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1 Introduction

The spectrum of conformal dimensions of local operators is the basic data in any conformal
field theory. Unfortunately, there is a shortage of tools for the exact calculation of the
conformal dimensions for interacting CFTs in more than two dimensions. For theories
with enough supersymmetry the dimensions of certain BPS operators can be computed
exactly by exploiting the fact that they belong to special short, or protected, multiplets
of the superconformal algebra. Finding the spectrum of non-BPS operators however is
usually out of reach. The goal of this paper is to calculate the conformal dimensions of
infinitely many protected and unprotected local operators in a 4d N = 1 theory known
as the Leigh-Strassler (LS) SCFT [1]. To render the calculation manageable we focus on
the LS theory with gauge group SU(N) and study it in the large N limit where it can be
described by a holographically dual AdS5 solution of type IIB supergravity.

The LS SCFT can be obtained as an IR fixed point arising from the N = 4 SYM
theory via an RG flow triggered by a relevant deformation. More specifically one can write
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the N = 4 SYM theory in an N = 1 formulation with the following superpotential for the
three chiral superfields

W = Tr Φ1[Φ2,Φ3] + m

2 Φ2
1 . (1.1)

For m = 0 one finds the N = 4 SCFT. The RG flow triggered by the relevant coupling
m 6= 0 ends in a non-trivial 4d N = 1 SCFT with an effective quartic superpotential
for Φ2 and Φ3 which can be obtained by integrating out Φ1 [1]. The LS SCFT has an
SU(2)F flavor symmetry and a U(1)R superconformal R-symmetry. It is a part of a three-
dimensional conformal manifold, which is believed to be compact and thus does not have
a weakly coupled locus. This should be contrasted with the N = 4 SYM theory which
has a free limit and one can gain some calculational control of the operator spectrum
by employing perturbation theory. The fact that the LS theory is intrinsically strongly
interacting complicates the calculation of the spectrum of operator dimensions.

The AdS/CFT correspondence has proven to be an invaluable tool in addressing such
strongly coupled CFT problems and indeed it can be brought to bear for the LS SCFT.
The holographic description of the RG flow connecting N = 4 SYM and the N = 1 LS
fixed point is given by a domain wall solution that interpolates between two supersymmet-
ric AdS5 vacua of the five-dimensional, SO(6) gauged, N = 8 supergravity [2]. The AdS5
vacuum dual to the UV N = 4 fixed point is the maximally supersymmetric SO(6) invari-
ant vacuum of the 5d theory [3–5]. The IR AdS5 vacuum preserves 1/4 of the maximal
supersymmetry as well as an SU(2)F × U(1)R subgroup of SO(6) and was found in [6] as
a non-trivial critical point of the scalar potential of the 5d gauged supergravity. Impor-
tantly, the full holographic RG flow and the IR AdS5 vacuum can be explicitly uplifted to
solutions of type IIB supergravity [7, 8]. The existence of this uplift to ten dimensions is
now understood to be a consequence of the fact that the 5d SO(6) N = 8 supergravity
can be obtained as a consistent truncation of type IIB supergravity on S5 [9, 10]. One can
hope to use the explicit 10d AdS5 Pilch-Warner (PW) solution in [7] to study the spectrum
of perturbative KK excitations as was done for the maximally supersymmetric AdS5 × S5

solution in [11–13]. The masses of the KK modes can then mapped to the conformal di-
mensions of local operators in the dual SCFT. This however proves to be a hard problem.
The reason is that the solution of [7] is not of Freund-Rubin type, i.e. the metric on S5

is not the round one and there are non-trivial fluxes for the R-R and NS-NS 2-forms on
the S5. This in turn implies that the group theory techniques used in [11–13] cannot be
directly applied to the PW supergravity solution.

A new tool was recently developed to attack precisely such KK spectroscopy prob-
lems [14, 15]. An important stepping stone that facilitated this development is the for-
mulation of exceptional field theory (ExFT) as a duality covariant formulation of 10d or
11d supergravity [16]. In the context of type IIB supergravity, the ExFT formalism allows
for a formulation of 10d supergravity in an E6(6) covariant way which, is tailor made for
reductions to 5d [17]. An important application of this formalism leads to a proof that
the 5d N = 8 SO(6) gauged supergravity theory of [3–5] is a consistent truncation of type
IIB supergravity on S5 [10]. In addition to proving this important fact the results in [10]
provide explicit equations that relate the 5d and 10d supergravity fields that can be used to
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uplift any solution of the equations of motion in the 5d theory to a type IIB background.1
It was shown in [14, 15] that these consistent truncation results can be extended to apply
not only to a given 5d solution and its 10d uplift but also to the full spectrum of quadratic
fluctuations around a given supergravity solution. Using the results in [14, 15] one can
therefore find the KK spectrum of any type IIB supergravity background which arises as
an uplift of a solution in the 5d N = 8 supergravity.2 The AdS5 supergravity dual to the
LS SCFT is precisely such a solution, and thus we can readily apply the methods in [14, 15].
Indeed, a main result of this work is to show how to apply the formalism in [14, 15] to cal-
culate the KK spectrum of the PW solution [7] and organize it in 4d N = 1 superconformal
multiplets. We find that the results can be conveniently packaged in terms of generating
functions that encode all the information about the superconformal representation theory
accompanied by explicit analytic formulae for all operator dimensions. Importantly, we
find that the KK spectrum comprises of modes dual to both protected and unprotected
operators in the LS SCFT. This is in contrast to the KK spectrum of the maximally super-
symmetric AdS5×S5 solutions, where all KK modes are dual to protected operators, and is
akin to the KK spectrum of the AdS5×T 1,1 solution dual to the N = 1 KW SCFT [27–31].

Some of these ExFT results for the KK spectrum can be derived independently by
a more direct calculation using the 10d PW AdS5 solution [7]. One can show, similarly
to [32], that the spectrum of spin-2 excitations around this 10d solution is equivalent to that
of a minimally coupled scalar field. The corresponding eigenfunctions and eigenvalues for
the wave equation in 10d can be found explicitly. The results for the spin-2 KK spectrum
obtained in this way are in perfect agreement with the ExFT results.

The spectrum of protected operators in 4d N = 1 SCFTs can be found by calculating
the superconformal index [33, 34]. This index is relatively easy to compute when the theory
of interest has a weakly coupled description, like N = 4 SYM. This is due to the fact
that the index is invariant under the continuous deformation by a marginal coupling. As
discussed in [35], this argument can also be applied for theories related by an RG flow to a
theory admitting a weakly coupled limit. We can utilize this approach for the LS theory and
compute its superconformal index. In particular, we can use the results for the large N limit
of the index in [35] to arrive at a compact closed form expression for the so-called single-
trace index which captures all contributions from protected single-trace local operators dual
to KK supergravity modes. We show how the simple expression for the single-trace index
can be expanded as a collection of 8 infinite series each of which captures the contribution
from KK towers of semi-short superconformal multiplets. The agreement between this
superconformal index calculation and the KK spectroscopy results amounts to an explicit
detailed test of the holographic duality between the PW AdS5 solution and the LS SCFT.

In the next section we summarize the 5d AdS5 supergravity solution dual to the LS
SCFT and show how to compute the KK spectrum around it, using the technique developed
in [14, 15]. In section 3 we present the type IIB supergravity uplift of this 5d solution,
compute the KK spectrum of spin-2 excitations by a direct calculation, and show that

1See [18–22] for several applications of the uplift formulae of [10] in a holographic context.
2See [23–25] for recent applications of the results in [14, 15] for calculating the KK spectrum of AdS

solutions in 4d maximal supergravity theories, and [26] for application to AdS3 vacua.
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the results agree with those using the ExFT technique. The superconformal index of the
LS theory is computed in section 4 where we also show explicitly how it reproduces the
spectrum of protected operators derived in supergravity. We conclude in section 5 with a
discussion of some open questions. The two appendices contain a summary of some results
in 4d N = 1 superconformal representation theory, as well as explicit expressions for the
first 4 levels of the KK spectrum of the PW solution.

2 5d supergravity, ExFT, and KK spectroscopy

We start our exploration by describing the 5d supergravity solution dual to the 4d N = 1
LS fixed point. The AdS5 solution dual to the conformal vacuum of the LS theory was
found in [6] and amounts to a non-trivial critical point of the scalar potential of the 5d
N = 8 SO(6) gauged supergravity constructed in [3–5]. The holographic description of the
RG flow from N = 4 SYM to the N = 1 fixed point is in terms of a domain wall solution
interpolating between two AdS5 supersymmetric vacua of the supergravity theory and was
discussed in detail in [2].

To understand better this RG flow it is useful to describe its symmetries. The N = 4
SYM theory can be formulated in N = 1 language with superpotential W = Tr Φ1[Φ2,Φ3]
as in (1.1). In this formulation only an SU(3)×U(1)UV

R subgroup of the SO(6) R-symmetry
is manifest. Here U(1)UV

R is the superconformal R-symmetry in the UV and is given by the
following linear combination of the Cartan generators of SO(6)

TUV
R = 2

3(T1 + T2 + T3) , (2.1)

where T1,2,3 are the generators of the 3 SO(2) block-diagonal blocks in SO(6). By adding
the superpotential mass term ∆W = m

2 Φ2
1 in (1.1) the global symmetry is broken to

SU(2)F × U(1)IR
R , where U(1)IR

R is the IR superconformal R-symmetry given explicitly by
the linear combination

T IR
R = 1

2(T1 + T2 + 2T3) . (2.2)

The SU(2)F flavor symmetry is the first factor in the SU(2)1 × SU(2)2 ×U(1)56 subgroup
of SO(6), where U(1)56 is generated by T3.

As discussed in [36], correlation functions of local operators in the planar limit of the
N = 4 SYM enjoy a “bonus” U(1)Y symmetry. This U(1)Y is the compact subgroup of the
SL(2,R) symmetry of the 5d supergravity theory which in turn is the large N manifestation
of the SL(2,Z) S-duality group of the N = 4 SYM theory. This “bonus” U(1)Y symmetry
plays an important role in our discussion below.

One can use these symmetries to show that the holographic RG flow of interest can
be constructed by using only 2 of the 42 scalars, which we denote by (α, χ), in the 5d
N = 8 gauged supergravity theory. The scalar α is dual to a scalar bilinear operator in the
20′ representation of SO(6), while χ is dual to a linear combination of fermionic bilinear
operators in the 10⊕10. These two operators are precisely the ones that are being sourced
by the superpotential mass term in (1.1).
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To describe the supergravity domain wall of interest we focus on the scalar sector of
the 5d N = 8 supergravity theory. It consists of 42 scalars spanning the coset

E6(6)
USp(8) . (2.3)

The infinitesimal generators of the coset can be parametrized as [4]

g =

−4Λ[i
[kδ

j]
l]

√
2Σijkα

√
2Σijkα Λijδαβ + Λαβδij

 , (2.4)

where Λij is symmetric traceless matrix that generates SL(6,R), while Λαβ is a symmetric
traceless matrix that generates SL(2,R). The off-diagonal blocks in (2.4) are fully anti-
symmetric in (i, j, k), and self-dual, i.e. they obey the relation

Σijkα = 1
6εαβ εijklmn Σlmnβ . (2.5)

For the two-scalar truncation of interest these tensors simplify significantly, see appendix
A in [2]. For the diagonal blocks in (2.4) we have

Λij = diag [−α,−α,−α,−α, 2α, 2α] , Λαβ = 0 . (2.6)

The off-diagonal blocks are given by

Σij51 = Σij62 = χ

2

 iσ2 0
0 iσ2

ij , Σij61 = −Σij52 = −χ2

 0 σ3

σ3 0

ij , (2.7)

where σa are the Pauli matrices. The metric on the scalar coset is given by

M = V · VT , where V = exp [g] , (2.8)

and can be used to write down the Lagrangian of the scalar sector of the 5d N = 8
supergravity theory as

L =
√
|g5| (R5 −K + P) . (2.9)

Here we have defined the scalar kinetic term and potential as3

K = 1
24∂µMMN∂

µMMN = −12
(
α′
)2 − 2

(
χ′
)2
,

P = g2 cosh2 χ

2e4α

(
e12α sinh2 χ− 4e6α + cosh 2χ− 3

)
.

(2.10)

The supergravity domain wall realizing the LS RG flow has the five-dimensional metric4

ds2
AdS5 = dr2 + e2Aηµνdxµdxµ . (2.11)

3We use underlined indices on the coset metric to be consistent with the notations used in [15], and in
section 2.1 below.

