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1 Introduction

Over the past decade, there has been a significant effort to understand condensed matter
systems from the perspective of effective field theory (EFT). In this EFT philosophy,
condensed matter systems are conceived as systems that spontaneously break spacetime
symmetries. As a result, a large class of condensed matter systems can be classified in
terms of their spontaneous symmetry breaking (SSB) patterns alone. Therefore, if we
are only interested in the infrared (IR) behavior of such a system, the relevant degrees
of freedom at zero temperature are described exclusively by Goldstone modes. It turns
out that there is a very powerful technique for constructing EFTs of Goldstones known



as the coset construction. This construction takes symmetries as the only input and gives
an almost mechanical procedure for formulating new EFTs given a particular symmetry-
breaking pattern.

Condensed matter systems are inherently thermal and are therefore dissipative. Unfor-
tunately, ordinary actions and Lagrangians can only give rise to conservative, that is, non-
dissipative dynamics. However, recent work [1-26], built upon the foundations of [27-31],
enables the construction of effective actions that can account for dissipation and thermal
fluctuations. Such actions are formulated using the in-in formalism on the Schwinger-
Keldysh contour in the presence of a thermal density matrix. Further, in [8], a non-
equilibrium coset construction was proposed allowing the formulation of non-equilibrium
EFTs for a wide range of condensed matter systems. This coset construction accounts for
both ordinary Goldstones associated with SSB as well as hydrodynamic modes associated
with unbroken conserved quantities at finite temperature.

We will see, however, that EFTs of many states of matter constructed in [8] admit
additional propagating sound modes even though such modes are not always observed in
nature. These additional sound modes correspond to hydrodynamic sound waves that prop-
agate through a fluid formed by the thermalized phonons of the system. The best-known
such sound mode is the so-called second sound observed in finite-temperature superflu-
ids, though other second-sound modes have been observed in certain crystalline solids as
well [32, 33]. It should be noted that, while second sound exists in all known superfluids,
it is somewhat rare in solids.

The aim of this paper is to use non-equilibrium EFT techniques to study the behavior
of second-sound modes in various states of matter at finite temperature. Using the non-
equilibrium coset construction, we will find that the presence or absence of second-sound
modes derives from a new kind of inverse Higgs (IH) constraint that we can choose whether
or not to impose. We investigate a wide range of condensed matter actions and find that
in every case, except that of the superfluid action, the procedure to remove second sound
is successful.

We demonstrate how the whole business of imposing IH constraints to remove second-
sound modes can be circumvented by defining our EFTs on a manifold other than the
usual fluid worldvolume of [1-3, 8]. These new worldvolumes have reduced diffeomorphism
symmetries that depend on the particular state of matter in question. As an illustrative
example, we construct an action for leading-order (i.e. non-dissipative) finite-temperature
solids using a modified version of the non-equilibrium coset construction that is defined on
a solid worldvolume. We then propose an alternative to Landau’s classification of states
of matter in terms of their SSB pattern. In particular, we will see that it is possible to
be more precise than Landau if we instead merely specify the global and emergent gauge
symmetries and make no reference to SSB at all.

We extend the effective action for solids to leading dissipative order, finding many
similarities with [34, 35] and yet some disagreements as well. Finally, we explain the
physical origins of the second-sound-removing IH constraints and find that they are closely
connected to Umklapp scattering.

Throughout this paper we will use the ‘mostly plus convention,” so the Minkowski
metric takes the form n,, = diag(—, +,+, +).



2 A review of relevant topics

Many of the concepts and mathematical techniques employed throughout this paper may be
unfamiliar to some readers. Therefore, in this section, we will briefly review the main points
of the zero-temperature coset construction, non-equilibrium EFT, and the non-equilibrium
coset construction. In the interest of brevity, we will present many claims without proof,
but we will provide references that contain more in-depth discussions of these topics.

2.1 The zero-temperature coset construction

Consider a Poincaré-invariant system whose full symmetry group is G and is spontaneously
broken to the subgroup H. Then, the IR dynamics are described by Goldstone modes. Since
the action of the broken symmetry generators on the Goldstones is non-linearly realized,
formulating an EFT for the Goldstone modes presents a challenge. Fortunately, there exists
a straightforward, almost mechanical procedure for constructing the most general effective
action for Goldstones. Suppose that the symmetry generators are given by

P,, = unbroken translations,
T4 = other unbroken generators, (2.1)

To = broken generators,

where the generators 7, and T4 may be some combination of internal and spacetime gen-
erators and we have assumed that there exist some notions of spacetime translations that
remain unbroken. In this way, states can still be classified according to the corresponding
notions of energy and momentum [28]. Importantly, we do not require that the unbroken
generators 15“ be the original Poincaré translation generators (represented by P,); instead
they can be some linear combination of P, and internal symmetry generators [28]. Al-
though 15# and T4 both represent unbroken generators, we will see that they play very
different roles in the following construction.

Let Ho be the subgroup of H generated by T4. It turns out that to construct the
most general symmetry-invariant building-blocks, it is convenient to parameterize the coset

G/Ho by

,y[ﬂ_, l') — eirﬂpueiwa(x)ﬂ;gj (22)

where z# are the spacetime coordinates and 7% (z) are the Goldstone fields (up to overall
normalization). Then, we may compute the Maurer-Cartan form and expand it as a linear
combination of the symmetry generators by

971 0ug = i} (P + Vom0 + BJTa). (2.3)

It is important to note that all of the coefficients on the r.h.s. of the above expression can
be explicitly computed as long as the commutators among the generators are known. It
can be checked that V,7® is covariant under all symmetries, B4 transforms as a gauge
connection and can be used to take higher-order covariant derivatives

Vit = (B0, +iBjTa, (2.4)



and Ej; plays the role of the vierbein, meaning that the invariant integration measure is
d*z det E. Then, the invariant building-blocks for the Lagrangian are formed by taking
manifestly Hp-invariant combinations of the covariant objects given to us by the Maurer-
Cartan form. In particular, it should be noted that the u, v indices need to be contracted
in ways that are invariant under the unbroken subgroup of the Lorentz symmetry group.

At leading order in the derivative expansion we have that the only covariant building-
block is V,7%; and higher-order-derivative terms are given by VZ'[( V,m%),
VZ;‘VZ'L(V,)WO‘), etc.

Finally, when only internal symmetries are spontaneously broken, the number of Gold-
stones equals the number of broken symmetry generators; however, when spacetime sym-
metries are spontaneously broken there are often fewer Goldstones than broken symmetry
generators. At the level of the coset construction, we can sometimes reduce the number of
Goldstones by imposing what are known as IH constraints [36, 37]. Pragmatically, the rules
of the game are as follows: suppose that the commutator between an unbroken translation
generator P and a broken generator 7/ contains another unbroken generator 7, that is
[P,7'] D 7. Suppose further that 7 and 7’ do not belong to the same irreducible multiplet
under Hy. Then it turns out that it is consistent with symmetry transformations to set
the covariant derivative of the 7-Goldstone in the direction of P to zero. This equation
gives a constraint that relates the 7-Goldstone to derivatives of the 7-Goldstone, allowing
the removal of the 7/-Goldstone. The setting of this covariant derivative to zero is known
as an IH constraint. The possible reasons for imposing these IH constraints have been
investigated in [29, 38, 39]; they are as follows:

o If we were to include the Goldstones that can be removed with IH constraints, these
Goldstones could appear in the effective action without any derivatives. As a result,
these modes would be gapped and could therefore be integrated out. If we are
only interested in the gapless degrees of freedom, then IH constraints correspond to
integrating out gapped Goldstones.

e Sometimes when spacetime symmetries are spontaneously broken, the resulting Gold-
stone modes do not correspond to independent fluctuations. As a result, certain Gold-
stones are redundant. From this perspective, IH constraints serve as a convenient
choice of ‘gauge-fixing’ condition.

