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1 Introduction

In recent years, progress in holographic duality (also known as the anti-de Sitter/conformal
field theory duality (AdS/CFT)) [1–3] has uncovered many deep connections between quan-
tum gravity and quantum many-body physics. For example, the ground state of a CFT is
dual to the AdS vacuum, while a thermal state is dual to a black hole. Despite a more and
more complete understanding of the duality between bulk and boundary physics, there are
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(a) “Thermal” or “decoupled” (b) “Global” or “fixed point” (c) “Rescued”

Figure 1. Embeddings in AdS2 of various solutions of the coupled JT gravity theory. These
can also be thought of as dual geometries for the coupled SYK dots considered in this paper.
The dotted lines are the conformal boundary (spatial infinity in AdS2) and the solid lines are the
physical boundary at a finite location. (a) is an eternal black hole solution corresponding to the
thermofield double state of the SYK model with decoupled time-evolution. (b) is the geometry
with translation symmetry in global time, corresponding to the ground state of a coupled SYK
model. (c) is a geometry interpolating between the two previous ones, obtained by a fine-tuned
time-dependent coupling.

still many open questions about the black hole interior. In principle, operators in the inte-
rior can be reconstructed from the boundary, but it is unclear how the geometry and the
dynamics of quantum fields in the interior region are determined by the boundary physics.
In particular, what is the boundary interpretation of the black hole singularity? (For a
recent work related to this question see [4].)

Motivated by this question, in this paper we make an attempt to better understand
the interior of a two-dimensional black hole, by studying the dual theory of the Sachdev-
Ye-Kitaev (SYK) model [5–9]. The SYK model describes N coupled Majorana fermions in
1d, which in the large-N , low energy limit is proposed to be dual to 2d Jackiw-Teitelboim
gravity [10, 11] coupled with matter. Different states in the SYK model are dual to differ-
ent boundary configurations of the JT gravity, which are the only gravitational degrees of
freedom in this system. The thermofield double state is dual to an eternal black hole geom-
etry, as is illustrated in figure 1(a). Although there is no curvature singularity in 2d, there
is an analog which is the contour of zero dilaton value (which is the location of singularity
if we obtain JT gravity from dimensional reduction of a higher dimensional black hole).
From the SYK model point of view it is unclear what this means, but the natural question
is whether the “semi-classical gravity + matter” description breaks down somewhere in the
interior (hatched region in figure 1(a)). The difficulty with studying the interior region is
that, by definition, signal from the interior cannot be sent to the boundary. For example, a
scattering event may occur in the interior, but it is unclear how the boundary learns about
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it. A useful tool for exploring the interior region is the Gao-Jafferis-Wall proposal [12]
(see also [13]) of creating a traversable wormhole by turning on relevant couplings between
the two boundaries. In the traversable wormhole geometry, the physics in the used-to-be-
interior region now becomes accessible from the boundary. For the SYK model, ref. [14]
showed that the wormhole can be made traversable for arbitrarily long time by turning on
a particular fermion bilinear coupling between two SYK islands. In particular, the ground
state of such a coupled SYK model is dual to portion of the global AdS2 geometry with
global time translation invariant boundaries (shown in figure 1(b)). This is also called
an eternal traversable wormhole geometry. In this case the two boundaries are in causal
contact, and there are no inaccessible regions in the bulk.

In this paper, we would like to make use of the eternal traversable wormhole geometry
as a tool to probe the black hole interior. We consider the “rescued black hole geometry”
shown in figure 1(c), which interpolates between a two-sided black hole geometry (corre-
sponding to two decoupled SYK models in an entangled state) and an eternal wormhole
geometry. The interpolation starts from a finite rescue time ur−. As ur− gets later and
later, the geometry up to the inner horizon (upper edge of the shaded region in the figure)
is closer and closer to a black hole geometry. On the other hand, the entire region remains
accessible from the boundary. Although there is no singularity in the rescued black hole
geometry, we are interested in seeing residual effects of the “would-be-formed” singularity
if the black hole were not rescued. More precisely, this means looking for signatures that
the low energy effective description of semiclassical gravity plus matter starts to fail in
some part of the interior region.

For this purpose, we generalize the results of ref. [14] and develop a general theory
of the finite energy coupled SYK model in the large-q limit. The large-q limit allows us
to go beyond the low energy effective theory description and directly carry UV complete
calculations, so that nontrivial comparisons with the low energy JT gravity results can be
made. We show that the large-N large-q dynamics of the SYK model with a generic time-
dependent coupling and a thermofield double initial state can be described by a complex
reparametrization field, which is a generalization of the boundary location in AdS2. The
dynamics of the complex reparametrization field is described by the canonical equations
of motion of a Hamiltonian, which reduces to the Schwarzian dynamics in the low energy
limit. This new Hamiltonian description allows us to study two-point functions and certain
four-point functions at finite energy, and compare with the low energy Schwarzian theory.
We find interesting finite energy effects, such as a shift of the gravitational excitation
frequency relative to the conformal matter excitation frequency. We study the rescued
black hole geometry, and show that even if the initial state is a low temperature thermofield
double state, and the couplings are kept small, there are certain four-point functions for
which the low energy description in terms of free matter propagating on AdS2 is wrong
by an order-1 fraction if the rescue process is turned on at a late time ur−. This suggests
that the bulk physics near the inner horizon region is indeed distinct from the predictions
of the low energy theory, i.e. JT gravity coupled with matter.

The remainder of this work is organized as follows. In section 2, we describe the map-
ping of the large-q equations to a problem of determining a single complex reparametriza-
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tion of time governed by a simple Hamiltonian, and give an overview of the solutions. In
section 3, we show how the large-q theory reduces to the coupled Schwarzian effective the-
ory in the low energy limit, and propose a mapping of solutions of the large-q theory to a
pair of AdS boundaries. As a first application, in section 4 we study correlation functions
and highlight some simple finite coupling corrections to known results. In section 5, we
study the “rescued” geometry shown in figure 1(c) in detail. We explain how to reach this
geometry, and discuss some four-point functions in this setting. We highlight the indica-
tions that corrections to JT gravity with free matter are important for particles passing
through the hatched region, even in the low energy (and large-N) limit. In the last section,
we summarize our results and discuss some open questions.

2 Coupled SYK dots at large q

In this section, we describe the boundary model we study and the full solution for the
two-point function. We will defer the majority of discussion of the bulk interpretation to
the next sections. The key building block is the SYK ensemble of Hamiltonians on a system
of N Majorana fermions, the set of which we just denote by χ and elements χj ∈ χ with
j ∈ 1, . . . , N ; the elements obey the algebra {χj , χk} = δjk. The ensemble is defined by
an even number q > 2, a Gaussian random anti-symmetric tensor Jj1···jq , and Hamiltonian
HSYK[J ] with

HSYK[χ, J ] = iq/2

q!

N∑
j1,...,jq=1

Jj1···jqχj1 · · ·χjq , ∆ = 1/q (2.1)

〈Jj1···jq〉 = 0, 〈J2
j1···jq〉 = J2 (q − 1)!

N q−1 = J 2 2q−1

q

(q − 1)!
N q−1 . (2.2)

2.1 Coupled SYK model and large-N effective theory

Our model lives in a Hilbert space of 2N Majorana fermions. N of the Majoranas are
labeled “left” (“right”), and written χLj ∈ χL (χRj ∈ χR). The total Hamiltonian we
consider is then1

HL = (−1)q/2HSYK[χL, J ], HR = HSYK[χR, J ] (2.3)

H(t) = HL(t) +HR(t) + i
µ(t)
q

N∑
j=1

χLj(t)χRj(t) (2.4)

where µ(t) is some arbitrary non-negative function of time. Our goal is to understand
correlation functions in a quantum quench problem, with the thermofield double state
(described below) as the initial state, and time evolution determined by the time-dependent
Hamiltonian (2.4).

1The reason for the sign choice in HL will be explained below; here we note that HL and HR have
the same spectrum since HSYK[χ, J ]T = (−1)q/2HSYK[χT , J ] where χT means to transpose each Majorana
operator in the set.
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−β/4

β/4

Figure 2. (a) A schematic representation of the path integral construction from coherent states.
Each triangle represents the infinite temperature thermofield double state |1〉, which enforces bound-
ary conditions leading to (2.8), and the red and black lines represent the two SYK systems L and R,
respectively. The horizontal lines represent imaginary (Euclidean) time evolution while the vertical
lines are real (Lorentzian) time evolution. (b) The path integral in (a) for two SYK systems is
equivalent to a integration contour in a single copy of SYK model in the complex τ plane. The
horizontal direction is Re τ (Euclidean time), and the vertical direction is Im τ (Lorentzian time).
The width of the vertical sections is infinitesimal, and the (minimum) height is set by the latest
operator insertion. The red (black) lines denote parts of the integration corresponding to the left
(right) fermions.

The thermofield double state is a special entangled state of two systems. For the
left (right) fermions, this is a purification of the thermal density matrix for HL (HR) at
temperature T = 1/β. We write the state |TFD〉, omitting a temperature label. If the
eigenstates of HR are |En〉, then an explicit expression for the state is

|1〉 =
∑
n

(T |En〉) |En〉 (2.5)

|TFD〉 =
∑
n

e−βEn/2(T |En〉) |En〉 = e−βH
R/2 |1〉 , (2.6)

where the sum runs over energy eigenstates |En〉 and T is some anti-unitary transformation.
The expression for |1〉 is unique up to an action of O(D). The definition (2.6) is independent
of the phase convention chosen for the |En〉, but does depend on a choice of T .

In our case, we determine the state |1〉 implicitly by a simple construction suited to
the Hilbert space of the SYK model [14]. Define cj = (χLj + iχRj)/

√
2; then |1〉 is defined

as the unique vacuum of the cj . The sign in the definition of HL was chosen so that
(HL −HR) |1〉 = (HL −HR) |TFD〉 = 0.

We are after correlation functions of the χ fermions, evolved by Hamiltonian H, in the
thermofield double state |TFD〉. The simplest approach to finding the large-N equations,
which can be checked by a direct diagrammatic expansion, is through the path integral.
We start by expanding correlation functions of the schematic form

〈TFD|χRjn(tn)χLjn−1(tn−1) · · ·χRj1(t1) |TFD〉 (2.7)
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in complex fermion coherent states. The path integral computes the correlation functions
in Lorentzian time order. Due to the relations HR |1〉 = HL |1〉 and χL |1〉 = −iχR |1〉, it
is possible to express correlation functions of the coupled model in a single copy language,
as is illustrated in figure 2. We can think of the state |1〉 as enforcing boundary conditions
setting the Grassman fields χL = −iχR at that point, whereas the state 〈1| enforces
χL = iχR. Thus it is convenient to work in a complex time coordinate τ and a single
anti-periodic (in τ → τ + β) Grassman field

χ(τ) =

χR(τ) 0 ≤ Re τ ≤ β/2
iχL(−τ) −β/2 < Re τ < 0

, χ(β/4 + it) = χR(t), χ(−β/4− it) = iχL(t)

(2.8)
Then the thermofield double state is just constructed by imaginary time evolution with
HSYK[χ, J ]. The full action integral runs over the contour C in τ shown in figure 2. For
convenience, the coupling is extended to the contour, with the constraint µ(τ) = µ(−τ).
Then the full action is given by

SSYK =
∫
C
dτ

1
2

N∑
j=1

χj(τ)∂τχj(τ) +HSYK[χ, J ] (2.9)

S(0)
µ = −

∫
C
dτ
µ(τ)
2q sign(Re τ)

N∑
j=1

χj(τ)χj(−τ) (2.10)

S(0) = SSYK + S(0)
µ . (2.11)

We average over disorder, and introduce Hubbard Stratonovich fields G and Σ. Σ is a
Lagrange multiplier setting

G(τ, τ) = 1
N

∑
j

χj(τ)χj(τ). (2.12)

Replacing the fermions with G in the SYK Hamiltonian and interaction, we are left with
a quadratic action for χ. Then we integrate out the fermions and find an action

SGΣSYK = − ln Pf(∂τ − Σ) + 1
2

∫
C
dτdτ

(
Σ(τ, τ)G(τ, τ)− J

2

2q2 (2G(τ, τ))q
)

(2.13)

SGΣµ = −
∫
C
dτ
µ(τ)
2q sign(Re τ)G(τ,−τ) (2.14)

SGΣ = N(SGΣSYK + SGΣµ). (2.15)

We emphasize that for µ not analytic, neither are G or Σ. Thus this is just a compact
way of writing equations for G(τ, τ) and Σ(τ, τ) fields not related by swaps of coordinates,
where each coordinate is on various parts of the 6 contour segments. In the large N limit,
G and Σ are determined by the saddle point of action (2.15), which leads to the following
Schwinger-Dyson equations:

G(τ, τ) = (∂τ − Σ)−1 (2.16)

Σ(τ, τ) = J
2

q
(2G(τ, τ))q−1 + µ(τ)

q
sign (Re τ) δ (τ + τ) . (2.17)
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In the next subsection, we will solve the Schwinger-Dyson equation for generic µ(t) in the
approximation N � q2 � 1.

