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Abstract: The holomorphic Coulomb gas formalism, as developed by Feigin-Fuchs,
Dotsenko-Fateev and Felder, is a set of rules for computing minimal model observables
using free field techniques. We attempt to derive and clarify these rules using standard
techniques of quantum field theory. We begin with a careful examination of the timelike
linear dilaton. Although the background charge of the model breaks the scalar field’s contin-
uous shift symmetry, the exponential of the action remains invariant under a discrete shift
because the background charge is imaginary. Gauging this symmetry makes the dilaton
compact and introduces winding modes into the spectrum. One of these winding operators
corresponds to the anti-holomorphic completion of the BRST current first introduced by
Felder, and the full left/right cohomology of this BRST charge isolates the irreducible rep-
resentations of the Virasoro algebra within the degenerate Fock space of the linear dilaton.
The “supertrace” in the BRST complex reproduces the minimal model partition function
and exhibits delicate cancellations between states with both momentum and winding. The
model at the radius R “

?
pp1 has two marginal operators corresponding to the Dotsenko-

Fateev “screening charges”. Deforming by them, we obtain a model that might be called a
“BRST quotiented compact timelike Liouville theory”. The Hamiltonian of the zero-mode
quantum mechanics of this model is not Hermitian, but it is PT -symmetric and exactly
solvable. Its eigenfunctions have support on an infinite number of plane waves, suggesting
an infinite reduction in the number of independent states in the full quantum field theory.
Applying conformal perturbation theory to the exponential interactions reproduces the
Coulomb gas calculations of minimal model correlation functions. In contrast to spacelike
Liouville, these “resonance correlators” are finite because the zero mode is compact. We
comment on subtleties regarding the reflection operator identification, as well as naive vi-
olations of truncation in correlators with multiple reflection operators inserted. This work
is part of an attempt to understand the relationship between the JT model of two dimen-
sional gravity and the worldsheet description of the p2, pq minimal string as suggested by
Seiberg and Stanford.
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1 Introduction

The minimal models of two dimensional conformal field theory are among the most studied
and best understood of all quantum field theories [1–3]. They serve as the prototypical
examples of rational conformal field theories [4, 5], and their solution via the conformal
bootstrap exemplifies the power of the abstract, non-Lagrangian approach to conformal
field theory and critical phenomena.

Although these models are defined abstractly by their spectrum of local operators
and OPE coefficients, they are perhaps most interesting when viewed in relation to other
two-dimensional systems. Each minimal model controls the long-distance dynamics of a
rich universality class of interesting and physically realizable lattice models [6, 7]. Within
the realm of continuum field theory, these universality classes are known to include the
Landau-Ginzburg models [8], and probably include some version of highly curved, small-
AdS quantum gravity in three dimensions [9–11]. There are interesting renormalization
group flows between the different models [12], and even their massive deformations exhibit
fascinating properties [13].

In each of the previous examples, the minimal model describes the (ultraviolet or in-
frared) asymptotics of another scale-dependent system. The minimal models also have a
number of exact descriptions in terms of other seemingly unrelated conformal field the-
ories, each of which involves a gauging procedure or the imposition of constraints. The
Goddard-Kent-Olive coset construction of the minimal models [14–18] played a key role in
demonstrating unitarity of the pm,m` 1q series, and the work of Bershadsky and Ooguri
relates the models to a Hamiltonian reduction of the SLp2,Rq WZW model. The focus of
this paper will be on the oldest, and in some sense most puzzling, exact construction of
the minimal models: the Coulomb gas formalism. Our main conclusion is that, at least
for the p2, pq models, the Coulomb Gas formalism fits comfortably within the standard
framework of local quantum field theory, and can in fact be derived from standard QFT
manipulations of a somewhat exotic “compact timelike linear dilaton theory” with a pe-
culiar operator spectrum and a BRST symmetry. The framework could equivalently be
described as a “BRST quotient of the compact timelike Liouville theory”. The goal is
to subject these models to a careful modern analysis and to clarify their relation to the
minimal models.

It was known very early on that a large class of two dimensional lattice models renor-
malize onto a scalar field at criticality. Indeed, a two dimensional scalar field with a
background coupling to curvature can realize any central charge, and the exponential ver-
tex operators of such a model can realize almost any conformal dimension. This fact alone
suggests that many fixed points could be described or embedded within such a model, and
most known rational conformal field theories do have realizations in terms of multiple free
fields. The heuristic suggests that, just as a highly curved manifold can always be embed-
ded in a flat space of sufficiently high dimension, it might be possible to conformally embed
any interacting 2d CFT in a set of free (flat) fields subject to some constraints (gauging,
deformation by a marginal operator, BRST quotient, etc.). In this sense the Coulomb gas
formalism plays a role similar to the Whitney embedding theorem for 2d CFT [19].
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The standard free field realization of the minimal models involves a single scalar field,
the so-called timelike linear dilaton.1 The linear dilaton first appeared in the physics
literature in a paper by Chodos and Thorn [20] as part of an attempt to change the
critical dimension of the bosonic string. A decade later, Thorn returned to the model to
study the Kac determinant formula and to work out explicit expressions for the singular
vectors [21] (see also the works of Tsuchiya-Kanie [22], Kato-Matsuda [23–26], and Gervais-
Neveu [27–29]). In a separate attempt to understand the structure of the reducible Verma
modules over the Virasoro algebra (and to prove the Kac determinant formula), Feigin
and Fuchs were led to study a series of auxiliary modules (importantly inequivalent to
any Verma module), the spaces of semi-infinite forms. Phrased in physical terms, this
construction embedded states of the degenerate Virasoro representation in the Fock space
of an anticommuting bc ghost system [30, 31]. Later work “bosonized” the construction [32],
leading to the modern presentation of the Coulomb gas formalism. In the language of this
paper, Feigin and Fuchs investigated the Hilbert space of the timelike linear dilaton, but
they did not study its marginal deformations since they were concerned with kinematics
rather than dynamics.

These mathematical developments first made contact with the minimal models through
the work of Dotsenko and Fateev [33–36], who invented a seemingly ad-hoc prescription to
compute observables in the minimal models using free field correlation functions. Working
with the holomorphic sector of the timelike linear dilaton theory

Srφ, gs “
1

4π

ż

d2x
?
g
”

gabBaφBbφ`QφRpgq
ı

, Q “ i
p´ p1
?
pp1

” ipα` ` α´q ,

Dotsenko and Fateev were led to identify the minimal model primaries Mr,spzq with the
exponential operators eiαr,sφpzq of the same conformal dimension (the indices r, s label en-
tries in the Kac table). Genus zero correlation functions of these exponential operators
are given by free field expectation values with a modified selection rule

ř

αi “ ´2iQ on
the momenta, and obviously do not reproduce the correlations of the interacting minimal
models. As a remedy, Dotsenko and Fateev identified a pair of dimension h “ 1 pri-
mary operators e2iα˘φpzq (importantly, neither corresponds to an operator in the minimal
model). Closed line integrals of these operators commute with the Virasoro algebra, but
not with the anomalous Up1q current Bφpzq. They can therefore be used to “screen” the
background charge asymmetry, producing non-zero values for correlation functions on the
sphere that would otherwise vanish. The prescription for calculating the holomorphic parts
of correlators takes the schematic form

xMr1,s1pz1q . . .Mrn,snpznqy

„

B

eiαr1,s1φpz1q . . . eiαrn,snφpznq

n
ź̀

i“1

¿

Ci

e2iα`φpwiqdwi

n
ź́

j“1

¿

Cj

e2iα´φpwjqdwj

F

,

1The terminology “timelike” derives from the string theory literature, where it is common to use a dilaton
with a wrong-sign kinetic term and a real background charge rather than a dilaton with a conventional
kinetic term and an imaginary background charge. The two descriptions are related by the field redefinition
φpxq Ñ iφpxq.
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where the number of screening charges is determined by the selection rule on the mo-
menta. Without any a priori justification for the screening charge prescription, the choice
of contours in this formula is not fixed. Instead, the correct combination of contours is
determined by combining the holomorphic and anti-holomorphic correlators and requiring
locality (absence of branch cuts) in the final answer. With the four-point functions in hand,
Dotsenko and Fateev worked backwards to derive the set of OPE coefficients that define
each model.

This convoluted procedure devised by Dotsenko and Fateev is commonly known as the
Coulomb gas formalism. At the time of its invention, the framework appeared to be a clever
trick for finding integral representations of conformal blocks, but the physical interpretation
remained murky. Its relation to more central ideas in quantum field theory began with the
work of Felder [37], who identified a hidden BRST structure in the construction and used
it to compute certain genus one observables.

The most obvious question raised by the work of Dotsenko and Fateev regards the spe-
cial status of the “minimal model exponentials” in the linear dilaton theory. In particular,
what is it that singles them out from the much larger space of exponential vertex operators
in the model? Felder’s answer to this question involved an ingenious combination of the
work of Thorn, Feigin-Fuchs, and Dotsenko-Fateev. His basic innovation was to reinterpret
the construction of Feigin and Fuchs as a BRST quotient of the linear dilaton Hilbert space.
Combining Thorn’s explicit expressions for the Fock space singular vectors [21–26] with the
structure of the Feigin-Fuchs bosonic resolution [32], Felder constructed a series of nilpo-
tent BRST operators from multiple nested line integrals of the Dotsenko-Fateev screening
operators. The cohomology of these charges in the “minimal model Fock spaces” Fr,s yields
the corresponding irreducible representation of the Virasoro algebra. Felder’s holomorphic
BRST complex is infinite in both directions, so his construction involves the extraneous
vertex operators present in the linear dilaton but not the minimal model. Crucially, he
demonstrated that all of the cohomology of the complex

. . .
Q
ÝÑ F˚

Q
ÝÑ Fr,s

Q
ÝÑ F˚

Q
ÝÑ . . .

is concentrated in Fr,s: the extra operators in the model are all either BRST exact or not
BRST closed. Since a trace in the cohomology is the same as the alternating trace in the
full complex, Felder was able to easily reproduce the Rocha-Caridi form of the minimal
model character [38]. A second major component of Felder’s work developed the notion of
“screened vertex operators”, in which one attaches line integrals of the Dotsenko-Fateev
screening operators to the exponential operators. Inside of correlation functions, these
integrals can be deformed onto the Dotsenko-Fateev contours, reproducing the Coulomb
gas calculation. This construction seems far less natural from the point of view of local
quantum field theory, and we will not need it in our formulation. In its place we substitute
conformal perturbation theory.

Felder’s work sparked followups in many directions (see [39, 40] for useful reviews). In
particular, the ability to project out unwanted states through the BRST quotient opened
up the possibility to calculate observables on higher genus surfaces using the Coulomb gas
formalism [41–43] (see also [44–54]). Importantly, in some of these higher genus calculations
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it was noted that the scalar field should be compact, although attention to such global
issues was scarce. As we will see, this is a crucial ingredient in the Coulomb gas quantum
field theory: without it, Felder’s BRST current (which is a winding operator in the full
model) would not be in the spectrum. The Dotsenko-Fateev contour prescription becomes
much more complicated on a surface with nontrivial cycles, and many of the works on
higher genus had difficulty explicitly demonstrating modular invariance. This would be an
afterthought if the rules could be derived from a description where locality was manifest.

The combined work of Dotsenko-Fateev and Felder is highly suggestive. In fact, al-
ready in their second paper Dotsenko and Fateev noted that their final answers could be
reproduced by surface integrals of a pair of marginal operators. The precise physical inter-
pretation of this fact was left open due to certain technical puzzles that we will describe, but
this observation clearly suggests that the minimal model might be obtained as a marginal
deformation of the timelike linear dilaton.

The aim of this paper is to combine this observation of Dotsenko-Fateev with Felder’s
BRST construction, paying close attention to global issues and clarifying some subtle points
which have been glossed over in previous treatments. The main takeaway of the analysis is
that compactness of the linear dilaton is crucial, and the BRST structure of the model is
indispensable. Taken together, they conspire to fix several pathologies arising in the naive
interpretation of the theory, including some apparent violations of the minimal model fusion
rules that actually result from calculating non-BRST invariant quantities.

It is useful to compare the techniques of this paper with the standard treatment of
spacelike Liouville theory, which historically also developed from Coulomb gas techniques.
The screening charge prescription of Goulian-Li [55] calculates a special class of resonance
correlators in spacelike Liouville. For this set of correlators, which can be screened by an in-
teger number of Liouville interactions, the zero-mode of the field feels no effective potential.
Integrating over this undamped non-compact direction in field space produces divergences
in the correlation functions which are identified as poles in the DOZZ formula [56, 57],
and the residues of these poles match the naive screening charge calculation. In spacelike
Liouville theory, most of the correlation functions of interest cannot be screened in this
way, and are instead obtained through a clever analytic continuation. In the case at hand
it is precisely these resonance correlators that one wants to calculate and compare to the
minimal model. We obtain finite answers, along with a normalizable SLp2,Cq invariant
groundstate and normalizable operators, because our zero mode is compact. We should
also note that there has been scattered work on timelike Liouville theory [58–68]. These
treatments typically do not compactify the Liouville scalar, nor do they implement the
BRST quotient. Taking these global issues into account might shed light on some of the
puzzles encountered in these works, especially the failure of truncation noted in [64].

Finally, we should mention that our primary motivation for this work is to better
understand the relationship between the JT model [69–74] of two-dimensional quantum
gravity and the worldsheet description of the p2, pq minimal string. The JT model is a
profoundly simple theory of two-dimensional gravity in which one only path-integrates
over metrics of constant negative curvature (plus some extrinsic wiggles in the asymptotic
regions). The path integral of this model has recently been computed to all orders in the

– 5 –



J
H
E
P
0
4
(
2
0
2
1
)
1
3
6

genus expansion [75], where it was also linked to the type of double-scaled matrix integral
known to describe minimal matter coupled to the Liouville field [76–79]. In particular,
calculations in the JT description seem to imply a relationship with the p Ñ 8 limit of
the p2, pq minimal model coupled to Liouville. The heuristic explanation for this corre-
spondence was suggested by Seiberg and Stanford [75]: as p Ñ 8 the central charge of
the minimal model cM Ñ ´8 so that the Liouville central charge tends to cL Ñ `8.
This is a semiclassical limit for the conformal factor in which only the saddles (which
are constant curvature surfaces) contribute. Formal manipulations [75, 80] involving the
Feigin-Fuchs description of the minimal model coupled to Liouville seem to suggest that a
direct, rigorous limit might be taken, and this paper is a first step in that direction.

The outline of this paper is as follows. In section 2, we briefly review well known
facts about the minimal models and the structure of degenerate Verma modules. Sec-
tion 3 presents the standard treatment of the Coulomb gas formalism, including the work
of Feigin-Fuchs and Dotsenko-Fateev. Section 4 explores Felder’s BRST construction in
some instructive examples before presenting the general case. In section 5, we introduce
and begin to analyze the compact timelike linear dilaton, paying special attention to the
BRST structure of the model as well as its marginal deformations and currents. In par-
ticular, we demonstrate that a (slightly nontrivial) generalization of Felder’s holomorphic
BRST construction reduces the spectrum of the compact timelike linear dilaton to that of
the minimal model. In section 6, we perturb the timelike linear dilaton by its marginal
deformations, and relate the resulting observables to the screening charge calculations of
the Coulomb gas formalism. Along the way we clarify some subtle points regarding the
truncation of the OPE and the “reflection identification” of operators with the same scaling
dimension but different Up1q charge.

2 Minimal models

In this section we quickly review well known facts about the representation theory of the
Virasoro algebra at central charge c ă 1, as well as the operator content and fusion rules of
the minimal models. Each minimal model is labeled by a distinct pair of coprime integers
pp, p1q, and our convention is p ą p1. We will not restrict to the unitary series for which
p “ p1 ` 1, but we will only consider the diagonal models.

2.1 Structure of reducible Verma modules

In this section we provide a review of the representation theory of the Virasoro algebra

rLn, Lms “ pn´mqLm`n `
c

12pn
3 ´ nqδn,´m (2.1)

when c ă 1. Textbook treatments can be found in [81, 82]. Verma modules Mph, cq over
the Virasoro algebra are generated by the action of the Lnă0 on a highest weight vector
|h, cy. At each descendant level n, the matrix of overlaps is calculated using the adjoints
L:n “ L´n and the commutation relations (2.1). The determinant of this matrix was worked
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out by Kac [82, 83] and takes the form

detnpc, hq “ Kn

ź

r,sPN
rsďn

ph´ hr,sq
ppn´rsq , Kn “

ź

r,sPN
rsďn

pp2rqss!qppn´rsq´ppn´rps`1qq . (2.2)

In this formula, ppNq is the number of partitions of N . The zeroes of this polynomial are
given by

hr,spcq “
1
24pc´ 1q ` 1

4prα` ` sα´q
2 , α˘ “

?
1´ c˘

?
25´ c

?
24

. (2.3)

If our aim was to isolate the unitary models, we would require all norms to be positive
semi-definite. However, the quantum field theory description of a statistical system at a
second order phase transition need not be unitary, and the requirement that we impose
instead is that the representations be of type III´ in the classification of [32]. In this case,
there exists a rational relation

p1α` ` pα´ “ 0 , (2.4)

and we take

α` “

c

p

p1
, α´ “ ´

d

p1

p
. (2.5)

In terms of these coprime integers, the central charge takes the rational form

cp,p1 “ 1´ 6pp´ p
1q2

pp1
(2.6)

and the degenerate weights are simply

hr,s “ ´
1
4pα` ` α´q

2 `
1
4prα` ` sα´q

2 . (2.7)

It is important to note that hr,s “ hr`p1,s`p “ hp1´r,p´s. Returning to (2.2), this implies
that the Verma module Mphr,s, cp,p1q ”Mphr,sq has distinct singular vectors appearing at
level rs and level pp1 ´ rqpp´ sq. It is easy to calculate the conformal dimensions of these
null descendants, and one finds that they too are highest weight states for type III´ Verma
modules:

hr,s ` rs “ hp1`r,p´s “ hp1´r,p`s , hr,s ` pp
1 ´ rqpp´ sq “ hr,2p´s “ h2p1´r,s . (2.8)

In order to form the irreducible representation, one must quotient by the maximal sub-
representation Mphp1`r,p´sq ` Mphr,2p´sq. The irreducible state space of the model is
therefore

Mr,s “Mphr,sq{tMphp1`r,p´sq `Mphr,2p´squ . (2.9)

Unfortunately, Mphp1`r,p´sq X Mphr,2p´sq ‰ 0, so it is incorrect to simply remove a
copy of each state in the two modules Mphp1`r,p´sq and Mphr,2p´sq. The Verma mod-
ule Mphp1`r,p´sq has two null descendants occurring at level l “ pp1` rqpp´ sq and at level
l “ pp1 ´ rqpp` sq, each of which also generates a type III´ module:

hp1`r,p´s ` pp
1 ` rqpp´ sq “ h2p1`r,s “ hp1´r,3p´s , (2.10)

hp1`r,p´s ` pp
1 ´ rqpp` sq “ h3p1´r,p´s “ hr,2p`s . (2.11)
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pr, sq

pp1 ` r, p´ sq

p2p1 ` r, sq

pr, 2p´ sq

pr, 2p` sq

pr, kp` p´1qks` pr1´ p´1qks{2q pr ` kp1, p´1qks` pr1´ p´1qks{2q

Figure 1. Structure of reducible Verma modules. An arrow from one point to the next indicates
that the highest weight vector of the second module is a singular vector of the first module.

Importantly, these are the same null states appearing in the Verma module Mphr,2p´sq at
the levels l “ rp2p´ sq and l “ sp2p1 ´ rq:

hr,2p´s ` rp2p´ sq “ h2p1`r,s “ hp1´r,3p´s , hr,2p´s ` p2p1 ´ rqs “ h3p1´r,p´s “ hr,2p`s .

(2.12)

Since both Mphp1`r,p´sq and Mphr,2p´sq contain the same two submodules, the sum is a
quotient

Mphp1`r,p´sq `Mphr,2p´sq “ tMphp1`r,p´sq ‘Mphr,2p´squ{tMph2p1`r,sq `Mphr,2p`squ .