4Note that, unlike [4], we work in mostly plus conventions for the metric signature.
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The scalar field and the metric function A depend only of the radial coordinate r and obey
the following system of BPS equations

α′ = g
12∂αW , χ′ = g

2∂χW , A′ = −g
3W . (2.12)

Here we have defined the superpotential function W which reads5

W = e4α

4 (cosh 2χ− 3)− e−2α cosh2 χ . (2.13)

The potential is related to the superpotential as

P = g2
[ 1

12(∂αW)2 + 1
2(∂χW)2 − 4

3W
2
]
, (2.14)

and the supersymmetric AdS5 solutions are critical points of the superpotential, ∂αW =
∂χW = 0, which obey

P = −4g2

3 W
2 . (2.15)

The potential in (2.10) has two supersymmetric critical points6 [6]. The first one is the
maximally supersymmetric SO(6) invariant critical point where

α = 0 , χ = 0 , and PUV = −3g2 . (2.16)

This is the AdS5 solution dual the UV N = 4 SYM theory. The second critical point
preserves 1/4 of the maximal supersymmetry and is given by

e6α = 2 , e2χ = 3 , and PIR = −8 · 21/3

3 g2 . (2.17)

This is the AdS5 dual to the LS N = 1 SCFT.
The AdS length scale is determined by the value, P∗, of the potential at the critical

point through the relation
L2 = − 12

P∗
. (2.18)

For the two critical points of interest we find the explicit expressions.

LUV = 2
g
, and LIR = 3

22/3g
. (2.19)

We note in passing that the ratio of the conformal anomaly coefficients (in the planar limit)
of the UV and IR SCFTs is given by

cIR
cUV

= L3
IR

L3
UV

= 27
32 . (2.20)

This is the field theory result derived in [2, 39].
5The superpotential can be obtained as an eigenvalue of the Wab tensor in [4].
6As discussed in [37, 38] these are the only supersymmetric AdS5 solutions in the full 5d N = 8 gauged

supergravity theory.
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The two supersymmetric AdS5 solutions can be uplifted to supersymmetric back-
grounds of type IIB supergravity. The UV AdS5 vacuum uplifts to the well-known AdS5×S5

solution while the IR AdS5 vacuum gives rise to the Pilch-Warner solution which we present
explicitly in section 3.1 below. The 5d holographic RG flow solution that interpolates be-
tween the two supersymmetric AdS5 vacua above was constructed numerically in [2] and,
as shown in [8], can be uplifted to type IIB supergravity.

2.1 ExFT spectroscopy

The AdS5 solution in (2.17) can be uplifted to the Pilch-Warner type IIB solution [7]. This
implies that we can use the ExFT methods of [14, 15] to compute the spectrum of Kaluza-
Klein fluctuations around this 10d AdS5 solution. Here we summarize the results of [14, 15],
beginning with a brief review of ExFT and its description of consistent truncations.

ExFT provides an E6(6)-covariant reformulation of 10-/11-dimensional supergravity
that unifies its metric and flux degrees of freedom. The bosonic sector of ExFT consists of
a 5d metric, gµν , a generalized metric,MMN , parameterizing the coset space E6(6)/USp(8),
a vector AµM transforming in the 27 of E6(6) and a 2-form Bµν M , transforming in the 27
of E6(6). Here the indices range as µ = 0, . . . , 4 and M = 1, . . . , 27.

Consistent truncations of 10-/11-dimensional supergravity to a 5d gauged supergravity
with maximal supersymmetry are elegantly captured in ExFT in terms of a generalized
Scherk-Schwarz Ansatz:

MMN = UM
M UN

N MMN (x) ,

AµM = ρ−1
(
U−1

)
M

MAµ
M (x) ,

Bµν M = ρ−2 UM
M Bµν M (x) ,

gµν = ρ−2 g̊µν(x) ,

(2.21)

where UMM ∈ E6(6)/USp(8) is called the twist matrix and ρ ∈ R+ is a scaling function,
both of which depend only on the internal manifold and have to satisfy the differential
condition

LUMUN
M = XMN

P UP , (2.22)

in terms of the generalized Lie derivative, L, whose precise form we will not need here, and

UMM = ρ−1
(
U−1

)
M

M . (2.23)

The fields MMN (x) ∈ E6(6)/USp(8), AµM (x), Bµν M (x) and g̊µν(x) are those of the 5-
dimensional gauged supergravity with the embedding tensor given by XMN

P .7

Here we are interested in the AdS5 vacuum in (2.17), whose only non-trivial 5d fields
are g̊µν(x) = gAdS5 and MMN = VMA VNB δAB, with A,B = 1, . . . , 27, and V as given
in (2.8). As shown in [14, 15], a general KK fluctuation around such a vacuum can be

7The explicit realization of this tensor for the SO(6) gauged supergravity we are studying here is given
in (2.40).
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written as
MMN = UM

A UN
B

(
δAB + PAB,I

∑
Σ
YΣ jI,Σ(x)

)
,

AµM = ρ−1
(
U−1

)
A

M
∑
Σ
YΣAµ

A,Σ(x) ,

Bµν M = ρ−2 UM
A
∑
Σ
YΣBµν A,Σ(x) ,

gµν = ρ−2
(
g̊µν(x) +

∑
Σ
YΣ hµν,Σ(x)

)
.

(2.24)

Let us explain the new objects appearing in (2.24). Firstly, we have defined new twist
matrices UMA dressed with the 5d scalar matrix associated to the vacuum as

UM
A = UM

MVMA . (2.25)

Secondly, we have introduced a set of “scalar harmonics”, YΣ, which are any set of complete
functions on the internal manifold, labelled by the index Σ, which throughout will be
raised/lowered by δΣΩ. In our setup the internal space is topologically S5 and we can choose
this set of functions to be the scalar harmonics on the round S5. Note that this can be done
even though the metric of the 10d Pilch-Warner solution preserves only SU(2) × U(1) ⊂
SO(6) as isometries. Finally, the KK fluctuations for the spin-1, tensor, and spin-2 fields
are denoted by AµA,Σ, Bµν,A,Σ, and hµν,Σ, respectively. Moreover, the KK fluctuations of
the 42 scalar fields are represented by jI,Σ, I = 1, . . . , 42, which for fixed Σ is an algebra
coset element jI,Σ ∈ e6(6) 	 usp(8) appearing under the projection PAB,I to ensure that
MMN ∈ E6(6)/USp(8).

Plugging the fluctuation Ansatz (2.24) into the linearized ExFT equations of motion
immediately yields the mass matrices for the KK fields. The mass matrices are expressed
in terms of the embedding tensor XMN

P of the 5d supergravity, the scalar fields VMA

defining the PW vacuum in the 5d theory, and the linear action of the twist matrix on the
harmonics, TM Σ

Ω, defined as

LUMY
Σ = −TMΣ

Ω YΩ . (2.26)

Whenever the gauge group of the gauged supergravity is compact, as it is in this case, the
definition (2.26) reduces to

LKMY
Σ = −TMΣ

Ω YΩ , (2.27)

in terms of the ordinary Lie derivative L of Killing vectors KM on the internal manifold,
which can be read off from the twist matrix, UMM . One can show that the TM matrices are
generators of the gauge group of the gauged supergravity, in the representation of the scalar
harmonics. When presenting the explicit formulae for the mass matrices of the fluctuations
above, the embedding tensor and the TM matrices appear dressed with the scalar matrices
as follows

XAB
C =

(
V−1

)
A

M
(
V−1

)
B

N XMN
P VPC ,

TAΣ
Ω =

(
V−1

)
A

M TMΣ
Ω .

(2.28)
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The spin-2 mass matrix is

M(2)
ΣΩ = −TA,ΣΛTA,ΛΩ ≡ −

(
TATA

)
ΣΩ , (2.29)

where we have raised/lowered the A and Σ indices with δAB and δΣΩ, respectively, a
convention we will adopt henceforth. Thus, the spin-2 mass matrix takes the form of a
“generalized” Casimir operator constructed from the TA matrices.

Similarly, the tensor mass matrix is

MAΣ,BΩ
(t) = 1√

10

(
−2 dCDAXCD

B δΣΩ + 10 dABC TC,ΣΩ
)
, (2.30)

and involves the symmetric cubic invariant of E6(6), dABC , while the spin-1 mass matrix is
given by

M(v)
AΣ,BΩ = 1

6 XAD
C
(
XBC

D +XBD
C
)
δΣΩ +

(
XBA

C +XBC
A −XAB

C −XAC
B
)
TC,ΣΩ

− 6
(
PACBD + PCABD

) (
TCTD

)
ΣΩ , (2.31)

where PABCD is the projector onto the adjoint of E6(6). Finally, the scalar mass matrix is

M(s)
IΣ,JΩ = XAE

FXBF
E PADI PBDJ δΣΩ

+ 1
5
(
XAE

FXBE
F +XEA

FXEB
F +XEF

AXEF
B
)
PADI PBDJ δΣΩ

+ 2
5
(
XAC

EXBD
E −XAE

CXBE
D −XEA

CXEB
D
)
PABI PCDJ δΣΩ

− 4XAC
D TB,ΩΣ PABIPCDJ − 4XCA

B TC,ΩΣ PADI PBDJ

+ 12 TA,ΩΛTB,ΛΣ PADI PBDJ − TC,ΩΛTC,ΛΣ PABI PABJ .

(2.32)

2.1.1 Further simplifying the mass matrices

Written as in (2.24), the KK fluctuations live in the tensor product of the maximal 5d
supergravity with the scalar fluctuations on the internal space. However, not all these
fluctuations are physical. Some of the massless scalar fields amongst the jI,Σ are Goldstone
modes for massive vector fields. Similarly, some massive vector and scalar fields are eaten
by massive spin-2 fields, massless vector fields are eaten by the massive tensor fields, whilst
the massless tensor fields are unphysical. This can be used to further simplify the mass
matrices in (2.30), (2.31), and (2.32).

Following [24], we can define the projection onto Goldstone scalars

ΠAΣ,IΩ = δΣΩXAC
D PCD,I − 6PAD,I TD,ΩΣ . (2.33)

Using this projection matrix, the scalar mass matrix can be written in the more compact
form

M(s)
IΣ,JΩ =M(0)

IJ δΣΩ + δIJ M
(2)
ΣΩ +NIJC TC,ΣΩ −

1
3
(
ΠTΠ

)
IΣ,JΩ

, (2.34)

in terms of the spin-2 mass matrix, M(2)
ΣΩ, given in (2.29), the 5-dimensional supergravity

mass matrix for the scalar fieldsM(0)
IJ and the matrix

NIJC = −4
(
XCA

B + 6XAB
C
)
PAD [I PBDJ ] . (2.35)

Note that the final term in (2.34) induces a shift that only affects the Goldstone modes.
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We can apply the same logic to simplify the vector and tensor mass matrices. We
define the projection onto the vector fields that are eaten by massive spin-2 fields as

ΠAΣ,BΩ =
(
TATB

)
ΣΩ . (2.36)

Since massless vector/tensors are unphysical and absorbed by the massive tensors/vectors,
we consider the sum of the vector and the square of the tensor mass matrix. After some
manipulations, this gives rise to the compact expression

M(v)
AΣ,BΩ −

(
M2

(t)

)AΣ,BΩ
= M

(0)
AB +NC,ABTC,ΣΩ + δABM

(2)
ΣΩ −

5
3ΠAΣ,BΩ , (2.37)

where M (0)
AB is the combined vector/tensor mass matrix in 5d gauged supergravity and we

defined
NC,AB = XCA

B −XCB
A − 6PABDE XED

C . (2.38)

Once again, the final term in (2.37) only affects the masses of vectors that are eaten by
massive spin-2 fields, while the first three terms give the mass matrix whose eigenvalues
determine the masses of the physical vector and tensor fields.

2.1.2 KK spectroscopy for the PW solution

Let us now give the relevant expressions for the embedding tensor, scalar harmonics and
TM,Σ

Ω matrices needed to compute the mass matrices for all KK fluctuations around the
10d PW solution. We use the decomposition E6(6) −→ SL(6)× SL(2) in which the funda-
mental 27 of E6(6) decomposes into

27 −→ (15,1)⊕
(
6′,2

)
. (2.39)

The only non-zero components of the SO(6) embedding tensor are then given by

XMN
P =

Xij,kl
mn = g

√
2 δ[m

[i δj][kδ
n]
l] ,

Xij
kα
lβ = − g√

2δ
k
[iδj]l δ

α
β .

(2.40)

As discussed in more detail in [15], we can use the scalar harmonics of the round S5 as
our complete set of functions because the consistent truncation is defined on S5. For this,
we use the embedding coordinates Y i : S5 ↪→ R6 satisfying

Y i Yj δij = 1 . (2.41)

The S5 scalar harmonics are now given by traceless polynomials of the Y i, i.e.

YΣ =
{

1, Y i, Y i1i2 , . . . , Y i1...in , . . .
}
, (2.42)

where we denote by Y i1...in ≡ Y((i1 . . .Y in)) the n-fold traceless symmetric polynomial.
Thus, the Σ index labels the n-fold symmetric traceless representation of SO(6) with
Dynkin labels [n, 0, 0].
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Finally, the TM,Σ
Ω matrices are given by [15]

TM,i1...in
j1...jn = n TM,((i1

((j1δj2i2 . . . δ
jn))
in)) , (2.43)

with

TM,k
l =

 Tij,k
l = g√

2 δk[iδ
l
j] ,

T iαkl = 0 .
(2.44)

Here we use the following summation convention for the harmonic indices Σ, Ω

AΣBΣ = AB +AiBi +Ai1i2 Bi1i2 + . . .+Ai1...in Bi1...in + . . . . (2.45)

Armed with the expressions (2.40) and (2.43), as well as the scalar matrix (2.8)
for the PW solution (2.17), we can now evaluate the mass matrices for the KK fluctu-
ations (2.29), (2.30), (2.34), and (2.37).

