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1 Introduction

The idea that in quantum gravity there should be no global symmetry has a long history [1–
7]. The most naive argument for this is simply that global charge can be thrown into a
black hole, after which there is no record of it outside. This argument however neglects
the possibility that the charge is stored in the black hole, eventually coming out either
in the radiation or being left in some evaporation remnant. In the case of a continuous
global symmetry this loophole can be removed provided we assume the validity of the
Bekenstein-Hawking formula

SBH = Area
4G (1.1)

for the coarse-grained entropy of a black hole (or more generally the Wald formula [8]),
since a black hole with finite number of microstates cannot store an arbitrarily large amount
of information about its initial global charge [5]. This argument also applies to infinite
discrete groups such as SL(2,Z), but it does not apply to finite groups such as Z2 because
for such groups the number of irreducible representations is finite. More recently, in [6, 7]
an argument against all global symmetries, both discrete and continuous, was given, but
only within the context of the AdS/CFT correspondence.

The general trend of these arguments is that the conclusions have been getting stronger,
but so have the assumptions. Since we do not live in a universe with negative cosmological
constant, we would like to replace the assumption of AdS/CFT with something weaker.
Whatever assumption we adopt must be nontrivial: for a sufficiently permissive definition of
“quantum gravity”, there are quantum gravity theories which do have global symmetries!
So far all known examples live in fewer than 3 + 1 spacetime dimensions, and there is
currently no reason to expect any 3+1 (or higher) dimensional examples with a propagating
graviton to exist, but nonetheless we clearly need to impose some kind of requirement to
exclude these theories from any argument against global symmetry.

The proposal of this paper is that the key property a theory of quantum gravity must
have to forbid the existence of global symmetries is unitary black hole evaporation which
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is consistent with the Bekenstein-Hawking entropy formula (1.1). We will not rigorously
establish this statement, but we will provide evidence for it from a variety of directions.
To begin with, the validity of (1.1) is already sufficient to exclude continuous global sym-
metries by the argument of [5].1 Moreover black hole evaporation is unitary and consistent
with (1.1) in the AdS/CFT correspondence [9–11], so our proposal is consistent with the
arguments of [6, 7]. Finally the low-dimensional theories of quantum gravity with global
symmetries that we present below do not have black holes obeying (1.1), which is again
consistent with our proposal. We expect that (1.1) and unitarity do hold in any sufficiently
semiclassical compactification of string theory, so our proposal is also consistent with the
fact that no string vacuum with a global symmetry has ever been discovered (continuous
global symmetries are not possible in perturbative string theory [1], but in the discrete
case this is more of an “empirical” observation).

In addition to the circumstantial evidence described in the previous paragraph, we
can also give a direct argument that, under a set of assumptions we state below, unitary
black hole evaporation consistent with the Bekenstein-Hawking formula implies the non-
existence of global symmetries. Our argument makes use of the recent discovery that the
“quantum extremal surface” (QES) formula of [12] is powerful enough to compute a unitary
Page curve for an evaporating black hole in a wide variety of circumstances [13–31]. In
this paper we will assume that the basic logic of these calculations applies in any situation
where a black hole which is formed quickly evaporates in a unitary manner. We will argue
that in any theory where this happens, no global symmetries are possible. Our argument
is essentially a recasting of the argument in [6, 7], replacing pieces of the boundary CFT
with pieces of the Hawking radiation (this replacement can be thought of as running the
analogy between these pieces advocated in [32] in reverse).

Currently the strongest arguments for the validity of the QES formula in these Page
curve calculations are based on the Euclidean gravity path integral [33, 34], building on [35–
38]. This is also the most general method for justifying the Bekenstein-Hawking for-
mula (1.1) [39], and our expectation is that these results go hand-in-hand. We will see
a close relationship between Euclidean quantum gravity and the information problem at
several points in this note, and in our final discussion we will interpret this in terms of a
conjectured equivalence between holography and Euclidean quantum gravity.

The structure of this paper is as follows. In section 2 we review a few low-dimensional
examples of quantum gravity theories with global symmetries, emphasizing that in each case
the Bekenstein-Hawking formula does not hold. In section 3 we review the QES formula
and its use to compute a unitary Page curve in [13, 14]. In section 4 we show how a unitary
Page curve calculation of this type forbids global symmetries, and we also comment on the
extension of our argument to higher-form global symmetries and the related conjectures of
the completeness of gauge representations and the compactness of internal gauge groups.
Finally in section 5 we discuss the general relationship of Euclidean quantum gravity to
holography.