(2.13)
Therefore, if one removes a copy of each state in the two modules Mphp1`r,p´sq and
Mphr,2p´sq from Mphr,sq, one must add back in the states contained in Mph2p1`r,sq `

Mphr,2p`sq.
Repeating this analysis allows one to calculate the sum Mph2p1`r,sq `Mphr,2p`sq in

terms of the direct sum Mph2p1`r,sq ‘Mphr,2p`sq:

Mph2p1`r,sq `Mphr,2p`sq “ tMph2p1`r,sq ‘Mphr,2p`squ{tMph3p1`r,p´sq `Mphr,4p´squ .

(2.14)
This pattern persists indefinitely, and is illustrated in figure 1.

2.2 Minimal model spectrum, OPE coefficients and torus partition function

The diagonal minimal models contain scalar primary operators Mr,spxq of weight h “ h̄ “

hr,s with r and s in the range

1 ď r ď p1 ´ 1 , 1 ď s ď p´ 1 , (2.15)

subject to the identification Mp1´r,p´s “Mr,s.

– 8 –
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The fusion rules of the pp, p1q minimal model take the form

Mr1,s1 ˆMr2,s2 “

rmax
ÿ

r3“1`|r1´r2|

smax
ÿ

s3“1`|s1´s2|

Mr3,s3 , (2.16)

with r1 ` r2 ` r3 and s1 ` s2 ` s3 simultaneously odd and

rmax “ minpr1 ` r2 ´ 1, 2p1 ´ 1´ r1 ´ r2q , (2.17)
smax “ minps1 ` s2 ´ 1, 2p´ 1´ s1 ´ s2q . (2.18)

The OPE coefficients, denoted in this section by Dr3,s3
r1,s1;r2,s2 , were originally derived by

Dotsenko and Fateev using the Coulomb gas formalism [35]. For operators with canonically
normalized two-point functions, they are given by

Dr3,s3
r1,s1;r2,s2 “

ˆ

Rpr1, s1qRpr2, s2q

Rpr3, s3q

˙´ 1
2
Cr3,s3
r1,s1;r2,s2 , (2.19)

where

Cr3,s3
r1,s1;r2,s2

“ µl1,l

l1´2
ź

i“0

l´2
ź

j“0

prr2 ´ 1´ is ´ ρrs2 ´ 1´ jsq2prr1 ´ 1´ is ´ ρrs1 ´ 1´ jsq2

prr3 ` 1` is ´ ρrs3 ` 1` jsq2 (2.20)

ˆ

l1´2
ź

i“0

Γp´ρ1rr2 ´ 1´ is ` s2qΓp´ρ1rr1 ´ 1´ is ` s1qΓpρ1rr3 ` 1` is ´ s3q

Γp1` ρ1rr2 ´ 1´ is ´ s2qΓp1` ρ1rr1 ´ 1´ is ´ s1qΓp1´ ρ1rr3 ` 1` is ` s3q

ˆ

l´2
ź

j“0

Γp´ρrs2 ´ 1´ js ` r2qΓp´ρrs1 ´ 1´ js ` r1qΓpρrs3 ` 1` js ´ r3q

Γp1` ρrs2 ´ 1´ js ´ r2qΓp1` ρrs1 ´ 1´ js ´ r1qΓp1´ ρrs3 ` 1` js ` r3q
,

1
Rpr, sq

“

r´1
ź

i“1

s´1
ź

j“1

p1`i´ρp1`jqq2

pi´ jρq2

r´1
ź

i“1

Γpiρ1qΓp2´ ρ1p1` iqq
Γp1´iρ1qΓp´1`ρ1p1`iqq

s´1
ź

j“1

ΓpjρqΓp2´ ρp1` jqq
Γp1´ jρqΓp´1`ρp1`jqq ,

(2.21)

and

µr,spρq “ ρ4pr´1qps´1q
r´1
ź

i“1

s´1
ź

j“1

1
pi´ ρjq2

r´1
ź

i“1

Γpiρ1q
Γp1´ iρ1q

s´1
ź

j“1

Γpjρq
Γp1´ jρq . (2.22)

In these formulas

l1 “
1
2pr1 ` r2 ´ r3 ` 1q , l “

1
2ps1 ` s2 ´ s3 ` 1q , ρ “ α2

` , ρ1 “ α2
´ . (2.23)

For the OPE coefficients in the non-diagonal models, see [84, 85].

Representations of the torus partition function. The character associated to each
irreducible representation Mr,s follows directly from the structure of inclusions in the de-
generate Verma module:

χr,spqq “
qp1´cq{24

ηpqq

«

qhr,s `

8
ÿ

k“1
p´1qk

´

q
h

r`kp1,p´1qks` 1
2 p1´p´1qkqp ` q

h
r,kp`p´1qks` 1

2 p1´p´1qkqp
¯

ff

.

(2.24)
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Here ηpqq “ q1{24 ś8
n“1p1 ´ qnq is the Dedekind eta function and q “ e2πiτ is the elliptic

nome. There is also a simpler expression, originally due to Rocha-Caridi [38], which will
arise more naturally in the Coulomb gas construction:

χr,spqq “ Kpp,p1q
r,s pqq ´K

pp,p1q
r,´s pqq , Kpp,p1q

r,s pqq “
1
ηpqq

ÿ

nPZ
qp2pp

1n`pr´p1sq2{4pp1 . (2.25)

This will be the form of the trace obtained through Felder’s BRST construction. Summing
over all of the primaries in the Kac table, the partition function of the diagonal mini-
mal model can be written in terms of the partition function ZpRq of the c “ 1 compact
boson [86–88]

2Zpp,p1q “ Zp
a

pp1q ´ Zp
a

p1{pq . (2.26)

This can of course be rewritten several ways using T -duality.

3 Review of the Coulomb gas formalism

The conformal data of the minimal models reviewed in section 2 completely characterizes
them as abstract conformal field theories. Historically, this data (the OPE coefficients in
particular, but also the structure of the degenerate Verma modules) was actually derived
using a set of free field techniques known as the Coulomb gas formalism [33–36]. This
relationship with the free field progressed in several stages. The relationship between
degenerate Verma modules over the Virasoro algebra and the timelike linear dilaton Fock
space was proven in all generality by Feigin and Fuchs, who built on earlier work by Kac.
We briefly review their results in section 3.1, focusing on simple examples that will play
a role in the rest of the paper. These mathematical results were followed by the work of
Dotsenko and Fateev, who first understood how to calculate genus zero minimal model
correlation functions using the free field representation. This well known technique is
reviewed in section 3.2. The extension of the Coulomb gas formalism to higher genus
surfaces required understanding the role of the numerous operators present in the linear
dilaton description but absent in the minimal model. This problem was essentially solved
by Felder, who unearthed a BRST structure in the model that can be used to project
out the unphysical states that would otherwise contribute on higher genus surfaces. We
describe this construction in section 4.

3.1 U(1) current algebra and the Feigin-Fuchs free field resolution

The Feigin-Fuchs free field resolution of the degenerate Virasoro representations has its
roots in the oscillator description of the old dual resonance models [21, 89]. Since the
work of Feigin and Fuchs is completely kinematical and deals only with the representation
theory of the Virasoro algebra, it can be completely described with a free Lagrangian field
theory. The relation of this model to the interacting minimal models will be the focus of
sections 5–6.

The basic Lagrangian model for the Feigin-Fuchs construction is the linear dilaton with
action

Srφ, gs “
1

4π

ż

?
gd2x

”

gabBaφBbφ`QφRpgq
ı

(3.1)
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and an imaginary background charge Q “ ipα``α´q. Although the system is conformally
invariant, it exhibits a number of peculiar, seemingly pathological features. The model will
be thoroughly analyzed in section 5 as a proper quantum field theory. In this section, as in
the work of Feigin and Fuchs, we will view it simply as a vehicle for studying degenerate
representations of the Virasoro algebra. In particular, we will work holomorphically and
will not need to consider global issues like the compactness of φpxq.

Free scalar without background charge. It will be useful to collect formulas for
the theory with Q “ 0 in order to highlight the effect of the background charge. In our
conventions,2 the two-point function of the scalar field is given by

xφpxqφpyqy “ ´
1
2 logpx´ yq2 . (3.2)

On any two dimensional surface, the model without a background charge has an exactly
conserved current whose holomorphic component is a primary operator with the mode
expansion

Jpzq “ iBφpzq ”
1
?

2

8
ÿ

m“´8

jm
zm`1 . (3.3)

The modes of this current are simply the Fock space creation and annihilation operators

jm “
?

2
¿

dz

2πz
mBφpzq , (3.4)

and they satisfy the commutation relations of the Heisenberg algebra

rjm, jns “ mδm,´n . (3.5)

The holomorphic energy momentum tensor and its moments take the Sugawara form3

T pzq “ ´BφpzqBφpzq “ JpzqJpzq , Lm “
1
2

8
ÿ

n“´8

jm´njn , (3.6)

from which it follows that
rLm, jns “ ´njm`n . (3.7)

The spectrum of the model contains holomorphic vertex operators eiαφpzq with weight
h “ α2

4 , and the state-operator correspondence assigns a state |αy on the cylinder to each
such primary operator inserted at the origin of the plane. These states satisfy

L0|αy “
α2

4 |αy , j0|αy “
α
?

2
|αy , Lną0|αy “ jną0|αy “ 0 . (3.8)

For each such state we can consider the Fock space of current algebra descendants generated
by vectors of the form

j´n1 . . . j´nk
|αy . (3.9)

2Our conventions are those of [90] with α1 “ 1.
3These operators are defined by normal ordering, which we suppress.
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The adjoint with respect to the standard CFT2 inner product is

L:n “ L´n , j:n “ j´n . (3.10)

Of particular importance is the state j´1|0y corresponding to the conserved current. Since
rL1, j´1s “ j0 and rL2, j´1s “ j1, this state is annihilated by all Lną0 and is therefore a
Virasoro singular vector.4 The current algebra Fock space is an irreducible representation
of the Heisenberg algebra but contains multiple representations of the Virasoro algebra.
Note that although it is orthogonal to all Virasoro descendants of the identity, the level
one current algebra descendant is of course not a zero norm state:

x0|j1j´1|0y “ 1 . (3.11)

As we will see, this discussion is related to the reducibility of the Verma module Mph, cq
with c “ 1 and h “ m2{4 with m P Z. For instance, for m “ 1 it is easy to verify that

rL´2 ´ L
2
´1s|α “ 1y (3.12)

is annihilated by L1 and L2, and therefore by all Lną0. More generally, the exponential
einφpzq has an infinite set of singular vectors with L0 “

1
4pn`2kq2 within its highest weight

module. We will also need the commutators (for n ě ´1)
”

Ln, e
iαφpzq

ı

“

ˆ

zn`1 d

dz
`
α2

4 pn` 1qzn
˙

eiαφpzq ,
”

jn, e
iαφpzq

ı

“
α
?

2
zneiαφpzq . (3.13)

Non-zero background charge. The nontrivial coupling of the model (3.1) to the back-
ground curvature affects both the spectrum and correlation functions of the model. The
effect on correlation functions is the focus of the work by Dotsenko and Fateev and will be
described in the next section. The effect which is important for the Feigin-Fuchs analysis is
the change in the spectrum. The background coupling to curvature adds an improvement
term to the energy momentum tensor, which becomes

T pzq “ ´BφpzqBφpzq `QB2φpzq . (3.14)

It is useful to view this as a twist of the original theory’s energy momentum tensor by the
Up1q current

T pzq Ñ T̂ pzq “ T pzq ´ iQBJpzq . (3.15)

This twist mixes the Virasoro and current algebra generators

Lm Ñ L̂m “ Lm `
iQpm` 1q

?
2

jm (3.16)

“
1
2

8
ÿ

n“´8

jm´njn `
iQpm` 1q

?
2

jm , (3.17)

4In what follows, we use the term “singular vector” to denote a Virasoro singular vector since we
are ultimately only interested in Virasoro representations. The terminology includes a current algebra
descendant which is Virasoro primary.
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and the new generators L̂m satisfy the Virasoro algebra with central charge c “ 1 ` 6Q2.
The new conformal dimensions of the exponential operators follow simply from (3.16)
and (3.8):

”

L̂0, e
iαφpzq

ı

“

ˆ

α2

4 ` iQ
α

2

˙

eiαφpzq . (3.18)

Perhaps most importantly, the twist also alters the Virasoro Kac-Moody commutation
relation

”

L̂m, jn

ı

“ ´njm`n `
iQ
?

2
mpm` 1qδm,´n . (3.19)

In particular, the relation rL̂1, j´1s “ j0` i
?

2Q implies that j´1|0y is no longer a singular
vector:

L̂1j´1|0y “ i
?

2Q|0y ‰ 0 . (3.20)

This is equivalent to the statement that the current Jpzq “ iBφpzq is no longer a primary
operator in the twisted model due to the anomalous OPE with the energy-momentum
tensor

T pzqJpwq „
iQ

pz ´ wq3
`

J

pz ´ wq2
`

BJ

z ´ w
` . . . (3.21)

Taking the adjoint of the equation rL̂1, j´1s “ j0 ` i
?

2Q and requiring L̂:n “ L̂´n along
with j:n “ j´n for n ‰ 0 demands that j:0 “ j0 `

?
2iQ. Evaluating x0|j0

śn
i“1 e

iαiφpziq|0y
in two ways then gives the genus zero selection rule

n
ÿ

i“1
αi “ ´2iQ “ 2α` ` 2α´ (3.22)

and requires |αy: “ x2α` ` 2α´ ´α| for charged states. Although the primary motivation
for Feigin and Fuchs was to determine the structure of the reducible Verma modules over
the Virasoro algebra, they were led to study this model (more precisely, its fermionic
version, or the space of semi-infinite forms) as an intermediate step in proving the Kac
determinant formula. Although the structure of the Fock space is not the same as that
of the Verma module, it is easier to study in some respects because of the extra structure
(current algebra) that it carries. The Kac determinant can be viewed as the determinant
of the map from a Verma module to its contragradient Verma module5 Mph, cq ÑM cph, cq

given by the matrix of overlaps of descendants of the highest weight vector. Because the
Fock space FQ,α with c “ 1 ` 6Q2 has a highest weight state with h “ α

2
`

α
2 ` iQ

˘

and
furnishes a representation of the Virasoro algebra, there are also unique homomorphisms
from Mph, cq to FQ,α and from FQ,α to M cph, cq. We will denote these maps Γ and L. The
situation is depicted in figure 2 [91].

There is a natural grading according to level in each space and the maps restrict to
the fixed-level subspaces. Importantly, the maps Γ, L need not be isomorphisms. Since we
are only interested in the case of the type III´ Verma modules, there are two interesting
possibilities. If Γ is an isomorphism, then the Fock space is also reducible with two singular

5If we denote the Verma module grading as M “ ‘Mj , then the contragradient Verma module satisfies
Mc

j “ HompMj ,Cq.

– 13 –



J
H
E
P
0
4
(
2
0
2
1
)
1
3
6

Mph, cq M cph, cq

FQ,α

x¨, ¨y

Γ L

Figure 2. Route to the Kac determinant.

v0

w0

v1

u1

v´1

u2 w1

v´2 v2

u3 w2

Figure 3. Feigin-Fuchs characterization of the Fock space structure.

vectors at levels rs and pp1 ´ rqpp ´ sq. However, it could also be the case that Γ is not
surjective, in which case the Fock space is still reducible (the image of Γ is a submodule),
but the image of the second singular vector in FQ,α might be zero. In this case the role
of the second singular vector is played by a current algebra descendant which is not a
Virasoro descendant. It is this second scenario that will be relevant in what follows. The
composition of Γ and L is a homomorphism from M Ñ M c that sends highest weight to
highest weight. Such a map is unique (up to a scalar) by the universal property of Verma
modules, so computing the determinants of Γ and L produces the Kac determinant and
indirectly determines the singular vector structure of the original Verma module.

The determination of the singular vector structure of the Fock module is technical.
The computations are most easily carried out in the fermionic oscillator description, but
a bosonized representation is implicit in the work of Thorn and Tsuchiya-Kanie [21, 22].
The structure of the Fock space is summarized in figure 3, whose structure of inclusions
should be contrasted with that of figure 1. In particular, while the dimension of each state
appearing in this diagram matches that of the corresponding state in the Verma module
diagram, the properties of the states are different. In the Fock space diagram, the vectors
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v0

w0

v1

u1

v´1

u2 w1

v´2 v2

u3 w2

v0

w0

v1v´1

w1

v´2 v2

w2

w0

w1

w2

Figure 4. Successive quotients of the Fock space.

v0, uk labeled by black dots represent the only singular vectors. In particular, w0, which
replaces the first singular vector in the Verma module diagram, is not a singular vector.
A useful example to keep in mind is the identity Fock space: after the twist the current
algebra descendant w0 “ j´1|0y is no longer singular, but the highest weight state can be
written v0 “ |0y 9 L1j´1|0y. The vectors v˘k depicted in red in figure 3 have the property
that they become singular vectors if one quotients the Fock space by the uk. Finally, the
wk become singular if one quotients out by the vk’s. This characterization in terms of
successive quotients is depicted in figure 4. Upon performing all quotients, one arrives at
a Hilbert space isomorphic to the irreducible representation of the Virasoro algebra. The
physical interpretation of these states is most transparent in Felder’s BRST formulation,
and we postpone further discussion until section 4.

3.2 Dotsenko and Fateev’s construction and the screening charges

The discovery of the Feigin-Fuchs bosonic resolution made it clear that the degenerate
representations of the Virasoro algebra can be embedded within the Hilbert space of the
timelike linear dilaton, but said nothing about dynamics. Around the same time, it was
independently discovered [1] that null-state decoupling conditions lead to ordinary differen-
tial equations for the minimal model four-point functions. These ODE’s are generalizations
of the hypergeometric equation, and their solutions have integral representations. Dotsenko
and Fateev realized that these integrals could be represented in terms of integrated free
field correlation functions, and this insight led to the development of a powerful formalism
that computes any genus zero minimal model observable in terms of free field data. In
this section we will briefly review this Coulomb gas formalism. For more complete reviews
see [36, 81, 92].
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Recall that the linear dilaton exponential operators eiαφpzq have left-moving weights

h “
α

2

´α

2 ` iQ
¯

(3.23)

and that this expression is invariant under the “reflection” map

αÑ 2α` ` 2α´ ´ α . (3.24)

When the momentum selection rule is satisfied, the free field expectation value of these
operators takes the form

xeiα1φpz1q . . . eiαnφpznqy “
ź

iąj

pzi ´ zjq
αiαj{2 . (3.25)

The vertex operators

Vr,spzq “ eiαr,sφpzq , αr,s “ p1´ rqα` ` p1´ sqα´ , r, s P Z (3.26)

have the same conformal dimensions as the minimal model primaries, as do their reflection
partners V´r,´spzq. In the original application of the Coulomb gas formalism, one sim-
ply restricts attention to the set of operators (3.26) with values of r, s appearing in the
Kac table. However, when we construct Felder’s BRST complex we will have to consider
operators lying outside of this range, but still of the form (3.26).

The genus zero selection rule
ÿ

i

αi “ 2α` ` 2α´ (3.27)

sets most correlation functions of local operators to zero. There are however two h “ 1
operators in the model with momenta that lie outside of the Kac table:

M`pzq ” e2iα`φpzq , M´pzq ” e2iα´φpzq. (3.28)

Importantly, these exponentials have non-vanishing Up1q charges and the nonlocal “screen-
ing operators”

S˘ ”

¿

dzM˘pzq (3.29)

commute with the Virasoro algebra for suitably chosen closed contours. Since these oper-
ators carry charge, they can be used to satisfy the selection rule (3.27) without altering
the conformal properties of a correlator. The first step in producing the minimal model
correlation function

xMr1,s1pz1, z̄1q . . .Mrn,snpzn, z̄nqy (3.30)

is to determine the appropriate number of screening charges needed to satisfy the selection
rule in the linear dilaton theory:

xVr1,s1pz1q . . . Vrn,snpznqS
n`
` S

n´
´ y . (3.31)

There is no principle which independently fixes the specific combination of contours in this
holomorphic correlation function. Indeed, for each correlator there is a fixed number of
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independent contours, each corresponding to a particular conformal block. The correct
combination is instead determined by combining the holomorphic correlator with its anti-
holomorphic counterpart and requiring locality (absence of branch cuts) in the final answer.
This prescription reproduces the full minimal model correlator up to normalization factors.