We will see that when we apply the coset construction to non-equilibrium systems, there
are more possibilities for IH constraints.

For more on the coset construction with broken internal symmetries, consult [40] and
with broken spacetime symmetries, consult [41].

2.2 Non-equilibrium EFT

At finite temperature, the equilibrium state is given by a mixed-stated thermal density

matrix given by B
e (25)
p = — y .
tr (6_5130)



where P, is the unbroken time-translation operator. As a result, ordinary quantum field
theory techniques that involve finding vacuum correlation functions using in-out states
are of no use. Instead, we must compute quantities with the in-in formalism defined on
the Schwinger-Keldysh contour [42]. In this formalism, the sources are doubled. Letting
U(+400, —00; J) be the time-evolution operator from the distant past to the distant future
in the presence of source J for some field ¥, the generating functional is

M1:72) = e [U (400, —00: 1)U (400, —00; Jo)]

= [ Dwpws s, (2

p
where in the path integral representation, we require that in the distant future,
U (00) = Wy(o0), and the subscript p indicates that field configurations are weighted by
the thermal density matrix functional in the infinite past.

Supposing we are only interested in the IR dynamics of this non-equilibrium system,
in typical Wilsonian fashion, we can integrate out the ultraviolet (UV) fields to obtain
an effective action for the IR degrees of freedom. Let W = {t )"}, where 9T and "V
represent the IR and UV degrees of freedom, respectively. Then, we have

R A / DI Dy S ISk i 2] (2.7)
P

We call Igpt the non-equilibrium effective action. Notice that because it is defined on the
Schwinger-Keldysh contour, the field content is doubled.

It turns out that non-equilibrium EFTs must satisfy certain properties that can be
derived from unitarity of time evolution, Wilsonian renormalization group flow arguments,
and the form of the thermal density matrix. We summarize them below.

o The UV action describing the system of interest is factorized by S[W¥1; J1] — S[¥2; Ja).
The effective action, however, does not admit a factorized form into the difference of
two ordinary actions. In general, there exist terms that couple 1-and 2-fields in IgpT.

o The coefficients of S[¥1; J;1]—S[Wq; Jo] are purely real, but it turns out that the coeffi-
cients of Igpr[F, J1;¢Y, Jo] may be complex. There are three important constraints
that come from unitarity, namely

Ier [T, 85, Jo] = —Igpr [0, T Jo, Ji]
ImIgpr[yf, ¢85 J1, J2] >0, for any iy, Jio (2.8)
Igpr [T = ¢35 J1 = Jo) = 0.

e Any symmetry of the UV action S is a symmetry of Igpr, except for time-reversing
symmetries. The fact that these time-reversing transformations are not symmetries
of the effective action allows the production of entropy. Because the field values on
the 1-and 2-contours must be equal in the distant future, ¥ and 1 must transform
simultaneously under any global symmetry transformation. Thus, there is just one
copy of the global symmetry group.



o If the equilibrium density matrix p takes the form of a thermal matrix, p e~ PoP 0
then the partition function W[.Jy, J2| obeys what are known as the KMS conditions.
These KMS conditions for the partition function can be used to derive the so-called
dynamical KMS symmetries of the effective action. The way these symmetries act
is as follows: suppose that the UV theory possesses some kind of time-reversing,
anti-unitary symmetry ©; at a minimum, the UV theory will be invariant under a
simultaneous charge, parity, and time inversion. Then, setting the sources to zero,
the dynamical KMS symmetries act on the fields by

I(2) = Ouy (t — 0, ),
5 (@) = ©Yg (t + (6o — 0), ),

for any 6 € [0, Bo]. It can be checked that these transformations are their own inverse,

(2.9)

meaning that the dynamical KMS symmetries are discrete Zo symmetries. To take
the classical limit, it is convenient to perform a change of field basis by

ir 1 ir ir ir ir ir
wrzg( 1+¢2)a Vg =1 — Uy (2.10)
Then the classical dynamical KMS symmetry transformations become
o (x) = Oy (),

. . . (2.11)
G (@) — OUll(x) +i0 [ fodi (x)].

Notice that the change in 9!F is proportional to the derivative of 1. Thus, when
writing down terms of the effective action in the derivative expansion, it is natural
to consider ¥ and 9y’ as contributing to the same order.

For a clearly explained, in depth review of non-equilibrium EFTs, consult [1].

2.3 The non-equilibrium coset construction

At finite temperature, SSB occurs when a symmetry generator fails to commute with the
thermal density matrix. However, we may think of the thermal density matrix as an
ensemble of micro-states, each of which is highly chaotic. Semi-classically, therefore, we
expect each microstate to spontaneously break every symmetry of the underlying quan-
tum field theory. As a result, in the non-equilibrium coset construction, there ought to be
Goldstones associated with every symmetry generator. We will refer to Goldstones corre-
sponding to broken generators as broken Goldstones and those corresponding to unbroken
generators as unbroken Goldstones. It turns out that unbroken Goldstones enjoy a certain
kind of gauge invariance, which leads to diffusion. Finally, it is most convenient to formu-
late non-equilibrium EFTs on the so-called ‘fluid world-volume’ with coordinates ¢ for
M=0,1,2,3.

Suppose that the global symmetry group is G, with generators (2.1), and it is sponta-
neously broken to the subgroup H. Once again, let Ho be the subgroup generated by T4.
Then, we parameterize the most general element of G by

gs() = i XE (D) Py i ($)7a QL31'6§‘(¢>)TA7 (2.12)



where s = 1, 2 indicates on which leg of the Schwinger-Keldysh contour the fields live. Each
gs for s = 1, 2 transforms under the same global symmetry action. Notice that unlike in the
zero-temperature coset construction, spacetime coordinates are now dynamical variables,
XH(¢), that encode the embedding of the fluid worldvolume into the physical spacetime.

It turns out that the non-equilibrium effective action enjoys the following gauge
symmetries

oM — M+ M (gh),

95(6) = gs(¢)er (@ Ta (2.13)

for arbitrary functions €™ and A\ of spatial coordinates ¢! for I = 1,2,3. They are ‘gauge’
in the sense that they correspond to redundancies of description and should therefore not
be thought of as physical symmetries.

The Maurer-Cartan one-form is

05 Ongs = 1Bl (Pu + Vurlra ) + B Ta, (2.14)

where Ef: s are the vierbeins, V¢ are the covariant derivatives of the broken Goldstones,
and certain components of BSAM behave like gauge connections. The building-blocks that
transform covariantly under both the global symmetries and the gauge symmetries (2.13)
are as follows: first, there are the building-blocks from the usual coset construction, namely
V¢, which transform covariantly under (2.13), and to take higher-order covariant deriva-
tives we can use

0

290" VI =07 +iBATy, (2.15)

where B;f‘l = %(Bf‘[ +B§4[) and I = 1,2,3. To contract coordinate indices, we use the
metrics

Gsun = EQLM"?;WE;/N- (216)

Second, there are new building-blocks that involve the unbroken Goldstone degrees of
freedom, namely F’; and 8;40, which transform covariantly. Finally, we have terms that
involve combinations of 1-and 2-fields. Notice that E!\ (Ey )M and B2y, = B, — B3,
transform covariantly and we can contract coordinate indices with EXY') 1, EYy.

