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1 Introduction and results

The recent papers [1-3] focused on certain features of higher genus corrections to BPS Wil-
son loops in dual theories related by AdS/CFT. By means of supersymmetric localization,
gauge theory predictions are available as matrix model integrals that depend non-trivially
on the number of colours N and 't Hooft planar coupling A (mass deformations will not be
relevant here). The large N expansion may be computed at high order starting from exact
expressions in the matrix model or by perturbative loop equation methods, like topological
recursion [4]. On the string side, the gauge theory parameters N, A\ may be replaced by the
string coupling gs and tension 7. World-sheet genus expansion is a natural perturbation



theory controlled by powers of g5 accompanied by corrections in inverse string tension, i.e.
o-model quantum corrections. The two expansions are expected to match according to
AdS/CFT, but practical tests are of course non-trivial. On the gauge side, a rich set of
predictions is obtained extracting the dominant strong coupling corrections order by order
in 1/N, i.e. well beyond planar level. On string side, this should reproduce the large tension
limit T > 1 at specific genera, whose independent determination is obviously very hard
beyond leading order. In spite of that, one can still look at manifestations of its expected
structural properties in the 1/N gauge theory expansion.

The simplest example where this strategy may be concretely illustrated is the expec-
tation value (W) of the 1-BPS circular Wilson loop in U(N) N = 4 SYM. The expression
for (W) is known at finite N and A = N g2, exactly [5-8] and is given by the Hermitian
Gaussian one-matrix model average

A
(W) = /@M treé Me*%trM2 = 6ﬁ L}vfl (_4N> . (1.1)

In this case, the relation among the gauge theory parameters A\, N and gs,7 in the dual
AdS; x S5 1IB superstring is [9]

Js = —— T=—. (1.2)

At large tension, (1.1) takes the following form

o 1 \/T 27‘(‘T+1£ —1 TZ>1 2T 952
<W>_%ze m[HO(T )} = e ) (1.3)
f(z) = 2~ Y2 exp <17T2 1'2) . (1.4)

The structure of (1.3) is consistent with the dual representation of the Wilson loop expec-
tation value as the string path integral over world-sheets ending on a circle at AdS.!

A similar large tension analysis is presented in [2] for other quantities related again
to the %—BPS Wilson loop in N = 4 SYM. In particular, one can consider the normalised
ratio of n coincident Wilson loops.? This requires consideration of matrix integrals which
are generalisations of (1.1), but whose 1/N expansion is much more difficult to extract.?
The semiclassical exponential factors ~ e*™1" cancel and the ratio (W") /(W)" is again
organised in powers of g2/T, cf. (1.3),

o ().

!The exponential factor exp(27T) comes from the AdSs minimal surface [10-12]. Upon expansion in gs,
the power of the string coupling is minus the Euler number of a disc with p handles (x = 1 — 2p). The fact
that each power of gs is accompanied at large tension by a factor 1/+/T is non-trivial and explained in [1].
A similar structure holds for Wilson loops in ABJM theory, dual to string on AdS, x CP3.

2See [13] for a recent application of such coincident loops in matrix models associated with JT gravity.

3Indeed, in this case one does not have a simple result like (1.1), but instead multiple finite sum of ~ N
terms, see for instance eq. (4.3) in [2] for n = 2.



where the first three terms of the scaling function W,, have been computed in [2] and read

Wn(x):1+n(n2—1)x+n(n—l)(37214—5)(n+2) 22

o (n —1) (15n* + 30ni2; 75n% — 6100 + 1064) B (1.6)

A third example of scaling functions emerging in the large tension limit are normalised
correlators of W with a single trace chiral operator O ; ~ tr ®” [10, 14] recently reconsidered
in [2]. In this case, the large tension limit is characterised by a different scaling combination

(WOy) 11, (m\7/? g2 2 VT
Wy J <2> TF; <T2> , Fr(zx) = NG sinh (Jarcsmh2> , (1.7)

where we draw attention to the non-trivial dependence of F;(z) on the R-charge J.*

Beyond proving general structures as in (1.3), (1.5), and (1.7), it is important to
develop methods to determine the detailed form of scaling functions like f, W,, and F.
A common approach is to compute the 1/N expansion at finite planar coupling X in the
Hermitian Gaussian one-matrix model, and then take the strong coupling limit A > 1. For
instance, in the case of (W), one has the exact representation at finite A [16]

2N 2

(W) 7 Ix{fg [emHO/gm) niol;ln(\f)\) x_"] ) H(x) = % <coth1‘ - i) . (L8)

From (1.8), we get all coefficients of the 1/N power series in terms of explicit combinations
of modified Bessel functions (I,, = I,,(v/\)), see also [6],

(W)

_2NL AL NPIg XL\ 1 ML NP N AT
VA 48N N3\ 9216 11520 © N® \ 2654208 1105920 = 1935360

(1.9)

When each term of this expression is expanded at large A, the result takes the simple
exponential form (1.3). Of course, the case of (W) is particularly simple because of the
compact closed formula (1.1) leading to (1.8). Somehow, a similar situation occurs in
the case of the scaling function F; in (1.7). Indeed, the correlator (WO ) admits the

representation [17]
¥
1+—1] -1 1.1
< T oN: » (110)

o\ 1-7/2 N2 d N
(WOy,) = <) A O S (1 + VA >
T
and one can prove (1.7) from this formula, which is exact at finite N and A [2, 15].
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However, as soon as the observables under study become more complicated, it is in-
creasingly difficult to extract the genus expansion order by order in 1/N at finite A\. An
example are multiple coincident Wilson loops (W™) — not to be confused with multiply
wound loops — or multi-trace chiral operators [18]. In this case, exact expressions are not

4Through an analytical continuation it is possible to capture F; by a D3-brane calculation, see [15].



available or are too cumbersome to be useful. Toda recursion relations [19-23] are a possi-
ble method to determine the 1/N expansion, but work well only for simple observables [2]
(and their scope is limited to the Gaussian matrix model). A more general approach is
to take advantage of topological recursion [24, 25] which is an efficient way to organise
the hierarchy the matrix model loop equations.? In practice, a serious bottleneck in ap-
plying this method is the rapid increase of computational complexity at higher genus, see
for instance [31]. For these reasons, it seems important to devise a version of topological
recursion suitable for strong coupling directly.

In this paper, we take a first step in this direction. We illustrate a practical approach
to work out topological recursion at strong coupling by isolating dominant contributions
at large tension. Despite its simplicity, the method turns out to be rather effective. As
an illustration, we present an algorithm for computing the function Wy, (z) in (1.5) at any
desired order with minor effort, and we illustrate remarkable exponentiation properties of
the dominant terms at large n. This result will be cross checked by means of an extension
to all n of the Toda recursion method used in [2] for n = 2,3. As a second application,
we shall prove that the structure of (1.7) is rather special and does not extend to the
normalized correlators of a chiral primary single trace operator with multiple coinciding
Wilson loops, i.e. ratios (W"Oy) / (W") when n > 1. Instead, we prove that the relevant
scaling variable is g2/T and that the dependence on the R-charge is

n 7w\ 7/? g2
<\?7WS>J> =ty (2) n [TJF (J = 1) Hy ( = )] , (1.11)

where the function H,(z) is independent of J and may be computed in terms of W,, by the
relation

Ho(z) = % {112 + % (loan(:c))’] . (1.12)

The derivation of these results is straightforward in the framework of the strong coupling
version of topological recursion, and far from trivial by other methods. A similar approach
is expected to be useful and apply in harder cases with separated Wilson loops or more
local operator insertions. Some of these problems can be mapped to multi-matrix models
calculations [32] that would be interesting to study by a suitable strong coupling limit of
more general topological recursions [33].

The detailed plan of the paper is as follows. In section 2 we briefly recall the structure
of topological recursion for N = 4 SYM and its application to the evaluation of (W).
In section 3 we show how to perform a saddle point expansions at strong coupling in
the considered problems. We clarify what are the relevant features of resolvents in that
regime. Section 4 presents the strong coupling version of topological recursion, capturing
the reduced resolvents. In section 5 we apply this formalism to our first application, i.e.
the computation of (W") at large tension. In section 5.1, as a non-trivial check of our
approach, the same results are obtained by solving in the strong coupling limit a suitable
Toda recursion for correlators of traced exponentials in the Gaussian matrix model. Finally,
in section 6 we discuss the correlators (W"0O ) between coincident Wilson loops and a single

®See also [26-30] for other recent applications of topological recursion to N = 4 SYM.



trace chiral operator. The relation with the scaling function characterising (W™) is proved
in section 6.4.

2 Topological recursion for the Gaussian matrix model

For a Hermitian one-matrix model with potential V', the spectral curve is defined by [25, 34]

y* - %V’(x) y+P(x)=0,  P(x)= % <t1" W> ) (2.1)

where (O(M)) = [ DM =N V(M) 9(M) and normalization is fixed by (1) = 1. In the
Gaussian case, V(M) = 1 M?, cf. (1.1), and the curve (2.1) takes the form

v —zy+1=0, (2.2)

admitting the rational (complex) parametrization

1
r=z+—, y=—. (2.3)
z 2

The n-point resolvent is defined as the connected correlator®

1 1
W, =(t -t 2.4
n(xh 7xn) <ra;1—M rxn_M>c’ ( )

and admits the following genus expansion at large N

oo
1
Wa(z1,. .. 2n) = me,g(zl,...,xk). (2.5)
g=0

The functions Wy (z1,...,z,) may be traded by multi-differentials on the algebraic
curve (2.2)

Wn,g(215 -+ 2n) = Whg(x(21), ..., 2(2n)) dx(21) - - - da(zn) - (2.6)

Multi-trace connected correlators may be computed as contour integrals around the cut

<HtrOi(M)> = Z N”—12+29 (2731_)” fw ng(Z15. .., 2 HO : (2.7)

g=0
Higher genus resolvents obey the topological recursion

d21 ng
2 )

1 1
WL()(Z) = ; (1-*) dZ7 WQyO(Zl,ZQ) = m

Wn,g(zlaz) = (Bleil K(Zl,() |:Wn+1,g 1 C ¢ 1 +Z Z Wiw|,h+1 Cv wnf\w\,gfh(c_laz\w) )
’ h<gwCz
w? dz
2 (w2-1)(z—w)(zw—1) dw’

K(z,w) =
(2.8)

Connected correlators (X X> - - -), are functional derivatives of the logarithm of the generating function
of correlators with respect to sources coupled to X; operators.



where z = (22,...,2,), w is a subset of z (preserving the order of the variables), |w| is
the number of elements of w, and z\w is the complement of w in z. In the double sum
we exclude the two cases (h,w) = (0,0) and (h,w) = (g,z). The recursion (2.8) allows
to compute the following quantities in triangular sequence (the number under brace is the
total weight g + n)

W11 —7> W30 7 W21 W12 > Wi0 > W31 > W22 > W13 > (29)

2 3 4

Apart from the seeds wy o and wo g, all other resolvents have poles in the z; variables only at
the special points +1. The first entries in (2.9) read (omitting the dz; - - - dz,, differentials)

23

wl,l(z) = ma
1 1
2 (1—1)2(22—1)2(25—1)2 | 2 (214 1) (20 1)2 (2512’
1
<l 22) = L

w30(z1, 22,23) = —

5 [42{’22(1+z§)2(1—7z%+z§)+4zZz2 (1422)2(1—723423)
+5(25+25)+521° (25+25)+421 (25+325+25)+427 (23 +325+23 )

4323 (25 —625—625+28)+325 (23625 —625425)

+1220 (20—425+1625 — 428 +29)+ 27 (5—1822423 25 +2325 — 1825 +5220)
+2§ (5-1823+2323+2328—18:3+523°)

2127 (1+32%424)
(—1+z2)10 7

wl,g(z) =

(2.10)
and so on. The expression of ws 1 shows how explicit results become quickly unwieldy.

