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1 Introduction

The effective potential V (φ) plays an important role in determining the vacuum of a quan-
tum field theory. In a foundational paper [1], Coleman and Weinberg computed the one-
loop effective potential in a generic gauge theory and showed that in scalar QED, for a
range of parameters, the ground state of the theory is shifted from the classical vacuum due
to radiative corrections. They also computed the renormalization group (RG) improved
effective potential, obtained by RG evolution of the couplings.

In general, in a theory with multiple mass scales it is not possible to choose a single
renormalization scale that removes all large logarithms in the effective potential. In this
paper, we compute the renormalization group improved effective potential using techniques
from effective field theory (EFT). In a theory with multiple scales, EFTs allow one to
compute in an expansion in powers of the ratio of scales, z ∼ mL/mH � 1, as well as
to sum the leading-log (LL) renormalization group series (λ ln z)n, the next-to-leading-log
series (NLL) λ(λ ln z)n, etc. Here mL and mH are generic light and heavy scales, and λ is
a generic coupling constant. We will refer to the original theory whose effective potential
is to be computed as the high-energy theory, and the theory given by integrating out mH

as the low-energy theory, or EFT. We use the terms Coleman-Weinberg potential and
effective potential interchangeably.

We apply our method to the O(N) model in the broken phase, a theory with two scalar
fields with widely separated vacuum expectation values in the unbroken and broken phases,
and the Higgs-Yukawa model. There are several subtleties which are illustrated by these
examples. The computation of the effective potential differs from usual EFT calculations
in several important respects:

• The expectation value 〈φ〉 of a light field in the high energy theory is not the same as
the expectation value 〈φ〉 in the low-energy theory, because of matching corrections.
Even though the same symbol φ is used, the two fields are not the same.
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• As a result, the Coleman-Weinberg potential computed using an EFT is not the
same as computing the Coleman-Weinberg potential of the EFT. The distinction
will become clear when we discuss the examples.

• The effective potential is obtained by computing one-particle irreducible (1PI) graphs
in the high-energy theory. When heavy particles are integrated out, information
about which graphs are one-particle irreducible is lost in the low-energy theory, since
heavy particle lines are shrunk to a point. We show that a vanishing tadpole condition
in the high-energy theory is equivalent to only retaining 1PI graphs. We explain how
to match the tadpole condition to the EFT, and compute its RG improved value.

Our method shows how to deal with these subtleties. We show that our results for power
corrections and for the (λ ln z)2 terms in the LL series differ from those obtained in ear-
lier attempts at RG improvement. Our result at leading-log order is given by tree-level
matching and one-loop running, and can be compared with the two-loop (fixed order) com-
putation of the Coleman-Weinberg potential [2–4]. Our method correctly reproduces the
(λ ln z)2 term in the two-loop effective potential by integrating the one-loop renormalization
group equations (RGE). Importantly, there are tree-level matching corrections to the low-
energy theory and tadpole contributions that have to be included to get the correct result.

Our work departs from previous literature on the RG improvement of the effective
potential in cases with multiple mass scales. One method which was proposed in ref. [5]
introduces multiple independent renormalization scales µ, such that the effective potential
satisfies multiple renormalization group equations. This method was modified in refs. [6, 7],
and more recently in ref. [8]. Broadly, the difficulties of this approach are that it is hard
to solve the multiple RGE at once, and also that it generically introduces logarithms of
mL/mH in the β-functions, which means that it does not allow one to sum all the higher-
order logarithms using RG evolution.

An EFT inspired approach was first applied to this problem in ref. [9], which studied
the Higgs-Yukawa model that we consider in section 6. A modified version of this approach
was advocated in ref. [10], which we discuss in more detail in section 7.4. This method was
generalized in ref. [11], which applied it to the two-scalar case model discussed in section 4,
and to the Higgs-Yukawa model. A recent attempt at applying the methods of ref. [9] to
the two-scalar model is given in ref. [12]. In section 7.4 we compare our method in various
examples to these earlier results. The Coleman-Weinberg potential and RG improvement
in curved spacetimes has been studied in refs. [13, 14]. The methods in this paper also
apply to curved spacetime calculations.

Other references using different approaches to those mentioned above are ref. [15] —
which conjectured improved boundary conditions that summed the leading log series in
some examples, but which gave no general prescription, and ref. [16] — which used a
mass-dependent renormalization scheme. Ref. [17] uses unmodified RGE with particular
boundary conditions to resum logarithmic contributions at a given loop order (but not the
leading logarithmic series). We will not comment further on these different approaches here.

The outline of this paper is as follows. Section 2 is a review of the Coleman-Weinberg
potential, and Jackiw’s functional integral method for computing it [18]. We show that
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only retaining 1PI diagrams is equivalent to a vanishing tadpole condition which can be im-
plemented in the EFT. We discuss the relation between the one-loop Coleman-Weinberg
potential and one-loop β-functions, and show how shift invariance leads to strong con-
straints on the form of the β-functions. We show how the results in this section can be
used to compute the renormalization of higher dimension operators, such as the (H†H)6

term in the SMEFT Lagrangian.
We then illustrate our method by a sequence of examples, each of which illustrates

new aspects of the method. In all cases, we compare with the explicit two-loop calculation,
and show that our method correctly reproduces the two-loop term in the LL series. We
start in section 3 by considering the O(N) model in the broken phase. After introducing
the power counting relevant to this first example, we present the step-by-step guide to our
procedure that is implemented in all the cases in section 3.2. A summary of these steps
appears in figure 6 of that section. We then compute the RG improved Coleman-Weinberg
potential for this case, and show how to implement the tadpole condition in the EFT.

Section 4 discusses the two-scalar model in the unbroken phase. This model in par-
ticular has off-diagonal terms in the mass matrix, and non-trivial tree-level matching con-
tributions. Section 5 analyzes this model in the broken phase, with two widely separated
vacuum expectation values (VEVs). This example is closest to more realistic theories, such
as a unified theory which has two VEVs which are widely separated — one at the unifica-
tion scale ∼ 1016 GeV, and the other at the electroweak scale ∼ 246GeV. We give plots
of the RG improved Coleman-Weinberg potential and show the impact of RG summation
and the tadpole contribution.

Section 6 discusses the Higgs-Yukawa model, which features non-scalar fields and
wave-function renormalization at one-loop. We analyze both the case where the boson
is much heavier than the fermion(s), and the case where the boson is much lighter than the
fermion(s). Sections 3 and 4 contain most of the discussion necessary to understand the
subtleties of our methods, and so our analysis in sections 5 and 6 is more brief. Section 7.4
gives a comparison of our results with previous work. The β-functions for some common
theories are given in the appendices, along with solutions to the RGEs which are needed
for our examples.

2 The Coleman-Weinberg potential

This section reviews the classic computation of the effective potential and defines nota-
tion. After reminding the reader of the definition of the effective potential, we review in
some detail Jackiw’s method for computing the effective action in terms of one-particle-
irreducible (1PI) graphs. We show that only computing 1PI graphs is equivalent to a
vanishing tadpole condition. We then discuss the 1-loop renormalization group properties
satisfied by the effective potential, and review the method of RG improving the effective
potential in a problem with a single mass scale, which was given in the original paper [1].
Throughout we will highlight properties of the effective potential which are useful for the
EFT computations in later sections.
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2.1 QFT 101

For the purposes of this section, let ϕa denote a set of scalar fields, although we often
suppress a indices. The partition function is

Z[J ] = e
i
~W [J ] =

∫ ∏
a

Dϕa e
i
~(S(ϕ)+

∫
d4xJaϕa) , S(ϕ) =

∫
d4x L(ϕ) . (2.1)

This defines the connected generating functional W [J ], obtained by performing the path
integral over the fields in the presence of external sources Ja.

Define the classical background field ϕ̂ as the expectation value of the field ϕ in the
presence of the current J . The field ϕ̂ is the conjugate variable to J(x),

ϕ̂(x) = 〈ϕ(x)〉J = 1
Z[J ]

∫
Dϕ ϕ(x) e

i
~(S(ϕ)+

∫
d4xJϕ) = δW [J ]

δJ(x) . (2.2)

When J = 0, ϕ̂(x)|J=0 ≡ ϕ̂0 is the expectation value of ϕ in the true vacuum of the theory.
The 1PI effective action is the Legendre transform of W [J ],

Γ[ϕ̂] = W [J ]−
∫

d4x J(x)ϕ̂(x) , (2.3)

and the effective potential is the first term in a derivative expansion of Γ[ϕ̂], i.e. the value
of Γ[ϕ̂] for constant external fields,

Γ[ϕ̂] = −
∫

d4x VCW(ϕ̂) +
∫

d4x
1
2Z(ϕ̂)(∂µϕ̂)2 + . . . (2.4)

Throughout we name the effective potential VCW. The effective action Γ[ϕ̂] is given by the
sum of 1PI graphs. It is an extensive quantity, proportional to the volume of spacetime.
In particular, note that

δΓ[ϕ̂]
δϕ̂(x) = −J(x) ⇒ δΓ[ϕ̂]

δϕ̂(x)

∣∣∣∣
J=0

= 0 . (2.5)

From now on, we assume that ϕ̂ is independent of x. Then, we can remove the . . .

from (2.4) and pull VCW(ϕ̂) out of the integral, leaving an overall factor of spacetime
volume. Equation (2.5) implies

∂VCW(ϕ̂)
∂ϕ̂

∣∣∣∣
ϕ̂0

= 0 . (2.6)

The value of ϕ̂ for which the minimum occurs is the expectation value of ϕ in the true
vacuum, and the value of VCW(ϕ̂0) gives the vacuum energy density in the ground state.