2.2 The full KK spectrum

We now present the results from an explicit evaluation of the mass formulae in the previous
section. We organize the calculation by KK level, n, i.e. by the degree of the polynomial
in (2.42). For each value of n we then calculate the mass matrices of all bosonic fields in
the supergravity theory and determine their eigenvalues. To organize the results we map
these masses into conformal dimensions of the LS SCFT using the holographic dictionary
summarized below

spin-2 : ∆ = 2 +
√

4 +m2L2 ,

vectors : ∆ = 2 +
√

1 +m2L2 ,

two-forms : ∆ = 2 + |mL| ,

scalars : ∆ = 2±
√

4 +m2L2 ,

(2.46)

where L is the IR AdS length scale in (2.19). We then arrange these results into 4d N = 1
superconformal multiplets that we denote as

XȲ [∆; j1, j2; r]⊗ [k] , (2.47)

where [∆; j1, j2; r] denote the conformal dimension, the Lorentz spin, and the U(1)R charge,
respectively, of the superconformal primary operator in a given multiplet. The label [k]
denotes the SU(2)F spin. Finally, the letters X and Y indicate the specific 4d N = 1
superconformal multiplets. We use the notation of [40] and summarize some of the pertinent
details of the superconformal multiplet structure in appendix A. We note that in this work
we have restricted to the calculation of the KK spectrum of the bosonic fields of type IIB
supergravity. The spectrum of the fermionic excitations is uniquely determined by the
structure of the superconformal multiplets summarized in appendix A.

At KK level n = 0 we have the spectrum of excitations of the fields in the 5d N = 8
gauged supergravity theory. This was already computed in [2], and we find agreement
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with their results. For completeness we summarize this spectrum here. We find two short
multiplets

A1Ā1

[
3; 1

2 ,
1
2; 0

]
⊗ [0] , and A2Ā2[2; 0, 0; 0]⊗ [1] , (2.48)

containing the energy-momentum tensor, and SU(2)F flavor currents respectively. Addi-
tionally, at level n = 0 we find ten semi-short multiplets and one long multiplet

LB̄1

[9
4; 1

2 ,0; 3
2

]
⊗
[1

2

]
, A1L̄

[
3; 1

2 ,0;0
]
⊗ [0] , LL̄

[
1+
√

7;0,0;0
]
⊗ [0] ,

B1L̄

[9
4;0, 12;−3

2

]
⊗
[1

2

]
, LĀ1

[
3;0, 12;0

]
⊗ [0] ,

LB̄1

[3
2;0,0;1

]
⊗ [1] , LĀ2

[11
4 ; 1

2 ,0; 1
2

]
⊗
[1

2

]
,

B1L̄

[3
2;0,0;−1

]
⊗ [1] , A2L̄

[11
4 ;0, 12;−1

2

]
⊗
[1

2

]
,

LB̄1 [3;0,0;2]⊗ [0] ,
B1L̄ [3;0,0;−2]⊗ [0] .

(2.49)

We can now proceed systematically and extend these results to higher KK levels, n > 0.
The calculation becomes unwieldy even for small values of n. We summarize the explicit
results up to level n = 3 in appendix B. Fortunately, there is a more compact presentation
of the spectrum for general values of n. One can arrange all KK modes into superconformal
multiplets and then for each family of such multiplets write down a generating function.
It proves convenient to organize these generating functions in terms of the Lorentz spin
of the superconformal primary operator in the superconformal multiplets. Each of these
generating functions depends on the 4 “fugacities” summarized in table 1. We emphasize
that the fugacities (ν, ρ, κ, γ) and the corresponding labels of the states (n, r, k, p+ 2y) do
not necessarily correspond to symmetries and charges in the LS theory but are introduced
as a convenient mnemonic device. The combination p + 2y associated to the fugacity γ

deserves a little more explanation. The label p is the charge under U(1)P ⊂ SU(2)2, see
the discussion around (2.2), generated by

P ≡ 1
2 (T1 + T2) . (2.50)

The label y denotes the U(1)Y charge of the type IIB supergravity field from which a given
KK mode arises. These charges can be found in [11, 12, 41]. It is an interesting fact that
although U(1)P and U(1)Y are not symmetries of the PW solution or the LS SCFT, and
thus do not define actual quantum numbers, they can be used to organize the KK spectrum
efficiently.

Superconformal multiplets with a spin-1 primary are of the form XȲ [∆; 1
2 ,

1
2 ; r] ⊗ [k]

and are counted by the generating function

Z1 = ZA1Ā1
1 + ZLĀ1

1 + Z̄A1L̄
1 + ZLL̄1 , (2.51)
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Fugacity ν ρ κ γ

Label of state n r k p+ 2y
Interpretation KK level U(1)R charge SU(2)F rep. U(1)P ×U(1)Y charge

Table 1. List of all fugacities used in the generating functions along with their associated labels
and interpretation.

where

ZA1Ā1
1 + ZLĀ1

1 + ZA1L̄
1 = 1− ν2

(1− ν ρ)(1− ν
ρ ) ,

ZLL̄1 =
ρ
(
1− ν2) (1− ν

√
κ
γρ)

(
1− ν√γκρ

)
− ρ

ν
(
1− ν

ρ

)
(1− νρ)(1− ν

√
κ
γρ)

(
1− ν√γκρ

) . (2.52)

To read off the spectrum of superconformal multiplets one needs to expand these generat-
ing functions in a Taylor series in the fugacities (ν, ρ, κ, γ). The powers of the fugacities
(ν, ρ, κ, γ) determine the KK level n, R-charge r, the highest weight state of the SU(2)F
spin state [k], and the value of p+2y respectively. To obtain the full SU(2)F character for a
given representation one has to apply the Weyl character formula to the generating function

χ(κ) = κZ(κ)− Z(1/κ)
κ− 1 . (2.53)

The superconformal multiplets with a spin-1/2 primary are of the schematic form
XȲ [∆; 1

2 , 0; r]⊗ [k], and Y X̄[∆; 0, 1
2 ; r]⊗ [k] and are counted by the generating functions

Z1/2 = ZLB̄1
1/2 + ZA1L̄

1/2 + ZLĀ2
1/2 + ZLL̄1/2 + Z̄B1L̄

1/2 + Z̄LĀ1
1/2 + Z̄A2L̄

1/2 + Z̄LL̄1/2 , (2.54)

where

ZLB̄1
1/2 =

γρ
√
γ ρ κ

1− ν√γ ρ κ , ZA1L̄
1/2 =

γ + ν
γ ρ

1− ν
ρ

, ZLĀ2
1/2 =

√
γ ρ κ

1− ν√γ ρ κ ,

ZLL̄1/2 = ν

(
ν

γρ
+ γ

) κ(γ(ρ−ν)
γ2ρ+ν − ν(1− νρ)) +

√
κ
γρ(1 + γρ)(1− νρ) + ρ

(1− ν
ρ )(1− νρ)(1− ν

√
κ
γρ)(1− ν√γκρ)

.

(2.55)

The generating functions Z̄1/2 in (2.54) are obtained from the expressions in (2.55) by the
substitution

ρ→ ρ−1 , and ν → ν−1 . (2.56)

The superconformal multiplets with a spin-0 primary are of the form XȲ [∆; 0, 0; r]⊗[k]
and are counted by the generating function

Z0 = ZA2Ā2
0 + ZLB̄1

0 + ZLĀ2
0 + Z̄B1L̄

0 + Z̄A2L̄
0 + ZLL̄0 , (2.57)
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where

ZA2Ā2
0 = κ , ZLB̄1

0 = γ ρ(γ ρ+ κ)
1− ν√γ ρ κ , ZLĀ2

0 =
ν
√
γ ρ κ(γ ρ+ κ)

1− ν√γ ρ κ ,

ZLL̄0 =
1 + ν(ν + ργ2 + 1

ργ2 ) + κ ν(1− ν2)(γ + 1
γ ) + κ2 ν2(1− ν

ρ )(1− ν ρ)

(1− ν ρ)(1− ν
ρ )(1− ν√κ ρκ)(1− ν

√
κ
γ ρ)

.

(2.58)

The generating functions Z̄0 in (2.57) are obtained from the expressions in (2.55) by again
using the substitution in (2.56).

To completely specify the spectrum of superconformal multiplets we need to supple-
ment the generating functions above with a formula for the conformal dimension of the su-
perconformal primary operator in each multiplet. There is indeed a simple compact expres-
sion for these conformal dimensions in terms of the labels (j1, j2, n, r, k, p+ 2y) that reads

∆ = 1 +
√

7− 2j1(j1 + 1)− 2j2(j2 + 1) + 3
4 (r2 − 2(p+ 2y)2 + 2n(n+ 4)− 4k(k + 1)) .

(2.59)
In summary, the generating functions in (2.51), (2.54), and (2.57), together with the con-
formal dimensions in (2.59) completely determine the full spectrum of KK modes around
the AdS5 PW solution dual to the LS SCFT.

We were not able to rigorously derive the analytic expressions above in full generality.
To obtain them we have instead used several complementary methods. The multiplets
counted by the generating function in (2.51) contain a descendant operator with spin-2.
The mass of this mode is determined by the spin-2 mass matrix in (2.29). One can find
a closed form expression for the eigenvalues of this mass matrix for any KK level n. The
result is consistent with the expression in (2.59) and reads:

∆spin-2 = 2 +
√

4 + 3
4 (r2 − 2p2 + 2n(n+ 4)− 4k(k + 1)) . (2.60)

There is no dependence on the label y in this expression since the spin-2 modes in type
IIB supergravity come from the metric and are not charged with respect to U(1)Y .

As discussed in detail in section 3 below, the spin-2 spectrum can also be calculated
directly in type IIB supergravity by solving the scalar Laplace equation in the PW back-
ground. The result of this alternative calculation is the same as (2.60) and provides a
non-trivial consistency check of the ExFT KK spectroscopy method. For spin-0 and spin-1
supergravity modes the KK spectrum results presented above has been checked explicitly
up to and including level n = 4, while for the two-form excitations we have checked up
to n = 5. Yet another consistency check of the KK spectrum above can be performed by
restricting to semi-short multiplets at arbitrary level n. These are precisely the multiplets
that contribute to the superconformal index of the LS SCFT and, as we discuss in detail
in section 4, an explicit calculation of the index in the planar limit yields results that are
in full agreement with the KK spectrum presented here.

To facilitate the comparison between the KK spectroscopy results and the superconfor-
mal index computation in section 4 we explicitly present here all KK towers of semi-short
multiplets resulting from the analysis above.
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From the spin-1 spectrum in (2.52) we identify two towers of semi-short multiplets

LĀ1

[6 + 3n
2 ; 1

2 ,
1
2;n

]
⊗ [0](0) , and A1L̄

[6 + 3n
2 ; 1

2 ,
1
2;−n

]
⊗ [0](0) , (2.61)

where, for completeness, we have listed the value of p + 2y as a superscript on the
SU(2)F spin representation.8 At level n = 0 these two towers degenerate to a single
A1Ā1

[
3; 1

2 ,
1
2 ; 0
]
⊗ [0](0) multiplet that contains the stress-energy tensor.

The spectrum in (2.54) contains eight towers of semi-short multiplets given by

LB̄1

[9+3n

4 ; 1
2 ,0; n+3

2

]
⊗
[

n+1
2

]([n+3]/2)
, B1L̄

[9+3n

4 ,0,
1
2 ;−n+3

2

]
⊗
[

n+1
2

](−[n+3]/2)
,

A1L̄
[6+3n

2 ; 1
2 ,0;−n

]
⊗ [0](1) , LĀ1

[6+3n

2 ;0,
1
2 ;n
]
⊗ [0](−1) ,

A1L̄
[6+3n

2 ; 1
2 ,0;−n

]
⊗ [0](−1) , LĀ1

[6+3n

2 ;0,
1
2 ;n
]
⊗ [0](1) ,

LĀ2

[11+3n

4 ; 1
2 ,0; n+1

2

]
⊗
[

n+1
2

]([n+1]/2)
, A2L̄

[11+3n

4 ;0,
1
2 ;−n+1

2

]
⊗
[

n+1
2

](−[n+1]/2)
,

(2.62)

where the multiplets in the second line have n ≥ 1 and all other multiplets have n ≥ 0.
The spectrum in (2.57) results in eight more towers of semi-short multiplets

LB̄1

[6+3n

4 ;0,0; n+2
2

]
⊗
[

n+2
2

]([n+2]/2)
, B1L̄

[6+3n

4 ;0,0;−n+2
2

]
⊗
[

n+2
2

](−[n+2]/2)
,

LB̄1

[12+3n

4 ;0,0; n+4
2

]
⊗
[

n

2

]([n+4]/2)
, B1L̄

[12+3n

4 ;0,0;−n+4
2

]
⊗
[

n

2

](−[n+4]/2)
,

LĀ2

[8+3n

4 ;0,0; n

2

]
⊗
[

n+2
2

](n/2)
, A2L̄

[8+3n

4 ;0,0;−n

2

]
⊗
[

n+2
2

](−n/2)
,

LĀ2

[14+3n

4 ;0,0; n+2
2

]
⊗
[

n

2

]([n+2]/2)
, A2L̄

[14+3n

4 ;0,0;−n+2
2

]
⊗
[

n

2

](−[n+2]/2)
.