Analysis of the simple loop (W). It is useful illustrate how resolvents are used to
compute the genus expansion of the simple loop expectation value (W). We have

o Ao 1 1 VA
(W) = [ DM e Ve NN S S W)y (W), = g feng(a) e T,
g=0

" 2mi
(2.11)
The leading term is simply”
dz 1 1 VoY 2
W . — 1= = 7(Z+1/Z):7I A 2.12
< >0 27_‘_712 ( 22>€ 2 \/X 1(f)7 ( )
in agreement with the well known planar result. The next-to-leading term is
dz 23 VAN
Wy, = ¢ — -3 GH1/2) 2.1
Wh 7{2m'(z2—1)462 (2.13)

"We use the generating function e *+1/2) = > In(x) 2™ and the identity Io(z) — Iz(x) = 2 I1(z).

Tz



The contour encircles all three singular points, but one can check that there are no residues
from z = 4+1. Thus, integrating by parts two times gives

A [dz1l & A
A o G Y0 Y
Wh=5P5 3¢ 15 (V) (2.14)

which is the well known 1/N? correction. A similar manipulation can be repeated for the
next order. Integrating by parts five times gives

(W), = dz 21 2T (14322 + 24) e@(zﬂ/z) _ A>/2 dz (1 9) 6@(zﬂ/z)
2 21 (22 —1)10 92160 J 2mi \ 26 24
2\5/2 2\5/2 22
= Is(VA) + 9 I3(VA) | = I3(VA) — Ii(VA 2.1
92160 15(V3) + 9 1:(VA)] [9216 3(VA) = Tr530 14l )]’ (2.15)

in agreement with the 1/N3 term in (1.9).

In the case of (W), this method may be extended to all orders in the 1/N expansion,
and can also be generalized to give explicit Bessel function combinations for higher point
resolvents at finite A, see for instance [31]. Nevertheless, the calculation quickly becomes
impractical at higher orders due to the very involved expressions that are generated going
recursively through the chain of evaluations (2.9). Also, as we explained in the introduction,
we are ultimately interested in extracting the large tension limit and want to bypass the
cumbersome procedure of first obtaining exact expressions at finite A, and then expand
them at A > 1. For instance, in the above genus-two contribution both Bessel functions
give a similar leading asymptotic contribution due to the expansion

1 4n* -1 1
L(VX) = — A4 (14 e 2.16
and it would be desirable to pin the total contribution in a more direct way. To this aim,
one needs to study (2.8) working at strong coupling from the beginning and making more
transparent the origin of the dominant terms. The next section will be devoted to this

problem.

3 Saddle point methods for Wilson loops

In this section, we discuss how to extract dominant terms from integrals like (2.12) by
saddle point evaluation. Although this is a fairly well known topic, we want to emphasize
some specific technical issues that are relevant in the calculations we are interested in. To
this aim, we consider the large ¢ — +00 expansion of a contour integral of the form

I(o) = f dz g(z) e 1), (3.1)

Suppose that f(z) has a critical point z where f’(z) = 0. Deforming the contour such that
it passes through z with constant Imf(z) along the contour locally around Zz, we write

r o0 d £
I(J):e_af/ at = g(a(t) e H (3.2)



where ¢ parameterises the contour such that z(0) = z and f = f(2). Lastly, f" = f"(Z) is
the second derivative w.r.t. t at the critical point. If g(Z) is finite, we simply extract it from
the integral and perform the Gaussian integral. In the following, we shall be interested in
the case when ¢ has an odd zero or an even pole around the saddle point. In the case of a
zero with

g 20 ALl p2m oy (3.3)
we just include it in the Gaussian integration and get

I(o)=¢f / dt [A2"12(0) + (B2'(0) + A2"(0)) 427 4 -] e~o3 /" P

1

= V2r [BZ(0)+ AZ"(0)] e (2m — 1) (o f/) ™ 2 4. (3.4)

In the case of a pole with
g 20 A (3.5)

we compute the finite quantity®

T e 110 = (‘fﬂ>m/ dt Z g(o(t)) £om o3 T

do™ 2 dt
e\ M 92
_ (2) 2(0) J}TH + (3.6)

Io) =m Az (0) e D" (”f") e VaRa() e—0f<—1>m% o

(3.7)

Revisiting (W) at strong coupling. These formulas may be applied to contour inte-
grals involving Wilson loops and higher order resolvents. Let us illustrate this once again
in the case of the simple Wilson loop (1.1). The planar contribution in (2.12) has o = v/,
f(z) = —3(z+1/z) and g(z) = (1 - —) The dominant contribution at large A comes
from the saddle point at z =1 Wthh is a zero of ¢g(z) of linear order. The parametrization
is z(t) = e thus f” = 1. Expanding ¢(z) around the zero and taking the first even term
gives (3.3) with A = 2i and B =4 and m = 1. Evaluation of (3.4) gives then

2
(W), = \/;A—?’/“eﬁ TR (3.8)

in agreement with (1.3). All the higher genus corrections have even poles at z = =+1.
Again, the leading contribution comes from z = 1 and may be computed using (3.7). For

8This is equivalent to an implicit integration by parts. In both cases we have to be careful about the
poles at t = 0 since a non-zero residue for the pole causes a discontinuity in the contour. In our discussion,
this will not matter because topological recursion ensures that this residue is always zero, when computing
expectation values of functions of the matrix model variable. See last section for examples and appendix C
for general details.



instance, at genus one we have

0 = e W) =g S A= m=2 (39)
and
1
o DheaWNTE N s
(W), = 27?32ﬂ_ze o —48\/%6 +--- (3.10)

Similarly at genus 2 and higher we can check that this procedure reproduces the expan-
sion (1.3). Higher order corrections in 1/ VA may also be computed in the same way just
by doing Gaussian integration with more accuracy. For instance, we know that (up to
exponentially suppressed terms)

A )\3/4 5)\1/4
W), = = L(VA) =V - e 3.11
Wh = 5 (VY 48V2r 1282 (8.11)
and we reproduce this expansion by the convenient change of parametrization
1 2
z+—-=2—-u". (3.12)
z

Using again z = e, this gives u = QSin% and one gets

5 _@uz
<W>1:7/ W Aa— —u2)5/2 7/ (32 1 256u2+"'>6 ’
(3.13)
eﬁ 1 1 (\/X>21/2 5 1 (\/X) 1-1/2 .
= _r|l= X R A
T 3271 (2_|_ %) 2 )
)\3/4 5)\1/4
— —_ + s
482w 1282w

in agreement with (3.11).

Remark. The integrals in (3.13) are apparently divergent, even in Cauchy prescription.
Actually, they are evaluated by formulas as (3.7) that hide their original definition as finite
contour integrals.

4 Topological recursion for dominant strong coupling poles

We now look for a simplification of topological recursion (2.8) based on considering the
principal part of resolvents at z; = 1, i.e. the terms that dominate at strong coupling. Let
us denote the highest pole part by &, 4. Introducing A; = z; — 1, the resolvents in (2.10)



reduce to the compact expressions

G11(A) = ﬁj
W3.0(A1,Ag, Ag) = _zA%lA%A%’
Wo,1(A1,Ag) = 5A +332AA%?AA%S’+ 5A%7
e _ﬁ‘ (4.1)

The (total) degree of the pole terms is 6(g — 1) + 4n. In general, only even powers of A;
appear. If such an Ansatz is plugged into the topological recursion, one can compute the
associated resolvent and project onto the maximal pole part. For instance, the last four
resolvents in (2.9) become, after projection,

 3(ATASAZHATASATHFATASATHATAZAG )
AATATALAR

O4.0(A1, A2, Az, Ay) =

31(A1, Ag, Ag) = [35A3A8+30ATAJA(A3+A3)

G4ASASAS
F5AS(TASH6ASATH6AIAIFTAS) +6AT(BASAZ+3A5AS +5A2A6)]

35(33A104+27A3AZ+29A0AJ+29ATAS+27ATAS+33A10)
2048A 12 AL

)

W22(A1,Ag) = —

25025

D13(A) = go76sATe”

(4.2)

which are very compact expressions, compared with the full resolvents. Being symmetric

functions, we can further simplify in terms of elementary symmetric polynomials
ep(T1,. .., xn) = Z Tiy o Tiy, (4.3)
1<i1 <o < <ip<n

where z = ﬁ. One finds indeed the concise expressions

A
W40 = 461647
@ 356@—7—5666+332
LT 647178 T g 1 T g3
A 1155 5 | 2415 e 3055
_ 4.4
W22 = Topg1e2 T 9441% T 5812 (4.4)

Further results are collected in appendix C.3.

Remark. Of course, the key point of the method is to use @ projected resolvent in the
topological recursion and never using the full w’s.