2.2 Jackiw’s method

We summarize here Jackiw’s method for computing the effective potential [18]. We present
the results in a manner that makes clear why the effective potential is the sum of 1PI
diagrams, and also show how to adapt Jackiw’s method to an EFT.
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The first step is to shift the scalar field by its background value ϕ(x) = ϕ̂(x) + ϕq(x).
The functional integral is now over the “quantum field” ϕq since the functional integral
measure is invariant under shifts, Dϕ = Dϕq. Requiring 〈ϕ〉 = ϕ̂ is equivalent to requiring
〈ϕq〉 = 0.

The effective action Γ[ϕ̂] is computed from the functional integral eq. (2.1) by sub-
tracting Jϕ̂ from W [J ], using eq. (2.3). Since the functional integral is over ϕq, and J and
ϕ̂ are independent of ϕq, the term Jϕ̂ can be taken out of the functional integral,

Z[J ] = e
i
~W [J ] = e

i
~

∫
d4xJϕ̂

∫ ∏
a

Dϕaq e
i
~

∫
d4x[L(ϕ̂+ϕq)+Jϕq ] , (2.7)

such that

e
i
~Γ[ϕ̂] =

∫ ∏
a

Dϕaq e
i
~

∫
d4x[L(ϕ̂+ϕq)+Jϕq ] = e

i
~(W [J ]−

∫
d4xJϕ̂) . (2.8)

The shifted Lagrangian can be expanded in powers of ϕq,

L(ϕ̂+ ϕq) = −Λ̂(ϕ̂)− σ̂(ϕ̂)ϕq + 1
2 iD

−1(ϕ̂)ϕ̂2
q −

1
6 ρ̂(ϕ̂)ϕ3

q −
1
24 λ̂(ϕ̂)ϕ4

q + . . . (2.9)

The couplings without hats are couplings before the shift, and couplings with hats are
those after the shift. Eq. (2.9) defines notation we will use in the rest of this paper for the
couplings in the shifted theory. If the theory is renormalizable, the series terminates at
order ϕ4

q . We have defined Λ̂(ϕ̂) as (minus) the constant term in this expansion, and it is
equal to the potential evaluated on the background fields plus the cosmological constant,

Λ̂(ϕ̂) = V (ϕ̂) + Λ . (2.10)

Following ref. [1], the matrix of second derivatives of the scalar potential is

Wab(ϕ̂) = ∂2V (ϕ̂)
∂ϕa∂ϕb

, with eigenvalues wi(ϕ̂) . (2.11)

If the kinetic terms are diagonal, the inverse propagator is iD−1
ab = −∂2δab −Wab.

The functional integral eq. (2.8) is given by the sum of vacuum graphs of the theory,
with the subsidiary condition that 〈ϕq〉 = 0. Diagrammatically, 〈ϕq〉 is the sum of tadpole
graphs, figure 1a. The graphs include the linear term σ̂ϕq in the shifted Lagrangian (2.9),
as well the source J . The source is adjusted to make the total tadpole vanish. At tree-level,
this is accomplished by simply setting J = σ̂. Let us implement this tree-level condition
by splitting

J = σ̂ + J , (2.12)

where J is to be formally treated as starting at one-loop order. Eq. (2.8) can then be
written as

e
i
~Γ[ϕ̂] =

∫ ∏
a

Dϕa e
i
~

∫
d4xL̂ . (2.13)
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−σ̂
+ + . . . +

J

=

(a) The tadpole graphs, including those from the linear term in L(ϕq + ϕ̂) and from J .

+ . . . +
J

=

(b) The tadpole graphs after dropping σ̂ and replacing J by J .

Figure 1. 〈ϕ〉q is given by the sum of all tadpole graphs. Regardless of how the source J is
decomposed, the total tadpole contribution vanishes.

We have defined L̂ in the exponent in eq. (2.13) as the shifted Lagrangian with the linear
term dropped, plus Jϕq:

L̂ ≡ L(ϕq + ϕ̂) + σ̂(ϕ̂)ϕq + Jϕq

= −Λ̂(ϕ̂) + Jϕq + 1
2 iD

−1(ϕ̂)ϕ̂2
q −

1
6 ρ̂(ϕ̂)ϕ3

q −
1
24 λ̂(ϕ̂)ϕ4

q + . . .
(2.14)

The tadpole graphs are thus modified as shown in figure 1b, with J replaced by J , and
the σ̂ graph dropped. Equation (2.13) is the expression derived by Jackiw [18].

Let us set aside the subtleties with the source J for the moment, and give the effective
potential to one-loop order. Performing the path integral over ϕq, we obtain

VCW(ϕ̂) = Λ̂(ϕ̂) + i~
2 Tr ln iD−1(ϕ̂) +O(~)2 . (2.15)

The tree level piece is just the potential in the Lagrangian evaluated on the background
fields plus the cosmological constant, eq. (2.10). The one-loop contribution in the MS
scheme including scalar, fermion and gauge loops is

VCW(ϕ̂) = Vtree(ϕ̂) + ~V1-loop(ϕ̂) +O(~2)
Vtree = Λ̂(ϕ̂) = V (ϕ̂) + Λ(ϕ̂)

V1-loop = 1
64π2

{
TrW 2

[
ln W
µ2 −

3
2

]
− 2Tr

(
M †FMF

)2
[
ln M

†
FMF

µ2 − 3
2

]

+ 3TrM4
V

[
ln M

2
V

µ2 −
5
6

]}
,

(2.16)

where W (ϕ̂) ≡ Wab(ϕ̂) defined in eq. (2.11), MF and M2
V are the mass matrices for real

scalar fields, Weyl fermions, and gauge bosons, respectively, and the traces are over flavor
indices. To reiterate, the mass matrices are computed in a background external field, and
so depend on ϕ̂.

We now return to understanding the 1PI-nature of VCW. Graphically, the functional
integral eq. (2.13) is the sum of vacuum graphs of ϕq with vertices which depend on ϕ̂.
The action starts at quadratic order in ϕq. The one-loop and two-loop graphs are shown

– 6 –
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Figure 2. One-loop contribution to the effective action.

(a) Two loop contribution to the effective action including the source term J , which is formally of one-loop
order.

(b) The same graphs as in (a), but using instead the total tadpole contribution (see figure 1).

Figure 3. The two-loop contribution to the effective action. The black rectangles are the J vertex,
and are formally of one-loop order. The shaded blob is the total tadpole contribution.

Figure 4. A one-particle reducible contribution to the effective action, which vanishes due to the
tadpole constraint.

in figure 2 and figure 3, respectively. J is counted as being one-loop, and so the last
three graphs in figure 3a with insertions of J are treated as two-loop graphs. Comparing
with the tadpole graphs figure 1b, we see that the last four graphs in figure 3a can be
combined, so that the two-loop contribution is given diagrammatically as in figure 3b. By
construction, the total tadpole contribution vanishes, so that 〈ϕq〉 = 0. This means we can
drop the last diagram in figure 3b, leaving only the two one-particle irreducible graphs, one
with two insertions of the ϕ3

q interaction, and one with one insertion of the ϕ4
q interaction.

The argument clearly holds at higher order. In general, one-particle reducible lines such as
those in figure 4 end in tadpoles, which vanish. We thus obtain the result of Jackiw [18]:

To compute Γ[ϕ̂], shift ϕ → ϕ̂+ ϕq, drop the terms linear in ϕq in the action,
and compute 1PI vacuum graphs.

The use of an explicit source term J and a vanishing tadpole condition rather than
summing 1PI graphs allows us to avoid the problem mentioned in the Introduction that

– 7 –
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1PI graphs in the low-energy theory are not the same as 1PI graphs in the high-energy
theory, since heavy particle lines have been shrunk to a point. The tadpole condition can
be matched onto the EFT by constructing the EFT in the presence of a source J , as shown
in section 3. It is worth noting that J cancels the full tadpole, and so has both infinite
1/εr and finite pieces.

2.3 Effective potential for a subset of the fields

In a theory with multiple scalar fields, we are sometimes interested in the effective action as
a function of only some of the scalar fields. Divide the scalar fields into two groups, ϕ and
χ. As reviewed in section 2.1, we can compute the effective action Γ[ϕ̂, χ̂] by introducing
sources for ϕ and χ, and computing the Legendre transform. We can instead compute Γ[ϕ̂]
by introducing sources and taking the Legendre transform only for ϕ, but not for χ. How
are Γ[ϕ̂, χ̂] and Γ[ϕ̂] related? From the definition of the effective action in eq. (2.1)–(2.3),
one can easily see that Γ[ϕ̂] can be obtained by introducing sources for both ϕ and χ, with
the source Jχ for χ set to zero. From eq. (2.5), we see that this implies

Γ[ϕ̂] = Γ[ϕ̂, χ̂]
∣∣∣∣
∂Γ[ϕ̂,χ̂]
∂χ̂

=0
. (2.17)

I.e. one finds the value of χ̂ that extremizes Γ[ϕ̂, χ̂] for a fixed value of ϕ̂, and substitutes
this value (which is a function of ϕ̂) back into Γ[ϕ̂, χ̂]. The Coleman-Weinberg potential in
the theory with χ integrated out is Γ[ϕ̂], and is related to the Coleman-Weinberg potential
in the theory with both fields by eq. (2.17).

