb)

N−1∏
i=1

Γ((fai)±fb)

×
′∑

(ki),(li)≥(0)
Z

(ki)
V (φai , σ; τ)Z(li)

V (φai , τ ;σ).
(2.47)

8It is also possible to compute this partition function from the point of view of the vortex worldsheet
theory (see [43, 44] for examples of such a computation in N = 1, 2 gauge theories). In particular, it should
match the elliptic genus of a specific (4, 4) GLSM appearing for example in section 5.1 of [45]. Recently,
the computation of the elliptic genus for a special example of the relevant GLSM appeared in [46].

9In this expression, Γ(1)N−1 is only included to cancel the Γ(1)N−1 coming from the last product in
the first line. These latter factors should not be included in the first place, since these represent precisely
the factors that define the pole at which we evaluate the residue. The reason to include them is purely for
notational convenience. This is related to the remarks in the paragraph below (2.41).
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To repeat, there are two main provisos that should be kept in mind when reading this
expression for the index. Firstly, the precise specification of the primed summation domain
depends on where one is in parameter space. This means that the final expression is not
fully explicit. Furthermore, we did not include any other classes of poles, corresponding
to exchanges of + sign equations with − sign equations. The first issue is problematic if
one wants to study the index exactly. However, we will see that for purposes of the Cardy
limit it is not consequential at leading order. The second issue can be easily resolved
by inserting an additional sum over all transformations (2.31). However, also for these
transformed residues, one would need to establish a summation domain, which will differ
from the untransformed residue sum. As mentioned in the main part of the section, the
second issue disappears in the Cardy limit if combined with a large-N limit, since the
leading part of the residue at large-N is universal for any combination of + and − sign
equations. Finally, as in the case of SU(2), this expression is singular in the unrefined
limit. This is due to the fact that the integrand develops higher order poles, which require
a separate analysis. We perform this analysis in appendix B.

3 Cardy limit of the index

In this section, we will study our final expression for the index (2.47) in the Cardy limit.
As commented above, even though the expression is not fully explicit, we will see that it
suffices for our purposes.

3.1 Cardy limit of θ and Γ functions

In order to study the Cardy limit of the index where τ, σ → 0+i keeping σ/τ ∈ H \R fixed,
we will make use of modular properties of θ and Γ functions. We will briefly review these
properties here. For a collection of relevant formulas, see also appendix A.

θ function. The θ function satisfies the following modular property:

θ(z; τ) = e−iπB(z,τ)θ

(
z

τ
;−1

τ

)
, (3.1)

where B(z, τ) is defined in (A.8). Using the summation formula for the θ function (A.3),
we have in the limit that τ → 0:

θ

(
z

τ
;−1

τ

)
= exp

(
−
∞∑
l=1

1
l

e2πil z
τ + e2πil−z−1

τ

1− e−2πil 1
τ

)
τ→0−−−→ 1 (3.2)

if
Im
(−1
τ

)
> Im

(
z

τ

)
> 0. (3.3)

This domain is illustrated in figure 1. In this domain, the modular property implies:

lim
τ→0

θ(z; τ) = lim
τ→0

e−iπB(z,τ), (3.4)

which we will call the Cardy limit of the θ function.
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Figure 1. The complex z plane. The shaded domain represents the domain Im
(−1
τ

)
> Im

(
z
τ

)
> 0.

The domain where (3.4) holds can be extended to z ∈ C \ Z + γ, where γ is the line
running through 0 and τ . In the figure, such domains correspond to arbitrary horizontal
integer shifts of the strip. This extension is possible due to periodicity under z → z + 1 of
the left hand side of (3.1), which is reflected on the right side through:

B(z + 1, τ)−B(z, τ) = 2z + 1
τ
− 1,

θ

(
z + 1
τ

;−1
τ

)
= −e

2πi(z+1)
τ θ

(
z

τ
;−1

τ

)
.

(3.5)

The second line follows from the quasi-ellipticity of the θ function (A.4). One easily sees
that the shift properties cancel in the product, thus reproducing the periodicity of the left
hand side. The extension of (3.4) to z ∈ C \Z+γ can now be performed through repeated
use of (3.5). The result is that for any z ∈ C \ Z + γ, we can write:

lim
τ→0

θ(z; τ) = lim
τ→0

e−iπB([z]τ ,τ), (3.6)

where the bracket is defined as:

[z]τ ≡ z + n, n ∈ Z such that Im
(−1
τ

)
> Im

( [z]τ
τ

)
> 0. (3.7)

In words, the bracket implements a horizontal shift on z such that its image lies in the
fundamental domain indicated in figure 1. It is easy to verify that the brackets satisfy the
following relations:

[z +m]τ = [z]τ , m ∈ Z, [z + τ ]τ = [z]τ + τ, [−z]τ = −[z]τ − 1. (3.8)

Γ function. The elliptic Γ function also satisfies a modular property [35], as recently
discussed as well in [21]. For Im(τ), Im(σ), Im

(
σ
τ

)
> 0, one has:10

Γ(z; τ, σ) = ei
π
3Q(z,τ,σ)

Γ
(
z
τ ; στ ,−

1
τ

)
Γ
(
z−τ
σ ;− τ

σ ,−
1
σ

) . (3.9)

Here, Q(z, τ, σ) is defined in appendix A.
10The domain can be extended to τ, σ, τ

σ
∈ C \ R, as we discuss in appendix A. We will not require

this extension in the following, and therefore stick with this domain where the product expressions for the
elliptic Γ functions appearing in the formula manifestly converge. In the same appendix, we also discuss
the relation of this modular property to the one used in [21]. In particular, we warn the reader that the Q
polynomial in [21] is not the same as ours.
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Figure 2. The complex z plane. The shaded green domain represents the intersection of the
domains Im

(−1
τ

)
> Im

(
z
τ

)
> 0 and Im

(−1
σ

)
> Im

(
z
σ

)
> 0. The shaded red domains belong to one

domain but not both. The green domain is referred to as D0 in the main text. Integer shifts to the
left and right for n > 0 are denoted by Dn and D−n respectively.

Following [21], consider the limit τ, σ → 0 with τ
σ /∈ R of the Γ factor in the numerator

on the right hand side of the modular property. Using the summation formula (A.12),
we find:

Γ
(
z

τ
; σ
τ
,−1

τ

)
= exp

( ∞∑
l=1

1
l

e2πil z
τ − e2πil−z+σ−1

τ

(1− e2πil σ
τ )(1− e−2πil 1

τ )

)

τ,σ→0−−−−→ exp
( ∞∑
l=1

1
l

e2πil z
τ − e2πil−z−1

τ

1− e2πil σ
τ

)
.

(3.10)

Similarly to the θ function, this factor becomes equal to 1 when:

Im
(−1
τ

)
> Im

(
z

τ

)
> 0. (3.11)

The story is exactly the same for the Γ function in the denominator if:

Im
(−1
σ

)
> Im

(
z

σ

)
> 0. (3.12)

The intersection of these two domains is shown in figure 2. For later convenience, we will
refer to the green shaded diamond shaped domain as D0. We will refer to integer shifts of
this domain by Dn, where n ∈ Z is defined in (3.7) and indicates a horizontal translation
of D0 by −n.

Thus, when the z variable sits inside the diamond shaped green domain, the modular
property reduces in the Cardy limit to:

lim
τ,σ→0

Γ(z; τ, σ) = lim
τ,σ→0

ei
π
3Q(z,τ,σ). (3.13)

Similarly to the case of the θ function, since Γ(z; τ, σ) is periodic under z → z+1 this limit
can be extended to z ∈ Dn for any n ∈ Z. The periodicity of the left hand side of (3.9) is
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reflected on the right hand side through the following identities:

Q(z + 1, τ, σ)−Q(z, τ, σ) = −3Φ(z + 1, τ, σ),

Γ
(
z+1
τ ; στ ,−

1
τ

)
Γ
(
z−τ+1
σ ;− τ

σ ,−
1
σ

) = eiπΦ(z+1,τ,σ)
Γ
(
z
τ ; στ ,−

1
τ

)
Γ
(
z−τ
σ ;− τ

σ ,−
1
σ

) . (3.14)

where we used the basic shift property (A.14) of the elliptic Γ function, the shift prop-
erty (A.4) of the θ function, the extension (A.6) of the θ function and finally the modular
property (A.9) of the θ function. In particular, the quadratic polynomial Φ(z, τ, σ) in the
chemical z appears in the latter modular property and is defined in (A.10).