~10 -



5 Large tension analysis of coincident Wilson loops

As a first application, we consider the large tension limit of (W™) and, in particular, the
ratio (1.5). As an illustration of the our strategy, we will begin with the doubly coincident
Wilson loop, i.e. the case n = 2. Later, we shall extend the analysis to a generic number n of
coinciding loops. For n = 2, the 1/ expansion of (W?) has been considered in [2, 31, 35, 36]
and its first terms read

2 2 \f/\
2
we (W) = (50) + oy (ohi+ ghe)

1 [37X% , V(24 +131)) 192 4 332\ + 185\2
— o — Inl + i+
2304 2880 11520
(5.1)
where I,, = I,,(v/A). The associated connected correlator is
S| VA 1 [A2 /\3/2 A4 +3))
2\ _ 2 vA 2
(w2), —;)Nzg (w >cg p lolit s [64 T T
(5.2)

Expanding at large A and keeping the leading contribution at each order in 1/N gives

1 11 \3/2 19 1
< >c,0 Ar € ol ) < >c,1 6dr 2
(5.3)
Let us show how these contributions can be easily recovered from the “maximal poles”

topological recursion. We start from the 2-point formula

A>T lj{ (z1+1/z1) YA (2341/22)
<W >c,g ~ (2mi)? W,g(21,22) €72 ' (5.4)

The genus 0 contribution is special being related to the universal Bargmann kernel and
having no poles at z12 = 1. It is

le dZQ 1 VA (2N
W2 = - (z1+1/21) (z2+1/22) )
< >c0 974 O (21 — 22)2 e2 e2 (5.5)

After changing variable zo = w z1, we get

dndw 1 Blarwarard)L]

W2 = ——— il 5.6

W), 2mi 2mi 21 (1 — w)2 © (5.6)
The integral over z; gives the Bessel function Iy and we obtain
dw 1 1+ w 14+w n
W) =¢ — I
< >c,o 27 (1 —w)2 ° ( Jw ) RGSZ (2f ﬁ)

SR GE) B "
Z:: JT(n+1)2 (5:7)

- 11 -



On the other hand, from [37] (see paragraphs 13.72-73) we have

9 (/2
L@) () = / dO1,+, (21 cos §) cos((j1 — 1)8). (5.8)
0
Hence, with y=v =0,
2_2/7r/2 _2/7r/2 ( —+ ) 2n
Iy(x)* = < Iy(2x cos 0)dl = < do Z '2 (zcosh)? Z AV ACERTE
(5.9)
Finally,
x x d > r (n + %)
il oY =2 " Iy2)? = n 1
o@h(@) = 13 0@ = 2 3 T+ 17 (5.10)

in agreement with the r.h.s. of (5.7), after setting z = v/\.
Starting at genus 1 we can apply the formula (3.7) for the factorized poles. For instance,
the first correction is

<W2>A>>1 _ @@i [ 5 L 3
c,1 2mi 2mi 32 [(21 — 1)2(22 — 1)6 (21 — 1)4( 29— 1)4
+(21 - 1)65(Z2 —1)2 } T/ Pz O v | (hlhs + hzhy) + 332h% ,
(5.11)
where the numerical constants h,, are
B = (" AT (5.12)

Vor (2m =1

Replacing (5.12) in (5.11) reproduces the leading term in the second expression in (5.3).

Extension to (W") and high order calculation. Similarly to (5.11), we can exploit
the resolvents in (4.1) and (4.2) (together with other ones in appendix C) to evaluate
the saddle point integrals needed to compute (W™) at high order in the genus expansion.
Remarkably, this can be done for a generic n. To this aim, we introduce the variable

)\% _7793
8N2 T’

¢ = (5.13)

and the connected correlators

(), =00 (). (%, 2000 )+ ()
(W1 = 600" + 12 (W)2 (W?) — 3(W?)" —4(W) (W*) + (W', et (5.14)
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Normalizing by suitable powers of the simple Wilson loop, we obtain the following results
valid up to order O(£%):

<W2>c T>1 §2 53 54 55 66 £7 68
W2 S+ 5 15 7105 " 045 T 10395 " 135135 | 2027025 |
W3 s 1463 166*  169¢°  3046£° 53267 2904928
c 120462 ¢ NI
(W)? 3 5 105 4725 2475 4729725 ’
W 193665  138722¢% 63567267 1078888¢8
< >46Té>13253+84§4+ =y : : S
(W) 15 945 4725 10395
(W), 71 Y e (s ¢ 21457767 T815796£8
c =7 400 5420
(W)° it TR0 T T s T
(WS), 1 5 6 - 53289280¢8
a0 =" 6912£° + 54080£° + 247504¢ t eyt
(W), 731 6 - 185939824¢8
<w>7c = 153664£° + 1804128¢ T R
% 209380864¢8
<<W>>80 121410430467 + T I
W9
<<w>>90 T21 136048896€8 + - - - . (5.15)

From connected correlators we obtain correlators of n coincident Wilson loops using the
combinatorial formula

<Wn> _ TL' <Wp+1>c
(W)" =1+ Z Z : S(m)(n—k — \W\)!Hpew(p‘i‘ 1)! e <W>p+1 ) (5.16)

k<nweP(k,n

where P(k,n) is the set of integer partitions 7 of k satisfying k + |7| < n where |7| is the
number of elements of 7, and S(7) is the symmetry factor of partition 7 given by products
of m! for each group of m equal elements in 7. This expression follows from the fact that
(W"™) can be written as a sum over just the partitions of n. Since we divide by (W)" all
the parts of a given partition that are 1 disappear, leaving the partitions of n with every
part at least 2. Such partitions can be seen to be in one to one correspondence with the
partitions of integers k < n such that k + |7| < n, giving the expression above.

Since on general grounds %7\;;310 = O(¢é™1), to obtain the expansion of E%Lg up to

& we can restrict the sum in (5.16) to k¥ < m. Furthermore, taking into account that a
Wrtl
< W :0+1C 9

part p enters the above expression as we need the terms corresponding to all the

partitions of m to obtain the result up to £™. Let’s consider a couple of examples. For
m = 1 the only possible partition is 1 and we obtain

<Wn> n! <W2>c 4 0(52) =14+ n

n — 2
(W)" * (n—2)121 (W)? (=1 W), +0(&%). (5.17)

2wy’
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For m = 2 we have three partitions, i.e. 1 and 2 and (1,1). The last one has a symmetry
factor of two. So we obtain

Wy Wl (WY, (W),
L] (W)2 ~ (n—3)!3! <W>3+(n—4)!2!2!2l (W)?

2
) +0(&%)

_ =) W), nn=1)(n=2) (W), n(n—1)(n=2)(n=3) <<W2>

2
7w - P + < C) +0(&%).

(W)
(5.18)

In a similar way, to obtain the result up to &3 we will have to add all terms corresponding
to the partitions of three to the above results and so on. We now have all the ingredients
needed to evaluate the above expression to £%. The final result is, cf. (1.5)

W, (6) =1+ %(n —1)né+ 2—14n(3n?’ —2n® —11n + 10)52

+ % (15715 +15n" — 105n” — 535n° + 1674n — 1064)53

40320
n
241920

+ - (105n7 +420n° — 70n” — 13440n* — 44303n® + 401772n° — 731028n + 386544) ¢t

+ (63ng +525n° + 1890n" — 10710n° — 177401n° — 1697150 + 8836872n°

+ 33525316n2 + 470317600 — 21987968) &

+ 15962% (3465n“ +48510n'° 4 363825n° + 5967500 — 232420650 — 242099550n° + 717147915n°

+ 18424615770n* — 131848499156n> + 354391190648n° — 421025682592n + 179605556480) I

+ m (6435n13 + 13513512 + 1606605 + 1038537510 — 33778745n° — 1632646015n°

— 1117295250517 + 124368186085n° + 1239293411642n° — 17142200059556n* + 77299998069320n°

— 168644525652096n° + 17755133149017671 — 70415438201856) £

n

+ 1391852659200 (135135n15 + 3963960n"" + 66846780n* + 734894160n'? + 32767394660

— 61066061056n'° — 1348672905580n° — 4090445158800n° 4+ 176081159789535n" + 702493835315272n°

— 24840194890564872n° + 176744402329465152n" — 616283230677646864n° + 1159320084247595136n°

— 1109932678089579264n, + 414118538187171840) e, (5.19)

where the large tension limit is understood. This is the extension to order &3 of the cubic
result in eq. (1.17) of [2]. The special cases n = 2 and n = 3 are
2 3 4 5 56 57 58
W -1 S 45 45 45 .
() et 3 * 15 * 105 + 945 + 10395 + 135135 + 2027025 T

7363 113¢% 50865 33521€5 1613967 8803¢8

15 * 35 + 315 + 51975 + 75075 + 143325 =

(5.20)

W5 (€) = 14 3¢ + 562 +
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and agree with the exact expressions [2],

Wy(§) = 1+e§\/7r2£erf( g) ,

(5] g e mer (vae )
W =1 — erf = — 1-127T — 21
3(6) = 143e2y | >er ( 2)+3\/§€6 3 " 753)] (5.21)
where ) 4 ,
¢oar _h?(1442)
T(h,a) = 27T/O e , (5.22)

is the Owen T-function. The coefficient of £¥ is a polynomial in n of degree 2k. A remark-
able simplification is achieved by writing (5.19) in exponential form

log W, ( Z (n —1) Py(n) &F, (5.23)
k=1

since Py turns out to be a polynomial of (approximately half) degree k — 1. Explicitly, one
finds

1 5 n 133 19n n?
P == Py=——4= Py="—
1= 2 1276 590 18 6
p, — 8053 3373n 67 n? +n3
YT 7840 U360 0 24 4
171781 34313n 821n2 118n3 Tn?
Ps = - + - +—,
1890 315 18 15 15
20045263 7383058 n 773086m2 6047n3 419n* .
Py = — + — + — +n°,
17820 4725 945 30 18
P 694596731 1177098997 n N 230808223 n? 4806629 n3 N 534613 n* ~ 3001 nd N 33nb
T 740950 44550 14175 945 630 42 14
oo 45388623451 N 2353546004957 177458006053 n? +2001333893 n3 183361073 nt
87 152880 4633200 498960 15120 6480
2499191 7n° 360915 143n7
- .24
+ 720 16 T (5.24)
with leading terms at large n following the pattern
g1 T (k-1 gE—2 6(k—1)(2k —3) (k-1
P, = (=) 4 1- (:-3) n2 4L (5.25)

ky/m T(k+2) 3k Jal(k + 2)

5.1 Solution by Toda recursion

The genus expansion of (1.3) is efficiently computed by exploiting the Toda integrability
of the 1-matrix Hermitian Gaussian model [23]. In general, correlators in this model are
constrained by integrable differential equations [20-22] that in Gaussian case take the Toda
form [19]. Notice that in [23] the matrix model measure is exp (—% tr M 2) without explicit
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N factor. This will be the convention throughout this section. After defining the connected
correlators

e(r1,...,xp) = <tr oM gy ex’“ﬁ[> , (5.26)
one has
72
en+1(2) +en-1(z) = 2Zen(z) + en(z), (5.27)
T4 y)2 2202
exer(w0) +enor(wy) = 2en(ay) + I oy - T ex@en(y). (529

The general structure is

€N+1($1, s 7xk)+eN71(m17 s ,fk)— 2+%(I1+ : —|—.’E1€)2 eN(xla s 7':Uk) = gN(xla s axk)7

(5.29)

where gy may be read from the non-leading terms of the cumulant expansion of (X - -- Xj)..
and replacing

(e, + -+ 1,)?