2.4 β-functions and one-loop running

Let us now address the renormalization group running of the effective potential.1 Implicit in
the computations of section 2.2 is the fact that all computations are done in a renormalized
theory. We use dimensional regularization in this paper, so all couplings are evaluated at
a scale µ. Since the scalar field can have an anomalous dimension, ϕ implicitly also has a
µ label ϕ(µ).

The all-orders potential obeys the renormalization group equation[
∂

∂t
+ βi

∂

∂λi
− γϕϕ

∂

∂ϕ

]
VCW = 0 . (2.18)

The couplings λ, m2, etc. are denoted generically as {λi}, and satisfy the β-function equa-
tions

dλi
dt = βi({λi}) , (2.19)

where we have defined

t ≡ 1
16π2 ln µ

µ0
, (2.20)

1For a discussion of the RG improved potential in massive theories, see References [19, 20].
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and µ0 is any fixed reference scale. We will interchangeably use µ and t as the coupling
constant argument. Using t instead of lnµ multiplies all the β-functions and γϕ by 16π2

relative to the lnµ derivatives. γϕ is the anomalous dimension of ϕ,

dϕ
dt = −γϕ ϕ . (2.21)

At one-loop order the total potential is VCW = Vtree + V1-loop, the β-functions start at
one-loop order, and Vtree has no explicit µ-dependence, so eq. (2.18) reduces to[

βi
∂

∂gi
− γϕϕ

∂

∂ϕ

]
Vtree + ∂

∂t
V1-loop = 0

=⇒
[
βi

∂

∂gi
− γϕϕ

∂

∂ϕ

]
Vtree = 1

2TrW
2 − Tr

(
M †FMF

)2
+ 3

2TrM
4
V . (2.22)

From eq. (2.22), we can immediately read off the one-loop β-functions for the terms in the
scalar potential by matching powers of ϕ on both sides of the equation. Eq. (2.22) can also
be applied to theories with interactions beyond dimension four, and we use it to derive the
anomalous dimension for the SMEFT operator (H†H)3 in appendix A.2.

As an example, consider the Higgs-Yukawa theory discussed in section 6, with
Lagrangian

L = 1
2(∂µϕ)2 +

∑
k

i ψk /∂ ψk − (mF + gϕ)ψkψk − V (ϕ) (2.23)

and scalar potential

V (ϕ) = Λ + σϕ+ m2
B

2 ϕ2 + ρ

6ϕ
3 + λ

24ϕ
4 . (2.24)

The sum on k is over NF fermions. The theory has an exact U(NF ) symmetry, and all
couplings are taken to be real. The couplings are {λi} = {Λ, σ,M2, ρ, λ,m, g} and

W (ϕ) = ∂2V

∂ϕ2 = m2
B + ρϕ+ 1

2λϕ
2 , MF (ϕ) = mF + gϕ , (2.25)

are the scalar and Dirac fermion mass matrices. Eq. (2.22) and eq. (2.16) give

βΛ + (βσ − γϕ)ϕ+ 1
2
(
βm2

B
− 2γϕ

)
ϕ2 + 1

6 (βρ − 3γϕ)ϕ3 + 1
24 (βλ − 4γϕ)ϕ4

= 1
2

(
m2
B + ρϕ+ 1

2λϕ
2
)2
− 2NF (mF + gϕ)4 , (2.26)

so that

βΛ = 1
2m

4
B − 2NFm

4
F ,

βσ = m2
Bρ− 8NF gm

3
F + γϕσ ,

βm2
B

= λm2
B + ρ2 − 24NF g

2m2
F + 2γϕm2

B ,

βρ = 3λρ− 48NF g
3mF + 3γϕρ ,

βλ = 3λ2 − 48NF g
4 + 4γϕλ .

(2.27)
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Figure 5. One-loop wavefunction renormalization for ϕ. The solid line is the fermion ψk and the
dashed line is the scalar ϕ.

The anomalous dimension γϕ requires computing graphs with external momentum. In this
theory, the only graph which contributes is shown in figure 5, which gives

γϕ = 2g2NF . (2.28)

The β-functions for couplings containing fermions require computing one-loop graphs with
external fermion fields, and are given as

γψ = 1
2g

2 , βmF = 3g2mF , βg = (3 + 2NF ) g3 . (2.29)

We will need these expressions in section 6. The solution of the RG equations eq. (2.27)
in the theory without fermions will be needed later, and is given in appendix B.

For the computation of the Coleman-Weinberg potential using the method in
section 2.2, one also needs the Lagrangian after the shift ϕ = ϕ̂ + ϕq. The Higgs-Yukawa
Lagrangian in eq. (2.24) retains the same form after this shift, but with new couplings m̂F ,
etc. which are functions of ϕ̂, given by

m̂F = mF + gϕ̂ ,

ĝ = g ,

Λ̂ = Λ + σϕ̂+ 1
2m

2
Bϕ̂

2 + 1
6ρϕ̂

3 + 1
24λϕ̂

4 ,

σ̂ = σ +m2
Bϕ̂+ 1

2ρϕ̂
2 + 1

6λϕ̂
3 ,

m̂2
B = m2

B + ρϕ̂+ 1
2λϕ̂

2 ,

ρ̂ = ρ+ λϕ̂ ,

λ̂ = λ .

(2.30)

Since the shifted Lagrangian has the same form as the original one, the β-functions for
the hatted couplings are given by the same functions eq. (2.27)–(2.29) as before, with all
couplings replaced by their hatted values.

There is another way to think of the RG evolution of the hatted parameters in
eq. (2.30). Rather than treat (e.g.) Λ̂ as a single object, one can instead compute its
RG evolution by evolving Λ, σ, etc. that appear on the r.h.s. of eq. (2.30), and then com-
puting Λ̂ using the evolved couplings. One can think of this procedure as “running and
then shifting” instead of “shifting and then running.” If we also evolve ϕ̂ according to
its anomalous dimension then the two methods give the same answer, since one is simply
making a linear shift in an integration variable in the functional integral. The “shift and
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run” vs. “run and shift” evolution will prove useful in comparing our results to those in
the literature.

Shift invariance is a non-trivial constraint on RG evolution. As an amusing aside,
consider the case of Higgs-Yukawa theory. Suppose one assumes that the RG equations
take the form of eq. (2.27)–(2.29) but with arbitrary coefficients for each term (except for
the γφ and γψ dependence, which is fixed by the number of fields, and which we will also
keep explicit). For example, suppose we guessed

βm2
B

= c̃1λm
2
B + c̃2ρ

2 + c̃3g
2m2

F + 2γϕm2
B , (2.31)

and similarly for the other β-functions. In total this introduces 13 arbitrary coefficients
c̃i, as well as two anomalous dimensions γφ and γψ. Demanding shift invariance as defined
in the previous paragraph severely constrains the RGE, and fixes 10 of the 13 coefficients.
The resulting equations take the form

d
dt



φ

ψ

Λ
σ

m2
B

ρ

λ

mF

g


= c1



0
0

1
2m

4
B

m2
Bρ

λm2
B + ρ2

3λρ
3λ2

0
0


+ c2



0
0
m4
F

4gm3
F

12g2m2
F

24g3mF

24g4

0
0


+ c3



0
0
0
0
0
0
0

g2mF

g3


+



γφ
γψ
0
γφσ

2γφm2
B

3γφρ
4γφλ

2γψmF

(γφ + 2γψ) g


(2.32)

There are only three independent coefficients c1,2,3 in the RG equations, as well as the
anomalous dimensions γφ and γψ. The c1 term is an overall normalization for the scalar
sector; the relative coefficients are completely fixed by shift invariance. The c2 term is
an overall factor for all terms involving a fermion loop, and the c3 term is an overall
factor for terms which arise from scalar corrections to the fermion sector. Note that we
did not group the terms into these three categories; shift invariance automatically fixed
all the relative coefficients within these three sectors. Then by explicit computation, one
determines c1 = 1, c2 = −2NF , c3 = 2.

2.5 Summing logarithms

We now review the method for computing the RG improved Coleman-Weinberg potential
introduced in the original paper [1]. The discussion also explains which terms in the
Coleman-Weinberg potential are computed in this paper.

Let us begin with a single real scalar field with φ→ −φ symmetry,

L = 1
2(∂µφ)2 − m2

2 φ2 − λ

24φ
4 − Λ . (2.33)

The Coleman-Weinberg potential to one-loop order is

VCW(φ̂, λ(µ0),m(µ0), µ0) = Λ + m2(µ0)
2 φ̂2 + λ(µ0)

24 φ̂4 + W 2

64π2

[
ln W
µ2

0
− 3

2

]
, (2.34)
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where, as in eq. (2.11), we have identified

W = ∂2V

∂φ2

∣∣∣∣∣
φ̂

= m2(µ0) + λ(µ0)
2 φ̂2 (2.35)

as the 1× 1 matrix of second derivatives of the potential. This problem has a single scale,
which is given by W .

Fixed order perturbation theory breaks down if
∣∣lnW/µ2

0
∣∣ � 1. The validity of per-

turbation theory can be restored by choosing a scale µ2 of order W , so that the logarithm
is not large. Renormalization group invariance of the potential implies

VCW(φ̂(µ0), λ(µ0),m(µ0), µ0) = VCW(φ̂(µ), λ(µ),m(µ), µ) , (2.36)

so that

VCW(φ̂, λ(µ0),m(µ0), µ0) = VCW(e−
∫ µ
µ0

dµ′
µ′ γφ(µ′)

φ̂, λ(µ),m(µ), µ) . (2.37)

In this particular problem γφ = 0, but we will need the anomalous dimension scaling in
other examples. By a suitable choice of µ, one can compute the desired expression on the
l.h.s. of eq. (2.37) by instead computing the r.h.s.