(2.63)

At level n = 0 the third line degenerates to a single A2Ā2[2; 0, 0; 0]⊗ [1](0) multiplet which
contains the SU(2)F flavor current. The multiplets in the first three lines have n ≥ 0, while
the multiplets in the fourth line have n ≥ 1.

We note that in the spectrum above there are semi-short multiplets that contain
marginal operators. Such marginal deformations, compatible with N = 1 supersymme-
try, belong to LB̄1[3; 0, 0; 2] and B1L̄[3; 0, 0;−2] multiplets. From the first line of (2.63) we
find that at level n = 2 we have the multiplets

LB̄1[3; 0, 0; 2]⊗ [2](2) , and B1L̄[3; 0, 0;−2]⊗ [2](−2) , (2.64)

while from the second line of (2.63) at n = 0 we find

LB̄1[3; 0, 0; 2]⊗ [0](2) , and B1L̄[3; 0, 0;−2]⊗ [0](−2) . (2.65)

We therefore find a total of 6 complex marginal deformations of the LS SCFT. To find
the number of exactly marginal deformation, i.e. the dimension of the conformal manifold,
we use the method of [42] and subtract the dimension of the SU(2)F flavor symmetry.
Therefore we conclude that the conformal manifold on which the LS SCFT resides has

8It is important to remember that the label p + 2y is not related to the symmetry of the LS theory and
therefore there is no corresponding fugacity for it in the superconformal index.
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complex dimension 6 − 3 = 3. It is expected that this conformal manifold is compact,
see [43] for a recent discussion.

We end our discussion on the KK spectrum with some comments on long multiplets. It
is a notable feature of our results that there are infinite towers of KK modes dual to unpro-
tected operators in the planar limit of the LS SCFT. This should be contrasted with the op-
erator spectrum of N = 4 SYM where all KK modes are dual to protected operators. More-
over one may naively expect that the conformal dimensions of the unprotected multiplets
are generic irrational numbers. From the expression for the conformal dimension in (2.59)
this indeed appears to be so. Note however that there are infinitely many long multiplets
with rational conformal dimensions, one example of a class of such multiplets takes the form

LL̄[4 + 3n
2 ; 1

2 ,
1
2;n− 2]⊗ [1](0) , n ≥ 2 . (2.66)

A similar phenomenon was observed in the KK spectrum of the AdS5×T 1,1 type IIB solu-
tion and it was speculated in [29, 31] that this may not be due to an accident but to some
hidden symmetry of the Klebanov-Witten SCFT. Perhaps a similar phenomenon is at play
here. Another possibility is that the multiplets in (2.66) are long multiplets that arise as
a recombination of semi-short multiplets as one changes the exactly marginal couplings in
the LS SCFT. To understand this better one has to analyze the operator spectrum along
the full LS conformal manifold. Since the LS conformal manifold is strongly coupled and
the dual AdS5 supergravity solutions capturing the LS marginal deformations is not known,
this analysis is unfortunately out of reach.

3 The spin-2 spectrum from IIB supergravity

Calculating the full KK spectrum of the type IIB PW AdS5 solution directly in the 10d
supergravity is a daunting task which we do not know how to address. However, the spin-
2 part of the spectrum is accessible by performing a calculation similar to the one done
in [32] for the AdS4 CPW solution in 11d supergravity [44]. This is due to the fact that
the spectrum of gravitons can be reduced to that of a minimally coupled scalar field, which
in turn can be explicitly calculated. We describe this calculation below and demonstrate
explicitly that the result agrees with the spin-2 spectrum found using the ExFT techniques
discussed in section 2.

3.1 The 10d solution

To set the stage we begin by presenting the full PW AdS5 solution of type IIB supergravity.
The solution can be obtained by uplifting the 5d solution in section 2 using the explicit uplift
formulae presented in [10]. We have performed this uplift explicitly and have confirmed
that the resulting 10d background agrees with the one found in [7], see also [8, 44].

We start by choosing appropriate coordinates on S5 that are adapted to the SU(2)×
U(1) ⊂ SO(6) isometry of the PW solution. To this end we use the following three complex
coordinates on C3

z1 = Y1 + iY4 , z2 = Y2 + iY3 , w = Y5 − iY6 . (3.1)
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The S5 is then defined by imposing the relation ∑6
i=1(Y i)2 = 1 and can be parametrized

by the following choice of angular coordinates.

z =

 z1

z2

 = cos θ R(ξ1, ξ2, ξ3)

 1
0

 , w = e−iφ sin θ . (3.2)

Here we have defined the Euler rotation matrix

R(ξ1, ξ2, ξ3) = e
ξ2
2 iσ3 e

ξ1
2 iσ1 e

ξ3
2 iσ3 , (3.3)

with σi the Pauli matrices. The ranges of the five angles are given by

0 ≤ ξ1 ≤ π , 0 ≤ ξ2 ≤ 2π , 0 ≤ ξ3 ≤ 4π , 0 ≤ θ ≤ π

2 , 0 ≤ φ ≤ π . (3.4)

It proves useful to define also the coordinate

U = 1− |w|2 = cos2 θ . (3.5)

To write the metric on S5 it is convenient to use a set of three one-forms, Θu, u = 1, 2, 3,
defined by

R−1 · dR = i
2σuΘu , (3.6)

which have the explicit form

Θ1 + iΘ2 = eiξ3(dξ1 − i sin ξ1dξ2) , Θ3 = dξ3 + cos ξ1dξ2 . (3.7)

The metric on the round S5 takes the following explicit form in these coordinates

dΩ2
S5 = 4

g2

[
dθ2 + sin2 θ dφ2 + 1

4 cos2 θ
(
Θ2

1 + Θ2
2 + Θ2

3

)]
. (3.8)

Note that we have included the prefactor L2
UV = 4

g2 , see (2.19), which determines the scale
of the AdS5 × S5 solution in terms of the 5d supergravity coupling constant g.

Using the coordinates above we can present the PW solution in a relatively compact
form. The 10d metric is given by9

ds2
10 = 1

√
gs

( 1√
∆

ds2
1,4 +

√
∆ dΩ2

)
, (3.9)

where we have kept the string coupling gs explicit and the warp factor is given by

∆ = 3
25/3(2− cos2 θ)

. (3.10)

By abuse of notation, we are using the same symbol ∆ here as we are for the conformal
dimensions elsewhere. Since this is the only occasion where the warp factor appears and

9We use the type IIB supergravity conventions summarized in [18] and have checked explicitly that the
background below solves the 10d equations of motion.
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IIB field g Φ C0 B2 C2 C4

U(1)Y charge 0 ±2 ±2 ±1 ±1 0

Table 2. Type IIB supergravity fields corresponding to all bosonic KK modes, along with their
U(1)Y charges.

since the context makes it clear which object is meant by ∆, we hope this will not lead to
confusion. The metric on the deformed S5 is

dΩ2 = 24/3(2− cos2 θ)
g2

(
dθ2 + cos2 θ

[
Θ2

1 + Θ2
2

2(2− cos2 θ) + 2Θ2
3

8− 5 cos2 θ

]

+ sin2 θ
(8− 5 cos2 θ)
3(2− cos2 θ)2

[
cos2 θ

8− 5 cos2 θ
Θ3 + dφ

]2)
.

(3.11)

The NS-NS and R-R two-forms are combined into a complex two-form as

B2 + igsC2 = −eiφ cos θ
2g2 (Θ1 + iΘ2) ∧

(
2 dθ + i sin 2θ

2− cos2 θ
(dφ−Θ3)

)
. (3.12)

The R-R 4-form reads

C4 = 2
g4gs

cos4 θ

cos2 θ − 2Θ1 ∧Θ2 ∧Θ3 ∧ dφ . (3.13)

Finally, the axion and dilaton are trivial

C0 = 0 , eΦ = gs . (3.14)

As described in great detail in [7], the full ten-dimensional solution is invariant under the
SU(2)F × U(1)R isometries, and a combined U(1)R × U(1)Y action. To show this one has
to take the U(1)Y charges of the IIB fields into account, which we list in table 2.

Note that here we have presented the AdS5 PW solution dual to the IR LS SCFT. The
10d gravitational description of the RG flow connecting N = 4 SYM with the LS SCFT is
in terms of a domain wall solution of type IIB supergravity constructed in [8].

3.2 The spin-2 spectrum

The goal now is to study perturbation of the PW solution presented above which carry
spin-2 on the non-compact AdS5 part of the background and non-trivial internal quantum
numbers under the SU(2) × U(1) isometry of the squashed sphere in (3.11). To this end
we follow the approach used in [32].

The spin-2 fluctuations of interest can be written as a perturbation of the 5d metric
of the form

gµν = ĝµν + hµν , (3.15)

where ĝ denotes the background AdS5 metric with coordinates xµ = (x0, x1, x2, x3, r). In
order to isolate the transverse-traceless part of the fluctuations, i.e. remove the spin-0 and
spin-1 components of the tensor hµν , we impose the conditions

hmm = 0 , and ∂mhmn = 0 , (3.16)
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where the Latin indices run over the 4d Minkowski space on the boundary of AdS5
parametrized by (x0, x1, x2, x3). Additionally we can choose a gauge such that

hrm = 0 . (3.17)

As discussed in [32, 45, 46], the spectrum of these metric fluctuations is the same as the
spectrum of a minimally coupled scalar field in the full 10d space-time. In other words, to
find the spectrum of interest we have to solve the equations of motion for a scalar field, ϕ,
with action

S = −1
2

∫
d10x
√
−g10 (∂ϕ)2 , (3.18)

where the 10d metric is given in (3.9). To solve this scalar equation of motion we employ
the separation of variables ansatz

ϕ = Φ(xm, r)Y (ya) , (3.19)

where ya = (ξ1, ξ2, ξ3, θ, φ) are the coordinates on the internal S5. Using this the scalar
equations of motion can be written as

�ϕ = Y (ya)�5Φ(xm, r) + Φ(xm, r)L [Y (ya)] = 0 , (3.20)

where �5 is the Laplacian on AdS5 and we have defined the following differential operator
on S5

L = ∆−1/2
√
−g10

∂a
(√
−g10 g

ab
10 ∂b

)
, (3.21)

not to be confused with the generalised Lie derivative briefly mentioned in section 2.1. To
find the mass spectrum of interest we need to find the eigenfunctions, Y , and eigenvalues
of this differential operator

LY (ya) = −m2Y (ya) ⇒ �5Φ(xm, r) = m2Φ(xm, r) . (3.22)

Since the squashed S5 has an SU(2) isometry it is useful to first find the eigenfunctions
of the quadratic Casimir operator of SU(2). This differential operator is constructed from
the 3 Killing vectors associated with this isometry as follows

ξu = z · (σu)T · ∂z − z · (σu)T · ∂z , (3.23)

where σu are the Pauli matrices. The quadratic Casimir can then be written as

C2 = ξuξu . (3.24)

The eigenfunctions of this operator can be written as

Jt,s(z, z) = ζu1u2...usv1v2...vt

t∏
k=1

zuk
s∏
l=1

zvl , (3.25)

where ζu1u2...usv1v2...vt is a completely symmetric and traceless tensor

ζu1u2...utv1v2...vs = ζ(u1u2...utv1v2...vs) , and ζw1...wlul+1...utw1...wlvl+1...vs = 0 . (3.26)
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Notice that we have to remove all traces that arise by summing paired z and z indices.
With this at hand one then finds the associated eigenvalues

C2 Jt,s(z, z) = (t+ s)(t+ s+ 2)Jt,s(z, z) . (3.27)

As expected the eigenvalue is determined by the combination t+ s, however we have kept
both the t and s labels since the remaining U(1)R symmetry of the 10d background will
distinguish between them.

To find the full solution to the eigenvalue problem in (3.22) we have to dress the Jt,s
functions with a dependence on w and w̄. To do this we follow [32] and use the following
ansatz

Y (ya) = Jt,s(z, z)wnRH(U) , (3.28)

with U the combination defined in (3.5). Plugging (3.28) into the first equation of (3.22)
we find that the eigenvalue problem reduces to the following differential equation for H(U)

U(U − 1)H ′′ + ((a+ + a− + 1)U − b)H ′ + a+a−H = 0 . (3.29)

This is a hypergeometric equation with coefficients

b = 2 + s+ t ,

a± = b+ nR
2 ± 1

4

√
22/3 6m

2

g2 − 2nR(nR + s− t) + 5 (t+ s)2

2 − 2ts+ 4(b+ 2) .
(3.30)

Equation (3.29) is therefore solved by hypergeometric functions as

H(U) = 2F1 [a−, a+, b, U ] . (3.31)

Using (3.31), (3.28), and (3.25) we arrive at the final explicit form of the eigenfunctions
Y (ya) that solve the first equation in (3.22).

We still need to ensure that the eigenfunctions just constructed are regular over the
whole internal space. This amounts to imposing that the function

wnRH(U) =
(
sin θ e−iφ

)nR
2F1(a−, a+, b, cos2 θ) (3.32)

is regular at θ = 0. The behavior of (3.32) at θ ∼ 0 depends on the sign of nR and
accordingly we have to study two separate cases.