<X[1---X[p> — N €N(CL'[1,...,(IZIP). (530)
Here we are interested in the specialization to z; = ﬁ. Hence, defining
A A
BN = e [ (/s 31
€ ()‘7 ) EN AN’ 3 AN | (5 3 )
k terms

we have the equations

N +1 N -1 E2)\
(k) (YT 1 k) (Y1 1) _ KA (k) _ (k)
e ( ~ )\,N+1>+e ( ~ A\, N 1> <2+4 2>e (A, N) = g™ (A N),
(5.32)

where g(k)()\,N ) is obtained from the non-leading terms of the cumulant expansion of
<X k> and replacing
Cc
2

f—NAZ e® (X, N). (5.33)

The explicit coefficients of the cumulant expansion of (X?)_ may be expressed in terms of

(XPy —

integer partitions 7 = (1"™12™2...) of p

(X7).= > (=) (x| = Dlo(x) [TXN)™, o(m) = T —CE)

1Ym, 1"
rePln) . [L-(r)™rm,!

Hence, the equations are

_ 2
k) (NH AN+ 1) + e (Nl AN — 1) - (2 + “) e (X N)

N N 4N2
frl—1 | Ao mr

T€P(p) r

w#(p)
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The large tension scaling Ansatz is

2\3/2
MON) = AR, &= (5.36)
Replacing in the Toda equations gives
k
| S0 — 0)F(e) — k€S FL(e)| N+
= > (=) (a] = Do (m) [ (PN VA F(9) (5.37)
7€P(p) r
7#(p)

The only partitions that may give a contribution have |r| = Y m, = 2. One case is when
M M
202
different parts m = (¢, (k — q)) with ¢ # k/2.° Denoting by an apex such partitions, we

k is even and then the partition is 7 = ( ), or when k is split into the sum of two

have (using Y, rm, = k)

1’;5(!5’5 6)FL(§) ~kF(©) = Y (-0 (x| - De@ [[ (P ). (5:38)
7€P(p) r
7#(p)

Finally, evaluating the r.h.s. for the two relevant kinds of partitions, we obtain the differ-
ential equation

1o (€~ ORL(E) ~ k(¢ ;i() PPROF O,  (539)

that we rearrange in the form

FU(E) + 15(6 ~ FO)Fi(e) = ik

||M|

125( (ﬁ) P (k — p)* Fp(&) Fr—p(€). (5.40)

The first instance k = 1 gives

F{(§>+1;§<6—5>F1<5>—0 S R =0 et (5.41)

The constant is fixed by (1.3) and gives

1 £
Fi(§) = ﬁf V2w (5.42)
We shall be interested in the ratios
Fr (€
Ri(€) = Fl’fé))k. (5.43)

9Notice that distinct partitions are ordered.
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They obey

’©) — E o ke DR = 25 (F) 22— p2 RO R (5.4
b 12¢ FE T g g \p ) P T TSR ‘

We also know that Ry (¢) = O(€F~1). This gives the integration constant and the explicit
recurrence relation

Ri(§) =1,
kw2—1)£ k=1 (€ k(2= 1-k 1 k-1 k\ o 5
Rp(§)=e 1 &2 / dze "1 "z 7 — Y | | p°(k—p)°Ryp(2)Ri—p(2). (5.45)
0 2k = \P

This recursion provides the expressions in (5.15) to be plugged into (5.16) in order to
compute the scaling functions W,,(£). Just to give an example, using (5.45) one may easily
extend the last line in (5.15) and find

(W), 731

) 136048896684F3073838592§9*7203451048576510*714167449806208
(W) 5 35
+_579258140455408612 26870941336966016 1, 487595584858030932224 1,
175 1155 3378375
1672326501977995232 15 140563211710013333686888 1,  24326465124436842115824
2079 34459425 1280125
13943786316178585925001407879336
170147718365625

¢l (5.46)

22599997060403576152832986605968
68656096884375

518 + 519 +

This allows to compute the polynomials in (5.24) at higher order. For instance

~4199422654038881  1832589301073441n  3565245577877609 n? 372258099643 n?

T 723647925 170270100 + 425675250 103950

26122674017 n* 828493349 n° N 3760909 n° 19652 n’ N 143 n8

28350 5670 270 27 9
Pio— 3360311016680854273 N 21169992523320924583 n 118100410140883837 n°

27498621150 86837751000 567567000

85134261154188137n®  27943401961331 n* N 81563996453 n° 225150754 n®

851350500 935550 14175 315
496192717 14341n8 221n°
¢ T 5 (5.47)

and so on. Further expressions of Py, for k£ up to 20 are collected in appendix B.

Remark. Of course, one can also use (5.45) without expanding. This gives exact expres-
sions for Ry as iterated integrals. The first two cases are

Ro(€) = \/Eef/2 erf (\/g) ,

R3(§) = —?i}rgge?f {—1 +127T <\/£ \}gﬂ , (5.48)
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where T is the Owen function, cf. (5.21). The expression for R4 may be obtained by
continuing the iteration but will involve integrals of the T function. A simple general
feature of the functions Ry is that they are all entire in £&. Hence, the radius of convergence
of (5.19) is infinite for all n.

Remark. One has to keep in mind that Toda recursion methods are not suitable to treat
insertions of local chiral operators, see the discussion in appendix A. In this case, one has
to keep using topological recursion, as discussed in the next section.

6 Correlator of coincident Wilson loops and a chiral operator

In this section, we address the problem of computing the correlator between multiple
coincident Wilson loops W™ and a single trace chiral operator. In other words, we want to
generalize (1.7) and prove (1.11), (1.12). To properly define chiral primaries let us recall

pa
that the %—BPS Wilson loop, associated with tr (e;M ) in the Gaussian matrix model,

cf. (1.1), stands for the operator

W = tr Pexp {gYM/eda [i Ay (2) #(c) + chl(x)}}, (6.1)

where C is a circle of radius R (set to unity in the following), and ®; is one of the six
real scalars {®;};=1 ¢ in N = 4 SYM. Single trace chiral operators take the general
form O; = tr(ur®;(x))? where u; is a complex null 6-vector obeying u? = 0 [14]. The
dependence of the correlator (W O ;) on u; and the choice of coupling between the loop and
the scalars factorizes and will be absorbed in the operator normalization [38]. With the
same conventions as in [2], the matrix model representative for the chiral operator O is

J/2—1
OJ—N(;-) / ctr MY (6.2)
where normal ordering subtracts self-contractions and is necessary to map matrix model
correlators to R* quantum expectation values [39, 40].19 At leading order in large tension,
the correlator between a single Wilson loop and the chiral operator O ; obeys (1.7) in terms
of a scaling function that depends on the specific ratio g2/7? and has a non-trivial depen-
dence on J. The most natural scaling dependence is actually on g2/T as in (1.5). Several
cancellations occur and are responsible for the relevant variable being g2/72%. We shall
show that this pattern changes in the case of the correlator between multiple coincident
Wilson loops and one chiral operator. The above mentioned cancellations do not occur any-
more and one has instead the structure (1.11). Besides, the function H,, can be computed
explicitly in terms of W,,, cf. (1.12). To derive such a result, we will conveniently use the
strong coupling version of topological recursion. As we remarked previously, Toda recur-
sion is rather cumbersome for these purposes, as illustrated in the example (n,J) = (1,2)
in appendix A.

10The choice of normalization in (6.2), and in particular the overall power of N, is dictated by string
theory and makes direct contact with the associated natural vertex operators [1]. Another standard choice
is to require a fixed normalization of the chiral operators 2-point functions as in [14].
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6.1 Contribution from multi-trace operators in normal ordering

As a preliminary step we first address the issue of the effects of normal ordering in (6.2)
and the role of multi-trace operators. It is instructive to look at the first cases at low
J. A straightforward explicit calculation gives (we restrict to even J for the purpose of

illustration)
ctr M2 =tr M? — g, ctr M= tr M* — 2 tr M2 —%(UM)Q—F%—F ﬁ,
ctr MO = tr M6 — 3 tr M* + (145 +4§V52) tr M2
+]17(2(rM2)23tthrM3+Z5(trM)2>5?4?\], (6.3)

and so on. In general, terms involving products of k traces have a coefficient which is
~ 1/N*=1 at large N. Thus, we will write

ctr MY = ZNi—l [: tr M7 :}

k>0

L (6.4)

where the operators in {: tr M7 :} . have coefficients O(1) at large N.!! Now, let us consider

the genus g contribution to the connected correlator <W"O(k)> where O) is any arbitrary
C
k-trace operator. We can write, cf. (2.5),

(wro®) (6.5)
clgenus g

= NEF R (g % Wn,g (2155 Zntk) OV (2(21), ..., z(21)) exp 5 Z (2k+1)
In the case of O®) = [: tr M 1], taking into account the extra factor =T in (6.4), we find

that (W"[: tr M7 2]} |genus ¢ Scales as N~(2972k+n=3) Finally, let us pin the dependence
on A > 1. Since the operator : tr M7 : does not depend on \ explicitly, the strong
coupling limit of the expectation value of Wilson loop with chiral operators corresponds
to maximizing the order of poles of variables corresponding to Wilson loop or conversely
minimizing the order of the poles of the variables that correspond to the : tr A7 : operator.
The total order of the poles of wy, 4 is 6(g — 1) + 4n, as discussed in section 4. According
to the saddle point analysis this implies the final scaling behaviour

/\i(6g+3n+2k—6)

~N———— 6.6
clgenus g N2g+2k+n—3 ( )

<W”[: tr M7 ]k>

This gives the leading power at large A for all genera. In particular, a term with an overall
factor will be accompanied by the following powers of A

ATk (AZ>P (6.7)
N )

1The k-trace part may have an explicit N dependence as in [: tr M© :L which has a piece %(1 +

1/N?)tr M? whose N — co limit is finite.

NP
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showing that multiple trace contributions are suppressed. Besides, since the saddle point

1/2 ~ 1/T, double trace corrections to

expansion has relative corrections in powers A~
normal ordering cannot be seen even at first subleading order in large A.

Let us see this explicitly in the simplest case of a single Wilson loop keeping only up to
double trace operators. At the planar level, as is well known, the double trace part doesn’t
contribute. At 1/N? level there are two relevant cumulants corresponding to (k, g) = (1,1)
and (2,0). Their A dependence can be obtained using the explicit strong coupling resolvents

given (4.2) as respectively,

m ji exXp TI(ZQ) w2,1(21,2’2) ~ m ji, exp 71’(25) w370(21,22,z3) ~ m
(6.8)

The first contribution is dominant in the large tension limit and in fact we would have to
expand it to three orders in A before the second one becomes effective. Since, the rate of
growth of the exponent of A is 6 for g but only 2 for k, as ¢ and k increase or as cumulants
are multiplied, the gap between the contributions of single and higher trace operators only

increases.?