Writing the couplings λ(µ) in terms of their original values λ(µ0) as given explicitly in
appendix B, one sees that the expression on the r.h.s. sums the leading-log series (λ(µ0)L)n,
where L = (lnW/µ2

0)/(16π2). Generically the structure of the perturbation series has
the form

V =

LL NLL NNLL



1 tree

λL λ 1-loop

λ2L2 λ2L λ2 2-loop

λ3L3 λ3L2 . . . 3-loop
...

(2.38)

relative to the tree-level value, which is denoted by 1. The first column gives the leading-log
(LL) series, the second column gives the next-to-leading-log (NLL) series, etc. The first
row is the tree-level contribution, the second row is the one-loop contribution, and so on.
As is well-known, the LL series is given by integrating the one-loop RGE, the NLL series
by integrating the two-loop RGE, etc.

Now suppose that there are multiple mass scales in the matrix W . For instance, we
could have two eigenvalues of the W -matrix with wH � wL. The one-loop contribution
to the Coleman-Weinberg potential now contains two types of logarithms, lnwH/µ2 and
lnwL/µ2. Unlike the single-scale case in eq. (2.33), one cannot simultaneously make both
logarithms small; if we choose µ2 ∼ wH , we are left with large logarithms of the form
lnwH/wL.
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In this paper, these large logarithms are summed by constructing an EFT and using
RG evolution between the scales wH and wL. As in any EFT, one has to start with a
power counting expansion. We introduce a power counting parameter wL/wH ∼ z2 � 1
(to be defined in each of the examples we present), and provide a method to systematically
compute the Coleman-Weinberg potential as a power series in z, known as the power
counting expansion. As is well-known, the LL series is given by tree-level matching and
one-loop running, the NLL series is given by one-loop matching and two-loop running,
etc. To be able to RG improve the potential requires being able to compute the entire
first column in eq. (2.38), not just the λL term. In particular, we will compute the boxed
terms of eq. (2.38), i.e. the LL series as well as the non-log terms at one-loop. Our results
differ at order (λL)2 from those presented in the literature for RG resummation of the
Coleman-Weinberg potential, but agree with explicit two-loop computations.

3 EFT method applied to the O(N) model

We introduce the EFT method for computing the Coleman-Weinberg potential, using the
O(N) model as a test case. A summary of the method appears in section 3.2.

3.1 Preliminaries and power counting

In the unbroken phase, the Lagrangian is given by

L = 1
2 (∂µφ · ∂µφ)− m2

2 (φ · φ)− λ

24 (φ · φ)2 , (3.1)

where φ is an N -component vector. This phase has effectively a single mass scale. More
interesting for our purposes is the broken phase, in which the mass-squared acquires a
minus sign, and classically φ can get a vacuum expectation value (VEV) v2 = −6m2/λ.
Let us parameterize the Lagrangian in the broken phase as

L = 1
2 (∂µφ · ∂µφ)− λ

24
(
φ · φ− v2

)2
− Λ , (3.2)

where we have included a cosmological constant Λ.
The Coleman-Weinberg potential for this theory is conventionally written as a function

of φ ·φ by O(N) symmetry. Nevertheless, we emphasize that the potential being computed
is the potential of the field φ, not the composite field φ · φ. To compute the latter would
require introducing source terms for φ · φ in the functional integral eq. (2.1).

Expanding in fluctuations about a VEV for one component of φ, we take

φ = (φ̂+ χq)n̂+ φq . (3.3)

Here n̂ is a unit vector pointing in a fixed direction, χq is a single field representing the
quantum fluctuation about the VEV φ̂ in the n̂ direction (the radial Higgs mode), and φq
is an NGB ≡ (N − 1)-component vector orthogonal to n̂ (the Goldstone modes). We thus
obtain the scalar mass-squared matrix

W =
[

Wχχ Wχφ11×NGB

Wφχ1NGB×1 Wφφ1NGB×NGB

]
, NGB ≡ N − 1 , (3.4)

– 13 –



J
H
E
P
0
4
(
2
0
2
1
)
0
9
3

with

Wχχ = λ

6
(
3φ̂2 − v2

)
, Wφφ = λ

6
(
φ̂2 − v2

)
, Wφχ = Wχφ = 0 . (3.5)

In the O(N) theory, W given in (3.4) is diagonal. In the examples considered in the
following sections W will not be diagonal. At the classical minimum of the potential
φ̂2 = v2, and the Goldstone modes are massless.

The shifted Lagrangian defined in eq. (2.14) is

L̂ = 1
2∂µχq∂

µχq + 1
2 (∂µφq · ∂µφq)−

λ

24 χ
4
q −

λ

12 χ
2
q (φq · φq)−

λ

24 (φq · φq)2

− λ

6 φ̂ χ
3
q −

λ

6 φ̂ χq (φq · φq)−
1
2Wχχ χ

2
q −

1
2Wφφ (φq · φq) + Jχχq − Λ̂ . (3.6)

The β-functions for these couplings can be read off from eq. (2.22) and are given in
eq. (A.21)–(A.22).

The Coleman-Weinberg potential at one loop (fixed order) follows from eq. (2.16),

VCW = Vtree + ~V1-loop ,

Vtree = Λ̂(φ̂) = λ

24
(
φ̂2 − v2

)2
+ Λ ,

V1-loop =
W 2
χχ

64π2

(
ln Wχχ

µ2 −
3
2

)
+
NGBW

2
φφ

64π2

(
ln Wφφ

µ2 −
3
2

)
.

(3.7)

Notice that the first term in V1-loop comes from integrating out the heavy field χq to
quadratic order in the functional integral over L̂. For future reference, we name this
contribution

Vmatch =
W 2
χχ

64π2

(
ln Wχχ

µ2 −
3
2

)
. (3.8)

The zeroth order step in our procedure is to introduce a power counting parameter. If
φ̂ is very different from v, then all particles have comparable masses and RG improvement
is not necessary, since the Coleman-Weinberg potential can be computed reliably using the
known fixed-order expressions in eq. (3.7). Thus for our power counting, we take v ∼ 1
and φ̂ ∼ 1 with φ̂2 − v2 ∼ z2, such that Wχχ ∼ 1 and Wφφ ∼ z2. A nice feature of the
O(N) model in the broken phase is that this hierarchy of scales, with the Goldstone modes
being much lighter than the radial mode, is natural. To summarize, our power counting is

φ̂ ∼ 1 , (φ̂2 − v2) ∼ z2 , Wχχ ∼ 1 +O(z2) , Wφφ ∼ z2 . (3.9)

In particular, the power counting expansion depends on the values of background fields.
We also split eq. (3.5) as

Wχχ = m2
χ + λ

2
(
φ̂2 − v2

)
, m2

χ ≡
λv2

3 , (3.10)

and treat m2
χ ∼ 1, and the second term in Wχχ as order z2. This allows us to RG improve

the effective potential in a region near the classical VEV.
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To power count terms in the shifted Lagrangian eq. (3.6), we use χq ∼ 1 and φq ∼ z,
which are determined by the power counting of their propagators. Then, the χq contribu-
tion to the Coleman-Weinberg potential is order unity, and the φq contribution is order z4,
as can be seen from the fixed order expressions in eq. (3.7). In particular, Vtree is O(z4),
and all non-trivial resummation effects start at order z4. Thus, we compute the Coleman-
Weinberg potential to this order. In some examples we will consider later in section 4, the
new effects start at order z6.

3.2 A step-by-step overview

Let us now give a step-by-step overview of our procedure, postponing detailed computa-
tion to subsequent sections. These steps are summarized in the (color-coded) flowchart
in figure 6.

1. Run the Lagrangian from the starting scale µ0 to the heavy scale µ2
H ∼ Wχχ using

the β-functions in the high-energy theory. From our discussion around eq. (2.22), at
one loop the high-energy β functions satisfy

βλi
dV

dλi
− γφφ

dV

dφ
= 1

32TrW
2 , (3.11)

where in this example {λi} = {λ, v,Λ}.

Because shifting and running the fields commute, as emphasized in section 2.4, we
can first run the Lagrangian to µH and then shift the fields. Upon shifting, the
functional integral is over eq. (2.14) (in this case, eq. (3.6)) with couplings and fields
renormalized at µH . There is nothing new in this part of the calculation, so we start
our examples at the scale µH .

In the O(N) model γφ is zero at one-loop, but it is nonzero at two-loop order. It
would be nonzero at one-loop if we introduce gauge or Yukawa interactions into the
theory. Shifting the field at µH gives the potential in terms of the expectation value
of φ renormalized at µH .