1See the introduction of [7] for a more detailed review of that argument. The key point in making sure
that a black hole of finite mass can be prepared with arbitrarily large charge is that the Hawking process
produces no net flux of global charge away from an evaporating black hole, and even in a theory where
the evaporation is unitary we expect that Hawking’s framework correctly computes low-point correlation
functions such as the flux of global charge.
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2 Low-dimensional examples of global symmetry in gravity

We begin by reviewing low-dimensional examples of quantum gravity theories which have
global symmetries. The first is the worldline theory of a free relativistic particle moving in
d-dimensional Minkowski space [40], with action

S = −m
∫
dt
√
−ηµνẊµẊν (2.1)

for the embedding map Xµ(t). To make this look more gravitational we can integrate in a
(0 + 1)-dimensional dynamical metric g = −e2dt2, leading to

S = 1
2

∫
dt
(
e−1ηµνẊ

µẊν − em2
)

= −1
2

∫
dt
√
−gtt

(
gttηµνẊ

µẊν +m2
)
. (2.2)

In the latter presentation we apparently have a (0 + 1)-dimensional quantum field the-
ory coupled to dynamical gravity, but on the other hand this theory is trivially solvable
and clearly possesses a large global symmetry consisting of the “target space” Poincaré
transformations

Xµ ′ = ΛµνXν + aµ. (2.3)

There is no known sense in which this model has black holes, so they do not provide any
obstruction to this global symmetry. We emphasize that the canonical quantization of this
theory does not produce a sum over branching worldlines for the particle: these could be
added by introducing new interactions, but doing so spoils the completeness of the theory
and requires a non-perturbative completion into quantum field theory.

A similar family of examples in 1+1 dimensions is given by canonically quantizing the
string worldsheet action

S = − 1
4πα′

∫
d2x
√
−ggab∂aXµ∂bXµ, (2.4)

which again has target space Poincaré transformations as a global symmetry and does not
have black holes. Canonical quantization again does not produce a sum over branching
worldsheet topologies: one can be added by hand via explicit splitting/joining interactions,
but doing so again renders the series divergent and requires a completion into some non-
perturbative description of interacting string theory.

A less trivial set of examples is constructed by coupling the CGHS/RST [41, 42] or
Jackiw-Teitelboim [43–45] model of gravity in 1 + 1 dimensions to any non-chiral “matter”
conformal field theory with central charge c = cL = cR. These two cases are similar, so we
choose to focus on the latter. JT gravity coupled to conformal matter has been studied
in great detail in recent years: initially because of its close connection [46–50] to the SYK
model [51–55], and later as an interesting theory of gravity by itself [56–63]. The action is

S =
∫
M
d2x
√
−g (Φ0R+ Φ(R+ 2)) + 2

∫
∂M

dt
√
−γ (Φ0K + Φ(K − 1)) + SCFT (ψi, g),

(2.5)
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where Φ0 is a constant, Φ is a dynamical “dilaton” field, gµν is a dynamical metric, R is
its Ricci scalar, ψi are CFT matter fields that we emphasize do not couple to the dilaton
Φ, and γ and K are the induced metric and extrinsic curvature at the asymptotically-AdS
boundary ∂M . The boundary conditions at ∂M are that

Φ|∂M = rcφb ,

γ|∂M = −r2
cdt

2, (2.6)

with rc taken to infinity.
There are two methods which have been used to quantize JT gravity coupled to con-

formal matter.2 The first is canonical quantization, which from a path integral point of
view is equivalent to summing over real globally-hyperbolic Lorentzian geometries. Since
this theory is renormalizable, canonical quantization leads to a well-defined quantum the-
ory. With two asymptotic boundaries and no matter the resulting theory is equivalent to
the quantum mechanics of a particle moving in an exponential potential [56], while with a
nontrivial matter CFT it can be solved by Weyl transformation to flat space [13, 15, 33]
(here “solved” means that all observables can be expressed in terms of the vacuum corre-
lation functions of the matter CFT in flat space). This quantization preserves any global
symmetry of the matter CFT which does not have a mixed anomaly with diffeomorphism
symmetry, and thus it gives another example of a quantum gravity theory with a global
symmetry. For example we can take the matter CFT to be N massless Dirac fermions,
in which case there is a U(N) global flavor symmetry. Unlike the previous examples, this
theory has black hole solutions. We will see in the next section however that the entropy
of these black holes is not compatible with the Bekenstein-Hawking formula, and their
evaporation is not a unitary process in the usual sense (this theory has “remnants”).

The other method for quantizing this theory takes the Euclidean gravity path integral
as its starting point. In a non-gravitational system this would be equivalent to canonical
quantization, but, as emphasized in [64] and explained further in section 5 below, in a grav-
itational system they can be different. In particular with no matter CFT, the Euclidean
“quantization” of JT gravity (including a sum over genus) does not lead to a quantum
mechanical system at all: instead it is an average over quantum systems [59, 65–67]. In-
cluding nontrivial conformal matter does not help: it introduces “pinching” divergences
into the higher-genus contributions to the Euclidean partition function [59], destroying the
renormalizability which made the model well-defined in the first place. On the other hand,
there is strong evidence that in AdS/CFT topologically non-trivial Euclidean configura-
tions which do not have a canonical interpretation must be included in the bulk description
to correctly match the dual CFT [9, 33, 34, 68]. Our current read of the situation is that in
any theory of gravity which is rich enough to have black hole solutions, including topolog-
ically non-trivial Euclidean configurations in the gravitational path integral is consistent
with quantum mechanics if and only if we are viewing that path integral as a low-energy

2In both quantization methods one takes the integration contour for the dilaton to include the range Φ0+
Φ < 0. This is perfectly well-defined from the two-dimensional perspective, but from a higher-dimensional
perspective it would imply integrating over negative metrics. It would be interesting to understand to what
extent the results described below depend on this choice of contour.
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effective theory which is UV-completed into a holographic system; we return to this point
in section 5.