Often we may impose IH constraints to remove extraneous Goldstone modes. In addi-
tion to the ordinary IH constraints that also exist in the zero-temperature case, there are

two new IH constraints that only exist at finite temperature. They are as follows:

e Thermal IH: suppose that at finite temperature, the commutator between a broken
generator 7 and the unbroken time-translation generator Py contains an unbroken
spacetime translation generator P, that is [T, ]30] O P. Then we may set to zero the
component of Ejj in the direction of P. This equation can be solved algebraically to
yield an expression for the 7-Goldstone in terms of derivatives of the P-Goldstone.
This expression allows the removal of the 7-Goldstone.



e Unbroken IH: suppose that at finite temperature, the commutator between an un-
broken generator T' and an unbroken spacetime translation generator P’ contains
another unbroken spacetime translation generator P, that is [T, P'] > P. Consider
the matrix A%, = (E1)h;(Ey )M, where M = 0,1,2,3 are coordinate indices and
w,v = 0,1,2,3 are Lorentz indices. Then we may set to zero the components of
A,y in the directions of P and P’. Suppose that under the dynamical KMS sym-
metry transformation, A,, — Auv- Then, we may also set to zero the components
of flw in the directions of P and P’. These conditions give constraints that relate
the T-Goldstones to derivatives of the P-Goldstones, allowing the removal of the

T-Goldstones.

We will see that there is a new kind of IH constraint responsible for removing second-
sound modes, however unlike the other IH constraints it is not derivable from purely alge-
braic considerations.

Finally, we must impose the dynamical KMS symmetries. For many of the examples
that we will consider, at leading order in derivatives, the only effect of these symmetries is
to force the effective action to factorize into the difference of two ordinary actions, that is

Iepr [, ¥ = SEYT] — S[s]+-- - . (2.17)

For simplicity, we will almost exclusively work to leading order in the derivative expansion,
in which case we will deal with just one copy of the ordinary action. However, our treatment
of dissipative solids and liquid crystals and the explanation of the origin of the second-
sound-removing ITH constraints will require doubled field content. For these actions, the
dynamical KMS symmetries will be important.

For more on the non-equilibrium coset construction, consult [8].

3 IH constraints and second sound

Before we proceed to computing particular non-equilibrium effective actions, it is important
to understand the meaning of second sound and how it might relate to IH constraints. In
many states of matter, some spatial translations are spontaneously broken. Suppose that
]5,; for a particular, fixed value of u = 0, 1, 2, 3 is spontaneously broken, but that there exists
some internal U(1) symmetry generator @z such that ]5,1 = P; + Qg remains unbroken.
Then, the unbroken Goldstone modes on the Schwinger-Keldysh contour corresponding
to Pﬁ are XF(¢) and we denote the broken Goldstone modes corresponding to @ by 7%,
where s = 1,2 indicates on which leg of the Schwinger-Keldysh contour the fields are
defined. Thus, we have two kinds of Goldstone modes corresponding to translations along
the p direction, meaning that we have two different kinds of sound-modes.

After computing the Maurer-Cartan form, we find that the covariant building-blocks
include the terms 91”/3¢°, where y# = X# + 7. Tt is therefore consistent with symme-
tries to fix

oL

360 = Sh. (3.1)




Transforming to r-and a-type variables (2.10), the above equations are insufficient to re-
move X#; however, it is consistent with symmetries, including dynamical KMS, to fix

=0 = XI= gl i #0, (3.2)

thereby removing X entirely. We will see later on that there are significant problems with
the i = 0 IH constraint. Next, by inverting X*(¢) and taking the classical limit, we can
define our effective action on the physical spacetime coordinates x* such that ¢ (z) for
M =0,1,2,3 are now the r-type Pz-Goldstones [1]. It turns out that (3.1) is sufficient to
remove ¢* as an independent degree of freedom; we will see how this can be done in the
following sections.

Using this procedure, we thus successfully remove the unbroken Goldstone mode cor-
responding to Pﬁ. We claim that imposing all such possible IH constraints kills the second-
sound mode; we will see explicitly that this is the case in the following examples. Finally
notice that the conserved current associated with @ denoted by J;* and the ji-component
of the stress energy temsor, 7" are now identified with one another, up to an overall
minus sign.

Throughout the following sections, we will repeatedly encounter many of the same
building-blocks. Defined on the fluid worldvolume, they are

G oxX®  0XV¥
MN = 5 37w 50N>
Gg' 00 (3.3)
YH = GV Oyt ony”,
ZH = i
00’
where GMN is the inverse of the pull-back metric Gpy. Transforming to the physical

spacetime, we find that
(—Goo)_1/2 — T = u“&MbO,
YE =y = 0 ory?, (3.4)

1
Zr — (M= —ut o,
T
where u# = J# /\/—J2 such that xJ = d¢' A d¢? A d¢>.

4 Superfluids

As a warm-up, we will demonstrate how to remove second sound from superfluids. While no
such superfluids have been observed in nature, this toy model provides a simple example
to see how our new IH constraint can be imposed. It is important to note, however,
that imposing the IH constraint of the form (3.2) is necessary to remove a-type fields.
Unfortunately, for superfluids we are interested in the i = 0 case, which is not consistent
with dynamical KMS symmetries. However, if we focus only on the leading-order action,



we can work with just one copy of the fields, thereby (mathematically) circumventing the
problem. We will comment on how these unusual superfluids without second sound might
be realized in nature and why they ordinarily are not in section 7.

Consider a finite-temperature superfluid. Since our theory is relativistic, it ought to
be Poincaré-invariant. In our ‘mostly plus’ convention, the Poincaré algebra is

i[JMV7 JPJ] = nupJua - nupJua - naue]pu + 7701/<]p;u
i[Pya Jpcr] = 77,upPa - 77,u,aPp7 (4'1)
Z'[PM, P, =0,

where P, are the translation generators and J,, are the Lorentz generators. From the
EFT perspective, a superfluid is defined as a system that has a conserved U(1) charge @
such that both @ and Py (i.e. time translations) are spontaneously broken but a diagonal
subgroup, Py = Py + 10Q is preserved! [43, 44]. As a result, the broken generators are
@, corresponding to conserved particle number and K; = Jy;, corresponding to Lorentz
boosts. The unbroken translations are Py and P;, and the remaining unbroken generators
are J; = %eijk Jjk, corresponding to spatial rotations. The most general group element is

9(9) = X" (D) Pugin(d)Qgin' (#)Ki ¢i6'(9)J:. (4.2)

Following the steps of [8], and converting to physical spacetime, we find that the leading-
order action is

Sss. = / diz P(r,y™, (), (4.3)

where the subscript S.S. stands for ‘second sound.

