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1 Introduction and results

The recent papers [1–3] focused on certain features of higher genus corrections to BPS Wil-
son loops in dual theories related by AdS/CFT. By means of supersymmetric localization,
gauge theory predictions are available as matrix model integrals that depend non-trivially
on the number of colours N and ’t Hooft planar coupling λ (mass deformations will not be
relevant here). The large N expansion may be computed at high order starting from exact
expressions in the matrix model or by perturbative loop equation methods, like topological
recursion [4]. On the string side, the gauge theory parameters N,λ may be replaced by the
string coupling gs and tension T . World-sheet genus expansion is a natural perturbation

– 1 –



J
H
E
P
0
4
(
2
0
2
1
)
1
9
4

theory controlled by powers of gs accompanied by corrections in inverse string tension, i.e.
σ-model quantum corrections. The two expansions are expected to match according to
AdS/CFT, but practical tests are of course non-trivial. On the gauge side, a rich set of
predictions is obtained extracting the dominant strong coupling corrections order by order
in 1/N , i.e. well beyond planar level. On string side, this should reproduce the large tension
limit T � 1 at specific genera, whose independent determination is obviously very hard
beyond leading order. In spite of that, one can still look at manifestations of its expected
structural properties in the 1/N gauge theory expansion.

The simplest example where this strategy may be concretely illustrated is the expec-
tation value 〈W〉 of the 1

2 -BPS circular Wilson loop in U(N) N = 4 SYM. The expression
for 〈W〉 is known at finite N and λ = N g2

YM exactly [5–8] and is given by the Hermitian
Gaussian one-matrix model average

〈W〉 =
∫

DM tr e
√
λ

2 Me−
N
2 trM2 = e

λ
8N L1

N−1

(
− λ

4N

)
. (1.1)

In this case, the relation among the gauge theory parameters λ,N and gs, T in the dual
AdS5 × S5 IIB superstring is [9]

gs = λ

4πN , T =
√
λ

2π . (1.2)

At large tension, (1.1) takes the following form

〈W〉 = 1
2π

√
T

gs
e2πT+ π

12
g2

s
T

[
1 + O(T−1)

]
T�1= e2π T f

(
g2

s
T

)
, (1.3)

f(x) = x−1/2 exp
(
π

12 x
2
)
. (1.4)

The structure of (1.3) is consistent with the dual representation of the Wilson loop expec-
tation value as the string path integral over world-sheets ending on a circle at ∂AdS.1

A similar large tension analysis is presented in [2] for other quantities related again
to the 1

2 -BPS Wilson loop in N = 4 SYM. In particular, one can consider the normalised
ratio of n coincident Wilson loops.2 This requires consideration of matrix integrals which
are generalisations of (1.1), but whose 1/N expansion is much more difficult to extract.3

The semiclassical exponential factors ∼ e2πT cancel and the ratio 〈Wn〉 / 〈W〉n is again
organised in powers of g2

s /T , cf. (1.3),

〈Wn〉
〈W〉n

T�1= Wn

(
πg2

s
T

)
, (1.5)

1The exponential factor exp(2πT ) comes from the AdS2 minimal surface [10–12]. Upon expansion in gs,
the power of the string coupling is minus the Euler number of a disc with p handles (χ = 1− 2p). The fact
that each power of gs is accompanied at large tension by a factor 1/

√
T is non-trivial and explained in [1].

A similar structure holds for Wilson loops in ABJM theory, dual to string on AdS4 × CP3.
2See [13] for a recent application of such coincident loops in matrix models associated with JT gravity.
3Indeed, in this case one does not have a simple result like (1.1), but instead multiple finite sum of ∼ N

terms, see for instance eq. (4.3) in [2] for n = 2.
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where the first three terms of the scaling function Wn have been computed in [2] and read

Wn(x) = 1 + n (n− 1)
2 x+ n (n− 1) (3n− 5) (n+ 2)

24 x2

+ n (n− 1) (15n4 + 30n3 − 75n2 − 610n+ 1064)
720 x3 + · · · . (1.6)

A third example of scaling functions emerging in the large tension limit are normalised
correlators of W with a single trace chiral operator OJ ∼ trΦJ [10, 14] recently reconsidered
in [2]. In this case, the large tension limit is characterised by a different scaling combination

〈WOJ〉
〈W〉

T�1= J

(
π

2

)J/2
T FJ

(
g2

s
T 2

)
, FJ(x) = 2

J
√
x

sinh
(
J arcsinh

√
x

2

)
, (1.7)

where we draw attention to the non-trivial dependence of FJ(x) on the R-charge J .4

Beyond proving general structures as in (1.3), (1.5), and (1.7), it is important to
develop methods to determine the detailed form of scaling functions like f, Wn and FJ .
A common approach is to compute the 1/N expansion at finite planar coupling λ in the
Hermitian Gaussian one-matrix model, and then take the strong coupling limit λ� 1. For
instance, in the case of 〈W〉, one has the exact representation at finite λ [16]

〈W〉 = 2N√
λ

Res
x=0

[
e
λ

4N H

(√
λ

4N x

)
∞∑
n=0

In(
√
λ)x−n

]
, H(x) ≡ 1

2

(
coth x− 1

x

)
. (1.8)

From (1.8), we get all coefficients of the 1/N power series in terms of explicit combinations
of modified Bessel functions (In ≡ In(

√
λ)), see also [6],

〈W〉 = 2N I1√
λ

+ λI2
48N + 1

N3

(
λ5/2I3
9216 −

λ2I4
11520

)
+ 1
N5

(
λ4I4

2654208 −
λ7/2I5

1105920 + λ3I6
1935360

)
+ · · · .

(1.9)

When each term of this expression is expanded at large λ, the result takes the simple
exponential form (1.3). Of course, the case of 〈W〉 is particularly simple because of the
compact closed formula (1.1) leading to (1.8). Somehow, a similar situation occurs in
the case of the scaling function FJ in (1.7). Indeed, the correlator 〈WOJ〉 admits the
representation [17]

〈WOJ〉 =
( 2
π

)1−J/2 N2
√
λ
e
λ

8N

∮
dz

2πiz
J e
√
λ

2 z

(
1 +

√
λ

2Nz

)N (1 +
√
λ

2Nz

)J
− 1

 , (1.10)

and one can prove (1.7) from this formula, which is exact at finite N and λ [2, 15].
However, as soon as the observables under study become more complicated, it is in-

creasingly difficult to extract the genus expansion order by order in 1/N at finite λ. An
example are multiple coincident Wilson loops 〈Wn〉 — not to be confused with multiply
wound loops — or multi-trace chiral operators [18]. In this case, exact expressions are not

4Through an analytical continuation it is possible to capture FJ by a D3-brane calculation, see [15].
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available or are too cumbersome to be useful. Toda recursion relations [19–23] are a possi-
ble method to determine the 1/N expansion, but work well only for simple observables [2]
(and their scope is limited to the Gaussian matrix model). A more general approach is
to take advantage of topological recursion [24, 25] which is an efficient way to organise
the hierarchy the matrix model loop equations.5 In practice, a serious bottleneck in ap-
plying this method is the rapid increase of computational complexity at higher genus, see
for instance [31]. For these reasons, it seems important to devise a version of topological
recursion suitable for strong coupling directly.

In this paper, we take a first step in this direction. We illustrate a practical approach
to work out topological recursion at strong coupling by isolating dominant contributions
at large tension. Despite its simplicity, the method turns out to be rather effective. As
an illustration, we present an algorithm for computing the function Wn(x) in (1.5) at any
desired order with minor effort, and we illustrate remarkable exponentiation properties of
the dominant terms at large n. This result will be cross checked by means of an extension
to all n of the Toda recursion method used in [2] for n = 2, 3. As a second application,
we shall prove that the structure of (1.7) is rather special and does not extend to the
normalized correlators of a chiral primary single trace operator with multiple coinciding
Wilson loops, i.e. ratios 〈WnOJ〉 / 〈Wn〉 when n > 1. Instead, we prove that the relevant
scaling variable is g2

s /T and that the dependence on the R-charge is

〈Wn OJ〉
〈Wn〉

T�1= J

(
π

2

)J/2
n

[
T + (J2 − 1) Hn

(
πg2

s
T

)]
, (1.11)

where the function Hn(x) is independent of J and may be computed in terms of Wn by the
relation

Hn(x) = x

2π

[ 1
12 + 1

n
(log Wn(x))′

]
. (1.12)

The derivation of these results is straightforward in the framework of the strong coupling
version of topological recursion, and far from trivial by other methods. A similar approach
is expected to be useful and apply in harder cases with separated Wilson loops or more
local operator insertions. Some of these problems can be mapped to multi-matrix models
calculations [32] that would be interesting to study by a suitable strong coupling limit of
more general topological recursions [33].

The detailed plan of the paper is as follows. In section 2 we briefly recall the structure
of topological recursion for N = 4 SYM and its application to the evaluation of 〈W〉.
In section 3 we show how to perform a saddle point expansions at strong coupling in
the considered problems. We clarify what are the relevant features of resolvents in that
regime. Section 4 presents the strong coupling version of topological recursion, capturing
the reduced resolvents. In section 5 we apply this formalism to our first application, i.e.
the computation of 〈Wn〉 at large tension. In section 5.1, as a non-trivial check of our
approach, the same results are obtained by solving in the strong coupling limit a suitable
Toda recursion for correlators of traced exponentials in the Gaussian matrix model. Finally,
in section 6 we discuss the correlators 〈WnOJ〉 between coincident Wilson loops and a single

5See also [26–30] for other recent applications of topological recursion to N = 4 SYM.
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trace chiral operator. The relation with the scaling function characterising 〈Wn〉 is proved
in section 6.4.

2 Topological recursion for the Gaussian matrix model

For a Hermitian one-matrix model with potential V , the spectral curve is defined by [25, 34]

y2 − 1
2V
′(x) y + P (x) = 0, P (x) = 1

N

〈
tr V

′(x)− V ′(M)
x−M

〉
, (2.1)

where 〈O(M)〉 =
∫
DM e−N trV (M) O(M) and normalization is fixed by 〈1〉 = 1. In the

Gaussian case, V (M) = 1
2M

2, cf. (1.1), and the curve (2.1) takes the form

y2 − xy + 1 = 0, (2.2)

admitting the rational (complex) parametrization

x = z + 1
z
, y = 1

z
. (2.3)

The n-point resolvent is defined as the connected correlator6

Wn(x1, . . . , xn) =
〈
tr 1
x1 −M

· · · tr 1
xn −M

〉
c
, (2.4)

and admits the following genus expansion at large N

Wn(x1, . . . , xn) =
∞∑
g=0

1
Nn−2+2g Wn,g(x1, . . . , xk). (2.5)

The functions Wn(x1, . . . , xn) may be traded by multi-differentials on the algebraic
curve (2.2)

ωn,g(z1, . . . , zn) = Wn,g(x(z1), . . . , x(zn)) dx(z1) · · · dx(zn) . (2.6)

Multi-trace connected correlators may be computed as contour integrals around the cut〈∏
i

trOi(M)
〉

c
=
∞∑
g=0

1
Nn−2+2g

1
(2π i)n

∮
ωn,g(z1, . . . , zn)

∏
i

Oi(x(zi)) . (2.7)

Higher genus resolvents obey the topological recursion

ω1,0(z) = 1
z

(
1− 1

z2

)
dz, ω2,0(z1, z2) = dz1dz2

(z1−z2)2 ,

ωn,g(z1, z) = Res
ζ=1,−1

K(z1, ζ)

ωn+1,g−1(ζ, ζ−1, z)+
∑
h≤g

∑
w⊂z

ω|w|,h+1(ζ,w)ωn−|w|,g−h(ζ−1, z\w)

 ,
K(z, w) = w3

2 (w2−1)(z−w)(zw−1)
dz

dw
,

(2.8)
6Connected correlators 〈X1X2 · · ·〉c are functional derivatives of the logarithm of the generating function

of correlators with respect to sources coupled to Xi operators.
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where z = (z2, . . . , zn), w is a subset of z (preserving the order of the variables), |w| is
the number of elements of w, and z\w is the complement of w in z. In the double sum
we exclude the two cases (h,w) = (0, ∅) and (h,w) = (g, z). The recursion (2.8) allows
to compute the following quantities in triangular sequence (the number under brace is the
total weight g + n)

ω1,1︸︷︷︸
2

→ ω3,0 → ω2,1 → ω1,2︸ ︷︷ ︸
3

→ ω4,0 → ω3,1 → ω2,2 → ω1,3︸ ︷︷ ︸
4

→ · · · . (2.9)

Apart from the seeds ω1,0 and ω2,0, all other resolvents have poles in the zi variables only at
the special points ±1. The first entries in (2.9) read (omitting the dz1 · · · dzn differentials)

ω1,1(z) = z3

(z2−1)4 ,

ω3,0(z1, z2, z3) = − 1
2 (z1−1)2(z2−1)2(z3−1)2 + 1

2 (z1+1)2(z2+1)2(z3+1)2 ,

ω2,1(z1, z2) = 1
4(z2

1−1)6(z2
2−1)6

[
4z3

1z2(1+z2
2)2(1−7z2

2+z4
2)+4z7

1z2(1+z2
2)2(1−7z2

2+z4
2)

+5(z4
2+z6

2)+5z10
1 (z4

2+z6
2)+4z1(z3

2+3z5
2+z7

2)+4z9
1(z3

2+3z5
2+z7

2)

+3z2
1(z2

2−6z4
2−6z6

2+z8
2)+3z8

1(z2
2−6z4

2−6z6
2+z8

2)

+12z5
1(z2−4z3

2+16z5
2−4z7

2+z9
2)+z4

1(5−18z2
2+23z4

2+23z6
2−18z8

2+5z10
2 )

+z6
1(5−18z2

2+23z4
2+23z6

2−18z8
2+5z10

2 )
]
,

ω1,2(z) = −21 z7 (1+3z2+z4)
(−1+z2)10 ,

(2.10)

and so on. The expression of ω2,1 shows how explicit results become quickly unwieldy.