2. Integrate out χq at the scale µH . Below the matching scale, the theory is described by
an EFT, whose Lagrangian we denote LEFT. There are no large logs in the matching.
The Coleman-Weinberg potential is given by the vacuum graph figure 2 computed
using the quadratic action in quantum fields. To include all the one-loop terms and
perform the LL resummation, we need two contributions:

– Tree level matching of L̂ in eq. (2.14) (eq. (3.6) in the O(N) example) onto
the EFT Lagrangian. This matching involves expanding the tree-level n-point
functions of the high-energy theory in the power counting parameter z, and
matching onto the EFT n-point functions at the scale µH . Denoting the EFT
couplings with tildes as {λ̃i(µ)}, this determines the couplings {λ̃i(µH)} as a
function of the high-energy couplings {λi(µH)}. For example, Vtree(µH) gives a
contribution to the EFT cosmological constant Λ̃(µH).
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L(φ, χ, µ0)
λi(µ0), Λ(µ0)

L(φ, χ, µH)
λi(µH), Λ(µH)

L̂(φq, χq, µ0)
λ̂i(φ̂, χ̂, µ0), Λ̂(ϕ̂, χ̂, µ0)

L̂(φq, χq, µH)
λ̂i(φ̂, χ̂, µH), Λ̂(φ̂, χ̂, µH)

LEFT(φq, µH)
λ̃i(φ̂, χ̂, µH), Λ̃(φ̂, χ̂, µH)

LEFT(φq, µL)
λ̃i(φ̂, χ̂, µL), Λ̃(φ̂, χ̂, µL)

VCW(φ̂, χ̂, µL)

φ = φ̂+ φq
χ = χ̂+ χq
drop linear

φ = φ̂+ φq
χ = χ̂+ χq
drop linear

µ0
↓
µH

µ0
↓
µH

integrate out χq

µH
↓
µL

integrate out φq

〈χq〉
!= 0

Figure 6. Flowchart for the EFT method of RG improving the Coleman-Weinberg potential. The
general procedure is similar to other EFT computations. The new features are the field shifts in
the high-energy theory, and the tadpole condition for the heavy field which is evaluated in the
low-energy theory.

– One-loop matching to the cosmological constant in the EFT from integrat-
ing out χq. This matching involves computing the one-loop vacuum graphs,
expanding in the power counting parameter z, and dropping all divergent
terms (see [21]). These graphs will contribute to the cosmological constant
Λ̃ of the EFT, since they are independent of φq. The result of this computation
is precisely Vmatch(µH) ⊂ Λ̃(µH), with Vmatch given in eq. (3.8) for the O(N)
example. All the logarithms in this expression are of the form ln |Wχχ/µ

2
H |, so
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there are no large logs. This term would usually be neglected in the LL calcu-
lation, but is included here because we compute the full one-loop correction to
the potential.
Note that in examples with non-diagonal W , this one-loop matching compu-
tation is more involved. In such a case, the Coleman-Weinberg potential is a
sum over contributions of the eigenvalues of W , and this matching computation
corresponds to the contribution of the larger eigenvalue, expanded in z. We will
explore this point in more detail in section 4.4.

– Computation of higher order terms in the perturbation expansion eq. (2.38)
requires matching to the EFT Lagrangian L̂ beyond tree-level, e.g. the NLL
series requires one-loop matching. At this order, one also obtains finite matching
corrections from graphs such as figure 5 to the kinetic energy terms in the EFT
Lagrangian. These can be absorbed into rescaling the EFT quantum field φq.
Such rescalings are one reason why shifting φ in the high-energy theory is not
equivalent to shifting φ in the EFT. In the two-scalar example in section 4, there
are contributions to the kinetic energy term and terms with higher derivatives
in the EFT Lagrangian from expanding the χq propagator in a power series in
p2/m2

χ. However, these terms are of higher order than what is required for the
results in this paper (see eq. (4.14)).

As a result of this matching, we obtain in particular the boundary value of the EFT
cosmological constant,

Λ̃(µH) = Λ̂(µH) + Vmatch(µH) + (tadpole) , (3.12)

as well as the boundary values of the other λ̃i(µH). The (tadpole) term in eq. (3.12)
is a function of the source J as defined in eq. (2.12), and will be given explicitly in
examples.

3. Run the EFT couplings from the heavy scale µH to the light scale µ2
L ∼ m̃2 using

the RGE defined by the EFT Lagrangian,

β
λ̃i

dVEFT

dλ̃i
− γ̃φφ

dVEFT
dφ

= 1
2(WEFT)2 . (3.13)

Here m̃2 is the quadratic coupling in the EFT. The entire LL series is obtained by
running the cosmological constant Λ̃ from µH to µL.

4. Perform the functional integral over φq. The one-loop contribution is the graph in
figure 2, and only involves terms in LEFT to quadratic order — i.e. the cosmological
constant Λ̃ and the quadratic mass term m̃2. The computation of the one-loop
determinant follows the usual steps reviewed in section 2.2, resulting in

VCW(µL) = Λ̃(µL) + m̃4(µL)
64π2

(
ln m̃

2(µL)
µ2
L

− 3
2

)
. (3.14)
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With the power counting relevant to the O(N) model, this is the Coleman-Weinberg
potential computed through O(z4). The second term in eq. (3.14) is not part of the
LL series, but is included since we are computing the entire one-loop contribution.
Note that even though only the quadratic EFT couplings appear in eq. (3.14), the
RG running between µH and µL in Step 3 involves all the interactions of the quantum
φq theory, including the non-quadratic terms. This is why we needed to compute the
entire LEFT to O(z4).

5. We emphasize that in Step 2 one must match using eq. (2.14) (eq. (3.6) in the O(N)
example), which is the shifted Lagrangian that includes the one-loop sources J as
defined in eq. (2.12). The computation outlined in the previous steps has not yet
fixed the tadpole Jχ associated to the heavy field. The final step is thus to compute
the RG improved tadpole Jχ by requiring that 〈χq〉 vanishes, with χq the quantum
field in the original high-energy theory. RG improvement of the tadpole is necessary
to sum the full LL series of the effective potential. The required tadpole is that of
the heavy field, but computed in the low-energy theory. This computation is possible
because we have matched the source Jχ onto the EFT.

After completing these steps and obtaining eq. (3.14), we compare our RG improved
result to the known two-loop results by expanding the RG series in a power series in
lnµL/µH , in order to check that we correctly capture the leading-log terms. To reiterate,
the entire LL contribution comes from the cosmological constant Λ̃ in the low-energy theory.

An important comment is that at no point have we computed the Coleman-Weinberg
potential of LEFT. In particular, there is no sense in which we shift φq in the low energy
theory after integrating out the heavy field to compute a one-loop potential. As we see
explicitly in examples, after integrating out χq, running the couplings and shifting the fields
no longer commute. It is crucial that we shift φ in the original theory before integrating
out any fields.

3.3 Matching to the EFT at µH
Let us now fill in the step-by-step details for the O(N) model. We begin with the matching
computation of Step 2, in which we match eq. (3.6) to LEFT at the heavy scale. Parame-
terize the EFT Lagrangian by

LEFT = 1
2 (∂µφq · ∂µφq)−

λ̃

24 (φq · φq)2 − m̃2

2 (φq · φq)− Λ̃ +O(z5) . (3.15)

The EFT couplings will be denoted by a tilde to distinguish them from couplings in the
original high-energy theory eq. (3.2) or in the shifted theory eq. (3.6). In this case, the
EFT will describe the light Goldstone bosons.

There can be finite wavefunction corrections to the EFT Lagrangian from matching,
which can be absorbed into a rescaling of the EFT field φq. There is no such correction at
one-loop order in the O(N) model.

The one-loop matching computation is given by computing the one-loop χ bubble in
figure 2, which gives the heavy-field contribution to the Coleman-Weinberg potential. In
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(a) (b)

Figure 7. (a) Tree-level matching onto the EFT. The dashed line is χq, and the dotted lines are
φq. (b) The same interaction in the low-energy EFT. Unlike graph (a), graph (b) is 1PI.

the O(N) example, this calculation is particularly simple because the scalar mass matrix
eq. (3.4) does not couple the heavy field χq to the light fields φq. Such couplings are present
in the examples considered in sections 4–5, and the one-loop matching in such cases is more
involved. For the case at hand, this matching contribution is simply given by eq. (3.8),
which we repeat here:

Vmatch(µH) = 1
64π2W

2
χχ

[
ln Wχχ

µ2
H

− 3
2

]
. (3.16)

This is order 1 in the z power counting. The matching is performed at a scale µ2
H ∼Wχχ,

so there are no large logarithms in this expression. Vmatch adds to the cosmological constant
in the low-energy theory below µH , since eq. (3.16) has no quantum fields.

The tree-level matching to order z4 is given by the graph shown in figure 7(a), leading
to the EFT interaction shown in figure 7(b). To compute this graph, write the terms linear
in χq in eq. (3.6),

L̂ ⊃ −X1(φq)χq , X1(φq) = 1
6λ φ̂ (φq · φq)− Jχ , (3.17)

where X1 ∼ z2. Figure 7(a) gives the tree-level matching

LEFT ⊃
1
2X1

1
Wχχ − p2X1 = 1

2X1
1

Wχχ
X1 + 1

2X1
p2

W 2
χχ

X1 + . . . (3.18)

where p is the momentum flowing through the χq line, and 1/2 is the symmetry factor due
to the two identical vertices X1. Since p is a momentum in the EFT, and is of order z, to
order z4 we only need the first term. The EFT Lagrangian is then

LEFT = 1
2 (∂µφq · ∂µφq)−

λ

24 (φq · φq)2 − 1
2Wφφ (φq · φq)−

[
Λ̂ + Vmatch(µH)

]
+ 1

2W 2
χχ

(
λφ̂

6 (φq · φq)− Jχ
)2

+O(z5) . (3.19)

Comparing with eq. (3.15), we identify the boundary values of the EFT couplings to the
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desired order in z as

λ̃
µ=µH= λ

(
1− λφ̂2

3Wχχ

)
= λ2

2W 2
χχ

(
φ̂2 − v2

)
∼ O(z2) ,

m̃2 µ=µH= Wφφ + λφ̂Jχ
3Wχχ

= 1
6λ
(
φ̂2 − v2

)
+ λφ̂Jχ

3Wχχ
+O(z3) ,

≡ m̃2
− + λφ̂Jχ

3Wχχ
+O(z3) ,

Λ̃ µ=µH= Λ̂ + Vmatch −
(Jχ)2

2Wχχ
,

= Λ + λ

24
(
φ̂2 − v2

)2
+ Vmatch −

(Jχ)2

2Wχχ
+O(z5) .