Repeated use of these identities allows one to extend the limit (3.13) to z ∈ Dn for
any n ∈ Z:

lim
τ,σ→0

Γ(z; τ, σ) = lim
τ,σ→0

ei
π
3Q([z],τ,σ), (3.15)

where the bracket is defined similarly as in (3.7):

[z] ≡ z + n, n ∈ Z such that [z] ∈ D0. (3.16)

However, in this case only the first and the third relation of (3.8) are satisfied:

[z +m] = [z], m ∈ Z, [−z] = −[z]− 1. (3.17)

The second relation is not satisfied since enough translations by τ (or σ) will eventually
bring a point inside the diamond into one of the red regions. This will not be an issue for
the remainder, since in the Cardy limit τ, σ → 0 and we can simply ignore their appearance
in brackets to leading order. Notice also that this bracket is only defined for z ∈ Dn. This
constrains the possible values of z for which the Cardy limit results in (3.15), since the Dn

do not cover the full complex z-plane unless arg(τ) = arg(σ).
Let discuss the diamond domain D0 in a little more detail. In the following, we take

z = φa. Depending on the sign of Im(φa), the domain can be written as:

Im(φa) > 0 : Re(τ)
Im(τ)Im(φa)− 1 < Re(φa) <

Re(σ)
Im(σ)Im(φa),

Im(φa) < 0 : Re(σ)
Im(σ)Im(φa)− 1 < Re(φa) <

Re(τ)
Im(τ)Im(φa).

(3.18)

Notice that our choice Im
(
σ
τ

)
implies that Re(τ)

Im(τ) >
Re(σ)
Im(σ) (see figure 2). It is then clear

from these equations that the domain is maximal at Im(φa) = 0 and shrinks linearly for
both signs of Im(φa), as is manifest from figure 2. In particular, the interval shrinks to
zero size when:

|Im(φa)| =
1

Re(τ)
Im(τ) −

Re(σ)
Im(σ)

, (3.19)

Therefore, if |Im(φa)| is close to this value, φa will generically lie inside a red domain of
figure 2. In this case, the divergence of the τ, σ → 0 limit cannot be isolated inside the Q
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function as in (3.15). Instead, one has to keep (one of) the elliptic Γ functions on the right
hand side of (3.9).11

To avoid restrictions on Re(φa), we will consider the following regime in parameter
space:

|Im(φa)| �
1

Re(τ)
Im(τ) −

Re(σ)
Im(σ)

. (3.20)

This limit zooms into the part of the domain where the difference between the τ and σ

strip is very small. Effectively, in this regime we may treat the diamond as a strip and for
generic values of φa in this regime: φa ∈ Dn for some n. In this limit we can rewrite the
domains in (3.18) as follows:

Im(φa) > 0 : −1 < φ̂+
a < 0,

Im(φa) < 0 : −1 < φ̂−a < 0,
(3.21)

where we defined scaled normal components φ̂+ and φ̂− to the upper and lower right
boundary of the diamond respectively:

φ̂+
a = Re(φa)−

Re(σ)
Im(σ)Im(φa),

φ̂−a = Re(φa)−
Re(τ)
Im(τ)Im(φa).

(3.22)

Notice that for arg(τ) and arg(σ) close enough, (3.20) is not a strong constraint. However,
we do want the difference between arg(τ) and arg(σ) to be finite in order to use the modular
property.

3.2 Cardy limit

We are now ready to compute the Cardy limit of our expression for the index (2.47). In the
Cardy limit, the θ functions diverge as exp( 1

|τ |) or exp( 1
|σ|), as can be seen from (3.6). On

the other hand, the elliptic Γ functions diverge as exp( 1
|τσ|), as shown in (3.15). Therefore,

to leading order we may ignore the θ functions and the difficulties associated to the sum
over (ki) and (li) commented upon at the end of section 2.2. Instead, we only have to
consider the part of the residues that is made up from Γ functions:

I ′N = (Γ(f1)Γ(f2)Γ(f3))N−1

N !Γ(1)N−1

′∑
(ai)

N−1∏
i<j

∏3
b=1 Γ((faif−1

aj )±fb)
Γ((faif−1

aj )±)

N−1∏
i=1

∏3
b=1 Γ(f±aifb)

Γ(f±ai)
(3.23)

Here, we temporarily reinstated the Γ functions in the denominators, which cancel against
θ functions in the vortex partition functions (see the remark below (2.46)). We warn

11We note here that there exist other modular properties for Γ functions, for which a similar diamond
domain exists that does not overlap with the current diamond. These modular properties will have different
Q-polynomials, but can still be used to extend the applicability of formula like (3.15). We will explore such
other modular properties in more detail in [22].
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the reader that this may cause confusion for two reasons. Firstly, it falsely suggests the
residues are all vanishing. This is because the fai can only take on three values, implying
that for N > 4: ∏

i<j

1
Γ(faif−1

aj )
, (3.24)

necessarily has a zero. However, this is not a true zero since these factors are cancelled by
the m = 0 terms that we left out in the definition (2.46). In addition, the rewriting is not
necessary for taking the Cardy limit, again because these terms are cancelled by the m = 0
θ functions. In spite of this, we keep these Γ functions for the moment, because they allow
a nice derivation of the anomaly polynomial of the theory as we will now show.

We use the modular property (3.9) to replace all elliptic Γ functions in (3.23). In partic-
ular, every Γ function contributes a certain Q function to the overall prefactor. Collecting
all those Q functions, we find:

Qtot(φai) = (N − 1)
(
−Q(0) +

3∑
c=1

Q(φc)
)

+
∑

φ∈{φai ,φai−φaj }

[ 3∑
b=1

(
Q(φ+ φb) +Q(−φ+ φb)

)
−Q(φ)−Q(−φ)

]
,

(3.25)

where the summation runs over the set for 1 ≤ i < j ≤ N − 1. Interestingly, the full
summand of the φ summation does not depend on φ if φ3 = τ + σ − φ1 − φ2 − 1. At this
stage, it is not clear why we should choose φ3 as such. Indeed, at the level of the index any
integer k could have been added: φ3 = τ + σ − φ1 − φ2 + k. We will derive k = −1 later
when considering the Cardy limit in a specific region of parameter space. For now, let us
just take k = −1 and in addition note that:

−Q(0) +
3∑
c=1

Q(φc) = −3φ1φ2φ3
τσ

. (3.26)

Since the second line of (3.25) does not depend on φ we may set φ = 0 to find:

Qtot(φai) = −3(N2 − 1)φ1φ2φ3
τσ

. (3.27)

This object is almost identical to the supersymmetric Casimir energy [24, 25], although the
latter is defined for k = 0 in φ3. This apparently small distinction played a crucial role in the
derivation of the AdS5 black hole entropy of [6] (see also [9]).12 Furthermore, (3.27) is very
closely related to the anomaly polynomial of the N = 4 SU(N) theory (see appendix C),
as first observed in [47]. The fact that anomaly polynomials can be derived through the
use of the modular property of elliptic Γ functions was already known from several works,
including [15, 17, 19] and discussed recently in detail in [21].

12To compare the expression to the generalized supersymmetric Casimir energy of [6], note that their
chemical potentials are related to ours times 2πi.
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Notice that naively (3.25) seems to depend on the choice of pole, i.e. a choice of ai.
However, the above shows that it is independent of this choice. The interpretation of this
fact, as for example appearing in [21], is that the residue sum can be thought of physically
as a sum over Higgs branch vacua and the anomaly polynomial Qtot should not depend on
a specific vacuum.13 Finally, this object is also the so-called entropy function that upon a
Legendre transformation leads to the correct black hole entropy [9] (see also [6–8]).