2.2 Large-q limit and the complex reparametrization dynamics

In the large q limit, it is convenient to change variables to g, defined by

G0(τ, τ) = 1
2 sign(τ − τ) (2.18)

G(τ, τ) = G0(τ, τ)
(

1 + g(τ, τ)
q

)
≈ G0(τ, τ)eg(τ,τ)/q (2.19)

where sign(τ − τ) is 1 if τ is later on the integration contour (with an end point at −β/2)
than τ , and −1 otherwise; G0 = ∂−1

τ is the two-point function of a Majorana fermion
with trivial dynamics. The self-energy Σ is of order O(1/q) when J and µ are kept
constant in taking large q limit. Taking a 1

q expansion of the Schwinger-Dyson equations
one obtains [9, 14, 15]

− ∂τ∂τg = 2J 2eg + µ(τ)δ(τ + τ) +O(1/q). (2.20)

We remind the reader that g is defined on the contour C in figure 2. When either the τ
or τ coordinate is on a vertical segment of the contour, the right equations in real time
are found by ∂τ → ±i∂t, where the sign is determined by the contour direction. When µ

is not analytic, neither is g so this is just a compact way of writing several independent
equations.2 The details of the method of solving this equation, subject to the boundary
conditions imposed by the thermofield double state, are described in appendix A; here,
we just explain the solution. (We note that there are other recent results on correlation
functions in large-q SYK model [16–19] although they are not directly related to the goal
of the current work.)

For simplicity, from now on we will adopt units such that

J = 1/2. (2.21)

We are interested in g(τ, τ) on the Lorentzian time part of the contour C (when τ, τ

both have nonzero imaginary part). Without loss of generality, we will consider the region
Re τ > 0, Re τ ≥ Re τ , and Im τ ≥ Im τ , which determines the other domains by symmetry.
The real-time two-point functions are related to the contour two-point function g(τ, τ) by
the following equations:

GR(u, u′) = 1
N

N∑
j=1
〈χRj(u)χRj(u′)〉 = 1

2e
gR(u,u′)/q (2.22)

iGL(u, u′) = i

N

N∑
j=1
〈χRj(u)χLj(u′)〉 = 1

2e
gL(u,u′)/q, (2.23)

2Symmetries of our problem mean there are only 4 independent choices of segment pairings that deter-
mine the full two-point function on the whole contour; both coordinates on the real part of C, both on the
right imaginary fold, one on the real part and one on the imaginary fold, and one on the left and one on
the right imaginary fold. When both τ and τ are real, from our initial conditions the solution g(τ, τ) is the
thermal correlator. We focus on just the Lorentzian time two-point functions for brevity (both coordinates
having nonzero imaginary part).
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with

gR(u, u′) = g(β/4 + iu, β/4 + iu′) (2.24)
gL(u, u′) = g(β/4 + iu,−β/4− iu′). (2.25)

It is useful to define particular solutions of a Loiuville equation,

g0R(u) = −2 ln sin u2 − iπ (2.26)

g0L(u) = −2 ln cos u2 . (2.27)

We use the notation S ∈ {R,L} to stand for either side, as in g0S . The functions g0S solve
the Liouville equations (2.20) away from the support of the δ-function, with appropriate
sign for each part of the contour. These g0S are not the solutions corresponding to the two-
point function since they do not satisfy the correct boundary conditions. One condition
is from the normalization of the fermions, g(τ, τ) = 0. Another condition comes from
smoothness properties of g and the term µδ(τ+τ) in the Liouville equation, given explicitly
in (A.5) of appendix A. A third condition on g is essentially the time derivative of the
Hamiltonian, (A.4), and a final condition (A.3) from [χRj , [χRj , H]]. Finally, we have
initial conditions for g from the thermofield double state.

As is well known [20] (and proved in appendix A), all solutions to the “bulk” Liouville
equations (2.20) in our regions of interest can be (at least locally) written in the form (up
to a shift by i2πn, n ∈ Z)

gS(u, u′) = lnψ′S(u) + lnψ′S(u′) + g0S(ψS(u)− ψS(u′)) (2.28)

for four independent complex functions ψS , ψS , with S = L or R.3 The boundary con-
ditions give differential equations for these functions. In appendix A, we show that these
boundary conditions determine a unique two-point function, and in fact we can take

ψR = ψL = ψ
∗
R = ψ

∗
L ≡ ψ. (2.29)

Thus the gS take the form

gS(u, u′) = lnψ′(u) + lnψ′(u′)∗ + g0S(ψ(u)− ψ(u′)∗). (2.30)

Substituting the simpler ansatz (2.30) into the boundary conditions, we obtain the
equation of motions for ψ(u). Defining p to be the phase of ψ′ (ψ′ = |ψ′|eip), we find
the equations

|ψ′| = sinh(| Imψ|), p′ = −µ+ |ψ′|2√
1 + |ψ′|2

cos p; (2.31)

more details are discussed in appendix A.
3The Liouville equation (away from any boundaries) is the equation of motion for a (1+1)-d CFT,

and (2.28) can be thought of as a conformal transformation.
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It turns out that these equations can be mapped to a system of Hamiltonian mechanics
by a coordinate change. Define

ψ′(u) = eip√
e2φ − 1

(2.32)

and take φ and p as a pair of canonical conjugate variables ({φ, p} = 1). One can then
verify that eq. (2.31) is equivalent to the Hamiltonian equations of motion for the pair
(φ, p) with the following Hamiltonian:

HQ = −
√

1− e−2φ cos p+ µφ. (2.33)

It is helpful to note that φ(u) has a simple physical interpretation. Using eq. (2.30)
we obtain

gL(u, u) = −2φ(u), (2.34)

so that φ(u) directly determines the equal time two-point function between the two SYK
islands. (φ(u) is always positive, which corresponds to gL(u, u) < 0 and GL(u, u) =
egL(u,u)/q < 1.) Larger φ corresponds to a weaker correlation between the two systems.

The Hamiltonian (2.33) is a central result in this work. This Hamiltonian determines
the dynamics of the large-q system (at least with the thermofield double initial state),
and encodes the key differences between the finite energy dynamics (since the large-q limit
applies to all energy scales) and the more familiar low energy limit. Comparison of the
large-q and low energy limits will be discussed in the next section. Although we “reverse-
engineer” HQ from the equation of motion, the Hamiltonian HQ also has a simple relation
with the energy in the SYK system:

〈H(t)〉 = N

q2

(
HQ −

µ

2∆

)
(2.35)

with H(t) the coupled SYK Hamiltonian (2.4). Useful consequences of the equations of
motion are

Imψ = − tanh−1 e−φ, (2.36)

and
1
2

(
dφ

du

)2
+ 1

2
[
e−2φ + (µφ−HQ)2 − 1

]
= 0. (2.37)

The initial conditions for p and φ are set by their values in the thermofield double state:

φ(0) = ln csc ε (2.38)

p(0) = 0 (2.39)

with sin ε = π − 2ε
βJ

, 0 < ε <
π

2 (2.40)

To reiterate, to find the two-point function for arbitrary µ and TFD temperature, we
integrate the equations of motion of φ(u), p(u) due to (2.33), and then find Reψ by inte-
grating (2.32) with the initial condition Reψ(0) = 0. (Imψ(u) is directly determined by
φ(u), p(u) due to eq. (2.36).)
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As a trivial example, for µ = 0 we obtain the thermofield double solution (in
Lorentzian time):

φ(u) = ln cosh(sin(ε)u)
sin(ε) (2.41)

p(u) = tan−1(tan(ε) tanh(sin(ε)u)) (2.42)

ψ(u) = 2 tan−1 tanh sin(ε)u− iε
2 . (2.43)

2.3 The constant µ solution

As an example of our general results, in this subsection we study the constant µ system in
some more details.

When µ is constant, the classical dynamics of φ, p conserves energy HQ. Figures 3(a)
and 3(b) show the energy contour plot of HQ versus φ and p for µ = 0 and µ = 10−2

respectively. For µ = 0, the orbits are non-compact, which simply corresponds to the
thermofield double solution in eq. (2.41)–(2.43). φ approaches +∞ in the past or future
time infinity. For µ > 0, the orbits are compact in φ and periodic. Note from the perspective
of the classical Hamiltonian system p ∼ p+2π should be thought of as an angle, and periodic
in 2π. For µ > 0 there are two kinds of orbits with different topology. For HQ < 0 the
orbits have trivial winding of p, while for HQ > 0 the orbits have a nontrivial winding of
p, such that p changes by 2π during each period of motion. For visualizing the periodic p
variable it is helpful to consider a canonical transformation to a new pair of coordinates:

Q =
√

2φ cos p, P =
√

2φ sin p (2.44)

The Hamiltonian is

HQ = −
√

1− e−R2Q

R
+ µ

2R
2, with R ≡

√
P 2 +Q2 =

√
2φ (2.45)

The equal energy contour in Q,P plane are plotted in figures 3(c) and 3(d). p is the angle
coordinate in this plane. For µ > 0, the orbits are all closed in Q,P plane, and the origin
(0, 0) lies on the HQ = 0 contour. The HQ > 0 contours have a nontrivial winding around
the origin. (The Q,P coordinate is only used for illustration, and we will only use the φ, p
coordinate for the rest of the paper.)

For each µ > 0, there is always a minimum ofHQ, which occurs at p = 0 and φ = φG(µ).
In terms of the coupling,

φG(µ) = −1
2 ln

(
µ

[√(
µ

2

)2
+ 1− µ

2

])
(2.46)

and the energy minimum is

EQG(µ) = −
√

1− e−2φG(µ) + µφG(µ). (2.47)

For small µ, EQG(µ) → −1, while for large µ, EQG(µ) ≈ −1/2µ. The minimal energy
solution HQ = EQG(µ) is given by φ(u) = φG(µ), p(u) = 0, which corresponds to the
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Figure 3. Plots of the Hamiltonian in the φ, p (figures 3(a) and 3(b)) and Q,P (figures (c)
and (d)) phase space coordinates for µ = 0 (figures 3(a) and 3(c)) and µ = 10−2 (figure 3(b)
and 3(d)). Contours followed by solutions are shown in white, and the contours at −0.7, 0, and 1
are highlighted in red color. In the Q,P coordinate, p is the angle with respect to the Q axis, and√

2φ is the distance to the origin. For µ > 0 all orbits are closed and contain the fixed point at the
minimum of HQ. The origin in Q,P coordinate is marked by a white dot in figure 3(d), which lies
on the HQ = 0 contour.

following ψ(u):

ψGµ(u) = VG(µ)(u− u0)− i tanh−1 e−φG(µ) (2.48)

VG(µ) = e−φG(µ)√
1− e−2φG(µ)

=

√√√√√µ
µ

2 +

√
1 +

(
µ

2

)2
. (2.49)

Near the minimum, the Hamiltonian system is approximately harmonic with frequency

ωG(µ) = e−φG(µ)

√
3 + cothφG(µ)

2 =
√

2µ
√

(µ/2)2 + 1. (2.50)
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Figure 4. Plots of the period T and velocity V for various µ as a function of HQ. For convenience
we plot T in units of 2π/µ in 4(a) and V in units of 1/T in 4(b).