(3.20)

The relations eq. (3.20) hold with both sides evaluated at the matching scale µ = µH . As
promised, the EFT cosmological constant Λ̃(µH) takes the form eq. (3.12).

In this example the quartic coupling λ̃(µH) is O(z2), and thus only contributes to the
EFT Lagrangian at order z6, since it multiplies (φq · φq)2 which is order z4. That λ̃ is
order z2 is not an accident; the low-energy fields are Goldstone bosons when φ̂ → v, and
only have derivative couplings at this point.

At this stage, we can illustrate the point that the field shift must be made in the
high-energy theory, not in the EFT. To be able to shift the field in the low-energy theory
would require starting with the parameters in eq. (3.20) with φ̂ = 0, and then obtaining
the φ̂ dependence in the parameters by a shift of the EFT fields φq in the EFT Lagrangian
eq. (3.15). A shift of φq in the EFT would introduce a O(N − 1) vector, whereas φ̂ in
eq. (3.20) is an O(N − 1) singlet, and these two objects don’t have the same quantum
numbers. The former would be used for computing the Coleman-Weinberg potential of
the EFT. This is not the same as the Coleman-Weinberg potential of the original theory,
computed using an EFT, which is the quantity we wish to compute.

3.4 RG improvement

We now perform Steps 3 and 4 for the O(N) model. We sum the large logarithms by RG
evolution of the low-energy theory from µ = µH to a low scale µ = µL of order the light
scalar masses. Here the couplings in the low-energy are evolved to a scale µL of order
m̃2, the mass of φq. The β-functions are given in eq. (A.10), with the initial values at µH
given in eq. (3.20). This case is particularly simple since m̃2 does not run at this order, i.e.
m̃2(µL) = m̃2(µH), since λ̃ is zero to this order and the EFT is a free theory. The running
of the cosmological constant is

Λ̃(µL) = Λ̃(µH) + 1
2NGBm̃

4(µH)t, t = 1
16π2 ln µL

µH
, (3.21)

where NGB = N − 1 is the number of Goldstone bosons.
At the low-scale µL, the light field φq is integrated out. The one-loop contribution

is the graph in figure 2, and only involves the quadratic action. The Coleman-Weinberg
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potential computed from the low-energy theory is

VCW(µL) = Λ̃(µL) + NGB
64π2 m̃

4(µL)
[
ln m̃

2(µL)
µ2
L

− 3
2

]
. (3.22)

The first term is the tree-level contribution, and the second term is the one-loop
contribution.

To make contact with the standard one-loop fixed order result, ignore any RG evolu-
tion. Then the Coleman-Weinberg potential is given by eq. (3.22), with Λ̃(µL) → Λ̃(µH)
given in eq. (3.20), Vmatch(µH) given in eq. (3.16), and µH = µL = µ. The (Jχ)2 term
in Λ̃ and m̃2 should be dropped since it is formally of two-loop order. Then, Wχχ and
m̃2 →Wφφ are the mass-squareds of the heavy and light fields, and eq. (3.22) reduces to

VCW = Λ + λ

24
(
φ̂2 − v2

)2
+
W 2
χχ

64π2

[
ln Wχχ

µ2 −
3
2

]
+ NGB

64π2W
2
φφ

[
ln Wφφ

µ2 −
3
2

]
. (3.23)

This is the expected result eq. (3.7).

3.5 Tadpole improvement

Our final result eq. (3.22) still contains Jχ (through the dependence of Λ̃ on Jχ) which has
not been determined. It is fixed by requiring that 〈χq〉 vanishes, where χq is the quantum
field in the original high-energy theory. From eq. (2.13), one sees that this expectation
value is determined by differentiation w.r.t. Jχ. This derivative can be done in the EFT,
to compute the tadpole of the heavy field χq using the low-energy theory.

Differentiating the EFT Lagrangian at µ = µH w.r.t. Jχ(µH) using eq. (3.20), we see
that χq(µH) in the high-energy theory matches onto

χq(µH)→ − λ(µH)φ̂
6Wχχ(µH) [φq · φq]µH + Jχ(µH)

Wχχ(µH) . (3.24)

Here we are using a bracket notation [O] to emphasize that O is a composite operator
that needs additional renormalization relative to its constituent fields. Then, the tadpole
condition becomes

Jχ(µH) = 1
6λ(µH)φ̂ [φq · φq]µH , (3.25)

where the r.h.s. is computed in the low-energy theory. At one-loop, the graph for [φq ·φq]
is shown in figure 8, and gives

〈[φq · φq]〉µ = NGB
m̃2(µ)
16π2

[
ln m̃

2(µ)
µ2 − 1

]
, (3.26)

so that

Jχ(µH) = λ(µH)φ̂
6 NGB

m̃2(µH)
16π2

[
ln m̃

2(µH)
µ2
H

− 1
]
. (3.27)
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Figure 8. One-loop tadpole graph for the heavy field χ in the low-energy theory.

This equation determines Jχ(µH) implicitly, since m̃2(µH) depends on Jχ(µH). The result
eq. (3.27) contains a large logarithm, since m̃ is the light mass, and is formally order λL.

Eq. (3.27) is sufficient for comparing with existing two-loop calculations. However, to
sum the LL series we need the RG improved tadpole. One can sum the LL series for the
tadpole by computing the anomalous dimension of the composite operator [φq · φq] in the
low-energy theory. A simple computation shows that

d
dt [φq · φq] = −1

3(NGB + 2)λ̃ [φq · φq]− 2NGBm̃
2 , (3.28)

which since λ̃ is zero to the order to which we’re working, reduces to

d
dt [φq · φq] = −2NGBm̃

2 . (3.29)

Integrating this equation gives

[φq · φq]µH = [φq · φq]µL + 2NGBm̃
2(µH)t , t = 1

16π2 ln µL
µH

. (3.30)

Another way to obtain the same result is to differentiate the Lagrangian at µL w.r.t. Jχ(µH)
using eq. (3.21) and eq. (3.20).

The RG improved tadpole is determined by substituting eq. (3.30) into eq. (3.25),

Jχ(µH) = λ(µH)φ̂
6

(
[φq · φq]µL + 2NGBm̃

2(µH)t
)
. (3.31)

Here m̃2 depends on Jχ(µH). Replacing m̃2 by m̃2
− using eq. (3.20) and solving for Jχ(µH),

we obtain

Jχ(µH) = λ(µH)φ̂
6

(
[φq · φq]µL + 2NGBm̃

2
−(µH)t

)(
1− λ2(µH)φ̂2

9Wχχ(µH)NGBt

)−1

. (3.32)

The quantity [φq · φq]µL is given by eq. (3.26) with µ = µL, which still depends on Jχ(µH)
through m̃2(µL). The LL expression is given by dropping [φq · φq]µL , and the LL plus
one-loop expression is given by using eq. (3.32) and substituting the LL value of Jχ(µH)
into m̃2(µL) in eq. (3.26). The first term in the LL series for the tadpole from eq. (3.32) is

Jχ(µH) ≈ 1
3NGBλ(µH)φ̂m̃2

−(µH)t . (3.33)

We will use this expression in the following subsection to compare with the two-loop result.
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3.6 Comparison with the two-loop result

We can now compare our RG improved result to the known two-loop calculation by expand-
ing the RG series in a power series in t = (lnµL/µH)/(16π2). The cosmological constant
contribution is

Λ̃(µL) = Λ̃(µH) + 1
2NGBm̃

4(µH)t , (3.34)

where we used eq. (3.21). The entire LL contribution is from the cosmological constant. Us-
ing eq. (3.20) for m̃2(µH) and Λ̃(µH), and dropping Vmatch (which has no large logarithms),
this becomes

Λ̃(µL) =
[
Λ̂(µH)− (Jχ(µH))2

2Wχχ(µH)

]
+ 1

2NGB

[
Wφφ(µH) + λ(µH)φ̂Jχ(µH)

3Wχχ(µH)

]2

t . (3.35)

Keeping the (λL) and (λL)2 terms in the leading log series, and remembering from eq. (3.33)
that Jχ ∼ (λL), gives

Λ̃(µL) ≈ NGB
2 [Wφφ(µH)]2 t+NGBWφφ(µH)λ(µH)φ̂Jχ(µH)

3Wχχ(µH) t− (Jχ(µH))2

2Wχχ(µH) , (3.36)

where all terms except the first are order t2. To the order to which we are working we
can substitute eq. (3.33) for Jχ(µH) with m̃2

−(µH)→Wφφ(µH). The terms combine in an
interesting way — the second term has twice the value and the opposite sign of the third
term. The same sign flip happens in the other examples we consider. The result is

Λ̃(µL) ≈ [Wφφ(µH)]2
(
NGB

2 t+N2
GB

λ2(µH)φ̂2

18m2
χ(µH) t

2
)
. (3.37)