6.2 (W"Oy) at leading order

As a result of the above discussion, we can restrict ourselves to the single trace part of
normal ordering, i.e. the planar approximation. According to [41, 42], it may be written
in terms of Chebyshev polynomials and, in the z variable, it reads

1
ctr M7= 2 + 5+ 2050+ (6.9)

The relevant connected correlators <W" ctr MY :> are!?
9

Wo), = (27”1)%1 fwn,g(zl, o) 2 exp [‘f(x(zz) bt a(za))| . (6.10)

In the strong coupling limit we use the strong coupling resolvent &, 4(2) and keep in
it only those terms that minimize the order of the poles of z; at 1. This can be done
by going through one step of topological recursion. This corresponds to starting with
Wgn—1(21,...2,) and using:

n+1 n n+1
1 2k; +1
(6.11)
g( 32::2 4(z1 — 1)? (23—121_[2—1

12This is of course contingent on these first two contributions from single trace operators not vanishing
once we take residue integrals corresponding to the chiral operator. As we now show this is indeed the case.
This remark will be important later.

13We deform the z; integration shrinking it around z; = 0. This is possible because residues vanish at
zi = £1 and, in particular, we can drop the parts that are not singular at z; = 0.
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We can now integrate over zo, - - - , z, in the saddle point approximation. The above factor

of 2k;+1 ensures that the result has a very simple relation to (W™) g the strong coupling

limit, i.e.'*

A>1 n dz Jnv
W' tr M7 - = 2 (WAl 4=
< I >c,g 2 < >c,g E’S% (Zl _ 1)22{ + 2

(CTAR
(6.12)

The same is true for the full correlator, after expanding into connected correlators, i.e.

(W s e M) ot JnVA

D) 5 (6.13)

This is of course expected from the known results for n =1 and n = 2, see [2].

6.3 Subleading corrections

To go beyond leading order we need to carry out topological recursion with poles of one
subleading order included. It is convenient to change variables from z to u, cf. (3.12), and
write

Wnog(Uty ..oy Up) = Wng+0wpg+.... (6.14)

Where éwy, 4 includes the poles of total degree 6g + 4n — 8, see appendix C for full details
of the procedure. Using (6.14) we can compute the one-variable resolvents obtained after
integration of all but one variable,'®

_ 1
Wng(2) = @i fwnJrl,g(u(z), ULy .o Up) - (6.15)
Due to our previous discussion, cf. (6.6), the first two orders in the 1/ VA expansion at large
A can be computed by ignoring mixing with multi-trace operators and using the simple

correspondence in (6.9). Thus, we simply obtain

<W Ctr M '>c,g_5§8 o (6.16)

This computes the connected part of the correlator but we can also define a function that
similarly computes the full correlator, i.e.

n

_ = 1 O
Qng(2) = kzl hz; (Z) <Wn—k>g_h pn(z) — <W”  tr MY :> = Res N7 ;gJ(Z) '
=1h= 9=

(6.17)

'Let us remind that the presence of dz; in the residue is formal at this level and could be omitted.
Nevertheless, it is convenient to keep it to emphasize transformation properties under change of variables.

15We change back to z-coordinates for the free variable because this is convenient to compute expectation
values with a chiral operator.
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To compute <W" ctr MY :> / (W™ it is convenient to expand €, ,(2) as:

Qi g(2) = Uno(2) W) g+ Uni(2) Wy 4+ Ung(z) Whep 4.0 (6.18)

where each U, 4(2) is determined recursively genus by genus and final dots stand for a
correction of order O((1/v/A\)972) relative to the leading order. Then it can be seen that,

. J . n 00

<. tr M7 W > ~ Res 1 Uny(2)

<Wn> 2—0 “— N2g9-1 zJ '
g=0

(6.19)

The functions U, 4(%) depend also on A. To the leading order in A, Uy o(2) can be read
from (6.12). To get a non-vanishing result for all other U, ; we need to go beyond &, 4 and
include dwy, 4. Restricting ourselves to two leading term in A, the most general structure
possible for U, g4 is:

Un,O(Z) _ dZ( n\r/\ fn,O(z) ) ...,

212 (-1
_ dzfag(x)A 7

Un,g(z) (z_ 1)4

(6.20)

Where f,, 4(2) are polynomials of degree at most 3 and independent of A. Two out of
the 4 free coeflicients are determined by the requirement from topological recursion that
Un.g (%) = —Un(2). Another one can be fixed by requiring that (: tr M : W") vanishes

for g > 0.'6 Combining these two requirements we obtain

3g
CngA2 2

Un,g :dZm

(6.21)

Explicit results. After having clarified the general structure of topological recursion for
the quantities we need, let us present explicit results. For the ‘critical’ case n = 1 we find!”

VA 3z
2(2—1)2+2(z—1)4>+“"

Ul,O(Z) = dz <

A\3/2,

ULl(Z):dZm—i—...,

(6.22)

while the higher Uy 4(z) vanish i.e. ¢1, = 0 for g > 1. This can be seen as consistency
check and is a result of the cancellations required to reorganize the series for (W : O :) as
in (1.7). To calculate non-vanishing terms in U 4(z) for g > 1 we will need to keep more
than 2 leading terms in wy, 4.

16 This may be shown by explicit splitting of U(N) into U(1) x SU(N), see appendix D.
17"Recall that we expect a major change of features when moving from n =1 to n > 1.
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These peculiar cancellations do not occur for n > 1 and make the calculation of
subleading corrections possible with our level of accuracy. We find

1 1 VA 3z 2 [TAYZ N3 3092
ZﬁUZg(Z):* 2 i 4 2 T 6
— N2 N\ (z=1)2 (z=1)* " (2=1)% [16N? 64N% ' 2560N
376 N 13)\195/2 299\
430080N8 ' 2064384N10  648806400N12 o
1 3 A 3 1332 X3
> e Usg(2) = o= A s 1 1 TNt
— N2 2N \ (z=1)2 (z=1)* ' (z=1)* [ 16N? ' 32N
17A%2 123X6 A15/2
~1280N° T 71680N° 516096N10} ) tees
> L =2 VA 32 = 19A3/2+ 9X® 21292 391\
— N2 2V TN\ =12 (z—1)F " (z—1)* | 16N2 ' 64N*  2560N6  28672N® ’
1 5 VA 3z z [25M3/2 53 33)\9/2
—_— = — — R 2
zg: N1 Ue(3) = 5y <(zl)2 G—Df (1) [ 16N +16N4+640N6} + (6.23)
. . <W”:ter: . . .
As a result of this, the dependence on J in gy 1S much simpler for n > 1 than in
the n =1 case, cf. (1.7). Indeed, from the above, it has to be proportional to
dz 1 9
Res -yt =57 (7~ 1)- (6:24

This means in that the structure of large tension limit of <V<VV’;‘3>J ) is given by (1.11). The

first few terms of H,(x) can be calculated from (6.23) and read

H ( ) Tx 2 n 3 3724 n 1325 29976 n
o) — B _ _
2 247 127 ' 20m 12607 | 7567 297007 ’

_ 13z a2 1723 4124 b

Ha(z) = —— + = — _
30 = o Y or 300 T 7o Isom T
H (m)_wi+37952_77$3_391x4+
VY 7 our T A 200 84w
25x  5x?  11z®
He(z) = —% 4 22 L 220 6.25
W=t T (6.25)

6.4 Relating H,, to W,,

The discussion in previous section has led to the expansion (6.25) for the scaling functions
H,,. Most importantly, we could prove the general structure (1.11), with its peculiar de-
pendence on the J parameter. In this section we show how this can be exploited to express
H, in terms of W,,. To this aim we take J = 2 in the topological recursion result (1.11)
and write

(W"02) 731

o mn (T +3H,). (6.26)
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The L.h.s. may be traded for a logarithmic derivative of (W™) due to the matrix model

identity
d
wr =A—(W" 2
(W7 03) = Ao (W), (6.27)
Hence we have p
A log (W) T2 (T + 3Hy), (6.28)
and a short calculation gives the relation
xz [1 d
H,, =~ —logW 2
(1) = o | 35 + & o TogWa(a). (6:29)

Replacing W,, by its evaluation by means of (5.45) and using the series expansion (5.19),

we get
-5+ 6n (=1+n)(=5+2n) 5 (=1+n)(133 —95n + 15n2) ,
Ho(z) =
@)= =g o 127 v 607 o
-1 —241 23611n — 703512 + 630n3
+( +n)( 59—1—1?;2071 35n* + 3n)x4+“_’ (6.30)
™

in agreement with (6.25). Of course, the exact determination of W,, by Toda recursion
means that we can provide easily all order expansion of the H,, function by means of (6.29).
6.5 A few sample calculations

Let us give some examples of (1.12) by explicit computations. For n = 2 we need the
explicit exact expansion

1 2 12 VA RS V(24 4 131))
w2 T Iy I T 2 — Iy I
e (V) = LFA 1} +2N2{01+612] [23040 2880 o
192 + 332X\ + 185A2 L] N(62437N)
11520 N6 23040 0
N V(23040 + 56160\ + 40920\% 4+ 62091) .
5806080 01
92160 4 111168\ + 85440\% 4 24857A% 1
— I — ). 31
11612160 i +0 <N8> (6.31)

Using (6.27) we work out the case (n,J) = (2,2)

W2
< OQ> _ \/X'f—' 1 |: 7 )\3/2 :|+1 [_1)\3+ ]+1 |:3)\9/2+...]_|_. ..