The textbook example of an application of the Coulomb gas formalism is the calculation
of the four-point correlation function

xMr1,s1p0qM1,2pz, z̄qMr3,s4p1qMr4,s4p8qy (3.32)

with the three operators chosen so that a single screening charge is needed. Ignoring factors
that do not produce interesting analytic structure when combined with the right moving
correlator, we find

xeiα1φp0qe´iα´φpzqeiα3φp1qeiα4φp8q

¿

dwe2iα`φpwqy 9

¿

dwwα1α`pw ´ 1qα3α`pw ´ zq´α´α` .

(3.33)
The integrand has branch points at 0, z, 1,8 and the integral has two independent closed
contours. Up to phase factors arising from crossing the cuts (which we ignore since we are
blind to normalization at this stage), they can be shrunk to run from 0 to z and from 1 to
8. We denote the two independent integrals

Iipzq “

¿

Ci

dwwapw ´ 1qbpw ´ zqc , (3.34)

with the obvious identifications.
The full minimal model correlator must be proportional to a sum of products of the

holomorphic and antiholomorphic correlators

xMr1,s1p0qM1,2pz, z̄qMr3,s3p1qMr4,s4p8qy „
ÿ

XijIipzqIjpzq , (3.35)

and the correct combination is determined by requiring the absence of branch cuts in the
full correlator. Since the integrands of the Iipzq have branch points at 0, 1, and 8, taking
z around a closed path encircling 0 or 1 results in a monodromy transformation Mij that
mixes the different solutions of the hypergeometric equation

Iipzq Ñ GaijIjpzq , a “ 0, 1 . (3.36)

In the case at hand the monodromy around 0 is a diagonal transformation, so that Xij

must be a diagonal matrix. The monodromy around the point 1 is not diagonal in this
basis, but there is another basis of solutions Ĩip1 ´ zq in which it is. The two bases are
linearly related

Iipzq “
ÿ

αij Ĩjp1´ zq (3.37)

and the locality requirement translates into the condition
ÿ

i

αijXiαik “ 0 , j ‰ k , (3.38)
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where Xi denote the diagonal elements of Xij . Once the αij are known, the Xi are fixed (up
to normalization) and the solution to the crossing constraint obtained. Once the four-point
function has been determined, it is factorized onto three-point functions to determine the
fusion rules. Extra work is required to determine the correct normalization: this is most
easily done using the two-dimensional surface integrals we will discuss in section 6.

4 Felder’s BRST construction

The screening charge prescription of Dotsenko and Fateev is capable of computing genus
zero minimal model correlators. However, higher genus observables naively receive con-
tributions from the spurious states that are present in the linear dilaton but not in the
minimal model, and it is necessary to understand how to remove these contributions. This
problem was solved algebraically by Felder, who unearthed a hidden BRST structure im-
plicit in the works of Feigin-Fuchs and Thorn. We will begin by analyzing a very simple
model where the BRST structure is extremely transparent. Felder’s general construction
is reviewed in section 4.2.

4.1 Warmup: the p2, 1q model and the ηξ system

In this subsection we will analyze what might be called the p2, 1qminimal model. According
to section 2, this system should have no local operators, and understanding how this
statement is realised within the compact timelike linear dilaton theory will prove useful
in the analysis of the more complicated models. In fact, Felder’s BRST construction is
extremely transparent in this model, and will be immediately recognized by those familiar
with the quantization of the superstring. The standard description of the holomorphic part
of the model uses a pair of anticommuting fields ηpzq and ξpzq with central charge c “ ´2
and an action of the form

S “
1

2π

ż

d2z ηB̄ξ . (4.1)

The operator ηpzq is naturally a vector current with h “ 1, while ξpzq is an h “ 0 scalar.
The Coulomb gas scalar can be viewed as a “bosonization” of this system, but several
peculiar properties of the Coulomb gas formalism have simple explanations within the ηξ
description.

Although our primary goal is to motivate Felder’s BRST construction, there are several
reasons to consider this model. There is an argument6 due to Distler [94] that relates
the p2, 1q model, coupled to Liouville, to topological gravity [95, 96] and the one-matrix
model [76–78]. The ηξ system also makes an appearance in the free field realization of
the WZW models [97], and most famously, in the “bosonization” of the βγ superconformal

6Distler identifies the ηξ system (viewed as the p2, 1q minimal model) combined with the Liouville field
ϕ as a bosonization of the βγ ghosts, which combine with the bc reparameterization ghosts to form the βγbc
BRST multiplet of topological gravity. Certain global issues, including non-compactness of the Liouville
field, the absence of the Liouville potential, and the proper treatment of the ξpzq zero mode seem puzzling
in this derivation [93]. As we will describe, the p2, 1q model is treated differently when viewed as a minimal
model than it is in string theory.
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ghosts [98]:
β “ e

?
2ϕBξ , γ “ ηe´

?
2ϕ . (4.2)

The action (4.1) has an obvious shift symmetry under which

ξ Ñ ξ ` const. , (4.3)

as well as an anomalous ghost number current jg “ ´ηξ whose bosonization is simply the
momentum current of the linear dilaton. The ghost OPE

ηpzqξpwq „
1

z ´ w
, ηpzqηpwq „ 0 , ξpzqξpwq „ 0 (4.4)

indicates that jBpzq “ ηpzq is the current for the ξpzq shift symmetry, and the corresponding
charge is

QB “

¿

dz

2πiηpzq . (4.5)

Since η is anticommuting, Q2
B “ 0 and QB is a scalar BRST charge. Crucially, it commutes

with the Virasoro algebra since the energy momentum tensor T “ ηBξ is shift invariant.
The BRST transformations are

tQB, ξpzqu “ 1 , (4.6)
tQB, ηpzqu “ 0 . (4.7)

From the first of these equations we see that the identity operator is BRST exact, and ξpzq
is not BRST closed. In particular, if we identify the dimension zero operator ξpzq as the
“reflection of the identity”, then we see that neither putative identity operator is in the
BRST cohomology.

It is helpful to translate some of these statements using the free field mode expansions

ηpzq “
8
ÿ

n“´8

ηn
zn`1 , ξpzq “

8
ÿ

n“´8

ξn
zn

. (4.8)

In this language the scalar BRST charge is the zero mode of η

QB “ η0 . (4.9)

The anticommutators of the modes follow directly from the ghost OPE (4.4):

tηn, ξmu “ δn,´m , tηn, ηmu “ tξn, ξmu “ 0 . (4.10)

Because the zero mode of ξ does not appear in the βγ model (4.2), standard treatments
distinguish between the “large algebra”, which contains ξ0, and the “small algebra” which
does not. Indeed, the definition of the SLp2,Cq invariant vacuum requires

ξn|0y “ 0 n ě 1 , (4.11)
ηn|0y “ 0 n ě 0 . (4.12)
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Since rL0, ξ0s “ 0, when ξ0 acts on the SLp2,Cq invariant vacuum, it generates a new state
ξ0|0y of the same energy. This is a state in the “large” Hilbert space: it has the same
energy, but carries different ghost charge. The vacuum is BRST invariant since η0|0y “ 0,
and the states of the model are built using the usual fermionic Fock space construction.
Since tη0, ξmu “ δ0,m, restricting to the small Hilbert space is the same as restricting to the
kernel of the BRST charge QB. In other words, the small Hilbert space is the space of BRST
invariant states, and passing to the kernel of QB removes the “reflected” operators from
the spectrum. If we pass to the cohomology of QB then we find, as expected, that there are
no states. Each potential state is constructed by acting on |0y with each fermionic mode
at most once. Any state that includes ξ0 is not BRST invariant, and any state without ξ0
is BRST exact since

|0y “ tη0, ξ0u|0y “ QBpξ0|0yq . (4.13)

The same statements hold in the Fock spaces built on different fillings of the Fermi sea.
Felder’s BRST construction is a more complicated (and bosonized) version of this story.

Given the p2, 1q model defined by (4.1), how do we know that we are supposed to
perform the BRST reduction? Apparently, it is a choice that we make in the definition of
the model. When this system is used to bosonize the βγ superconformal ghosts, we discard
states that are not BRST invariant but keep BRST exact states. The same model with
no BRST projection at all actually describes the critical phase of dense polymers [99–101]
(obviously, this critical point exhibits many non-standard features). In this case, passing
to the cohomology is a choice, and it determines the observables we allow ourselves to
compute. For instance, we expect that if we perform a trace in the Hilbert space of the
BRST quotiented model, we should get zero. Moreover, this trace should differ from the
trace in the model without the BRST quotient. Since ηξ are anticommuting variables, we
need to pick a spin structure on the torus, and to describe the “trivial” minimal model we
should pick the one that gives zero. From the functional integral point of view, this will be
the spin structure such that ξpzq has a zero mode. We are naturally led to the conclusion
that the path integral with periodic boundary conditions,

Zpβq “ TrRp´1qF e´βH , (4.14)

is the quantity that actually computes the “observables” in the p2, 1q model viewed as a
trivial minimal model. From the algebraic perspective, this quantity vanishes identically
due to the exact degeneracy between states built on |0y and on ξ0|0y, which cancel in pairs.

The appearance of a specific spin structure in this construction suggests that, in
bosonizing the model to obtain the usual Coulomb gas description, we may need to in-
troduce discrete gauge fields coupled to the spin structure through a topological term. In
other words, what term do we add to the compact timelike dilaton action to compute zero
with the functional integral?

In the treatment of the βγ system, η and ξ are often further bosonized in terms of a
scalar field φpzq with a background charge Q “ i?

2 :

ξpzq “ ei
?

2φpzq , ηpzq “ e´i
?

2φpzq . (4.15)
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This description in terms of φpzq is the analog of the Coulomb gas formulation of the p2, 1q
minimal model, and we would like to use it to draw lessons for the physical models. We
begin by reproducing the BRST discussion in these new variables. For reasons that will
become clear in later sections, we will assume that the radius of the boson is R “

?
2. For

a holomorphic vertex operator the OPE is

eiα1φpzqeiα2φp0q „ zα1α2{2eipα1`α2qφp0q ` . . . , (4.16)

the conformal weight is
h “

α

2

´α

2 ´ α` ´ α´
¯

(4.17)

and the reflection is αÑ ´2iQ´ α. Since the identity operator has Up1q charge zero, we
identify

ξpzq “ eip2α``2α´qφpzq “ ei
?

2φpzq . (4.18)

Since ηpzq should have opposite ghost charge, we identify

ηpzq “ e2iα´φpzq “ e´i
?

2φpzq , η̃pzq “ ei2
?

2φpzq . (4.19)

These identifications reproduce the correct form of the ghost OPE:

ηpzqξp0q„ e´i
?

2φpzqei
?

2φp0q„
1
z
, ηpzqηp0q„ ze´2

?
2iφp0q`. . . , ξpzqξp0q„ ze2

?
2iφp0q`. . . .

(4.20)
In particular, the ηη and ξξ OPEs are non-singular. It is also important to note that

ηpzqη̃p0q „ 1
z2 rξp0q ` zL´1ξp0q ` . . . s (4.21)

so that the level-one singular vector in the ξpzq Fock space is BRST exact:

rQB, η̃p0qs “ L´1ξp0q . (4.22)

Also note that although η̃pzq is not BRST closed, the non-local operator
¿

η̃pzqdz “

¿

e2iα`φpzqdz (4.23)

is BRST invariant since the variation of η̃pzq is a total derivative. We can briefly summarize
the discussion with the statement that the BRST complex with cochain groups given by
the Fock spaces

. . .
QB
ÝÝÑ rjBpzq

QB
ÝÝÑ r1pzq QB

ÝÝÑ1 QB
ÝÝÑ jBpzq

QB
ÝÝÑ ¨ ¨ ¨ “

. . .
QB
ÝÝÑ ei2

?
2φpzq QB

ÝÝÑ ei
?

2φpzq QB
ÝÝÑ1 QB

ÝÝÑ e´i
?

2φpzq QB
ÝÝÑ . . . (4.24)

is exact: there is no cohomology with respect to the differential QB. It is important
to understand the structure of this BRST complex, because a more complicated version
underlies Felder’s construction. Each exponential operator to the left of the identity has a
singular OPE with the BRST current and is not BRST closed. The Q-variations of these
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operators and their descendants prepare the singular vectors in the Fock spaces to their
right. The exponential operators to the right of the identity all have non-singular OPE’s
with the BRST current and are therefore BRST closed. They are however also BRST exact.
In order to understand this point, it is important to remember that the Fock spaces built
on the exponential operators contain current algebra descendants in addition to Virasoro
descendants. In particular, while the BRST charge commutes with the Virasoro algebra, it
does not commute with individual elements of the current algebra (for instance, it carries
Up1q charge). For instance, since the identity operator is BRST exact, each of its Virasoro
descendants is also Q-exact and therefore has trivial image in the Fock space built on
jB “ e2iα´φ. However, the level one current algebra descendant in the identity Fock space
is not BRST closed and its image is precisely the BRST current:

rQB, jpzqs “ jBpzq . (4.25)

This crucial formula actually holds in all of the linear dilaton models we consider, and
explains how the Up1q currents of the linear dilaton are eliminated when reducing to the
minimal model.

4.2 Felder’s BRST complex: the general case

In section 2, we saw that the degenerate Verma module associated to the primary of weight
hr,s has two infinite classes of singular vectors. The first class occurred with weights hrk,sk

given by
rk “ r ` kp1 , sk “ p´1qks` r1´ p´1qksp2 . (4.26)

The other class was of the form hr,sk
with

sk “ kp` p´1qks` r1´ p´1qksp2 . (4.27)

The structure of the Fock space discussed in section 3.1 was slightly more complicated. In
particular, the full Fock space had fewer singular vectors than the reducible Verma module.
However, upon performing successive quotients by submodules of singular vectors, the Fock
space is reduced to the irreducible representation of the Virasoro algebra needed for the
construction of the minimal model. When placed side by side, as in figure 5, the vectors
in each diagram share the same conformal dimension.

Felder’s innovation was to reformulate the successive quotients of the Fock space by
the submodules of singular vectors in the language of BRST.

To begin, Felder considers a sequence of cochain groups given by Fock spaces Frk,sk

whose highest weight vectors have the dimensions hrk,sk
appearing in figure 5:

. . . ÝÑ Fr,4p´s ÝÑ Fr,2p`s ÝÑ Fr,2p´s ÝÑ Fr,s ÝÑ Fp1`r,p´s ÝÑ F2p1`r,s ÝÑ F3p1`r,p´s ÝÑ . . .

(4.28)
Note that the Fock spaces to the right of Fr,s have momenta corresponding to (4.26), while
those to the left have momenta given by (4.27). It had been known since the work of
Thorn [21] that multiple nested integrals of the h “ 1 operator M´pzq could be used to
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pr, sq

pp1 ` r, p´ sq

p2p1 ` r, sq

pr, 2p´ sq

pr, 2p` sq

pr, 4p´ sq p3p1 ` r, p´ sq

pr, 4p` sq p4p1 ` r, sq

pr, 6p´ sq p5p1 ` r, p´ sq

v0

w0

v1

u1

v´1

u2 w1

v´2 v2

u3 w2

Figure 5. Verma module structure versus Fock space structure.

write the singular vectors in the Fock space Fr,s in terms of exponential operators with
different momenta. This led Felder to identify the operator

Q´ “

¿

dz

2πiM´pzq (4.29)

as the appropriate differential for the complex (4.28). For a closed contour, the operator
Q´ commutes with the Virasoro algebra. However, since the holomorphic operator M´pzq

is not itself mutually local with all exponentials in the model, it is actually an appropriately
chosen power of Q´ that acts nilpotently on the individual Fock spaces. It is also precisely
this power of Q´ which was known to prepare singular vectors in the Fock space Fr,s. The
actual BRST complex takes the form

ÝÑFr,4p´s
Qp´s
´

ÝÝÝÑFr,2p`s
Qs
´

ÝÝÑFr,2p´s
Qp´s
´

ÝÝÝÑFr,s
Qs
´

ÝÝÑFp1`r,p´s
Qp´s
´

ÝÝÝÑF2p1`r,s
Qs
´

ÝÝÑF3p1`r,p´sÝÑ

(4.30)
Using the results of Feigin and Fuchs, Felder proved that the only nontrivial cohomology
of this complex lies in Fr,s. Therefore, a trace in the cohomology of Fr,s can be extended to
a trace in the cohomology of the entire complex, which by the algebraic Lefshetz principle
can be represented by an alternating trace in the full cochain groups themselves. This
fact is the basis for Felder’s simple rederivation of the Rocha-Caridi form of the minimal
model characters. An equivalent complex can be constructed using appropriate powers of
the BRST charge

Q` “

¿

dz

2πiM`pzq . (4.31)

We will illustrate the general idea with a few simple examples before describing the full
action of the BRST charge within each Fock space.
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Example: the identity Fock space. If we specialize the complex (4.30) to the case
r “ s “ 1, it becomes

. . . ÝÑ F1,2p´1
Qp´1
´

ÝÝÝÑ F1,1
Q´
ÝÝÑ F1,´1 ÝÑ . . . (4.32)

The exponential operator acting as the highest weight state in F1,´1 is simply e2iα´φpzq,
which is the BRST current jBpzq. Now according to formula (3.13) we have

rj´1, e
2iα´φpzqs “

α´
?

2
1
z
e2iα´φpzq . (4.33)

Integrating both sides of the equality on a contour surrounding the origin, we find

rj´1, Q´s “
α´
?

2
e2iα´φp0q 9 jBp0q . (4.34)

This equation says that the Up1q momentum current is not BRST closed, and that its Q´
variation simply produces the BRST current jBpzq:

Q´j´1|0y “ rQ´, j´1s|0y 9 jBp0q|0y . (4.35)

Restoring position dependence, we have the operator equality rQ´, jpzqs “ jBpzq. This is
an extremely important equation, since the minimal model obviously does not contain any
Up1q momentum current. In this example, the identity operator in the Verma module has
two singular descendants at levels one and pp1´1qpp´1q. In the Fock module, the singular
descendant at level one is replaced by a nonsingular vector which is however not BRST
closed. Meanwhile, the singular vector at level pp1 ´ 1qpp ´ 1q is Q-exact and is produced
by the action of Qp´1

´ on the highest weight exponential eip2´2pqα´φpzq in F1,2p´1. To see
this, note that since Q´ commutes with the Virasoro algebra, the dimension and charge of
the Q-exact operator rQp´1

´ , eip2´2pqα´φpzqs matches that of the singular descendant in F1,1
which was known from the work of Feigin and Fuchs. Moreover, since the exponential is
singular (highest weight), it’s Q-variation will be singular provided that it is non-vanishing.
One then verifies that this vector is nonzero by computing its inner product with another
state using the Dotsenko-Fateev integrals.

Another simple example demonstrates why the reflection of the identity operator does
not introduce position dependence in BRST invariant correlation functions. The reflection
of the identity is in the Fock space Fp1´1,p´1, and the relevant segment of the BRST
complex is

F1,´1
Q`
ÝÝÑ Fp1´1,p´1 . (4.36)

The action of the BRST charge is given by

rQ`, e
2iα´φpzqs “

¿

dw

2πipw ´ zq
2α`α´ : e2iα`φpwqe2iα´φpzq :

“

¿

dw

2πi
1

pw ´ zq2
r1` 2iα`pw ´ zqBφ` . . . seip2α``2α´qφpzq (4.37)

9 Bze
ip2α``2α´qφpzq .
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The derivative of the reflection of the identity is BRST exact, so eip2α``2α´qφpzq is a topo-
logical operator.

Another tractable example is the construction of the leading singular vector in the
Fock space F1,p´1. The relevant segment of the BRST complex is

F1,p`1
Q´
ÝÝÑ F1,p´1 . (4.38)

The BRST charge should produce the null state at level l “ pp1 ´ rqpp ´ sq “ p1 ´ 1. Its
action on the exponential operator in F1,p`1 is given by

rQ´, V1,p`1p0qs “
¿

dzz´α
2
´p : e2iα´φpzqe´ipα´φp0q : (4.39)

“

¿

dz
1
zp1
rV1,p´1 ` ¨ ¨ ¨ ` z

p1´1pL´pp1´1q ` . . . qV1,p´1 ` . . . s , (4.40)

and the contour integral picks out the correct descendant at level p1 ´ 1.