However, as our analysis of the Cardy limit of the Γ function has indicated, this is not
yet the end of the story. In order to evaluate the limit, we have to evaluate Qtot on bracketed
potentials (see (3.15)). We now only take the Q polynomials of the Γ functions appearing
in (2.47). In other words, we ignore the −Q(φ) − Q(−φ) part of (3.25), which originates
from the Γ functions in the denominator of (3.23). Consistent with the identity (2.15), this
part is subleading in the Cardy limit:

Q([φ]) +Q([−φ]) = Q([φ]) +Q(−[φ]− 1) = (τ + σ)(6[φ]2 + 6[φ] + 1 + τσ)
2τσ , (3.28)

where we made use of the bracket relations (3.8).
Thus, the total polynomial to consider is now given by:

Q′tot(φai) = (N − 1)
(
−Q(0) +

3∑
b=1

Q([φb])
)

+
∑

φ∈{φai ,φai−φaj }

3∑
b=1

Q([φ+ φb]) +Q([−φ+ φb]),
(3.29)

Before turning to an analysis of this object as a function of the specific residue, we will
make some comments:

1. At large-N , one may just consider the summation over φai − φaj since only this part
contributes O(N2) terms.

2. The brackets will reintroduce a dependence on the summation variable φ, in con-
trast with the analysis of (3.25). In principle, this implies that different residues
contribute differently in the Cardy limit. Notice that this presents an opposing point
of view to the analysis in [21], where it is asserted that also in the Cardy limit, the
residues/vacua contribute universally.

3. We will show below that the latter point can be partially resolved by taking N large
and restricting the flavor fugacities appropriately.

3.2.1 Equal ai
Let us start with the analysis of a residue for which ai = aj for all i, j. Focusing on the
part that scales with N2,14 we find:

Q′tot(φai) ≈ N2
3∑
b=1

Q([φb]) = N2
(
Q([φ1]) +Q([φ2]) +Q([τ + σ − φ1 − φ2])

)
. (3.30)

13Note that the N = 4 theory does not have a Higgs branch, so this terminology is inappropriate for the
case at hand. Up to such semantics, however, we expect a similar argument to apply here.

14We will comment on subleading corrections in N at the end of this section.
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To evaluate the bracket appearing in the last Q function, we first note that we may ignore
τ and σ to leading order in the Cardy limit. Now, there are two possibilities depending on
whether [φ1] + [φ2] ∈ D0,1 (see figure 2):

[φ1 + φ2] =

[φ1] + [φ2] if [φ1] + [φ2] ∈ D0

[φ1] + [φ2] + 1 if [φ1] + [φ2] ∈ D1.
(3.31)

If instead [φ1] + [φ2] /∈ D0,1 we cannot proceed, as we explained at the end of section 3.1.
The two choices lead respectively to:

Q′tot(φai) ≈

3N2 [φ1][φ2]([φ1]+[φ2]+1)
τσ +O(τ−1) +O(σ−1) if [φ1] + [φ2] ∈ D0

3N2 [φ1]′[φ2]′([φ1]′+[φ2]′−1)
τσ +O(τ−1) +O(σ−1) if [φ1] + [φ2] ∈ D1,

(3.32)

where we defined:
[φa]′ = [φa] + 1. (3.33)

We can make the expression look more symmetric by using [φ3] = [−φ1−φ2]. In this case,
the expression becomes:

Q′tot(φai) ≈

−3N2 [φ1][φ2][φ3]
τσ +O(τ−1) +O(σ−1) if [φ1] + [φ2] ∈ D0

−3N2 [φ1]′[φ2]′[φ3]′
τσ +O(τ−1) +O(σ−1) if [φ1] + [φ2] ∈ D1,

(3.34)

This is the expected answer for the entropy function (3.27),15 where the two possibilities
correspond to the twin saddles discussed for the first time in [6–8]. In particular, a Legendre
transform of both expressions gives rise the correct black hole entropy [9] (see also [6–8]).
Even though this is encouraging, we still have to analyse more general residues before we
can make definite statements about the Cardy limit of the full index.

3.2.2 Unequal ai
To understand if there is a universal contribution from all residues to the index in the Cardy
limit, or if some residues are subleading with respect to the residue studied above, we will
now analyse the most general residue. Apart from the terms in the sum over φai − φaj
where ai = aj , there are three other possible terms contributing at leading order in N ,
corresponding to the pairs (ai, aj) = (1, 2), (1, 3), (2, 3). The sums over b = 1, 2, 3 in (3.29)
work out for each pair respectively as:

Q12 = Q([2φ1 − φ2]) +Q([φ2]) +Q([φ1]) +Q([2φ2 − φ1]) +Q([−2φ2])
+Q([−2φ1]),

Q13 = Q([3φ1 + φ2]) +Q([−φ1 − φ2]) +Q([2φ1 + 2φ2]) +Q([−2φ1]) +Q([φ1])
+Q([−3φ1 − 2φ2]),

Q23 = Q([φ1 + 3φ2]) +Q([−φ1 − φ2]) +Q([2φ1 + 2φ2]) +Q([−2φ2]) +Q([φ2])
+Q([−2φ1 − 3φ2]).

(3.35)

15Notice that there is a subtle difference between the Cardy limit of the index and the entropy function.
Indeed, the Cardy limit of the index is periodic in the φa whereas the entropy function is not. This was
mentioned and resolved very recently in a talk by Ofer Aharony [48]. In the following, we will have this
resolution in mind when comparing our results to the entropy functions.
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Figure 3. The various domains in [φ̂±
1,2] space for which the added constants to the brackets

in (3.35) take specific values. For example, all added integers vanish in the domain enclosed by the
red and yellow line in the upper right corner. As one crosses domain borders, an integer in one of
the ten brackets appearing in (3.35) changes.

To proceed, we first have to understand how to evaluate the more general brackets ap-
pearing in the arguments of the Q functions. For a bracket [aφ1 + bφ2] with a, b ≥ 0, the
following cases should be considered:

[aφ1 + bφ2] =



a[φ1] + b[φ2] if a[φ1] + b[φ2] ∈ D0,

a[φ1] + b[φ2] + 1 if a[φ1] + b[φ2] ∈ D1,
...

a[φ1] + b[φ2] + a+ b− 1 if a[φ1] + b[φ2] ∈ Da+b−1.

(3.36)

In addition, the brackets [2φ1,2 − φ2,1] can be evaluated as follows:

[2φ1,2 − φ2,1] =


2[φ1,2]− [φ2,1]− 1 if 2[φ1,2]− [φ2,1] ∈ D−1,

2[φ1,2]− [φ2,1] if 2[φ1,2]− [φ2,1] ∈ D0,

2[φ1,2]− [φ2,1] + 1 if 2[φ1,2]− [φ2,1] + 1 ∈ D1.

(3.37)

If any of the brackets do not fall within any diamond, we cannot proceed. As explained in
section 3.1, we can avoid this issue by working in the limit (3.20). In the following, we will
always work in this limit.

We will now compute the value of the added constant integer for all brackets as a
function of −1 < [φ̂±1,2] < 0, where φ̂±1,2 were defined in (3.22). As functions of φ̂±1,2 each
separate bracket [aφ1 + bφ2] divides the square −1 < [φ̂±1,2] < 0 up into |a| + |b| parallel
strips. Superimposing the strips for all ten distinct brackets appearing in (3.35) yields the
various domains where the brackets take on a distinct set of values, as illustrated in figure 3.
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Figure 4. The blue and yellow domains correspond to the domains in figure 3 that contain the
unrefined points [φ] = − 1

3 and [φ] = − 2
3 respectively.

To find out whether there exists a universal residue in some region of φa space, i.e.
a point/region where Q12 = Q13 = Q23, it is natural to start with the unrefined point(s)
[φ] ≡ [φ1] = [φ2] = [φ3]. This equation has two solutions:

[φ] = −1
3 if [φ1] + [φ2] ∈ D0

[φ] = −2
3 if [φ1] + [φ2] ∈ D1.

(3.38)

Notice that this corresponds to the usual unrefined point φ = 1
3 (τ + σ ± 1) (up to a trans-

lation to D0) in the Cardy limit. Also, note that these points obey the requirement (3.20).
At these points ai 6= aj is irrelevant, and for the same reasons as in the case when ai = aj
for all i, j we obtain the entropy functions (3.34) (see footnote 15), now evaluated at the
two unrefined points in (3.38), respectively. We should note here that naively we are not
allowed to evaluate (3.29) at the unrefined points. This is due to the fact that at the unre-
fined points our expression for the index is singular because the integrand develops higher
poles in this limit. However, at large-N , i.e. when restricting to the φ ∈ {φai − φaj} terms
in (3.29), we can safely take the unrefined limit of Q′tot. This is because this part of Q′tot
does not change when taking the higher order poles into account, as we show explicitly
in appendix B. We will return to finite N at the end of this section, where we will see
how the O(N) contributions to Q′tot prohibit its evaluation on the unrefined point and we
instead have to resort to the expression for Q′tot in appendix B. Concluding, at least in the
unrefined limits and at large-N , our expression for the index in the Cardy limit reproduces
the expected entropy functions.