Analysis of the simple loop 〈W〉. It is useful illustrate how resolvents are used to
compute the genus expansion of the simple loop expectation value 〈W〉. We have

〈W〉 =
∫

DM tr e
√
λ

2 Me−
N
2 trM2 N→∞= N

∞∑
g=0

1
N2g 〈W〉g , 〈W〉g = 1

2πi

∮
ω1,g(z) e

√
λ

2 (z+1/z).

(2.11)

The leading term is simply7

〈W〉0 =
∮

dz

2πi
1
z

(
1− 1

z2

)
e
√
λ

2 (z+1/z) = 2√
λ
I1(
√
λ), (2.12)

in agreement with the well known planar result. The next-to-leading term is

〈W〉1 =
∮

dz

2πi
z3

(z2 − 1)4 e
√
λ

2 (z+1/z) . (2.13)

7We use the generating function e x
2 (z+1/z) =

∑∞
n=−∞ In(x) zn and the identity I0(x)− I2(x) = 2

x
I1(x).
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The contour encircles all three singular points, but one can check that there are no residues
from z = ±1. Thus, integrating by parts two times gives

〈W〉1 = λ

48

∮
dz

2πi
1
z3 e

√
λ

2 (z+1/z) = λ

48 I2(
√
λ), (2.14)

which is the well known 1/N2 correction. A similar manipulation can be repeated for the
next order. Integrating by parts five times gives

〈W〉2 =
∮

dz

2πi
21 z7 (1 + 3z2 + z4)

(z2 − 1)10 e
√
λ

2 (z+1/z) = λ5/2

92160

∮
dz

2πi

( 1
z6 + 9

z4

)
e
√
λ

2 (z+1/z)

= λ5/2

92160
[
I5(
√
λ) + 9 I3(

√
λ)
]

=
[
λ5/2

9216 I3(
√
λ)− λ2

11520 I4(
√
λ)
]
, (2.15)

in agreement with the 1/N3 term in (1.9).
In the case of 〈W〉, this method may be extended to all orders in the 1/N expansion,

and can also be generalized to give explicit Bessel function combinations for higher point
resolvents at finite λ, see for instance [31]. Nevertheless, the calculation quickly becomes
impractical at higher orders due to the very involved expressions that are generated going
recursively through the chain of evaluations (2.9). Also, as we explained in the introduction,
we are ultimately interested in extracting the large tension limit and want to bypass the
cumbersome procedure of first obtaining exact expressions at finite λ, and then expand
them at λ � 1. For instance, in the above genus-two contribution both Bessel functions
give a similar leading asymptotic contribution due to the expansion

In(
√
λ) = 1√

2π
λ−1/4

(
1 + 4n2 − 1

8
1√
λ

+ · · ·
)
e
√
λ + · · · , (2.16)

and it would be desirable to pin the total contribution in a more direct way. To this aim,
one needs to study (2.8) working at strong coupling from the beginning and making more
transparent the origin of the dominant terms. The next section will be devoted to this
problem.

3 Saddle point methods for Wilson loops

In this section, we discuss how to extract dominant terms from integrals like (2.12) by
saddle point evaluation. Although this is a fairly well known topic, we want to emphasize
some specific technical issues that are relevant in the calculations we are interested in. To
this aim, we consider the large σ → +∞ expansion of a contour integral of the form

I(σ) =
∮
dz g(z) e−σ f(z). (3.1)

Suppose that f(z) has a critical point z̄ where f ′(z̄) = 0. Deforming the contour such that
it passes through z̄ with constant Imf(z) along the contour locally around z̄, we write

I(σ) = e−σ f̄
∫ ∞
−∞

dt
dz

dt
g(z(t)) e−σ

1
2 f̄
′′ t2+···, (3.2)

– 7 –
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where t parameterises the contour such that z(0) = z̄ and f̄ = f(z̄). Lastly, f̄ ′′ = f ′′(z̄) is
the second derivative w.r.t. t at the critical point. If g(z̄) is finite, we simply extract it from
the integral and perform the Gaussian integral. In the following, we shall be interested in
the case when g has an odd zero or an even pole around the saddle point. In the case of a
zero with

g
t→0= A t2m−1 +B t2m + · · · , (3.3)

we just include it in the Gaussian integration and get

I(σ) = e−σ f̄
∫ ∞
−∞

dt [At2m−1z′(0) + (Bz′(0) + Az′′(0)) t2m + · · · ] e−σ
1
2 f̄
′′ t2+···

=
√

2π [B z′(0) + Az′′(0)] e−σ f̄ (2m− 1)!! (σ f̄ ′′)−m−
1
2 + · · · . (3.4)

In the case of a pole with
g
t→0= A t−2m + · · · , (3.5)

we compute the finite quantity8

dm

dσm

[
eσ f̄ I(σ)

]
=
(
− f̄
′′

2

)m ∫ ∞
−∞

dt
dz

dt
g(z(t)) t2m e−σ

1
2 f̄
′′ t2+···

=
(
− f̄
′′

2

)m
z′(0)A

√
2π
σf̄ ′′

+ · · · . (3.6)

Integrating back in σ gives then

I(σ) = π Az′(0) e−σ f̄ (−1)m

Γ
(
m+ 1

2

) (σf̄ ′′
2

)m− 1
2

+ · · · =
√

2π Az′(0) e−σ f̄ (−1)m (σf̄ ′′)m−
1
2

(2m− 1)!! + · · · .

(3.7)

Revisiting 〈W〉 at strong coupling. These formulas may be applied to contour inte-
grals involving Wilson loops and higher order resolvents. Let us illustrate this once again
in the case of the simple Wilson loop (1.1). The planar contribution in (2.12) has σ =

√
λ,

f(z) = −1
2(z + 1/z) and g(z) = 1

z

(
1− 1

z2

)
. The dominant contribution at large λ comes

from the saddle point at z = 1 which is a zero of g(z) of linear order. The parametrization
is z(t) = eit thus f̄ ′′ = 1. Expanding g(z) around the zero and taking the first even term
gives (3.3) with A = 2i and B = 4 and m = 1. Evaluation of (3.4) gives then

〈W〉0 =
√

2
π
λ−3/4e

√
λ + · · · , (3.8)

in agreement with (1.3). All the higher genus corrections have even poles at z = ±1.
Again, the leading contribution comes from z = 1 and may be computed using (3.7). For

8This is equivalent to an implicit integration by parts. In both cases we have to be careful about the
poles at t = 0 since a non-zero residue for the pole causes a discontinuity in the contour. In our discussion,
this will not matter because topological recursion ensures that this residue is always zero, when computing
expectation values of functions of the matrix model variable. See last section for examples and appendix C
for general details.
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instance, at genus one we have

g(z) = 1
2πi

z3

(z2 − 1)4 , g(z(t)) = − i

32π
1
t4

+ · · · → A = − i

32π , m = 2, (3.9)

and

〈W〉1 =
√

2π −i32π i e
√
λ (
√
λ)2− 1

2

3!! + · · · = λ3/4

48
√

2π
e
√
λ + · · · . (3.10)

Similarly at genus 2 and higher we can check that this procedure reproduces the expan-
sion (1.3). Higher order corrections in 1/

√
λ may also be computed in the same way just

by doing Gaussian integration with more accuracy. For instance, we know that (up to
exponentially suppressed terms)

〈W〉1 = λ

48 I2(
√
λ) = e

√
λ

(
λ3/4

48
√

2π
− 5λ1/4

128
√

2π
+ · · ·

)
(3.11)

and we reproduce this expansion by the convenient change of parametrization

z + 1
z

= 2− u2 . (3.12)

Using again z = eit, this gives u = 2 sin t
2 and one gets

〈W〉1 = e
√
λ

π

∫ ∞
−∞

du
1

u4(4− u2)5/2 e
−
√
λ

2 u2 = e
√
λ

π

∫ ∞
−∞

du

( 1
32u4 + 5

256u2 + · · ·
)
e−
√
λ

2 u2

(3.13)

= e
√
λ

π
π

 1
32

1
Γ
(
2 + 1

2

) (√λ
2

)2−1/2

− 5
256

1
Γ
(
1 + 1

2

) (√λ
2

)1−1/2

+ · · ·


= λ3/4

48
√

2π
− 5λ1/4

128
√

2π
+ · · · ,

in agreement with (3.11).

Remark. The integrals in (3.13) are apparently divergent, even in Cauchy prescription.
Actually, they are evaluated by formulas as (3.7) that hide their original definition as finite
contour integrals.

4 Topological recursion for dominant strong coupling poles

We now look for a simplification of topological recursion (2.8) based on considering the
principal part of resolvents at zi = 1, i.e. the terms that dominate at strong coupling. Let
us denote the highest pole part by ω̂n,g. Introducing ∆i = zi − 1, the resolvents in (2.10)
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reduce to the compact expressions

ω̂1,1(∆) = 1
16 ∆4 ,

ω̂3,0(∆1,∆2,∆3) = − 1
2 ∆2

1 ∆2
2 ∆2

3
,

ω̂2,1(∆1,∆2) = 5∆4
1 + 3∆2

1∆2
2 + 5∆4

2
32∆6

1∆6
2

,

ω̂1,2(∆) = − 105
1024 ∆10 . (4.1)

The (total) degree of the pole terms is 6(g − 1) + 4n. In general, only even powers of ∆i

appear. If such an Ansatz is plugged into the topological recursion, one can compute the
associated resolvent and project onto the maximal pole part. For instance, the last four
resolvents in (2.9) become, after projection,

ω̂4,0(∆1,∆2,∆3,∆4) = −3(∆2
1∆2

2∆2
3+∆2

1∆2
2∆2

4+∆2
1∆2

3∆2
4+∆2

2∆2
3∆2

4)
4∆4

1∆4
2∆4

3∆4
4

,

ω̂3,1(∆1,∆2,∆3) = 1
64∆8

1∆8
2∆8

3

[
35∆6

2∆6
3+30∆2

1∆4
2∆4

3(∆2
2+∆2

3)

+5∆6
1(7∆6

2+6∆4
2∆2

3+6∆2
2∆4

3+7∆6
3)+6∆4

1(5∆6
2∆2

3+3∆4
2∆4

3+5∆2
2∆6

3)
]
,

ω̂2,2(∆1,∆2) = −35(33∆10
1 +27∆8

1∆2
2+29∆6

1∆4
2+29∆4

1∆6
2+27∆2

1∆8
2+33∆10

2 )
2048∆12

1 ∆12
2

,

ω̂1,3(∆) = 25025
32768∆16 ,

(4.2)

which are very compact expressions, compared with the full resolvents. Being symmetric
functions, we can further simplify in terms of elementary symmetric polynomials

ek(x1, . . . , xn) =
∑

1≤i1<i2<···<ik≤n
xi1 · · ·xik , (4.3)

where x = 1
∆2 . One finds indeed the concise expressions

ω̂4,0 = −3
4e1e4 ,

ω̂3,1 = 35
64e

3
1e3 −

75
64e1e2e3 + 33

64e
2
3 ,

ω̂2,2 = −1155
2048e

5
1e2 + 2415

1024e
3
1e

2
2 −

3955
2048e1e

3
2 . (4.4)

Further results are collected in appendix C.3.

Remark. Of course, the key point of the method is to use ω̂ projected resolvent in the
topological recursion and never using the full ω’s.
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5 Large tension analysis of coincident Wilson loops

As a first application, we consider the large tension limit of 〈Wn〉 and, in particular, the
ratio (1.5). As an illustration of the our strategy, we will begin with the doubly coincident
Wilson loop, i.e. the case n = 2. Later, we shall extend the analysis to a generic number n of
coinciding loops. For n = 2, the 1/N expansion of

〈
W2〉 has been considered in [2, 31, 35, 36]

and its first terms read

1
N2

〈
W2
〉

=
( 2√

λ
I1

)2
+
√
λ

2N2

(
I0I1 + 1

6I1I2

)

+ 1
N4

[
37λ2

2304I
2
0 −
√
λ(24 + 131λ)

2880 I0I1 + 192 + 332λ+ 185λ2

11520 I2
1

]
+ · · · ,

(5.1)

where In ≡ In(
√
λ). The associated connected correlator is

〈
W2
〉

c
=
∞∑
g=0

1
N2g

〈
W2
〉

c,g
=
√
λ

2 I0I1 + 1
N2

[
λ2

64 I
2
0 −

λ3/2

24 I0 I1 + λ(4 + 3λ)
192 I2

1

]
+ · · · .