Our final example of a quantum gravity theory with a global symmetry will be the
oriented version of pure Einstein gravity in 2 + 1 dimensions, which we will study with a
negative cosmological constant:

S = 1
16πG

∫
M
d3x
√
−g(R+ 2) + 1

8πG

∫
∂M

d2x
√
−γ(K − 1). (2.7)

This is also a very well-studied model, see e.g. [69–77]. Its status based on a Euclidean
starting point remains unclear (see e.g. [72, 76, 77]), but it can certainly be canonically
quantized [69, 73, 74] and we will take that starting point here. The point then is that in the
Lorentzian path integral over globally-hyperbolic geometries consistent with the boundary
conditions, we have a choice whether or not to include non-orientable spatial geometries.
This choice is equivalent to whether or not parity symmetry is gauged, so if we include only
oriented geometries then parity is a global symmetry [7]. (This is analogous to the role
of worldsheet parity in string theory: for the oriented string worldsheet parity is a global
symmetry, while for the unoriented string it is a gauge symmetry [40].) This theory again
does not have unitary black hole evaporation: for one thing there are no local degrees of
freedom for a black hole to evaporate into, and for another the number of microstates is
not compatible with the Bekenstein-Hawking formula since the quantization of the moduli
space at fixed genus leads to a continuous spectrum and the sum over spatial genus is also
divergent [73, 74].

3 Quantum extremal surfaces and the black hole information problem

In the previous section we presented several examples of quantum gravity theories with
global symmetry, each of which was based on a renormalizable path integral over metrics.
Unfortunately Einstein gravity is not renormalizable in 3 + 1 dimensions (or in 2 + 1
dimensions with matter fields), and so far the “asymptotic safety” program that looks for
a strongly-coupled UV fixed point for Einstein gravity in 3 + 1 dimensions (such as the
proponents of loop quantum gravity hope to find) has been unsuccessful. Moreover even
if such a program were successful, the above examples suggest that it would lead to black
holes whose entropy is not consistent with the Bekenstein-Hawking formula (1.1), basically
because locality would ensure the validity of UV/IR decoupling so one would be able to
explicitly construct remnants. Unlike the remnants we will soon meet in lower-dimensional
gravity, which are manifest already in the low-energy variables since the relevant black
holes have horizons even in the zero-energy limit, these remnants would necessarily involve
high-energy degrees of freedom in some essential way.

A somewhat more philosophical way to think about this is to note that in order for
the black hole information problem to have a simple operational realization, we would
like a theory in which 1) the natural final state of the evaporation is non-singular and
horizon-free and thus can be expected to have zero entropy (except for any entropy in the
Hawking radiation) and 2) there exist propagating degrees of freedom from which a black
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hole can be formed and into which it can evaporate. JT gravity coupled to conformal
matter and the CGHS/RST model both fail condition 1), while pure Einstein gravity
in 2 + 1 dimensions fails condition 2). We are unaware of any renormalizable theory of
gravity which satisfies both conditions, and we thus do not view the existence of these low-
dimensional theories as evidence for the existence of a viable asymptotic safety scenario
which resolves the 3 + 1 dimensional information problem via remnants. Indeed so far all
examples of UV-complete quantum gravity satisfying these conditions have instead come
from string theory [40], and those which are well-defined non-perturbatively are holographic
in nature [78–82]: their fundamental description lives at some asymptotic boundary in a
lower number of dimensions, and in particular is not based on a local Lagrangian living in
the gravitational spacetime that emerges at low energies. And indeed in these examples
there are no remnants: the Bekenstein-Hawking formula (1.1) holds for all black holes for
which it has been checked, see e.g. [83–86]. In such theories the gravitational path integral
should be regarded as a low-energy effective description, which can capture some features
of what is going on but not all of them.