The general mechanism. The action of the BRST charge in a general Fock space Fr,s
corresponding to a minimal model primary is shown in figure 6. The vector w0 (the analog
of the singular vector at level l “ rs in the Verma module), while not singular, is not
Q-closed and is mapped to the highest weight state in Fr,´s. On the other hand, the vector
u1 is singular and corresponds to the null descendant at level pp1 ´ rqpp ´ sq. It is the
image of the highest weight state in Fr,2p´s under the action of the BRST charge. Outside
of Fr,s there is no cohomology: the other exponential operators appearing in the complex
are all either BRST exact or not BRST closed. In general, the states appearing in the
right column are not BRST closed and are mapped into the vectors ui, vkă1 in the Fock
space to the right. The vectors in the left-hand columns are correspondingly BRST-exact.
Demonstrating that the BRST charge acts nilpotently and produces non-vanishing singular
vectors is nontrivial: for details see section 4 of [37]. Resolutions of the degenerate Verma
modules located outside of the Kac table were obtained in [40].

The special case p1 “ 2. For the special case of the p2, pq minimal models, the entries
of the Kac table all have r “ 1. Felder’s BRST complex with Q` as the differential takes
the form

. . .
Qr
`

ÝÝÑ F˚
Qp1´r
`

ÝÝÝÝÑ Fr,s
Qr
`

ÝÝÑ F˚
Qp1´r
`

ÝÝÝÝÑ . . . (4.41)

For p1 “ 2 and r “ 1 this becomes

. . .
Q`
ÝÝÑ F˚

Q`
ÝÝÑ F1,s

Q`
ÝÝÑ F˚

Q`
ÝÝÑ . . . (4.42)

and no nested contours are necessary. This is because the BRST current is mutually local
with all of the minimal model exponentials V1,spzq:

J`pzqV1,spzq „ zs´1V´1,sp0q ` . . . (4.43)

As we will see, this simplification is preserved in the full quantum field theory.
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v0

w0

v1

v0

u1

v´1

u2

v´2

w0

v1

w1

v2

v0

u1

v´1

u2

v´2

w0

v1

w1

v2

u1

v´1

u2 w1

v´2 v2

u3 w2

Fr,s

Fr,2p´s Fr,´s

Figure 6. BRST structure of Fock modules.

4.3 SLp2,Rq quantum Hamiltonian reduction, Felder’s BRST, and ηξ

In the introduction we mentioned that there exists yet another construction related to the
minimal models, due to Bershadsky and Ooguri [102], that makes use of SLp2,Rq quantum
Hamiltonian reduction. In fact, there is an argument that relates this construction to
Felder’s BRST complex, although it requires invoking yet another free field realization.

Bershadsky and Ooguri begin by considering the SLp2,Rqk WZW model at level k `
2 “ p{p1 with the twisted energy momentum tensor T pzq Ñ T pzq ´ BJ3pzq. The central
charge of this twisted energy momentum tensor nearly reproduces that of the corresponding
minimal model

cSLp2q ´ 2 “ 3k
k ` 2 ´ 6k ´ 2 “ cp,p1 , (4.44)

but the systems are clearly not the same. The basic idea of the construction is to associate
the ´2 appearing in this formula with the ηξ system discussed in section 4.1. The first step
in reducing the model involves fixing lightcone gauge through the constraint J´pzq “ 1. In
order for this equation to make any sense, the scaling dimension of J´pzq should be zero,
motivating the twist of the Sugawara stress tensor

T pzq Ñ T pzq ´ BJ3pzq . (4.45)

The imposition of the constraint in the path integral is accompanied by the introduction
of the ηξ BRST multiplet, and the BRST charge is

QBRST “

¿

dz

2πipJ´pzq ´ 1qηpzq . (4.46)
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Bershadsky and Ooguri argue that the cohomology of this charge in the combined ghost-
SLp2,Rqk Hilbert space reproduces the irreducible representations of the Virasoro algebra.
In order to connect with Felder’s BRST and the Coulomb gas formalism, one replaces
the SLp2,Rqk WZW model with its Wakimoto free field resolution [103]. The relationship
between this free field representation and the WZW model itself involves a separate BRST
quotient, as demonstrated by Bernard and Felder [104]. We denote this second BRST
charge as QSL2 .

The Wakimoto realization bosonizes the current J3pzq in terms of Bφpzq and the
scalar/vector bc ghosts. Bershadsky and Ooguri demonstrate that passing to the QBRST
cohomology of the combined φbc´ηξ system simply removes all of the ghosts, leaving only
the Fock spaces of the scalar φpzq which is then interpreted as the Feigin-Fuchs field. The
BRST charge QSL2 associated to the Wakimoto realization is then shown to be QBRST-
equivalent to Felder’s Coulomb gas BRST operator QCG. Therefore, taking the cohomology
in the φbc´ηξ system with respect to both QBRST and QSL2 is equivalent to Felder’s BRST
quotient of the Feigin-Fuchs Fock space using QCG. This in turn establishes that passing to
the QBRST cohomology of the SLp2,Rqk´ηξ system produces the irreducible representation
of the Virasoro algebra.

Although this analysis is primarily kinematic, it does seem to provide a moral reason
for the existence of Felder’s BRST construction. It would be interesting to establish the
precise connection between this model and the quantum field theory that we describe in
the next two sections at the level of correlation functions.

5 Lagrangian formulation: kinematics

The combined results of Feigin-Fuchs, Dotsenko-Fateev, and Felder strongly suggest that
there is a physical relationship between some variation of the timelike linear dilaton the-
ory and the minimal models. The correct quantum field theory should consolidate the
“representation-by-representation” analysis of Feigin-Fuchs and Felder, and should explain
the computational rules invented by Dotsenko-Fateev. The goal of the rest of the paper
is to embed all of these ingredients in an explicitly local Lagrangian quantum field theory,
paying close attention to global issues which have often been ignored. Morally, we would
like to perform a sequence of standard, well-defined quantum field theory operations (in
this case gauging, BRST projection, and deformation by a marginal operator) that turns
the timelike linear dilaton into the minimal model.

The systems that we will ultimately consider have actions of the form

Srφ, gs “
1

4π

ż

?
g d2x

”

gabBaφBbφ`QφRpgq ` 4πµ`e2iα`φ ` 4πµ´e2iα´φ
ı

. (5.1)

We will view the last two terms as marginal deformations of the timelike linear dilaton, and
treat them in perturbation theory. An important point to note is that both deformations
are charged under the Up1q symmetry of the model. This is essential, since none of the
minimal models support continuous symmetries. More importantly, if we deform by a
single marginal operator, then only a single order in perturbation theory can contribute
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to any physical observable. This exact calculability appears to be lost if one turns on the
second deformation, since p1α``pα´ “ 0 and higher orders in perturbation theory naively
contribute.7 We will have more to say about this in the following section.

The analysis of this model splits up naturally into two parts. The Feigin-Fuchs res-
olution and Felder’s BRST analysis are purely kinematical, and can be studied before
deforming away from the free theory. So we begin by studying a single scalar φ with the
action

Srφ, gs “
1

4π

ż

?
gd2x

”

gabBaφBbφ`QφRpgq
ı

(5.2)

and a background charge Q “ ipα``α´q chosen to match the central charge of the minimal
model

c “ 1` 6Q2 “ 1´ 6pp´ p
1q2

pp1
. (5.3)

Interpreted naively, the system has a number of pathologies. The partition function van-
ishes on all surfaces except the torus due to the background charge asymmetry. The
spectrum is continuous, and many states have zero or negative norm. We would like a
model with a normalizable SLp2,Cq invariant groundstate and a discrete spectrum, but
the background charge term renders the shift symmetry φpxq Ñ φpxq ` const. anoma-
lous on a curved surface and seems to prevent us from gauging the discrete subgroup
φÑ φ` 2πR. It is at this point that we encounter the first qualitative difference between
the Q P R spacelike case used in Liouville theory and the Q P iR timelike case relevant for
the minimal models. Indeed, although the action itself is not invariant under any constant
shift of φpxq, the exponential of the action is still invariant provided

2πR|Q|χ P 2πZ . (5.4)

Since the minimal models make sense on surfaces with boundary (for which χ P Z can be
odd), the radius must be an integer8 multiple of

?
pp1

p´p1 . In order to retain the Dotsenko-
Fateev screening operators e2iα˘φ for generic p, p1, this integer is fixed so that the radius
is R “

?
pp1. We therefore identify

φpxq „ φpxq ` 2π
a

pp1 . (5.5)

Note that this is the radius that appears naturally in the formula (2.26) for the torus
partition function.

The compactness of the timelike linear dilaton has important consequences for our
construction. It immediately cuts down the number of momentum states in the model,

7This puzzle already arises in the holomorphic Coulomb gas construction with line integral screening
charges. Authors always choose the minimal number of screening charges to compute a given correlator,
and we are not aware of any justification for this choice. It seems plausible that the perturbation series does
terminate at leading order due to the BRST structure inherent in the model, but we have been unable to
verify this. In spacelike Liouville theory, the nonperturbative DOZZ formula does exhibit a double lattice
mb` nb´1 of poles, which is suggestive of the double deformation.

8If we only require the model to make sense on closed surfaces, we could quotient by a half-integer
multiple of

?
pp1

p´p1
.
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making the identification of the “minimal model exponentials” more natural. It also intro-
duces a new set of operators with nontrivial winding. These operators are never discussed
in the Coulomb gas formalism, but they will play an important role in our construction.
Finally, the compactness of the zero mode of φpxq has a dramatic effect on the correlators
of the deformed theory (5.1), producing a stark contrast with the spacelike Liouville theory.
When performing the path integral, we can separate out the zero-mode φpxq “ φ0 ` Φpxq
and integrate over φ0 and Φpxq separately. Then on a surface of constant curvature the
un-normalized correlation functions in the free theory take the form

x
ź

i

eiαiφpxiqy “

ż

Dφ0DΦe´φ0Qχ`iφ0
ř

i αie´SfreerΦ,gs
ź

i

eiαiΦpxiq . (5.6)

Since the zero-mode enters linearly in the action, it acts as a Lagrange multiplier enforcing
the constraint

ÿ

i

αi “ ´iQχ . (5.7)

The strategy to calculate correlators of the deformed model (5.1) in section 6 treats the
deformation as a perturbation. The typical calculation involves a free field integral of
the form
ż

Dφ0DΦe´φ0Qχ`iφ0
ř

i αie´SfreerΦ,gs
ź

i

eiαiΦpxiq

n
ź̀

j“1

ż

d2xje
2iα`φpxjq

n
ź́

k“1

ż

d2yke
2iα´φpykq ,

(5.8)
and the selection rule for non-vanishing correlators becomes

ÿ

i

αi ` 2n`α` ` 2n´α´ “ ´iQχ . (5.9)

This is the same prescription used by Goulian and Li [55] to calculate resonance correlators
in spacelike Liouville theory. In spacelike Liouville most correlators are off resonance, and
their technique only works for combinations of exponential operators whose momenta can
be exactly screened by some number of the screening charges. For those observables, the
zero mode of φpxq is completely undamped in the path integral, and integrating over this
noncompact direction in field space yields a divergent answer. Analytic continuation away
from the Goulian-Li momenta yields the DOZZ formula, which exhibits poles at the points
where the zero-mode integral diverges. In contrast, the interesting observables in our
version of “timelike Liouville theory” are precisely the resonance correlators which can be
screened by integer numbers of screening charges, since these correspond to the minimal
model correlation functions. The answers we obtain are finite because the zero-mode is
compact. One can think of the pole as being replaced by 2πR, which diverges in the
decompactification limit.

5.1 States and local operators

Performing the quotient φpxq „ φpxq ` 2πR projects onto operators with momenta of
the form

Vnpxq “ ei
n
R
φpxq , n P Z . (5.10)
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The improvement term in the energy momentum tensor shifts the conformal weights of
these exponentials

h “ h̄ “
n

2R

´ n

2R ` iQ
¯

(5.11)

but does not spoil their transformation properties (as it does for the Up1q current). Since
the scalar field is compact, there is a second Up1q symmetry of the model generated by
the current jwpxq “ dφpxq. In the non-compact theory this current is exact and there
are no local charged operators. In the compact theory, φpxq is no longer gauge invariant
and winding operators appear in the spectrum. The dyonic operators charged under both
Up1q’s take the form

Vn,wpxq “ eikLφLpxq`ikRφRpxq ” exp
”

i
´ n

R
` wR

¯

φLpxq ` i
´ n

R
´ wR

¯

φRpxq
ı

(5.12)

up to cocycle factors that we will suppress. The dimension and spin of this operator is
given by

∆ “
npn´ 2pp´ p1qq

2pp1 `
pp1w2

2 , S “ wpn´ pp´ p1qq . (5.13)

These formulas follow immediately from the left and right conformal weights

h “
1
4

´ n

R
´ α` ´ α´ ` wR

¯2
`

1
4Q

2 , h̄ “
1
4

´ n

R
´ α` ´ α´ ´ wR

¯2
`

1
4Q

2 . (5.14)

Comparing with the spectrum of the diagonal minimal models singles out two sets of
operators satisfying

n˘r,s
R
” p1˘ rqα` ` p1˘ sqα´ , w “ 0 . (5.15)

This parametrization is redundant since

n˘r,s “ p1˘ rqp´ p1˘ sqp1 “ n˘r`p1,s`p . (5.16)

It is important to note that, for fixed r and s, there are two physically distinct vertex
operators which could be identified with the minimal model primary. Both operators
have the same scaling dimension, but differ in their Up1q charges. This degeneracy of the
spectrum is the remnant of the φ Ñ ´φ symmetry of the model, which is broken by the
φR coupling. Instead, the model is invariant under the substitution φÑ ´φ and QÑ ´Q,
which is equivalent to switching p and p1.

The timelike linear dilaton still has a state-operator correspondence. However, because
Bφ is not a primary operator, there is an inhomogeneous relationship between the charges
of states on the cylinder and of operators on the plane. The formula relating the charge of
the state n̂ to the momentum n of the operator is

n “ n̂` p´ p1 , (5.17)

and in terms of this variable we have

h “
1
4

ˆ

n̂

R
` wR

˙2
`

1
4Q

2 , h̄ “
1
4

ˆ

n̂

R
´ wR

˙2
`

1
4Q

2 . (5.18)
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5.2 Marginal deformations

Regardless of whether or not the scalar field is taken to be compact, the timelike linear
dilaton has two ∆ “ 2, S “ 0 marginal operators given by

M˘pxq “ e2iα˘φpxq . (5.19)

In the compact model, these operators are not charged under the Up1q winding symmetry.
Deforming away from the compact linear dilaton by either of these operators explicitly
breaks the Up1q momentum symmetry of the model but preserves the winding symmetry.
Given a conformal field theory with one or more marginal operators, one can consider
infinitesimal deformations of the form

δS “

ż

?
gd2x

“

µ`M`pxq ` µ
´M´pxq

‰

. (5.20)

If the operators are exactly marginal (which is certainly not guaranteed and is in fact quite
rare), then the deformation parameters µ˘ provide local coordinates on the conformal
manifold. In these coordinates the Zamolodchikov metric has components

g`` “ g´´ “ 0 , g`´ “ px´ yq
4xe2iα`φpxqe2iα´φpyqy “ 1 (5.21)

in our example at leading order. Note that the diagonal entries vanish due to the selection
rule (3.27).

Now to leading order in conformal perturbation theory, exact marginality requires the
vanishing of the beta function for each deformation

βk “
ÿ

Ckijµ
iµj “ 0 , (5.22)

where i, j, k P t`,´u. It is easy to verify that the 3-point functions of the marginal
deformations all vanish due to the selection rule (3.27)

C``` “ C´´´ “ C``´ “ C´`´ “ 0 , (5.23)

so that to first order in perturbation theory the resulting system is still conformally invari-
ant as was to be expected. This alone does not guarantee exact conformal invariance, and
in principle one should continue to higher orders in perturbation theory to be sure that no
scale enters the model. The relation

p1α` ` pα´ “ 0 (5.24)

implies that the correlation function

xM`px1q . . .M`px1`p1qM´py1q . . .M´py1`pqy (5.25)

requires no screening and does not vanish. Since all non-trivial minimal models have
p ` p1 ` 2 ě 9, the first dangerous correlation function is a nine-point function, but the
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possibility to gap out the system remains.9 Note that if we deform by a single marginal
operator, this potential problem disappears.

We can also make a trivial check that the scaling dimensions of the minimal model
exponentials do not change to first order in perturbation theory. The relevant formula

δhr,s “ δh̄r,s “ ´
ÿ

ctr,su,tr,su,iµ
i “ 0 (5.27)

is easily verified, again due to the selection rule. Therefore, the scaling dimensions of the
“minimal model exponentials” do not change to leading order, which is required but was
not guaranteed.

The above analysis suggests that the deformation (5.20) will produce scale-invariant
correlation functions for a set of primary operators whose conformal dimensions match
those of the minimal models. This might seem puzzling at first glance, since there is
certainly no continuous family of minimal models labeled by µ˘ for fixed pp, p1q. The
situation is analogous to that of spacelike Liouville theory. There, the cosmological constant
term appears to be a marginal deformation and yet there is a single theory for fixed Q. In
section 6 we demonstrate that the dependence of physical correlators on µ˘ is trivial for
canonically normalized operators.

5.3 The reflection identification

The spectrum (5.13) of the compact linear dilaton is doubly degenerate. Each operator
Vn,wpxq of a given dimension and spin has a “reflection partner” rVñ,w̃pxq with the quantum
numbers

rn “ 2pp´ p1q ´ n, rw “ ´w . (5.28)

As discussed previously, this is the Q-shifted version of the the nÑ ´n,w Ñ ´w symmetry
of the free compact boson. The double degeneracy means that there are actually two candi-
date operators Vnr,s,0pxq and Vn´r,´s,0pxq which could be identified with the corresponding
minimal model primary.

A similar degeneracy (with w “ 0) occurs for the non-compact spacelike linear dilaton
with a real background charge. When this model is deformed by the Liouville exponential,
the spectrum is effectively halved: in the full non-perturbative Liouville theory, there is an
operator identification Vppxq “ RppqV´ppxq. This reflection amplitude Rppq is related to the
quantum mechanics of the zero mode scattering off of the unbounded Liouville potential.

9There is a second set of marginal operators with fractional winding

n “ p´ p1 , w “ ˘
p` p1

pp1
, (5.26)

which we denote W˘pxq. Ordinarily we would discard these operators, since they are not mutually local
with the minimal model exponentials. However, as we will describe later, Felder’s BRST current also has
fractional winding, so there might be an interesting role for these operators. These deformations would
break the winding symmetry of the system, but since both W˘pxq have the same Up1q momentum charge,
multiple orders of perturbation could not contribute to a single observable due to the selection rule (3.27)
when µ` “ µ´ “ 0.
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In seeking a relationship between the deformed compact timelike linear dilaton and
the minimal model, one might hope for a similar operator identification

Vnr,s,0pxq
?
“ Rpr, sqVn´r,´s,0pxq . (5.29)

The two operators certainly cannot be identified before deforming the compact dilaton by
the marginal operators M˘pxq: generic non-vanishing correlation functions involving V pxq
will vanish upon substitution of rV pxq due to the selection rule (3.27). The identification
is only made possible by the deformation, which allows one to trade V pxq and rV pxq in-
side correlation functions while balancing the resulting charge-asymmetry with additional
screening operators.

There is an even more important distinction to be made between the operator identifi-
cation in Liouville theory and the corresponding identification in our model. The operator
identification (5.29), and its analog in Liouville theory, is only possible because the contin-
uous shift symmetry of the boson is explicitly broken by the perturbation. If this were not
the case, the operators being identified would transform in inequivalent representations of a
global symmetry group of the theory, which is impossible. However, the deformation (5.20)
does not break the Up1q winding symmetry of the compact dilaton. This means that there
can be no analog of (5.29) for operators with winding in the theory defined by (5.1). In-
deed, substituting rVñ,w̃pxq for Vn,wpxq in a non-vanishing correlator would introduce an
asymmetry in the global winding charge, which could not be screened by the perturbation.
This subtlety does not exist in Liouville theory (where the scalar is non-compact) and is
irrelevant for the identification of the minimal model primaries (5.29), all of which are
winding singlets. However, in the next section we will encounter winding operators (BRST
currents) that play a crucial role in reducing the theory (5.1) to the minimal model, and
for which the identification cannot hold.