(5.2)
Expanding at large λ and keeping the leading contribution at each order in 1/N gives

〈
W2
〉

c,0
= 1

4π e
2
√
λ
(

1− 1
4

1√
λ

+ · · ·
)
,

〈
W2
〉

c,1
= λ3/2

64π e
2
√
λ
(

1− 19
12

1√
λ

+ · · ·
)
.

(5.3)
Let us show how these contributions can be easily recovered from the “maximal poles”
topological recursion. We start from the 2-point formula〈

W2
〉λ�1

c,g
= 1

(2πi)2

∮
ω̂2,g(z1, z2) e

√
λ

2 (z1+1/z1) e
√
λ

2 (z2+1/z2). (5.4)

The genus 0 contribution is special being related to the universal Bargmann kernel and
having no poles at z1,2 = 1. It is〈

W2
〉

c,0
=
∮
dz1
2πi

dz2
2πi

1
(z1 − z2)2 e

√
λ

2 (z1+1/z1) e
√
λ

2 (z2+1/z2). (5.5)

After changing variable z2 = w z1, we get

〈
W2
〉

c,0
=
∮
dz1
2πi

dw

2πi
1

z1(1− w)2 e

√
λ

2

[
(1+w) z1+(1+ 1

w
) 1
z1

]
. (5.6)

The integral over z1 gives the Bessel function I0 and we obtain

〈
W2
〉

c,0
=
∮
dw

2πi
1

(1− w)2 I0

(1 + w√
w

√
λ

)
= Res

w=0

∞∑
n=0

1
n!2

1
(1− w)2

(1 + w

2
√
w

√
λ

)2n

=
∞∑
n=1

Γ
(
n+ 1

2

)
2
√
π Γ(n)Γ(n+ 1)2 λ

n. (5.7)
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On the other hand, from [37] (see paragraphs 13.72–73) we have

Iµ(x)Iν(x) = 2
π

∫ π/2

0
dθIµ+ν(2x cos θ) cos((µ− ν)θ). (5.8)

Hence, with µ = ν = 0,

I0(x)2 = 2
π

∫ π/2

0
I0(2x cos θ)dθ = 2

π

∫ π/2

0
dθ

∞∑
n=0

1
n!2 (x cos θ)2n =

∞∑
n=0

Γ
(
n+ 1

2

)
√
πΓ(n+ 1)3x

2n.

(5.9)
Finally,

x

2 I0(x)I1(x) = x

4
d

dx
I0(x)2 =

∞∑
n=0

Γ
(
n+ 1

2

)
2
√
πΓ(n)Γ(n+ 1)2x

2n (5.10)

in agreement with the r.h.s. of (5.7), after setting x =
√
λ.

Starting at genus 1 we can apply the formula (3.7) for the factorized poles. For instance,
the first correction is

〈
W2
〉λ�1

c,1
=
∮
dz1
2πi

dz2
2πi

1
32

[ 5
(z1 − 1)2(z2 − 1)6 + 3

(z1 − 1)4(z2 − 1)4

+ 5
(z1 − 1)6(z2 − 1)2

]
e
√
λ

2 (z1+1/z1) e
√
λ

2 (z2+1/z2) (3.7)→ e2
√
λ
[ 5

32(h1h3 + h3h1) + 3
32h

2
2

]
,

(5.11)

where the numerical constants hm are

hm = (−1)m√
2π

λ
2m−1

4

(2m− 1)!! . (5.12)

Replacing (5.12) in (5.11) reproduces the leading term in the second expression in (5.3).

Extension to 〈Wn〉 and high order calculation. Similarly to (5.11), we can exploit
the resolvents in (4.1) and (4.2) (together with other ones in appendix C) to evaluate
the saddle point integrals needed to compute 〈Wn〉 at high order in the genus expansion.
Remarkably, this can be done for a generic n. To this aim, we introduce the variable

ξ = λ
3
2

8N2 = πg2
s

T
, (5.13)

and the connected correlators〈
W2
〉
c

= −〈W〉2 +
〈
W2
〉
,

〈
W3
〉
c

= 2 〈W〉3 − 3 〈W〉
〈
W2
〉

+
〈
W3
〉
,〈

W4
〉
c

= −6 〈W〉4 + 12 〈W〉2
〈
W2
〉
− 3

〈
W2
〉2
− 4 〈W〉

〈
W3
〉

+
〈
W4
〉
, etc. . (5.14)
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Normalizing by suitable powers of the simple Wilson loop, we obtain the following results
valid up to order O(ξ8):〈

W2〉
c

〈W〉2
T�1= ξ + ξ2

3 + ξ3

15 + ξ4

105 + ξ5

945 + ξ6

10395 + ξ7

135135 + ξ8

2027025 + · · · ,

〈
W3〉

c

〈W〉3
T�1= 4ξ2 + 14ξ3

3 + 16ξ4

5 + 169ξ5

105 + 3046ξ6

4725 + 532ξ7

2475 + 290492ξ8

4729725 + · · · ,

〈
W4〉

c

〈W〉4
T�1= 32ξ3 + 84ξ4 + 1936ξ5

15 + 138722ξ6

945 + 635672ξ7

4725 + 1078888ξ8

10395 + · · · ,

〈
W5〉

c

〈W〉5
T�1= 400ξ4 + 5776ξ5

3 + 5420ξ6 + 2145776ξ7

189 + 7815796ξ8

405 + · · · ,

〈
W6〉

c

〈W〉6
T�1= 6912ξ5 + 54080ξ6 + 247504ξ7 + 53289280ξ8

63 + · · · ,

〈
W7〉

c

〈W〉7
T�1= 153664ξ6 + 1804128ξ7 + 185939824ξ8

15 + · · · ,

〈
W8〉

c

〈W〉8
T�1= 4194304ξ7 + 209380864ξ8

3 + · · · ,

〈
W9〉

c

〈W〉9
T�1= 136048896ξ8 + · · · . (5.15)

From connected correlators we obtain correlators of n coincident Wilson loops using the
combinatorial formula

〈Wn〉
〈W〉n

= 1 +
∑
k<n

∑
π∈P (k,n)

n!
S(π)(n− k − |π|)!

∏
p∈π(p+ 1)!

∏
p∈π

〈
Wp+1〉

c

〈W〉p+1 , (5.16)

where P (k, n) is the set of integer partitions π of k satisfying k + |π| ≤ n where |π| is the
number of elements of π, and S(π) is the symmetry factor of partition π given by products
of m! for each group of m equal elements in π. This expression follows from the fact that
〈Wn〉 can be written as a sum over just the partitions of n. Since we divide by 〈W〉n, all
the parts of a given partition that are 1 disappear, leaving the partitions of n with every
part at least 2. Such partitions can be seen to be in one to one correspondence with the
partitions of integers k ≤ n such that k + |π| ≤ n, giving the expression above.

Since on general grounds 〈W
m〉c

〈W〉m = O(ξm−1), to obtain the expansion of 〈W
n〉

〈W〉n up to
ξm we can restrict the sum in (5.16) to k < m. Furthermore, taking into account that a
part p enters the above expression as 〈W

p+1〉
c

〈W〉p+1 , we need the terms corresponding to all the
partitions of m to obtain the result up to ξm. Let’s consider a couple of examples. For
m = 1 the only possible partition is 1 and we obtain

〈Wn〉
〈W〉n

= 1 + n!
(n− 2)!2!

〈
W2〉

c

〈W〉2
+O(ξ2) = 1 + n(n− 1)

2

〈
W2〉

c

〈W〉2
+O(ξ2). (5.17)
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For m = 2 we have three partitions, i.e. 1 and 2 and (1, 1). The last one has a symmetry
factor of two. So we obtain

〈Wn〉
〈W〉n

= 1+ n!
(n−2)!2!

〈
W2〉

c

〈W〉2
+ n!

(n−3)!3!

〈
W3〉

c

〈W〉3
+ n!

(n−4)!2!2!2!

(〈
W2〉

c

〈W〉2

)2

+O(ξ3)

= 1+n(n−1)
2

〈
W2〉

c

〈W〉2
+n(n−1)(n−2)

6

〈
W3〉

c

〈W〉3
+n(n−1)(n−2)(n−3)

8

(〈
W2〉

c

〈W〉2

)2

+O(ξ3).

(5.18)

In a similar way, to obtain the result up to ξ3 we will have to add all terms corresponding
to the partitions of three to the above results and so on. We now have all the ingredients
needed to evaluate the above expression to ξ8. The final result is, cf. (1.5)

Wn(ξ) = 1 + 1
2(n− 1)n ξ + 1

24n
(

3n3 − 2n2 − 11n+ 10
)
ξ2

+ n

720

(
15n5 + 15n4 − 105n3 − 535n2 + 1674n− 1064

)
ξ3

+ n

40320

(
105n7 + 420n6 − 70n5 − 13440n4 − 44303n3 + 401772n2 − 731028n+ 386544

)
ξ4

+ n

241920

(
63n9 + 525n8 + 1890n7 − 10710n6 − 177401n5 − 169715n4 + 8836872n3

+ 33525316n2 + 47031760n− 21987968
)
ξ5

+ n

159667200

(
3465n11 + 48510n10 + 363825n9 + 596750n8 − 23242065n7 − 242099550n6 + 717147915n5

+ 18424615770n4 − 131848499156n3 + 354391190648n2 − 421025682592n+ 179605556480
)
ξ6

+ n

4151347200

(
6435n13 + 135135n12 + 1606605n11 + 10385375n10 − 33778745n9 − 1632646015n8

− 11172952505n7 + 124368186085n6 + 1239293411642n5 − 17142200059556n4 + 77299998069320n3

− 168644525652096n2 + 177551331490176n− 70415438201856
)
ξ7

+ n

1394852659200

(
135135n15 + 3963960n14 + 66846780n13 + 734894160n12 + 3276739466n11

− 61066061056n10 − 1348672905580n9 − 4090445158800n8 + 176081159789535n7 + 702493835315272n6

− 24840194890564872n5 + 176744402329465152n4 − 616283230677646864n3 + 1159320084247595136n2

− 1109932678089579264n+ 414118538187171840
)
ξ8 + · · · , (5.19)

where the large tension limit is understood. This is the extension to order ξ8 of the cubic
result in eq. (1.17) of [2]. The special cases n = 2 and n = 3 are

W2(ξ) = 1 + ξ + ξ2

3 + ξ3

15 + ξ4

105 + ξ5

945 + ξ6

10395 + ξ7

135135 + ξ8

2027025 + · · · ,

W3(ξ) = 1 + 3ξ + 5ξ2 + 73ξ3

15 + 113ξ4

35 + 508ξ5

315 + 33521ξ6

51975 + 16139ξ7

75075 + 8803ξ8

143325 + · · · ,

(5.20)
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and agree with the exact expressions [2],

W2(ξ) = 1 + e
ξ
2

√
π ξ

2 erf

√ξ

2

 ,
W3(ξ) = 1 + 3e

ξ
2

√
π ξ

2 erf

√ξ

2

+ 4π
3
√

3
ξ e2ξ

[
1− 12T

(√
3ξ, 1√

3

)]
, (5.21)

where
T (h, a) = 1

2π

∫ a

0

dx

1 + x2 e
−h

2
2 (1+x2), (5.22)

is the Owen T-function. The coefficient of ξk is a polynomial in n of degree 2k. A remark-
able simplification is achieved by writing (5.19) in exponential form

log Wn(ξ) =
∞∑
k=1

n (n− 1)Pk(n) ξk, (5.23)

since Pk turns out to be a polynomial of (approximately half) degree k− 1. Explicitly, one
finds

P1 = 1
2 , P2 = − 5

12+n

6 , P3 = 133
90 −

19n
18 +n2

6 ,

P4 = −8053
840 +3373n

360 −
67n2

24 +n3

4 ,

P5 = 171781
1890 −

34313n
315 +821n2

18 −118n3

15 +7n4

15 ,

P6 = −20045263
17820 +7383058n

4725 −773086n2

945 +6047n3

30 −419n4

18 +n5,

P7 = 694596731
40950 −1177098997n

44550 +230808223n2

14175 −4806629n3

945 +534613n4

630 −3001n5

42 +33n6

14 ,

P8 = −45388623451
152880 +2353546004957n

4633200 −177458006053n2

498960 +2001333893n3

15120 −183361073n4

6480

+2499191n5

720 −3609n6

16 +143n7

24 , (5.24)

with leading terms at large n following the pattern

Pk = 4k−1

k
√
π

Γ
(
k − 1

2

)
Γ(k + 2) nk−1 + 4k−2

3k

1−
6(k − 1)(2k − 3)Γ

(
k − 1

2

)
√
πΓ(k + 2)

nk−2 + · · · . (5.25)