Let us now try to move away from the unrefined point. Before considering other
domains, let us first just consider the domains that contain the unrefined points. These
domains are given by the blue and yellow domain in figure 4.
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In the blue domain, the (non-trivial) brackets evaluate as follows:

(1, 2) : [2φ1 − φ2] = 2[φ1]− [φ2], [2φ2 − φ1] = 2[φ2]− [φ1],

[−2φ2] = −2[φ2]− 1, [−2φ1] = −2[φ1]− 1,

(1, 3) : [3φ1 + φ2] = 3[φ1] + [φ2] + 1, [−φ1 − φ2] = −[φ1]− [φ2]− 1,

[2φ1 + 2φ2] = 2[φ1] + 2[φ2] + 1, [−2φ1] = −2[φ1]− 1,

[−3φ1 − 2φ2] = −3[φ1]− 2[φ2]− 2,

(2, 3) : [φ1 + 3φ2] = [φ1] + 3[φ2] + 1, [−φ1 − φ2] = −[φ1]− [φ2]− 1,

[2φ1 + 2φ2] = 2[φ1] + 2[φ2] + 1, [−2φ2] = −2[φ2]− 1,

[−2φ1 − 3φ2] = −2[φ1]− 3[φ2]− 2.

(3.39)

Evaluating the Qab polynomials on these brackets, we find:

Q12 = 6[φ1][φ2]([φ1] + [φ2] + 1)
τσ

− 3([φ1]− [φ2])2

τσ
+O(τ−1) +O(σ−1),

Q13 = 6[φ1][φ2]([φ1] + [φ2] + 1)
τσ

− 3(1 + 2[φ1] + [φ2])2

τσ
+O(τ−1) +O(σ−1),

Q23 = 6[φ1][φ2]([φ1] + [φ2] + 1)
τσ

− 3(1 + [φ1] + 2[φ2])2

τσ
+O(τ−1) +O(σ−1).

(3.40)

Again, we can write this more symmetrically in terms of [φ3] = −[φ1]− [φ2]−1 as follows:

Q12 = −6[φ1][φ2][φ3]
τσ

− 3([φ1]− [φ2])2

τσ
+O(τ−1) +O(σ−1),

Q13 = −6[φ1][φ2][φ3]
τσ

− 3([φ1]− [φ3])2

τσ
+O(τ−1) +O(σ−1),

Q23 = −6[φ1][φ2][φ3]
τσ

− 3([φ2]− [φ3])2

τσ
+O(τ−1) +O(σ−1).

(3.41)

This result shows that as we move away from the unrefined point, as long as we stay in a
small enough region around the unrefined point [φ1] = [φ2] = −1

3 , we still obtain a universal
residue up to small corrections of order (φa − φb)2. That is, for this region in parameter
space and at large-N we have:

Q′tot(φai) ≈
∑

φ∈{φai−φaj }

3∑
b=1

Q([φ+ φb]) +Q([−φ+ φb])

= 3N2 [φ1][φ2][φ3]
τσ

+O(τ−1) +O(σ−1) +O(([φa]− [φb])2),

(3.42)

where the pair (a, b) takes the values (1, 2), (1, 3) and (2, 3). We stress that we did not
have to impose φ3 = −φ1− φ2− 1. Instead, the integer −1 emerges from a careful limit of
the modular property and the associated bracketed potentials. This is very similar to the
emergence of this integer in the analysis of [8].
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We can repeat the above analysis for the yellow domain in figure 4. Now, the unrefined
point [φ] = −2

3 is enclosed in the domain. For this domain, the non-trivial brackets take
the following form:

(1, 2) : [2φ1 − φ2] = 2[φ1]− [φ2], [2φ2 − φ1] = 2[φ2]− [φ1],

[−2φ2] = −2[φ2]− 2, [−2φ1] = −2[φ1]− 2,

(1, 3) : [3φ1 + φ2] = 3[φ1] + [φ2] + 2, [−φ1 − φ2] = −[φ1]− [φ2]− 2,

[2φ1 + 2φ2] = 2[φ1] + 2[φ2] + 2, [−2φ1] = −2[φ1]− 2,

[−3φ1 − 2φ2] = −3[φ1]− 2[φ2]− 4,

(2, 3) : [φ1 + 3φ2] = [φ1] + 3[φ2] + 2, [−φ1 − φ2] = −[φ1]− [φ2]− 2,

[2φ1 + 2φ2] = 2[φ1] + 2[φ2] + 2, [−2φ2] = −2[φ2]− 2,

[−2φ1 − 3φ2] = −2[φ1]− 3[φ2]− 4.

(3.43)

Plugging these brackets into (3.29), we find:

Q′12 = 6[φ1]′[φ2]′([φ1]′ + [φ2]′ − 1)
τσ

+ 3([φ1]′ − [φ2]′)2

τσ
+O(τ−1) +O(σ−1),

Q′13 = 6[φ1]′[φ2]′([φ1]′ + [φ2]′ − 1)
τσ

+ 3(−1 + 2[φ1]′ + [φ2]′)2

τσ
+O(τ−1) +O(σ−1),

Q′23 = 6[φ1]′[φ2]′([φ1]′ + [φ2]′ − 1)
τσ

+ 3(−1 + [φ1]′ + 2[φ2]′)2

τσ
+O(τ−1) +O(σ−1),

(3.44)

where we remind the reader that:

[φa]′ = [φa] + 1. (3.45)

In terms of [φ3]′ = −[φ1]′ − [φ2]′ + 1, this becomes:

Q′12 = 6[φ1]′[φ2]′[φ3]′

τσ
+ 3([φ1]′ − [φ2]′)2

τσ
+O(τ−1) +O(σ−1),

Q′13 = 6[φ1]′[φ2]′[φ3]′

τσ
+ 3([φ1]′ − [φ3]′)2

τσ
+O(τ−1) +O(σ−1),

Q′23 = 6[φ1]′[φ2]′[φ3]′

τσ
+ 3([φ2]′ − [φ3]′)2

τσ
+O(τ−1) +O(σ−1),

(3.46)

Similarly to the blue region, all remainder terms are small close to the unrefined point
[φ1] = [φ2] = −2

3 . Therefore, close enough to the unrefined point we are also able in this
case to conclude that each residue contributes a universal Q function in the Cardy limit
and at large-N up to small corrections:

Q′tot(φai) ≈
∑

φ∈{φai−φaj }

3∑
b=1

Q([φ+ φb]) +Q([−φ+ φb])

= 3N2 [φ1]′[φ2]′[φ3]′

τσ
+O(τ−1) +O(σ−1) +O(([φa]′ − [φb]′)2).

(3.47)
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This function coincides with the entropy function for the twin saddle (again, see foot-
note 15).

3.2.3 Other domains

Apart from the blue and yellow domains of figure 4, there are many more domains in
figure 3. In each of these domains, the set of brackets (3.39) takes on a different value.
Similarly as for the blue and yellow regions, we can ask for each of these regions whether
they contain a point where all the Qab are equal to each other. This would be indicative
of the existence of a universal residue in such a region. We find that there are two possible
scenarios. In the first scenario, which occurs for most domains, the point at which the Qab
associated to a certain region are equal falls outside that region. Therefore, it seems that
we cannot associate a universal residue to these regions.

Another scenario occurs for those domains whose boundary touches or overlaps with
the lines [φ1] = 0, [φ2] = 0, [φ1]′ = 0, [φ2]′ = 0 or [φ1] + [φ2] + 1 = 0. In these cases, all
Qab are equal and vanishing along the intersection. Interestingly, the entropy function for
φ1 + φ2 ∈ D0 vanishes along φ1 = 0, φ2 = 0 and φ1 + φ2 + 1 = 0 whereas the entropy
function for φ1 + φ2 ∈ D1 vanishes φ1 + 1 = 0, φ2 + 1 = 0 and φ1 + φ2 + 1 = 0. Therefore,
for these special regions we find that our result is again consistent with the known entropy
functions (see footnote 15). However, we find that moving away from the vanishing locus
generates remainder terms for at least one of the Qab that are of the same order as the
entropy function. Therefore, we cannot keep the remainder terms for all three Qab small
while moving away from the vanishing locus, in contrast to the case of the blue and yellow
region in figure 4.