The static solution with energy EQG(µ) has been studied in ref. [14]; as we will discuss in
more detail in section 3, in a certain limit this solution corresponds to a patch of AdS2
spacetime where the boundaries respect global time translation symmetry. For this reason,
in the following we will refer to this state as the “global” or “fixed point” solution.

For more general orbits with energy E > EQG(µ), φ(u) and eip(u) are oscillating
periodically. The period of an orbit can be obtained explicitly as the following integral:4

T = 2
∫ φ+

φ−

dφ√
1− e−2φ − (µφ−HQ)2

; (2.51)

with φ± (φ− < φ+) the two points on the orbit where dφ/du = 0. We plot the period as
a function of HQ for various µ in figure 4(a). At low energy HQ → EQG(µ), the period T
approaches the harmonic oscillation period 2π/ωG(µ) with ωG in eq. (2.50). In the high
energy limit HQ � 1 the period approaches 2π/µ.

When φ and eip are periodic, so is Imψ(u) (see (2.36)), but Reψ(u) is not periodic.
Since Reψ′(u) is periodic, ψ(u) in general has the following form:

ψ(u) = V (u− u0) + ψP (u)− i tanh−1 e−φ (2.52)

where V denotes the average velocity of Reψ(u), which is a real constant depending on
the value of HQ (and µ). u0 is an arbitrary real constant, and the second and third term
on the right-hand side of the equation are both periodic with period T .5 V is given by the
integral

TV = 1
2

∮
µφ−HQ

sinhφ dt =
∫ φ+

φ−

µφ−HQ

sinhφ
dφ√

1− e−2φ − (µφ−HQ)2
(2.53)

4As a side remark, if we call the areas of the orbits in the Q,P coordinate A(HQ) (see figure 3), the
period is simply given by T (HQ) = dA(HQ)/dHQ.

5ψP is odd over the period if u is measured from one of the two points along the orbit that dφ/du = 0.
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Figure 5. Plots of Reψ for small (µ = 10−2) and large (µ = 1) coupling at various energies HQ.
Note that the net change of Reψ over a period T changes sign at zero energy.

where the first integral is over a period of the orbit in phase space. It can be shown
from (2.53) that for HQ < 0, V > 0, while for HQ > 0, V < 0. The discontinuity at
HQ = 0 in TV can be shown to be 2π. For large HQ, V → 0−, since the motion becomes
just winding around the p cylinder at speed µ. Some examples of the constant V for various
µ as a function of HQ are shown in figure 4(b). We show Reψ for µ = 10−2 in figure 5(a),
and for larger µ = 1 in figure 5(b).

In the remainder of the work we will focus on solutions with HQ < 0 since our main
interest is in the comparison of large-q theory and low energy theory. It is an interesting
open question what is the physical interpretation of the different winding number of p and
the different sign of V for HQ > 0 orbits.

3 Comparison with low energy theory and the holographic dual inter-
pretation

To the leading order in the limit N � βJ � 1 (we call this the “low energy” limit),
various aspects of the SYK model are described by a dual theory: d = 1 + 1 Jackiw-
Teitelboim dilaton (JT) gravity. The thermofield double state of the SYK model with
decoupled dynamics corresponds to a two-sided black hole geometry, with no causal contact
between the two boundaries. Maldacena and Qi [14] proposed that the ground state of the
coupled SYK model, with Hamiltonian (2.4) for small constant µ, is dual to a global
AdS2 geometry with two boundaries in causal contact: an “eternal traversable wormhole”
solution. They also studied low energy excitations in this model, including small fluctuation
of the boundary, and conformal perturbations that correspond to bulk matter fields.
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In this section, we generalize the low energy discussion of the bulk dual theory to the
large q system with finite coupling and finite energy. We first review the bulk dual theory
of the coupled SYK model for βJ � 1 and µ � J proposed in ref. [14] (but for time
dependent coupling µ(t)), where β is the temperature of the initial thermofield double
state. Then we show how the large-q effective theory correctly reproduces the low energy
bulk theory in this limit. Beyond the low energy limit, we don’t have a complete bulk dual
theory, but it is helpful to still use the AdS2 picture and view the theory as a 2d gravity
with modified dynamics. We will discuss how time-dependent coupling µ(u) can be used
to generate a generic solution that corresponds to a generic boundary location in AdS2.

3.1 Bulk dual of the SYK model at low energy

To develop a bulk interpretation of our large-q results, it is helpful to first review the duality
in the low energy limit, based on refs. [8, 14]. We start by describing the bulk theory, explain
the correspondence to certain aspects of SYK physics, and list some properties that will
later be compared to the large-q theory.

Consider then JT gravity with matter that is minimally coupled to the metric; the
action is

1
8πGN

[∫
M

Φ
(
R

2 + (2J )2
)

+
∫
∂M

ΦkG
]

+ SM (3.1)

where SM is the matter action, which we assume is local and does not involve the dilaton
explicitly. Here, J −1 is some length scale, which we have chosen to be equal to the inverse
coupling of the SYK model. Indeed, the equations of motion for Φ set the spacetime
to be locally AdS2 with curvature scale (2J )2. Globally, the spacetime has two timelike
boundaries. Spacetimes satisfying the equations of motion can be isometrically embedded
in AdS2, so we can just imagine we are solving for the locations of the two boundaries
in AdS2. The solutions described this way will have an SL(2;R) gauge symmetry arising
from isometries of AdS2, such that embeddings related by SL(2;R) correspond to the same
physical solution. Setting a boundary condition on Φ (which we will just take to be constant
in this work) determines the relative locations of the boundaries, and an embedding in AdS2
up to SL(2;R). An illustration of this procedure, along with useful coordinates on AdS2,
is shown in figure 6. The metric in those coordinates is

ds2 = −dt2 + dσ2

(2J )2 cos2 σ
; (3.2)

t and σ are dimensionless. We will also use the dimensionful coordinates t̂ = t/(2J ),
σ̂ = σ/(2J ). Occasionally, we will also use two other coordinates that cover part
of AdS2: the Poincare coordinate ds2 = −dt2P+dz2

(2J )2z2 , and the Rindler coordinate ds2 =
(2J )−2 [− sinh2 ρdt2R + dρ2]. The embeddings of three less generic solutions that are of
particular interest to us are shown in figure 1.

To be concrete and to make comparisons with the SYK model simple, we set
Φ|∂M = 1, and

GN = q2

4πNα̂s
, α̂S = 4q2αS (3.3)
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t

Figure 6. An example of the embedding of some generic solution of the JT action (3.1) in
maximally extended AdS2, with “global” coordinates (t, σ) shown.

where αS is a numerical constant found in [9] which approaches 1/4q2 at large q. We
imagine a scenario where GN � 1 and GN � Φ. Then we can impose the equations of
motion for Φ, which leaves only the boundary term in the dilaton action. If we assume
that the local velocity and acceleration of the boundary in (say) the σ direction is small6,
dropping terms subleading in the velocity and acceleration we find an action

Sg = −Nα̂S2q2

∫
dû

2J ({tan
(
J t̂R

)
, û}+ {tan

(
J t̂L

)
, û} − 4J ) + SM (3.4)

where t̂R (t̂L) is the global time coordinate of the embedding of the right (left) boundary
and û is the proper time along either boundary. The notation {f, û} is the Schwarzian
derivative of f with respect to û. Consistency requires that there is an embedding with
t̂′R � 1, so we can use the condition that û is the proper time to approximately determine
a particular embedding of the boundaries by

σ̂R/L(û) ≈ ±
(
π

4J − t̂
′
R/L(û)

)
. (3.5)

Now, we consider the matter. After imposing the dilaton equations of motion, the
matter action is a functional of the boundary locations. At fixed boundary location, it is
just the action of matter fields propagating on an AdS2 background with boundary. We
imagine there are N free fermion fields χj(x) with mass m = ∆ − 1/2, dual to boundary
fields of dimension ∆ = 1/q, and call the fields at the left (right) boundary χLj(û) (χRj(û)).
(More precisely, the fermions can be interacting but their interaction should be suppressed
by 1

N . For matter interaction in the dual theory of SYK model, see ref. [21].) We normalize

6Precisely, if φ is the geodesic coordinate parallel to ∂σ̂, the velocity (acceleration) we are referring to is
dφ/dû (d2φ/dû2).
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the fields so that at large geodesic distance in the Poincare coordinate at equal z � 1, their
two-point function at û > û′ is

〈χRj(û)χRj(û′)〉 = ĉ∆
2

e−iπ∆

(J (û− û′))2∆ , ĉ∆ =
[
(1− 2∆)tan(π∆)

π∆

]∆
, (3.6)

and likewise for the χLj , with the same ĉ∆. The normalization is chosen so that this two-
point function is related to the low-energy SYK two-point functions by a reparametrization.
The two-point function for points on boundaries satisfying the conditions above is given
by a reparametrization of (3.6). In particular, we have

〈χRj(û)χLj(û′)〉 = −i ĉ∆
2

(
t̂′R(û)t̂′L(û′)

cos2(J (t̂R(û)− t̂L(û′)))

)∆

. (3.7)

In the SYK model, at low energies there is an emergent conformal (i.e. reparametriza-
tion) symmetry which is weakly broken. The two-point function of Majorana fermions
transforms by a reparametrization under this symmetry, and the reparametrizations get
an action due to the explicit breaking of the symmetry. An effective action for these
reparametrizations is believed to be exactly the dilaton part of (3.4). In both cases, we
consider adding an interaction i µ̂q

∑
χLjχRj . In the gravitational model, we can imagine

splitting the path integral into an outer one over the boundaries and an inner one over the
matter. In the SYK model, we can imagine an outer integral over the soft reparametriza-
tion modes and an inner one over all other modes. In either case, call 〈·〉′ the expectation
taken in the inner integral, at some fixed t̂R and t̂L. For small enough µ̂, we approximate
in either case

〈e
∫
dû

µ̂(û)
q

∑N

j=1 χLj(û)χRj(û) · · · 〉′

≈ exp

iNα̂S2q2

∫
dû
µ(û)

∆

(
t̂′R(û)t̂′L(û)

cos2(J (t̂R(û)− t̂L(û)))

)∆
 〈· · · 〉′ (3.8)

where µ = ĉ∆µ̂/α̂S and · · · stands for other operator insertions. We note here that if the
bulk matter is free, this approximation is actually the exact result in the gravity theory.

Then the full effective low energy action for reparametrizations with the above approx-
imations for both models in units J = 1/2 (or times u = 2J û, tS = 2J t̂S) is

SS = Nα̂S
2q2

∫
du

(
−
({

tan tR2 , u
}

+
{

tan tL2 , u
}
− 2

)
+ µ

∆

(
t′Rt
′
L

cos2 tR−tL
2

)∆)
. (3.9)

Consider the case that tL = tR = t,7 and define t′ = e−φ̂. The action becomes

SS = Nα̂S
q2

∫
du

(
φ̂′′ + 1

2(φ̂′)2 − 1
2

(
e−2φ̂ − µ

∆e−2∆φ̂ − 2
))

. (3.10)

We drop the total derivative φ̂′′ term, which does not affect the local equations of motion.
7For solutions with no matter, ref. [14] show this can be arranged by a gauge transformation.
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For comparison with large-q results, we note some features of the theory (3.10). First,
the Hamiltonian corresponding to this action is

HS = Nα̂S
q2

(1
2 p̂

2 + 1
2

(
e−2φ̂ − µ

∆e−2∆φ̂ − 2
))

(3.11)

where p̂ is conjugate to φ̂. When µ = 0, the solutions are the dual of the TFD at various
temperatures β. To make expressions more uniform between low energy and large-q, we
parameterize β instead by

sin ε̂ = π

βJ
. (3.12)

Then the explicit solutions are

φ̂(u) = ln cosh(sin(ε̂)u)
sin(ε̂) =⇒ t(u) = 2 tan−1 tanh sin(ε̂)u

2 . (3.13)

Comparing this equation with the large-q equation (2.41) we see that φ̂(u) in the low
energy theory and φ(u) in the large-q theory have the same behavior except for the slightly
different coefficient sin ε̂ versus sin ε.