(W2) WEAED N1 128 N6 5120
(6.32)
Comparing with (1.11) gives the first terms
1 /7 1 3
= (T L 3oy ) |
() 67r<4:n et at ) (6.33)
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in agreement with (6.30). In this case we can give the exact expression in a reasonable
compact form using the first equation in (5.21)

2" a v ey ((f3) (6.34)

A similar calculation can be repeated for n = 3. In this case we have

1 2 31 /13 1
— (W3 = | =T — 121—13>
7 (W) [ﬁlhzv?(zllozﬁl

1 (193 6+79\ 1924592\ +845\2
- 7)\3/2[2]_ 2 13
N [384 00T o0 T T 0w !
1 [2557A3 5 MY2(1T764+7865)) o 92160-+474624\+878688 A2 +-572537\3
N6 110592 92160 7741440
23040+46944\+64396 A2 +52073\3
- i + + B4+ (6.35)
967680/ \
This gives
(W309) 3 1{393/2 } 1{3 3 ] 1[ 51 g9
AN VAN NI it | SRR (IR i & AR DR P |
(W3) 2\F+ e F TS I 2 TS IVl ST T KA
(6.36)
Comparing with (1.11) we obtain
1 /39 3 51
H e s RO s > .
3(x) 971_(8:104—296 0% + , (6.37)

in agreement with (1.12). As in (6.34), one can give a closed formula for this function in
terms of the special error and Owen-T functions. As a final check, probing the peculiar
simple J dependence in (1.11), we consider the case (n,J) = (2,3). To analyze this case by
expansion of exact expressions at finite A we need the Bessel function expansion of <W203>
where O3 = %\/g ctr M3 : and : tr M3 := tr M — 3tr M. By matching a large number of
weak coupling perturbative coefficients, we find

20\ o [T 240 6(8+A)IF
(W2 04) = N 2{ o e
1 [ 1 1 2
— == VAR = NIl ——=
el 4\fo+8(8+7 Vol ﬁ}
L [ VA(192-+48A+18502) 12 (—192—T2X+23902)Igl;  (768-+384A—240\2+185)3) 2
N4 7680 1920 7680\
L1 _ﬁ(—5760—1440A—528A2+1939A3)Ig+(184320+69120A+8544A2—39902A3+6209A4)1011
NG 483840 3870720

- 40—184320\—6144X2+41128\34-24815 1) 12
(3686401843207 ~6144)% +41128)* - 85A)1}+,_.}. (6.38)

7741440\
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This gives

(W203) _ \/Z{;’\f)\+...+1 gwa...hi [_iA3+...}+L {iwu...h...},

(W2) N2 NT| 32 N6 | 1280
(6.39)
This expansion should be compared with the n =2 J = 3 case of (1.12), i.e.
3/2 3 6
3(2) 2(T+8H2(x)):\/ﬂ?x2wT+7x—2x2+5x3+--l, (6.40)

and indeed we find that this is equivalent to the previous expansion (6.33).
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A Toda recursion for correlators with chiral primaries

The genus expansion of the ratio (W O3) / (W) may be computed by (6.27) in terms of (W).
Alternatively, it is equivalent to use the integral representation (1.10) derived in [17]. Here,
we want to show how such correlators may be treated by Toda recursion, as an illustration,
generalizing the treatment in appendix B.3 of [2]. From

en(z,y) = <tre$ VEM ey WM> - <tre‘x WM> <trey WM> , (A1)

we have
dzen (x’\/g> e :@@/\7 tr M2 2 :2<W tra? ) (A.2)
(V&) 4™ "
where

M:\/%a [treMe_zinerztre\/ N @ tre® , (A.3)

to make contact with the expressions in [2]. The relevant Toda equation is (5.28). Taking

two derivatives involves the auxiliary quantity

Oren <$ \/E) 220 _ \/EW“M) _ S Wira) (A.4)
(Vi) V™ "

To continue, we need the correct Ansatz for the r.h.s. of (A.2) and (A.4) at large tension.
This is

<W ctra’ :>
(W)

2
L_q s A

(A.5)
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The Toda recursion takes the form

WDV (5 ) SR VR IVE e (5 ) B

N (

—4NV/C(24¢)C2(¢)—8V2CC1(¢)+2¢ = 0 (A.6)

The expansion at large N with fixed ¢ require to study the asymptotic behaviour of
en(V/Np) at fixed p. Recall that

en(z) =5 IN_(=32),  elo(z)+ %e;v(m) _ (AN + 22) en(z) = 0. (A7)

Setting z = v N and expanding the differential equation gives

en(VNp) = N2 exp {N folw) + fr(w) + %fa(u) +eee (A8)
with
folp) = %\//ﬂ +4+ 2arcsinhg, fi(u) = —g log pu — %log(u2 +4). (A.9)

This is enough to derive the relevant terms in the expansion

ENL (M) _ arcsin 4 1 i(2+<) _\[CV4+C 1
m—ejﬁ h [1+N 2@ 1 0) +(9<N2>] (A.10)

Using this in the expansion of (A.6) gives

1 —14+4V2C
CHO) ~ 5Ca(0) + 2+g¢\4[T<1(O 0. (A11)
It is easy to check that C1(¢) = 2\#@, so that
O2(Q) = VAT CHEVE, (A1)

where k is a constant that we set to zero by analyticity. The result agrees with [2], see
egs. (2.34), (2.35), (2.40) there.

B The polynomial P, for £k = 11,...,20

The polynomials Py (n) have been defined in (5.23) and their expression for k& up to 10 have
been given in (5.24) and (5.47). The expressions for k = 11, ..., 20 are given below.

4199010 87577n”  21375883n" 209156735279n" | 5161998742529n°
33 11 99 62370 155925

_ 101671734522896n°  77972872201319n* _ 1205085961629748361°
467775 81081 42567525

2558119973701481627n2 _335724211283681053843n  156764630068025273339
482431950 58925616750 58925616750 ’

P11:
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2261n'! 9659750 % | 10060585n" 172514522407n° | 30353622743141n’
6 36 12 11340 170100
_ 483860927926589n" | 40171770380189773093n" _ 51369864627494293667n"
340200 5108103000 1702701000
102472685620882550488819n"  574763444256918348659002n
1302566265000 4331032831125
393843049171726870141793n  98527083191201048311039181
3024848326500 1753202090039400 ’
14858n % 3561572n’" | 1890539507n'" 824252140702n°  11192496489158n"
13 39 585 12285 12285
_942785947894636n" | 14402080240084077257n°  203271501770547142769n°
110565 255405150 766215450
9555769999611687383321n"  11588871456123457506361969n°
10854718875 5774710441500
2838595185137082339418889941n°  51452536482602877650860472n
952827222847500 19922751023175
3608383690059034257720530341
3652504354248750 ’
_T4290n™ 2193609 | 3898791707n'"  54577362356n'° | 62912522293682n"
21 7 315 189 14175
_ 671658180402872n° | 212496790875244505807n" _ 30206956766158029102587n°
14175 589396500 15324309000
2004508256000686158596273n°  726580590679310973992290361n"
260513253000 34648262649000
2908859723836817593513494211n°  46704914627229276739182458986n
76226177827800 1095751306274625
6980915896986492598862795960273n  T45725550174967494764854054797
284895339631402500 170937203778841500 ’
_22287n'"  97455637n'"  4T1242699n™*  T296074705n"" | 1762900954888741n'"
2 90 10 6 85050
~229802660901854531n°  29028607670070832589n°  4742825903093184375173n"
935550 14033250 383107725
116822823990093464083591n°  17658116093652216575266660279n°
2277213750 129930984933750
3019686155476492526344171776962n" | 59133660041425626175154220297689n°
17865510428390625 328725391882387500
_ 40902420138582238361745904216740547n” | 5184745096967930004978479698356554n
38460870850239337500 3205072570853278125
~ 8779046910792332017382938446939173
9783905742604743750 ’

570285n'°  361327963n'"  256924672387n'®  151766993879233n'*  938030587963673n "'

Pia=

Pi3=

14

Pis

P:
16 16 96 1440 30240 10080

~ 5938730301115621841n'°  44402659987134144011n°  776491656618909257262217n°
4989600 4191264 12259447200
675670971369618816638500351n7  65379058846039414975807037n°
3126159036000 24457597164000
47101233943008886150795055382519397n54713481261415837935476957015174331149n4
22867853348340000 525960627011820000
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11425876041556661448955324338319179059n3+24484874250586308873555049657424059483n2
143587251174226860000 165677597508723300000
__9643906311965688880889035950642704853709n:+1802190759535306926724608738299225695879
62460454260788684100000 25816987761125989428000 ’
1964315n16__39445288n?5+_60467476843n}4__115225766352631n?34_253254621872909n12
17 3 90 5670 630
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__2027150038463820624702058n8_*_1295892244324167362329025833687n7
6512831325 86620656622500

__57860508893407313308984093326059n6_i_1873177157824570617487083559682467n5
433103283112500 2629803135059100
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10769043838067014500 318610764439852500

452466495402865130794144735387180208039n> = 883182453823558336713057441231757494529669n
B 46198560843778612500 * 96813704104222460355000
4841495934337212459267479837954600070947
B 1280604551643154237500 '

_ 113723507 2490913949n™° | 679389195281n'® _ 228068967202858n
18 3 54 270 2835
2027925651493864n'2 B 33176267023544737n'? n 18475026421421474122847n!?
1215 1485 109459350
32427853962749456647193n'°  141562392656331388912303109n°
1532430900 7662154500
4_4407051037515992567242285006784n8__12998232848938898943788373084481291n7
16705412348625 5846894322018750
+_1920684931913550119678771491316267836#__5256663538285399899069978418495823491471n5
147926426347074375 96152177125598343750
4_16669479504189008529752425764572885471n4
100332706565841750
~ 16671094370233566929477876372974768312804309n°
46845340695591513075000
4_100433411639637043975757841635773385645900627n2
197213100953045752575000
~ 43847679911162088556712200641949149804409228141n
100578681486053333813250000
ﬁ_1986475693390240135403726810007174861110233163
11807062609232347882425000 ’
23881035n% _ 9257432861n'" | 8012771594381n'° _ 754041922791055n "
19 57 855 2394
595825494782601934n ' 35206774729032743512n'°  188028571662687223154182n '
89775 423225 577702125
+356196397870788389963150374n11l26744467018972588685277494738n10
36395233875 109185701625
ﬁ_123556902465696451688500797402787n9__164109225413861098250930345185156307n8
38979295480125 5846894322018750
+76973564904301165571543256581512685027n7
422646932420212500
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471190462126419784655208489507867266436505147n6
1346130479758376812500
4_4326837524673482906294836489485405025912703n5
1346130479758376812500
4731045843858795962745573700604629252477544851n4
3603487745814731775000
*_175717184221761997495399027443863716431266200813n3
10649507451464470639050000
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543124880024688002591550000
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123437472732883636952625000
_77748831089365050929680848793957593192606798599
13290754339228476253893750 ’

_ 841553907 34412953709n"" | 6246399383567n'" _ 13656186763905823n ¢

Pao

2 60 180 11340
4_142218705897901086171,15__45793882693341165107n14__1234280007795319427540237n13
56700 178200 729729000

4_357438485323679466115258847n12__545681680470218713526170387867n11
3064861800 229864635000

ﬁ_138672908598687244744136052146053n?°__376350262572215475642638310861327499277n9

4476091347000 1286316750844125000
+_120017260584537152890452186439443309163n8

57671121382875000
_ 77980193487962152970270963662541582475107n"

6903233229530137500

*_9322371447260705245309378650978156112491889n6
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156151135651971710250000
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(B.1)

C Some details about topological recursion at large tension

Here we summarize some details about topological recursion that are relevant to the strong
coupling limit of correlation functions studied in the main text. Our presentation will
be for the Gaussian matrix model although most of the statements have straightforward
generalizations to a general genus 0 spectral curve. See [25, 34] for pedagogical details and
general treatment.
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z-plane (two sheets) z-plane

Figure 1. Illustration of the spectral curve. Left: the two x-sheets connected by the red cut. The
points A and B are in different sheets. Right: in the z-plane the circle is formed from two copies
of the cut and separates the two sheets whose images are the outer/inner parts. In particular, the
(image of the) point A is inside the circle.