To see that this action has a second-sound mode, let us expand the action to quadratic
order in small fluctuations. Letting ¢#* = z* + ¢#(z) and performing suitable field-
redefinitions to decouple € and w, we have that the quadratic Lagrangian takes the form

£ = % [00(50)2 + C1(26°9,€° + (61)?) + My7? — Ml(am)ﬂ. (4.4)

It is then straight-forward to check that there are two wave-solutions, corresponding to
first and second-sound modes. The first sound mode arises form the superfluid degrees of
freedom 7. The corresponding speed of sound squared is ¢? = M; /M. The second sound
mode corresponds to waves in the ordinary fluid degrees of freedom, #. The corresponding
speed of sound squared is c3 = Cy/Cy.

Now impose the IH constraint

oy
960 =1. (4.5)
Transforming to physical spacetime, this constraint yields ¢ = 1, which can be rearranged
to give
7 = ul0,0° = u0,). (4.6)

Thus, since ¢° only appears in the action through the building-block 7, we have successfully
removed it as an independent degree of freedom. In particular, anywhere ¢° appears, we

'We include the factor of the equilibrium chemical potential po as a matter of convention.

~10 -



may replace it with . Thus, the building-blocks are 3%, which is unaffected by the
constraint (4.5), and 79 = u#9d,1. The resulting effective action is

Siosg = / d*z P(ro,y"). (4.7)

Now consider the quadratic action. The IH constraint (4.5), at the linearized level,

gives € = 7. Thus, the quadratic action becomes
1 . )
£® =2 [(Co+ Mo)? + C1(26' 0 + (¢1)2) — Ma(9m)?]. (4.8)

It is straightforward to check that there is now only one propagating sound wave solution
with speed of sound squared ¢ = Cy/(Co + Mp). Thus, we have an EFT for superfluids at
finite temperature with just one sound mode.

Finally, we investigate the local thermodynamic behavior of the system. Letting Ty
and po be the equilibrium temperature and chemical potential, respectively, the local tem-
perature is T = Typ7 and the local chemical potential is u = pom [1, 8]. We see that
before imposing the IH constraint (4.5), the local temperature and chemical potential can
fluctuate independently; however after imposing (4.5), they are proportional, namely

T _u

—_—= 4.9
To 1o (4.9)

5 Solids

We now turn our attention to finite-temperature solids. We will find that, like in the
superfluid case, the second-sound mode of solids can be removed with IH constraints. In
the case of isotropic solids, there are just two types: those with second sound and those
without. However in anisotropic solids, it is possible to impose anywhere between zero and
three IH constraints. If we impose some but not all possible constraints, then we may have
a second-sound mode that can propagate in some directions, but not others.

Solids spontaneously break spatial translations and rotations, but to ensure that some
sort of unbroken momentum exists, we must introduce three broken internal U(1) symmetry
generators Q; for i = 1,2,3 such that P, = P; + Q; remain unbroken. Thus the broken
generators are (Q;, J;, and K; and the unbroken generators are PM, where Py = P,. The
most general group element is

9(¢) = X O (9)Qi in' (DK 10 (8) ;. (5.1)

Imposing the IH constraints of [8] and transforming to physical spacetime, we find that the
leading-order action is

Sss = /d4x P(r,y9,¢Y). (5.2)

5.1 Isotropic solids

To simplify the problem, suppose that the solid is isotropic; then we must introduce an
internal SO(3) symmetry with generators S; for i = 1,2, 3 such that .J; + S; is unbroken.

- 11 -



Moreover we require that [S;, Q;] = i€;;x Q). Rather than going through the coset construc-
tion again with these additional symmetries, we merely comment that the corresponding
Goldstones can be removed with IH constraints. As a result, the only effect of the unbro-

ken rotational symmetry is that all spatial indices %, j,... must be contracted in manifestly
SO(3)-invariant ways. Then, the Lagrangian (5.2) can only depend on ¢ and ¢’ in the
combinations
try, try?, try® (5.3)
and
(€3, y ¢, (v ¢7)2. (5.4)

Expanding the isotropic solid Lagrangian to quadratic order in the fields and making
suitable variable changes to decouple the fluid and solid degrees of freedom, we find that

£ = %[00(50)2 + C1(26°9;° + (6')?) + My (7")? — M (0;w")% — M2(eijkajwk)2]. (5.5)

It is straightforward to check that the sound waves can be classified as follows: a longi-
tudinal solid mode with speed squared c% = M /My, a transverse solid mode with speed
squared 02T = My /My, and a longitudinal hydrodynamic second sound with speed squared

C% = C1/Cs.
Let us impose the additional IH constraints; there are three of them, namely
o’
=0. 5.6

Notice that because of isotropy, we must impose all three conditions simultaneously. We
will see in the next subsection that if isotropy is broken, we have more options. Converting
the above equation to physical spacetime, we have

w9, = 0. (5.7)

Notice that the symmetries (2.13) require that ¢! may appear in the effective action only
in the package u”. But the above constraints require that u* be orthogonal to the vectors
a,ﬂ/ﬂ‘ for i = 1,2,3. With the assumption that u* remain orthochronous, we find that (5.7)
implies u# = v* such that

i
o= 7 xj = dpt A dy? A diB. (5.8)

Thus, we have successfully removed the unbroken Goldstones ¢! for I = 1,2,3. The
covariant building-blocks for the effective action are now m = v“@ugbo and 3%, so we have

Sho 8.8, = /d4$ P(r1,y"), (5.9)

where it is understood that y* appears only in the forms given by (5.3).
At the level of the quadratic action, imposing these IH constraints gives us the lin-

earized relations ¢’ = 7. Thus, the quadratic Lagrangian becomes
1

£? = 3 [co(gﬂﬁ + 2017 8;° + (C1 + M) (i) — My (i) — MQ(eijkaﬂ‘wk)ﬂ. (5.10)
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We now have one transverse solid sound wave with speed squared ¢z = My/(C'1+ M) and
one longitudinal sound wave with speed squared c¢2 = (M; + C%?/C1)/(Cy + My). Thus,
there is no longer a fluid-like second-sound wave; this is typical of most solids.

5.2 Uniaxial crystals

Now, we investigate the simplest case of an anisotropic solid, namely the uniaxial crystal.
We will take the Z-direction to be the axis of symmetry and let A, B = 1,2 label the
directions perpendicular to the symmetry axis. Then this crystal has an internal SO(2)
symmetry generated by S3 such that J3+.S3 remains unbroken. The effect of this symmetry
will be to force A, B indices to contract in manifestly SO(2)-invariant ways. Thus y* and
¢%, may appear in the effective action only in the packages (5.3), (5.4) and

T (Ve L G e (5.11)

Performing the field redefinitions necessary to decouple e from 7°, the leading-order
quadratic Lagrangian is

£ = % [CO(éO)Q + C1(26042° + (67)2) + C5(26%05° + (£)2) + Mo (71)?
— M3 (9373)? — Myp(847%)% — My (0am™)? — Myp(9377)? (5.12)

—MQT(ESABaAWB)Q — M4(837T36A7TA):|.

The dispersion relations of the solid degrees of freedom are rather complicated, but it can
be checked that they agree with the usual dispersion relations of uniaxial crystals. Further,
it is easy to see that the fluid degrees of freedom € have a longitudinal second-sound wave
solution with sound speed squared ¢ = C7/Cp when it propagates in the z-y plane and
c3 = C3/Cy when it propagates parallel to the z axis.