Since the reflection identification cannot be made before the deformation of the com-
pact dilaton, it certainly makes sense to perturb with both M`pxq and M´pxq simultane-
ously. Whether or not this is the correct prescription seems less clear, and we will postpone
this question until section 6.

5.4 BRST currents

In the holomorphic Coulomb gas formalism of section 3, we encountered special h “ 1
operators which seemed to play several roles. In particular, the operators e2iα˘φpzq were
used to construct Felder’s BRST operators as well as the screening charges used in the
calculation of correlation functions. In the full theory, these holomorphic operators must
be paired with their right-moving counterparts to form genuine local operators. As we
saw in section 5.2, the holomorphic screening operators of the Coulomb gas formalism are
naturally completed into p1, 1q marginal operators M˘pxq. In this section we will try to
identify Felder’s BRST currents in the spectrum of the compact dilaton.

There are two potential sets of p1, 0q operators in the compact linear dilaton theory.
Their momenta and winding, as well as the left and right momenta, are summarized in the
following table:
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n n̂ w kL kR

J`pxq p p1 1
p1 2α` 0

rJ`pxq p´ 2p1 ´p1 ´ 1
p1 2α´ 2α` ` 2α´

J´pxq ´p1 ´p ´1
p 2α´ 0

rJ´pxq 2p´ p1 p 1
p 2α` 2α` ` 2α´

Jipxq and rJipxq are related by the reflection transform (5.28), but are not identified as
operators. Similarly, there are two potential sets of p0, 1q currents:

n n̂ w kL kR

K`pxq p p1 ´ 1
p1 0 2α`

rK`pxq p´ 2p1 ´p1 1
p1 2α` ` 2α´ 2α´

K´pxq ´p1 ´p 1
p 0 2α´

rK´pxq 2p´ p1 p ´1
p 2α` ` 2α´ 2α`

The first important point to note is that each of these operators carries winding. This could
have been predicted on general grounds: the null descendants of the non-holomorphic min-
imal model primary Mr,spxq generically carry spin. Therefore, the exponential operators
surrounding the minimal model exponential in the BRST complex must also carry spin
(since the BRST charge commutes with both Virasoro algebras), and in order for an ex-
ponential operator to carry spin, it must have nonzero winding. The more troubling fact
is that the winding carried by the BRST currents is fractional. We can define the scalar
BRST charge operators

Q˘“

¿

J˘pzqdz , Q̄˘“

¿

K˘pz̄qdz̄ , W˘“

¿

rJ˘pzqdz , W̄˘“

¿

rK˘pz̄qdz̄ . (5.30)

Each charge formally commutes with both copies of the Virasoro algebra, but carries non-
trivial momentum and winding. The fact that the BRST charges carry winding has an
important consequence: the insertion of a charge in any correlation function consisting only
of operators of the form Vnr,s,0pxq (the minimal model exponentials) vanishes trivially due
to winding conservation. A second important consequence is that the full BRST complex
will now involve operators with non-trivial winding.

Mutual locality. In an ordinary interpretation of the compact boson CFT, one does not
permit operators with fractional winding since they are not mutually local with respect to
the momentum operators. However, Felder’s holomorphic BRST construction produced a
charge which was not mutually local with respect to all of the exponential vertex opera-
tors needed for the construction of the minimal model. Rather, different combinations of
multiple line integrals with nested contours were needed for each separate Fock space.
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The OPE of two operators with momentum and winding takes the form

eikLφLpzq`ikRφRpz̄qeipLφLp0q`ipRφRp0q „ zkLpL{2z̄kRpR{2eipkL`pLqφLp0q`ipkR`pRqφRp0q ` . . .

(5.31)
Sending z Ñ e2πiz one obtains the condition for the mutual locality of two operators:

kLpL ´ kRpR P 2Z . (5.32)

Since the BRST currents J˘ (resp. K˘) have kR “ 0 (resp. kL “ 0) while the minimal
model exponentials have pL “ pR “

nr,s

R , it is clear that the lack of mutual locality in
Felder’s construction is not removed by considering the full theory.

Therefore, it may be too much to ask for the BRST currents J˘pxq and K˘pxq to
be mutually local with respect to all of the operators in the compact timelike linear dila-
ton model: we seem to have to tolerate a non-standard spectrum in order to reproduce
the minimal model. Since the majority of the local operators of the system (including
the BRST currents) do not belong to the physical subsector, it seems enough to require
mutual locality among the minimal model exponentials (which is guaranteed). Neverthe-
less, the construction does not seem completely natural and we would welcome a simpler
explanation.

The special case p1 “ 2. As we noted in section 4, Felder’s holomorphic BRST complex
appears particularly natural when p1 “ 2. In that case, the BRST current J`pzq is mutually
local with all of the minimal model exponentials V1,spzq, and only a single power of the
BRST charge Q` is needed in the complex (rather than multiple nested contours). This
simplification is maintained in our full quantum field theory. Although the BRST current
J`pxq has winding w “ 1{2, all of the minimal model exponentials (as well as the marginal
operators) have even momenta since n1,s “ ps ´ 1qp1 “ 2ps ´ 1q. This suggests that the
more natural radius for this subset of models might be R1 “ R{2, although the discrete
shift-symmetry of the scalar would be lost on a surface of odd Euler character. Note that
for this case

R1 “
1
2
a

pp1 “ α` . (5.33)

Indeed, a naive candidate for the completion of the holomorphic minimal model exponen-
tials with

kL “ p1´ rqα` ` p1´ sqα´ (5.34)

would have been to interpret α` as the radius, ps´1q as the momentum and p1´ rq as the
winding. This is incorrect since the resulting operator in the full theory would have spin,
except for the case p1 “ 2 when r “ 1.

5.5 Full BRST complex

The minimal model primaries Mr,spz, z̄q are simply the products of their holomorphic and
antiholomorphic counterparts, and they have their first singular vectors at the levels

phr,s`rs, h̄r,sq, phr,s`pp
1´rqpp´sq, h̄r,sq, phr,s, h̄r,s`rsq, phr,s, h̄r,s`pp

1´rqpp´sqq .

(5.35)
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Similarly, the minimal model exponentials in the linear dilaton model holomorphically
factorize into products of left and right-moving exponentials

Vnr,s,0pz, z̄q “ ei
nr,s

R
φLpzqei

nr,s
R
φRpz̄q . (5.36)

Since J´pzq “ e2iα´φLpzq is purely holomorphic and K´pz̄q “ e2iα´φRpz̄q is purely anti-
holomorphic, Felder’s holomorphic BRST construction can be applied separately to the
left-moving and the right-moving part of each operator. Combining this with the momen-
tum and winding charges of the BRST currents, it is possible to map out the full BRST
complex. For instance, the four Fock spaces directly adjacent to the minimal model Fock
space Fr,s in the double complex are

´
pp´sq

p

Fr´p1,0

Q̄p´s
´

��

pp´sq
p

Fr´p1,0
Qp´s
´

// 0Fr,s
Qs
´

//

Q̄s
´

��

´ s
p
Fr,0

s
p
Fr,0

Here wFr,s denotes the Fock space with momentum nr,s and winding w. As expected,
the highest weight states in each of these Fock spaces carries winding since the descen-
dants (5.35) all carry spin. As a result, these Fock spaces carry different momenta than
those appearing in Felder’s BRST complex: Felder labeled the Fock spaces with the left-
moving momentum kL while we label them with momentum and winding charge. Ex-
panding the complex out further helps to exhibit the patterns more clearly. The result is
depicted in figure 7.

Since all of the cohomology is concentrated in 0Fr,s, the terms in blue will contribute to
the torus partition function with positive signs, while those in red will enter with negative
signs in order to cancel states that are not present in the minimal model. In particular,
note that all of the blue terms actually have integer winding, while the red “ghost states”
are built on vertex operators with bad fractional winding which nonetheless have integer
spins. This structure is related to the expression (2.26) for the minimal model partition
function in terms of c “ 1 partition functions at different radii: terms contributing with a
positive sign naturally live at the radius R “

?
pp1, while the ghost states that contribute

with a negative sign seem to live at the radius R “ 1
p

?
pp1. Next we would like to verify that

this set of signs appearing in the BRST complex matches those that arise in the minimal
model character formula.

5.6 Torus partition function

In this section we will show that the “supertrace” in the full Hilbert space of the compact
timelike linear dilaton produces precisely the trace in the Hilbert space of the minimal
model. The Rocha-Caridi form of the holomorphic character for the minimal model is

χr,s “ Kpp,p1q
r,s pqq ´K

pp,p1q
r,´s pqq , Kpp,p1q

r,s pqq “
1
ηpqq

ÿ

jPZ
q

´

´pr`p1s
R

´2jR
¯2
{4
, (5.37)
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0Fr´4p1,´s
Qp´s

//

Q̄p´s

��

´1` s
p
Fr´3p1,0

Qs
//

Q̄p´s

��

´1Fr´3p1,´s
Qp´s

//

Q̄p´s

��

´2` s
p
Fr´2p1,0

Qs
//

Q̄p´s

��

´2Fr´2p1,´s
Qp´s

//

Q̄p´s

��

´3` s
p
Fr´p1,0

Qs
//

Q̄p´s

��

´3Fr´p1,´s

Q̄p´s

��

1´ s
p
Fr´3p1,0

Qp´s
//

Q̄s

��

0Fr´2p1,s
Qs

//

Q̄s

��

´ s
p
Fr´2p1,0

Qp´s
//

Q̄s

��

´1Fr´p1,s

Q̄s

��

Qs
//
´1´ s

p
Fr´p1,0

Qp´s
//

Q̄s

��

´2Fr,s

Q̄s

��

Qs
//
´2´ s

p
Fr,0

Q̄s

��

1Fr´3p1,´s
Qp´s

//

Q̄p´s

��

s
p
Fr´2p1,0

Qs
//

Q̄p´s

��

0Fr´2p1,´s
Qp´s

//

Q̄p´s

��

´1` s
p
Fr´p1,0

Q̄p´s

��

Qs
//
´1Fr´p1,´s

Q̄p´s

��

Qp´s
//
´2` s

p
Fr,0

Q̄p´s

��

Qs
//
´2Fr,´s

Q̄p´s

��

2´ s
p
Fr´2p1,0

Qp´s
//

Q̄s

��

1Fr´p1,s
Qs

//

Q̄s

��

1´ s
p
Fr´p1,0

Qp´s
//

Q̄s

��

0Fr,s
Qs

//

Q̄s

��

´ s
p
Fr,0

Qp´s
//

Q̄s

��

´1Fr`p1,s

Q̄s

��

Qs
//
´1´ s

p
Fr`p1,0

Q̄s

��

2Fr´2p1,´s
Qp´s

//

Q̄p´s

��

1` s
p
Fr´p1,0

Qs
//

Q̄p´s

��

1Fr´p1,´s
Qp´s

//

Q̄p´s

��

s
p
Fr,0

Qs
//

Q̄p´s

��

0Fr,´s
Qp´s

//

Q̄p´s

��

´1` s
p
Fr`p1,0

Q̄p´s

��

Qs
//
´1Fr`p1,´s

Q̄p´s

��

3´ s
p
Fr´p1,0

Qp´s
//

Q̄s

��

2Fr,s
Qs

//

Q̄s

��

2´ s
p
Fr,0

Qp´s
//

Q̄s

��

1Fr`p1,s
Qs

//

Q̄s

��

1´ s
p
Fr`p1,0

Qp´s
//

Q̄s

��

0Fr`2p1,s

Q̄s

��

Qs
//
´ s

p
Fr`2p1,0

Q̄s

��

3Fr´p1,´s
Qp´s

// 2` s
p
Fr,0

Qs
// 2Fr,´s

Qp´s
// 1` s

p
Fr`p1,0

Qs
// 1Fr`p1,´s

Qp´s
// s

p
Fr`2p1,0

Qs
// 0Fr`2p1,´s

Figure 7. Structure of the full BRST complex.

where R “
?
pp1. We would like to express the quantity χr,sχ̄r,s as a sum over momenta

and winding states in order to compare with the BRST complex in section 5.5. It will prove
useful to have an expression for the trace in the linear dilaton system when restricted to
momenta and winding charges in the sets n P S1 and w P S2. For an operator with
kL “

n
R ` wR, we have

h´
c´ 1

24 “
1
4 pkL ` iQq

2
`
Q2

4 ´
1` 6Q2 ´ 1

24
“

1
4 pkL ` iQq

2 . (5.38)

Recalling the relation (5.17) between the Up1q charges of operators on the plane and states
on the cylinder, we find a simple formula for the trace over operators with n P S1 and
w P S2:

TrnPS1
wPS2

qL0´c{24q̄L̄0´c{24 “ |ηpqq|´2
ÿ

nPS1
wPS2

qp
n̂
R
`wRq

2
{4q̄p

n̂
R
´wRq

2
{4 , n “ n̂`pp´p1q . (5.39)

The BRST complex of figure 7 indicates that the partition function will be a sum of terms
of this type, with relative signs determined by S1 and S2. Make the definition

n̂r,s “ ´rp` sp
1 “ nr,s ´ pp´ p

1q , (5.40)

and consider the first term in the product χr,sχ̄r,s, which is

Kpp,p1q
r,s pqqKpp,p1q

r,s pq̄q “ |ηpqq|´2
ÿ

j,j1

q

´

n̂r,s
R
´2jR

¯2
{4
q̄

´

n̂r,s
R
´2j1R

¯2
{4
. (5.41)
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In order to relate this to the BRST complex, we would like to equate
ˆ

n̂

R
` wR

˙2
“

ˆ

n̂r,s
R
´ 2jR

˙2
,

ˆ

n̂

R
´ wR

˙2
“

ˆ

n̂r,s
R
´ 2j1R

˙2
. (5.42)

There are four solutions to this set of equations (each solution relating to one of the four
possible BRST currents encountered in section 5.4 that could be used to construct the
BRST complex). For the complex based on Q´, the relevant solution is

n̂ “ n̂r,s ´ pj ` j
1qR2 , w “ j1 ´ j . (5.43)

We write
Kpp,p1q
r,s pqqKpp,p1q

r,s pq̄q “ |ηpqq|´2
ÿ

nPnr,s`pp1Z
wPZ

qp
n̂
R
`wRq2{4q̄p

n̂
R
´wRq

2
{4 (5.44)

where importantly both integers in the sum have the same parity. The second term in the
product

´Kpp,p1q
r,s pqqK

pp,p1q
r,´s pq̄q “ ´|ηpqq|

´2
ÿ

j,j1

q

´

n̂r,s
R
´2jR

¯2
{4
q̄

´

n̂r,´s
R

´2j1R
¯2
{4 (5.45)

has a similar solution with

n̂ “ n̂r,0 ´ pj ` j
1qR2 , w “

s

p
` j1 ´ j , (5.46)

and can be written

´Kpp,p1q
r,s pqqK

pp,p1q
r,´s pq̄q “ ´|ηpqq|

´2
ÿ

nPnr,0`pp1Z
wP s

p
`Z

qp
n̂
R
`wRq2{4q̄p

n̂
R
´wRq

2
{4 . (5.47)

Again, the two integers summed over are restricted to be simultaneously even or odd. The
third term

´K
pp,p1q
r,´s pqqK

pp,p1q
r,s pq̄q “ ´|ηpqq|´2

ÿ

j,j1

q

´

n̂r,´s
R

´2jR
¯2
{4
q̄

´

n̂r,s
R
´2j1R

¯2
{4 (5.48)

can be represented with momenta and winding given by

n̂ “ n̂r,0 ´ pj ` j
1qR2 , w “ ´

s

p
` j1 ´ j . (5.49)

With this representation it takes the form

´K
pp,p1q
r,´s pqqK

pp,p1q
r,s pq̄q “ ´|ηpqq|´2

ÿ

nPnr,0`pp1Z
wP´ s

p
`Z

qp
n̂
R
`wRq

2
{4q̄p

n̂
R
´wRq

2
{4 (5.50)

with both integers of identical parity. Finally, the fourth term is easily obtained from the
first term and is given by

K
pp,p1q
r,´s pqqK

pp,p1q
r,´s pq̄q “ |ηpqq|

´2
ÿ

nPnr,´s`pp1Z
wPZ

qp
n̂
R
`wRq

2
{4q̄p

n̂
R
´wRq

2
{4 (5.51)
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with the same condition on the sum. The final expression for the character is

|ηpqq|2χr,sχ̄r,s “
ÿ

nPnr,s`pp1Z
wPZ

qp
n̂
R
`wRq

2
{4q̄p

n̂
R
´wRq

2
{4
`

ÿ

nPnr,´s`pp1Z
wPZ

qp
n̂
R
`wRq

2
{4q̄p

n̂
R
´wRq

2
{4

´
ÿ

nPnr,0`pp1Z
wP s

p
`Z

qp
n̂
R
`wRq

2
{4q̄p

n̂
R
´wRq

2
{4
´

ÿ

nPnr,0`pp1Z
wP´ s

p
`Z

qp
n̂
R
`wRq

2
{4q̄p

n̂
R
´wRq

2
{4 ,

(5.52)

with the two integers always of the same parity. The ranges of momenta and winding
match the BRST complex in figure 7, which reproduces the signs in the partition function.
Note that in order to reproduce the partition function of the minimal model, we do not
separately sum over the reflection states. Doing so would produce a factor of two in the
partition function.

6 Lagrangian formulation: dynamics

In section 5 we saw that the spectrum of the compact timelike linear dilaton, after an
appropriate BRST quotient, reproduces the spectrum of the corresponding minimal model.
This is a statement purely within the realm of representation theory, and says noting about
the dynamics of either system. The results of Dotsenko and Fateev reviewed in section 3
indicate that we must somehow incorporate the “screening charges” if we want the dynamics
to match. In this section we will try to reproduce the Coulomb gas calculations using
conformal perturbation theory for the compact linear dilaton deformed by the marginal
operators discussed in section 5.2:

δS “

ż

?
gd2x

“

µ`M`pxq ` µ
´M´pxq

‰

. (6.1)

A construction along these lines was originally suggested in an appendix of the second
paper by Dotsenko and Fateev [34, 36], where they also noted that infinitely many orders
in perturbation theory might contribute (and gap out the system) when both deformations
are turned on. We do not have a fully satisfactory resolution of this puzzle, and feel that
it is an important question that requires further clarification. In much of what follows,
we will restrict attention to the p2, pq timelike linear dilaton. These systems have the
special property that a representative of each correlation function of physical operators
can be screened using only M´pxq (this is no longer the case when p1 ‰ 2). Even within
this restricted class of models, we will encounter subtleties when attempting to reproduce
the truncation of the OPE expected in the minimal models. Nevertheless, the ultimate
conclusion is that, for this class of models, the BRST quotiented Lagrangian quantum field
theory really does describe the minimal model.

6.1 Converting surface integrals into the Dotsenko-Fateev line integrals

The main advantage of a Lagrangian formulation of the Coulomb gas formalism is that
it produces manifestly local correlation functions. The abstract axioms of conformal field
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theory like associativity of the OPE and modular covariance, which are constraining when
applied to non-Lagrangian systems, are more or less guaranteed by the local path integral
formalism. The quantities computed in conformal perturbation theory and identified with
minimal model observables take the schematic form

xMr1,s1px1q . . .Mrn,snpxnqy

„

B

eiαr1,s1φpx1q . . . eiαrn,snφpxnq

n
ź̀

i“1

ż

e2iα`φpwiqd2wi

n
ź́

j“1

ż

e2iα´φpwjqd2wj

F

,

where the number of surface integrals is determined by the selection rule
ř

αi “ ´iQχ

just as in the Coulomb gas formalism. There is no choice of contours to be made, and
one can compute the three-point functions directly rather than resorting to monodromy
constraints on holomorphic four-point functions. The method should be especially powerful
when applied to computations on higher genus surfaces, where producing modular covariant
answers using the holomorphic line integral prescription is more difficult.

Before calculating any observables, it is important to first understand how the two
dimensional surface integrals of conformal perturbation theory are capable of reproducing
the Dotsekno-Fateev line integral prescription. Conformal perturbation theory requires
regularization, since the integrals

B

eiαr1,s1φpx1q . . . eiαrn,snφpxnq

n
ź̀

i“1

ż

d2wie
2iα`φpwiq

n
ź́

j“1

ż

d2wje
2iα´φpwjq

F

(6.2)

generically diverge for physical values of the momenta αi due to short-distance singular-
ities in the operator product expansion. The scheme that will be adopted first factorizes
the surface integrals into products of Dotsenko-Fateev-type line integrals, and defines all
expressions by a suitable analytic continuation from regions of parameter space where the
integrals are convergent. This prescription for defining integrals of the type (6.2) is familiar
in perturbative string theory [105], and the relationship between the surface integrals and
the Dotsenko-Fateev line integrals is nothing more than the KLT double copy [106] in a
different setting.