3.2 Comparison of large-q and low energy effective theory

To understand the bulk interpretation of our large-q results, we first show how to derive
the same low energy theory from the low energy limit of the large-q effective theory. Before
that, we define what we mean by a low-energy limit of large-q solutions. Clearly, one
aspect is βJ � 1 such that ε � 1 (ε is defined in eq. (2.40)). The other two conditions
are e−2φ � 1 and |p| � 1. This is true in the initial thermofield double solution for small
ε, and therefore will be true for finite time after we turn on any coupling µ. Qualitatively,
we can see from the discussion in section 2.2 that e−2φ � 1 only fails to hold at some
points on a fixed µ > 0 orbit for HQ near enough to 0. On the other hand, |p| � 1 on the
entire orbit requires HQ near EQG(µ). We will see below that, after relating the large-q
solutions to the bulk, these last two assumptions are analogous to the ones leading to the
Schwarzian theory (3.4); roughly speaking, e−2φ � 1 corresponds to the boundaries being
far apart, and |p| � 1 corresponds to a small relative boundary velocity.

First, it is straightforward to check the well-known fact that the ε � 1 limit of the
TFD initial conditions eqs. (2.41) to (2.43) matches the low energy TFD solutions (3.13).
We note here that in the low energy limit as defined above Reψ′ ≈ e−φ, so φ and φ̂ play
a similar role, and should be thought of as analogous. More interestingly, we obtain a
derivation of the Hamiltonian (3.11) by taking the large-q Hamiltonian HQ and expanding
it in the low energy. The physical energy (which we need for the coefficient of the action)
is (2.35), so the Hamiltonian which gives rise to the correct action (at large q) is

H(t) = N

q2

(
HQ −

µ

2∆

)
≈ N

q2

(1
2p

2 + 1
2(e−2φ + 2µφ− µ/∆− 2)

)
(3.14)

≈ N

q2

(1
2p

2 + 1
2

(
e−2φ − µ

∆e−2∆φ − 2
))

. (3.15)
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where in the first line we take the low-energy approximation, and in the second we use
∆→ 0. This is exactly the Hamiltonian (3.11).

From the derivation of the low energy theory, we see that at low energy it is natural to
consider ψ to be related to tR, and ψ∗ to tL. Indeed, in addition to the similarity in their
low energy dynamics, both functions actually play the exact same role in determining the
two-point function for fermions on opposite sides as ∆→ 0: in the low-energy theory this
two-point function is obtained by a reparametrization of the two-sided global function by
tR and tL, and from eqs. (2.19), (2.27) and (2.30) we see the same is true with tR → ψ

and tL → ψ∗ in the large-q case. In the case that both fermions are on the same side,
again from eqs. (2.19), (2.26) and (2.30) we see that the large-q case is a reparametrization
of the single-sided global function, with the later (earlier) fermion time tR replaced by ψ
(ψ∗), emphasizing the point that in general the conjugation of ψ is related to the relative
contour ordering of the fermions, rather than the side they are on. Concretely, we propose
to understand the low energy dynamics and corrections to them by the analogy

tR = tL = t↔ tG(u) = Reψ(u). (3.16)

To give the full embedding at low energy, we can find σ by (3.5) in the low energy
limit. We can give some physical interpretations to p and φ that help to understand the
low energy limit. First, we notice that (at least for e−2φ � 1) it is consistent to take
2φ = −gL(u, u) the geodesic distance between points on the boundary at the same u. This
also gives p ≈ sin p = d

du(cosh−1 eφ) ≈ dφ/du the interpretation of the local velocity of
the boundary in the σ direction. Then |p| � 1 is consistent with the assumptions on the
bulk that give rise to the Schwarzian action for the boundary. With these interpretations,
one can easily see some basic features of the geometry from orbits of solutions in the Q,P
canonical coordinates (see for example figures 3(c) and 3(d)).

To get some practice, we can consider the geometries corresponding to the two simplest
cases, the decoupled case µ = 0 and the µ > 0 ground state case HQ = EQG. As a further
simple consistency check, we will show that the two-point functions derived from large-q
are just regulated versions of the appropriate bulk correlator corresponding to the same
geometry (cf. (3.7)). The µ = 0 and a portion of the µ > 0 fixed point geometry are
shown in figures 1(a) and 1(b). In the µ = 0 case, as we discussed in the ε � 1 limit
the boundaries approach boundaries at constant Rindler radius ρ ≈ ± ln csc ε under our
mapping. The two-point functions are

GR(u, u′) = e−iπ∆

2

 sin ε
sinh

(
u−u′

2 − iε
)
2∆

,

GL(u, u′) = − i2

 sin ε
cosh

(
u+u′

2

)
2∆

(3.17)

The other simple case is when HQ = EQG. The full reparametrizations are (2.48). We
have tG(u) = VG(u − u0) for some u0, so the boundaries reside at constant global spatial
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coordinate σ ≈ π/2− e−φG . The two-point functions are

GR(u, u′) = e−iπ∆

2

 VG

sin
(
VG(u−u′)

2 − i tanh−1 e−φG
)
2∆

(3.18)

GL(u, u′) = − i2

 VG

cos
(
VG(u−u′)

2 − i tanh−1 e−φG
)
2∆

(3.19)

which are exactly regulated versions of the bulk functions for boundaries at constant global
σ separation (cf. (3.7)).

More generally, in either the low energy or large-q theory, we can “engineer” a desired
boundary by fixing the embedding, then using the equations of motion to find the required
coupling. In the low energy case, this is

µ = e2∆φ̂(e−2φ̂ − φ̂′′) ≈ e−2φ̂ − φ̂′′. (3.20)

In the large q theory we instead have

µ = sec p√
1− e−2φ

(e−2φ − φ′′). (3.21)

As expected, in the low energy limit the two equations above agree with each other. We
will discuss a particular example of the rescued black hole geometry in section 5.

We briefly comment on what happens if we keep the geometrical interpretation in
regions that are far from low energy as we have defined it. First, when we violate e−2φ � 1,
then according to our mapping the boundaries begin to approach each other. At the same
time, Reψ′ begins to blow up. This happens as HQ → 0. The differences are more dramatic
when we violate |p| � 1. In particular, when HQ > 0, we have regions where Reψ′ < 0
(this is the Q < 0 half-plane or |p| > π/2), so it is as though, under our mapping, bulk
time runs backward. Interestingly, even if a majority of time in an orbit is spent with
Reψ′ > 0, once there is a region with Reψ′ < 0 (i.e. HQ < 0), Reψ will always decrease
over the course of an orbit (this is just the statement about (2.52) that V < 0). The
detailed behaviour of tG on various orbits can be seen for small and large coupling and a
variety of energies in figures 5(a) and 5(b).

4 Correlation functions

4.1 The two-point function and spectrum

To highlight some of the corrections to the low-energy theory, we can study the two-point
function, or equivalently gS(u2, u1), at fixed µ. The Fourier transform of the two-point
function in u2 contains information about the excitation spectrum of the coupled SYK
model. For example, the two-point function between two opposite boundaries is given by

GL(u2, u1) ' − i2e
gL(u2,u1)/q = − i2

( 2ψ′(u2)ψ′(u1)∗

cos (ψ(u2)− ψ(u1)∗) + 1

)1/q
(4.1)
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where ψ(u) is given by eq. (2.52). As a reminder, ψ(u) has the form ψ(u) = V u + δψ(u),
which is a sum of a linear u term with slope V and other terms δψ(u) that are all periodic in
u with period T (given by eq. (2.51)). Therefore the two-point function (4.1) is a function
of the term eiV (u2−u1) and other terms ψ′(u),δψ(u) which all have period T . If we fix u1
and take Fourier transform of the two-point function over u2, in the HQ < 0 case we obtain
a comb of δ-functions at frequencies

ωnM ,nγ ≡ (∆ + nM )V + nγωγ , with ωγ = 2π
T

(4.2)

for integers nγ , nM . As a reminder, V and T are determined by eq. (2.51) and (2.53). We
note that forHQ > 0 solutions, the frequency V is replaced by V +2π in the equation above,
due to the nontrivial winding of p. In the following we will only discuss the HQ < 0 case.

When the energy is near the minimum (HQ → EQG(µ)), our result is a finite energy
generalization of the “traversable wormhole” solution in ref. [14], and we can compare the
frequencies with the results there. In this limit we have

V = VG(µ) = t′G =

√√√√√µ
µ

2 +

√
1 +

(
µ

2

)2
 (4.3)

ωγ → ωG =

√√√√2µ

√
1 +

(
µ

2

)2
. (4.4)

where we recall that Reψ′ = t′G = VG at the fixed point (see (2.48)), and ωG is just the
harmonic frequency at the minimum of HQ, (2.50).

For comparison, the low energy theory gives an excitation spectrum with “matter”
excitations having a gap ∆t′ and energy spacing t′, with t′ = µ1/2(1−∆), as well as “gravi-
tational” excitations with energy spacing ω̂γ = t′

√
2(1−∆). This agrees with our results

in µ � 1 and ∆ = 1/q � 1 limit, with t′ corresponding to V and ω̂γ corresponding to
ωγ . From this comparison we see that the two unit frequencies V and ωγ in eq. (4.2)
can be interpreted as the energy unit of matter field excitation and that of gravitational
excitation, respectively.

In particular, the ratio of these two frequencies in the large-q theory is given by

V

ωγ
= 1√

2

√
1 + µ/2√

1 + (µ/2)2 , (4.5)

which approaches 1/
√

2 in low energy limit, but gets a nontrivial correction for finite µ.
Note that exactly at the fixed point (minimal energy solution), we will only have a single
series of frequencies (∆+nM )V , because the boundary location is time translation invariant.
In this case the “gravitational” frequency ωγ still appears in four-point functions, as will
be discussed in section 5.2.

Beyond the limit HQ → EQG(µ), the ratio of the two base frequencies depends on both
µ and the energy of the solution, and is shown in figure 7 for a variety of µ and HQ. If
the ratio is rational, the set of frequencies ωnM ,nγ in eq. (4.2) will be discrete. Otherwise
it will be dense in R.
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Figure 7. The ratio of the two base frequencies that appear in the constant-µ two-point function
as a function of energy HQ for various couplings. In the text, we focus on the case HQ < 0, where
ωM = V . When HQ > 0, we have ωM = V + 2π (the formula (4.2) holds at all energies if we make
the replacement V → ωM ).

4.2 Four-point functions from response theory

The complex reparametrization dynamics with Hamiltonian (2.33) determines not only the
two-point functions but also certain types of higher point functions. Since we can obtain
two-point functions for generic time-dependent coupling µ(u), we can vary µ(u) and study
the change of two-point functions it induces. The first derivative of the fermion two-point
function over µ(u) corresponds to a fermion four-point function. Higher derivatives can
also be studied, but in this paper we will focus on the four-point function.

Consider the perturbation µν(u) = µ(u) + νδ(u − u0). The response of two-point
function gS(u2, u1) to such a perturbation with infinitesimal ν is the following four-point
function:

dgS(u2, u1)
dν

∣∣∣∣
ν=0

= − 2
N

∑
j,k

(
〈T [χRj(u2)χSj(u1)χRk(u0)χLk(u0)]〉

− 〈χRk(u0)χLk(u0)T [χRj(u2)χSj(u1)]〉
)

(4.6)

≡ −FRS(u2, u1, u0) (4.7)

where we have explicitly indicated which operators are contour-ordered by the symbol T ,
and S ∈ {R,L} indicates the side of the fermion insertion at u1.