Now, we could impose the IH constraints (5.6) as we did before, but this will not give
us anything too new. Instead, we will exploit the anisotropy of the uniaxial crystal. We
have two anisotropic options for IH constraints, namely

ot o’
a0 0 O e

If we impose both sets of constraints simultaneously, the second-sound mode is killed

= 0. (5.13)

entirely; however, if we impose just one, then the second sound is not entirely removed,
though its dynamics are restricted. In particular, imposing the first set of constraints
prevents the second-sound wave from propagating in the z-y plane, while imposing the
second prevents the second-sound wave from propagating parallel to the z axis.

5.3 Supersolids

Supersolids are just like ordinary solids except that now Py is spontaneously broken and
there exists a U(1) charge Qg such that Py = Py + Qo remains unbroken. For simplicity,
assume the supersolid is isotropic. Then, the effective action is given by

SS.S. = /d413 P(Ta y007 in’ ywv Cou Cz)a (514)
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where it is understood that y%, y*, and ¢’ are contracted in SO(3)-invariant ways. We
now have two possible sets of IH constraints?

ol ot
a0 O G =

We can impose zero, one, or both of these. If we impose the first, then just as in the

0. (5.15)

superfluid case, the second-sound mode is killed; if we impose the second, then just as in
the isotropic solid case, the second-sound mode is killed. If we impose both sets of IH
constraints, then the leading-order action at finite temperature is

Ssis. = / d'z P(y™, 4% ), (5.16)

which is identical to the leading-order action at zero temperature [28, 30].

6 Smectic liquid crystals

Liquid crystals are states of matter that exist on a spectrum somewhere between fluids
and crystalline solids. Crystalline solids spontaneously break all spatial translations and
rotations, but preserve a discrete subgroup of translations, whereas fluids do not break any
translations or rotations. Smectic liquid crystals consist of stacked layers of molecules; in
this way spatial translations along one direction are spontaneously broken [45, 46]. Without
loss of generality, we will take this broken translation generator to be P3. Additionally, the
presence of the sacked layers breaks the rotations J; and J. To ensure that some notion
of translations is preserved, we must introduce a U(1) charge (3 that is spontaneously
broken such that the diagonal subgroup generated by P3 = P + Q3 is preserved. We will
use indices A, B = 1,2 to indicate directions orthogonal to the stacked layers.

6.1 Phase A

In phase A, translations in the z-y plane and rotations about the z axis are unbroken.
Thus, Pu =P, + 62@3, and J3 are the unbroken generators and J4, K;, and Q3 are the
broken generators. The most general group element is

9(8) = X" (D Pugin®(9)Qs in® (9) Ks 04 (6) Ja+i6%(9) s gin™ (9) K a (6.1)

Going through the steps given in [8], and transforming to physical spacetime, we find the
leading-order action is

Ss.s. = / diz P(r,y%, %), (6.2)

Expanding to quadratic order in the fields and performing the necessary field redefinitions

3

to decouple e from 7°, we arrive at the quadratic Lagrangian

£@ = % [Co(0) + Cr(2620,c + (4)2) + Ca(26%01c” + (9)2) + Mo(#*)?
(6.3)
— M (Da7°)? — My(D57°)2].

2If we impose the ji = 0 TH constraint from (3.2), we will encounter the same problems that plague the
superfluid. But in the leading-order action, we can (mathematically) get away with ignoring these issues.
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Notice that there is one transverse and one longitudinal mode that propagate in the z-y

plane with speeds of sound squared c% = M;/My and ¢2 = C1/Cy, respectively. And

there are two longitudinal modes that propagate parallel to the z axis with speeds of sound

squared ch = M3/My and ¢ = C3/Cy. Thus, there are two longitudinal waves that can

propagate in the same direction, meaning that our theory supports a second-sound mode.
Now impose the IH constraint

o3
— =0. 6.4
- (6.4
Converting to physical spacetime, this give
w9, = 0. (6.5)

Thus, given that u* is orthochronous and orthogonal to 8M¢A for A = 1,2, the above
equation means that we may replace all instances of u* by

74
\ _j:éjj?w

Therefore, all instances of ¢° in the effective action can be replaced with ¥>. As a result,

u' — vf = * jg = do' A dd? A dyp. (6.6)

the building-blocks are 73 = v4 ngbo and y33, so we have

Sho s = / d*z P(r3,y%). (6.7)

At the linearized level, these IH constraints become ¢ = #3. The resulting quadratic

action is
1
£ = 5 [00(50)2 + 01(25'A82-50 + (éA)Q) + 2C3730;6° + (Mo + Cg)(ﬁ3)2
(6.8)
— My (9a7°)? — My(057%)?].

We see therefore that there is now just one longitudinal sound wave propagating parallel
to the z axis, meaning that we have successfully removed the second-sound mode. Notice
that even though there is no second-sound mode, we still have a hydrodynamic sound mode
that can propagate in the z-y plane; however this mode is not a second sound mode as
there are no other such longitudinal sound waves that can propagate in the same direction.

6.2 Phase B

Phase B smectic liquid crystals are essentially just solids that cannot sustain uniform z-z
or y-z shears [45]. At the level of effective field theory, this inability to sustain such shears
is captured by the symmetries
v =t gt (), (6.9)
for arbitrary functions g“ [8]. Thus, the effective action is just (5.2) except y* can only
appear in the packages
b = det y¥, 33,

bl = y11y33 _ (y13)2

and ¢4 for A = 1,2 cannot appear in the effective action.

(6.10)
. b=y —(y

)

23)2
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Imposing the ITH constraints '
o _ 0 6.11
W - Y ( . )
just as in the solid case, allow us to replace all instances of ¢' with ¢*. And again, just as
in the solid case, these IH constraints remove the second-sound wave.
Since smectic phase B is anisotropic one might wonder if we can impose anisotropic
TH constraints. If we were dealing with an ordinary anisotropic solid, we could freely mix
and match from the constraints
ot o? o3
— =0 OR — =0 OR — =0. 6.12
DO DO DO ( )
However, because of the additional symmetries (6.9), imposing either of the first two con-
straints without also imposing the third is prohibited. Thus, if we are to impose any IH
constraints at all, we must impose 91%/9¢° = 0, which will prevent second-sound waves
from propagating parallel to the z axis.

7 The meaning of IH constraints

It is a curious fact of nature that second sound always exists in superfluids but not in other
states of matter like solids. Why should this be the case? To understand why, suppose
that P; = P; + Q. By imposing the constraints

oy

360 = o, Wl =iBydl, (7.1)

we are essentially removing ()5 as an independently conserved quantity. Thus, while the
mathematical possibility of superfluids with no second sound exists, it requires the non-
conservation of the U(1) charge @ associated with particle number. Removing the con-
servation of () does not make sense as particle number conservation has physical meaning
independent of superfluid phase. For solids, however, the internal translation generators
Q; emerge from the periodicity of the solid lattice and hence are only defined in solid
phase. As soon as the solid melts, these symmetries simply vanish. From this perspective,
it is not so strange that an IH constraint should be able to remove them entirely from the
physical theory. Viewed from another perspective, it is well-known that second sound only
exists in solids with a pristine crystalline lattice structure and low probability of Umklapp
scattering [47]. The reason is that Umklapp scattering leads to non-conservation of lat-
tice momentum; i.e. ); is not conserved by Umklapp scattering events. Since superfluids
have no lattice structure, there can never be Umklapp scattering and hence second sound
must always persist. There has, however, been recent work indicating that systems with
periodic structure in time can exist in thermodynamic equilibrium states, known as time
crystals [48]. This leaves open the intriguing possibility that the superfluids or supersolids
without second sound may describe time crystals in the limit of large Umklapp scattering.
There are, however, reasons to doubt this interpretation. We will discuss them at the end
of this section.
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To see explicitly how Umklapp scattering can lead to IH constraints, we now consider
the simple example of a solid in the limit of large Umklapp scattering. We begin by pos-
tulating the existence of a second-sound mode and show that when Umklapp scattering is
large, integrating out the Goldstones v associated with the internal translation generators
Q; is equivalent to imposing the usual IH constraints. At leading order in the derivative
expansion, the ordinary effective action for a solid with second sound is given by (5.2).
For this exercise, however, we wish to work with the non-equilibrium EFT with doubled
field content. Woking to leading order in the derivative expansion and using the r, a-basis,