Toy model. In order to illustrate the general procedure in a concrete setting, we will
evaluate the surface integral

Rpa, bq “

ż

d2z|z|2a|z ´ 1|2b (6.3)

by reducing it to a product of line integrals, following closely the discussion in [36]. This
integral is simpler than the generic Coulomb gas integral, but would arise when computing
a correlator

B

eiα1φp0qeiα2φp1q
ż

e2iα`φpzqd2z

F

“

ż

d2z|z|2α`α1 |1´ z|2α`α2 (6.4)

requiring a single screening charge. The first step in evaluating the integral (6.3) is to take
the Euclidean coordinate z “ x` iτ and Wick rotate to Lorentzian signature τ “ ie´2iεt.
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The integral becomes

Rpa, bq “ i

ż

dtdxrx2 ´ t2e´4iεsarpx´ 1q2 ´ t2e´4iεsb . (6.5)

Taking lightcone coordinates x˘ “ x ˘ t and rearranging terms puts the integral in a
factorized form

Rpa, bq “
i

2

ż 8

´8

dx`px` ´ iεpx` ´ x´qq
apx` ´ 1´ iεpx` ´ x´qqb

ˆ

ż 8

´8

dx´px´ ` iεpx` ´ x´qq
apx´ ´ 1` iεpx` ´ x´qqb . (6.6)

Assuming for the moment that a, b are such that the integrals converge for large x˘, each
integrand has two potential singularities, which are generically branch points. The x`
integration cycle can be separated into three pieces, which we denote by C1 “ p´8, 0q,
C2 “ p0, 1q, and C3 “ p1,8q. When x` P C1, Imriεx`s ă 0 and Imriεpx` ´ 1qs ă 0.
In this case, both singularities in the x´ integrand lie in the same half plane, so we can
deform the contour to infinity (assuming convergence) and the integral vanishes. Likewise
when x` P C3, Imriεx`s ą 0 and Imriεpx` ´ 1qs ą 0 so the x´ contour can be deformed
to infinity and the integral vanishes.

The nonzero contribution to the integral (6.6) arises when x` P C2, in which case
=riεx`s ą 0 while =riεpx` ´ 1qs ă 0. In this case the x´ integration contour is trapped and
cannot be deformed to infinity. Instead, we rotate the x´ contour around the singularity
at x´ “ 1 to obtain

1 “

ż 8

1
xa´px´ ´ 1qbdx´ ´

ż 8

1
xa´pe

´2πipx´ ´ 1qqbdx´

“ 2i sinpπbqe´iπb
ż 8

1
xa´px´ ´ 1qbdx´ . (6.7)

Restoring the x` integration, the full integral now reads

Rpa, bq “ ´ sinpπbq
ż 1

0
xa`p1´ x`qbdx`

ż 8

1
xa´px´ ´ 1qbdx´ . (6.8)

Changing variables x´ Ñ 1{x´ in the second integral expresses Rpa, bq as a product of
Euler Beta functions

Rpa, bq “ ´ sinpπbq
ż 1

0
dx`x

a
`p1´ x`qb

ż 1

0
dx´x

´2´a´b
´ p1´ x´qb , (6.9)

and the final answer is

Rpa, bq “ ´ sinpπbqΓp1` aqΓp1` bqΓp2` a` bq
Γp´1´ a´ bqΓp1` bq

Γp´aq . (6.10)

It will be useful to recall the geometric picture for the analytic structure of this for-
mula [105, 107]. The naive integral expression for the Euler Beta function

Bpa, bq “

ż 1

0
ta´1p1´ tqb´1dt (6.11)
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0 1

Figure 8. Pochhammer contour.

does not converge for all possible values of its arguments. When the values of a, b are such
that the singularities at t “ 0, 1 become unintegrable, the function must be defined by
analytic continuation. The most transparent definition makes use of the the Pochhammer
contour (P.C.), which is depicted in figure 8. This contour zig-zags back and forth between
t “ 0 and t “ 1 on different sheets of the Riemann surface associated to the different
branches of the multivalued integrand. Keeping track of the phase shifts as the contour
circles around the singular points, one obtains the formula

p1´ e2πiaqp1´ e2πibqBpa, bq “

ż

P.C.
ta´1p1´ tqb´1dt . (6.12)

Since the Pochhammer contour is compact, the integral on the right hand side of the
formula is manifestly finite for all values of a, b. It vanishes when either of the singular
points becomes regular and the contour becomes contractible, which occurs when a´ 1 or
b ´ 1 is a non-negative integer. The Beta function therefore has poles only when a or b
is a non-positive integer. Similarly, when ´pa ` bq is a non-negative integer, the point at
infinity becomes regular and the contour can be shrunk to zero on the other side of the
Riemann sphere. Therefore, if a, b R Zď0 but ´pa ` bq is a non-negative integer then the
Beta function vanishes. This example is important because it illustrates the mechanism by
which certain OPE coefficients vanish in the Coulomb gas formalism. The Coulomb gas
integrals have strictly positive integrands but are generically divergent. The regularization
scheme defines them using analytic continuation in a manner similar to the definition of
the Beta function in terms of the Pochhammer contour and thus allows for zeros.

Surface integral identities. The conversion of more complicated surface integrals into
products of Dotsenko-Fateev line integrals follows the same basic steps described above.
Dotsenko and Fateev developed the technique to evaluate the integrals arising in the com-
putation of four-point functions, but to analyze three-point functions we only need the
integrals

Jmpa, b; cq ”
1
m!

ż m
ź

1

i

2dzidz̄i
m
ź

1
|zi|

2a|1´ zi|2b
m
ź

iăj

|zi ´ zj |
4c (6.13)

“ πm
ˆ

Γp1´ cq
Γpcq

˙m m
ź

k“1

Γpkcq
Γp1´ kcq

ˆ

m´1
ź

k“0

Γp1` a` kcqΓp1` b` kcqΓp´1´ a´ b´ pm´ 1` kqcq
Γp´a´ kcqΓp´b´ kcqΓp2` a` b` pm´ 1` kqcq
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and

ż n`
ź

i“1
d2zi

ż n´
ź

j“1
d2wj

n`
ź

i“1
|zi|

2a1 |1´zi|2b
1

n´
ź

j“1
|wj |

2a|1´wj |2b
ź

iăk

|zi´zk|
4c1

ź

jăl

|wj´wl|
4c
ź

i,j

|zi´wj |
´4

“
πn``n´n`!n´!

c4n`n´

ˆ

Γp1´ c1q
Γpc1q

˙n` ˆΓp1´ cq
Γpcq

˙n´

ˆ

n`
ź

k“1

Γpkc1 ´ n´q
Γp1´ kc1 ` n´q

n´
ź

k“1

Γpkcq
Γp1´ kcq

ˆ

n`´1
ź

k“0

Γp1´ n´ ` a1 ` kc1qΓp1´ n´ ` b1 ` kc1qΓp´1` n´ ´ a1 ´ b1 ´ pn` ´ 1` kqc1q
Γpn´ ´ a1 ´ kc1qΓpn´ ´ b1 ´ kc1qΓp2´ n´ ` a1 ` b1 ` rn` ´ 1` ksc1q

ˆ

n´´1
ź

k“0

Γp1` a` kcqΓp1` b` kcqΓp´1` 2n` ´ a´ b´ pn´ ´ 1` kqcq
Γp´a´ kcqΓp´b´ kcqΓp2´ 2n` ` a` b` rn´ ´ 1` kscq . (6.14)

Both of these formulas first appeared in the appendix of [35].

6.2 Reflection amplitudes

Having seen that the surface integrals of marginal perturbations are capable of being fac-
torized into products of Dotsenko-Fateev line integrals, we can begin to reproduce some of
the Coulomb gas results using conformal perturbation theory. Correlation functions in the
deformed theory are calculated using the correlation functions of the undeformed theory
with an exponential insertion of the deformation

xO1px1q ¨ ¨ ¨Onpxnqydeformed “ xO1px1q ¨ ¨ ¨Onpxnqe
´
ş

d2xµ`M`pxq´
ş

d2xµ´M´pxqyundeformed .

(6.15)
In what follows we will drop the labels on the correlation functions since the meaning will
always be clear. Conformal perturbation theory requires some scheme for regulating the
integrals appearing on the right hand side of this equation. The scheme adopted here is
to convert the surface integrals into Dotsenko-Fateev line integrals as in section 6.1, and
to define these integrals by analytic continuation from regions in parameter space where
convergence is guaranteed. In the models that we consider, the observables that we would
like to compute typically vanish in the unperturbed theory. Moreover, provided that we
only deform the model by the marginal operator M´pxq, a single term in the expansion
of the exponential will contribute to any given correlator due to the selection rule on the
momenta. When the selection rule

ř

αi “ 2α``2α´ is satisfied, the unperturbed compact
timelike linear dilaton correlator takes the form

xeiα1φpx1q . . . eiαnφpxnqy “
ź

iąj

|xi ´ xj |
αiαj . (6.16)

Reflection map. We saw in section 4.2 and in section 5.5 that the level-one descendant
of the reflection partner of the identity operator is BRST exact:

B1̃pxq “ rQ, ¨s . (6.17)

This equation has several important consequences. First, it means that inserting the re-
flection of the identity inside a correlation function of BRST invariant operators does not
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introduce any position dependence: the reflection of the identity is a topological local op-
erator. Now in the free theory without a background charge, the reflection map simply
sends the momentum nÑ ´n, which one could view as a map

Vαpxq Ñ 1pxqV´αpxq .

The generalization to the model with a background charge is immediate:

Vαpxq Ñ 1̃pxqV´αpxq .

Because the reflection of the identity is essentially topological, no special care is needed in
defining this composite operator. In the undeformed theory, the operator and its reflec-
tion cannot be identified, since replacing an operator by its reflection introduces a charge
asymmetry into the correlation function which cannot be screened.

Reflection coefficient. We would like to work with a basis of operators Oipxq with
canonically normalized two point functions

xOipx1qOjpx2qy “
δij

px1 ´ x2q2∆i
. (6.18)

As we will see, there are important subtleties with the operator normalizations in this model
which are tied in with (but do not fully resolve) the apparent violations of truncation that
we will encounter in section 6.4.

In the undeformed linear dilaton theory, the non-vanishing two point function involves
an operator and its reflection partner:

xVαpx1qV2α``2α´´αpx2qy “
1

px1 ´ x2qαpα`2iQq . (6.19)

The coefficient in this formula is finite because the zero mode of the dilaton is compact (we
absorb a factor of the radius into the normalization of these operators). In the deformed
theory, it is possible to screen the charge asymmetry in the two point function so that the
correlator

pµ`qn`pµ´qn´

n`!n´!

B

Vr,spx1qVr,spx2q1̃px3q

n
ź̀

i“1

ż

d2yie
2iα`φpyiq

n
ź́

j“1

ż

d2wje
2iα´φpwjq

F

”
Rpr, sq

px1 ´ x2qαr,spαr,s`2iQq (6.20)

is generically non-vanishing for some choice of positive integers n˘. Note that the definition
of the reflection coefficient involves the insertion of one factor of the reflection of the
identity [92].

These considerations suggest that the correctly normalized minimal model correlation
functions will be produced if one identifies

Vr,spxq “
a

Rpr, sqMr,spxq . (6.21)
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Similarly one would like to identify
a

Rpr, sqV´r,´spxq “Mr,spxq , (6.22)

provided that the reflection coefficient is finite and non-vanishing. These integrals were
originally calculated by Dotsenko and Fateev and are given in eq. (2.21) up to factors of
µ˘. For the p2, pq models, they take a particularly simple form [92]

Rp1, sq “ pµ´qs´1
s´1
ź

j“1

Γp1´ jα2
´qΓp´1` p1` jqα2

´q

Γpjα2
´qΓp2´ p1` jqα2

´q
. (6.23)

An important point to note is that some of these coefficients are zero, which complicates
the identifications (6.21). The first zero is encountered at the border of the Kac table at
s “ p, and in fact all Rp1, kpq with k P N vanish.

In spacelike Liouville theory, the cosmological constant µ is not an actual parameter
of the theory. Similarly, we do not expect any interesting µ˘ dependence in the deformed,
BRST quotiented timelike linear dilaton theory given the uniqueness of the minimal models.
In order to screen the correlator (6.20), one needs

p2n` ´ 2r ` 2qα` ` p2n´ ´ 2s` 2qα´ “ 0 (6.24)

so that the number of screening charges is given by10

n` “ r ´ 1, n´ “ s´ 1 . (6.25)

Therefore Rpr, sq „ pµ`qr´1pµ´qs´1. If we instead consider a k-point function (again with
an insertion of the reflection of the identity), the selection rule requires

pk ´
ÿ

ri ` 2n`qα` ` pk ´
ÿ

si ` 2n´qα´ “ 0 . (6.26)

The correlator therefore scales like
B k
ź

i“1
Mri,sipxiq

F

„ pµ`q´
1
2
ř

pri´1qpµ´q´
1
2
ř

psi´1qpµ`q
1
2 r´k`

ř

rispµ´q
1
2 r´k`

ř

sis „ pµ`µ´q
0

(6.27)
and there is no interesting dependence on the deformation parameter.

6.3 Zero-mode quantum mechanics

In spacelike Liouville theory, significant insight is gained by studying the dynamics of
the zero-mode. In particular, the analysis “explains” the halving of the physical spectrum
induced by the Liouville potential, and provides a way to calculate the reflection amplitude.
We would like to perform the same analysis on our model. Putting the model on the cylinder
and considering the region of field space in which φpt, σq does not depend on the spatial

10This derivation assumes that only one order in perturbation theory contributes. The exactness of
the reflection amplitude (needed in order to match the minimal model data) seems to be evidence that
perturbation theory does truncate at the first nontrivial order.
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coordinate σ, we obtain an effective quantum mechanics for the zero mode. This leads us
to study the spectrum and eigenfunctions of the Hamiltonian

H “ ´
d2

dx2 ` e
2iα´x (6.28)

with periodic boundary conditions ψpx ` 2πRq “ ψpxq for the eigenfunctions. This
Hamiltonian is obviously not Hermitian since the potential is complex. However, since
V pxq˚ “ V p´xq, the operator is PT -symmetric [108] and may still make sense as a quantum
mechanical system. If we make the change of variables w “ α`e

iα´x then the Hamiltonian
becomes

H “ α2
´

ˆ

w2 d2

dw2 ` w
d

dw

˙

` α2
´w

2 . (6.29)

The eigenfunctions with energy E are solutions of the Bessel equation
„

w2 d2

dw2 ` w
d

dw
` w2 ´ Eα2

`



ψpwq “ 0 . (6.30)

For arbitrary (non-integer)
b

Eα2
`, the two linearly independent solutions to this equa-

tion are
J
˘

b

Eα2
`

`

α`e
iα´x

˘

. (6.31)

Although the solution appears automatically periodic, caution is required since the argu-
ment is complex. The Bessel function Jνpwq has a branch cut beginning at w “ 0 and
extending to infinity, so sending x Ñ x ` 2πR moves the argument onto the next sheet.
Requiring absence of the branch cut requires that the order

b

Eα2
` be an integer, so we

may write E “ n2α2
´ with n P Z. The solution becomes

J˘npα`e
iα´xq . (6.32)

When the order is an integer, the two solutions satisfy a “reflection identification”

J´npwq “ p´1qnJnpwq (6.33)

and are no longer linearly independent. In this case the second linearly independent solution
is the Bessel function of the second kind. This function always has a branch point at w “ 0
so we discard it.

For integer order, the Bessel function of the first kind is an entire function with a
Taylor series

Jnpwq “
ÿ

j“0

p´1qj

j!Γpj ` n` 1q

´w

2

¯n`2j
. (6.34)

Recalling that w “ α`e
iα´x, we see that the wavefunction has support on an infinite num-

ber of plane waves. This should be contrasted with the case of spacelike Liouville theory,
where the scattering states only have support on a given momentum and its reflection.
This is surely at the heart of the drastic reduction in the number of independent states in
the full model. The shift in momentum between terms in (6.34) is of the form ∆n “ 2jp1.
Returning to figure 7, one sees that the exponentials that appear in the BRST complex
based on Fr,s all either contain a shift of r by a multiple of p1 or shift of s. In either case,
the momentum n shifts by a multiple of p1 as in the Bessel function.
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6.4 Three-point functions and truncation of the OPE

In this subsection we will attempt to reproduce the minimal model fusion rules using the
compact timelike linear dilaton deformed by both marginal operators. The OPE we would
like to reproduce is

Mr1,s1 ˆMr2,s2 “

rmax
ÿ

r3“1`|r1´r2|

smax
ÿ

s3“1`|s1´s2|

Mr3,s3 , (6.35)

with r1 ` r2 ` r3 and s1 ` s2 ` s3 odd and

rmax “ minpr1 ` r2 ´ 1, 2p1 ´ 1´ r1 ´ r2q ,

smax “ minps1 ` s2 ´ 1, 2p´ 1´ s1 ´ s2q . (6.36)

We will refer to the upper bounds 2p1 ´ 1 ´ r1 ´ r2 and 2p ´ 1 ´ s1 ´ s2 as truncation
from above. Our notation will distinguish between the minimal model operator Mr,spxq,
its linear dilaton avatar Vr,spxq and the reflection partner Ṽr,spxq “ V´r,´spxq.

A quick but misleading derivation of truncation. There is a formal argu-
ment [109, 110] which reproduces some of the fusion rules of the minimal models from
the deformed timelike linear dilaton. The quantity that we would like to calculate in the
minimal model is the three-point function of primary operators within the Kac table

xMr1,s1Mr2,s2Mr3,s3y . (6.37)

In fact, for the purposes of this section we are really only interested in whether or not
the coefficient vanishes. Within the linear dilaton theory, there are eight distinct ways
of calculating this coefficient, depending on which and how many reflection operators we
choose to insert. They are

xVr1,s1Vr2,s2Vr3,s3y , xV´r1,´s1Vr2,s2Vr3,s3y , xVr1,s1V´r2,´s2Vr3,s3y ,

xVr1,s1Vr2,s2V´r3,´s3y , xV´r1,´s1V´r2,´s2Vr3,s3y , xV´r1,´s1Vr2,s2V´r3,´s3y , (6.38)
xVr1,s1V´r2,´s2V´r3,´s3y , xV´r1,´s1V´r2,´s2V´r3,´s3y .

For the moment, we will allow ourselves to use both marginal perturbations. In order to
obtain a non-zero coefficient using the representative xV´r1,´s1Vr2,s2Vr3,s3y we must have

p1` r1 ´ r2 ´ r3 ` 2n`qα` ` p1` s1 ´ s2 ´ s3 ` 2n´qα´ “ 0 (6.39)

for some number n` and n´ of the two screening charges. Similarly, to screen the repre-
sentative xVr1,s1V´r2,´s2Vr3,s3y one needs

p1´ r1 ` r2 ´ r3 ` 2m`qα` ` p1´ s1 ` s2 ´ s3 ` 2m´qα´ “ 0 (6.40)

for a different number m˘ of screening charges. Finally, in order to obtain a nonzero
coefficient from the representative xVr1,s1Vr2,s2V´r3,´s3y one must have

p1´ r1 ´ r2 ` r3 ` 2l`qα` ` p1´ s1 ´ s2 ` s3 ` 2l´qα´ “ 0 . (6.41)
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Imagine for the moment that each term in parentheses must vanish identically in order to
satisfy each equality (this would be the case if α˘ were not rationally related). Then it is
easy to see that each equality requires

r1 ` r2 ` r3 odd , s1 ` s2 ` s3 odd . (6.42)

This is the first ingredient in the fusion rules (6.35). Now since n˘,m˘, l˘ are non-negative
integers, we also encounter three sets of inequalities. Equation (6.39) requires

1` r1 ´ r2 ´ r3 ď 0 , 1` s1 ´ s2 ´ s3 ď 0 . (6.43)

Similarly, equation (6.40) necessitates

1´ r1 ` r2 ´ r3 ď 0 , 1´ s1 ` s2 ´ s3 ď 0 (6.44)

and equation (6.41) requires

1´ r1 ´ r2 ` r3 ď 0 , 1´ s1 ´ s2 ` s3 ď 0 . (6.45)

Now if one requires that each set of inequalities be satisfied simultaneously (so that all
three representatives separately yield a nonzero answer) one finds that

r3 P r1` |r1 ´ r2|, r1 ` r2 ´ 1s , s3 P r1` |s1 ´ s2|, s1 ` s2 ´ 1s . (6.46)

The lower bound comes from equations (6.43)–(6.44) while the upper bounds come from
equation (6.45). From this analysis we can conclude at most that

Mr1,s1 ˆMr2,s2 “

r1`r2´1
ÿ

r3“1`|r1´r2|

s1`s2´1
ÿ

s3“1`|s1´s2|

Mr3,s3 . (6.47)

We have thus reproduced part of the fusion rule (6.36), but have not demonstrated trun-
cation from above.