Since the two-point function is determined by the complex reparametrization ψ(u), the
four-point function above is determined by the equation of motion of ψ(u), or equivalently
that of the canonical variables p, φ defined in eq. (2.32). The δ-function shift of µ(u)
leads to a jump in momentum p

(
u+

0

)
= p (u0)− ν, since the canonical equation of motion

ṗ = −∂HQ/∂φ contains a term −µ. Therefore the four-point functions are obtained by
the derivative of the two-point function in eq. (2.30) over p(u0), which has the following
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explicit expression:

FRS(u2, u1, u0) = (A(u2, u0) +A(u1, u0)∗) + (B(u2, u0)−B(u1, u0)∗)FS(u2, u1) (4.8)

FL(u2, u1) = tan ψ(u2)− ψ(u1)∗

2 = tan
(
tG(u2)− tG(u1)

2 − i

2γ(u2, u1)
)

(4.9)

FR = −1/FL (4.10)

γ(u2, u1) = tanh−1
(
e−φ(u1) + e−φ(u2)

1 + e−(φ(u2)+φ(u1))

)
, (4.11)

where
A(u, u0) ≡ d lnψ′(u)

dp(u0) , B(u, u0) ≡ dψ(u)
dp(u0) . (4.12)

Since ψ′ is a function of φ and p (eq. (2.32)), the coefficients A(u, u0) and B(u, u0) are
determined by the Poisson brackets {φ(u0), φ(u)} = dφ(u)/dp(u0) and {φ(u0), p(u)} =
dp(u)/dp(u0). (The calculation of B(u, u0) requires an integration over time.) The Poisson
brackets can be determined by solving a differential equation determined by the Hamilto-
nian HQ.

Details of the four-point function calculation are discussed in appendix C. Here we
will only present a simple example, to help give some physical intuition. For u1 = u2 = u,
the four-point function FRL(u, u, u0) is simply a derivative of gL(u, u) = −2φ (eq. (2.34)),
so that

FRL(u, u, u0) = −2 dφ(u)
dp(u0) = 2(1− e−2φ(u)) ReA(u, u0). (4.13)

If we consider the fixed point (global) solution φ(u) = φG(µ) at some coupling µ > 0 (with
both times u, u0 in this region), we obtain

FRL(u, u, u0) = −4 sinh(φG(µ))√
2− e−2φG(µ)

sin (ωG(µ) (u− u0)) (4.14)

As expected, the four-point function oscillates with ωG, the harmonic frequency at the
minimum of HQ given in (2.50), which corresponds to a small oscillation of φ around the
potential minimum φG (and p about 0). The frequency V that appears in the two-point
function of the global solution does not appear in this four-point function. The amplitude
grows exponentially with φG. In the small coupling limit µ � 1, we have ωG '

√
2µ and

the oscillation amplitude is approximately
√

2eφG(µ) '
√

2/µ.

5 Rescued black hole geometry

5.1 Rescuing a black hole by time-dependent coupling

A solution that is of particular interest to us is the “rescued black hole” geometry shown
in figure 8(a). The two SYK models remain decoupled until time ur−. A coupling is
turned on at ur−, which provides an attractive force that pulls the boundary inwards. By
fine-tuning the coupling, we can make a cross over to a fixed point solution at time ur+.
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ur−
ur+

(a) Rescue region.

µ = 0

µ1

µ2

uur− ur+

(b) Simple rescue coupling.

Figure 8. (a) Illustration of rescued black hole geometry. The coupling µ(t) is turned on at
boundary time ur− and by time ur+ the boundary reaches a fixed point solution. (b) A simplest
choice of µ(t) to achieve the rescued black hole geometry

(This is just like catching an accelerating ball in an external field and holding it static.)
Before time ur−, the geometry is identical to a two-sided eternal black hole geometry, with
thermal correlation functions on each boundary. Turning on the time-dependent coupling
then stops the thermalization process and instead evolves the system into the ground state
of a coupled model with an appropriate coupling. Consequently, the black hole horizon is
removed and the regions of the bulk that would have been the black hole interior without
the coupling are now accessible from the boundary. Studying this family of geometries
provides a way to probe the black hole interior physics, or at least how the interior physics
is modified by such rescue procedure. In the following, we will first determine the time-
dependent coupling that achieves the desired solution, and then study correlation functions
in this geometry.

There is a lot of freedom in choosing µ(t), which induces different rescued black hole
geometries with the same initial and final state but different interpolation details. We
consider a particularly simple choice (figure 8(b)) with µ(t) a step function:

µ(t) =


0, u < ur−
µ1, ur− ≤ u < ur+
µ2, u ≥ ur+

(5.1)

If we fix µ1, the boundary will reach p = 0 at a certain time (when the velocity in global
coordinate decreases to zero). This determines ur+. The location of the boundary ur+
determines the value µ2, which has to be chosen such that the potential minimum is exactly
at this location. Therefore the free parameters to choose are µ1 and ur−, which determines
ur+ and µ2. Alternatively, we can also fix ur− and ur+, and use them to determine the
couplings µ1, µ2.

The exact expressions for ur+, µ2 as functions of ur− and µ1 are derived in appendix B.
For simplicity here we will only present results in the limit

ur− & csc ε > 2, µ1 > 2 sin2 ε, (5.2)

which means the rescue happens later than time ∼ β, and the coupling is not too small
(such that the rescue procedure is not too slow):

µ1(ur+ − ur−) ' tan ε tanh(sin εur−) (5.3)

' 4 sin2 ε exp
[
−

4 sin2 ε
2

µ1
− 2 sin εur−

]
. (5.4)
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We are interested comparing the finite energy effective theory with the low energy
Schwarzian effective theory, since the latter corresponds to the dual picture of JT gravity
coupled with non-interacting matter (more precisely, matter with interaction suppressed by
1
N ). In Schwarzian theory (3.10), we can choose a rescue process that connects the thermal
field double solution to the global AdS2 solution within a time interval [ur−, ur+], which is
qualitatively similar to the large-q finite energy theory discussed above, but quantitatively
different. In the same limit of eq. (5.2) the low energy theory leads to

µ1 (ur+ − ur−) ' sin ε̂ tanh (sin ε̂ur−) (5.5)

µ2 ' 4 sin2 ε̂ exp
[
−sin2 ε̂

µ1
− 2 sin ε̂ur−

]
(5.6)

with sin ε̂ = π/βJ .
In the limit βJ � 1, according to the definition in eq. (2.40) we have sin ε ' tan ε '

π
βJ −

2π
(βJ )2 up to second order of (βJ )−1. If we fix ur− and ur+, and compare the µ1, µ2

determined by the large-q theory in eq. (5.3)–(5.4) and that in the low energy theory in
eq. (5.5)–(5.6), the deviation will be ∆µ1 ∝ (βJ )−2, ∆µ2 ∝ e−2 sin ε̂ur− (βJ )−3. This
estimation will be useful for our discussion of four-point function in the next subsection.

Since the deviation between the low energy theory and large-q theory is small in the low
energy limit βJ � 1, the two point function predicted by these two theories (assuming we
use the couplings µ1, µ2 as computed in that theory) will also only have a small deviation
with each other. To get a sense of their behaviour, in figure 9 we show the complex
reparametrization ψ(u) and the rescaled self-energy egR(u2,u1) for u1 < ur− in the large-q
theory. Due to the rescue process, the exponentially decay of the self-energy in the black
hole ends during the rescue and is turned into an oscillation with frequency ωM .

According to eq. (5.5) and (5.4), for βJ � 1 it is possible to rescue the black hole with
small couplings µ1 � 1, µ2 � 1. Therefore naively one would expect that the low energy
Schwarzian theory is sufficient for describing the SYK physics, which would then suggest
that the bulk dual theory, i.e. JT gravity coupling with 2d fermions with 1/N suppressed
interaction, is applicable to the rescued black hole system for all time. As we will see in
the next section, this is actually not true if the black hole is rescued at a late time, which
can be proved at the level of four-point functions.

5.2 Four-point functions in the rescued geometry

In this section, we discuss four-point functions in the rescued geometry. In the low energy
theory, we can think of these four-point functions as a probe of the back-reaction introduced
by sending in a pair of shockwaves at some time u0. The large-q theory allows us to examine
related phenomena beyond the low energy limit.

The large-q four-point functions we study are those discussed in section 4.2. The four-
point functions are determined by the response of the complex reparametrization field ψ(u)
to a perturbation at a time u0. For the rescued black hole problem, the response can be
computed by a Green’s function method. The details of the calculation are discussed in
appendix C.3. In the main text we will only discuss the result in two special regions of
time variables.
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Figure 9. Plots of some simple quantities in the rescued (blue) and TFD (red) geometries. The
initial TFD has ε = 1/7 (the relationship to βJ is defined in (2.40)), and the rescue is specified
by its start time, ur− = 7, and duration, ur+ − ur− = 1. Starting from the upper left panel, we
first show the mapping from boundary to global time tG. The next panel is the absolute value
of the “self-energy” egR(u,u1) with u1 = 1. Next, we show φ, which as discussed in the main text
is approximately (half) the geodesic distance between the boundaries. It also gives the imaginary
part of the reparametrization Imψ = − tanh−1 e−φ. Finally we show p, which for small enough ε
has the interpretation of boundary velocity.

First, we consider the four-point function FRL(u, u, u0), which according to eq. (4.13)
is a probe of the response {φ(u0), φ(u)} = dφ(u)/dp(u0). A bulk picture for this four-point
function is shown in figure 10(a). To give an explicit example that illustrates some general
features, we consider the case 0 < u0 < ur− < ur+ < u, and take ur− � csc ε while holding
ur+ − ur− . O(1) fixed. In this limit, the four-point function is approximately

FRL(u, u, u0) ∼ 2 tanh (sin εu0)
sin ε sinh (sin εur+) sin (ωG (u− ur+)) + . . . (5.7)

Here we have only kept the leading term that is an oscillation in u with an amplitude that
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(a) FRL(u, u, u0) (b) Equation (5.10)

Figure 10. Depiction of bulk interpretations of four-point functions FRL(u2, u1, u0) in the rescued
black hole geometry. Open circles indicate the operator insertions at u0, and dark circles on the
left (right) correspond to the insertions at u1 (u2). We show the future light cones for u0 insertions
in blue lines. The two subfigures correspond to the two time parameter regions we discuss. (a)
corresponds to the case u1 = u2 = u. In (b), we schematically show the endpoints we integrate over
in eq. (5.10) by a gray wedge.

grows exponentially in ur+ (a more complete expression is given in (C.42)). The terms in
. . . do not grow exponentially in this limit. Physically, we can view the response as a two-
step process: the perturbation at time u0 in p(u0) leads to an infinitesimal displacement in
(φ(ur+), p(ur+)), which in turn induces an oscillatory response to later time u in the same
way as in the global solution (4.14).

The four-point function is a measure of sensitivity of the two-point function to pertur-
bations in the coupling. The exponentially growing amplitude in eq. (5.7) indicates that the
success of the rescue (i.e. successfully landing in the global solution) becomes exponentially
sensitive to the choice of coupling as rescue time ur− becomes large. In particular, if we use
the coupling µ1 predicted by the low energy theory (5.5) instead of the large-q theory, it is
off by ∆µ1 ∼ (βJ )−2, which will lead to a big deviation from the global geometry for large
ur−. In other words, for this four-point function, at late rescue time corrections to the low
energy theory have a significant effect, but the effect can be absorbed by a correction of
the coupling used.

Now that we have shown that there are important corrections to an effective theory of
JT gravity with free (to O(1/N)) matter, it is natural to ask what the qualitative features
of a more complete gravitational description would be. One possibility is that the only
change is a different dynamics of the boundary; indeed, it is exactly the response of the
boundary distance that is measured by FRL. One (possibly too simplistic) approach is to
test an effective description where the boundary dynamics, given by the reparametrization
t of the low energy theory, is replaced by the large-q function tG = Reψ, but two aspects
of the JT theory are kept:
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1. The spacetime in the bulk (including the hatched region in figure 10) is locally AdS2;

2. The matter fields are minimally coupled to the metric and to leading order in N do
not interact with themselves or the dilaton.