Concluding, we note that our expression for the index singles out the blue and yellow
regions: only in these regions, close enough to the unrefined points, do we find a universal
residue. Moreover, this universal residue is consistent with the results in the literature. An
important difference with the Bethe Ansatz analysis is that in their case in the relevant
parts of parameter space only a single residue dominates [8].

For the other domains we remain inconclusive because there does not seem to exist a
universal residue. This could mean that, instead of being able to extract such a universal
piece, one would have to sum the various residues to find the Cardy limit. This seems a very
complicated task. Or one may be able to argue that some residue provides the dominant
contribution to the residue sum in the respective domain, similar to [8]. If a dominant
residue would correspond to a residue with all ai = aj , we would get the expected entropy
functions for either the right upper triangular region or lower left triangular region in
figure 3, consistent with the literature. However, we have so far not been able to find a
convincing argument for this scenario. Finally, let us note that whether a given residue
will contribute to the residue sum depends in particular on the values of |fa|, as we have
seen in section 2.2. To fully understand the question of the existence of a universal residue
in different regions of parameter space, one should first know which residues contribute in
the first place. We do not expect this to fully resolve the issue, but further analysis of this
point is required.
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3.3 A brief look at finite N

At finite N , we should take into account all terms in (3.29). Explicitly, we have:

Qtot(φai) = (N − 1)
(
−Q(0) +Q([φ1]) +Q([φ2]) +Q([−φ1 − φ2])

)
+

∑
φ∈{φai−φaj }

3∑
b=1

(
Q([φ+ φb]) +Q([−φ+ φb]))

)

+
∑

φ∈{φai}

3∑
b=1

(
Q([φ+ φb]) +Q([−φ+ φb])

)
.

(3.48)

The first line gives the expected entropy function in the blue domain of figure 4, while
the second line will gives us the entropy function up to remainder terms proportional to
(φai − φaj )2 as we explained above. However, the last line gives rise to new brackets and
remainder terms. There are again three possible terms:

Q1 = Q([2φ1]) +Q([φ1 + φ2]) +Q([−φ1 + φ2]) +Q([−φ2]) +Q([−2φ1 − φ2])

Q2 = Q([φ2 + φ1]) +Q([−φ2 + φ1]) +Q([2φ2]) +Q([−φ1]) +Q([−2φ2 − φ1])

Q3 = Q([−φ2]) +Q([−2φ1 − φ2]) +Q([−φ1]) +Q([−2φ2 − φ1])

+Q([−2φ1 − 2φ2]).

(3.49)

At large-N we have been able to ignore the fact that our computation of the index really
requires us to stay away from the unrefined point, since the O(N2) part of the Q′tot remains
unchanged in the proper calculation (see appendix B). However, the Q functions in (3.49)
coming in at O(N) do not appear in the unrefined limit and should therefore not be
evaluated at the unrefined point. This can also be seen from the terms with the brackets
[−2φ1,2 − φ2,1] and [φ1 − φ2], which are not defined at the unrefined points. In particular,
these brackets divide the blue and yellow domain of figure 4 into six new regions. The
unrefined point lies precisely at the intersection of the boundaries of regions. See figure 5.

For this reason, we need to use the results from appendix B to study the Cardy limit
of the index at finite N at the unrefined points. The finite N Q-polynomials are given
in (B.28), which we repeat here for convenience:

Q1 = N2 − 3N + 2
9τσ +O

(
τ−1

)
+O

(
σ−1

)
,

Q2 = −N
2 − 3N + 2

9τσ +O
(
τ−1

)
+O

(
σ−1

)
.

(3.50)

These functions correspond to the total Q polynomials at the unrefined point in the blue
and yellow domain respectively. The fact that we do not see the expected N2 − 1 is
explained at the end of appendix B.2.

At finite N , we cannot move away as nicely from the unrefined point as we did at large-
N . The reason for this is that the unrefined point lies at the intersection of the domains
in the refined computation. Because in each of the six domains, the set of brackets takes
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Figure 5. The additional brackets [−2φ1,2−φ2,1] and [φ1−φ2] divide the blue and yellow domains
both into six new domains, and the unrefined points lie at the intersection of these domains.

on a different value, moving away from the unrefined point in this case depends on the
direction one is going in. In particular, the resulting remainder terms associated to any of
the domains are not small because of the discontinuous nature of the brackets.

4 Discussion

In this paper, we have computed the superconformal index of the N = 4 theory through
residues. This method is the same as the one used to derive the Higgs branch localization
formula from the index, which as far as we are aware was only applied in the literature to
gauge theories with fundamental matter (see e.g. [18, 19, 40] and references therein).16 We
have seen that in the refined computation, the adjoint matter results in non-degenerate
non-factorized poles. Because the poles are non-degenerate, it is still fairly easy to compute
the residue.17 The real complication shows up in deciding when a pole falls inside all unit
circles, which depends on the precise values of the chemical potentials. This prohibits us
from finding a fully explicit expression for the index at general values of the parameters.
Luckily, for purposes of taking the Cardy limit we have been able to argue that this com-
plication is irrelevant. Studying the Cardy limit of our expression, we first of all find that
all residues contribute at leading order. In addition, close to the unflavoured or unrefined
points in chemical potential space, all residues become equal to the entropy function of
the 1/16th BPS asymptotically AdS5 black hole and its “twin saddle” respectively (see the
remark in footnote 15).

The Bethe Ansatz method, as developed in [31–33], also computes the gauge integral
through residues and was applied to compute the large-N limit and the study of AdS5
black holes in [8, 34]. However, our method is technically distinct from the Bethe Ansatz

16In the context of the Hilbert series, similar residue computations were performed for SQCD in [49] and
for adjoint SQCD in [50].

17In appendix B, we compute the index in the unrefined limit. In this case, the poles are degenerate and
one needs more sophisticated techniques to compute the residue, as we discuss in detail.
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method and the final formulas have important differences. Let us discuss this in some
detail. Firstly, the following rewriting of the gauge integrand is employed in [33]:

I(p, q, f) = κN
N !

N−1∏
i=1

∮
|xi|=1

dxi
2πixi

Z(u;φ, aω, bω)

= κN
N !

∮
C

N−1∏
i=1

dxi
2πixi

Z(u;φ, aω, bω)∏N−1
i=1 (1− Q̃i)

(4.1)

where Z is short-hand notation for the integrand (see e.g. (2.7)). The chemical potentials
coupling to the angular momenta are specialized: τ = aω and σ = bω with a, b ∈ Z. Fur-
thermore, C is a new contour and Q̃i = 1 represent the so-called Bethe Ansatz equations.
Inside this new contour, one only has to take into account poles coming from the denomi-
nator, i.e. solutions to the Bethe Ansatz equations. This is a very different set of poles than
the set we consider, which originate from Z. In particular, the basic solutions to the Bethe
Ansatz equations do not depend on the R-symmetry chemical potentials φa, whereas all
our poles do.18 Moreover, in our case all poles are explicitly known even though whether
the associated residue contributes depends on the precise values of the chemical potentials.
In contrast, in the Bethe Ansatz approach not all poles are known due to difficulties in
solving the Bethe Ansatz equation. However, in their case the residue associated to a pole
will always contribute. Another difference that stands out is that in the Bethe Ansatz
method at large-N , there is generically a single dominant residue which captures the cor-
rect entropy functions. For us instead, it seems that generically all residues contribute at
leading order in the Cardy limit, as we have discussed at length in section 3.2. It would be
very interesting to compare the two methods. Since we only have a fully explicit general
expression for SU(2) gauge group, this may be a good place to start. Otherwise, for SU(N)
one would have to consider a specific regime in parameter space where our expression can
be made fully explicit. We leave this as future work.