we have
Iyg = / A [T 0, X gy + JHOu10%], (7.2)
where
P P . .
T = T—a utu’ + Pt + or _ QHa)t 9V
or oyv (7.3)
- . P opP ’
= QM) ot
J 8wayw+u aci”

are respectively the stress-energy tensor and @);-Noether currents. As in (5.2), the hydro-
dynamic pressure, P is a generic function of 7, ¥%, and ¢*. And the fluid four-velocity
ut = 70X /0¢°. Notice that the equations of motion for X* and 1! are just the conser-
vation equations 9, 7" = 0 and 9, J% = 0, respectively.

The action (7.2) as it stands represents a solid with second sound modes and no
Umklapp scattering. Umklapp scattering is a process by which the lattice-momentum of
the phonons is not conserved. In other words, (); are not conserved. However, on large
distance-scales, our solid should still appear homogeneous, meaning that in this course-
grained picture, (J; must still represent true symmetries of the effective theory. How can it
be that @; are symmetries of the EFT but have no corresponding conserved currents? This
seems to contradict Noether’s theorem. However, in non-equilibrium EFTs, the relationship
between conserved currents and symmetries is not so straight-forward. To see how this is
so, suppose that we allow the action to depend on v} without derivatives. Notice that Q;
act on % for s = 1,2 by ¢ — X!, for constants A\*. Thus, since ¥’ = ! — b}, we find that
¢ are invariant under @;. With these new building-blocks, our effective action becomes

TIymktapp = /d4x [T“”@uXm, + JHOy, + T, + §M’J¢ng , (7.4)
where I and M% are functions of 7, 4%/, and ¢*. Imposing the dynamical KMS symmetries,
we have ,

, 1 O
I"=——M"Y—= 7.5
where Ty is the equilibrium temperature. Now the equations of motion for 1% are
O JH =T (7.6)

We therefore see that the current associated with @); is no longer conserved, as desired.
Working in the large Umklapp scattering limit, the above equation simplifies to I' = 0,
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which is solved by fixing 912 /0¢" = 0. The equations of motion for ¢ give ¥ = 0. Thus,
if we integrate out w%w we find that

Oy _ i
8¢0 - 07 ’¢a - Oa (77)

which are precisely the relevant IH constraints of (7.1) necessary to remove second sound
from solids.

In summary, these second-sound-removing IH constraints arise whenever Umklapp
scattering destroys the conservation of the Noether current associated with an internal
translation generator.

Curious readers may wonder how our action can have a symmetry without a corre-
sponding Noether current. Notice that the action of Q; is to shift ¥¢ — i+ )\, while it has
no effect on 1¢. As a result the corresponding conserved currents furnished by Noether’s
theorem,

in — aIUmklapp
K= 5@t (78)
are conserved on-shell, namely 9, K i = (. However, since all of the terms of TIymilapp have
at least one a-type field, all terms of K* similarly have at least one a-type field. On shell,
all a-type fields vanish, meaning that on shell, K% must also vanish. Thus the Noether
currents associated with ); contain no physical content.

Finally, let us return to the superfluid case. Notice that the constraint (7.1) requires
that 10 = ify in order to be consistent with dynamical KMS symmetry. However, the
equations of motion force all a-type fields to vanish, meaning that we cannot interpret the
TH constraint as arising from equations of motion as we did in the case of solids. One way
to remedy the situation is to instead fix dpy)? = 1 and ¥ = 0. Such a constraint is not
consistent with the dynamical KMS conditions, but it does allow us to interpret the IH
constraints as arising from equations of motion when the internal shift symmetry (generated
by Qo) does not correspond to any conserved quantity. Since the KMS symmetries are no
longer satisfied, the equilibrium state of such a system is decidedly non-thermal. Why
should we need a non-thermal equilibrium state in order to remove second sound via the
equations of motion for superfluids but not for solids? The reason is that if (g is not
conserved, then the equilibrium state of our system can only exist at finite density — and
hence finite chemical potential (i.e. 9g3Q # 0)—if it is driven by some external force. But
this means the equilibrium state is not thermal equilibrium. We leave the investigation of
such driven systems for future work.

8 Other worldvolumes

Thus far, we have been constructing our effective actions on the physical spacetime. While
this is a valid thing to do in the classical limit, if we want a quantum theory, then we must
define our EFT on a manifold other than the physical spacetime [1-3, 8]. In the usual
non-equilibrium coset construction of [8], this manifold is the fluid worldvolume ¢™ for
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M =0,1,2,3 with gauge symmetries
¢° = ¢* + f(o"),
o' = g'(¢”),

where f and ¢! are arbitrary functions of the spatial coordinates ¢! for I = 1,2,3. Sup-

(8.1)

posing our theory is defined on the fluid worldvolume, we are interested in the effect of
imposing the second-sound-removing IH constraints
oy
oY
Then, just as in the classical case, we find that we may replace all instances of ¢ with
Y. Really, if we wanted to be completely general, we could write ¢ = ¥ + h#(¢!), for

=8, Yh=0. (8.2)

I =1,2,3, for some arbitrary spatially-varying function. We therefore consider ¢/ =
to be a gauge-fixing condition equivalent to h* = 0. With this gauge-fixing condition, we
can define the ‘condensed-matter worldvolume’ coordinates o™ by

M _ { Y M=ph
o = M _
oY M # [u.

Thus, the gauge symmetries that o™ enjoy are reduced; however, whatever symmetries

(8.3)

the fields ¢# possess, the condensed-matter worldvolume coordinates inherit.

To give concrete examples of what these new worldvolume symmetries look like we will
give specific examples for a few condensed matter systems. For the sake of brevity, we will
focus on systems for which all possible constraints of the form (8.2) that can be imposed

are imposed. They are as follows:
o Superfluids: for constant ¢ and arbitrary spatially-varying functions ¢’, we have?
0¥ = o+, ol = g'(a?). (8.4)
e Solids: for arbitrary spatially-varying function f(c?) and constants c’, we have
o' 5%+ flo), o=+l (8.5)
Sometimes solids have the additional symmetries
o' — RYg7, (8.6)
where R € SO(3) for isotropic solids and R € SO(2) for uniaxial crystals.

M

o Supersolids: for constants ¢, we have

oM oM M, (8.7)
Isotropic and uniaxial supersolids also have the symmetry
o' — RYq7, (8.8)
for R € SO(3) and R € SO(2), respectively.

3We remind the reader that a theory constructed on this worldvolume does not describe the kind of
superfluids found in nature or the laboratory.
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e Smectic liquid crystals in phase A: for arbitrary spatially-varying functions f and g
and constant ¢®, we have

¥ = ¥ + f(oh),
ot = o4 + g4 (oY), (8.9)

o3 —>J3+c3.

e Smectic liquid crystals in phase B: for arbitrary spatially-varying function f and
arbitrary functions ¢# of o, and for constant ¢?, we have

o — 0¥ + f(oh),
ot = o + g4 (0?), (8.10)

o3 —>03+c3.