5.1 Solution by Toda recursion

The genus expansion of (1.3) is efficiently computed by exploiting the Toda integrability
of the 1-matrix Hermitian Gaussian model [23]. In general, correlators in this model are
constrained by integrable differential equations [20–22] that in Gaussian case take the Toda
form [19]. Notice that in [23] the matrix model measure is exp

(
−1

2 tr M̃
2
)
without explicit
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N factor. This will be the convention throughout this section. After defining the connected
correlators

e(x1, . . . , xk) =
〈
tr ex1M̃ · · · tr exkM̃

〉
c
, (5.26)

one has

eN+1(x) + eN−1(x) = 2 eN (x) + x2

N
eN (x), (5.27)

eN+1(x, y) + eN−1(x, y) = 2 eN (x, y) + (x+ y)2

N
eN (x, y)− x2y2

N2 eN (x)eN (y). (5.28)

The general structure is

eN+1(x1, . . . , xk)+eN−1(x1, . . . , xk)−
[
2+ 1

N
(x1+· · ·+xk)2

]
eN (x1, . . . , xk) = gN (x1, . . . , xk),

(5.29)
where gN may be read from the non-leading terms of the cumulant expansion of 〈X1 · · ·Xk〉c
and replacing 〈

XI1 · · ·XIp

〉
→

(xI1 + · · ·+ xIp)2

N
eN (xI1 , . . . , xIp). (5.30)

Here we are interested in the specialization to xi =
√

λ
4N . Hence, defining

e(k)(λ,N) = eN


√

λ

4N , . . . ,

√
λ

4N︸ ︷︷ ︸
k terms

 , (5.31)

we have the equations

e(k)
(
N + 1
N

λ,N + 1
)

+ e(k)
(
N − 1
N

λ,N − 1
)
−
(

2 + k2λ

4N2

)
e(k)(λ,N) = g(k)(λ,N),

(5.32)
where g(k)(λ,N) is obtained from the non-leading terms of the cumulant expansion of〈
Xk
〉
c
and replacing

〈Xp〉 → p2λ

4N2 e
(p)(λ,N). (5.33)

The explicit coefficients of the cumulant expansion of 〈Xp〉c may be expressed in terms of
integer partitions π = (1m12m2 · · · ) of p

〈Xp〉c =
∑

π∈P(p)
(−1)|π|−1(|π| − 1)!σ(π)

∏
r

〈Xr〉mr , σ(π) = p!∏
r(r!)mrmr!

. (5.34)

Hence, the equations are

e(k)
(
N + 1
N

λ,N + 1
)

+ e(k)
(
N − 1
N

λ,N − 1
)
−
(

2 + k2λ

4N2

)
e(k)(λ,N)

=
∑

π∈P(p)
π 6=(p)

(−1)|π|−1(|π| − 1)!σ(π)
∏
r

(
r2λ

4N2 e
(r)(λ,N)

)mr
. (5.35)

– 16 –



J
H
E
P
0
4
(
2
0
2
1
)
1
9
4

The large tension scaling Ansatz is

e(k)(λ,N) = ek
√
λFk(ξ), ξ = λ3/2

8N2 . (5.36)

Replacing in the Toda equations gives

ek
√
λ
[
k

12ξ
1/3(k3ξ − 6)Fk(ξ)− k ξ4/3 F ′k(ξ)

]
N−4/3 + · · ·

=
∑

π∈P(p)
π 6=(p)

(−1)|π|−1(|π| − 1)!σ(π)
∏
r

(
r2ξ2/3N−2/3er

√
λ Fr(ξ)

)mr
. (5.37)

The only partitions that may give a contribution have |π| =
∑
mr = 2. One case is when

k is even and then the partition is π =
(
M
2 ,

M
2

)
, or when k is split into the sum of two

different parts π = (q, (k − q)) with q 6= k/2.9 Denoting by an apex such partitions, we
have (using

∑
r rmr = k)

k

12ξ (k3ξ − 6)Fk(ξ)− k F ′k(ξ) =
′∑

π∈P(p)
π 6=(p)

(−1)|π|−1(|π| − 1)!σ(π)
∏
r

(
r2 Fr(ξ)

)mr
. (5.38)

Finally, evaluating the r.h.s. for the two relevant kinds of partitions, we obtain the differ-
ential equation

k

12ξ (k3ξ − 6)Fk(ξ)− k F ′k(ξ) = −1
2

k−1∑
p=1

(
k

p

)
p2(k − p)2Fp(ξ)Fk−p(ξ) , (5.39)

that we rearrange in the form

F ′k(ξ) + 1
12ξ (6− k3ξ)Fk(ξ) = 1

2k

k−1∑
p=1

(
k

p

)
p2(k − p)2Fp(ξ)Fk−p(ξ). (5.40)

The first instance k = 1 gives

F ′1(ξ) + 1
12ξ (6− ξ)F1(ξ) = 0 → F1(ξ) = C ξ−1/2e

ξ
12 . (5.41)

The constant is fixed by (1.3) and gives

F1(ξ) = 1
2
√
π
ξ−1/2e

ξ
12 . (5.42)

We shall be interested in the ratios

Rk(ξ) = Fk(ξ)
F1(ξ)k . (5.43)

9Notice that distinct partitions are ordered.
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They obey

R′k(ξ)−
k − 1
12ξ [6 + k (k + 1) ξ]Rk(ξ) = 1

2k

k−1∑
p=1

(
k

p

)
p2(k − p)2Rp(ξ)Rk−p(ξ). (5.44)

We also know that Rk(ξ) = O(ξk−1). This gives the integration constant and the explicit
recurrence relation

R1(ξ) = 1,

Rk(ξ) = e
k(k2−1)

12 ξ ξ
k−1

2

∫ ξ

0
dz e−

k(k2−1)
12 z z

1−k
2

1
2k

k−1∑
p=1

(
k

p

)
p2(k − p)2Rp(z)Rk−p(z). (5.45)

This recursion provides the expressions in (5.15) to be plugged into (5.16) in order to
compute the scaling functions Wn(ξ). Just to give an example, using (5.45) one may easily
extend the last line in (5.15) and find〈

W9〉
c

〈W〉9
T �1= 136048896 ξ8 + 3073838592 ξ9 + 203451048576

5 ξ10 + 14167449806208
35 ξ11 (5.46)

+ 579258140455408
175 ξ12 + 26870941356966016

1155 ξ13 + 487595584858030932224
3378375 ξ14

+ 1672326501977995232
2079 ξ15 + 140563211710013333686888

34459425 ξ16 + 24326465124436842115824
1280125 ξ17

+ 13943786316178585925001407879336
170147718365625 ξ18 + 22599997060403576152832986605968

68656096884375 ξ19 + · · · .

This allows to compute the polynomials in (5.24) at higher order. For instance

P9 = 4199422654038881
723647925 −1832589301073441n

170270100 +3565245577877609n2

425675250 −372258099643n3

103950

+26122674017n4

28350 −828493349n5

5670 +3760909n6

270 −19652n7

27 +143n8

9 ,

P10 = −3360311016680854273
27498621150 +21169992523320924583n

86837751000 −118100410140883837n2

567567000

+85134261154188137n3

851350500 −27943401961331n4

935550 +81563996453n5

14175 −225150754n6

315

+4961927n7

90 −14341n8

6 +221n9

5 , (5.47)

and so on. Further expressions of Pk for k up to 20 are collected in appendix B.

Remark. Of course, one can also use (5.45) without expanding. This gives exact expres-
sions for Rk as iterated integrals. The first two cases are

R2(ξ) =

√
πξ

2 eξ/2 erf

√ξ

2

 ,
R3(ξ) = − 4π

3
√

3
ξ e2ξ

[
−1 + 12T

(√
3ξ, 1√

3

)]
, (5.48)
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where T is the Owen function, cf. (5.21). The expression for R4 may be obtained by
continuing the iteration but will involve integrals of the T function. A simple general
feature of the functions Rk is that they are all entire in ξ. Hence, the radius of convergence
of (5.19) is infinite for all n.

Remark. One has to keep in mind that Toda recursion methods are not suitable to treat
insertions of local chiral operators, see the discussion in appendix A. In this case, one has
to keep using topological recursion, as discussed in the next section.

6 Correlator of coincident Wilson loops and a chiral operator

In this section, we address the problem of computing the correlator between multiple
coincident Wilson loops Wn and a single trace chiral operator. In other words, we want to
generalize (1.7) and prove (1.11), (1.12). To properly define chiral primaries let us recall
that the 1

2 -BPS Wilson loop, associated with tr
(
e
√
λ

2 M

)
in the Gaussian matrix model,

cf. (1.1), stands for the operator

W = trP exp
{
gYM

∫
C
dσ [i Aµ(x) ẋµ(σ) + RΦ1(x)]

}
, (6.1)

where C is a circle of radius R (set to unity in the following), and Φ1 is one of the six
real scalars {ΦI}I=1,...,6 in N = 4 SYM. Single trace chiral operators take the general
form OJ = tr(uIΦI(x))J where uI is a complex null 6-vector obeying u2 = 0 [14]. The
dependence of the correlator 〈WOJ〉 on uI and the choice of coupling between the loop and
the scalars factorizes and will be absorbed in the operator normalization [38]. With the
same conventions as in [2], the matrix model representative for the chiral operator OJ is

OJ = N

2

(
π

2

)J/2−1
: trMJ : , (6.2)

where normal ordering subtracts self-contractions and is necessary to map matrix model
correlators to R4 quantum expectation values [39, 40].10 At leading order in large tension,
the correlator between a single Wilson loop and the chiral operator OJ obeys (1.7) in terms
of a scaling function that depends on the specific ratio g2

s /T
2 and has a non-trivial depen-

dence on J . The most natural scaling dependence is actually on g2
s /T as in (1.5). Several

cancellations occur and are responsible for the relevant variable being g2
s /T

2. We shall
show that this pattern changes in the case of the correlator between multiple coincident
Wilson loops and one chiral operator. The above mentioned cancellations do not occur any-
more and one has instead the structure (1.11). Besides, the function Hn can be computed
explicitly in terms of Wn, cf. (1.12). To derive such a result, we will conveniently use the
strong coupling version of topological recursion. As we remarked previously, Toda recur-
sion is rather cumbersome for these purposes, as illustrated in the example (n, J) = (1, 2)
in appendix A.

10The choice of normalization in (6.2), and in particular the overall power of N , is dictated by string
theory and makes direct contact with the associated natural vertex operators [1]. Another standard choice
is to require a fixed normalization of the chiral operators 2-point functions as in [14].
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6.1 Contribution from multi-trace operators in normal ordering

As a preliminary step we first address the issue of the effects of normal ordering in (6.2)
and the role of multi-trace operators. It is instructive to look at the first cases at low
J . A straightforward explicit calculation gives (we restrict to even J for the purpose of
illustration)

: trM2 : = trM2 − N

2 , : trM4 := trM4 − 2 trM2 − 1
N

(trM)2 + N

2 + 1
4N ,

: trM6 : = trM6 − 3 trM4 +
(15

4 + 15
4N2

)
trM2

+ 1
N

(
−3

2 (trM2)2 − 3 trM trM3 + 15
4 (trM)2

)
− 5N

8 −
5

4N , (6.3)

and so on. In general, terms involving products of k traces have a coefficient which is
∼ 1/Nk−1 at large N . Thus, we will write

: trMJ : =
∑
k≥0

1
Nk−1

[
: trMJ :

]
k
, (6.4)

where the operators in
[
: trMJ :

]
k
have coefficients O(1) at large N .11 Now, let us consider

the genus g contribution to the connected correlator
〈
WnO(k)

〉
c
where O(k) is any arbitrary

k-trace operator. We can write, cf. (2.5),〈
WnO(k)

〉
c

∣∣∣
genus g

(6.5)

= 1
N2g+k+n−2(2πi)k+n

∮
ωn,g (z1, . . . , zn+k)O(k)(x(z1), . . . , x(zk)) exp

(
λ

2

n∑
l=1

x (zk+l)
)
.