Let us start by assuming that nR ≥ 0. At θ = 0 the function in (3.32) then blows up as

lim
θ→0

wnRH(U) ∝ nR!
θnRΓ [a−] Γ [a+] . (3.33)

To ensure that this limit is regular we impose that

a− = −q , q ∈ N . (3.34)

Using this in (3.30) we find the following quantized mass spectrum

m2L2
IR = 3

16
(
12n2

R+(3s+ t)(s+3t)+32q(q+ t+s+2)+24(t+s)+4nR(8+8q+5s+3t)
)
.

(3.35)
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Now we focus on the case nR < 0. At θ = 0 the function in (3.32) has the following
limit

lim
θ→0

wnRH(U) ∝ |nR|! θnR
Γ [−a− + b] Γ [−a+ + b] . (3.36)

To ensure regularity we need to set

a− = −q + nR , (3.37)

with q ∈ N and nR > −q. This leads to the following expression for the mass spectrum

m2L2
IR = 3

16
(
12n2

R+(3s+ t)(s+3t)+32q(q+ t+s+2)+24(t+s)−4nR(8+8q+5s+3t)
)
.

(3.38)
In summary, we find that regularity of the eigenfunction Y (ya) is ensured whenever

a− = −q , for nR ≥ 0 , or a− = nR − q , for nR < 0 , (3.39)

where q is a non-negative integer. The expression for the mass can be written in the
following form valid for any value of nR

m2L2
IR = 3

16
(
12n2

R+(3s+t)(s+3t)+32q(q+t+s+2)+24(t+s)+4|nR|(8+8q+5s+3t)
)
.

(3.40)
This expression can be simplified by using the same labels as the ones in section 2.2

n = 2k + p− r + 2q , k = t+ s

2 , r = t− s
2 − |nR| , p = t− s

2 . (3.41)

The mass formula in (3.40) then reduces to

m2L2
IR = 3

4
[
2n(n+ 4)− 4k(k + 1) + r2 − 2p2

]
. (3.42)

Upon translating this expression to a formula for the spin-2 conformal dimensions we find
that the result is the same as the spin-2 spectrum in (2.60).

4 The LS superconformal index

The superconformal index, defined and studied in [33, 34], see [47] for a review, is an
effective tool for studying 4d N = 1 SCFTs. It can be defined either as a supersymmetric
partition function of the SCFT on the Euclidean manifold S1

β × S3 or as a Witten index
defined as a trace over the Hilbert space of the SCFT defined in radial quantization.
Schematically, the N = 1 index I is given by

I = Tr (−1)Fe−βδe−µiqi , (4.1)

where F is the fermion number, δ = {Q,Q†}/2, β is the radius the S1, and µi are chem-
ical potentials for global symmetries which commute with the supercharge Q and have
conserved charges qi. Similarly to the Witten index, I is independent of β and receives
contributions only from states with δ = 0.
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For a general N = 1 SCFT with Poincaré supercharges Qα, Q̃α̇, the superconformal
algebra contains the following anti-commutators10

{Qα, Qβ†} = δβα

(
∆ + 3

2r
)

+ 2Mβ
α , {Q̃α̇, Q̃†β̇} = δβ̇α̇

(
∆− 3

2r
)

+ 2M̃ β̇
α̇ , (4.2)

where ∆ is the conformal dimension, Mβ
α and M̃ β̇

α are the generators of SU(2) × SU(2)
rotations on S3 with quantum numbers j1 and j2, and r is the superconformal U(1) R-
symmetry charge.

One can now project onto states annihilated by the first or the second anti-commutators
in (4.2) to define the “left” and the “right” superconformal indices

IL = Tr (−1)Ft2(∆+j1)y2j2
∏
I

uqII , δL = ∆− 2j1 + 3
2r = 0 , (t, y) = (e−β , e−J1) ,

IR = Tr (−1)Ft2(∆+j2)y2j1
∏
I

uqII , δR = ∆− 2j2 −
3
2r = 0 , (t, y) = (e−β , e−J2) ,

(4.3)

where Ji are the chemical potentials for the Lorentz symmetries, and ∏I u
qI
I captures the

contributions to the index from global symmetries GI with fugacities uI .
We are interested in computing the index for the N = 4 SYM theory as well as the

LS N = 1 SCFT. To this end it is useful to set up some notation about the symmetries in
the problem and write the N = 4 theory in N = 1 language. The N = 4 gauge multiplet
breaks into an N = 1 vector multiplet, V = (A, λ), consisting of the gauge field, A and
gaugino, λ, and three chiral multiplets Φi = (ϕi, ψi) built from Weyl fermions ψi and
complex scalars ϕi in the adjoint representation of the gauge group. The superpotential of
the N = 4 theory is the m→ 0 limit of

W = Tr Φ1[Φ2,Φ3] + m

2 Φ2
1 . (4.4)

We have collected the charges and conformal dimensions of these elementary fields, or
“letters”, in table 3. We now proceed to elaborate on the notation used in this table. The
UV superconformal U(1) R-symmetry is defined in (2.1) in terms of the three block-diagonal
Cartan generators of the SO(6) R-symmetry of the N = 4 theory. It is also convenient to
use another basis, Ri, for the Cartan subalgebra of SO(6) employed in the index calculations
in [34]. In this basis the UV U(1) superconformal R-symmetry generator reads

rUV = 1
3(3R1 + 2R2 +R3) . (4.5)

Turning on the superpotential mass term, i.e. taking m 6= 0 in (4.4), triggers the LS RG
flow that ends in the N = 1 IR SCFT. The U(1) superconformal R-symmetry in the IR
is given by the linear combination of Ti as in (2.1) and can be written in the Ri basis as

rIR = 1
2(2R1 +R2) . (4.6)

10The conjugate supercharges Q† are defined to correspond to the superconformal charges S.
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Field (−1)F(∆UV, j1, j2) [T1, T2, T3] [R1, R2, R3] rUV ∆IR rIR R̃F

ϕ1 (1, 0, 0) [0, 0, 1] [1, 0,−1] 2
3

3
2 — —

ϕ2 (1, 0, 0) [0, 1, 0] [1,−1, 1] 2
3

3
4

1
2 −1

2

ϕ3 (1, 0, 0) [1, 0, 0] [0, 1, 0] 2
3

3
4

1
2

1
2

ψ1 −(3
2 ,±

1
2 , 0) [−1

2 ,−
1
2 ,

1
2 ] [0, 0,−1]] −1

3 2 — —
ψ2 −(3

2 ,±
1
2 , 0) [−1

2 ,
1
2 ,−

1
2 ] [0,−1, 1] −1

3
5
4 −1

2 −1
2

ψ3 −(3
2 ,±

1
2 , 0) [1

2 ,−
1
2 ,−

1
2 ] [−1, 1, 0] −1

3
5
4 −1

2
1
2

λ −(3
2 , 0,±

1
2) [1

2 ,
1
2 ,

1
2 ] [1, 0, 0] 1 3

2 1 0
F (2, 1, 0) [0, 0, 0] [0, 0, 0] 0 2 0 0
∂±± (1,±1

2 ,±
1
2) [0, 0, 0] [0, 0, 0] 0 1 0 0

Table 3. Charges and conformal dimensions for the “letters” in N = 4 SYM and the LS SCFT. Ti

and Ri are the Cartan generators of SO(6)R in two different basis, rUV and rIR are the generators
under the UV and IR superconformal R-symmetry, respectively, while R̃F is the Cartan generator
of the SU(2)F flavor symmetry in the IR. Finally, ∆UV and ∆IR are the UV and IR conformal
dimensions and j1,2 are the Lorentz spin quantum numbers.

The LS N = 1 SCFT enjoys an SU(2)F flavor symmetry which rotates the chiral
superfields Φ2,3 and has a Cartan generator given by

R̃F = 1
2(T1 − T2) , R̃F = −1

2R2 . (4.7)

After setting up the stage we are ready to proceed with the calculation of the super-
conformal index for the UV and IR theory. For concreteness we will present the results
for the “right” index IR and will omit the subscript from now on. For a QFT that admits
a weak coupling limit on its conformal manifold, like N = 4 SYM, the calculation of the
index amounts to enumerating the gauge invariant operators built out of the elementary
letters which obey the shortening conditions in (4.3). For intrinsically strongly coupled
SCFTs calculating the index is harder. However, in situations where the strongly coupled
theory arises as an IR fixed point of a UV SCFT with a weakly coupled description one can
take advantage of the invariance of the index under continuous deformations and compute
it in the UV limit of the RG flow, see [33, 48] and [35] for a detailed explanation and jus-
tification for this procedure. Fortunately, the LS SCFT presents exactly such an example
of an intrinsically strongly coupled theory and we employ the same approach as in [35]
to compute its index. Since our main interest is to relate the information contained in
the index to the supergravity spectrum calculations in the previous sections we will focus
exclusively on the large N limit of the gauge theory. In this limit one has to compute the
so-called single letter index, see [35], which we now proceed to discuss.

To begin, note that there is a universal contribution to every single letter index coming
from acting with the derivative ∂±± an arbitrary number of times on any given letter.
From the information in table 3 we conclude that only ∂±+ contributes to the right index.
Accounting for all of the charges we find that the contributions to the index from these
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derivatives are given by overall factors of the form
∞∑

i,j=0
(t3y−1)i(t3y)j = 1

(1− t3y)(1− t3/y) . (4.8)

We now examine the single letter index for a chiral multiplet of R-charge r in a complex
representation of the gauge and flavor symmetry group R with conjugate representation
R. From the shortening condition E = 2j2 + 3

2r, we see that only scalars ϕi in R and
chiral fermions ψi in R contribute to the index. Using this one finds the following compact
expression for the chiral multiplet index

IC(U, V ) = 1
(1− t3y)(1− t3/y)

(
t3rχR(U, V )− t6−3rχR(U, V )

)
. (4.9)

Here U and V are holonomy matrices for the gauge and flavor symmetries, respectively,
and χR is the character of the representation. Analogously, to study the vector multiplet
index one can use that the chiral superfield Wα = λα + σµνθαFµν + . . . has R-charge +1
along the RG flow. Furthermore, the conformal dimension is fixed to 3

2 both in the UV
and IR. Therefore the single letter index for the vector multiplet is given by

IV(U) =
2t6 − t3

(
y + 1

y

)
(1− t3y) (1− t3/y)χadj(U) . (4.10)

Here we have made use of the fact that all fields in the vector multiplet are in the adjoint
representation of the gauge group.

With this at hand we are ready to present the full single letter index for the N = 4
SYM theory as calculated in [34]

IUV =
∑

letters
(−1)Ft2(∆+j2)y2j1vR2wR3

= t2(v + w/v + 1/w)− (t3y + t3/y)− t4(w + v/w + 1/v) + 2t6
(1− t3y)(1− t3/y) ,

(4.11)

where v, w are fugacities for the R2,3 Cartan generators of SO(6). We have also used that
the chiral multiplets are in the adjoint of the SU(N) gauge group and that there are no
additional flavor symmetries in N = 4 SYM.

Equipped with the explicit expression for the single letter index we can follow the
procedure in section 5 of [35] to calculate the large N limit of the index by a saddle point
approximate. For the N = 4 SYM index in (4.11) this was also done in [34]. The result is

IUV
IIB = t2/w

1− t2/w + t2v

1− t2v + t2w/v

1− t2w/v −
t3/y

1− t3/y −
t3y

1− t3y . (4.12)

This large N result for the superconformal index is a prime target for a holographic compar-
ison with the KK spectrum of type IIB supergravity on the AdS5×S5 solution. Indeed the
small t expansion of IUV

IIB yields a power series of chiral primary operators of the schematic
form Tr (Φk) which can be mapped to the KK supergravity spectrum computed in [11, 12].
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4.1 The LS index

We now move on to the calculation of the index for the LS theory of main interest here.
We apply the Römelsberger prescription and compute the superconformal index of the LS
theory by computing the UV index but using the charges in table 3 associated with the
superconformal R-symmetry in the IR. We also refine the index by introducing a fugacity,
x, for the SU(2)F flavor symmetry. The superconformal index then takes the form

IR = Tr (−1)Ft3(2j2+rIR)y2j1x2R̃F . (4.13)

Note that using the data in table 3 we find that the scalar and fermion letters of the
N = 1 adjoint chiral Φ1 contribute to the single particle index as

ϕ1 : t3y0x0 , ψ1 : −t3y0x0 , (4.14)

and therefore there is no contribution to the index from the Φ1 chiral multiplet. This is of
course consistent with the fact that Φ1 is integrated along the RG flow from N = 4 SYM
to the LS IR theory.

The 2 remaining chiral multiplets have the following contribution to the single letter
index

Φ2 : t
3
2x− t

9
2x ,

Φ3 : t
3
2x−1 − t

9
2x−1 .