C.1 Spectral curve, resolvents, and residues

For the Gaussian matrix model the spectral curve is a two-sheeted cover of the complex
plane.!® The two sheets are glued along the cut on which the eigenvalues condense in the
large N limit. The coordinate z defined in (2.3) maps these two sheets to the Riemann
sphere as shown in figure 1. A generic value of = has two preimages since z(z) = x (%), if
|z| # 1 then for one of these preimages |z| > 1 and for other |z| < 1. These are the two
sheets which have been mapped to the exterior and interior respectively of unit circle on
the z-plane. Let’s now focus on the unit circle itself on which we write z = exp(it). Then
x(2(t)) = 2cost. So as z goes from 0 to m, x(z(t)) goes from 2 to —2. This is one copy of
the cut while the other copy is corresponds to t going from # — 27 ~ 0. The two copies
of the cut are joined at z = 1 and z = —1 which correspond to £ = 2 and z = —2 i.e. the
end points of the cut. These are the only two values of x which have a single preimage.
These are the zeroes of the differential dz. Lastly, notice that although y is not a single
valued function of z, it is a single valued function of z. Note that the unit circle is also the
contour for the saddle point approximation, the saddle point integral is actually done over
a double copy of the cut.

The resolvents wy, 4(21,...,2y) are all meromorphic multi-differentials on the z-plane
which poles only at the branch point z = 1. One of results of the topological recursion is
the antisymmetry property:

1
Wn.g (Zl,zz,...,zn> = —wng(21,...,2n). (C.1)

As a consequence, correlation functions of the polynomials formed from the trace of the
matrix M don’t receive any contribution from the poles of the resolvents. This follows from
the fact that these matrix observables map to polynomials f(x(z1),...,2(2,)). And since
z(z) == (%), the same is true of f too. Since z — % leaves +1 fixed, changing variables

18This holds more generally in l-cut cases, not necessarily Gaussian. The spectral curve has genus s
when the large N limit is associated with s + 1 disconnected cuts.
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z-plane

Figure 2. The contour integral for computing the matrix correlator f(z) in z-plane (the big circle)
gets contribution only from the pole of f(x(z)) at z = 0. The residue at poles of resolvent (dashed
circles) vanish.

to %, we obtain

Res wng(z1.- - 20 f(2(a1). . 2(z)) = Res wn (le,zz,...,zn> f (x <1> ,...,m(zn)>

z1=% 21
— Res g1 ) f(a(1), e 2(0)) = 0.
(C.2)

As a result the sole contribution to the correlation function of f comes from its own poles,
which for a polynomial of x; are at z(x;) = 0 (inside the contour) and z(z;) — oo (outside
the contour). These correspond to  — oo in the two sheets. Hence, we can write

72 Wng(z1,. ., zn) f(x(z1), ..., x(2n)) = Re%wn,g(zl, vy zn) fx(z1), .. x(20)). (C.3)

i Zi=

The same logic works for any holomorphic function of x among them the Wilson loop. As
we have seen in practice, the contour integral is more convenient for the strong coupling
expansion of Wilson loops while the residue at 0 is simpler for chiral operators. Never-
theless this vanishing of residues at +1 ensures that there is no ambiguity in the saddle
point prescription, since we can smoothly deform the contour past the branch points, as
illustrated in figure 2.

C.2 Topological recursion at subleading order

The coordinate u defined in (3.13) which is convenient for extending the saddle point
approximation to subleading orders can be seen as a reparameterization of spectral curve as

z(u) = exp (21’ arcsin (g)) . (C4)

This change of variables maps the z-plane to a cylinder u = ¢ 4 ir where ¢ parameterizes
a circle of radius 4 extending from —2 to 2 while r a real line. In this manner wu is the local
complex coordinate on an infinite cylinder. This cylinder is compactified to a sphere by
identifying the circle at u = ioo with one point and the circle at © = —ioo with another
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point. In the wu-coordinate the branch point are mapped to 0 and —2 ~ 2. In the strong
coupling limit the dominant contribution to the expectation value of Wilson loops comes
from w = 0 while the contour for saddle point integral is the circle r = 0.

These coordinates also turns out to be somewhat simpler for carrying out topological
recursion. Changing variables, the topological recursion formula (2.8) becomes

wn,g(uly ll) = vB(?iQ K(U,l, U) Wg—1,n+1 (Ua -, U)-l—z Z Wh|r| (U, I‘) Wg—hn—|r| (_U7 u/r)

h<grCu
(C.5)
In terms of these variables the recursion Kernel K is
L d
K(u,0) = - (C.6)

N (u2 —v2)dv

Apart from the factor vu? — 4 which is independent of v and as a result gives an overall
multiplicative factor, the kernel is homogeneous in these coordinates if we only keep the
residue at u = 0. This makes it easier to separate out the contribution of different orders.

Indeed defining K (u,v) = —i V4 — u2K (u, v), we see that

A du du
Ryl an = ~g
. dv du 241
l},{_e}ﬁK(“’ v) (0 —w)Z2k 2 ;) wlit2y2k—2it2 (C.7)

So K (u,v) uniformly increases the degree of the poles of differential it acts on by 2. This
simplification in the recursion kernel is a trade off due to the fact that the starting point
of the recursion ws (u, v) is now more complicated being given by

8du dv

: (C.8)
V4 —uV4 —v? (2u2 + 202 — u?v? —uvv4d — u?V4 — 112)

wa o(u,v) =

and, for the purposes of carrying out topological recursion, it will be expanded into a double
power series easily. Another simplification is that in these coordinates the antisymmetry
property (C.1) reads

Wng(—Ut, ... Up) = wpg(ut, ..., Up) . (C.9)

This means in particular that
n 1 1
Wng(uty - yun) =" dur .. dup fag | 5, —5 | (C.10)
uy Unp

for some symmetric polynomials f;, 4. As a result the poles encountered in the saddle point
integrals are always of even order. Finally, we observe that all w,, computed through the
topological recursion have poles of order at least 4 at u = 0 and as a result for the first two
orders of poles that we need we can ignore the residues at £2 in (C.5).
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C.3 Expressions for resolvents at leading and first subleading order of poles

Now we present some of the resolvents needed to compute various explicit expansions

presented in the main text (5.15), (6.22), (6.23). We do this by presenting f, 4 (55,...,55)
1 n

keep the expression relatively compact we present them in terms of elementary symmetric

as defined above in (C.10). These are symmetric polynomials of their arguments =, and to

polynomials, cf. (4.3). Similarly to our decomposition of wy, 3 = &p g + dwy, 4 we divide fp, 4
into leading fn,g and subleading 4 f,, ; pieces.
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D The correlation function (: trM : W")

In the main text, to prove (6.21), we exploited the fact that (: tr M : W™) has no higher
genus corrections beyond the leading order. This can be easily proved by starting from the
following splitting of M in the U(NN) theory

_ _ 1
M:M+%, M =M - M, m=trM, (D.1)

where M is the traceless part. The matrix model partition function becomes

m

0o B B 5 2
A :/ dm/dM(S(trM) exp (—ZtrMQ — 2) . (D.2)
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For the Wilson loop operator, the splitting (D.1) implies

trexp (?M) = exp (ﬁm) trexp (?M) . (D.3)

As a result the expectation value of n coincident Wilson loops takes the form
n n o0 m?  n\
<W > = <W >traceless o dm exp _7 + ﬁm )

(W™ aceless = /dM S(tr M) {tr exp <;\M>]nexp (—];7 tr M2> . (D.4)

In the case of (mW"), we obtain the same integral for M with an extra insertion of m in

the m-integral. As a result, the “traceless” part (W™) cancels and we obtain

traceless

e} m2 n
(mwny 2o, dmmexp (—7 + %Jém) 2 (D5)
(W) [0, dm exp (—%2 + ”271\{\771) 2N

This is just the leading order result obtained in (6.13) and specialized to J = 1. The above
discussion shows that it is in fact exact.
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References
[1] S. Giombi and A.A. Tseytlin, Strong coupling expansion of circular Wilson loops and string
theories in AdSs x S° and AdS, x CP®, JHEP 10 (2020) 130 [arXiv:2007.08512] [NSPIRE].

[2] M. Beccaria and A.A. Tseytlin, On the structure of non-planar strong coupling corrections to
correlators of BPS Wilson loops and chiral primary operators, JHEP 01 (2021) 149
[arXiv:2011.02885] [INSPIRE].

[3] M. Beccaria and A.A. Tseytlin, 1/N expansion of circular Wilson loop in N = 2
superconformal SU(N) x SU(N) quiver, arXiv:2102.07696 [INSPIRE].

[4] B. Eynard and N. Orantin, Invariants of algebraic curves and topological expansion,
Commun. Num. Theor. Phys. 1 (2007) 347 [math-ph/0702045] [INSPIRE].

[5] J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric
Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].

[6] N. Drukker and D.J. Gross, An Ezact prediction of N =4 SUSYM theory for string theory,
J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].

[7] V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops,
Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824| [INSPIRE].

[8] K. Zarembo, Localization and AdS/CFT Correspondence, J. Phys. A 50 (2017) 443011
[arXiv:1608.02963] [INSPIRE].

40 —


https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/JHEP10(2020)130
https://arxiv.org/abs/2007.08512
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.08512
https://doi.org/10.1007/JHEP01(2021)149
https://arxiv.org/abs/2011.02885
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2011.02885
https://arxiv.org/abs/2102.07696
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.07696
https://doi.org/10.4310/CNTP.2007.v1.n2.a4
https://arxiv.org/abs/math-ph/0702045
https://inspirehep.net/search?p=find+EPRINT%2Bmath-ph%2F0702045
https://doi.org/10.1016/S0550-3213(00)00300-X
https://arxiv.org/abs/hep-th/0003055
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0003055
https://doi.org/10.1063/1.1372177
https://arxiv.org/abs/hep-th/0010274
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0010274
https://doi.org/10.1007/s00220-012-1485-0
https://arxiv.org/abs/0712.2824
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0712.2824
https://doi.org/10.1088/1751-8121/aa585b
https://arxiv.org/abs/1608.02963
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1608.02963

[9]

[10]

J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J.
Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200]
[INSPIRE].

D.E. Berenstein, R. Corrado, W. Fischler and J.M. Maldacena, The Operator product
expansion for Wilson loops and surfaces in the large N limit, Phys. Rev. D 59 (1999) 105023
[hep-th/9809188] [INSPIRE].

N. Drukker, D.J. Gross and H. Ooguri, Wilson loops and minimal surfaces, Phys. Rev. D 60
(1999) 125006 [hep-th/9904191] INSPIRE].