The t2 terms in eq. (3.37) arise from tadpole contributions depending on J .
Our result can be compared with explicit two-loop computations of the Coleman-

Weinberg potential. The contribution to the two-loop potential from the first graph in
figure 3b, in the notation of ref. [4], is given in terms of a function fSSS(m2

1,m
2
2,m

2
3), and

that from the second graph in terms of fSS(m2
1,m

2
2), where m2

i are the masses of particles
in the internal lines. The integral fSS(m2

1,m
2
2) factors into two one-loop integrals,

fSS(m2
1,m

2
2) =

[
m2

1

(
ln m

2
1

µ2 − 1
)][

m2
2

(
ln m

2
2

µ2 − 1
)]

. (3.38)

Our problem has only two particle masses, so we need fSSS(m2,m2,m2) with three equal
masses, or fSSS(m2

1,m
2
1,m

2
2), where two masses are equal. The expressions for fSSS in

these special cases are much simpler than the general case, and were evaluated in ref. [2],

fSSS(m2
1,m

2
1,m

2
2) = −∆ + 2

2 m2
1

{
− 5 + 2∆ ln ∆

∆ + 2

[
2− ln m

2
1

µ2

]
+ 4 ln m

2
1

µ2

− ln2 m
2
1

µ2 − 8Ω(∆)
}
,

(3.39)
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which is given in terms of ∆ ≡ m2
2/m

2
1. The formula for fSSS(m2

1,m
2
1,m

2
2) depends on a

function Ω(∆). Since we are interested in summing logarithms for a large mass ratio, we
need the expansions of ∆ around ∆ =∞ and ∆ = 0. We have computed these expansions
to second order in appendix D.

Using these pieces, we can compute the L2 term in the two-loop calculation of ref. [2],
and check that our LL result eq. (3.37) for the L2 term agrees with this computation. This
agreement provides a highly non-trivial check of our method. It requires, in particular,
shifting φ in the high-energy theory before matching onto the low-energy theory, and also
requires including the tadpole contributions.

4 Two scalar fields in the unbroken phase

We now illustrate the EFT method for computing the Coleman-Weinberg potential in a
theory with two real scalar fields. In this section we consider the power counting relevant
for the unbroken phase of this theory.

4.1 Preliminaries and power counting

We take as our starting point the Lagrangian for two real scalar fields χ and φ,

L = 1
2(∂µχ)2 + 1

2(∂µφ)2 − λχ
24χ

4 − λ3
4 χ

2φ2 − λφ
24φ

4 −
m2
χ

2 χ2 −
m2
φ

2 φ2 − Λ , (4.1)

and assume widely separated scales mχ � mφ. Since the power counting is different
depending on the sign of the mass-squared terms, we first do the computation in the
unbroken phase, where m2

χ and m2
φ are both positive, and in section 5 we analyze the

broken phase where the scalars receive VEVs.
Shifting the fields χ = χ̂+χq, φ = φ̂+φq, the shifted Lagrangian eq. (2.14) over which

the functional integral is performed is

L̂ = 1
2(∂µχq)2 + 1

2(∂µφq)2 − λχ
24χ

4
q −

λ3
4 χ

2
qφ

2
q −

λφ
24φ

4
q −

λχχ̂

6 χ3
q −

λ3φ̂

2 χ2
qφq

− λ3χ̂

2 χqφ
2
q −

λφφ̂

6 φ3
q −

1
2Wχχχ

2
q −

1
2Wφφφ

2
q −

1
2(Wχφ +Wφχ)φqχq

+ Jχχq + Jφφq − Λ̂ .

(4.2)

The entries of the scalar mass-squared matrix W are given by

Wχχ = m2
χ + 1

2λχχ̂
2 + 1

2λ3φ̂
2 ,

Wφφ = m2
φ + 1

2λφφ̂
2 + 1

2λ3χ̂
2 ,

Wφχ = Wχφ = λ3φ̂χ̂ ,

(4.3)

with

W =
[
Wχχ Wχφ

Wφχ Wφφ

]
. (4.4)
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The tree-level Coleman-Weinberg potential is the cosmological constant eq. (2.10),

Vtree = Λ̂ = λχ
24 χ̂

4 + λ3
4 χ̂

2φ̂2 + λφ
24 φ̂

4 +
m2
χ

2 χ̂2 +
m2
φ

2 φ̂2 + Λ . (4.5)

The one-loop Coleman-Weinberg potential is given in terms of the eigenvalues w± of W ,

w± = Wχχ

2

1 + Wφφ

Wχχ
±

√√√√4W 2
φχ

W 2
χχ

+
(

1− Wφφ

Wχχ

)2
 , (4.6)

as

V1-loop = w2
−

64π2

[
ln w−
µ2 −

3
2

]
+ w2

+
64π2

[
ln w+
µ2 −

3
2

]
. (4.7)

Let us introduce a power counting scheme in order to systematically construct the
EFT by integrating out the heavy field χq. We take mχ ∼ 1 and mφ ∼ z, with z � 1 so
that the two masses are widely separated, and assume the couplings λχ, λφ, λ3 are order
1. To retain the mass hierarchy, we assume that the VEVs scale like χ̂ ∼ φ̂ ∼ z, i.e. our
power counting is

m2
χ ∼ 1 , m2

φ ∼ z2 , χ̂ ∼ φ̂ ∼ z . (4.8)

This power counting is valid near the origin, so we can compute the RG improved potential
near the classical vacuum. The W -matrix entries in eq. (4.3) scale as

Wχχ ∼ 1 , Wφφ ∼ z2 , Wφχ = Wχφ ∼ z2 . (4.9)

The first term for Wχχ in eq. (4.3) is order 1, and the remaining terms are order z2. This
scaling leads to a hierarchy of the eigenvalues w±, with w+ ∼ 1 and w− ∼ z2. In this
example, we will keep terms to order z6 in the Coleman-Weinberg potential, since non-
trivial effects first occur at this order. They will occur at order z4 in the broken phase
studied in section 5.

In particular, let us check the scaling of eq. (4.7). Vmatch is equal to the contribution
of the larger eigenvalue expanded in z,

Vmatch(µ) = w2
+

64π2

(
ln w+

µ
− 3

2

)

= 1
64π2

{
W 2
χχ

(
ln Wχχ

µ2 −
3
2

)
+ 2W 2

φχ

(
ln Wχχ

µ2 − 1
)

+
2W 2

φχWφφ

Wχχ

(
ln Wχχ

µ2 − 1
)}

+O(z8)

(4.10)

where the first term is order 1, the second term is order z4, and the last term is order z6.
The other eigenvalue gives a contribution that starts at order z4,

w2
−

64π2

(
ln w−

µ
− 3

2

)
=

(
Wφφ −

W 2
φχ

Wχχ

)2

64π2

ln

(
Wφφ −

W 2
φχ

Wχχ

)
µ2 − 3

2

+O(z8) . (4.11)

We return to these expanded expressions in section 4.4, where we explain how each of the
terms in eq. (4.10) and eq. (4.11) arise from our approach.
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B U Graph S Integrand V

1 1 χ 1
2 − ln(p2 −Wχχ) 1

32π2W
2
χχ

[
− 1

2ε + 1
2 ln Wχχ

µ2 − 3
4

]

z2 z4 χ φ 1
2

WχφWφχ

(p2−Wχχ)p2
1

32π2WχφWφχ

[
−1
ε + ln Wχχ

µ2 − 1
]

z4 z6 χ φ 1
2

WχφWφχ

(p2−Wχχ)p2
Wφφ

p2
1

32π2
WχφWφχWφφ

Wχχ

[
−1
ε + ln Wχχ

µ2 − 1
]

z4 z8

χ

χ

φ

φ

1
4

W 2
χφW

2
φχ

(p2−Wχχ)2p4
1

32π2
W 2
χφW

2
φχ

W 2
χχ

[
1
2ε −

1
2 ln Wχχ

µ2 + 1
]

Table 1. One loop matching for the cosmological constant to order z6. The open circle is Wφφ

and the black dot is Wφχ. S is the symmetry factor for the diagram. The integrand is given in the
third column. The matching contribution to V is given by the last column, dropping 1/ε terms.
We give the z-scaling in both the unbroken (U) and broken (B) phases. In the unbroken phase we
keep contributions through O(z6), and in the broken phase we keep them through O(z4).

4.2 Matching to the EFT at µH
With the preliminaries in place, we can carry out the step-by-step procedure outlined in
section 3.2. In Step 1, we evolve the high-energy theory eq. (4.1) to a scale µH comparable
to the heavy mass µ2

H ∼ Wχχ, and then shift the fields. This gives L(χ̂, φ̂) in terms of
the expectation value of fields renormalized at µH . The high energy Coleman-Weinberg
potential VCW in terms of fields renormalized at the reference scale µ0 is given by using
eq. (2.37) where γχ,φ are computed in the high-energy theory eq. (4.1). In this example,
the field anomalous dimensions are zero at one-loop.