(4.15)

As discussed around (4.10) the vector multiplet gives the same contribution to the index at
the UV and IR fixed points. Combining these building blocks with the contribution from
the derivatives given in (4.8) we arrive at the following expression for the single particle
index of the LS SCFT

IIR =
t

3
2 (x+ 1

x)− t3(y + 1
y )− t 9

2 (x+ 1
x) + 2t6

(1− t3y)(1− t3/y) . (4.16)

Notice that this result for the LS index can be obtained from the index of the N = 4 SYM
theory in (4.11) by the following substitution

v → 1/(x
√
t) , w → 1/t . (4.17)

This relation between the UV and IR indices is not an accident and is due to the fact that
the N = 4 SYM theory and the LS SCFT are related by the universal RG flow studied
in [39]. As discussed in section 3 of [35] the superconformal indices of two theories related
by such an RG flow are related.

We can now proceed to take the large N limit of the single particle index (4.16) as
described in section 5 of [35]. Alternatively we can obtain the same result by simply
substituting the relations (4.17) in (4.12). The result is the following single-trace index of
the LS theory

IIR
IIB = t3

1− t3 + t
3
2 /x

1− t 3
2 /x

+ t
3
2x

1− t 3
2x
− t3y

1− t3y −
t3/y

1− t3/y . (4.18)
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This index should capture the information about the towers of KK modes dual to BPS
operators in the AdS5 × S̃5 supergravity dual to the LS fixed point. Indeed, as we now
proceed to show, this can be confirm by an explicit comparison with the supergravity KK
spectrum calculations in the previous sections.

4.2 KK spectroscopy from the index

In order to compare the result for the index in (4.18) with the KK spectroscopy calculation
in supergravity we need to expand (4.18) in an appropriate way which resembles the KK
towers of short multiplets discussed in section 2.2. A similar calculation for the index of
other N = 1 SCFTs with AdS5 supergravity duals was discussed [35, 49]. One can show
that (4.18) can be expanded in the following way

IIR
IIB =

[ ∞∑
k=0

2t3(k+3) − t9 −
∞∑
k=0

t3(k+3)χ[1](y) +
∞∑
k=0

t
3(k+5)

2 χ[1](y)χ[k+1](x)

−
∞∑
k=1

t
3(k+2)

2 χ[1](y)χ[k](x) +
∞∑
k=2

t
3k
2 χ[k](x)−

∞∑
k=1

t
3(k+3)

2 χ[k+1](x)

+
∞∑
k=0

t
3(k+4)

2 χ[k](x)−
∞∑
k=0

t
3(k+7)

2 χ[k+1](x)
]

1
(1− t3y)(1− t3/y)

+
χ[1](x)(t3/2 − t9/2)− χ[1](y)t3 + 2t6

(1− t3y)(1− t3/y) .

(4.19)

This expressions deserves some comments. First, we note that the last line in (4.19)
corresponds to a contribution to the index from a decoupled LS theory with a U(1) gauge
group. The appearance of this free contribution is due to the fact that the results for the
LS index in (4.16) and (4.18) are for the theory with an U(N) gauge group. To compare
with the dual AdS5 supergravity solution we have to use the planar limit of the SU(N)
LS theory and thus we should remove the contribution from the decoupled U(1) sector.
Second, we remind the reader that the denominator on the first line of (4.19) accounts for
the contribution of derivatives acting on single trace operators as discussed around (4.8).
Finally, we note that we have used the notation χ[k] to denote the character of the SU(2)
representation with Dynkin label k, i.e. χ[1](y) accounts for a contribution of a spin-1/2
fermion in space-time, while χ[k](x) denotes a contribution from the spin-k/2 representation
of the SU(2)F flavor symmetry.

We now proceed to interpret the terms in the first 3 lines of (4.19) as contributions
from towers of semi-short superconformal multiplets. We use the notation summarized in
appendix A for the 4d N = 1 superconformal multiplets and add an additional label ⊗[k2 ]
to denote the SU(2)F flavor symmetry representation.

We begin with the towers of LB̄1 multiplets. The operators in these multiplets that
contribute to the right index are the superconformal primary operators since they obey the
shortening condition δR = ∆−2j2− 3r

2 = 0. For every such multiplet in the sums in (4.19)
there is a corresponding conjugate B1L̄ multiplet with, j1 ↔ j2, r ↔ −r, and the same
SU(2)F quantum numbers which obeys the shortening condition δL = ∆−2j1 + 3r

2 = 0 and
contributes to the left index (4.3). The contributions of these multiplets are as follows:
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(i) The second sum on the second line of (4.19), ∑∞k=2 t
3k/2χ[k](x), corresponds to a

tower of LB̄1[3k
4 ; 0, 0; k2 ]⊗ [k2 ] multiplets.

(ii) The first sum on the second line of (4.19), −∑∞k=1 t
3(k+2)/2χ[1](y)χ[k](x), corresponds

to a tower of LB̄1[3k+6
4 ; 1

2 , 0; k+2
2 ]⊗ [k2 ] multiplets.

(iii) The first sum on the third line of (4.19), ∑∞k=0 t
3(k+4)/2χ[k](x), arises from a tower of

LB̄1[3k+12
4 ; 0, 0; k+4

2 ]⊗ [k2 ] multiplets.

The remaining terms in (4.19) are due to towers of LĀ` (` = 1, 2) multiplets. Using
the information in appendix A one can show that the superconformal primaries in such
multiplets have δR = 2 and thus do not contribute to the right index. To understand which
descendants contribute to the index we note that acting with a Q supercharge shifts δR as
δR → δR + 2 while acting with a Q̄ leads to δR → δR − 2. Therefore we conclude that the
states in LĀ` multiplets that contribute to the index are level 1 Q̄ descendants. For every
LĀ` multiplet with r 6= 0 in the sums in (4.19) there is a corresponding conjugate A`L̄
multiplet with, j1 ↔ j2, r ↔ −r, and the same SU(2)F quantum numbers which contains
an operator with δL = ∆− 2j1 + 3r

2 = 0 and thus contributes to the left index (4.3). The
contributions from the LĀ` multiplets are as follows.

(iv) The first two terms on the first line of (4.19), ∑∞k=0 2t3(k+3) − t9, capture the contri-
bution of 2 towers of LĀ1[3k+6

2 ; 0, 1
2 ; k] ⊗ [0] multiplets with k > 0. The k = 0 term

in the sum is subtle since there is actually only a single multiplet LĀ1[3; 0, 1
2 ; 0]⊗ [0]

multiplet and since it has r = 0 there is no corresponding conjugate A1L̄ multiplet
in the spectrum.

(v) The third term on the first line of (4.19), −∑∞k=0 t
3(k+3)χ[1](y), corresponds to a

tower of LĀ1[3k+6
2 ; 1

2 ,
1
2 ; k] ⊗ [0] multiplets. Note that for k = 0 the R-charge of the

primary in the multiplet vanishes and thus there is no corresponding conjugate A1L̄

multiplet. In fact the multiplet with k = 0 is the A1Ā1[3; 1
2 ,

1
2 ; 0]⊗ [0] multiplet that

contains the energy-momentum tensor.

(vi) The final sum on the second line of (4.19), −∑∞k=1 t
3(k+3)/2χ[k+1](x), corresponds to a

tower of LĀ2[3k+5
4 ; 0, 0; k−1

2 ]⊗ [k+1
2 ] multiplets. Again, the multiplet with k = 1 has a

primary with R-charge 0 and thus there is no corresponding conjugate A2L̄ multiplet.
More precisely, the multiplet with k = 1 is an A2Ā2[2; 0, 0; 0] ⊗ [1] multiplet which
contains the SU(2)F flavor current.

(vii) The final sum on the first line of (4.19), −∑∞k=1 t
3(k+5)/2χ[1](y)χ[k+1](x), corresponds

to a tower of LĀ2[3k+11
4 ; 1

2 , 0; k+1
2 ]⊗ [k+1

2 ] multiplets.

(viii) The second sum on the third line of (4.19), −∑∞k=0 t
3(k+7)/2χ[k+1](x), corresponds to

a tower of LĀ2(3k+17
4 ; 0, 0; k+1

2 )⊗ [k+1
2 ] multiplets.

The semi-short multiplets described in (i)-(viii) above correspond precisely to the KK
towers of semi-short multiplets presented in section 2.2. This agreement between the QFT
and supergravity calculations constitutes a non-trivial test of AdS/CFT.
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Interestingly we find that the two towers described in (iv) can actually be distinguished
from each other in the supergravity computation in section 2.2. The reason is that in super-
gravity there is an additional U(1)R ×U(1)Y action under which the solution is invariant.
The two towers are oppositely charged with respect to this U(1)Y , and can therefore be
distinguished, as has been done in (2.62). Guided by the U(1)Y bonus symmetry in the
planar limit of N = 4 SYM, we expect that correlation functions of local operators in the
planar LS SCFT enjoy a symmetry under the combined U(1)R × U(1)Y action discussed
in section 2. Since this is not a symmetry of the LS theory for general gauge groups there
is no corresponding fugacity for it in the index calculation above.

5 Discussion

We have shown how to calculate the full KK spectrum of the AdS5 PW solution of type IIB
supergravity using recently developed ExFT techniques. We corroborated the results of this
explicit calculation by two other direct methods. We computed the spectrum of all spin-2
KK modes by evaluating the eigenvalues for the regular solutions of the Laplace equation
on the internal space. We also found the spectrum of short and semi-short multiplets in
the LS theory by calculating the superconformal index.

There are a number of interesting questions that arise in the context of our work that
deserve further study. We discuss a few of them below.

• As discussed around (2.64), the LS SCFT belongs to a conformal manifold of com-
plex dimension 3. At a generic point on the conformal manifold the SU(2)F flavor
symmetry should be broken and there should be no continuous flavor symmetry. It
will be very interesting to construct the family of AdS5 supergravity solutions that
are holographically dual to this conformal manifold and compute the corresponding
spectrum of KK excitations.

• There is another 4d N = 1 SCFT which is closely related to the LS theory and
should share many similarities in its operator spectrum. We refer to this theory as
LS/Z2 since it can be obtained by an RG flow from the 4d N = 2 two-node quiver
SCFTs arising from a Z2 orbifold of N = 4 SYM. The holographic dual of this RG
flow can be found by performing the corresponding Z2 orbifold of the PW type IIB
solution [7, 8]. In the UV one simply finds the AdS5 × S5/Z2 solution, while in the
IR one has a Z2 orbifold of the AdS5 PW solution. The 4d N = 1 theory studied
by Klebanov-Witten (KW) is another well-known RG flow that originates from the
Z2 orbifold of N = 4 SYM and ends at an IR strongly coupled SCFT [28]. The
gravitational dual of this SCFT is given by the well-known AdS5 × T 1,1 solution of
type IIB supergravity [27]. The spectrum of KK excitations around this supergravity
solution was calculated in detail in [30, 31], see also [29], and, as shown in [35, 49, 50],
the part of the spectrum corresponding to protected SCFT multiplets agrees with
the superconformal index. The LS/Z2 and KW SCFTs belong to the same five-
dimensional complex conformal manifold and are defined by specific superpotentials
with enhanced flavor symmetry, see [51, 52]. This conformal manifold does not appear
to have a weak coupling limit and therefore it is challenging to study how the operator
spectrum of the SCFTs describing it depend on the exactly marginal couplings. It
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is possible that holography and KK spectroscopy may offer some insight into this
question. There is a one-dimensional submanifold of the conformal manifold with an
SU(2) flavor symmetry which has a known dual type IIB supergravity solution [53].
Using the explicit KK spectrum of AdS5×T 11 [30, 31] and the KK spectrum of the PW
solution computed here, together with the family of AdS5 solutions in [53] may allow
for explicit calculations of the dimension of some of the SCFT operators as a function
of an exactly marginal coupling. We plan to study this question further in [54].

• A notable feature of our results is that there are unprotected operators in the LS
SCFT spectrum which are dual to KK supergravity modes and thus do not have
large anomalous dimensions controlled by the ’t Hooft coupling. Similar features
were observed in [29–31] for the spectrum of operators of the KW SCFT [28]. It
is desirable to have an understanding of the QFT mechanism responsible for this
feature of the operator spectrum. In addition to being of intrinsic QFT interest,
this question is also important for understanding the emergence of large internal
dimensions in AdS/CFT. A better understanding of this mechanism may elucidate
the conditions under which scale separated AdS vacua can exist in string theory and
supergravity, see [55] for a recent discussion.

• Some aspects of the KK spectrum calculation presented in section 2 deserve better
understanding. In particular the role of the U(1)Y “bonus” symmetry and its role in
the ExFT formalism should be elucidated. In addition it will be nice to understand
whether there is a deeper reason for the appearance of the simple generating
functions we employed to organize the KK spectrum.

• In section 4 we presented the calculation of what can be called the “Hamiltonian
index”, i.e. we have neglected the supersymmetric Casimir energy prefactor discussed
in [56, 57]. In addition, as in [35], we have assumed that the fugacities appearing
in the index are real when we studied the large N limit. Both of these assumptions
are not important when comparing the large N limit of the index with the KK
supergravity spectrum. However, as emphasized recently in a number of papers,
including [58–61], these modifications of the superconformal index could be crucial
to understand the physics of supersymmetric black holes in AdS5. It will be very
interesting to understand the large N limit of the LS SCFT in this context and to
construct the dual AdS5 black hole solutions of supergravity.