The best-understood examples of holographic theories of quantum gravity are those
provided by the AdS/CFT correspondence. One of the great successes of that correspon-
dence has been the development over the last 15 years, beginning with the seminal work of
Ryu and Takayanagi [87], of a bulk formula for competing the microscopic von Neumann
entropy of a boundary subregion. The final version of this formula is called the quantum
extremal surface (QES) formula [12], and it says that for any boundary CFT spatial subre-
gion R and any reasonably semiclassical state ρ in the CFT Hilbert space the von Neumann
entropy of ρ on R is given (for Einstein gravity coupled to matter) by

S(ρR) = min
γR

ext
γR

(Area(γR)
4G + S(ργR)

)
. (3.1)

Here the extremum (and the minimum if the extremum is not unique) are taken over
codimension two surfaces γR which are anchored to R in the sense that ∂γR = ∂R, and
which are also homologous to R in the sense that there is a spatial surface HγR such that
∂HγR = γR ∪ R, and ργR is the state of the bulk fields on HγR in the low-energy effective
description. The minimal extremal surface γR is called the quantum extremal surface, and
the bulk domain of dependence of HγR ,

WR ≡ D[HγR ], (3.2)

is called the entanglement wedge of R. General information-theoretic arguments show that
in any situation where the QES formula holds, all bulk operators in WR (more carefully
the intersection of the entanglement wedges over all states in the code subspace) can be
represented in the dual CFT as operators with support only on R [88–90]. This statement
is called entanglement wedge reconstruction [91–93].

In recent years, it has gradually been understood that the QES formula can be used for
more than just computing the von Neumann entropy of a holographic CFT subregion R.
In [35], it was already noted that the Euclidean replica method gives a fairly general bulk
algorithm for deriving entropy formulas that do not seem to rely on the details of AdS/CFT.
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Figure 1. The evaporating wormhole in JT gravity studied in [13]. Turning on the interaction
between the green gravitational region and the grey reservoir region produces two positive energy
shells, shown as orange dashed lines. After this, positive energy Hawking radiation (shown in blue)
leaks out into the reservoir system, while negative energy radiation (shown in red) falls into the
right black hole and gradually decreases its energy.

It was also noticed in [94–96] that a version of the QES formula holds in rather general
tensor network constructions, and it was then observed that this extends to a version which
holds in essentially all finite-dimensional quantum error correcting codes [97] (aspects of
this result were extended to an approximate setting in [89, 90] and to infinite dimensions
in [98, 99]). It was noted in [90] that this general QES formula can be applied to an arbitrary
reservoir system which is entangled with a holographic CFT, provided that we allow the
“entanglement wedge” of the reservoir to include regions which are in the gravitational part
of the system. Then in [14] (and more implicitly in [13]) it was shown that once such regions
are accounted for, which in [100] were later christened “islands,” the QES formula can be
used to demonstrate a unitary Page curve for an evaporating black hole. Finally in [33, 34]
it was pointed out that a careful application of the Euclidean replica argument of [35] leads
to “replica wormholes” — topologically nontrivial gravitational configurations connecting
the various sheets of the replica — which imply the appearance of islands in the QES
formula when it is applied to a non-gravitational reservoir interacting with a gravitational
system. This argument assumes it is correct to include higher Euclidean topologies in the
path integral. As mentioned above and explained further in section 5, we expect that this
inclusion is justified for any gravitational effective field theory which is UV-completed into
a holographic theory; this therefore justifies applying the QES formula to the reservoir in
such theories as well.

This general version of the QES formula is what we will use in the following section to
forbid global symmetry in quantum gravity, so we will first quickly review its application
to an evaporating black hole in JT gravity coupled to conformal matter as in [13]. The
standard two-sided wormhole solution of pure JT gravity in Schwarzschild coordinates is

– 7 –



J
H
E
P
0
4
(
2
0
2
1
)
1
7
5

given by

Φ = φbr,

ds2 = −(r2 − 4π2T 2)dt2 + dr2

r2 − 4π2T 2 . (3.3)

Here T is the Hawking temperature, the horizon is at rs = 2πT , and the analogue of the
Bekenstein-Hawking entropy of one side is

S = 4π(Φ0 + Φ(rs)) = 4π(Φ0 + 2πφbT ). (3.4)

The global geometry is shown on the left side of figure 1; the future and past null bound-
aries are Cauchy horizons indicating the maximal extent of the causal development which
is determined by the initial state and the choice of boundary conditions. Adding conformal
matter to this solution does not do much; in the thermofield-double state the matter state
on each side is thermal and gives an O(c) correction to the entropy (3.4). In [13] it was
observed that the situation becomes much more interesting if at t = 0 we couple one of
the two boundaries to a reservoir system consisting of the same matter CFT propagating
(without the metric or dilaton) on a half-space and starting in the vacuum. This allows en-
ergy to gradually leak out into the reservoir system, decreasing the energy of the remaining
black hole on that side of the wormhole (see the right side of figure 1 for an illustration).