N. Drukker, D.J. Gross and A.A. Tseytlin, Green-Schwarz string in AdSs x S°: Semiclassical
partition function, JHEP 04 (2000) 021 [hep-th/0001204| [INSPIRE].

C.V. Johnson, F. Rosso and A. Svesko, A JT supergravity as a double-cut matrixz model,
arXiv:2102.02227 [INSPIRE].

G.W. Semenoff and K. Zarembo, More exact predictions of SUSYM for string theory, Nucl.
Phys. B 616 (2001) 34 [hep-th/0106015] [INSPIRE].

S. Giombi, R. Ricci and D. Trancanelli, Operator product expansion of higher rank Wilson
loops from D-branes and matriz models, JHEP 10 (2006) 045 [hep-th/0608077] [INSPIRE].

K. Okuyama, 't Hooft expansion of 1/2 BPS Wilson loop, JHEP 09 (2006) 007
[hep-th/0607131] [INSPIRE].

K. Okuyama and G.W. Semenoff, Wilson loops in N =4 SYM and fermion droplets, JHEP
06 (2006) 057 [hep-th/0604209] [INSPIRE].

F. Aprile et al., Single particle operators and their correlators in free N =4 SYM, JHEP 11
(2020) 072 [arXiv:2007.09395] [INSPIRE].

A. Gerasimov, A. Marshakov, A. Mironov, A. Morozov and A. Orlov, Matriz models of 2D
gravity and Toda theory, Nucl. Phys. B 357 (1991) 565 INSPIRE].

A. Morozov, Integrability and matriz models, Phys. Usp. 37 (1994) 1 [hep-th/9303139]
[INSPIRE].

A. Morozov, Matrix models as integrable systems, in proceedings of the CRM-CAP Summer
School on Particles and Fields 94, Banff, Canada, 16-24 August 1994, pp. 127-210
[hep-th/9502091] [INSPIRE].

A. Mironov, Matriz models vs. matriz integrals, Theor. Math. Phys. 146 (2006) 63 [Teor.
Mat. Fiz 146 (2006) 77] [hep-th/0506158] [INSPIRE].

A. Morozov and S. Shakirov, Ezact 2-point function in Hermitian matriz model, JHEP 12
(2009) 003 [arXiv:0906.0036] [INSPIRE].

B. Eynard, Topological expansion for the 1-Hermitian matrix model correlation functions,
JHEP 11 (2004) 031 [hep-th/0407261] [INSPIRE].

B. Eynard and N. Orantin, Algebraic methods in random matrices and enumerative
geometry, arXiv:0811.3531 [INSPIRE].

S.M. Chester, M.B. Green, S.S. Pufu, Y. Wang and C. Wen, Modular invariance in
superstring theory from N = 4 super-Yang-Mills, JHEP 11 (2020) 016 [arXiv:1912.13365]
[INSPIRE].

S.M. Chester, Genus-2 holographic correlator on AdSs x S® from localization, JHEP 04
(2020) 193 [arXiv:1908.05247] [INSPIRE].

— 41 —


https://doi.org/10.1023/A:1026654312961
https://doi.org/10.1023/A:1026654312961
https://arxiv.org/abs/hep-th/9711200
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9711200
https://doi.org/10.1103/PhysRevD.59.105023
https://arxiv.org/abs/hep-th/9809188
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9809188
https://doi.org/10.1103/PhysRevD.60.125006
https://doi.org/10.1103/PhysRevD.60.125006
https://arxiv.org/abs/hep-th/9904191
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9904191
https://doi.org/10.1088/1126-6708/2000/04/021
https://arxiv.org/abs/hep-th/0001204
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0001204
https://arxiv.org/abs/2102.02227
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2102.02227
https://doi.org/10.1016/S0550-3213(01)00455-2
https://doi.org/10.1016/S0550-3213(01)00455-2
https://arxiv.org/abs/hep-th/0106015
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0106015
https://doi.org/10.1088/1126-6708/2006/10/045
https://arxiv.org/abs/hep-th/0608077
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0608077
https://doi.org/10.1088/1126-6708/2006/09/007
https://arxiv.org/abs/hep-th/0607131
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0607131
https://doi.org/10.1088/1126-6708/2006/06/057
https://doi.org/10.1088/1126-6708/2006/06/057
https://arxiv.org/abs/hep-th/0604209
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0604209
https://doi.org/10.1007/JHEP11(2020)072
https://doi.org/10.1007/JHEP11(2020)072
https://arxiv.org/abs/2007.09395
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.09395
https://doi.org/10.1016/0550-3213(91)90482-D
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB357%2C565%22
https://doi.org/10.1070/PU1994v037n01ABEH000001
https://arxiv.org/abs/hep-th/9303139
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9303139
https://arxiv.org/abs/hep-th/9502091
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9502091
https://doi.org/10.1007/s11232-006-0007-7
https://arxiv.org/abs/hep-th/0506158
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0506158
https://doi.org/10.1088/1126-6708/2009/12/003
https://doi.org/10.1088/1126-6708/2009/12/003
https://arxiv.org/abs/0906.0036
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0906.0036
https://doi.org/10.1088/1126-6708/2004/11/031
https://arxiv.org/abs/hep-th/0407261
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0407261
https://arxiv.org/abs/0811.3531
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0811.3531
https://doi.org/10.1007/JHEP11(2020)016
https://arxiv.org/abs/1912.13365
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.13365
https://doi.org/10.1007/JHEP04(2020)193
https://doi.org/10.1007/JHEP04(2020)193
https://arxiv.org/abs/1908.05247
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1908.05247

[28]

D.J. Binder, S.M. Chester, S.S. Pufu and Y. Wang, N = 4 Super- Yang-Mills correlators at
strong coupling from string theory and localization, JHEP 12 (2019) 119 [arXiv:1902.06263]
[INSPIRE].

S.M. Chester and S.S. Pufu, Far beyond the planar limit in strongly-coupled N =4 SYM,
JHEP 01 (2021) 103 [arXiv:2003.08412] INSPIRE].

S.M. Chester, M.B. Green, S.S. Pufu, Y. Wang and C. Wen, New Modular Invariants in
N = 4 Super-Yang-Mills Theory, arXiv:2008.02713 [INSPIRE].

K. Okuyama, Connected correlator of 1/2 BPS Wilson loops in N =4 SYM, JHEP 10
(2018) 037 [arXiv:1808.10161] [InSPIRE].

S. Giombi and V. Pestun, Correlators of Wilson Loops and Local Operators from
Multi-Matriz Models and Strings in AdS, JHEP 01 (2013) 101 [arXiv:1207.7083] [INSPIRE].

B. Eynard and N. Orantin, Topological expansion of mixed correlations in the hermitian 2
Matriz Model and x — y symmetry of the F, invariants, arXiv:0705.0958 [INSPIRE].

B. Eynard, T. Kimura and S. Ribault, Random matrices, arXiv:1510.04430 [INSPIRE].

G. Akemann and P.H. Damgaard, Wilson loops in N = 4 supersymmetric Yang-Mills theory
from random matriz theory, Phys. Lett. B 513 (2001) 179 [Erratum ibid. 524 (2002) 400]
[hep-th/0101225] [INSPIRE].

J. Plefka and M. Staudacher, Two loops to two loops in N = 4 supersymmetric Yang-Mills
theory, JHEP 09 (2001) 031 [hep-th/0108182] [INSPIRE].

G.N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press,
Cambridge U.K. (1995).

J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859
[hep-th/9803002] [INSPIRE].

M. Bill6, F. Fucito, G.P. Korchemsky, A. Lerda and J.F. Morales, Two-point correlators in
non-conformal N = 2 gauge theories, JHEP 05 (2019) 199 [arXiv:1901.09693] [INSPIRE].

M. Billg, F. Fucito, A. Lerda, J.F. Morales, Y.S. Stanev and C. Wen, Two-point correlators
in N =2 gauge theories, Nucl. Phys. B 926 (2018) 427 [arXiv:1705.02909] [INSPIRE].

D. Rodriguez-Gomez and J.G. Russo, Operator mizing in large N superconformal field
theories on S* and correlators with Wilson loops, JHEP 12 (2016) 120 [arXiv:1607.07878]
[INSPIRE].

M. Beccaria, M. Billo, F. Galvagno, A. Hasan and A. Lerda, N = 2 Conformal SYM theories
at large N, JHEP 09 (2020) 116 [arXiv:2007.02840] [INSPIRE].

— 492 —


https://doi.org/10.1007/JHEP12(2019)119
https://arxiv.org/abs/1902.06263
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1902.06263
https://doi.org/10.1007/JHEP01(2021)103
https://arxiv.org/abs/2003.08412
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2003.08412
https://arxiv.org/abs/2008.02713
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2008.02713
https://doi.org/10.1007/JHEP10(2018)037
https://doi.org/10.1007/JHEP10(2018)037
https://arxiv.org/abs/1808.10161
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1808.10161
https://doi.org/10.1007/JHEP01(2013)101
https://arxiv.org/abs/1207.7083
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1207.7083
https://arxiv.org/abs/0705.0958
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A0705.0958
https://arxiv.org/abs/1510.04430
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1510.04430
https://doi.org/10.1016/S0370-2693(01)00675-X
https://arxiv.org/abs/hep-th/0101225
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0101225
https://doi.org/10.1088/1126-6708/2001/09/031
https://arxiv.org/abs/hep-th/0108182
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0108182
https://doi.org/10.1103/PhysRevLett.80.4859
https://arxiv.org/abs/hep-th/9803002
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F9803002
https://doi.org/10.1007/JHEP05(2019)199
https://arxiv.org/abs/1901.09693
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1901.09693
https://doi.org/10.1016/j.nuclphysb.2017.11.003
https://arxiv.org/abs/1705.02909
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1705.02909
https://doi.org/10.1007/JHEP12(2016)120
https://arxiv.org/abs/1607.07878
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1607.07878
https://doi.org/10.1007/JHEP09(2020)116
https://arxiv.org/abs/2007.02840
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2007.02840

	Introduction and results
	Topological recursion for the Gaussian matrix model
	Saddle point methods for Wilson loops
	Topological recursion for dominant strong coupling poles
	Large tension analysis of coincident Wilson loops
	Solution by Toda recursion

	Correlator of coincident Wilson loops and a chiral operator
	Contribution from multi-trace operators in normal ordering
	<W**(n)O(J)> at leading order
	Subleading corrections
	Relating H(n) to W(n)
	A few sample calculations

	Toda recursion for correlators with chiral primaries
	The polynomial P(k) for k=11,...,20
	Some details about topological recursion at large tension
	Spectral curve, resolvents, and residues
	Topological recursion at subleading order
	Expressions for resolvents at leading and first subleading order of poles

	The correlation function <:tr M:W**(n)>