• It is natural to wonder whether our KK spectroscopy results can be generalized to
other known AdS5 solutions of type IIB supergravity dual to 4d N = 1 SCFTs,
like the AdS5 × Y p,q solutions [62] or the gravity dual of the β-deformation of
N = 4 SYM [63]. Currently we do not know of a suitable consistent truncation
of IIB supergravity to an extended supergravity theory in 5d for these classes of
solutions to which we can apply the ExFT KK spectroscopy technique of [14, 15].
Nevertheless, it is tempting to speculate that one can perhaps combine various
techniques to attack this KK spectroscopy problem. For example one can utilize the

– 29 –



J
H
E
P
0
4
(
2
0
2
1
)
2
0
8

results in [64]11 for the spectrum of protected operators in combination with a more
explicit calculation of the eigenvalues of the Laplacian on Y p,q studied in [66, 67] to
compute the KK spectrum of spin-2 modes as we did in section 3. Understanding
these KK spectra in detail is an important open problem in the application of
supergravity to the holographic study of 4d N = 1 SCFTs.
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A 4d N = 1 superconformal multiplets

In this appendix we summarize some relevant facts about the representation theory and
multiplet structure for theories with 4d N = 1 superconformal symmetry. We follow closely
the presentation in [40].12

The 4d N = 1 superconformal algebra is SU(2, 2|1). Its representations are labelled
by the conformal dimension ∆, the U(1) R-charge r, as well as the Lorentz spin quantum
numbers [j1, j2] ∈

[
N0
2 ,

N0
2

]
.13 For a given state/operator, Φ, in the 4d N = 1 SCFT we

use the following notation to indicate this data

Φ : [j1, j2](r)∆ . (A.1)

The following representations of the 4d Lorentz group play an important role in our dis-
cussion of the KK spectroscopy14

Scalars : φ : [0, 0] ,

Spin-1/2 : λ :
[1

2 , 0
]
, and λ̄ :

[
0, 1

2

]
,

Vectors : Aµ :
[1

2 ,
1
2

]
,

Two-forms : Bµν : [1, 0] , and B̄µν : [0, 1] ,

Spin-3/2 : ψµ :
[
1, 1

2

]
, and ψ̄µ :

[1
2 , 1

]
,

Spin-2 : gµν : [1, 1] .

(A.2)

11The cyclic homology approach of [64] can also be used to compute the spectrum of protected KK modes
of the Pilch-Warner solution discussed here, see [65] for a brief discussion. We are grateful to Richard Eager
for informing us about these results.

12See [68] for early original results on superconformal representation theory, which are also summarized
in [69].

13In this appendix we do not include the representation of the operators under any flavor symmetry.
14Note that we use Lorentz spin-labels instead of the SU(2) Dynkin labels in [40].
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The N = 1 superalgebra has four Poincaré and four conformal supercharges. The
superconformal representations are then built from a superconformal primary operator
annihilated by the special conformal generators and the conformal supercharges by acting
with the four Poincaré supercharges. The quantum numbers of the Poincaré supercharges
are given explicitly by

Q :
[1

2 , 0
](−1)

1
2

, Q̄ :
[
0, 1

2

](+1)

1
2

. (A.3)

To denote the various superconformal multiplets we will use the notation

XȲ [∆; j1, j2; r] . (A.4)

The letters XȲ denote the type of shortening condition, if any, on the multiplet for which
we use the results of [40].

There are the following type of 4d N = 1 superconformal multiplets:

• long multiplets, LL̄ [∆; j1, j2; r], for which,

∆ > 2 + max
(

2j1 −
3
2r, 2j2 + 3

2r
)
. (A.5)

• semi-short multiplets:

� LĀ1
[
∆; j1, j2 ≥ 1

2 ; r
]
and A1L̄

[
∆; j1 ≥ 1

2 , j2; r
]
with

LĀ1 : ∆ = 2(1 + j2) + 3
2r , and r >

2
3(j1 − j2) ,

A1L̄ : ∆ = 2(1 + j1)− 3
2r , and r <

2
3(j1 − j2) .

(A.6)

� LĀ2 [∆; j1, 0; r] and A2L̄ [∆; 0, j2; r] with

LĀ2 : ∆ = 2 + 3
2r , and r >

2
3j1 ,

A2L̄ : ∆ = 2− 3
2r , and r < −2

3j2 .
(A.7)

� LB̄1 [∆; j1, 0; r], and B1L̄ [∆; 0, j2; r] with

∆ = 3
2r , and r >

2
3(1 + j1) ,

∆ = −3
2r , and r < −2

3(1 + j2) .
(A.8)

• short multiplets:

� A1Ā2
[
∆; j1 ≥ 1

2 , 0; r
]
and A2Ā1

[
∆; 0, j2 ≥ 1

2 ; r
]
with

A1Ā2 : ∆ = 2 + j1 , and r = 2
3j1 ,

A2Ā1 : ∆ = 2 + j2 , and r = −2
3j2 .

(A.9)
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� A1Ā1
[
∆; j1 ≥ 1

2 , j2 ≥
1
2 ; r
]
with

∆ = 2 + j1 + j2 , and r = 2
3(j1 − j2) . (A.10)

� A2Ā2 [∆; 0, 0; r] with
∆ = 2 , and r = 0 . (A.11)

� A1B̄1
[
∆; j1 ≥ 1

2 , 0; r
]
and B1Ā1

[
∆; 0, j2 ≥ 1

2 ; r
]
with

A1B̄1 : ∆ = 1 + j1 , and r = 2
3(1 + j1) ,

B1Ā1 : ∆ = 1 + j2 , and r = −2
3(1 + j2) .

(A.12)

� A2B̄1 [∆; 0, 0; r] and B1Ā2 [∆; 0, 0; r] with

A2B̄1 : ∆ = 1 , and r = 2
3 ,

B1Ā2 : ∆ = 1 , and r = −2
3 .

(A.13)

� B1B̄1 [∆; 0, 0; r] which is simply the identity operator with

∆ = 0 , and r = 0 . (A.14)

We have listed all short multiplets allowed by unitarity and 4d N = 1 superconformal
symmetry. For the LS SCFT of interest in this work not all of these multiplets appear in the
spectrum. In addition to the B1B̄1 [0; 0, 0; 0] identity operator we have only two other short
multiplets. We have an A1Ā1

[
∆; 1

2 ,
1
2 ; r
]
multiplet which contains the energy-momentum

tensor and the U(1) R-current operators and an A2Ā2 [∆; 0, 0; r] multiplet which transforms
in the adjoint of the SU(2)F flavor symmetry and contains the conserved flavor current. All
the semi-short and the long multiplets listed above appear in the spectrum of the LS theory.

In the diagrams below we give the explicit field content of all the superconformal
multiplets appearing in the spectrum of the LS theory. We use the same Lorentz spin
notation as in (A.2) and denote the R-charge of each field with a superscript.

A
(0)
µ

Q̄

��
Q

��

ψ̄
(+1)
µ

Q

��

ψ
(−1)
µ

Q̄

��

g
(0)
µν

φ(0)

Q̄

��
Q

��
λ̄(+1)

Q

��

λ(−1)

Q̄

��

A
(0)
µ

Diagram 1. The A1Ā1
[
∆; 1

2 ,
1
2 ; 0
]
and A2Ā2 [∆; 0, 0; 0] multiplets.
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φ(r)

Q

��
λ(r−1)

Q

��
φ(r−2)

φ(r)

Q̄

��
λ̄(r+1)

Q̄

��
φ(r+2)

Diagram 2. The LB̄1 [∆; 0, 0; r] and B1L̄ [∆; 0, 0; r] multiplets.

λ(r)

Q

��

B
(r−1)
µν + φ(r−1)

Q

��
λ(r−2)

λ̄(r)

Q̄

��

B̄
(r+1)
µν + φ(r+1)

Q̄

��
λ̄(r+2)

Diagram 3. The LB̄1
[
∆; 1

2 , 0; r
]
and B1L̄

[
∆; 0, 1

2 ; r
]
multiplets.

λ̄(r)

Q̄

��
Q

��

B̄
(r+1)
µν

Q

��

A
(r−1)
µ

Q̄

��
Q

��
ψ̄

(r)
µ

Q

��

λ̄(r−2)

Q̄

��

B̄
(r−1)
µν

λ(r)

Q̄

��
Q

��

A
(r+1)
µ

Q̄

��

Q

��

λ(r+2)

Q

��

B
(r−1)
µν

Q̄

��

ψ
(r)
µ

Q̄

��

B
(r+1)
µν

Diagram 4. The LĀ1
[
∆; 0, 1

2 ; r
]
and A1L̄

[
∆; 1

2 , 0; r
]
multiplets.
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A
(r)
µ

Q̄

��
Q

��

ψ̄
(r+1)
µ

Q

��

ψ
(r−1)
µ + λ̄(r−1)

Q̄

��
Q

��

g
(r)
µν + B̄

(r)
µν

Q

��

A
(r−2)
µ

Q̄

��

ψ̄
(r−1)
µ

A
(r)
µ

Q̄

��
Q

��

ψ̄
(r+1)
µ + λ(r+1)

Q̄

��
Q

��

A
(r+2)
µ

Q

��

ψ
(r−1)
µ

Q̄

��

g
(r)
µν +B

(r)
µν

Q̄

��

ψ
(r+1)
µ

Diagram 5. The LĀ1
[
∆; 1

2 ,
1
2 ; r
]
and A1L̄

[
∆; 1

2 ,
1
2 ; r
]
multiplets.

φ(r)

Q̄

��
Q

��
λ̄

(r+1)
µ

Q

��

λ(r−1)

Q̄

��
Q

��
A

(r)
µ

Q

��

φ(r−2)

Q̄

��
λ̄(r−1)

φ(r)

Q̄

��

Q

��

λ̄(r+1)

Q̄

��

Q

��

φ(r+2)

Q

��

λ
(r−1)
µ

Q̄

��

A
(r)
µ

Q̄

��
λ(r+1)

Diagram 6. The LĀ2 [∆; 0, 0; r] and A2L̄ [∆; 0, 0; r] multiplets.
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λ(r)

Q̄

��
Q

��

A
(r+1)
ν

Q

��

B
(r−1)
µν + φ(r−1)

Q̄

��
Q

��
ψ

(r)
µ + λ̄(r)

Q

��

λ(r−2)

Q̄

��

A
(r−1)
µ

λ̄(r)

Q̄

��
Q

��

B̄
(r+1)
µν + φ(r+1)

Q̄

��

Q

��

λ̄(r+2)

Q

��

A
(r−1)
µ

Q̄

��

ψ̄
(r)
µ + λ(r)

Q̄

��

A
(r+1)
µ

Diagram 7. The LĀ2
[
∆; 1

2 , 0; r
]
and A2L̄

[
∆; 0, 1

2 ; r
]
multiplets.

λ(r)

Q̄

��
Q

��

A
(r+1)
µ

Q̄

��

Q

��

λ(r+2)

Q

��

B
(r−1)
µν + φ(r−1)

Q̄

��
Q

��
λ(r) + ψ

(r)
µ + λ̄(r)

Q̄

��
Q

��

B
(r+1)
µν + φ(r+1)

Q

��

λ(r−2)

Q̄

��

A
(r−1)
µ

Q̄

��
λ(r)

λ̄(r)

Q̄

��
Q

��

B̄
(r+1)
µν + φ(r+1)

Q̄

��

Q

��

λ̄(r+2)

Q

��

A
(r−1)
µ

Q̄

��
Q

��
λ̄(r) + ψ̄

(r)
µ + λ(r)

Q̄

��
Q

��

A
(r+1)
µ

Q

��

λ̄(r−2)

Q̄

��

B̄
(r−1)
µν + φ(r−1)

Q̄

��
λ(r)

Diagram 8. The LL̄
[
∆; 1

2 , 0; r
]
and LL̄

[
∆; 0, 1

2 ; r
]
multiplets.
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φ(r)

Q̄

��
Q

��
λ̄(r+1)

Q̄

��

Q

��

φ(r+2)

Q

��

λ(r−1)

Q̄

��
Q

��
A

(r)
µ

Q̄

��
Q

��
λ(r+1)

Q

��

φ(r−2)

Q̄

��
λ̄(r−1)

Q̄

��
φ(r)

A
(r)
µ

Q̄

��
Q

��

ψ̄
(r+1)
µ + λ(r+1)

Q̄

��
Q

��

A
(r+2)
µ

Q

��

ψ
(r−1)
µ + λ̄(r−1)

Q̄

��
Q

��
φ(r) +B

(r)
µν + B̄

(r)
µν + g

(r)
µν

Q̄

��
Q

��

ψ
(r+1)
µ + λ̄(r+1)

Q

��

A(r−2)

Q̄

��

ψ̄
(r−1)
µ + λ(r−1)

Q̄

��

A
(r)
µ

Diagram 9. The LL̄ [∆; 0, 0; r] and LL̄
[
∆; 1

2 ,
1
2 ; r
]
multiplets.