With these assumptions, the two-point function of fermions is

GL(u2, u1) ∝
(

t′G(u2)t′G(u1)
cos2 tG(u2)−tG(u1)

2

)∆

. (5.8)

To leading order in the low energy limit, this description will give the correct two-point
functions and response FRL(u, u, u0), even at late rescue time.

The motivation for the next four-point function we consider is to probe the consistency
of this description. Intuitively, we would like to test the assumptions (1) and (2) by sending
a fermion from the left to the right, and using the perturbation to create a shockwave that
intersects with the fermion trajectory. Formally, the correlation function we consider is a
smeared four-point function, illustrated in figure 10(b). We take u1 and u2 on opposite
sides, and the time variables are ordered such that u1 < u0 < u2. The near light-like
separation is determined by the equation

tG(u2c) = tG(u1) + π. (5.9)

We are interested in how the perturbation changes the signal propagation from one bound-
ary to the other apart from UV details, so we consider the integral of the four-point function
FRL(u2, u1, u0) over an interval u2 ∈

[
u2c − L

2 , u2c + L
2

]
(see figure 10(b)).8 The interval

size L� eφ(ur+) is taken to be a finite order 1 number, which corresponds to a time scale
of order J −1 when we restore the full units. We obtain the following result:

1
L

Re
∫ L/2

−L/2
FRL(u2c + u, u1, u0)du ≈ (1− α(u1)) ReA(u2c, u0) (5.10)

α(u1) = 4
L

tan−1 L

2(1 + eφ(ur+)−φ(u1))
. (5.11)

where we took the leading part in the low energy, late rescue time ur− & csc ε limit, and also
take u1 & csc ε. The coefficient ReA(u2c, u0) = Re d lnψ′(u2c)/dp(u0) is defined in (4.12).

We can compare this to the low energy effective description in terms of the time tG. The
four point function is now determined by taking a derivative of the two-point function (5.8)
over a perturbation;9 we find

1
L

Re
∫ L/2

−L/2
FRL(u2c + u, u1, u0)du ≈ ReA(u2, u0). (5.12)

Comparing eq. (5.10) and (5.12) we see that the actual large-q integrated four-point
function is smaller than the prediction of the effective low-energy description by an order

8To be more precise, we require tG(u2) − VGL/2 > max{tG(ur+), tG(u0)} such that the entire interval
u2 ∈

[
u2c − L

2 , u2c + L
2

]
is in the fix point region µ = µ2, and satisfies u2 > u0.

9More precisely, to carry this integration we introduced an infinitesimal cutoff by adding an iδ to
tG(u2)− tG(u1) and then take δ → 0.
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one fraction 1− α(u1). If we fix u1 < ur− and increase ur− while keeping ur+ − ur− fixed,
α(u1) decays exponentially ∝ e−φ(ur+), so that the deviation between the two theories is
small. However, when the initial time u1 approaches ur−, α(u1) approaches a finite value
4
L tan−1 L

4 . Technically, this discrepancy originates from the fact that the imaginary part
Imψ(u) also has a nontrivial response to the perturbation.

Physically, this result reflects the following phenomenon: for a fermion from the left
boundary at a time close to the rescue time, the effect of a perturbation at later time u0
to its propagation to the right-side boundary cannot be correctly predicted by an effective
description assuming (1) and (2), even if the dynamics of the reparametrization t is modified
to be that of Reψ(u) in the large-q theory. In term of the bulk interpretation, this is
suggests that at least one of the assumptions (1) or (2) is false. If we assume (1) is still true,
then the explanation of this deviation is that the bulk fermions have a strong scattering
with each other, or with the dilaton, which only becomes significant in the spacetime region
near the inner horizon. We view this as a “precursor” for the formation of certain kind
of singularity (or at least some significant deviation from the low energy gravity theory
that is sensitive to the UV physics), which would have occurred if we did not rescue the
black hole.

5.3 Finite q corrections

We close this section with some comments on finite q effects. The derivation of the large-q
effective theory requires that

gL,R(u1, u2)� q (5.13)

for all u1, u2. Without going into details, we mention that this requirement is equivalent
to requiring

φ(u)� q (5.14)

for all time. In the rescued black hole geometry, this requires φ(ur+)� q, or equivalently

µ2 � e−2q (5.15)

This requires that the rescue time cannot be too late:

ur− � csc ε (q + log (2 sin ε)) (5.16)

If the rescue is later than this time, we have to return to a finite-q theory and it is unclear
whether it is still possible to rescue the black hole by tuning the time-dependent coupling.
(On a related note, ref. [14] discussed that the ground state of the coupled SYK Hamiltonian
is not exactly the thermofield double state beyond the large-q limit, which suggests that
even an early rescue may not be able to guide this system to the global solution.)

Another condition that limits the applicability of our result is the size of the four-point
function. The large-N theory is applicable only if the four-point function satisfies

FRS (u2, u1, u0)� N (5.17)
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Instead of exploring this condition systematically, we will study FRL(u, u, u0) in eq. (5.7)
as an example. For u0 � csc ε, the requirement is

ur+ � csc ε log (N sin ε) (5.18)

The right-hand side of this equation is simply the scrambling time of the black hole. It
should be noted that the large-N large-q expansion requires N � q2, but logN could be
bigger or smaller than q, so the two upper limits of rescue time (5.16) and (5.18) may be
in either order.

6 Discussion and conclusion

In summary, we have developed a general effective theory description of the coupled SYK
model in the large-N , large-q (q2/N → 0) limit. In general, we studied a quantum quench
problem with the thermofield double state as the initial state, and a generic time-dependent
coupling. The dynamics of this problem is mapped to a classical dynamical system. This
framework allows us to study the fermion two-point functions and certain higher functions,
and to gain a systematic understanding of the coupled SYK model beyond the familiar low
energy limit. Compared with the low energy theory which describes a 1d reparametrization
of the boundary with a Schwarzian action, the finite energy theory describes a complex
reparametrization field with a modified dynamics.

Using this general effective theory, we studied a particular situation when a two-sided
black hole, corresponding to two decoupled SYKmodel in a time-evolved thermofield double
state, is “cooled down” by turning on a fine-tuned time-dependent coupling. Within a finite
time after the coupling is turned on, the black hole state is mapped to an eternal wormhole
state, which is a thermofield double state with a lower temperature. Such a “rescued black
hole” geometry provides a family of systems that approaches a black hole system while still
keeping the entire interior available. Our effective theory allows us to detect how the bulk
dual theory deviates from the low energy theory of JT gravity coupled with free fermion
matter. We studied correlation functions in this geometry and show that, in addition to
various quantitative corrections to the low energy theory, certain 4-point functions obtain
leading order corrections due to the finite energy effect. Physically, this indicates that the
physics near the inner horizon region deviates from the low energy theory even if the initial
temperature and the coupling are always small. We consider this as an indication of the
singularity that would have been formed if we had not rescued the black hole.

There are many open questions remaining in this setting. A very natural one is to
construct a bulk dual theory for the large-q finite energy theory. Corrections to the JT
gravity theory have been discussed before (cf. [22, 23]) but no dual theory has been derived
for the SYK model beyond the low energy limit (to all orders in βJ and µ). The Liouville
effective theory in large-q limit suggests that a dual theory that is simpler than the finite q
SYK model might be possible. Mapping the Liouville theory to a bulk dual theory (which
correctly reduces to the JT gravity in the appropriate low energy limit) is the topic of our
ongoing work [24].
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Another question is the relation between the rescued black hole geometry and the
entanglement island phenomena [25, 26]. If we couple the AdS black hole with a bath,
the entanglement entropy between the bath and the black hole experiences a Page phase
transition, after which time the entanglement wedge of the bath includes a region in the
interior of black hole, known as the (causal wedge of the) entanglement island. Ref. [27]
studied the case of an eternal two-sided black hole coupled with thermal bath, and refs. [28,
29] studied this phase transition in an SYK model coupled with thermal baths. Since the
entanglement island also provides a way to probe the black hole interior, it is interesting
to ask whether there is any relation between the island (and the replica wormhole in Renyi
entropy calculation) and the rescued black hole geometry.
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A Direct derivation of the Hamiltonian

In this appendix, we derive the ODE system for the large-q two-point function of the
quenched thermofield double. We write ∂τ = ∂, ∂τ = ∂. Using the definition G(τ, τ) =
G0(τ, τ)(1 + g(τ, τ)/q) = 1

N

∑N
j=1 χj(τ)χj(τ), where

χj(τ) =


χRj(τ) Im τ > 0

iχLj(−τ) Im τ < 0
, (A.1)

we have the operator relations (setting the left argument of g to have larger imaginary part
than the right argument)

1
2(∂ + ∂)g(τ, τ) = q

2N

N∑
j=1

d

dτ
{χj(τ), χj(τ)} = 0 (A.2)

1
2(∂ − ∂)g(τ, τ) = q

N

N∑
j=1

[
dχj(τ)
dτ

, χj(τ)
]

= 2q2

N
H

(R/L)
SYK − 2µ(τ)G(τ,−τ) (A.3)

µ(τ)
2 (∂ − ∂)g(τ,−τ) = d

dτ

(
q2

N
(HL

SYK +HR
SYK)

)
. (A.4)

From the large-q Liouville boundary condition, we also find
1
2(∂ + ∂)g(τ,−τ) = −µ(τ). (A.5)

The condition (A.5) also arises as the leading part of the operator relation
1
2(∂ + ∂)g(τ,−τ) = −µ(τ) + i

q

N
(H L̃

SYK +HR̃
SYK) (A.6)
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where H S̃
SYK is obtained by taking the Hamiltonian HS

SYK for the appropriate side, and for
each term generating q terms by replacing one of the Majorana operators with the corre-
sponding one from the opposite side. To find the real-time conditions we just take τ → it.

We take expectation values of the above operator equations in the thermofield double
state, take the leading part in q10, and define εSYK = 2q2〈HJχR(t)〉/N . We define, for
t, t′, τ ∈ R, t > t′, |τ | ≤ β/4, gR(t, t′) = g(β/4 + it, β/4 + it′), gL(t, t′) = g(β/4 + it,−β/4−
it′), and gI(t, τ) = g(β/4 + it, τ). When we wish to keep the subscript free we write gS ,
S ∈ {R,L, I}. The relations eqs. (A.2) to (A.3) apply to gR, and eqs. A.4 to (A.6) apply
to gL. Furthermore, each of gL, gR, and gI solve a Liouville equation from the appropriate
factors of ±i in (2.20).

To find the form of the general solution of these equations applicable to our case, we
use arguments similar to ref. [30] (our case is slightly more complicated since we have to
relate gL, gR, and gI and we are interested in the case that µ, and hence our solution,
is not analytic). We take µ to be twice continuously differentiable, or approximate µ by
such functions and take a limit. Then all gS are 3 times differentiable on the interior of
their domains. Furthermore, we assume there is some nonzero amount (which can be taken
arbitrarily small) of Lorentzian time evolution before µ > 0.11 Then g(β/4 + it, τ) and its
derivatives are analytic in τ in some strips centered on τ = ±β/4 for all t even after the
coupling is turned on. There is a “conserved” quantity12

T [ĝ(x, y)] = ∂2
xĝ(x, y)− 1

2(∂xĝ(x, y))2, ∂yT [ĝ(x, y)] = 0 (A.7)

T [ĝ(x, y)] = ∂2
y ĝ(x, y)− 1

2(∂y ĝ(x, y))2, ∂xT [ĝ(x, y)] = 0 (A.8)

where the equations hold when ĝ satisfies a Liouville equation with any nonzero complex
coefficient λ in front of the exponential, ∂x∂y ĝ(x, y) = −2λeĝ(x,y). The Liouville equation
has a “conformal symmetry”, in that for any solution ĝ(x, y), the function

ĝ(f,f)(x, y) = ln ∂xf(x) + ln ∂yf(y) + ĝ(f(x), f(y)) (A.9)

is also a solution. We also call this a “reparametrization” of x or y. In this section, a
subscript with functions in the parentheses means to reparameterize the left coordinate by
the first function, and the right coordinate by the second in this way. If we omit the second
function, it is implied to be the identity. Under this conformal transformation, we have

T [ĝ(f,f)] = T [ĝ]|f(x) (∂xf)2 + {f, x}, T [ĝ(f,f)] = T [ĝ]
∣∣∣
f(x)

(∂yf)2 + {f, y}. (A.10)

One way to see this is to note that if we have a function Ĝ(x, y) with ĝ(x, y) = ln ∂xĜ(x, y)+
G̃(y) for an arbitrary G̃, we have T [ĝ] = {Ĝ, x}, and when we reparameterize ĝ we can just

10Actually, to get a similar problem, we really only need the left-right symmetry in H
L/R
SYK, that the

correction in (A.6) is small, and that ∂τG(τ,−τ)� 1 (then we can renormalize µ by scaling it by 2G(τ,−τ)).
11We can actually take the more general assumption that µ is analytic in imaginary time, and there is a

nonzero amount of Lorentzian time before it becomes non-analytic.
12These are just proportional to the nonzero components of the stress tensor of a Liouville CFT.
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take Ĝ(x, y) → Ĝ(f(x), f(y)). Then we just use the composition rule of the Schwarzian
{f ◦ ĝ, x} = {f, ĝ}(∂xĝ)2 + {ĝ, x}.