One of the main insights from [13] is that there are two different ways of computing
the von Neumann entropy of the reservoir system as a function of time. The first approach
is to view this renormalizable bulk theory as a complete theory of quantum gravity which
can be solved by Weyl transformation, as we did in the previous section where we noted
that the matter CFT may have global symmetries. This leads to a time dependence

Sres(t) = 16π2φbT1

(
1− e−

ct
96πφb

)
(3.5)

for the von Neumann entropy of the reservoir, where T1 is the temperature of the right black
hole after the orange shell in figure 1 falls in. This however leads to a version of the black
hole information problem: at late times the black hole on the right side of the wormhole
has evaporated down to zero temperature, so from (3.4) the coarse-grained entropy of the
two black holes together is

Scoarse = 8πΦ0 + 8π2φbT0, (3.6)

where T0 is the initial temperature of the two sides prior to turning on the coupling to the
reservoir. The key point is that if φbT0 � Φ0, then for sufficiently late times we have

Sres � Scoarse, (3.7)

which is impossible if we think that the reservoir system is purified by the two remaining
black holes. (An analogous conclusion was reached in the CGHS/RST model in [101].) The
only way (3.7) can be consistent with unitarity is if (3.4) is incorrect. In particular note
that by adding a pure ingoing matter shell to the reservoir system prior to coupling the
systems, we can arrange for T1 to be arbitrarily large compared to T0, and thus to avoid a
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Figure 2. The new quantum extremal surface γ of [13, 14] for an evaporating JT wormhole. The
entanglement wedge of the reservoir at the boundary time indicated by the red dot is shaded yellow,
note in particular the island in the gravitational region.

contradiction with unitarity we need the entropy for fixed T0 to be arbitrarily large. And
indeed it is: this renormalizable bulk theory can have an arbitrarily large number of low-
energy excitations near black hole horizon. In the context of the black hole information
problem objects of finite energy and infinite entropy are referred to as remnants, so in this
theory the “resolution” of the information problem is that there are remnants that do not
obey (3.4). Therefore from the point of view of this paper this theory is allowed to have
global symmetries, and indeed it will if the matter CFT does.

The second approach to computing the entropy of Sres is to instead view the bulk
theory as a low-energy effective theory, to be UV-completed into some yet-to-be-determined
holographic theory. We may then use the QES formula (3.1) to compute the entropy of
the reservoir system (with Area

4G replaced by 4π(Φ0 + Φ)). At early times this calculation
agrees with equation (3.5), since then Sres is small and there is no benefit in including any
island contributions. At late times however, [13, 14] made the remarkable discovery that
there is a new candidate quantum extremal surface which has no classical counterpart. The
location of this surface is shown in figure 2, with the entanglement wedge of the reservoir
shaded yellow. The value of the dilaton on this surface decreases with time as the black
hole evaporates, and eventually it gives a candidate minimum in the QES formula which
is smaller than the naive contribution without an island. The formula (3.5) for the von
Neumann entropy of the reservoir is thus modified to

Sres(t) ≈ min
[
16π2φbT1

(
1− e−

ct
96πφb

)
, 8πΦ0 + 8π2φbT0

(
1 + T1

T0
e
− ct

96πφb

)]
, (3.8)
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Figure 3. Two situations where a bulk global symmetry would lead to a contradiction in AdS/CFT
(figures from [7]). The green circle represents a putative bulk operator which is charged under the
global symmetry, and the dotted line represents its (neutral) gravitational dressing. The contradic-
tion is that in the boundary CFT a global symmetry operator U(g) must be a product of operators
whose support is each at most one of the Ri, and each of those operators can therefore only act non-
trivially on bulk operators in the entanglement wedge of that Ri. Thus none of the operators, and
therefore also their product, can act nontrivially on the green charged operator: it must be neutral.

which differs from (3.5) precisely in those situations where there would have been an
information problem, and in just such a way that at late times Sres cannot exceed Scoarse!
Thus this result is consistent with the idea that the reservoir is entangled with the union
of the remaining black holes, each having maximal entropy (3.4).

The fact that the quantum extremal surface formula is able compute the unitary Page
curve (3.8) using only semiclassical ingredients is a remarkable discovery. On the other
hand, since we are now only viewing the bulk description as a low-energy effective theory,
we no longer know whether or not a global symmetry of the matter CFT is preserved in
the UV completion. We will now argue that in any situation where the Page curve can be
derived in this manner, no global symmetry can exist in the full theory.

4 A “no global symmetries” theorem from an evaporating black hole

In [6, 7], two versions of an argument were given that global symmetries are impossible
in AdS/CFT. The basic idea in both versions is to split the boundary into disjoint spatial
regions Ri, such that there is a large region in the bulk which is not contained in the
union ∪iW [Ri] of their entanglement wedges. This can be done either by splitting a single
boundary into multiple regions or having multiple boundaries connected by a (spatial)
wormhole; both options are shown in figure 3. The key point is then that by the locality
of the boundary CFT, any global symmetry group (restricting for simplicity to internal
symmetries) must be represented on the CFT Hilbert space by a family of unitary operators
U(g) which have a product structure

U(g) =
∏
i

U(g,Ri)Uedge, (4.1)

– 10 –
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where here U(g,Ri) is a unitary operator which implements the symmetry U(g) on opera-
tors in Ri but does nothing in its spatial complement Ri, and Uedge is a unitary operator
with support only on the boundaries of the Ri that reflects the short-distance edge am-
biguity inherent in U(g,Ri) (in the wormhole situation there is no Uedge; see [7] for much
more discussion on why U(g) must have this structure in quantum field theory). The point
is then that each U(g,Ri), and also Uedge, has support only on a boundary region whose
entanglement wedge does not contain a large region of the bulk (see figure 3). On the
other hand, if we had a nontrivial bulk global symmetry then there would need to be some
bulk operator which is charged under it. We could put that charged operator in the region
which none of the U(g,Ri) or Uedge can access, and then it would be impossible for that
operator to transform under conjugation by U(g). Thus there can be no such operator,
and therefore no global symmetry in the first place.