Notice that all of these condensed-matter worldvolume diffeomorphism symmetries are
subsets of the fluid diffeomorphism symmetries (8.1).

8.1 The solid-worldvolume coset construction

It turns out that if we are committed to describing systems without second sound — or at
least reduced second sound — we can skip over the procedure of first defining the theory
on the fluid worldvolume and then imposing IH constraints. Instead, we can define our
theory directly on the condensed-matter worldvolume from the start. To demonstrate how
this construction is done, we will investigate the example of an anisotropic crystalline solid
with no second-sound mode using a new kind of non-equilibrium coset construction defined
on the solid worldvolume.

The only symmetries of the theory that appear in the coset are the Poincaré symme-
tries; in particular there are no internal translation-symmetry generators ;. Physically,
we must remove the charges @); because they are now realized as the translation gauge
symmetries on the solid worldvolume coordinates (8.5).

To keep things simple, we will work to leading order in the derivative expansion.
As a result, we may construct an ordinary action with just one copy of the fields [8].
Parameterizing the most general group element by

g(O’) — eiX“(a)PueiGi(o)Jieini(cr)Ki’ (811)

we find the resulting Maurer-Cartan form is

EY; = 0 XV[AR),

V' = (E-HM A oA Y R, (8.12)
1 )
Vil = e (BT RTAT 0u (AR,

such that RY = [¢i"(#)7i]i and AF, = [ei”i(d’)Ki]“y. We are interested in finding building-
blocks that transform in a manifestly covariant fashion under (8.5).*

4Because rotations are spontaneously broken, we will impose no right-acting, time-independent rotation
gauge symmetry on g(o) as was done in the fluid case in [8].
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To remove boost Goldstones, impose the IH constraints Eé = 0, which can be solved

to give ' ,
777, aOXz
—tanhn = ———
" anhn Bo X!’

where 1 = /nin’. This gives us our first building-block Ef = \/—Goo, where

(8.13)

ox®  0XV

00 = 990 1 0

(8.14)

Next, impose eijk(E_1)§ = 0. This IH constraint tells us that
(BN, = (G, (8.15)

where GV = n““(e‘l)z(e_l),{ and eh; = 9)r X*. We therefore can identify G% as the spatial
components of the inverse pull-back metric. Thus, the leading-order effective action is

Sppr = / d*o/=G P(Goy, GY). (8.16)

Converting to physical spacetime, we find that our action is, up to relabeling of fields, the
anisotropic version of (5.9).

Lastly, we note that real-world solids are composed of atoms and molecules, the number
of which tend to be conserved. As a result, it is often necessary to include an unbroken
Goldstone associated with the U(1) charge arising from particle-number conservation, that
we denote by . Since it is an unbroken Goldstone, it enjoys the time-independent chemical
shift symmetry ¢ — ¢ + F(0'). At leading order in the derivative expansion, the only
symmetry-invariant building-block associated with ¢ is the local chemical potential

Oy

In equilibrium, we expect that (u) = po for some constant pg. As a result, ¢ must have
a time-dependent equilibrium profile, namely (p) = pot. Thus, the leading-order effective
action including particle number conservation is

Serr = [ doV=G PG, GV, p). (8.18)

8.2 Classifying states of matter

It is interesting to note that nowhere in the above coset construction did we ever need
to specify the symmetry-breaking pattern. Instead, all we did was specify the global
symmetry group, namely the Poincaré group, and then we specified the relevant gauge
symmetries (8.5). Further, notice that the solids with and without second sound are iden-
tical at the level of SSB patterns; however, they are not identical at the level of specifying
the global and gauge symmetries. In particular, at the level of the coset construction, the
global symmetry group for solids with second sound is the tensor product of the Poincaré
group and the internal [U(1)]® group generated by Q;; the gauge group is given by (8.1).
On the other hand, the global symmetry group for solids without second sound is just the
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Poincaré group and the gauge group is given by (8.5). We therefore claim that if one wishes
to be very precise, it is better to characterize states of matter according to their global and
emergent gauge symmetries than by their SSB patterns.

Finally, it is worth pointing out that this new classification in terms of emergent gauge
symmetries works even in the case of zero-temperature SSB. Supposing that we have the
symmetry-breaking pattern G — H at zero temperature. Then, we could equally well
specify this state of matter by specifying the global symmetry group G and then require
invariance under the local right-action of H. More specifically, parameterize the most

general element by .
g[m, €, z) = e Pueim® @7 gic? ()Ta (8.19)

Then if we require invariance under the gauge transformation
glm, e,x) — g[m, €, x) - h(z), (8.20)

for generic h(x) € Ho, this forces all unbroken Goldstones e (z) to be pure gauge. As a
result, they cannot possibly appear in the invariant building-blocks, so we will construct
the same effective action with this method as we would with the usual coset parameter-
ized by (2.2).

9 Solids and smectics with dissipation

We begin by constructing the effective action for solids without second sound to leading
order in dissipation; then we will show how to modify it to account for smectics in phases
A and B. The construction of such an action requires doubled field content. We could use
the coset construction to formulate this higher-order action, but we find it convenient to
use a different method that makes the constitutive relations more apparent.

We will work exclusively in the classical limit, allowing us to formulate our action on
the physical spacetime coordinate x# = X#. As a result, the solid worldvolume coordinates
become dynamical fields. Our field content is now o™ (z), o, (z), X/ (), and @, ().

To construct the effective action, it is helpful to first identify the symmetry covariant
building-blocks. The retarded building-blocks are as follows. Let K é\/f () = 8uaM ().
Then the local inverse-temperature four-vector field is given by

B (x) = fo(K 1, (9-1)

where [y is the equilibrium inverse temperature. This field encodes all information about
the temperature and local rest-frame of the solid volume elements. It is often helpful to
decompose this object into its magnitude and direction by g* = fu*, where

B
8=/-5, w =2 9.2)
g
Next, there are the solid basis vectors and (inverse) solid metric given respectively by
en(w) = K, 79 (x) = e el (9.3)
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Note that ¢, j,k,l = 1,2, 3 indicate spatial solid coordinate indices as opposed to physical-
space indices. We also have the chemical potential p given by (8.17) as a building-block. In
addition to the retarded building-blocks, we have the advanced covariant building-blocks

Ga;w = a,uXaV + auXa;u Bau = 8u90a- (94)

The leading order action is constructed with 3, p, ut, v, Gauw, and By, without
any additional derivatives. Further, because advanced fields count at higher-order in the
derivative expansion, the leading terms may only contain one factor of Gy, and Byy,.
Thus, the leading-order Lagrangian is

1
L= §T5‘”GW + J Bay, (9.5)

where T} is some symmetric tensor and J} is some four-vector built from 3, u, u#, and
~% and have the interpretation of the stress-energy tensor and particle number current,
respectively. Notice that the equations of motion for X# and ¢, are, respectively 9,T3" = 0
and 0, J) = 0. The most general form this leading-order stress-energy tensor can take is

T(;)UJ _ Eouuulj + pOANV + TiinjMV7 (96)

where A* = g" +uHu” and Affu =

current is

%(eze,{' +elel,). And the leading-order particle number

J = nou. (9.7)

We take €q, po, 75, and ng to be generic functions of 3, p, and ~% . For isotropic solids, the
sum over indices 4, j must be performed in a rotationally-invariant manner, but for generic
solids, the 7, j indices on r;; and ~4 are purely for the purposes of bookkeeping and need
not transform in any particular way.