B Explicit KK spectrum results

Here we explicitly present part of the operator spectrum of the LS SCFT, derived using
the ExFT techniques described in section 2.1. All results below are presented in terms of
4d N = 1 superconformal multiplets using the notation in appendix A. In the tables below
we have also added the additional labels forf the SU(2)F spin through ⊗[k] as well as the
U(1)P ×U(1)Y charge via the superscript s = (p+ 2y), i.e. we are using the notation

XȲ [∆; j1, j2; r]⊗ [k](p+2y) . (B.1)

In addition to the multiplets presented explicitly in the tables below one has to add
their conjugates. For tables 4 and 6 this means that multiplets of the form

Y X̄

[
∆; 1

2 ,
1
2;−r

]
⊗ [k](−[p+2y]) , and Y X̄[∆; 0, 0;−r]⊗ [k](−[p+2y]) , (B.2)

have to be added whenever r 6= 0 or s = p+ 2y 6= 0. For table 5 all multiplets have to be
complemented with their conjugate multiplets of the form

Y X̄

[
∆; 0, 1

2;−r
]
⊗ [k](−[p+2y]) . (B.3)

It can be checked that the results in the tables below are indeed consistent with the analytic
formulae presented in section 2.2.
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n=0 n=1 n=2 n=3

A1Ā1[3; 1
2 ,

1
2 ;0]⊗[0](0) LĀ1[ 9

2 ; 1
2 ; 1

2 ;1]⊗[0](0) LĀ1[6; 1
2 ; 1

2 ;2]⊗[0](0) LĀ1[ 15
2 ; 1

2 ,
1
2 ;3]⊗[0](0)

LL̄[ 4+
√

145
4 ; 1

2 ,
1
2 ; 1

2 ]⊗[ 1
2 ](1/2) LL̄[ 2+

√
61

2 ; 1
2 ; 1

2 ;1]⊗[1](1) LL̄[ 23
4 ; 1

2 ,
1
2 ; 3

2 ]⊗[ 3
2 ](3/2)

LL̄[5; 1
2 ,

1
2 ;0]⊗[1](0) LL̄[ 4+

√
385

4 ; 1
2 ,

1
2 ; 1

2 ]⊗[ 3
2 ](1/2)

LL̄[ 4+
√

337
4 ; 1

2 ,
1
2 ; 3

2 ]⊗[ 1
2 ](1/2) LL̄[1+

√
31; 1

2 ,
1
2 ;2]⊗[1](1)

LL̄[ 4+
√

313
4 ; 1

2 ,
1
2 ; 1

2 ]⊗[ 1
2 ](−1/2) LL̄[ 13

2 ; 1
2 ,

1
2 ;1]⊗[1](0)

LL̄[1+
√

22; 1
2 ,

1
2 ;0]⊗[0](0) LL̄[1+2

√
7; 1

2 ,
1
2 ;0]⊗[1](1)

LL̄[ 4+
√

601
4 ; 1

2 ,
1
2 ; 5

2 ]⊗[ 1
2 ](1/2)

LL̄[ 4+
√

533
4 ; 1

2 ,
1
2 ; 3

2 ]⊗[ 1
2 ](−1/2)

LL̄[ 27
4 ; 1

2 ,
1
2 ; 1

2 ]⊗[ 1
2 ](1/2)

LL̄[ 2+
√

145
2 ; 1

2 ,
1
2 ;1]⊗[0](0)

Table 4. Multiplets with vector primaries up to KK level n = 3.
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n=0 n=1 n=2 n=3

LB̄1[ 9
4 ; 1

2 ,0; 3
2 ]⊗[ 1

2 ](3/2) LB̄1[3; 1
2 ,0;2]⊗[1](2) LB̄1[ 15

4 ; 1
2 ,0; 5

2 ]⊗[ 3
2 ](5/2) LB̄1[ 9

2 ; 1
2 ,0;3]⊗[2](3)

LĀ2[ 11
4 ; 1

2 ,0; 1
2 ]⊗[ 1

2 ](1/2) A1L̄[ 9
2 ; 1

2 ,0;−1]⊗[0](±1) A1L̄[6; 1
2 ,0;−2]⊗[0](±1) A1L̄[ 15

2 ; 1
2 ,0;−3]⊗[0](±1)

A1L̄[3; 1
2 ,0;0]⊗[0](1) LĀ2[ 7

2 ; 1
2 ,0;1]⊗[1](1) LĀ2[ 17

4 ; 1
2 ,0; 3

2 ]⊗[ 3
2 ](3/2) LĀ2[5; 1

2 ,0;2]⊗[2](2)

LL̄[1+
√

7; 1
2 ,0;0]⊗[1](0) LL̄[ 4+

√
193

4 ; 1
2 ,0;± 1

2 ]⊗[ 3
2 ](±1/2) LL̄[ 2+

√
73

2 ; 1
2 ,0;±1]⊗[2](±1)

LL̄[ 15
4 ; 1

2 ,0; 1
2 ]⊗[ 1

2 ](3/2) LL̄[ 9
2 ; 1

2 ,0;1]⊗[1](2) LL̄[1+
√

19; 1
2 ,0;0]⊗[2](0)

LL̄[ 17
4 ; 1

2 ,0;− 1
2 ]⊗[ 1

2 ](1/2) LL̄[ 2+
√

73
2 ; 1

2 ,0;±1]⊗[1](0) LL̄[ 21
4 ; 1

2 ,0; 3
2 ]⊗[ 3

2 ](5/2)

LL̄[ 9
2 ; 1

2 ,0;1]⊗[0](1) LL̄[5; 1
2 ,0;0]⊗[1](1) LL̄[ 4+

√
433

4 ; 1
2 ,0;± 3

2 ]⊗[ 3
2 ](±1/2)

LL̄[ 4+
√

313
4 ; 1

2 ,0;± 3
2 ]⊗[ 1

2 ](±3/2) LL̄[ 23
4 ; 1

2 ,0; 1
2 ]⊗[ 3

2 ](3/2)

LL̄[ 4+
√

337
4 ; 1

2 ,0;± 1
2 ]⊗[ 1

2 ](±1/2) LL̄[ 4+
√

409
4 ; 1

2 ,0;± 1
2 ]⊗[ 3

2 ](∓1/2)

LL̄[ 21
4 ; 1

2 ,0;− 1
2 ]⊗[ 1

2 ](3/2) LL̄[1+2
√

7; 1
2 ,0;±2]⊗[1](±2)

LL̄[ 23
4 ; 1

2 ,0;− 3
2 ]⊗[ 1

2 ](1/2) LL̄[1+
√

34; 1
2 ,0;±2]⊗[1](0)

LL̄[6; 1
2 ,0;2]⊗[0](1) LL̄[ 13

2 ; 1
2 ,0;±1]⊗[1](±1)

LL̄[1+
√

22; 1
2 ,0;0]⊗[0](±1) LL̄[ 13

2 ; 1
2 ,0;−1]⊗[1](1)

LL̄[6; 1
2 ,0;0]⊗[1](2)

2×LL̄[1+
√

31; 1
2 ,0;0]⊗[1](0)

LL̄[ 4+
√

577
4 ; 1

2 ,0;± 5
2 ]⊗[ 1

2 ](±3/2)

LL̄[ 4+
√

577
4 ; 1

2 ,0;± 3
2 ]⊗[ 1

2 ](±1/2)

LL̄[ 4+
√

505
4 ; 1

2 ,0;± 1
2 ]⊗[ 1

2 ](±3/2)

LL̄[ 4+
√

553
4 ; 1

2 ,0;± 1
2 ]⊗[ 1

2 ](∓1/2)

LL̄[ 27
4 ; 1

2 ,0;− 3
2 ]⊗[ 1

2 ](3/2)

LL̄[ 29
4 ; 1

2 ,0;− 5
2 ]⊗[ 1

2 ](1/2)

LL̄[ 15
2 ; 1

2 ,0;3]⊗[0](1)

LL̄[ 2+
√

145
2 ; 1

2 ,0;±1]⊗[0](±1)

LL̄[ 2+
√

145
2 ; 1

2 ,0;±1]⊗[0](∓1)

Table 5. Multiplets with fermion primaries up to KK level n = 3.
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n=0 n=1 n=2 n=3

LB̄1[ 3
2 ;0,0;1]⊗[1](1) LB̄1[ 9

4 ;0,0; 3
2 ]⊗[ 3

2 ](3/2) LB̄1[3;0,0;2]⊗[2](2) LB̄1[ 15
4 ;0,0; 5

2 ]⊗[ 5
2 ](5/2)

LB̄1[3;0,0;2]⊗[0](2) LB̄1[ 15
4 ;0,0; 5

2 ]⊗[ 1
2 ](5/2) LB̄1[ 9

2 ;0,0;3]⊗[1](3) LB̄1[ 21
4 ;0,0; 7

2 ]⊗[ 3
2 ](7/2)

LL̄[1+
√

7;0,0;0]⊗[0](0) LĀ2[ 11
4 ;0,0; 1

2 ]⊗[ 3
2 ](1/2) LĀ2[ 7

2 ;0,0;1]⊗[2](1) LĀ2[ 17
4 ;0,0; 3

2 ]⊗[ 5
2 ](3/2)

LĀ2[ 17
4 ;0,0; 3

2 ]⊗[ 1
2 ](3/2) LĀ2[5;0,0;2]⊗[1](2) LĀ2[ 23

4 ;0,0; 5
2 ]⊗[ 3

2 ](5/2)

LL̄[1+
√

7;0,0;0]⊗[1](1) LL̄[1+
√

7;0,0;0]⊗[2](0) LL̄[ 4+
√

193
4 ;0,0; 1

2 ]⊗[ 5
2 ](1/2)

LL̄[ 4+
√

193
4 ;0,0; 1

2 ]⊗[ 1
2 ](1/2) LL̄[ 17

4 ;0,0; 1
2 ]⊗[ 3

2 ](3/2) LL̄[ 2+
√

61
2 ;0,0;1]⊗[2](2)

LL̄[ 2+
√

37
2 ;0,0;1]⊗[0](2) LL̄[ 4+

√
217

4 ;0,0; 1
2 ]⊗[ 3

2 ](−1/2) LL̄[ 2+
√

85
2 ;0,0;1]⊗[2](0)

LL̄[ 2+
√

61
2 ;0,0;1]⊗[0](0) 2×LL̄[ 2+

√
73

2 ;0,0;1]⊗[1](1) LL̄[1+
√

19;0,0;0]⊗[2](1)

LL̄[ 2+
√

73
2 ;0,0;1]⊗[1](−1) 2×LL̄[ 4+

√
409

4 ;0,0; 3
2 ]⊗[ 3

2 ](3/2)

LL̄[1+
√

19;0,0;0]⊗[1](0) LL̄[ 4+
√

457
4 ;0,0; 3

2 ]⊗[ 3
2 ](−1/2)

LL̄[ 4+
√

241
4 ;0,0; 3

2 ]⊗[ 1
2 ](5/2) 2×LL̄[ 4+

√
433

4 ;0,0; 1
2 ]⊗[ 3

2 ](1/2)

LL̄[ 4+
√

385
4 ;0,0; 3

2 ]⊗[ 1
2 ](1/2) LL̄[ 4+

√
385

4 ;0,0; 1
2 ]⊗[ 3

2 ](−3/2)

LL̄[ 4+
√

313
4 ;0,0; 1

2 ]⊗[ 1
2 ](3/2) LL̄[1+

√
22;0,0;2]⊗[1](3)

LL̄[ 23
4 ;0,0; 1

2 ]⊗[ 1
2 ](−1/2) 2×LL̄[1+

√
34;0,0;2]⊗[1](1)

LL̄[1+
√

22;0,0;2]⊗[0](2) LL̄[1+
√

34;0,0;2]⊗[1](−1)

LL̄[1+2
√

7;0,0;2]⊗[0](0) LL̄[ 2+
√

109
2 ;0,0;1]⊗[1](2)

LL̄[1+
√

19;0,0;0]⊗[0](2) LL̄[ 2+
√

133
2 ;0,0;1]⊗[1](0)

2×LL̄[6;0,0;0]⊗[0](0) 2×LL̄[1+
√

31;0,0;0]⊗[1](1)

LL̄[ 4+
√

505
4 ;0,0; 5

2 ]⊗[ 1
2 ](5/2)

LL̄[ 4+
√

649
4 ;0,0; 5

2 ]⊗[ 1
2 ](1/2)

LL̄[ 4+
√

553
4 ;0,0; 3

2 ]⊗[ 1
2 ](3/2)

LL̄[ 4+
√

601
4 ;0,0; 3

2 ]⊗[ 1
2 ](−1/2)

LL̄[ 4+
√

433
4 ;0,0; 1

2 ]⊗[ 1
2 ](5/2)

2×LL̄[ 4+
√

577
4 ;0,0; 1

2 ]⊗[ 1
2 ](1/2)

LL̄[ 27
4 ;0,0; 1

2 ]⊗[ 1
2 ](−3/2)

LL̄[ 2+
√

157
2 ;0,0;3]⊗[0](2)

LL̄[ 2+
√

181
2 ;0,0;3]⊗[0](0)

LL̄[ 2+
√

133
2 ;0,0;1]⊗[0](±2)

2×LL̄[ 2+
√

157
2 ;0,0;1]⊗[0](0)

Table 6. Multiplets with scalar primaries up to KK level n = 3.
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