In the case of O(k) = [: trMJ :]k, taking into account the extra factor 1
Nk−1 in (6.4), we find

that
〈
Wn[: trM j :]k

〉
c |genus g scales as N−(2g+2k+n−3). Finally, let us pin the dependence

on λ � 1. Since the operator : trMJ : does not depend on λ explicitly, the strong
coupling limit of the expectation value of Wilson loop with chiral operators corresponds
to maximizing the order of poles of variables corresponding to Wilson loop or conversely
minimizing the order of the poles of the variables that correspond to the : trMJ : operator.
The total order of the poles of ωn,g is 6(g − 1) + 4n, as discussed in section 4. According
to the saddle point analysis this implies the final scaling behaviour〈

Wn[: trMJ :]k
〉
c

∣∣∣
genus g

∼ λ
1
4 (6g+3n+2k−6)

N2g+2k+n−3 . (6.6)

This gives the leading power at large λ for all genera. In particular, a term with an overall
1
NP factor will be accompanied by the following powers of λ

λ
3
4−k

(
λ

3
4

N

)P
, (6.7)

11The k-trace part may have an explicit N dependence as in
[
: trM6 :

]
1
which has a piece 15

4 (1 +
1/N2) trM2 whose N →∞ limit is finite.
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showing that multiple trace contributions are suppressed. Besides, since the saddle point
expansion has relative corrections in powers λ−1/2 ∼ 1/T , double trace corrections to
normal ordering cannot be seen even at first subleading order in large λ.

Let us see this explicitly in the simplest case of a single Wilson loop keeping only up to
double trace operators. At the planar level, as is well known, the double trace part doesn’t
contribute. At 1/N2 level there are two relevant cumulants corresponding to (k, g) = (1, 1)
and (2, 0). Their λ dependence can be obtained using the explicit strong coupling resolvents
given (4.2) as respectively,

1
N2

∮
z2

exp
(√

λ

2 x(z2)
)
ω̂2,1(z1, z2) ∼ λ

5
4

N2 ,
1
N2

∮
z3

exp
(√

λ

2 x(z3)
)
ω̂3,0(z1, z2, z3) ∼ λ

1
4

N2 .

(6.8)

The first contribution is dominant in the large tension limit and in fact we would have to
expand it to three orders in λ before the second one becomes effective. Since, the rate of
growth of the exponent of λ is 6 for g but only 2 for k, as g and k increase or as cumulants
are multiplied, the gap between the contributions of single and higher trace operators only
increases.12

6.2 〈WnOJ〉 at leading order

As a result of the above discussion, we can restrict ourselves to the single trace part of
normal ordering, i.e. the planar approximation. According to [41, 42], it may be written
in terms of Chebyshev polynomials and, in the z variable, it reads

: trMJ : → zJ + 1
zJ

+ 2δj,2 + . . . . (6.9)

The relevant connected correlators
〈
Wn : trMJ :

〉
c,g

are13

〈WnO〉c,g = 1
(2πi)n+1

∮
ωn,g(z1, . . . , zn+1) z−J1 exp

[√
λ

2 (x(z2) + · · ·+ x(zn+1))
]
. (6.10)

In the strong coupling limit we use the strong coupling resolvent ω̂n,g(z) and keep in
it only those terms that minimize the order of the poles of z1 at 1. This can be done
by going through one step of topological recursion. This corresponds to starting with
ωg,n−1(z1, . . . zn) and using:

n+1∏
i=2

1
(zi − 1)2ki

→
n∑
j=2

2kj + 1
4(z1 − 1)2(zj − 1)2

n+1∏
i=2

1
(zi − 1)2ki

+ · · · . (6.11)

12This is of course contingent on these first two contributions from single trace operators not vanishing
once we take residue integrals corresponding to the chiral operator. As we now show this is indeed the case.
This remark will be important later.

13We deform the z1 integration shrinking it around z1 = 0. This is possible because residues vanish at
zi = ±1 and, in particular, we can drop the parts that are not singular at z1 = 0.
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We can now integrate over z2, · · · , zn in the saddle point approximation. The above factor
of 2kj+1 ensures that the result has a very simple relation to 〈Wn〉c,g in the strong coupling
limit, i.e.14

〈
Wn : trMJ :

〉λ�1

c,g
= nλ

2 〈W
n〉λ�1
c,g Res

z1=0

dz1
(z1 − 1)2zJ1

+ · · · = J n
√
λ

2 〈Wn〉λ�1
c,g + · · · .

(6.12)

The same is true for the full correlator, after expanding into connected correlators, i.e.〈
Wn : trMJ :

〉
〈Wn〉

λ�1= J n
√
λ

2 + · · · . (6.13)

This is of course expected from the known results for n = 1 and n = 2, see [2].

6.3 Subleading corrections

To go beyond leading order we need to carry out topological recursion with poles of one
subleading order included. It is convenient to change variables from z to u, cf. (3.12), and
write

ωn,g(u1, . . . , un) = ω̂n,g + δωn,g + . . . . (6.14)

Where δωn,g includes the poles of total degree 6g + 4n− 8, see appendix C for full details
of the procedure. Using (6.14) we can compute the one-variable resolvents obtained after
integration of all but one variable,15

ω̄n,g(z) = 1
(2πi)n

∮
ωn+1,g(u(z), u1, . . . un) . (6.15)

Due to our previous discussion, cf. (6.6), the first two orders in the 1/
√
λ expansion at large

λ can be computed by ignoring mixing with multi-trace operators and using the simple
correspondence in (6.9). Thus, we simply obtain

〈
Wn : trMJ :

〉
c,g

= Res
z→0

ω̄n,g(z)
zJ

. (6.16)

This computes the connected part of the correlator but we can also define a function that
similarly computes the full correlator, i.e.

Ω̄n,g(z) =
n∑
k=1

g∑
h=0

(
n

k

)〈
Wn−k

〉
g−h

ω̄k,h(z) →
〈
Wn : trMJ :

〉
= Res

z→0

∞∑
g=0

1
N2g−1

Ω̄n,g(z)
zJ

.

(6.17)

14Let us remind that the presence of dz1 in the residue is formal at this level and could be omitted.
Nevertheless, it is convenient to keep it to emphasize transformation properties under change of variables.

15We change back to z-coordinates for the free variable because this is convenient to compute expectation
values with a chiral operator.
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To compute
〈
Wn : trMJ :

〉
/ 〈Wn〉 it is convenient to expand Ω̄n,g(z) as:

Ω̄n,g(z) = Un,0(z) 〈Wn〉c,g + Un,1(z) 〈Wn〉c,g−1 + · · ·+ Un,g(z) 〈Wn〉c,0 + . . . , (6.18)

where each Un,g(z) is determined recursively genus by genus and final dots stand for a
correction of order O((1/

√
λ)g+2) relative to the leading order. Then it can be seen that,〈

: trMJ : Wn
〉

〈Wn〉
= Res

z→0

∞∑
g=0

1
N2g−1

Un,g(z)
zJ

. (6.19)

The functions Un,g(z) depend also on λ. To the leading order in λ, Un,0(z) can be read
from (6.12). To get a non-vanishing result for all other Un,g we need to go beyond ω̂n,g and
include δωn,g. Restricting ourselves to two leading term in λ, the most general structure
possible for Un,g is:

Un,0(z) = dz

(
n
√
λ

2(z − 1)2 + fn,0(z)
(z − 1)4

)
+ . . . ,

Un,g(z) = dzfn,g(z)λ
3g
2

(z − 1)4 + . . . . (6.20)

Where fn,g(z) are polynomials of degree at most 3 and independent of λ. Two out of
the 4 free coefficients are determined by the requirement from topological recursion that
Un,g

(
1
z

)
= −Un,g(z). Another one can be fixed by requiring that 〈: trM : Wn〉c,g vanishes

for g > 0.16 Combining these two requirements we obtain

Un,g = dz
cn,gλ

3g
2 z

(z − 1)4 . (6.21)

Explicit results. After having clarified the general structure of topological recursion for
the quantities we need, let us present explicit results. For the ‘critical’ case n = 1 we find17

U1,0(z) = dz

( √
λ

2(z − 1)2 + 3z
2(z − 1)4

)
+ . . . ,

U1,1(z) = dz
λ3/2z

32(z − 1)4 + . . . , (6.22)

while the higher U1,g(z) vanish i.e. c1,g = 0 for g > 1. This can be seen as consistency
check and is a result of the cancellations required to reorganize the series for 〈W : OJ :〉 as
in (1.7). To calculate non-vanishing terms in U1,g(z) for g > 1 we will need to keep more
than 2 leading terms in ωn,g.

16This may be shown by explicit splitting of U(N) into U(1)× SU(N), see appendix D.
17Recall that we expect a major change of features when moving from n = 1 to n > 1.
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These peculiar cancellations do not occur for n > 1 and make the calculation of
subleading corrections possible with our level of accuracy. We find

∑
g

1
N2g−1U2,g(z) = 1

N

( √
λ

(z−1)2−
3z

(z−1)4 + z

(z−1)4

[
7λ3/2

16N2−
λ3

64N4 + 3λ9/2

2560N6 ,

− 37λ6

430080N8 + 13λ15/2

2064384N10−
299λ9

648806400N12

])
+. . .

∑
g

1
N2g−1U3,g(z) = 3

2N

( √
λ

(z−1)2−
3z

(z−1)4 + z

(z−1)4

[
13λ3/2

16N2 + λ3

32N4 ,

− 17λ9/2

1280N6 + 123λ6

71680N8−
λ15/2

516096N10

])
+. . . ,

∑
g

1
N2g−1U4,g(z) = 2

N

( √
λ

(z−1)2−
3z

(z−1)4 + z

(z−1)4

[
19λ3/2

16N2 + 9λ3

64N4−
21λ9/2

2560N6−
391λ6

28672N8

])
+. . . ,

∑
g

1
N2g−1U5,g(z) = 5

2N

( √
λ

(z−1)2−
3z

(z−1)4 + z

(z−1)4

[
25λ3/2

16N2 + 5λ3

16N4 +33λ9/2

640N6

])
+. . . . (6.23)

As a result of this, the dependence on J in 〈W
n:trMj :〉
〈Wn〉 is much simpler for n > 1 than in

the n = 1 case, cf. (1.7). Indeed, from the above, it has to be proportional to

Res
z=0

dz

(z − 1)4zJ−1 = 1
6J
(
J2 − 1

)
. (6.24)

This means in that the structure of large tension limit of 〈W
nOJ 〉
〈Wn〉 is given by (1.11). The

first few terms of Hn(x) can be calculated from (6.23) and read

H2(x) = 7x
24π −

x2

12π + x3

20π −
37x4

1260π + 13x5

756π −
299x6

29700π + . . . ,

H3(x) = 13x
24π + x2

6π −
17x3

30π + 41x4

70π −
x5

189π + . . . ,

H4(x) = 19x
24π + 3x2

4π −
7x3

20π −
391x4

84π + . . . ,

H5(x) = 25x
24π + 5x2

3π + 11x3

5π + . . . . (6.25)

6.4 Relating Hn to Wn

The discussion in previous section has led to the expansion (6.25) for the scaling functions
Hn. Most importantly, we could prove the general structure (1.11), with its peculiar de-
pendence on the J parameter. In this section we show how this can be exploited to express
Hn in terms of Wn. To this aim we take J = 2 in the topological recursion result (1.11)
and write

〈WnO2〉
〈Wn〉

T�1= π n (T + 3 Hn). (6.26)
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The l.h.s. may be traded for a logarithmic derivative of 〈Wn〉 due to the matrix model
identity

〈Wn O2〉 = λ
d

dλ
〈Wn〉 . (6.27)

Hence we have
λ
d

dλ
log 〈Wn〉 T�1= π n (T + 3 Hn), (6.28)

and a short calculation gives the relation

Hn(x) = x

2π

[ 1
12 + 1

n

d

dx
log Wn(x)

]
. (6.29)

Replacing Wn by its evaluation by means of (5.45) and using the series expansion (5.19),
we get

Hn(x) = −5 + 6n
24π x+ (−1 + n)(−5 + 2n)

12π x2 + (−1 + n)(133− 95n+ 15n2)
60π x3

+ (−1 + n)(−24159 + 23611n− 7035n2 + 630n3)
1260π x4 + · · · , (6.30)

in agreement with (6.25). Of course, the exact determination of Wn by Toda recursion
means that we can provide easily all order expansion of the Hn function by means of (6.29).

6.5 A few sample calculations

Let us give some examples of (1.12) by explicit computations. For n = 2 we need the
explicit exact expansion

1
N2

〈
W2
〉

=
[ 2√

λ
I1

]2
+
√
λ

2N2

[
I0 I1 + 1

6 I1 I2

]
+ 1
N4

[
37λ2

2304 I
2
0 −
√
λ(24 + 131λ)

2880 I0 I1

+192 + 332λ+ 185λ2

11520 I2
1

]
+ 1
N6

[
−λ

2(62 + 37λ)
23040 I2

0

+
√
λ(23040 + 56160λ+ 40920λ2 + 6209λ3)

5806080 I0 I1

−92160 + 111168λ+ 85440λ2 + 24857λ3

11612160 I2
1

]
+ O

( 1
N8

)
. (6.31)

Using (6.27) we work out the case (n, J) = (2, 2)〈
W2 O2

〉
〈W2〉

=
√
λ+· · ·+ 1

N2

[ 7
32λ

3/2+· · ·
]
+ 1
N4

[
− 1

128λ
3+· · ·

]
+ 1
N6

[ 3
5120λ

9/2+· · ·
]
+· · · .