At leading order, the dynamical KMS symmetries allow us to write the action in
factorized form as [ d*xL; = Sgpr[Xi1] — Serr[X2] + O(a?), where Sgpr is given in (8.18).
As a result, we have the relations among €g, pg and r;; given by

9o, 9o Opo 9o

o8 + Maa Tij = 8'7”’ ng = 8;1, . (9'8)

pOEP(ﬁ7N>’7ij)7 €0 +po=—

The next-to-leading-order (NLO) terms in the Lagrangian give rise to dissipation.
We have 1 .
i .
Lo = ST + J{'Boy + ng‘”’aﬁawcmﬁ + i7" By Bay- (9.9)

Physically, 7" and J}' are, respectively the NLO contributions to the stress-energy tensor
and the particle number current. By contrast, W' v and Z4" encode information about
statistical fluctuations. The explicit forms of these terms are potentially quite complicated.
Fortunately, we can employ the generalized Landau frame [1] to simplify matters. In
particular we have

T = —niju AT AR g, WP = Bl A AR, (9.10)

~ 93 -



and
JI =~ A BT, (Bu), Z8 = B o AT (9.11)

where the forms of W B and Z," are determined by the classical dynamical KMS sym-

5

metries.” We interpret 7;;,; as the viscosity tensor and o;; as the charge conductivity

tensor, which is related to the thermal conductivity tensor r;; by

€0 + Po 2
Kij :( o ) Boij. (9.12)

These tensors enjoy various symmetries among their indices, namely
Nijkl = Mjikl = Nijik = Mklij>  Tij = Oji- (9.13)

Putting it all together, the full Lagrangian to leading order in dissipation is £ = £1+Ls,
or explicitly,

1 g g i
L== KoV A NG Ly QZJHVlearB(a _ G )}G 5
5 €U~ u Po Tij Nijkl aUg 43 aaf3 ap (914)

+[nout — 03 AY* 3718, (Bp) — iBay)] Bay-

Lastly, it is worth noting that the effective actions for smectic liquid crystals in phases
A and B can be obtained quite easily from the above action. In fact, they are special cases
of the above. Consider the symmetries (8.9) and (8.10). Notice that they contain strictly
more symmetries than the solid worldvolume. In this way smectic liquid crystals can be
seen as symmetry enhanced solids. To obtain the action for smectic A liquid crystals,
we restrict the kind of dependence the action can have on 7%. In particular, the action
may only depend on 33 and the transport coefficients nijkt and o;; must be rotationally
symmetric about the 3 direction. Explicitly, for any rotation

cos@ —sinf 0

RY(0) = [ sinf cos® 0| , (9.15)
0 0 1
we have that
g = R R R R s, 015 = RV R 00, (9.16)

The action for smectic B liquid crystals has the same building-blocks as that of phase A
except its dependence on 4% may also include

11 33_(

b=dety, by =~y (v13)2, by =243 — (423)2, (9.17)

and the viscosity tensor need not have any rotational symmetry about the 3 direction.
Comparing with [1], we see that fluids and smectic liquid crystals can be viewed as highly
symmetric solids at the level of the non-equilibrium effective action.

5In general, the field redefinitions required to arrive at the generalized Landau frame do not respect the
dynamical KMS symmetries. Conveniently, however, the dynamical KMS symmetries hold for the NLO
Lagrangian in generalized Landau frame.
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9.1 Comparing with previous results

Recent papers [34, 35] have constructed effective field theories for relativistic solids by
formulating constitutive relations for conserved quantities. The constitutive relations that
these authors arrive at bear great resemblance to those presented here, but with some
‘ f
orthogonal to the fluid velocity u*. That is ufej, = 0 off shell. This orthogonality arises

differences. In particular, in our formulation, the solid basis vectors e!, are automatically
because we have removed second sound; if second sound were present then the fluid degrees
of freedom could flow freely relative to the solid degrees of freedom, thereby permitting
u"eL # 0. Alternatively even with second sound present, we could abstain from imposing
the ts-removing IH constraints and find that, on the equations of ufe), is non-zero but
decays to zero exponentially fast. In particular if I from (7.4) is sufficiently large, then
the exponential decay will take place on shorter time scales than the UV cutoff of the EFT;
if I'? is sufficiently small, then such decays occur on time scales longer than the UV cutoff.

As a result, the results presented in this paper agree with those of [34, 35] so long as
we augment their equations with additional equations either forcing u“efl = 0 or equations
dictating the (non)-conservation of the lattice momentum currents J*.

10 Summary

In this paper, we identified the key ingredient — from the perspective of non-equilibrium
effective field theory — that distinguishes condensed matter systems with and without
second-sound modes. In particular, we found that an IH constraint can be imposed to
remove second-sound modes at the level of the non-equilibrium coset construction. Unlike
other IH constraints, however, the existence of these new constraints are not derivable
from the usual algebraic relations involving commutators of various symmetry generators.
The only thing they have in common with the usual IH constraints is that they allow the
removal of one set of fields in favor of another.

After identifying these new IH constraints, we then demonstrated how they can be
applied to various states of matter including superfluids, isotropic solids, uniaxial crystals,
supersolids, and smectic liquid crystals in phases A and B. In all of these examples, it
was possible (though in the cases of superfluids and supersolids, not necessarily physically
reasonable) to remove the second-sound modes with IH constraints, but some states of
matter also admit the unusual possibility of partial removal of second-sound modes. In
particular, by imposing some but not all of the possible IH constraints, we found that it is
possible to have second-sound modes that can propagate in some directions but not others.
It would be fascinating to see if any such states of matter exist in nature.

Additionally, we demonstrated that if we are committed to describing condensed mat-
ter systems without second sound — or at least partially removed second sound — then
we can construct our theory directly on a new condensed matter worldvolume, as opposed
to the usual fluid worldvolume, thus circumventing the need for the new IH constraints.
The difference between the fluid worldvolume and other condensed-matter worldvolumes
has to do with the diffeomorphism gauge symmetries that exist in each. In particular, the
fluid worldvolume has symmetries given by (8.1), whereas condensed matter worldvolumes
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have reduced gauge symmetries; see (8.4)—(8.10) for examples. As a concrete demonstra-
tion, we formulated the leading-order effective action for anisotropic solids using the coset
construction defined on the solid worldvolume.

We noted that instead of using Landau’s classification of states of matter in terms of
SSB patterns, we can be more precise if we merely specify the global and emergent gauge
symmetries without making reference to SSB at all. We hope that more exotic states of
matter for which Landau’s system is inadequate can be understood in terms of this new
classification method.

Further, we found that the physical origins of the IH constraints responsible for re-
moving second sound are directly related to Umklapp scattering. Thus, it is appropriate
to impose such IH constraints for EFTs of certain solids, but not for superfluids since
superfluids do not exhibit Umklapp scattering.

Finally, we constructed the effective actions for solids and smectic liquid crystals in
phases A and B to leading order in the derivative expansion. We found that in the absence
of second sound, fluids and smectic liquid crystals can be viewed as highly symmetric solids.
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