As presented, this argument relies on details of the AdS/CFT correspondence. On
the other hand, it feels more general — in any holographic theory where the microscopic
description lives far away in a lower number of dimensions a similar contradiction seems
like it should be possible. Our goal now is to present such a contradiction. Indeed let
S denote a quantum gravity system which is sufficiently semiclassical to allow for the
existence of black holes that are large compared to the Planck scale. Moreover let R
denote a “reservoir” system consisting of weakly-interacting quantum fields propagating
on Rd (possibly including linearized gravitons), where d is the spacetime dimension of the
semiclassical description of S. We now make three assumptions:

• We can couple R and S together in such a way that an initial state consisting of a
pure state black hole in S and the vacuum in R evolves unitarily. This evolution can
be described semiclassically as the black hole producing Hawking radiation which is
then gradually transferred into R.

• For at least one initial state of the black hole, e.g. one formed by a fast collapse,
the fine-grained entropy of any subregion of R at later times can be computed using
the quantum extremal surface formula (including possible islands in S), and the
fine-grained entropy of S can also be computed this way.

• The coupling between R and S preserves any internal global symmetries of S, and
moreover the action of these global symmetries can be extended to R in a way that
respects the locality of R (meaning it sends any operator on any subregion of R to
another operator on the same subregion).

All three of these assumptions apply to the situation of a holographic CFT S coupled to
a reservoir R as in the setups of [13, 14], but we expect them to hold far more generally.
Roughly speaking we can just think of S as the black hole and R as its Hawking radiation,
in which case we expect these assumptions to be true in any situation where a black hole
formed by a fast collapse evaporates via a unitarized version of the Hawking process. (We
are less sure about more generic initial states of the black hole, as currently we do not have
a global semiclassical picture of the geometry in which to apply the QES formula.)
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Figure 4. The semiclassical picture of a situation where a global symmetry in a quantum gravity
theory with unitary black hole evaporation leads to a contradiction. The solid red line indicates
a Cauchy slice of the reservoir system R, the red dot indicates the quantum gravity system S,
the black dot is the quantum extremal surface γ found in [13, 14], the vertical dashed line is the
boundary between the gravitational and non-gravitational parts of the semiclassial description,
and R1, R2, . . . are subregions of R. The entanglement wedges of the Ri are shaded grey, the
entanglement wedge of S is shaded pink, and the “island” which is part of the entanglement wedge
of R is shaded yellow. The green dot represents an operator which is charged under the putative
global symmetry. Since the global symmetry operator U(g) is a product of an operator on S and
operators on the Ri, none of its pieces can act nontrivially on the operator at the green dot and
thus that operator must be neutral.

Given these assumptions, we can now imitate the argument of [6, 7] against global
symmetry. Namely we split up the reservoir system into pieces Ri which are small enough
that even at late times the entanglement wedges of the Ri do not include any islands in
the gravitational region (see figure 4). Since the global symmetry is preserved on the joint
system and respects the locality of R, the unitary operators which represent it on the full
system can be written as

U(g) = U(g, S)
∏
i

U(g,Ri)Uedge, (4.2)

where U(g, S) implements the symmetry on S and does nothing on R, U(g,Ri) implements
the symmetry on Ri and does nothing on S or Rj with j 6= i, and Uedge has support
only at the edges of the Ri. But, as shown in figure 4, at sufficiently late times there
will be an island (shaded yellow) which is not contained in the entanglement wedges of
S or any of the Ri but is contained in the entanglement wedge of R [13, 14]. If there
were a global symmetry then we could put an operator which is charged under that global
symmetry in this island. This however would be inconsistent with the expression (4.2) for
the symmetry operator U(g): by entanglement wedge reconstruction the charged operator
has to commute with each ingredient of U(g), and thus with U(g) itself, and therefore the
operator must be neutral. Thus no global symmetry could have existed in the first place.
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Both this argument and that of [6, 7] rely on manifestations of the idea that entan-
glement can create geometry [102, 103]. Indeed if we use the model of [32] to replace the
pieces of the Hawking radiation with all but one of the exits of a multiboundary wormhole,
with the black hole as the remaining exit, then our argument against global symmetries is
the same as that in the right diagram of figure 3. Quantum error correction is the precise
mathematical formulation of the idea that entanglement can create geometry [104], and in
the case of continuous symmetry groups both our argument and that of [6, 7] are essentially
recastings of the Eastin-Knill theorem forbidding the existence of continuous logical sym-
metries acting transitively on the physical degrees of freedom of a quantum error-correcting
code [105] (we emphasize however that our argument and that of [6, 7] apply to discrete
symmetries as well). The importance of quantum error correction in interpreting the Page
curve calculations of [13, 14] was emphasized in [14, 32], and to the extent that those calcu-
lations generalize to arbitrary holographic theories of quantum gravity, as we are assuming
here, then we expect a role for quantum error correction in any such theory.