The logic of this argument appears to be rather delicate. Following the same steps as
above, the representative xV´r1,´s1V´r2,´s2Vr3,s3y leads to an apparent inequality

1` r1 ` r2 ´ r3 ď 0 , 1` s1 ` s2 ´ s3 ď 0 . (6.48)

This would seem to imply a bound 1 ` r1 ` r2 ď r3, which is certainly not obeyed in the
minimal models. This is our first example of a naively problematic correlation function
involving two reflection operators. More serious examples will be encountered later. Sim-
ilarly, the representative xV´r1,´s1Vr2,s2V´r3,´s3y leads to upper bounds on pr3, s3q which
are far too strong

1` r1 ´ r2 ` r3 ď 0 , 1` s1 ´ s2 ` s3 ď 0 . (6.49)

The same goes for the representative xVr1,s1V´r2,´s2V´r3,´s3y:

1´ r1 ` r2 ` r3 ď 0 , 1´ s1 ` s2 ` s3 ď 0 . (6.50)
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Meanwhile, according to this logic the correlator xVr1,s1Vr2,s2Vr3,s3y gives no constraints
while the correlator xV´r1,´s1V´r2,´s2V´r3,´s3y can never be screened. There is clearly an
issue in the treatment of correlators with multiple reflection operator insertions.

In demonstrating that the minimal model OPE closes on a finite number of primaries,
it is very important that α˘ are rationally related and hr,s “ hp1´r,p´s. Similarly, any
attempt to fix the inequalities (6.48)–(6.50) must somehow work p, p1 into the formulas.
Now for rational α2

˘, the identity Vp1´r,p´s “ V´r,´s is tautological and results from the
redundancy in the parametrization of the momentum nr,s “ p1 ´ rqp ´ p1 ´ sqp1. The
formal manipulation that reproduces the minimal model fusion rules applies the logic of
eqs. (6.39)–(6.45) to the correlator xVp1´r1,p´s1Vp1´r2,p´s2Vr3,s3y at an irrational point, and
then sets Vp1´r,p´s “ V´r,´s “ Vr,s at the end of the calculation. To be explicit, the
representative xV´pp1´r1q,´pp´s1qVp1´r2,p´s2Vr3,s3y leads to the inequalities

1´ r1 ` r2 ´ r3 ď 0 , 1´ s1 ` s2 ´ s3 ď 0 , (6.51)

while the representative xVp1´r1,p´s1V´pp1´r2q,´pp´s2qVr3,s3y requires

1` r1 ´ r2 ´ r3 ď 0 , 1` s1 ´ s2 ´ s3 ď 0 . (6.52)

The truncation from below is therefore unaffected. However, the ability to screen the
correlation function xVp1´r1,p´s1Vp1´r2,p´s2V´r3,´s3y leads to the requirement that

1´ pp1 ´ r1q ´ pp
1 ´ r2q ` r3 ď 0 , 1´ pp´ s1q ´ pp´ s2q ` s3 ď 0 , (6.53)

and we conclude that

Mp1´r1,p´s1 ˆMp1´r2,p´s2 “

2p1´1´r1´r2
ÿ

r3“1`|r1´r2|

2p´1´s1´s2
ÿ

s3“1`|s1´s2|

Mr3,s3 . (6.54)

If we now go to the rational point, setMp1´r,p´s “Mr,s, and require consistency with (6.47),
we obtain the full fusion rule (6.35) with truncation from above. Note that for this entire
argument to work, we must make the reflection identification.

6.5 Apparent failures of truncation and subtleties with the reflection identi-
fication

Although the above derivation ultimately produces the desired answer, it is unsatisfying
in several respects and requires justification. Requiring each term in (6.39) to vanish
separately is not justified since p1α` ` pα´ “ 0 and there can be cancellation between the
two terms. This same basic issue is encountered in obtaining truncation from above, where
one must obtain the fusion rules for Vp1´r,p´s before taking α2

˘ rational. The ultimate
justification for these manipulations probably relies on the fact that, in order to even
define the Coulomb gas integrals, one must analytically continue the momenta from regions
where the integrals converge. Consideration of irrational quantities is seemingly inevitable
even though the definition of the theory is purely rational. However, it is important that
we encountered problems with the naive interpretation of correlation functions involving
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multiple reflection operators, and the use of analytic continuation also implies that the
ability to screen a correlator does not guarantee that it is non-vanishing, as the simple
Pochhammer contour example of section 6.1 shows.

The best way to illustrate the subtleties in the calculation of the three-point functions
is with examples. Perhaps the simplest OPE to check is

M1,2 ˆM1,2 “M1,1 `M1,3 . (6.55)

In the Yang-Lee model, this would be the only fusion rule to verify since M1,2 “ M1,5´2.
The first point to note is that we can represent the correlator xM1,2M1,2M1,3y using a single
reflection operator

xV1,2px1qV1,2px2qV´1,´3px3qy “ xe
´iα´φpx1qe´iα´φpx2qeip2α``4α´qφpx3qy . (6.56)

This correlator does not require screening, so we conclude that the OPE coefficient will not
vanish as expected. We could also choose to represent the OPE coefficient using a different
combination of operators that requires a single screening charge:

B

V1,2px1qV´1,´2px2qV1,3px3q

ż

d2we2iα´φpwq
F

. (6.57)

In this case, the integral that we need to do is
B

e´iα´φpx1qeip2α``3α´qφpx2qe´2iα´φpx3q

ż

d2we2iα´φpwq
F

“ |x1´x2|
2´3α2

´ |x1´x3|
2α2
´ |x2´x3|

4´6α2
´

ż

d2w|x1´w|
´2α2

´ |x2´w|
´4`6α2

´ |x3´w|
´4α2

´ .

(6.58)

In general this integral needs to be defined by analytic continuation from a region of
parameter space where it converges. Sending x1 “ 0, x2 “ 1, x3 Ñ 8 the integral takes
the form (6.13). Evaluating the Dotsenko-Fateev expression, one obtains a finite limit with
nonsingular terms multiplied by limεÑ0

Γpεq
Γpεq . The two calculations agree and the OPE

coefficient does not vanish. Similarly, the representation

B

V1,2px1qV1,2px2qV1,3px3q

ż

d2ye2iα`φpyq
3
ź

i“1

ż

d2wie
2iα´φpwiq

F

(6.59)

“

B

e´iα´φpx1qe´iα´φpx2qe´2iα´φpx3q

ż

d2ye2iα`φpyq
ż

d2w1e
2iα´φpw1q

ż

d2w2e
2iα´φpw2q

ż

d2w3e
2iα´φpw3q

F

also yields a non-vanishing answer, although a finite limit of a different ratio of divergent
gamma functions appears.

Next we try to verify truncation in a few simple examples. The minimal model fusion
rule requires the following three-point function to vanish:

xM1,2px1qM1,2px2qM3,1px3qy “ 0 . (6.60)
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One representative of this correlation function, requiring a single screening charge, is
B

V1,2px1qV´1,´2px2qV3,1px3q

ż

d2ye2iα`φpyq
F

“

B

e´iα´φpx1qeip2α``3α´qφpx2qe´2iα`φpx3q

ż

d2ye2iα`φpyq
F

. (6.61)

This correlator satisfies the neutrality condition (can be screened), but should vanish due
to the fusion rules. Applying (6.13), one finds non-singular terms multiplied by a vanishing
ratio of gamma functions

lim
εÑ0

Γpεq
ΓpεqΓp´1` εq “ 0 . (6.62)

We could try to calculate this three-point function without using any reflection operators.
The relevant correlator is

B

e´iα´φpx1qe´iα´φpx2qe´2iα`φpx3q

ż

d2y1e
2iα`φpy1q

ż

d2y2e
2iα`φpy2q

ż

d2w1e
2iα´φpw1q

ż

d2w2e
2iα´φpw2q

F

.

(6.63)

Unsurprisingly, one finds non-singular terms multiplied by a different vanishing ratio of
gamma functions

lim
εÑ0

Γpεq2

Γpεq2Γp´2` εq “ 0 . (6.64)

Truncation in the s-direction is similarly verified. For instance, the three-point func-
tion xM1,2M1,2M1,5y should vanish, but it has linear dilaton representatives that can be
screened. One representative is

B

e´iα´φpx1qe´iα´φpx2qe´4α´φpx3q

ż

d2ye2iα`φpyq
4
ź

i“1

ż

d2wie
2iα´φpwiq

F

. (6.65)

Evaluating this integral in a region of convergence and continuing to the physical values, one
obtains a non-singular prefactor multiplied by a vanishing combination of gamma functions

lim
εÑ0

Γp´2` εq2Γp´4` εq
Γpεq4 “ 0 . (6.66)

Now let’s consider a slightly more complicated fusion rule. We will take p, p1 large so that
we do not need to worry about truncation from above, and consider the OPE

M2,3 ˆM2,3 “
ÿ

r“1,3

ÿ

s“1,3,5
Mr,s . (6.67)

The prediction from the minimal model is that any linear-dilaton representative of the
correlator xM2,3M2,3M5,9y should vanish. There is a simple representative that requires a
single screening charge

B

V´2,´3px1qV´2,´3px2qV5,9px3q

ż

d2we2iα´φpwq
F

“

B

eip3α``4α´qφpx1qeip3α``4α´qφpx2qeip´4α`´8α´qφpx3q

ż

d2we2iα´φpwq
F

. (6.68)
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Oddly, after analytic continuation and application of (6.14) one obtains finite non-zero
terms multiplied by a non-vanishing ratio of gamma functions

lim
εÑ0

Γpεq
Γpεq ‰ 0 , (6.69)

yielding an apparent violation of truncation. To test the seriousness of this violation, we
can do the analogous calculation without the use of any reflection operators. The answer
also does not vanish:

B

V2,3px1qV2,3px2qV5,9px3q
4
ź

i“1

ż

d2yie
2iα`pyiq

7
ź

i“1

ż

d2wie
2iα´φpwiq

F

„ lim
εÑ0

Γp´4` εq2

Γp´1` εq2 .

(6.70)
Unfortunately, this violation of fusion is the first among many. One seems to encounter the
identical problem whenever a representative correlation function with two reflection oper-
ators can be screened. Low-lying examples include xM2,3M3,4M6,8y and xM2,3M2,3M7,9y.
Perhaps the simplest example that illustrates the problem is the correlator xM1,2M1,2M3,5y.
This three-point function should vanish in any minimal model irrespective of the values of
p, p1. However, it has a representative involving two reflection operators

xV´1,´2px1qV´1,´2px2qV3,5px3qy “ xe
p2iα``3iα´qφpx1qep2iα``3iα´qφpx2qep´2iα`´4iα´qφpx3qy

(6.71)
that does not even need to be screened and cannot vanish. Similar examples abound.

6.6 Discussion and resolution for p2, pq models

The apparent failure of truncation in certain analytically continued Coulomb gas integrals
has been noted before (see for example section 6.4 of [79]). Although this appears discour-
aging, we have already encountered many instances where a naive interpretation of the
timelike linear dilaton seems to conflict with the minimal model, so we need to be more
careful in our interpretation of the results of calculations.

In the rest of this section we will restrict attention to the p2, pq models deformed by
the single marginal operator e2iα´φpxq. This will allow us to avoid the question of the
truncation of perturbation theory, and simplifies the analysis of the apparent violations of
fusion.

In these models, there are p´1
2 fundamental BRST invariant operators, which we label

by V1,s with s “ 1, 2, . . . p´1
2 . The operators with s “ p`1

2 , . . . p ´ 1 are the reflections
of these fundamental operators. Note that the reflection operation V1,s Ñ V1,p´s flips the
parity of the second Kac label since p is by assumption odd. Because p1 “ 2, any momentum
operator in the theory can be written as V0,t or V1,t for some integer t, depending on the
parity of the momentum n. The parameter t is of course unbounded in both directions.

Yang-Lee. We are going to begin by studying the violation of truncation in the simplest
possible case, the p2, 5q Yang-Lee edge singularity. Since we do not deform the linear
dilaton by e2iα`φpxq, the selection rule on the momenta is

ÿ

ni ´ 4n´ “ 2p´ 2p1 “ 6 . (6.72)
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n s “ ´3 s “ ´2 s “ ´1 s “ 0 s “ 1 s “ 2 s “ 3 s “ 4 s “ 5 s “ 6
r “ 0 ´3 ´1 1 3 5 7 9 11 13 15
r “ 1 ´8 ´6 ´4 ´2 0 2 4 6 8 10

Table 1. Values of the momentum n of some operators in the p2, 5q compact linear dilaton. The
correct fusion range for M1,2ˆM1,2 is shaded in blue and green. The gray shaded boxes correspond
to the operator V3,5 which seemingly violates the fusion rule.

Here n´ is the number of screening charge insertions, and it is important that its coefficient
is negative. It will be helpful to switch from the redundant r, s label to the momentum
label n which is unambiguous. In table 1 we list the momenta for low-lying values of r, s.

The reflection map is simply nÑ 6´n, and reflection pairs are shaded with the same
color. In the previous subsection, we encountered a troublesome three-point correlator
xV´1,´2V´1,´2V3,5y that seemed to violate fusion. In this model V3,5 “ V1,0, and we see
that the correlator xV´1,´2V´1,´2V3,5y does not vanish since

ř

n “ 4`4´2 “ 6. Given the
BRST structure of the model, the natural question to ask is whether or not this three-point
function can contribute to correlation functions of BRST invariant operators.

Consider all the representatives of the 4-point function for identical operators V pxq ”
V1,2pxq and the reflection partner Ṽ pxq ” V´1,´2pxq. They are

xV px1qV px2qV px3qV px4qy , xṼ px1qṼ px2qṼ px3qṼ px4qy , xV px1qV px2qṼ px3qṼ px4qy ,

(6.73)
and

xV px1qV px2qV px3qṼ px4qy , xV px1qṼ px2qṼ px3qṼ px4qy . (6.74)

The combined momentum charges of the operators in each correlation function on the top
line are all equal to 0 mod 4 so these correlators cannot be screened. The combined charges
of the operators on the bottom line are both 2 mod 4 and these four-point functions can
be screened.

Consider first the correlation function xV px1qV px2qV px3qṼ px4qy. When we evaluate
this by factorizing onto three-point functions, we need to keep in mind that |Oy: “ xÕ| so
that the insertion of the identity takes the form (see figure 9)

xV px1qV px2qV px3qṼ px4qy „
ÿ

O
xV px1qV px2q|OyxÕ|V px3qṼ px4qy . (6.75)

In order for an operator O to contribute via exchange, two separate three-point functions
must be nonvanishing: we need xV px1qV px2qOpx3qy ‰ 0 and xV px1qṼ px2qÕpx3qy ‰ 0. In
order to screen both three-point functions, one must be able to solve the simultaneous
equations

4` n´ 4n´ “ 6 , 6` p6´ nq ´ 4m´ “ 6 . (6.76)

The only shared solutions are n “ 2 and n “ 6, which are precisely the operators expected
to show up in the Yang-Lee OPE. The contribution from |ÕyxO| just picks out the reflec-
tions of these two operators, n “ 0 and n “ 4. The point of this example is to show that it
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Vr,s

Vr,s

Vr,s

V´r,´s

Vr,s

Vr,s

Vr,s

V´r,´s

|OyxÕ| |ÕyxO|

Figure 9. Potential exchange for an operator O or its reflection Õ violating fusion. A pair of
distinct three-point functions must be non-vanishing simultaneously if the operator is to contribute
to the four-point function.

is possible to have a non-vanishing three-point function outside of the fusion range which
does not contribute to the four-point function.

Now consider factorizing the representative xṼ px1qṼ px2qṼ px3qV px4qy on three-point
functions. In order to contribute, an operator Opxq must satisfy xṼ px1qṼ px2qOpx3qy ‰ 0
and xV px1qṼ px2qÕpx3qy ‰ 0. The simultaneous equations are

8` n´ 4n´ “ 6 , 6` p6´ nq ´ 4m´ “ 6 . (6.77)

There is now an extra shared solution at n “ ´2 corresponding to the coefficient
xṼ1,2Ṽ1,2V3,5y that we encountered previously. In order to determine whether or not this
term contributes, we need to evaluate xV px1qṼ px2qÕpx3qy explicitly, since considering fac-
torization on xṼ px1qṼ px2qÕpx3qy and xV px1qṼ px2qOpx3qy allows possible contributions
from the reflected operators at n “ 0, 4, 8 and does not solve the problem. This correlation
function requires two screening operators, but one can check that it does vanish for the
correct values of the parameters:

B

e´iα´φpx1qep2iα``3iα´qφpx2qep4iα``6iα´qφpx3q
2
ź

i“1

ż

d2wie
2iα´φpwiq

F

„ lim
εÑ0

1
Γpεq “ 0 .

(6.78)
So although the reflected representative of the four-point function naively allows for contri-
butions from outside of the fusion range, only the expected operators actually contribute.
This points to a possible mechanism for the deformed linear dilaton to reproduce the cor-
rect minimal model correlation functions while botching some three-point functions: the
linear dilaton does not have to set every representative of a vanishing fusion coefficient to
zero, but only certain combinations.

The non-obvious vanishing of the integral (6.78) was necessary in order for the danger-
ous three-point function (6.71) to have no effect on the correlator xṼ px1qṼ px2qṼ px3qV px4qy.
It is tempting to look for an explanation of this mechanism in terms of the BRST structure
of the model. Indeed, at least in the p2, 5q model the operator V3,5 is not in the BRST
cohomology and calculating the three-point function (6.71) is akin to calculating a non-
gauge-invariant quantity: the value does not matter since it will not contribute to physical
BRST invariant observables. This argument seems too fast, since we could find a model in
which V3,5 is in the cohomology while (6.71) would still represent an apparent violation of
truncation. Indeed, we now turn to an example in which an apparent failure of truncation
is not remedied solely by the vanishing of a reflection partner three-point function.
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n s “ ´2 s “ ´1 s “ 0 s “ 1 s “ 2 s “ 3 s “ 4 s “ 5 s “ 6 s “ 7
r “ 0 1 3 5 7 9 11 13 15 17 19
r “ 1 ´6 ´4 ´2 0 2 4 6 8 10 12

Table 2. Values of the momentum n of some operators in the p2, 7q compact linear dilaton. The
correct truncated fusion range for the model is shaded in blue and green.

The p2, 7q model. Next we would like to verify the fusion rules in the p2, 7q model. The
reflection map sends nÑ 10´n and the selection rule is

ř

ni´4n´ “ 10. There are three
fusion rules in this model to verify

M1,2 ˆM1,2 “ 1`M1,3 , (6.79)
M1,2 ˆM1,3 “M1,2 `M1,4 “M1,2 `M1,3 , (6.80)
M1,3 ˆM1,3 “ 1`M1,3 `M1,5 “ 1`M1,2 `M1,3 . (6.81)

In table 2 we list the linear dilaton momenta corresponding to these operators.
We will consider first the four-point functions with a single reflection operator insertion.