This work was originally motivated to understand what role certain modular proper-
ties of four-dimensional supersymmetric partition functions [21] play in the evaluation of
the N = 4 SU(N) superconformal index and the associated gravitational interpretation.
Indeed, a very interesting question is whether in AdS5/CFT4 there is an analogous story
to the Farey tail expansion of the elliptic genus and the SL(2,Z) family of BTZ black holes
familiar from AdS3/CFT2 [12–14]. Such a story may also connect to the (m,n) saddles of
the matrix integral found in [11] using an elliptic extension of the gauge integrand. We
believe our expression for the index is suited for such a study for the following basic reason:
we have performed the gauge integral before taking the Cardy limit, which firstly allows
us to justify the use of the modular property a priori and secondly makes the relation
between modularity and the Cardy limit more transparent. Instead, taking the Cardy
limit at the level of the gauge integrand as in e.g. [7, 10, 26], these two consequences are
less transparent. Given our expression, we can study more general modular properties
obeyed by the elliptic Γ function [21]. Even though the modular property used in this
paper is suited for the study of the Cardy limit τ, σ → 0, such other modular properties

18See however [28] for non-standard solutions to the Bethe Ansatz equations that do depend on the φa.
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can be useful to study more general “Cardy” limits. In addition, they can help to explore
the phase structure suggested by [11] within our formalism. This will be the subject of a
future publication [22].

In a previous work [51] we studied a CFT2 subsector of the N = 4 theory from the
perspective of the superconformal index. We found that a two-dimensional Cardy formula
arises from the superconformal index, which is indicative of ordinary SL(2,Z) modularity.
It would be interesting to understand how this relates to the modularity mentioned in
the previous paragraph. See also [16] for earlier and possibly related work. Other future
directions include considering N = 1 superconformal field theories, which have been studied
in the Cardy limit in [27, 52], by Bethe Ansatz methods in [34, 53, 54], and finally by large-
N saddle point approximation in [36]. Finally, it would be interesting to understand if our
expression allows one to compute subleading corrections in the Cardy limit.
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A Properties of θ and elliptic Γ functions

We collect here the definitions and some important properties of the θq and the elliptic
Γ functions, which are used in the main text. We have taken most formulae from the
work [35].

θ function. The θq function, also known as the q-theta function, can be defined as an
infinite product for Im(τ) > 0:

θq(x) ≡ θ(z; τ) = (x; q)∞ (qx−1; q)∞ =
∞∏
n=0

(1− xqn)(1− x−1qn+1), (A.1)

where q = e2πiτ , x = e2πiz and the q-Pochhammer symbol is defined as:

(x; q)∞ =
∞∏
n=0

(1− xqn). (A.2)
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Alternatively, there is the summation formula defined for 0 < Im(z) < Im(τ):

θ(z; τ) = exp
(
−
∞∑
l=1

1
l

xl + (qx−1)l

(1− ql)

)
(A.3)

The θ function is quasi-elliptic under the translation z → z +mτ + n, m,n ∈ Z:

θ(z +mτ + n; τ) = (−x)−mq−
m(m−1)

2 θ(z; τ). (A.4)

Furthermore, it satisfies a reflection property:

θ(−z; τ) = θ(z + τ ; τ) = −x−1θ(z; τ), (A.5)

and can be extended to Im(τ) < 0 through:

θ(z;−τ) ≡ −x
θ(z; τ) . (A.6)

Finally, the θ function satisfies a modular property:

θ(z; τ) = e−iπB(z,τ)θ

(
z

τ
;−1

τ

)
, (A.7)

where:
B(z, τ) = z2

τ
+ z

(1
τ
− 1

)
+ 1

6

(
τ + 1

τ

)
− 1

2 . (A.8)

Another version of the modular property, which we also require, is given by:

θ

(
z

τ
; σ
τ

)
θ

(
z

σ
; τ
σ

)
= e−iπΦ(z,τ,σ), (A.9)

where:
Φ(z, τ, σ) = 1

τσ

((
z − τ + σ

2

)2
− τ2 + σ2

12

)
. (A.10)

Elliptic Γ function. The elliptic Γ function can be defined as an infinite product when
Im(τ), Im(σ) > 0 as follows:

Γ(x) ≡ Γ(z; τ, σ) =
∞∏

m,n=0

1− x−1pm+1qn+1

1− xpmqn , (A.11)

where q = e2πiτ , p = e2πiσ and x = e2πiz. Alternatively, for Im(τ), Im(σ) > 0 and
0 < Im(u) < Im(τ) + Im(σ) it can also be defined through the summation formula:

Γ(z; τ, σ) = exp
( ∞∑
l=1

1
l

xl − (x−1pq)l

(1− pl)(1− ql)

)
. (A.12)

Basic properties that are manifest from these expressions include:

Γ(z + 1; τ, σ) = Γ(z; τ + 1, σ) = Γ(z; τ, σ + 1) = Γ(z; τ, σ),
Γ(z; τ, σ) = Γ(z;σ, τ).

(A.13)
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Furthermore, the elliptic Γ function satisfies the following basic shift properties:

Γ(z + τ ; τ, σ) = θ(z;σ)Γ(z; τ, σ)
Γ(z + σ; τ, σ) = θ(z; τ)Γ(z; τ, σ).

(A.14)

Repetitive use of these properties and the shift property of the θ function (A.4) leads to:

Γ(pkqlx) = Γ(x)
(
−xp

k−1
2 q

l−1
2
)−kl k−1∏

m=0
θq(xpm)

l−1∏
n=0

θp(xqn),

Γ(pkq−lx) = Γ(x)
∏k−1
m=0 θq(xp−m)(

−x−1p
k−1

2 q−
l+1

2
)−kl∏l

n=1 θp(xq−n)

Γ(p−kqlx) = Γ(x)
∏l−1
n=0 θp(xq−n)(

−x−1p−
k+1

2 q
l−1

2
)−kl∏k

m=1 θq(xp−m)

Γ(p−kq−lx) = Γ(x) 1(
−x−1p

k+1
2 q

l+1
2
)−kl∏k

m=1 θq(xp−m)
∏l
n=1 θp(xq−n)

,

(A.15)

where for convenience we use the shorthand notation for θ and Γ. Moreover, for k = 0
(l = 0) the product over m (n) is defined to be 1.

Another important property we use is given by:

Γ(z; τ, σ)Γ(−z; τ, σ) = 1
θ(z;σ)θ(−z; τ) . (A.16)

The elliptic Γ function can be extended to the lower half planes Im(τ) < 0 or Im(σ) < 0
via the summation formula (A.12). Specifically, we have:

Γ(z;−τ, σ) = 1
Γ(z + τ ; τ, σ) = Γ(σ − z; τ, σ)

Γ(z; τ,−σ) = 1
Γ(z + σ; τ, σ) = Γ(τ − z; τ, σ)

(A.17)

With these expressions in mind, the elliptic Gamma function is defined for τ, σ ∈ C− R.
Finally, the elliptic Γ function satisfies a modular property, which given (A.17) is

defined for τ, σ, τσ ∈ C \ R:

Γ(z; τ, σ) = ei
π
3Q(z,τ,σ)

Γ
(
z
τ ; στ ,−

1
τ

)
Γ
(
z−τ
σ ;− τ

σ ,−
1
σ

) . (A.18)

Here, Q(z, τ, σ) is the following polynomial:

Q(z, τ, σ) = −1
τσ

(
z − τ + σ

2 + 1
2

)((
z − τ + σ

2

)2
+
(
z − τ + σ

2

)
− τ2 + σ2

4

)
. (A.19)

This is the same modular property as equation (21) of Theorem 4.1 in [35], where our Q
polynomial is related to theirs by: Qours = −3Qtheirs.

– 33 –



J
H
E
P
0
4
(
2
0
2
1
)
2
1
6

We point out that a slightly different version of the modular property is used in [21]:

Γ(z; τ, σ)Γ
(
z

τ
; σ
τ
,

1
τ

)
Γ
(
z

σ
; 1
σ
,
τ

σ

)
= e−i

π
3QG(z,τ,σ), (A.20)

with:

QG(z, τ, σ) = z3

τσ
− 3

2
τ + σ + 1

τσ
z2 + τ2 + σ2 + 3τσ + 3τ + 3σ + 1

2τσ z

− 1
4 (τ + σ + 1)

(1
τ

+ 1
σ

+ 1
)
.

(A.21)

We can rewrite this property into ours by making use of the formulas given above. In
particular, we first use the extension formulas (A.17) and the shift properties (A.15) of
the elliptic Γ function. Subsequently, we use the shift property (A.4) and the extension
formula (A.6) for the θ function, and finally the second modular property of the θ func-
tion (A.9). Doing this, one finds our modular property, where:

Q(z, τ, σ) = −QG(z, τ, σ)− 3Φ(z, τ, σ). (A.22)

The reason we choose to use (A.18) is that the product expressions for the given arguments
manifestly converge when Im(τ), Im(σ), Im

(
σ
τ

)
> 0.