In particular, given some solution ĝ(x, y), we can solve for an fP (x) such that T [ĝ] =
{fP , x}, and likewise for fP (y). We find

0 = {fP ◦ f−1
P , x} = T [ĝ(f−1

P ,f
−1
P )], (A.11)

(where we used (A.10)) and likewise T [ĝ(f−1
P ,f

−1
P )] = 0. All complex ĝ solving T [ĝ] = T [ĝ] =

0 and the Liouville equation with constant λ are: gP (x, y) = −2 ln(x− y)− ln λ+ i2πn for
n ∈ Z, along with all SL(2;C) reparametrizations of x and y (SL(2;C) acts as the Mobius
transformations). That this is the most general solution can be easily seen from solving
T [ĝ] = 0 =⇒ ∂xĝ = −2/(x − F (y)) for some function F , and likewise for T [ĝ] = 0. The
SL(2;C) reparametrizations are present because the Schwarzian derivative vanishes exactly
on the Mobius transformations. Since the fP (and likewise the fP ) are only determined up
to an action of SL(2;C), we find that all solutions can be written as a reparametrization
of gP . Results of this form are well-known (cf. [20, 30]).

Thus the known results are enough to show that for each of the gS , there is a local
expression in terms of a reparametrization of gP (the phase is fixed by the boundary
conditions and continuity) by fS and fS for the left and right coordinates, respectively.
The point of going through the above discussion in detail is to show that we can take
fR = fL = fI . Consider the equality fR = fI ; fL = fI is completely analogous. Then our
above discussion shows that T [gI,(f−1

I )] = 0, and our analyticity assumptions show that in
some small t′ interval we can take gR(t, t′) = gI(t, β/4 + it′). Thus in this strip we can take
fI = fR (possibly by precomposing with some SL(2;C)), and we can extend past the strip
in t′ by noting ∂t′T [gR,(f−1

I )] = 0 in the interior of the domain of gR, so T [gR,(f−1
I )] = 0 on

the interior of the domain of gR.
Therefore, to find the real-time two-point functions we just need to solve for the four

functions fR, fR, fL, and εSYK. The Liouville equation is automatically solved, and we
just need to solve the four constraints eqs. (A.2) to (A.5). This is a system of four ODEs
for four functions, so the solution is unique subject to initial conditions on the values and
derivatives of the reparametrizations, and on the value of εSYK

13. It is convenient to instead
solve for ψ, ψR, and ψL, defined by

fR(t) = tan(ψ(t)/2), fR(t) = tan
(
ψR(t)/2

)
, fL(t) = − cot

(
ψL(t)/2

)
. (A.12)

For convenience, we note that if we define

g0R(t, t′) = −2 ln sin t− t
′

2 − iπ (A.13)

g0L(t, t′) = −2 ln cos t− t
′

2 (A.14)

13We are implicitly using the fact that we know the solution before µ > 0, and whenever µ = 0, εSYK is
a constant.
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then the two-point functions are just gR = g0R,(ψR,ψR), gL = g0L,(ψR,ψL). These can then be
substituted into the constraints to find the differential system for the reparametrizations
and εSYK.

The thermofield double initial conditions are such that we have ψ(t0) = ψ
∗
R(t0) =

ψ
∗
L(t0), with the derivatives matching as well. We could argue that since the evolution can

be made analytic with arbitrarily small µ (or just try constant µ), these conditions are
consistent with the constraints algebraically if they are consistent at some time, and we
can just take ψ = ψ

∗
R = ψ

∗
L. More directly, we simply substitute the ansatz ψ = ψ

∗
R = ψ

∗
L,

find εSYK(t) in terms of ψ and ψ′ using (A.3), and check that this is consistent with (A.4)
when we implement the other 2 constraints.14 Then we can just use (A.2) and (A.5) to
determine ψ, eliminating the εSYK function altogether.

Thus we have reduced our problem to a system of differential equations for ψ. The
equation (A.2) can be integrated immediately to give

|ψ′| = c0 sinh | Imψ| (A.15)

for some integration constant c0 > 0. Since this is a constant, it can just be evaluated on
the initial conditions. Furthermore, by rescaling time we also rescale c0; another way to say
this is that the reparametrization ψ is dimensionless, so c0 has dimensions of inverse time,
and can by a choice of unit be set to 1. Our initial conditions are from the thermofield
double µ = 0 solutions. The appropriate reparametrization ψ can be easily found from
the known solution [9], where the constants ε and v are defined by sin ε = πv/(βJ ) and
ε = π(1− v)/2. We display the reparametrization both in the more usual time ũ = 2πt/β,
and u = v csc εũ = 2J t:

ψ(ũ) = 2 tan−1
(

tanh
(
vũ− iε

2

))
= 2 tan−1

(
tanh

(sin(ε)u− iε
2

))
(A.16)

ψ′(u) = sin ε sech(sin(ε)u− iε) (A.17)

− tanh Imψ(u) = sin ε sech(sin(ε)u), |ψ′(u)| = sin ε sech(sin(ε)u)√
1− sin2 ε sech2(sin(ε)u)

(A.18)

By substituting these equations into (A.15), we find if we use the time u, c0 = 1.
We then define K = µ/(2J ) and call the phase of ψ′, p (ψ′ = |ψ′|eip). The condi-

tion (A.5) leads to the equation

p′ = −K + |ψ′|2√
1 + |ψ′|2

cos p = −K + sinh(Imψ) tanh(Imψ) cos p. (A.19)

Therefore we have a natural phase space in terms of |ψ′| and p.
It is useful to note that this ODE system arises from a Hamiltonian. In terms of the

variable φ = 1
2 ln

(
1 + |ψ′|−2), we have the Hamiltonian

HQ = −
√

1− e−2φ cos p+Kφ (A.20)
14The most convenient way to check is to first assume Reψ′ 6= 0 (we will always assume, and see later

that it is self-consistent for our cases of interest, that |ψ′| 6= 0 and 0 < | Imψ| < ∞), then check the case
Reψ′ = 0 separately.
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with canonical coordinate φ and canonical momentum p. In the case K = 0, we find
solutions

φ(u) = − ln sin ε+ ln cosh(sin(ε)u) (A.21)
p(u) = tan−1 (tanh(sin(ε)u) tan ε) (A.22)

where ε is an integration constant.

B Rescued black hole solution

In this appendix, we give explicit and practical expressions for finding a sequence of cou-
plings to achieve the rescue geometry described in section 5.

Suppose just before time ur− the system has energy HQr−, and coordinates φr− and
pr−. Then when we turn on coupling µ1, the system has a new energy HQr− + µ1φr−.
Calling δφ = φr+ − φr−, we have the fixed point equation

δφ =
√

1− e−2φr−e−2δφ +HQr−
µ1

(B.1)

=
2 sin2 ε

2 −
e−2φr−e−2δφ

1+
√

1−e−2φr−e−2δφ

µ1
(B.2)

where we also wrote the explicit expression for the case of Rindler initial conditions. In
general, there are two solutions of this fixed point equation. We focus on the solution with
δφ > 0, which from the bulk point of view means that the boundaries are never closer to
each other than they started at ur−. The second coupling is then determined in terms
of δφ,

µ2 = e−2φr+
√

1− e−2φr+
. (B.3)

If δφ > 0 (δφ < 0) then µ2 < µ1 (µ2 > µ1). Finally, the rescue time in the case δφ > 0 is

ur+ − ur− =
∫ δφ

0

1√
1− e−2φr−e−2φ − (µ1φ−HQr−)2

dφ (B.4)

= tan ε tanh(sin εur−)
µ1 − tan ε sin ε sech2(sin εur−)

−
∫ δφ

0

√
1− e−2φr−e−2φ − (µ1φ−HQr−)2

× 2e−2φr−e−2φ + µ2
1

(e−2φr−e−2φ − µ1(µ1φ−HQr−))2dφ. (B.5)

Let us consider the two-point function in this “rescued” geometry. When both coor-
dinates are before or after the rescue, we have discussed the two-point functions above;
they are just the “regulated” Rindler and global two-point functions. Another case is the
two-point function GS(u2, u1) with u1 < ur− < ur+ < u2. We just need the form of ψ in
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the regions of interest,

ψ(u) =


2 tan−1 tanh sin(ε)u−iε

2 u ≤ ur−

VG(u− ur+)− i tanh−1 e−φG + VR(ur+ − ur−) + Reψ(ur−) u > ur+

(B.6)

where VR is defined by

VR = 1
ur+ − ur−

Re
∫ ur+

ur−
ψ′(u)du ≈ 1

2 sec ε cschφr−. (B.7)

We can think of VR as the average rate of global time advance during the rescue.
We can repeat the above discussion in the low energy theory (3.10) in the large q limit.

Here we find

φ̂r+ − φ̂r− = δφ̂ =
sin2 ε̂

2 − 1
2e
−2φ̂r−e−2δφ̂

µ1
. (B.8)

The second coupling is just µ2 = e−2φ̂r+ . The rescue time interval is

ur+ − ur− =
∫ δφ̂

0

dφ√
sin2 ε̂− e−2(φ̂r−+φ) − 2µ1φ

(B.9)

= sin ε̂ tanh(sin(ε̂)ur−)
µ1 − sin2 ε̂ sech2(sin(ε̂)ur−)

− 2
∫ δφ̂

0

√
sin2 ε̂− e−2(φ̂r−+φ) − 2µ1φ

e−2(φ̂r−+φ)

(e−2(φ̂r−+φ) − µ1)2
. (B.10)

C Details on the four-point function computation

C.1 Response to coupling perturbations

In this section, we study some higher-order features of the dynamics by looking at the
response of the system to perturbation in the coupling µ. The main application is to
compute certain higher order correlation functions; we will discuss the four-point function
case in detail in section 4. Consider then some perturbation µν(u) = µ(u) +νδ(u−u0). Of
course, before u = u0, there is no response. Immediately after u = u0, from the equations
of motion for p we have p(u+

0 ) → p(u0) − ν, while φ(u+
0 ) → φ(u0). Thus the δ-function

perturbation to the coupling µ(u) corresponds to an impulse that shifts the momentum.
The responses dφ(u)/dν and dp(u)/dν at ν = 0 are therefore determined by −ξ(u), with

ξ(u) =

 dφ(u)
dp(u0)
dp(u)
dp(u0)

 , ξ(u0) =
(

0
1

)
. (C.1)

The two components of ξ are just the Poisson brackets {φ(u0), φ(u)} and {φ(u0), p(u)}.
To compute ξ(u), we take derivatives of the equations of motion to get a coupled first

order system,

M(φ, p, u) = ∂2HQ

∂φ∂p
σz + ∂2HQ

∂p2 σ+ −
∂2HQ

∂φ2 σ− (C.2)

dξ(u)
du

= M(φ, p, u)ξ(u) (C.3)
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where σ± = 1
2(σx ± iσy). The equations can be simplified by a conjugation. Define