A natural question is whether or not this argument extends to excluding the “gener-
alized global symmetries” of [106]. We expect yes: to exclude a p-form global symmetry,
one can apply our argument to the evaporation of a black hole with horizon topology
Sd−p−2 ×Tp, where d is the spacetime dimension of the effective gravitational field theory.
For Einstein gravity in asymptotically-AdS space such solutions were constructed in ap-
pendix I of [7]. In any effective gravitational theory where such solutions exist, following [7]
we can dimensionally reduce the Tp and then apply our argument excluding ordinary “zero-
form” global symmetries to the reduced theory to exclude p-form global symmetries as well.

In addition to the conjecture that there are no global symmetries, AdS/CFT arguments
were also given in [6, 7] for two related conjectures: the “completeness hypothesis” that in
quantum gravity dynamical objects in all possible gauge representations must exist [107,
108], and the “compactness hypothesis” that in quantum gravity all internal gauge groups
must be compact [5]. The AdS/CFT argument for the completeness hypothesis, based
on an argument given in [109] for the case of a U(1) gauge group, uses only the minimal
ingredients of the thermofield double state and the tensor-factorization of the microscopic
theory with two asymptotic boundaries. We expect that these ingredients should generalize
directly to any holographic theory, so it does not seem necessary to consider black hole
evaporation.3 The AdS/CFT argument for the compactness hypothesis makes more use of
the local structure of the dual CFT, in particular the idea that the local operator algebra
should be finitely generated. Extending this to more general theories of quantum gravity
requires a further assumption along the lines that “every black hole can be made from
a finite number of ingredients,” although we will not attempt to formalize this here. It
would be interesting to apply these ideas to other “swampland” proposals such as the weak
gravity [4] and distance [110] conjectures; we leave this to future work.

3One can still try to replace the second boundary with a cloud of Hawking radiation, but one then meets
the puzzling question of whether or not a Wilson line can enter an old black hole through its horizon and
then come out directly into its Hawking radiation. In the evaporation model of [32] the answer to this
question is “yes,” but for a real evaporating black hole we are less sure.
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5 Euclidean gravity and holography

The strongest conceptual motivation for holography as the ultimate description of quantum
gravity comes from taking seriously the Bekenstein-Hawking formula (1.1) as dictating
the size of the Hilbert space of the black hole [78, 79]. So far this has had its sharpest
incarnation in the context of string theory [80–82], with the paradigmatic example being
AdS/CFT. In that context, many questions can be sharply formulated and theorems —
like the absence of global symmetries in the bulk — can be proven [6, 7]. Given the
picture that has recently emerged for unitarity of black hole evaporation, one is left to
wonder whether we can strip away the baggage of AdS/CFT and return to the starting
point: black holes, the Bekenstein-Hawking formula, and unitary evaporation. We have
seen that to rule out the possibility of global symmetries in this context, we have had
to make assumptions very similar to those motivating the idea of holography. Moreover
we have seen that there are various “quantum theories of gravity” which do have global
symmetries, but they are not holographic and when they have black holes their entropy
does not obey the Bekenstein-Hawking formula.

A related point we have already mentioned is the role of the Euclidean path integral
in gravitational effective field theory, which is the tool that gives (1.1) with the most
generality. Through various examples we have tried to argue that the validity of this tool
is very closely tied to whether the theory under consideration is holographic. We now
promote this to a general conjecture:

The Euclidean path integral in a gravitational effective field theory with a
quantum-mechanical UV completion correctly computes von Neumann en-
tropies such as (1.1) if and only if that UV completion is holographic, in which
case the entropies are those of the holographic theory.

As motivation for this conjecture, we first recall that in ordinary quantum field theory
on a spatial manifold Σ the Euclidean path integral representation of a thermal partition
function is derived by inserting complete sets of states into a thermal trace

Z = Tr
(
e−βH

)
, (5.1)

which leads to a path integral on the manifold S1×Σ. Applying this algorithm to a renor-
malizable gravitational field theory such as Jackiw-Teitelboim gravity coupled to conformal
matter therefore only includes manifolds which are topologically of the form S1×Σ for some
Σ. As originally explained by Hawking, by time-translation symmetry the on-shell action
of any gravitational field theory on such a manifold will be proportional to β, giving a
vanishing thermal entropy