B Unrefined limit of the index

In this appendix, we consider the unrefined limit of the index:

f ≡ f1 = f2 = f3 = (pq)
1
3 . (B.1)

This limit has to be treated separately because any set of three simple poles y = fap
kql

associated to three Γ factors of the form
∏3
b=1 Γ(yfb) collide into a single cubic pole. Even

though the final expression for the index is different in some respects, we will find that, at
large-N , the leading order expression in the Cardy limit remains unchanged. This justifies
the naive unrefined limit of the Cardy limit of the refined index computed in the main text.
As in the above, we treat SU(2) and SU(N) separately.

B.1 SU(2) index

The expression for the index of the N = 4 SU(2) theory in the unrefined limit reads:

I2 = κ2
2

∮
|x|=1

dx

2πix
Γ(x2f)3Γ(x−2f)3

Γ(x2)Γ(x−2) (B.2)

Inside the unit circle, there are now cubic poles at:

x2 = fpkql, (B.3)

for k, l ≥ 0.
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Let us first compute the residue of Γ(x)3 at its basic cubic pole, x = 1. We first write:

Γ(x)3 = 1
(1− x)3

 ∏
m,n≥0

1− x−1pm+1qn+1

1− xpm+1qn+1 ×
∏
m≥0

1
1− xpm+1

1
1− xqm+1

3

. (B.4)

To obtain the residue, Cauchy’s integral formula tells us that we have to compute the
second derivative of the function in brackets and evaluate it at x = 1. Let us call this
function Γ̂(x). We first rewrite Γ̂(x) using the plethystic exponential (cf. (2.8)):

Γ̂(x) = eγ(x) = exp
[ ∞∑
l=1

1
l

(
−(xpq)l − (x−1pq)l + xl(pl + ql)

(1− pl)(1− ql)

)]
. (B.5)

The residue can be written in terms of γ as follows:

Resx=1

(
Γ̂(x)3

(1− x)3

)
= −3

2e
3γ(1)

(
3γ′(1)2 + γ′′(1)

)
(B.6)

Here, we have:

γ′(x) =
∞∑
l=1

−(pq)l(xl−1 − x−l−1) + xl−1(pl + ql)
(1− pl)(1− ql) ,

γ′′(x) =
∞∑
l=1

(l − 1)xl−2(pl + ql)− (l − 1)(pq)lxl−2 − (l + 1)(pq)lx−l−2

(1− pl)(1− q)l .

(B.7)

This leads us to our final expression for the residue at the cubic pole:

Resx=1

(
Γ̂(x)3

(1−x)3

)
=−3

2
1

(p;p)3
∞(q;q)3

∞

×

3
( ∞∑
l=1

pl+ql

(1−pl)(1−ql)

)2

+
∞∑
l=1

(l−1)(pl+ql)−2l(pq)l

(1−pl)(1−ql)

 . (B.8)

This residue, together with the use of shift properties of the elliptic Γ functions as in
section 2.1, allows us to find for the unrefined SU(2) index:

I2 = −3Γ(f)3 (3γ′(1)2 + γ′′(1)
)

4(p; p)2
∞(q; q)2

∞

Γ(f2)3

Γ(f)Γ(f−1)ZV (φ, σ; τ)ZV (φ, τ ;σ), (B.9)

where:

ZV (φ, σ; τ) =
∑
k≥0

∏k
m=1 θq(f−1p−m)∏k−1
m=0 θq(fpm)

(∏k−1
m=0 θq(f2pm)∏k
m=1 θq(p−m)

)3

. (B.10)

B.2 SU(N) index

We will now attempt a similar computation for the SU(N) theory. The unrefined limit of
the index is given by:

IN = κN
N !

N−1∏
k=1

∮
|xk|=1

dxk
2πixk

N−1∏
i<j

Γ(x±ijf)3

Γ(x±ij)

N−1∏
i=1

Γ((x1 · · ·x2
i · · ·xN−1)±f)3

Γ((x1 · · ·x2
i · · ·xN−1)±)

. (B.11)
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In this case, poles arise from the intersection of any solvable set of N − 1 of the following
N2 −N equations:

ui − uj = φ+ kijσ + lijτ, 1 ≤ i 6= j ≤ N − 1,
u1 + . . .+ 2ui + . . .+ uN−1 = ∓(φ+ kiσ + liτ), i = 1, . . . , N − 1,

(B.12)

where we defined f = e2πiφ.
For the same reasons as in section 2.2, we only consider poles originating from the

pole equations on the second line of (B.12) with all + signs. However, in contrast with
the analysis in section 2.2, it is not possible to use the formula (2.27) for a multivariate
residue. We will now briefly discuss the reason for this and provide an alternative formula
that can be used.

Firstly, given the N − 1 equations of the second type with all + signs, a natural choice
for the functions gi(x) is:19

gi(x) = xi

(
1− fpkiqli

x1 · · ·x2
i · · ·xN−1

)3

. (B.13)

The issue with higher order poles is that in this case:

Jp(n) = det
(
∂gi
∂xj

) ∣∣∣∣
x=p(n)

= 0. (B.14)

This prohibits the use of the formula (2.27) to compute the residue, which is only defined
for non-degenerate residues with Jp 6= 0.

Luckily, there exist more sophisticated techniques to compute the residue of such degen-
erate multivariate residues. The main formula for the degenerate case is reviewed around
Theorem 1 in [55], in which also additional references may be found. The basic idea is still
similar to the non-degenerate case: one wants to find a transformation that factorizes the
multivariate residue integral into a product of univariate ones. The main formula, Theorem
1 in [55], for the evaluation of degenerate multivariate residues is given by:

Resx=p

(
h(x)dx1 · · · dxn
g1(x) · · · gn(x)

)
= Resx=p

(
h(x) detA(x)dx1 · · · dxn

g′1(x1) · · · g′n(xn)

)
. (B.15)

This formula is the analogue of (2.27) for a degenerate pole, i.e. an isolated zero at x = p

of g(x) = (g1(x), . . . , gn(x)) with Jp = 0. In this formula, the g′i(xi) are functions that only
depend on xi, and can be obtained from the gi(x) via:

g′i(xi) =
∑
j

aij(x)gj(x), (B.16)

where A(x) = (aij(x)) is a matrix of holomorphic polynomials. The polynomial A(x) can
be determined algorithmically through a so-called Gröbner basis computation. For details,
we again refer to [55] and references therein.

19Other choices are formed by choosing different distributions of the singular factors over the gi. However,
our choice is singled out because it is the unique choice (up to relabelling) that respects the SN−1 symmetry
of the integral.
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We have done the Gröbner basis calculation through Mathematica at low values of N .
These computations suggest that the g′i for general N are given by:

g′i(xi) = (xNi − f)2N−1, (B.17)

where we have chosen to only to the computation for ki, li = 0. We do not have to
understand the more general case, since any p, q shifted pole can be first brought back to
this basic pole with the help of shift properties of the elliptic Γ functions. The formula for
g′i(xi) shows that the perhaps from (B.13) naively expected cubic poles are actually poles
of order 2N − 1.