(6.32)
Comparing with (1.11) gives the first terms

H2(x) = 1
6π

(7
4x−

1
2x

2 + 3
10x

3 + · · ·
)
, (6.33)
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in agreement with (6.30). In this case we can give the exact expression in a reasonable
compact form using the first equation in (5.21)

H2(x) = 3
2 + 2x− 3

2 + ex/2
√

2πx erf
(√

x
2

) . (6.34)

A similar calculation can be repeated for n = 3. In this case we have

1
N3

〈
W3
〉

=
[ 2√

λ
I1

]3
+ 1
N2

(13
4 I2

1 I0−
1

2
√
λ
I3

1

)

+ 1
N4

[
193
384λ

3/2I2
0I1−

6+79λ
240 I0I

2
1 +192+592λ+845λ2

3840
√
λ

I3
1

]

+ 1
N6

[
2557λ3

110592 I
3
0−

λ3/2(1776+7865λ)
92160 I2

0 I1+92160+474624λ+878688λ2+572537λ3

7741440 I0 I
2
1

−23040+46944λ+64396λ2+52073λ3

967680
√
λ

I3
1

]
+· · · . (6.35)

This gives〈
W3 O2

〉
〈W3〉

= 3
2
√
λ+· · ·+ 1

N2

[39
64λ

3/2+· · ·
]
+ 1
N4

[ 3
128λ

3+· · ·
]
+ 1
N6

[
− 51

5120λ
9/2+· · ·

]
+· · · .

(6.36)
Comparing with (1.11) we obtain

H3(x) = 1
9π

(39
8 x+ 3

2 x
2 − 51

10 x
3 + · · ·

)
, (6.37)

in agreement with (1.12). As in (6.34), one can give a closed formula for this function in
terms of the special error and Owen-T functions. As a final check, probing the peculiar
simple J dependence in (1.11), we consider the case (n, J) = (2, 3). To analyze this case by
expansion of exact expressions at finite λ we need the Bessel function expansion of

〈
W2O3

〉
where O3 = N

2

√
π
2 : trM3 : and : trM3 := trM3− 3 trM . By matching a large number of

weak coupling perturbative coefficients, we find

〈
W2 O3

〉
= N2

√
π

2

{
−24I0I1

λ
+6(8+λ)I2

1
λ3/2

+ 1
N2

[
−1

4
√
λI2

0 +1
8(8+7λ)I0I1−

I2
1√
λ

]

+ 1
N4

[√
λ(192+48λ+185λ2)I2

0
7680 +(−192−72λ+239λ2)I0I1

1920 +(768+384λ−240λ2+185λ3)I2
1

7680
√
λ

]

+ 1
N6

[√
λ(−5760−1440λ−528λ2+1939λ3)I2

0
483840 +(184320+69120λ+8544λ2−39902λ3+6209λ4)I0I1

3870720

+(−368640−184320λ−6144λ2+41128λ3+24815λ4)I2
1

7741440
√
λ

]
+· · ·

}
. (6.38)
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This gives〈
W2 O3

〉
〈W2〉

=
√
π

2

{3
2
√
λ+· · ·+ 1

N2

[7
8λ

3/2+· · ·
]
+ 1
N4

[
− 1

32λ
3+· · ·

]
+ 1
N6

[ 3
1280λ

9/2+· · ·
]
+· · ·

}
.

(6.39)
This expansion should be compared with the n = 2 J = 3 case of (1.12), i.e.

3
(
π

2

)3/2
2 (T + 8H2(x)) =

√
π

2

[3
2 × 2πT + 7x− 2x2 + 6

5 x
3 + · · ·

]
, (6.40)

and indeed we find that this is equivalent to the previous expansion (6.33).
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A Toda recursion for correlators with chiral primaries

The genus expansion of the ratio 〈WO2〉 / 〈W〉 may be computed by (6.27) in terms of 〈W〉.
Alternatively, it is equivalent to use the integral representation (1.10) derived in [17]. Here,
we want to show how such correlators may be treated by Toda recursion, as an illustration,
generalizing the treatment in appendix B.3 of [2]. From

eN (x, y) =
〈
tr ex

√
4N
λ
M tr ey

√
4N
λ
M
〉
−
〈
tr ex

√
4N
λ
M
〉〈

tr ey
√

4N
λ
M
〉
, (A.1)

we have
∂2
xeN

(
x,
√

λ
4N

)∣∣∣∣
x=0

eN

(√
λ

4N

) = 4N
λ

〈
W : trM2 :

〉
〈W〉

= 2
〈
W : tr a2 :

〉
〈W〉

, (A.2)

where

M =

√
λ

2N a

[
tr eMe−

2N
λ

trM2 = tr e
√

λ
2N a e− tr a2

]
, (A.3)

to make contact with the expressions in [2]. The relevant Toda equation is (5.28). Taking
two derivatives involves the auxiliary quantity

∂xeN

(
x,
√

λ
4N

)∣∣∣∣
x=0

eN

(√
λ

4N

) =

√
4N
λ

〈W trM〉
〈W〉

=
√

2 〈W tr a〉
〈W〉

. (A.4)

To continue, we need the correct Ansatz for the r.h.s. of (A.2) and (A.4) at large tension.
This is 〈

W : tr aJ :
〉

〈W〉
= N

J
2−1√λCJ (ζ) , ζ = g2

s
T 2 = λ

4N2 . (A.5)
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The Toda recursion takes the form

4
√
N(N−1)

√
ζ C2

(
N

N−1 ζ
)
eN−1(

√
Nζ)

eN (
√
Nζ)

+4
√
N(N+1)

√
ζ C2

(
N

N+1 ζ
)
eN+1(

√
Nζ)

eN (
√
Nζ)

−4N
√
ζ(2+ζ)C2(ζ)−8

√
2ζC1(ζ)+2ζ = 0 (A.6)

The expansion at large N with fixed ζ require to study the asymptotic behaviour of
eN (
√
Nµ) at fixed µ. Recall that

eN (x) = e
x2
2 L1

N−1(−x2), e′′N (x) + 3
x
e′N (x)− (4N + x2) eN (x) = 0. (A.7)

Setting x =
√
Nµ and expanding the differential equation gives

eN (
√
Nµ) = N−1/2 exp

[
N f0(µ) + f1(µ) + 1

N
f2(µ) + · · ·

]
, (A.8)

with

f0(µ) = µ

2

√
µ2 + 4 + 2arcsinhµ2 , f1(µ) = −3

2 logµ− 1
4 log(µ2 + 4). (A.9)

This is enough to derive the relevant terms in the expansion

eN±1(
√
Nζ)

eN (
√
Nζ)

= e±2arcsinh
√
ζ

2

[
1 + 1

N

±(2 + ζ)−
√
ζ
√

4 + ζ

2(4 + ζ) + O

( 1
N2

)
· · ·
]
. (A.10)

Using this in the expansion of (A.6) gives

C ′2(ζ)− 1
2ζ C2(ζ) + −1 + 4

√
2C1(ζ)

2ζ
√

4 + ζ
= 0. (A.11)

It is easy to check that C1(ζ) ≡ 1
2
√

2 , so that

C2(ζ) = 1
4
√

4 + ζ + k
√
ζ, (A.12)

where k is a constant that we set to zero by analyticity. The result agrees with [2], see
eqs. (2.34), (2.35), (2.40) there.

B The polynomial Pk for k = 11, . . . , 20

The polynomials Pk(n) have been defined in (5.23) and their expression for k up to 10 have
been given in (5.24) and (5.47). The expressions for k = 11, . . . , 20 are given below.

P11=4199n10

33 −87577n9

11 +21375883n8

99 −209156735279n7

62370 +5161998742529n6

155925

−101671734522896n5

467775 +77972872201319n4

81081 −120508596162974836n3

42567525

+2558119973701481627n2

482431950 −335724211283681053843n
58925616750 +156764630068025273339

58925616750 ,
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P12=2261n11

6 −965975n10

36 +10060585n9

12 −172514522407n8

11340 +30353622743141n7

170100

−483860927926589n6

340200 +40171770380189773093n5

5108103000 −51369864627494293667n4

1702701000

+102472685620882550488819n3

1302566265000 −574763444256918348659002n2

4331032831125

+393843049171726870141793n
3024848326500 −98527083191201048311039181

1753202090039400 ,

P13=14858n12

13 −3561572n11

39 +1890539597n10

585 −824252140702n9

12285 +11192496489158n8

12285

−942785947894636n7

110565 +14402080240084077257n6

255405150 −203271501770547142769n5

766215450

+9555769999611687383321n4

10854718875 −11588871456123457506361969n3

5774710441500

+2838595185137082339418889941n2

952827222847500 −51452536482602877650860472n
19922751023175

+3608383690059034257720530341
3652504354248750 ,

P14=74290n13

21 −2193609n12

7 +3898791707n11

315 −54577362356n10

189 +62912522293682n9

14175

−671658180402872n8

14175 +212496790875244595807n7

589396500 −30206956766158029102587n6

15324309000

+2004508256000686158596273n5

260513253000 −726580590679310973992290361n4

34648262649000

+2908859723836817593513494211n3

76226177827800 −46704914627229276739182458986n2

1095751306274625

+6980915896986492598862795960273n
284895339631402500 −745725550174967494764854054797

170937203778841500 ,

P15=22287n14

2 −97455637n13

90 +471242699n12

10 −7296074705n11

6 +1762900954888741n10

85050

−229802660901854531n9

935550 +29028607670070832589n8

14033250 −4742825903093184375173n7

383107725

+116822823990093464083591n6

2277213750 −17658116093652216575266660279n5

129930984933750

+3019686155476492526344171776962n4

17865510428390625 +59133660041425626175154220297689n3

328725391882387500

−40902420138582238361745904216740547n2

38460870850239337500 +5184745996967930004978479698356554n
3205072570853278125

−8779046910792332017382938446939173
9783905742604743750 ,

P16=570285n15

16 −361327963n14

96 +256924672387n13

1440 −151766993879233n12

30240 +938030587963673n11

10080

−5938730301115621841n10

4989600 +44402659987134144011n9

4191264 −776491656618909257262217n8

12259447200

+675670971369618816638500351n7

3126159036000 +65379058846039414975807037n6

24457597164000

−101233943008886150795055382519397n5

22867853348340000 +13481261415837935476957015174331149n4

525960627011820000
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−11425876041556661448955324338319179059n3

143587251174226860000 +24484874250586308873555049657424059483n2

165677597508723300000

−9643906311965688880889035950642704853709n
62460454260788684100000 +1802190759535306926724608738299225695879

25816987761125989428000 ,

P17=1964315n16

17 −39445288n15

3 +60467476843n14

90 −115225766352631n13

5670 +253254621872909n12

630

−5026692736385852671n11

935550 +13913460599257648861603n10

294698250 −122986340264675433569593n9

547296750

−2027150038463820624702058n8

6512831325 +1295892244324167362329025833687n7

86620656622500

−57860508893407313308984093326059n6

433103283112500 +1873177157824570617487083559682467n5

2629803135059100

−27442715333021284930815598305084080569n4

10769043838067014500 +1970688218629393121039936070672626597n3

318610764439852500

−452466495402865130794144735387180208039n2

46198560843778612500 +883182453823558336713057441231757494529669n
96813704104222460355000

−4841495934337212459267479837954600070947
1280604551643154237500 ,

P18=1137235n17

3 −2490913949n16

54 +679389195281n15

270 −228968967202858n14

2835

+2027925651493864n13

1215 −33176267023544737n12

1485 +18475026421421474122847n11

109459350

+32427853962749456647193n10

1532430900 −141562392656331388912303109n9

7662154500

+4407051037515992567242285006784n8

16705412348625 −12998232848938898943788373084481291n7

5846894322018750

+1920684931913550119678771491316267836n6

147926426347074375 −5256663538285399899069978418495823491471n5

96152177125598343750

+16669479504189008529752425764572885471n4

100332706565841750

−16671094370233566929477876372974768312804309n3

46845340695591513075000

+100433411639637043975757841635773385645900627n2

197213100953045752575000

−43847679911162088556712200641949149804409228141n
100578681486053333813250000

+1986475693390240135403726810007174861110233163
11807062609232347882425000 ,

P19=23881935n18

19 −9257432861n17

57 +8012771594381n16

855 −754041922791055n15

2394

+595825494782601934n14

89775 −35206774729032743512n13

423225 +188028571662687223154182n12

577702125

+356196397870788389963150374n11

36395233875 −26744467018972588685277494738n10

109185701625

+123556902465696451688500797402787n9

38979295480125 −164109225413861098250930345185156307n8

5846894322018750

+76973564904301165571543256581512685027n7

422646932420212500
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−1190462126419784655208489507867266436505147n6