S(β) = (1− β∂β) logZ = 0 (5.2)

at leading order in the gravitational constant. Therefore no time-translation-preserving
saddle-point approximation to a Euclidean path integral derived from canonical quantiza-
tion of a gravitational field theory can ever lead to the Bekenstein-Hawking formula (1.1)
(or its generalizations from the Wald formula such as (3.4)). There is however a standard

– 14 –



J
H
E
P
0
4
(
2
0
2
1
)
1
7
5

+

Figure 5. Two contributions to the Euclidean gravity path integral with a boundary thermal circle
of circumference β. On the left some cycle of the transverse directions contracts at the dotted
line, while on the right it is the thermal circle which contracts. The contribution on the left is
what is obtained from canonical quantization of gravitational effective field theory, and gives no
contribution to the entropy at leading order in the gravitational coupling. The contribution on the
right leads to the black hole entropy (1.1); it should be included only in effective theories which are
UV-completed into a holographic description.

proposal for how to fix this: instead of just including topologies of the form M = S1 × Σ,
include all topologies M such that ∂M = S1 × ∂Σ, where ∂Σ is the topology of the spa-
tial boundary [39], even though most of these topologies are not generated by canonical
quantization of the gravity variables. In particular the boundary circle S1 is allowed to
contract somewhere inside M , which invalidates Hawking’s argument that logZ ∝ β (his
argument still shows that the entropy will be determined entirely by the fields in the vicin-
ity of the surface where the circle contracts). The Euclidean Schwarzschild geometry has
such a point where the thermal circle contracts to zero size, and evaluating its action leads
directly to (1.1) (the Euclidean version of the JT black hole (3.3) similarly leads directly
to (3.4)). We illustrate geometries of both types in figure 5.

Why though are we allowed to include geometries where the circle contracts? We
believe that the reason is holography: if the true microscopic description lives at the
asymptotic boundary, then so does the true thermal circle! Therefore we should really only
require a product spacetime topology S1 × ∂Σ at the boundary, and it is thus plausible
to include geometries where the boundary thermal circle contracts in the interior of the
spacetime. In fact in AdS/CFT it is necessary to include them, as one is otherwise unable
to obtain the correct scaling of the high-temperature entropy with the number of boundary
degrees of freedom [9]. In the models of holography based on stacks of Dp-branes this topo-
logical distinction and its implication for the entropy is captured in the boundary theory
by the pattern of higher-form symmetry breaking [111, 112]. Another way to think about
this is that although with these rules we include contributions which seem to violate the
relationship between the Euclidean path integral and canonical quantization, that relation-
ship only really needs to be preserved in the microscopic description at the boundary (and
indeed in AdS/CFT the Lorentzian and Euclidean quantizations of the boundary CFT are
equivalent).4 On the other hand, in any theory where we view the gravitational field theory

4This equivalence of Lorentzian and Euclidean quantizations only in the microscopic boundary theory is
somewhat analogous to the factorization of multi-boundary thermal partition functions: this factorization
must be true in any holographic theory, but it is not apparent in gravitational effective field theory even if
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description as fundamental — as happens in our lower-dimensional examples of quantum
gravity theories with global symmetries and we expect would happen in any asymptotic
safety scenario — then results (such as the Bekenstein-Hawking formula (1.1) and the QES
formula (3.1)) which rely on Euclidean topologies with no canonical interpretation need
not be correct (and indeed they aren’t in our examples).

In holographic theories the successes of Euclidean quantum gravity once we allow arbi-
trary topologies to be included are undeniable, but they are also mysterious. How can the
low-energy path integral know about the microstates of a black hole, which are expected to
probe the deep ultraviolet? We do not have a complete answer to this question, which after
all would likely require a non-perturbative understanding of the gravitational variables (for
example a non-perturbative definition of string theory). At least for thermodynamically-
stable black holes in AdS/CFT however we are able to say something more: from the
boundary point of view there is a high-temperature/low-temperature duality which relates
geometries where the thermal circle contracts to geometries where it doesn’t. This is most
familiar in the context of AdS3, where it reduces to modular invariance in the boundary
theory [84], but a similar picture is true in higher dimensions and for non-conformal models
coming from stacks of Dp-branes with p 6= 3 [86].5 Since we do expect low-energy effective
field theory to know the partition function on spacetimes where the thermal circle doesn’t
contract, the duality between low and high temperature ensures a reliable calculation of
the high-temperature density of states within low-energy effective field theory. One way to
think about the magic of Euclidean gravity is thus that by allowing topologies where the
thermal circle contracts, we manifestly restore a duality between low and high tempera-
ture which was not apparent from the canonical point of view. What we lose however is a
manifest interpretation of the gravity partition function as a thermal trace: so far we only
know how to have manifest duality together with a manifest trace representation in the
microscopic boundary description.
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we include arbitrary Euclidean topologies [2, 34, 56, 59, 113, 114].
5These examples have some subtleties, for example for conformal theories in higher dimensions the theory

at high temperature on a particular spatial manifold is generically related to the theory at low temperature
on a different spatial manifold [86, 115–121].
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