We now continue to compute the residue at the pole (cf. (2.30)):

p(n) : xNi = fp
Nki−

∑
j
kjq

Nli−
∑

j
lj . (B.18)

Firstly, we bring the residue back to xNi = f using the shift properties of the elliptic Γ
function:

Res∑ p(n)

 1
x1x2 · · ·xN−1

N−1∏
i<j

Γ(x±ijf)3

Γ(x±ij)

N−1∏
i=1

Γ((x1 · · ·x2
i · · ·xN−1)±f)3

Γ((x1 · · ·x2
i · · ·xN−1)±)


=

N−1∏
i<j

Γ((pki−kjqli−lj )±f)3

Γ((pki−kjqli−lj )±)

N−1∏
i=1

Γ(f2pkiqli)3

Γ((fpkiqli)±)

× Res∑ p(n)

(
N−1∏
i=1

Γ((x1 · · ·x2
i · · ·xN−1)−1f)3

xi

)

=
N−1∏
i<j

Γ((pki−kjqli−lj )±f)3

Γ((pki−kjqli−lj )±)

N−1∏
i=1

Γ(f2pkiqli)3

Γ((fpkiqli)±)

(
1

Ci
∏ki
m=1 θq(p−m)

∏li
n=1 θp(q−n)

)3

× ResxNi =f

(
N−1∏
i=1

Γ((x1 · · ·x2
i · · ·xN−1)−1f)3

xi

)
, (B.19)

where:
Ci =

(
−p

ki+1
2 q

li+1
2

)−kili
. (B.20)

Now, we use the formula (B.15) for the last line:

ResxNi =f

(
N−1∏
i=1

Γ((x1 · · ·x2
i · · ·xN−1)−1f)3

xi

)

=
N−1∏
i=1

Res
(

detA(x) Γ̂((x1 · · ·x2
i · · ·xN−1)−1f)3

(xNi − f)2N−1

) (B.21)

We will not find an explicit expression for the residue. This is because of a technical
reason: we have been able to find the matrix A(x) for low values of N , but it is a somewhat
complicated polynomial whose generalization to arbitrary N is not clear to us. Luckily, for
purposes of the Cardy limit, as we will discuss in more detail in the next section, the form
of A(x) is unimportant. We will also see in the next section that the high order of the poles
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and the associated derivatives will not be of relevance to the Cardy limit either. Therefore,
we hide all these details in a function R(f, q, p). Then, analogously to the refined analysis
of section 2.2, the expression for the index in the unrefined limit takes the form:

I ′N = Γ(f)3(N−1)2Γ(f2)3(N−1)R(f, q, p)
N ! ((p; p)∞(q; q)∞)2(N−1)

′∑
(ki),(li)≥(0)

Z
(ki)
V, (φ, σ; τ)Z(li)

V (φ, τ ;σ), (B.22)

where the Pochhammer symbols originate from the residue similarly to the SU(2) case
discussed in the previous section, and details of the A(x) matrix and derivatives of it and
Γ̂ are hidden in R. As in the refined case, the precise form of the vortex partition functions
of the numerator ZV depends on the sign of ki − kj and li − lj . For both positive or both
negative for all i < j, the vortex partition function is given by:

Z
(ki)
V (φ, σ; τ) =

N−1∏
i<j

∏ki−kj
m=1 θq(p−m)∏ki−kj−1
m=1 θq(pm)

N−1∏
i=1

∏ki
m=1 θq(f−1p−m)∏ki−1
m=1 θq(fpm)

×
(
N−1∏
i<j

∏ki−kj−1
m=0 θq(fpm)∏ki−kj
m=1 θq(fp−m)

N−1∏
i=1

∏ki−1
m=0 θq(f2pm)∏ki
m=1 θq(p−m)

)3

.

(B.23)

This is just the specialization φ1 = φ2 = φ3 of the refined vortex partition functions (2.46).
All further comments made there apply here as well, so we will not repeat them.

B.3 Cardy limit of the unrefined index

As is clear from the expression (B.22), the universal part of the residue is simplified sig-
nificantly in the unrefined limit of the index. We already know that to leading order in
the Cardy limit, the vortex partition functions do not contribute at leading order (see sec-
tion 3). We will now argue that also the q-Pochhammer symbols and R do not contribute
at leading order.

For the q-Pochhammer symbols we first notice that:

(q; q)∞ = q−
1

24 η(τ), (B.24)

with η(τ) the Dedekind η function, which obeys the modular property:

η(τ) =
η
(
− 1
τ

)
√
−iτ

. (B.25)

This implies:

lim
τ→0+i

1
(q; q)∞

= lim
τ→0+i

q̃−
1

24
√
−iτ

q−
1

24 (q̃; q̃)∞
= O(e

2πi
τ ), (B.26)

where q̃ = e−
2πi
τ . This divergence is similar to the θ functions, of course, and subleading

in the Cardy limit.
The function R(f, q, p) consists of a sum of products of derivatives of the polynomial

A(x) and derivatives of γ(x) (see (B.5)). Since A(x) is a finite degree polynomial in x, the
evaluation of its derivatives on the poles lead to a finite degree polynomial in the fugacities.
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This contributes at order O(e2πiτ ) or O(e2πiσ) and can be safely ignored in the Cardy limit.
For derivatives of γ(x) it is not difficult to see, for example from the expressions (B.7),
they will diverge as O(e− log(τσ)), which is again subleading.

We conclude that also in the unrefined case to study the Cardy we only have to consider
the Γ functions:

Γ(f)3(N−1)2Γ(f2)3(N−1). (B.27)

Since f = (pq)
1
3 we have: φ = 1

3(τ + σ − k) for some k ∈ Z. However, evaluation of the
brackets, discussed in section 3.1, reduces this choice to the independent values k = 0, 1, 2.
It is easy to see that for k = 1, 2 the unrefined points lie inside the diamond D0 in the Cardy
limit (see figure 2). Instead, for k = (0 mod 3) it will lie outside the diamond. However,
also in this case it is not difficult to see that the Cardy limit of the modular property to
leading order only gets a contribution from the Q polynomial. This is because both Γ
functions on the right hand side of the modular property (3.9), even though they do not
simplify to 1 in this case, will be convergent functions of σ

τ . Therefore, their contribution
will be subleading with respect to the diverging e

iπ
3 Q prefactor.

We then proceed to compute the total Q polynomial for these separate cases:

Q0 = 3(N − 1)2Q([1
3(τ + σ)]) + 3(N − 1)Q([2

3(τ + σ)])

= O
(
τ−1

)
+O

(
σ−1

)
,

Q1 = 3(N − 1)2Q([1
3(τ + σ − 1)]) + 3(N − 1)Q([2

3(τ + σ − 1)])

= N2 − 3N + 2
9τσ +O

(
τ−1

)
+O

(
σ−1

)
,

Q2 = 3(N − 1)2Q([1
3(τ + σ − 2)]) + 3(N − 1)Q([2

3(τ + σ − 2)])

= −N
2 − 3N + 2

9τσ +O
(
τ−1

)
+O

(
σ−1

)
.

(B.28)

Here, we have used that the brackets evaluate to leading order as:

[1
3(τ + σ − 1)] = −1

3 , [2
3(τ + σ − 1)] = −2

3

[1
3(τ + σ − 2)] = −2

3 , [2
3(τ + σ − 2)] = −1

3 .
(B.29)

At large-N , the expressions for Q1 and Q2 agree with the unrefined limits of the Q polyno-
mials computed away from the unrefined points (3.42) and (3.47). This is what we wanted
to show. As a final comment, we note that the subleading pieces in N do not take the
perhaps expected form of N2 − 1. The reason for this is that the missing 3(N − 1) terms
originate from the q-Pochhammer symbols, which do not contribute at leading order in the
Cardy limit.

C Anomaly polynomial

Let us parametrize the anomaly polynomial of a general gauge theory as in [21]:

P (ζa;ωi) = 1
ω1ω2ω3

(
kijkζiζjζk + 3kijRζiζjΩ + 3kiRRζiΩ2 + kRRRΩ3 − kiζiΩ̃− kRΩΩ̃

)
,

(C.1)
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where

Ω = 1
2

3∑
i=1

ωi, Ω̃ = 1
4

3∑
i=1

ω2
i . (C.2)

We want to compare this general formula to the expression for the anomaly polynomial in
terms of the φa (3.27), i.e.:

Qtot(φai) = −3(N2 − 1)φ1φ2φ3
τσ

, (C.3)

with φ3 ≡= τ + σ − φ1 − φ2 − 1. To do this, we set ω1 = −1 and:

τ = ω2, σ = ω3, φa = ζa + 2
3Ω. (C.4)

Notice that the last definition implies that for ζa = 0, all φa are equal. This corresponds
to the unrefined limit of the index. Also, with this identification notice that ζ3 = −ζ1− ζ2,
as expected for the SU(3) flavour fugacities. We can now express Qatot in terms of the new
variables:

Qatot = 3(N2 − 1)
ω1ω2ω3

(
ζ1ζ2ζ3 + 2

3(ζ1ζ2 + ζ1ζ3 + ζ2ζ3)Ω + 4
9(ζ1 + ζ2 + ζ3)Ω2 + 8

27Ω3
)
. (C.5)

These coefficients encode the global anomalies of the N = 4 SU(N) Yang-Mills theory.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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