1346130479758376812500

+4326837524673482906294836489485405025912703n5

1346130479758376812500

−31045843858795962745573700604629252477544851n4

3603487745814731775000

+175717184221761997495399027443863716431266200813n3

10649507451464470639050000

−11573462752723826199667926549477988549478191522987n2

543124880024688002591550000

+2046376907527838309214791130013642260390433408739n
123437472732883636952625000

−77748831089365050929680848793957593192606798599
13290754339228476253893750 ,

P20=8415539n19

2 −34412953709n18

60 +6246399383567n17

180 −13656186763905823n16

11340

+1422187058979010861n15

56700 −45793882693341165107n14

178200 −1234280007795319427540237n13

729729000

+357438485323679466115258847n12

3064861800 −545681680470218713526170387867n11

229864635000

+138672908598687244744136052146053n10

4476091347000 −376350262572215475642638310861327499277n9

1286316750844125000

+120017260584537152890452186439443309163n8

57671121382875000

−77980193487962152970270963662541582475107n7

6903233229530137500

+9322371447260705245309378650978156112491889n6

199426737741981750000

−22752890372440420457183359365326085913312317041n5

156151135651971710250000

+5928819160164250201043568590148571162631031954661n4

17749179085774117731750000

−10281819624013490020658374119628597074265484293037677n3

19009370800864080090704250000

+10982787902444574382251854966765664605681046163557857n2

19009370800864080090704250000

−1795787195145485845354622910580596712088982772028004517n
5011345377377793113911907906250

+9747831016605627462652486155608940497922541559209369
102796828253903448490500675000 (B.1)

C Some details about topological recursion at large tension

Here we summarize some details about topological recursion that are relevant to the strong
coupling limit of correlation functions studied in the main text. Our presentation will
be for the Gaussian matrix model although most of the statements have straightforward
generalizations to a general genus 0 spectral curve. See [25, 34] for pedagogical details and
general treatment.
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B

A

x-plane (two sheets)

B

A

z-plane

Figure 1. Illustration of the spectral curve. Left: the two x-sheets connected by the red cut. The
points A and B are in different sheets. Right: in the z-plane the circle is formed from two copies
of the cut and separates the two sheets whose images are the outer/inner parts. In particular, the
(image of the) point A is inside the circle.

C.1 Spectral curve, resolvents, and residues

For the Gaussian matrix model the spectral curve is a two-sheeted cover of the complex
plane.18 The two sheets are glued along the cut on which the eigenvalues condense in the
large N limit. The coordinate z defined in (2.3) maps these two sheets to the Riemann
sphere as shown in figure 1. A generic value of x has two preimages since x(z) = x

(
1
z

)
, if

|z| 6= 1 then for one of these preimages |z| > 1 and for other |z| < 1. These are the two
sheets which have been mapped to the exterior and interior respectively of unit circle on
the z-plane. Let’s now focus on the unit circle itself on which we write z = exp(it). Then
x(z(t)) = 2 cos t. So as z goes from 0 to π, x(z(t)) goes from 2 to −2. This is one copy of
the cut while the other copy is corresponds to t going from π → 2π ∼ 0. The two copies
of the cut are joined at z = 1 and z = −1 which correspond to x = 2 and x = −2 i.e. the
end points of the cut. These are the only two values of x which have a single preimage.
These are the zeroes of the differential dx. Lastly, notice that although y is not a single
valued function of x, it is a single valued function of z. Note that the unit circle is also the
contour for the saddle point approximation, the saddle point integral is actually done over
a double copy of the cut.

The resolvents ωn,g(z1, . . . , zn) are all meromorphic multi-differentials on the z-plane
which poles only at the branch point z = ±1. One of results of the topological recursion is
the antisymmetry property:

ωn,g

( 1
z1
, z2, . . . , zn

)
= −ωn,g(z1, . . . , zn) . (C.1)

As a consequence, correlation functions of the polynomials formed from the trace of the
matrixM don’t receive any contribution from the poles of the resolvents. This follows from
the fact that these matrix observables map to polynomials f(x(z1), . . . , x(zn)). And since
x(z) = x

(
1
z

)
, the same is true of f too. Since z → 1

z leaves ±1 fixed, changing variables

18This holds more generally in 1-cut cases, not necessarily Gaussian. The spectral curve has genus s
when the large N limit is associated with s+ 1 disconnected cuts.
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z-plane

Figure 2. The contour integral for computing the matrix correlator f(x) in z-plane (the big circle)
gets contribution only from the pole of f(x(z)) at z = 0. The residue at poles of resolvent (dashed
circles) vanish.

to 1
z , we obtain

Res
z1=±1

ωn,g(z1, . . . , zn)f(x(z1), . . . , x(zn)) = Res
z1=±1

ωn,g

( 1
z1
, z2, . . . , zn

)
f

(
x

( 1
z1

)
, . . . , x(zn)

)
= − Res

z1=±1
ωn,g(z1, . . . , zn)f(x(z1), . . . , x(zn)) = 0 .

(C.2)

As a result the sole contribution to the correlation function of f comes from its own poles,
which for a polynomial of xi are at z(xi) = 0 (inside the contour) and z(xi)→∞ (outside
the contour). These correspond to x→∞ in the two sheets. Hence, we can write∮

zi

ωn,g(z1, . . . , zn)f(x(z1), . . . , x(zn)) = Res
zi=0

ωn,g(z1, . . . , zn)f(x(z1), . . . , x(zn)). (C.3)

The same logic works for any holomorphic function of x among them the Wilson loop. As
we have seen in practice, the contour integral is more convenient for the strong coupling
expansion of Wilson loops while the residue at 0 is simpler for chiral operators. Never-
theless this vanishing of residues at ±1 ensures that there is no ambiguity in the saddle
point prescription, since we can smoothly deform the contour past the branch points, as
illustrated in figure 2.

C.2 Topological recursion at subleading order

The coordinate u defined in (3.13) which is convenient for extending the saddle point
approximation to subleading orders can be seen as a reparameterization of spectral curve as

z(u) = exp
(

2i arcsin
(
u

2

))
. (C.4)

This change of variables maps the z-plane to a cylinder u = φ+ ir where φ parameterizes
a circle of radius 4 extending from −2 to 2 while r a real line. In this manner u is the local
complex coordinate on an infinite cylinder. This cylinder is compactified to a sphere by
identifying the circle at u = i∞ with one point and the circle at u = −i∞ with another
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point. In the u-coordinate the branch point are mapped to 0 and −2 ∼ 2. In the strong
coupling limit the dominant contribution to the expectation value of Wilson loops comes
from u = 0 while the contour for saddle point integral is the circle r = 0.

These coordinates also turns out to be somewhat simpler for carrying out topological
recursion. Changing variables, the topological recursion formula (2.8) becomes

ωn,g(u1,u) = Res
v→0,±2

K(u1, v)

ωg−1,n+1 (v,−v,u)+
∑
h≤g

∑
r⊂u

ωh,|r| (v, r)ωg−h,n−|r| (−v,u/r)

 .
(C.5)

In terms of these variables the recursion Kernel K is

K(u, v) = − i du

2v
√

4− u2 (u2 − v2) dv
. (C.6)

Apart from the factor
√
u2 − 4 which is independent of v and as a result gives an overall

multiplicative factor, the kernel is homogeneous in these coordinates if we only keep the
residue at u = 0. This makes it easier to separate out the contribution of different orders.
Indeed defining K̂(u, v) = −i

√
4− u2K(u, v), we see that

Res
v→0

K̂(u, v) du
v2k = − du

2u2k+2 ,

Res
v→0

K̂(u, v) dv

(v − w)2v2k = −du2

k∑
i=0

2i+ 1
w2i+2u2k−2i+2 . (C.7)

So K̂(u, v) uniformly increases the degree of the poles of differential it acts on by 2. This
simplification in the recursion kernel is a trade off due to the fact that the starting point
of the recursion ω2,0(u, v) is now more complicated being given by

w2,0(u, v) = 8du dv
√

4− u2
√

4− v2
(
2u2 + 2v2 − u2v2 − uv

√
4− u2

√
4− v2

) , (C.8)

and, for the purposes of carrying out topological recursion, it will be expanded into a double
power series easily. Another simplification is that in these coordinates the antisymmetry
property (C.1) reads

ωn,g(−u1, . . . , un) = ωn,g(u1, . . . , un) . (C.9)

This means in particular that

ωn,g(u1, . . . , un) = in du1 . . . dun fn,g

( 1
u2

1
, . . . ,

1
u2
n

)
, (C.10)

for some symmetric polynomials fn,g. As a result the poles encountered in the saddle point
integrals are always of even order. Finally, we observe that all ωg,n computed through the
topological recursion have poles of order at least 4 at u = 0 and as a result for the first two
orders of poles that we need we can ignore the residues at ±2 in (C.5).
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C.3 Expressions for resolvents at leading and first subleading order of poles

Now we present some of the resolvents needed to compute various explicit expansions
presented in the main text (5.15), (6.22), (6.23). We do this by presenting fn,g

(
1
u2

1
, . . . , 1

u2
n

)
as defined above in (C.10). These are symmetric polynomials of their arguments 1

u2
i
and to

keep the expression relatively compact we present them in terms of elementary symmetric
polynomials, cf. (4.3). Similarly to our decomposition of ωn,g = ω̂n,g + δωn,g we divide fn,g
into leading f̂n,g and subleading δfn,g pieces.

Leading order ω̂g,n:

n = 1:

f̂1,1 = e2
1

16 ,

f̂1,2 = −105e5
1

1024 ,

f̂1,3 = 25025e8
1

32768 ,

f̂1,4 = −56581525e11
1

4194304 ,

f̂1,5 = 58561878375e14
1

134217728 ,

f̂1,6 = −193039471750125e17
1

8589934592 ,

f̂1,7 = 464259929559050625e20
1

274877906944 ,

f̂1,8 = −12277353837189093778125e23
1

70368744177664 . (C.11)

n = 2:

f̂1,1= 5
32e

2
1e2−

7e2
2

32 ,

f̂2,2=−1155e2e
5
1

2048 +2415e2
2e

3
1

1024 −3955e3
2e1

2048 ,

f̂2,3=425425e2e
8
1

65536 −3028025e2
2e

6
1

65536 +6641635e3
2e

4
1

65536 −4582655e4
2e

2
1

65536 +119665e5
2

16384 ,

f̂2,4=−1301375075e2e
11
1

8388608 +1640864225e2
2e

9
1

1048576 −23885486625e3
2e

7
1

4194304 +18836542725e4
2e

5
1

2097152

−47950777875e5
2e

3
1

8388608 +2103075975e6
2e1

2097152 ,

f̂2,5=1698294472875e2e
14
1

268435456 −22194951904125e2
2e

12
1

268435456 +56694405142375e3
2e

10
1

134217728 −142801188354825e4
2e

8
1

134217728

+366814122449775e5
2e

6
1

268435456 −222563485169025e6
2e

4
1

268435456 +6268140053175e7
2e

2
1

33554432 −113818730025e8
2

16777216 ,
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f̂2,6=−6756381511254375e2e
17
1

17179869184 +54244091561785125e2
2e

15
1

8589934592 −714860261976485625e3
2e

13
1

17179869184

+622461720688933125e4
2e

11
1

4294967296 −4917560490983765625e5
2e

9
1

17179869184 +2741103726364128125e6
2e

7
1

8589934592

−3222371840821508375e7
2e

5
1

17179869184 +105576169391317625e8
2e

3
1

2147483648 −4002195436113875e9
2e1

1073741824 ,

f̂2,7=19034657111921075625e2e
20
1

549755813888 −362587004985618538125e2
2e

18
1

549755813888 +2928158800333479838125e3
2e

16
1

549755813888

−13056036458334748003125e4
2e

14
1

549755813888 +35071726847099021454375e5
2e

12
1

549755813888

−58109227982455794519375e6
2e

10
1

549755813888 +58386905310562738284375e7
2e

8
1

549755813888

−33548300609678088609375e8
2e

6
1

549755813888 +2434905970723398046875e9
2e

4
1

137438953472

−68144533015364430625e10
2 e

2
1

34359738368 +312467552127355625e11
2

8589934592 . (C.12)

n = 3:

f̂3,0 = −e3

2 ,

f̂3,1 = 35
64e3e

3
1−

75
64e2e3e1+33e2

3
64 ,

f̂3,2 = −15015e3e
6
1

4096 +38115e2e3e
4
1

2048 −29925e2
3e

3
1

2048 −93555e2
2e3e

2
1

4096 +46095e2e
2
3e1

2048 +3955e3
2e3

1024 −14595e3
3

4096 ,

f̂3,3 = 8083075e3e
9
1

131072 −65090025e2e3e
7
1

131072 +56531475e2
3e

6
1

131072 +172297125e2
2e3e

5
1

131072 −122207085e2e
2
3e

4
1

65536

+80627085e3
3e

3
1

131072 −165840675e3
2e3e

3
1

131072 +247328235e2
2e

2
3e

2
1

131072 +10481625e4
2e3e1

32768

−97970985e2e
3
3e1

131072 +7978285e4
3

131072 −8327655e3
2e

2
3

32768 ,

f̂3,4 = −32534376875e3e
12
1

16777216 +89794880175e2e3e
10
1

4194304 −81307651425e2
3e

9
1

4194304 −737879667525e2
2e3e

8
1

8388608

+588019457025e2e
2
3e

7
1

4194304 +692291124525e3
2e3e

6
1

4194304 −455097968325e3
3e

6
1

8388608 −1379583079875e2
2e

2
3e

5
1

4194304

+858144412125e2e
3
3e

4
1

4194304 −2322086641875e4
2e3e

4
1

16777216 +1157389608375e3
2e

2
3e

3
1

4194304 −162384146925e4
3e

3
1

4194304

+87699236625e5
2e3e

2
1

2097152 −1481627572425e2
2e

3
3e

2
1

8388608 +163545349275e2e
4
3e1

4194304 −62462324925e4
2e

2
3e1

1048576

+41443427025e3
2e

3
3

2097152 −2103075975e6
2e3

1048576 −32314471875e5
3

16777216 ,

f̂3,5 = 52647128659125e3e
15
1

536870912 −738758095700625e2e3e
13
1

536870912 +684295548811875e2
3e

12
1

536870912

−1741727866003125e2e
2
3e

10
1

134217728 +1447231892030925e3
3e

9
1

268435456 −5837805914565625e3
2e3e

9
1

268435456

+13104215838338625e2
2e

2
3e

8
1

268435456 +17576000871053625e4
2e3e

7
1

536870912 −9503237789320275e2e
3
3e

7
1

268435456
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+2209625052609975e4
3e