In order to check the first fusion rule (6.79) we consider

xV1,2px1qV1,2px2qV1,2px3qṼ1,2px4qy „
ÿ

O
xV1,2px1qV1,2px2q|OyxÕ|V1,2px3qṼ1,2px4qy . (6.82)

In order for an operator to contribute to this correlator one must have
xV1,2px1qV1,2px2qOr,spx3qy ‰ 0 and xV1,2px1qṼ1,2px2qÕr,spx3qy ‰ 0. This leads to two con-
straints

nr,s “ 6` 4n´ , nr,s “ 10´ 4m´ . (6.83)

The simultaneous solutions are nr,s “ 6 and nr,s “ 10 corresponding to M1,3 and M1,1 as
expected. Next we check the third fusion rule (6.81) for M1,3 ˆM1,3 using the correlator
xV1,3px1qV1,3px2qV1,3px3qṼ1,3px4qy. In order for an operator Or,s to contribute, it must
satisfy the constraints

nr,s “ 2` 4n´ , nr,s “ 10´ 4m´ . (6.84)

The simultaneous solutions are nr,s “ 2, 6, 10, corresponding to the operators M1,2,M1,3
and 1. In order to verify the last fusion rule (6.80), we consider the correlator
xV1,2px1qV1,3px2qV1,2px3qṼ1,3px4qy. In order for an operator Or,s to contribute, it must
be the case that

nr,s “ 4` 4n´ , nr,s “ 8´ 4m´ . (6.85)

The simultaneous solutions are nr,s “ 4 and nr,s “ 8, corresponding to the expected
operators M1,3 and M1,2. At this point the general mechanism for obtaining truncation
from the xV V V Ṽ y correlator should be clear: the truncation from below arises from the
xV VOr,sy three-point function, where nr,s enters the selection rule with a positive sign.
Likewise, the truncation from above is enforced by the non-vanishing of the three-point
function xV Ṽ Õr,sy, in which nr,s enters the selection rule with a negative sign.
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Now we would like to repeat the above analysis for the four-point function with three
reflection operator insertions, denoted schematically xṼ Ṽ Ṽ V y. One might imagine that
this correlator leads to identical constraints, but we already saw that this is not the case
in the p2, 5q model. For instance, we can revisit the M1,2 ˆM1,2 fusion rules using the
correlation function xṼ1,2px1qṼ1,2px2qṼ1,2px3qV1,2px4qy. Factorizing on an operator Or,s, one
encounters a pair of constraints from the three-point functions xṼ1,2px1qṼ1,2px2qOrspx3qy

and xṼ1,2px1qV1,2px2qÕrspx3qy. They are

nr,s “ ´6` 4n´ , nr,s “ 10´ 4m´ . (6.86)

There are five solutions n “ ´6,´2, 2, 6, 10 to this set of equations, but the fusion rules
predict only n “ 6 and n “ 10. In particular, for the case n “ ´6 the three-point
function xṼ1,2px1qṼ1,2px2qOn“´6px3qy does not even need to be screened and does not
vanish. In order to determine whether or not this apparent violation of fusion actually
contributes to the four-point function, we need to check if xṼ1,2px1qV1,2px2qÕn“´6px3qy

vanishes. The integral is of the usual form, but now one finds a finite coefficient multiplied
by a nonvanishing ratio of divergent Gamma functions

B

ep2iα``3α´qφpx1qe´iα´φpx2qe´8α´φpx3q
4
ź

i“1

ż

d2wie
2iα´φpwiq

F

„ lim
εÑ0

Γp´1` εq
Γpεq . (6.87)

This calculation seems to represent a genuine violation of the fusion rules (in particular,
the reflection coefficient for this operator is finite). Note that, in contrast with the four-
point function with a single reflection operator insertion, both three-point functions in this
example contain two reflection operators. The root of the problem seems to be that the
reflection operators have larger momenta and contribute to the selection rule in the wrong
direction, loosening the bounds. Apparently, the nonzero contribution from this operator
is cancelled by other apparent violations of fusion in order to reproduce the correct four-
point function. As we will see in the next section, one never encounters this subtlety if one
restricts attention to the four-point function with a single reflection operator.

General case p2, pq. In this section we will derive the p2, pq minimal model fusion rules

M1,s1 ˆM1,s2 “

minps1`s2´1,2p´s1´s2´1q
ÿ

s3“1`|s1´s2|

M1,s3 (6.88)

from the timelike linear dilaton deformed by the marginal operator M´pxq. We will only
make use of the four-point function with a single reflection operator insertion. There are
two types of OPE to consider: that of an operator with itself, and the OPE between
two distinct operators in the fundamental range s P

“

1, p´1
2
‰

. To treat the first case,
we consider the correlator xV1,spx1qV1,spx2qV1,spx3qṼ1,spx4qy factorized onto a product of
three-point functions:

xV1,spx1qV1,spx2q|Oy ˆ xÕ|V1,spx3qṼ1,spx4qy . (6.89)
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In order to contribute, the momentum n of the operator O must satisfy the relations

n “ 2p´ 4s` 4n´ , n “ 2p´ 4´ 4m´ . (6.90)

Taking the difference of these two equations one finds s´1 “ n´`m´. There are s distinct
combinations of positive integers pn´,m´q satisfying this equation. Similarly, taking the
sum of (6.90), one finds

n “ 2p´ 2s` 2n´ ´ 2m´ ´ 2 . (6.91)
For the allowed partitions of s´1 “ n´`m´, the quantity pn´´m´´1q spans the range
r´s, s´2s in increments of 2 so that the allowed values of n span the range r2p´4s, 2p´4s
in increments of 4. These are are precisely the momenta allowed by the fusion rules (6.88).
The upper bound 2p´4 “ 2p´2p1 is simply the reflection of the identity, and the decreases
of momenta in increments of 4 pick out a single representative of each allowed operator in
the OPE.

In order to check the OPE between two distinct operators M1,s1pxq and M1,s2pxq

we consider the correlation function xV1,s1px1qV1,s2px2qV1,s1px3qṼ1,s2px4qy factorized onto a
product of three-point functions:

xV1,s1px1qV1,s2px2q|Oy ˆ xÕ|V1,s1px3qṼ1,s2px4qy . (6.92)

Without loss of generality we will assume s2 ą s1. In order to contribute, the momentum
n of the operator O must satisfy

n “ 2p´ 2s1 ´ 2s2 ` 4n´ , n “ 2p` 2s1 ´ 2s2 ´ 4´ 4m´ . (6.93)

Taking the difference of these two equations, one finds s1 ´ 1 “ n´ `m´. There are s1
such partitions. Similarly, taking the sum yields the equation

n “ 2p´ 2s2 ` 2n´ ´ 2m´ ´ 2 . (6.94)

For the allowed partitions of s1 ´ 1 “ n´ ` m´, the quantity pn´ ´ m´ ´ 1q spans the
range r´s1, s1 ´ 2s in increments of 2 so that the allowed values of n span the range
r2p´ 2s1´ 2s2, 2p´ 4` 2s1´ 2s2s in increments of 4. These are are precisely the momenta
allowed by the fusion rules (6.88).

As discussed earlier, if we were willing to work at an irrational point (so that there
can be no compensation between α` and α´ in the selection rule) and then continue
to the rational point, then there would be a shortcut to obtaining the fusion rules. In
this scenario, at least for the p2, pq models deformed by the single marginal deformation
M´pxq, it is not possible to screen a correlation function with more than a single reflection
operator. Using this fact one could read off the fusion rules directly from the three-
point function without resorting to the four-point function. As an example, note that the
correlator xM1,s1M1,s2M1,s1`s2´1`ny should vanish for n ą 0. If we represent it using a
single reflection operator

xeip1´s1qα´φpx1qeip1´s2qα´φpx2qer2iα``ips1`s2`nqα´sφpx3qy (6.95)

we find that the three-point function cannot be screened. In particular, since all of the
problematic three-point functions that we encountered in previous sections involved mul-
tiple reflection operator insertions, we avoid the subtle puzzles and their resolutions.
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n s “ ´2 s “ ´1 s “ 0 s “ 1 s “ 2 s “ 3 s “ 4 s “ 5 s “ 6 s “ 7
r “ 0 ´5 ´2 1 4 7 10 13 16 19 22
r “ 1 ´9 ´6 ´3 0 3 6 9 12 15 18
r “ 2 ´13 ´10 ´7 ´4 ´1 2 5 8 11 14

Table 3. Values of the momentum n of some operators in the p4, 3q compact linear dilaton.

6.7 Comments on truncation of perturbation theory and general pp, p1q models

In this section we will investigate truncation in the general pp, p1q compact timelike linear
dilaton models. These cases involve puzzles not present in the p2, pq models.

Ising model. The Ising model corresponds to pp, p1q “ p4, 3q. There are three Virasoro
primaries in the model

M1,1 “M2,3 ” 1 , M1,2 “M2,2 ” σ , M1,3 “M2,1 ” ε . (6.96)

Their fusion rules are

M12 ˆM12 “M11 `M13 , M13 ˆM13 “M11 , M12 ˆM13 “M12 . (6.97)

For all of the unitary models, the selection rule on momenta is given by
ÿ

n` 2n`p´ 2n´p1 “ 2 . (6.98)

In table 3 we list the momenta of the linear dilaton exponentials corresponding to Ising
model primaries. Our convention will be to denote the operator with the smallest value of
n as V pxq, and its reflection partner as Ṽ pxq.

Consider first the σ ˆ σ OPE. If we only deform the linear dilaton theory by the
operator M´pxq, then the only representative of the four-point function xσσσσy that can
be screened is

B

V1,2px1qV1,2px2qV1,2px3qV2,2px4q

ż

d2we2iα´φpwq
F

. (6.99)

Factorizing the correlator on three-point functions, one finds conditions on the exchanged
operator On:

n “ ´4` 6n´ , n “ 2´ 6m´ . (6.100)

The simultaneous solutions are n “ ´4 and n “ 2, as expected from exchange of ε
and the identity. Similarly, one can check that the only representative of the four-point
function xεεεεy that can be screened is

B

V1,3px1qV1,3px2qV1,3px3qV2,1px4q

ż

d2w1e
2iα´φpw1q

ż

d2w2e
2iα´φpw2q

F

. (6.101)

Factorizing onto three-point functions, the constraints for exchange are

n “ ´10` 6n´ , n “ 2´ 6m´ . (6.102)
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The simultaneous solutions are n “ 2,´4,´10, while only n “ 2 is expected from the
fusion rules. This appears to be the same phenomena encountered in the p2, pq models
when considering the four-point function with three reflection operator insertions (in this
case V2,1 has the lesser momentum and the reflection operator is V1,3): delicate cancellations
between the two anomalous contributions combine to yield the correct answer.

The ability to screen representatives of each minimal model correlator using only
M´pxq in this system corresponds to the ability to choose representatives of the form
V1,spxq for all operators in the model. This is a general feature of the p3, pq models, but
will not hold for more general models as we now demonstrate.

Tricritical Ising model. The tricritical Ising model corresponds to pp, p1q “ p5, 4q. The
independent operators are

M1,1 “M3,4 , M1,2 “M3,3 , M1,3 “M3,2 , M1,4 “M3,1 , M2,2 “M2,3 , M2,4 “M2,1 .

(6.103)
The selection rule on momenta in the linear dilaton system is

ÿ

n` 10n` ´ 8n´ “ 2 . (6.104)

In table 4 we list the momenta of the linear dilaton exponentials corresponding to Tricritical
Ising model primaries. There are in principle 15 separate OPE’s to check, but the basic
problem can be illustrated using the four-point function xM22M22M22M22y. It is easy to
see that no representative of this correlation function can be screened using only M´pxq.
If we deform by both marginal operators M˘pxq, then it is possible to screen all five
representatives of this correlator. For instance, the correlation function

B

V2,2px1qV2,2px2qV2,2px3qV2,3px4q

ż

d2ye2iα`φpyq
ż

d2we2iα´φpwq
F

(6.105)

satisfies the momentum constraint. Unfortunately, the correlator
B

V2,2px1qV2,2px2qV2,2px3qV2,3px4q
1`4k
ź

i“1

ż

d2yie
2iα`φpyiq

1`5k
ź

j“1

ż

d2wje
2iα´φpwjq

F

(6.106)

also satisfies the momentum constraint for any positive k. This term would arise as a
contribution to the four-point function from a higher order in perturbation theory. If it
were to contribute, then the total answer in the deformed linear dilaton model would not
match that of the minimal model. The same basic puzzle arises in any model with p1 ‰ 2, 3
when we are seemingly forced to deform by both marginal operators in order to screen all
relevant four-point functions.

The fusion rule associated to this correlator is

M2,2 ˆM2,2 “M1,1 `M1,2 `M1,3 `M1,4 . (6.107)

Factorizing on three-point functions, we find the constraints for exchange:

n “ 4´ 10n` ` 8n´ , n “ 2` 10m` ´ 8m´ . (6.108)
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n s “ ´2 s “ ´1 s “ 0 s “ 1 s “ 2 s “ 3 s “ 4 s “ 5 s “ 6 s “ 7
r “ 0 ´7 ´3 1 5 9 13 17 21 25 29
r “ 1 ´12 ´8 ´4 0 4 8 12 16 20 24
r “ 2 ´17 ´13 ´9 ´5 ´1 3 7 11 15 19
r “ 3 ´22 ´18 ´14 ´10 ´6 ´2 2 6 10 14

Table 4. Values of the momentum n of some operators in the p5, 4q compact linear dilaton.

pn`, n´q 4´ 10n` ` 8n´ pm`,m´q 2` 10m` ´ 8m´
p0, 0q 4 p1, 1q 4
p0, 1q 12 p1, 0q 12
p1, 0q ´6 p0, 1q ´6
p1, 1q 2 p0, 0q 2

Table 5. Low-lying operator exchanges corresponding to the correlator (6.105).

In table 5 we list the lowest lying values of n given by (6.108). The values of n˘,m˘ depicted
in this table are special since, for fixed n, they satisfy n` `m` “ 1 and n´ `m´ “ 1.
Not coincidentally, these values of n are precisely those expected from the minimal model
fusion rules. This is related to the fact that the correlator (6.105) has one insertion of
M`pxq and one insertion of M´pxq. In fact, given a four-point function with a fixed
number of screening charges, determination of the possible operator exchanges amounts to
determining the pairs of three-point functions that can be simultaneously screened using
all partitions of the available screening charges.

To see this, note that taking the difference of the two equations in (6.108) yields

2 “ 10pn` `m`q ´ 8pn´ `m´q . (6.109)

There are an infinite number of solutions to this equation, all of the form

n` `m` “ 1` 4k , n´ `m´ “ 1` 5k . (6.110)

Taking the sum of the equations in (6.108) and using (6.110) gives an infinite set of solutions

n “ 4´ 10n` ` 8n´ (6.111)

with n˘ unconstrained since m˘ enters with coefficient 1 in (6.110). This point of view
makes it obvious that a correction like (6.106) will be problematic since it allows for many
more potential operator exchanges than are desired.

It seems plausible that corrections like (6.106) do vanish due to the BRST structure
inherent in the model. Indeed, these terms all involve one or more insertions of the form

ˆ
ż

d2we2iα´φpwq
˙p

. (6.112)

Schematically, when we factorize this expression (inside correlation functions) using the
techniques of section 6.1, the result involves a line integral of the form

ˆ
ż

dze2iα´φLpzq

˙p

. (6.113)
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This is most obvious in the holomorphic Coulomb gas formalism, where the analog
of (6.112) is literally (6.113). Now (6.113) is of the form Qp´, and Q´ is a differential
satisfying Qp´sQs “ 0. This suggests that all higher order contributions might vanish as
desired. This argument, even if correct, obviously needs to be made more precise.

6.8 Summary of fusion rules and truncation

In this section we provide a brief summary of the derivation of the minimal model fusion
rules within the BRST quotiented compact timelike Liouville description. The first impor-
tant point is that the minimal model fusion rule cannot be read off from the Up1q selection
rule for a single three-point function. For two fixed minimal model exponentials, infinitely
many three-point functions can be screened. In fact, some representatives of the three-
point functions which should vanish outside of the fusion range are finite and nonzero.
The resolution of this puzzle relies on the fact that factorization of a four-point function
xVα1px1qVα2px2qVα3px3qVα4px4qy in a model with a background charge asymmetry involves
a particular asymmetric combination of three-point function coefficients

Cpα1, α2,´2iQ´ αqCpα, α3, α4q . (6.114)

In particular, a four-point function of identical operators is not related to squares of OPE
coefficients. This means that it is possible for the Liouville description to reproduce the
minimal model fusion rules without getting all representations of the three-point functions
correct: it is enough for either term in (6.114) to vanish individually. Said differently, one
must be able to simultaneously screen both three-point functions in (6.114) using the same
combination of screening charges used to screen the four-point function if the operator
Vαpxq is to contribute.

In order to actually determine the fusion rules, it is enough to consider the four-point
function with a single reflection operator insertion:

xVα1px1qVα2px2qVα3px3qṼα4px4qy „
ÿ

O
xVα1px1qVα2px2q|OyxÕ|Vα3px3qṼα4px4qy . (6.115)

This four-point function requires some minimal number of screening charges, which must
be distributed onto the three-point functions upon factorization:

xVα1px1qVα2px2qVα3px3qṼα4px4qS
N`
` S

N´
´ yfree Ñ

xVα1px1qVα2px2qS
n1
` S

m1
´ |OyxÕ|Vα3px3qṼα4px4qS

n2
` S

m2
´ y . (6.116)

The different (non-vanishing) partitions of the screening charges satisfying n1 ` n2 “ N`
and m1`m2 “ N´ pick out the correct operators that appear in the minimal model fusion
rules. Roughly speaking, the momentum of the operator O enters the selection rule with
a positive sign in one three-point function and with a negative sign in the other three-
point function (the one involving Õ). This is responsible for truncation from above and
from below.

At lowest order in perturbation theory (using the minimal number of screening
charges), the range of operators arising in (6.116) matches the fusion rules of the mini-
mal model. However, this range is enlarged if N` and N´ are larger than the minimal
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value needed to screen the four-point function. It therefore appears that truncation of
perturbation theory is necessary in order to provide an honest derivation of the minimal
model results within the linear dilaton theory.

One can artificially enforce truncation of perturbation theory in the p2, pq models by
deforming by the single marginal operator M´pxq. In this case, a representative of each
minimal model correlator can be screened using a unique number of screening charges and
the fusion rules can be rigorously derived. This is not the case for the generic pp, p1q model:
in order to screen a representative of all minimal model correlation functions one must
make use of both marginal operators. In order to rigorously connect with the minimal
models, it must be demonstrated that perturbation theory truncates in these theories. It
seems plausible that the peculiar BRST structure inherent in the model is responsible for
the truncation, but this needs to be explored more carefully and is left to future work.

7 Conclusions, questions and future work

We have demonstrated that the deformed compact timelike linear dilaton (with a peculiar
fractional-winding spectrum and a BRST quotient) reproduces minimal model observ-
ables. While the analysis does present a coherent derivation of the Coulomb gas rules from
standard operations in quantum field theory, we feel that the discussion could be slightly
improved.

We evaluated the torus partition function of the model using a trace in the BRST-
quotiented Hilbert space, but it should also be possible to reproduce the answer through
the functional integral. This would seem to require a discrete term in the action capable of
introducing the appropriate minus signs in the sum over instantons. There is no candidate
term available in the model as defined in this paper, but it seems possible that we might have
neglected a discrete gauge field in focusing primarily on genus zero observables. Indeed,
a discrete gauge field coupled to a sum over spin structures [111] seems natural if we
view the Coulomb gas scalar as the bosonization of the original Feigin-Fuchs fermionic
resolution. Understanding this point would simplify the analysis on higher genus surfaces.
It would also be nice to understand the precise relation (including the winding states and
correlation functions) between our construction and the SLp2,Rq quantum Hamiltonian
reduction. The question remains whether or not to deform by both marginal operators
in the general pp, p1q model. Doing so would seem to involve contributions from infinitely
many orders in perturbation theory, but there is possibility for truncation due to the BRST
structure. We also feel that a more direct explanation for the reflection identification is
needed, and might arise from a more thorough study of the zero mode quantum mechanics.

The Coulomb gas formalism on surfaces with boundary seems to be relatively unex-
plored (although see [112–114]), and might be used to simplify certain calculations in the
minimal string. It would also be useful to understand Distler’s derivation of topological
gravity using the ηξ system, paying close attention to the global issues referred to in sec-
tion 4.1. Finally, the primary motivation for the paper was to understand and rigorously
derive the connection between the JT model of two dimensional gravity and the worldsheet
description of the p2, pq minimal string. We hope to address this problem soon.
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