S(u) =
(√

1− e−2φ(u)
)−σz

=
(

1/
√

1− e−2φ(u) 0
0

√
1− e−2φ(u)

)
(C.4)

ξ1(u) ≡ S(u)ξ(u) (C.5)

dξ1(u)
du

= M1(φ, p, u)ξ1(u) (C.6)

M1(φ, p, u) = SMS−1 − SdS
−1

du
= µφ−HQ

1− e−2φ

(
0 1

−e−2φ(2− e−2φ) 0

)
(C.7)

We can define the Green’s function for ξ1(u) as

ξ1(u) = G1(u, u′)ξ1(u′) (C.8)
dG1(u, u′)

du
= M1(φ, p, u)G1(u, u′), G1(u, u) = 1. (C.9)

Note that M1 is always conjugate to a matrix proportional to iσy, and G1 ∈ SL(2,R).
Therefore finding the response amounts to finding the matrix G1(u, u′) ∈ SL(2,R). (In
order to patch together known solutions using G1(u, u′′)G1(u′′, u′) = G1(u, u′), we will
need the whole matrix.) It is convenient to define

ξ̃(u) ≡ G1(u, u0)ξ(u0) (C.10)

so that

ξ(u) =
√

1− e−2φ(u0)
(√

1− e−2φ(u)
)σz

ξ̃(u). (C.11)

where we have used ξ(u0) = (0 1)T .
For general time dependent coupling, eq. (C.9) can be integrated numerically. As

two simple examples we find the G1 matrix analytically for the global solution and the
decoupled solution. The global solution is the simplest case since M1 is constant due to
time-translation symmetry. In this case, M1 is conjugate to a constant times iσy. To find
the coefficient, we note that M1 is conjugate to M when φ is constant, which has the same
determinant as the Hessian of HQ; this last determinant is just the harmonic frequency at
the fixed point ωG. Thus the solution is

G
(G)
1 (u) = e(φG/2− 1

4 ln(2−e−2φG))σzeiωGuσ
y
e−(φG/2− 1

4 ln(2−e−2φG))σz (C.12)

= cos(ωGu) +

 0 eφG√
2−e−2φG

−e−φG
√

2− e−2φG 0

 sin(ωGu) (C.13)

G
(G)
1 (u, u′) = G

(G)
1 (u− u′). (C.14)

We point out that there is exponential growth in the response {φ(u0), φ(u)} as a function
of the fixed point value φG.
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The decoupled case µ = 0 is more complicated (it can be found by solving the second
order differential equation arising from the first order system)

G
(R)
1 (u) = e(φ/2)σzeitG(u)σye(φ/2)σze−B− cos εueln sin εσz (C.15)

= 1√
1− e−2φ

(
cot ε tanh(sin(ε)u)

− tanh(sin(ε)u) e−2φ cot ε

)
e−B− cos εueln sin εσz (C.16)

ξ̃(u) = G
(R)
1 (u, u0)ξ(u0) = G

(R)
1 (u)G(R)

1 (u0)−1ξ(u0) (C.17)

= cot ε√
(1− e−2φ(u))(1− e−2φ(u0))

×
(

tanh(û)− tanh(û0) + (û− û0) tanh(û) tanh(û0)
tan ε tanh(û) tanh(û0) + cot εe−2φ(u)(1 + (û− û0) tanh(û0))

)
,

(C.18)

where we used a rescaled time û = sin(ε)u. This gives the response of φ and p in the µ = 0
system,

{φ(u0), φ(u)} = cot ε
( sinh(û− û0)

cosh(û) cosh(û0) + (û− û0) tanh(û) tanh(û0)
)

(C.19)

{φ(u0), p(u)} = 1
1− e−2φ(u)

(
tanh(û) tanh(û0)+cos2(ε) sech2(û)(1+(û−û0) tanh(û0))

)
.

(C.20)

Note that if we have a solution that is in a decoupled orbit for u ≤ ur−, in some
unknown orbit for ur− < u ≤ ur+, and then in a fixed point orbit for ur+ < u, then we
only have to solve for G1(u, ur−) for ur− < u ≤ ur+. Then we can find the entire G1(u, u0)
matrix, and hence the response ξ(u), by composition with the known solutions G(R)

1 and
G

(G)
1 . This will be discussed in the next subsection for the rescued black hole geometry.

C.2 Four-point functions from response theory

We find the four-point function by varying the two-point function with respect to the
perturbation µν(u) = µ(u) + νδ(u− u0) considered in section C.1,

dgS(u2, u1)
dν

∣∣∣∣
ν=0

= − 2
N

∑
j,k

(
〈T [χRj(u2)χSj(u1)χRk(u0)χLk(u0)]〉

− 〈χRk(u0)χLk(u0)T [χRj(u2)χSj(u1)]〉
)

(C.21)

≡ −FRS(u2, u1, u0) (C.22)

where we have explicitly indicated which operators are contour-ordered by the symbol
T , and S ∈ {R,L} indicates the side of the fermion insertion at u1. By choosing the
appropriate function gR or gL, we can take the two operators χj on the same or opposite
sides. Since the two-point function is determined by the complex reparametrization ψ(u),
the four-point function above can be obtained from perturbation theory to the dynamical
system of p, φ discussed in section C.1.

Using the results of section C.1, we can give explicit expressions for the four-point
function. Define

A(u, u0) = d lnψ′(u)
dp(u0) , B(u, u0) = dψ(u)

dp(u0) , (C.23)

– 37 –



J
H
E
P
0
4
(
2
0
2
1
)
1
1
6

then the two four-point functions are

FRS(u2, u1, u0) = (A(u2, u0) +A(u1, u0)∗) + (B(u2, u0)−B(u1, u0)∗)FS(u2, u1) (C.24)

FL(u2, u1) = tan ψ(u2)− ψ(u1)∗

2 = tan
(
tG(u2)− tG(u1)

2 − i

2γ(u2, u1)
)

(C.25)

FR = −1/FL (C.26)

γ(u2, u1) = tanh−1
(
e−φ(u1) 1 + e−(φ(u2)−φ(u1))

1 + e−(φ(u2)+φ(u1))

)
. (C.27)

Explicit formulas for A and B in terms of ξ̃(u) are

A(u, u0) = −

√
1− e−2φ(u0)

1− e−2φ(u)

(
1
i

)†
ξ̃(u) (C.28)

B(u, u0) = −
√

1− e−2φ(u0)

2

(1
i

)† ∫ u

u0
eip(u

′) cschφ(u′)ξ̃(u′)du′
 . (C.29)

We note that there is a relation between A and B from the fact that, with u > u0,
FRR(u, u, u0) ∝

∑
jk〈[χRj(u)χRj(u), χRk(u0)χLk(u0)]〉 = 0,

ImB(u, u0) = −e−φ(u) ReA(u, u0). (C.30)

From the right-left correlator, we have

dφ(u)
dp(u0) = {φ(u0), φ(u)} = −1

2FRL(u, u, u0) = −(1− e−2φ(u)) ReA(u, u0). (C.31)

Thus to find the four-point function, we need G1(u, u′) to determine A and the integral

IB(u, u′, u0) =
∫ u

u0

(
cos(p(v))
sin(p(v))

)†
cschφ(v)G1(v, u′)dv (C.32)

for some value of u′ to determine ReB. As described in section C.1, the point of defining
the matrix G1 is that we can “patch together” solutions in different time intervals by
G1(u, u′) = G1(u, u′′)G1(u′′, u′). Likewise, the point of defining IB is that we can “patch
together” solutions in a similar way: for example,

ReB(u, u′) = −
√

1− e−2φ(u′)

2
(
IB(u, ua, uc)ξ̃(ua) + IB(uc, ub, u′)ξ̃(ub)

)
. (C.33)

As an example, for the fixed point solution we have

I
(G)
B (u, u0, u0) = (1 + coth φG)


√

2
3+cothφG sin(ωG(u− u0))

2
ωG
√

2−e−2φG
sin2 ωG(u−u0)

2

 . (C.34)

In the decoupled case,

I
(R)
B (u, 0, u0) = 2 Re

ψ′(u)
(
u cos ε− i
− csc2 ε

)T∣∣∣∣∣∣
u

u0

. (C.35)
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For later convenience, we also evaluate the Rindler contribution directly

ReB(R)(u, u0) = −1
2
[

cot2 ε(cschφ(u0)− cschφ(u)(1 + (û− û0) tanh û0))

+ tanh û0(cschφ(u0) tanh û0 − cschφ(u) tanh û)
]
. (C.36)

C.3 Four-point function in the rescued black hole geometry

For simplicity, we will consider the regime where the late rescue condition (5.2) holds
and δφ > 0. The only unknown ingredient is the matrix G1(u, ur−), defined in (C.9),
throughout the rescue region ur− < u ≤ ur+.

Recall that we are in the regime e2φr− � 1 and δφ > 0, where we can do perturbation
theory in e−2φ. Define

Tr(u) =
∫ u

ur−

µφ−HQ

1− e−2φ , λT = Tr(u+)/(ur+ − ur−) (C.37)

then to lowest order in e−2φ we have

G
(r)
1 (u, ur−) ≈ eTr(u)B+ = 1 + Tr(u)B+. (C.38)

To get an order of magnitude estimation, it is useful to keep in mind that λT ∼ O(1),
and when |pr−| � 1 we have λT ≈ 1. For convenience, we will just assume |pr−| � 1
and estimate

I
(r)
B (ur+, ur−, ur−) ∼

(
cos pr−
sin pr−

)†
cschφr−(ur+ − ur−). (C.39)

Now we can find the response ξ̃(u) by propagating by G1 on the appropriate interval.
For example, if u0 < ur− < ur+ < u, we have

ξ̃(u) = G
(G)
1 (u, ur+)G(r)

1 (ur+, ur−)G(R)
1 (ur−, u0)ξ(u0). (C.40)

We find A, and hence ImB, from (C.28). We use the integrals IB (and the prefactor
from (C.29)) to find ReB. For example, with the same times u0 and u

ReB(u, u0) = −
√

1− e−2φ(u0)

2
(
I

(G)
B (u, ur+, ur+)ξ̃(ur+) + I

(r)
B (ur+, ur−, ur−)ξ̃(ur−)

)
+ ReB(R)(ur−, u0). (C.41)

As an example, we find the full four-point function FRL(u, u, u0) in the rescued geom-
etry when u0 < ur− < ur+ < u, to the leading order in low initial temperature ε� 1 and
late enough rescue (such that (5.2) holds)

FRL(u, u, u0) ≈ 2 cot ε
{

cos
(
η(µ2)

√
2(tG(u)− tG(ur+))

)
×
[

tanh(ûr−)− tanh(û0) + (ûr− − û0) tanh(ûr−) tanh(û0)
]

+
(
Tr(ur+) cos

(
η(µ2)

√
2(tG(u)− tG(ur+))

)
+ eφ(ur+) sin

(
η(µ2)

√
2(tG(u)− tG(ur+))

))
(C.42)

×
[

tan ε tanh(ûr−) tanh(û0)+cot(ε)e−2φ(ur−)(1+(ûr−− û0) tanh(û0))
]}
.
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where we have defined the factor

η(µ) = ωG(µ)√
2VG(µ)

=
√

1− e−2φG(µ)

√
3 + cothφG(µ)

4 , (C.43)

Tr(ur+) is defined and discussed near (C.37), and kept the notation û ≡ sin εu from sec-
tion C.1. As mentioned above, Tr(ur+)/(ur+ − ur−) ∼ O(1) and depends on the details of
the rescue. By the relation (C.31) this also gives an expression for the A(u, u0) coefficient in
this setup, as well as the imaginary part of B(u, u0) by (C.30). At late rescue time, φ(ur+)
grows linearly with ur+, and the term with eφ(ur+) in the second line of eq. (C.42) becomes
the dominant term that grows exponentially with time (except when the oscillating sin
function is close to zero). Keeping this term leads to eq. (5.7).

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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