6
1

268435456 −11160180446790375e3
2e

2
3e

6
1

134217728 +20033877534345675e2
2e

3
3e

5
1

268435456

−13477372127344125e5
2e3e

5
1

536870912 +33627317776927875e4
2e

2
3e

4
1

536870912 −3697210384993125e2e
4
3e

4
1

134217728

+1840228057292625e5
3e

3
1

536870912 +564221631348375e6
2e3e

3
1

67108864 −14908243313588625e3
2e

3
3e

3
1

268435456

+5572189269021375e2
2e

4
3e

2
1

268435456 −1126515991726125e5
2e

2
3e

2
1

67108864 +702424017169875e4
2e

3
3e1

67108864

−27007478623125e7
2e3e1

33554432 −1584673523658225e2e
5
3e1

536870912 +23592916722375e6
2e

2
3

33554432

+2063427784543125e2
2e3e

11
1

268435456 +52435195988175e6
3

536870912 −133329976054275e3
2e

4
3

67108864 . (C.13)

n = 4:

f̂4,0 = −3
4e1e4 ,

f̂4,1 = 315
128e4e

4
1−

945
128e2e4e

2
1+615

128e3e4e1+75
32e

2
2e4−

159e2
4

64 ,

f̂4,2 = −225225e4e
7
1

8192 +675675e2e4e
5
1

4096 −557865e3e4e
4
1

4096 +111825e2
4e

3
1

1024 −2248785e2
2e4e

3
1

8192 +1335285e2e3e4e
2
1

4096

−41895
256 e2e

2
4e1+222705e3

2e4e1

2048 −655305e2
3e4e1

8192 +109095e3e
2
4

2048 −40845
512 e2

2e3e4 ,

f̂4,3 = 169744575e4e
10
1

262144 −1527701175e2e4e
8
1

262144 +1351575225e3e4e
7
1

262144 +4751571825e2
2e4e

6
1

262144

−3545266725e2e3e4e
5
1

131072 +1267160895e2e
2
4e

4
1

65536 +2514637125e2
3e4e

4
1

262144 −5933552625e3
2e4e

4
1

262144

+10111025925e2
2e3e4e

3
1

262144 −104757345e3e
2
4e

3
1

8192 +125697285e3
4e

2
1

32768 +316891575e4
2e4e

2
1

32768

−5013144675e2e
2
3e4e

2
1

262144 +250441065e2e3e
2
4e1

16384 +659630475e3
3e4e1

262144 −837819675e3
2e3e4e1

65536

+247868775e2
2e

2
3e4

65536 −10481625e5
2e4

16384 −62462295e2e
3
4

32768 −246043245e2
3e

2
4

131072

−591666075e2
4e

6
1

131072 −2529529695e2
2e

2
4e

2
1

131072 +83600685e3
2e

2
4

32768 . (C.14)

n = 5, 6, 7, 8, 9:

f̂5,0 = 3e2e5

2 −15
8 e

2
1e5 ,

f̂5,1 = 3465
256 e5e

5
1−

13545
256 e2e5e

3
1+9975

256 e3e5e
2
1+2415

64 e2
2e5e1−

3255
128 e4e5e1+1347e2

5
128 −1515

64 e2e3e5 ,

f̂6,0 = −105
16 e6e

3
1+45

4 e2e6e1−
9e3e6

2 ,

f̂6,1 = 45045
512 e6e

6
1−

218295
512 e2e6e

4
1+171045

512 e3e6e
3
1+31185

64 e2
2e6e

2
1−

62685
256 e4e6e

2
1−

59535
128 e2e3e6e1

+39285
256 e5e6e1−

2415
32 e3

2e6+4545
64 e2

3e6+9315
64 e2e4e6−

2385e2
6

32 ,

f̂7,0 = −945
32 e7e

4
1+315

4 e2e7e
2
1−45e3e7e1−

45
2 e

2
2e7+18e4e7
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f̂7,1 = 675675e7e
7
1

1024 −3918915e2e7e
5
1

1024 +3191265e3e7e
4
1

1024 +779625
128 e2

2e7e
3
1−

1248345
512 e4e7e

3
1−

898695
128 e2e3e7e

2
1

+901845
512 e5e7e

2
1−

146475
64 e3

2e7e1+52605
32 e2

3e7e1+428715
128 e2e4e7e1−

141705
128 e6e7e1

+55845e2
7

128 +103005
64 e2

2e3e7−
64305

64 e3e4e7−
132435

128 e2e5e7 ,

f̂8,0 = −10395
64 e8e

5
1+4725

8 e2e8e
3
1−

1575
4 e3e8e

2
1−

1575
4 e2

2e8e1+225e4e8e1+225e2e3e8−90e5e8 ,

f̂8,1 = 11486475e8e
8
1

2048 −77702625e2e8e
6
1

2048 +64999935e3e8e
5
1

2048 +39864825
512 e2

2e8e
4
1−

26496855e4e8e
4
1

1024

−25623675
256 e2e3e8e

3
1+20600055e5e8e

3
1

1024 −6288975
128 e3

2e8e
2
1+3642975

128 e2
3e8e

2
1+7396515

128 e2e4e8e
2
1

−1848735
128 e6e8e

2
1+7158375

128 e2
2e3e8e1−

427455
16 e3e4e8e1−

7017885
256 e2e5e8e1+2263095

256 e7e8e1

+146475
32 e4

2e8−
414225

32 e2e
2
3e8+64305

16 e2
4e8−

840735
64 e2

2e4e8+1040355
128 e3e5e8

+269505
32 e2e6e8−

545175e2
8

128 ,

f̂9,0 = −135135
128 e9e

6
1+155925

32 e2e9e
4
1−

14175
4 e3e9e

3
1−

42525
8 e2

2e9e
2
1+4725

2 e4e9e
2
1

+4725e2e3e9e1−1350e5e9e1+1575
2 e3

2e9−675e2
3e9−1350e2e4e9+540e6e9 . (C.15)

First subleading order δωn,g:

n = 1:

δf1,1 = 5e1
128 ,

δf1,2 = −483e4
1

8192 ,

δf1,3 = 137137e7
1

262144 ,

δf1,4 = −370204835e10
1

33554432 ,

δf1,5 = 448974400875e13
1

1073741824 . (C.16)

n = 2:

δf2,1 = 5e3
1

256 + 3e2e1
256 ,

δf2,2 = −1155e6
1

16384 + 819e2e
4
1

8192 + 5817e2
2e

2
1

16384 − 833e3
2

4096 ,

δf2,3 = 425425e9
1

524288 −
1396395e2e

7
1

524288 − 3252249e2
2e

5
1

524288 + 12156375e3
2e

3
1

524288 − 1591065e4
2e1

131072 ,

δf2,4 = −1301375075e12
1

67108864 + 1663496835e2e
10
1

16777216 + 5426976555e2
2e

8
1

33554432 − 27126714615e3
2e

6
1

16777216

+ 184265806725e4
2e

4
1

67108864 − 11560844295e5
2e

2
1

8388608 + 427732305e6
2

4194304 . (C.17)
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n = 3:

δf3,0 = − e2

16 ,

δf3,1 = 35
512e2e

3
1+ 15

256e3e
2
1−

75
512e

2
2e1+21e2e3

512 ,

δf3,2 = −15015e2e
6
1

32768 −7623e3e
5
1

8192 +38115e2
2e

4
1

16384 +29925e2e3e
3
1

16384 −21945e2
3e

2
1

8192 −93555e3
2e

2
1

32768

+3255e2
2e3e1

16384 +3955e4
2

8192 +37485e2e
2
3

32768 ,

δf3,3 = 8083075e2e
9
1

1048576 +13018005e3e
8
1

524288 −65090025e2
2e

7
1

1048576 −125450325e2e3e
6
1

1048576 +172297125e3
2e

5
1

1048576

+38657619e2
3e

5
1

262144 +18063045e2
2e3e

4
1

131072 −165840675e4
2e

3
1

1048576 −432151335e2e
2
3e

3
1

1048576 +75661425e3
3e

2
1

524288

−10481625e3
2e3e

2
1

1048576 +10481625e5
2e1

262144 +205872975e2
2e

2
3e1

1048576 −1963395e4
2e3

262144 −65346575e2e
3
3

1048576 .

(C.18)

n = 4, 5:

δf4,0 = 3e4

16 −
3e1e3

32 ,

δf4,1 = 315e3e
4
1

1024 −
945e2e3e

2
1

1024 +615e2
3e1

1024 + 75
512e2e4e1+ 75

256e
2
2e3−

111e3e4

256 ,

δf4,2 = −225225e3e
7
1

65536 −153153e4e
6
1

32768 +675675e2e3e
5
1

32768 +183645e2e4e
4
1

8192 −557865e2
3e

4
1

32768 −31815e3e4e
3
1

8192 ,

−2248785e2
2e3e

3
1

65536 +1335285e2e
2
3e

2
1

32768 +106785e2
4e

2
1

8192 −823095e2
2e4e

2
1

32768 +222705e3
2e3e1

16384 ,

+50295e2e3e4e1

16384 −655305e3
3e1

65536 +30975e3
2e4

8192 +105735e2
3e4

32768 −40845e2
2e

2
3

4096 −61635e2e
2
4

8192 ,

δf5,0 = −15
64e4e

2
1+21e5e1

32 +3e2e4

16 ,

δf5,1 = 3465e4e
5
1

2048 −315
256e5e

4
1−

13545e2e4e
3
1

2048 +9975e3e4e
2
1

2048 +4305e2e5e
2
1

1024 +2415
512 e

2
2e4e1

−3255e2
4e1

1024 −3225e3e5e1

1024 −1515
512 e2e3e4−

375
256e

2
2e5+3123e4e5

1024 . (C.19)

D The correlation function 〈: trM : Wn〉

In the main text, to prove (6.21), we exploited the fact that 〈: trM : Wn〉 has no higher
genus corrections beyond the leading order. This can be easily proved by starting from the
following splitting of M in the U(N) theory

M = M̃ + m

N
, M̃ = M − 1

N
trM , m = trM , (D.1)

where M̃ is the traceless part. The matrix model partition function becomes

Z =
∫ ∞
−∞

dm

∫
dM̃ δ(tr M̃) exp

(
−N2 tr M̃2 − m2

2

)
. (D.2)
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For the Wilson loop operator, the splitting (D.1) implies

tr exp
(√

λ

2 M

)
= exp

(√
λ

2Nm

)
tr exp

(√
λ

2 M̃

)
. (D.3)

As a result the expectation value of n coincident Wilson loops takes the form

〈Wn〉 = 〈Wn〉traceless

∫ ∞
−∞

dm exp
(
−m

2

2 + nλ

2Nm

)
,

〈Wn〉traceless =
∫
dM̃ δ(tr M̃)

[
tr exp

(
λ

2 M̃
)]n

exp
(
−N2 tr M̃2

)
. (D.4)

In the case of 〈mWn〉, we obtain the same integral for M̃ with an extra insertion of m in
the m-integral. As a result, the “traceless” part 〈Wn〉traceless cancels and we obtain

〈mWn〉
〈Wn〉

=
∫∞
−∞ dmm exp

(
−m2

2 + n
√
λ

2N m
)

∫∞
−∞ dm exp

(
−m2

2 + n
√
λ

2N m
) = n

√
λ

2N . (D.5)

This is just the leading order result obtained in (6.13) and specialized to J = 1. The above
discussion shows that it is in fact exact.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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