In Step 2, we integrate out χq and match onto the EFT. The EFT Lagrangian is
parameterized as

LEFT = 1
2(∂µφq)2 − σ̃φq −

m̃2

2 φ2
q −

ρ̃

6φ
3
q −

λ̃

24φ
4
q − Λ̃ +O(z8) . (4.12)

The one-loop matching onto the EFT Lagrangian is given by computing the one-loop χ

bubble, expanding in the power counting parameter z, and dropping all divergent terms.
The graphs are shown in table 1. Since we include power corrections up to order z4, we have
to include insertions of power suppressed operators in the χ loop, with all infrared scales
such as Wφφ expanded out. In the unbroken case, only the first three graphs contribute,
the fourth is necessary for the broken phase analysis in section 5. These contributions
add up precisely to Vmatch(µH) given in eq. (4.10), which contributes to the cosmological
constant in the EFT since it has no quantum fields. Because the matching is performed
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at µ2
H ∼Wχχ, there are no large logarithms in this expression. It is worth noting that the

matching computation only involves logarithms of Wχχ/µ
2. Even though φ particles enter

in loop graphs, there are no logarithms of Wφφ because it is an infrared scale which has
been expanded out in a power series.2

The tree-level matching to order z6 is given by the graph shown in figure 7. To compute
this graph, we follow the same steps outlined in the O(N) example. Write the terms linear
in χq in eq. (4.2) as

L̂ ⊃ −X1(φq)χq , X1(φq) = Wφχφq + 1
2λ3χ̂φ

2
q − Jχ . (4.13)

Here X1 ∼ z3 since Wφχ ∼ z2, χ̂ ∼ z, and φq ∼ z. Figure 7 then gives the tree-level
matching

LEFT ⊃
1
2X1

1
Wχχ − p2X1 = 1

2X1
1

Wχχ
X1 + 1

2X1
p2

W 2
χχ

X1 + . . . (4.14)

where p is the momentum flowing through the χq line, which is order z since it is a
momentum in the EFT, and 1/2 is the symmetry factor. To order z6, we only need the
first term. The EFT Lagrangian is then

LEFT = 1
2(∂µφq)2 − 1

2Wφφφ
2
q −

λφφ̂

3! φ
3
q −

λφ
4! φ

4
q − Λ̂− Vmatch(µH)

+ 1
2

1
Wχχ

(
Wφχφq + 1

2λ3χ̂φ
2
q − Jχ

)2
+ Jφφq +O(z7) .

(4.15)

Using eq. (4.3), and keeping the leading term Wχχ → m2
χ to order z6, we identify the

matching conditions for the EFT couplings at the scale µH as

λ̃
µ=µH= λφ −

3λ2
3χ̂

2

m2
χ

+O(z4) ,

ρ̃
µ=µH= φ̂

[
λφ −

3λ2
3χ̂

2

m2
χ

]
+O(z5) ,

m̃2 µ=µH= m2
φ + 1

2λφφ̂
2 + 1

2λ3χ̂
2 − λ2

3χ̂
2φ̂2

m2
χ

+ λ3χ̂Jχ
m2
χ

+O(z6) ,

≡ m̃2
− + λ3χ̂Jχ

m2
χ

+O(z6) ,

σ̃
µ=µH= − Jφ + λ3χ̂φ̂Jχ

m2
χ

+O(z7) ,

Λ̃ µ=µH= Λ̂ + Vmatch −
(Jχ)2

2m2
χ

+O(z8) .

(4.16)

We emphasize that the low-energy Lagrangian eq. (4.12) is manifestly not given by
taking the EFT Lagrangian and shifting φ = φ̂ + φq. The effect of a scalar field shift has
already been written in eq. (2.30). To illustrate this, start with the couplings in eq. (4.16)

2See ref. [21] for a more extensive discussion of logarithms in matching conditions.

– 27 –



J
H
E
P
0
4
(
2
0
2
1
)
0
9
3

(a)

φq

φ̂

φq

φ̂
(b)

φq

φq

φ̂

φ̂

Figure 9. (a) Graphs allowed in the high-energy theory. (b) Graphs not allowed in the high-energy
theory.

(a) (b) (c)

Figure 10. Two loop contribution from a χφ2 interaction. Graphs (a) and (b) in the high-energy
theory reduce to (c) in the EFT.

with φ̂ = 0, and then shift the field φq → φ̂ + φq. The shifted value of ρ̃ is λ̃φ̂, which
matches the value in eq. (4.16). However, the mass term after the shift is

m̃2 shift= m2
φ + λφ

2 φ̂2 + λ3
2 χ̂

2 − 3λ2
3χ̂

2φ̂2

2m2
χ

+ λ3χ̂Jχ
m2
χ

, (4.17)

where the third term has coefficient −3/2 instead of −1 as in eq. (4.16). The reason for
this difference can be seen by looking at the contribution from figure 7 to λ̃ in the EFT. If
we first match onto the EFT and then shift, the φ̂2φ2

q term in the Lagrangian is given by
replacing two external lines in figure 7(b) by φ̂ and two by φq. There are 6 possible ways
of doing this. Now, let us make the same replacement in figure 7(a). The six possible ways
are divided into two types: four possibilities with topology figure 9(a) with φ̂ on opposite
ends of the χ line, and two with topology figure 9(b), with φ̂ on the same side of the χ
line. The left vertex in figure 9(b) is χqφ̂2 which is not present in the high-energy theory
because it is cancelled by the classical piece of the source, i.e. we have no terms linear in
the quantum fields. Thus only 4 out of 6 choices contribute, and the correct coefficient
is 2/3 of that given by shifting in the EFT, i.e. (2/3) · (−3/2) = −1. This explains the
difference between eq. (4.17) and eq. (4.16), and is a reflection of the fact that information
about which diagrams are 1PI is lost in the EFT matching.

There is a related problem for the two-loop contribution to the Coleman-Weinberg
potential. A χφ2 interaction leads to the two-loop contributions shown in figure 10(a,b),
which reduce to figure 10(c) in the EFT. However, the 1PI nature of the Coleman-Weinberg
potential implies that only figure 10(a) must be included in computing V , not figure 10(b).
The two possible contractions of the φ lines cannot be distinguished in the EFT, since
the χ line has been shrunk to a point. This reason is why we use the tadpole condition
discussed in section 2.2 rather than the 1PI structure of graphs to compute VCW.
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4.3 RG improvement

We move on to Steps 3 and 4. The couplings in the low-energy theory are evolved using
the RGE to a low scale µL of order m̃2, the mass of φq. The RGE are given in eq. (B.2)
with solutions eq. (B.3). In particular, we need

m̃2(µL) = m̃2(µH)
{
η−1/3

[
1− 1

2ξ
]

+ 1
2ξη

−1
}
,

Λ̃(µL) = Λ̃(µH) + m̃4(µH)
2λ̃(µH)

{1
3
(
3− 6ξ + 2ξ2

)
− 1

2ξ (ξ − 2) η−1/3

− 1
4 (ξ − 2)2 η1/3 + 1

12ξ
2η−1

}
,

(4.18)

where

t = 1
16π2 ln µL

µH
, η = 1− 3λ̃(µH)t , ξ = ρ̃2(µH)

λ̃(µH)m̃2(µH)
= φ̂2λ̃(µH)

m̃2(µH) . (4.19)

At the scale µL, the quantum field φq is integrated out, and we obtain the Coleman-
Weinberg potential

VCW = Λ̃(µL) + 1
64π2 m̃

4(µL)
[
ln m̃

2(µL)
µ2
L

− 3
2

]
. (4.20)

The one-loop term does not have any large logarithms if µ2
L ∼ m̃2.

4.4 Interlude: a fixed order perspective

Before completing Step 5, let us take a moment to gain some intuition as to how our result
eq. (4.20) matches onto the one-loop fixed order expression in eq. (4.7). In doing so, we will
understand how the large-eigenvalue and small-eigenvalue terms in V1-loop in eq. (4.7) arise
from expanding in z the functional determinant that results from doing the path integral
over the quantum fields. This subsection can be read as a more detailed perspective on
computing VCW from our Steps 2 and 4, where we work only at fixed order in perturbation
theory and thus ignore the steps that involve RG evolution. We have postponed this
discussion until now since it is most interesting in the case where W is not diagonal.

A preliminary comment is that our RG improved result eq. (4.20) manifestly evaluates
to the fixed one-loop order expression VCW = Vtree + V1-loop upon taking µ = µH = µL.
Dropping the J terms since they are formally of higher loop order, and taking η = 1 in
eq. (4.18), we see that

m̃2 → m̃2
− = Wφφ −

W 2
φχ

Wχχ
, Λ̃→ Vmatch + Λ̂ . (4.21)

The quantity m̃2
− (which was first defined in eq. (4.16)) is precisely the combination that

appeared in the expansion of the small eigenvalue w− in the one-loop Coleman-Weinberg
potential in eq. (4.11). We have already noted that Vmatch gives the expansion of the
large eigenvalue in eq. (4.10), and that Λ̂ is the tree-level Coleman-Weinberg potential in
eq. (4.5). Therefore, in this limit we recover the fixed order answer.
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We can understand why this is the case by starting from the functional integral
eq. (2.13). The quadratic action in the quantum fields in momentum space is

L̂ = 1
2
[
χq φq

]
∆
[
χq
φq

]
+ J T

[
χq
φq

]
− Λ̂ , (4.22)

with

∆ =
[
p2 −Wχχ −Wχφ

−Wφχ p2 −Wφφ

]
, J =

[
Jχ
Jφ

]
. (4.23)

The effective action is

e
i
~Γ =

∫
DχqDφq e

i
~

∫
d4xL̂

= [det ∆]−1/2 exp
[
−i
∫

d4x
(
Λ̂ + J T∆−1J

)]
. (4.24)

J is adjusted to that 〈χq〉 = 0 and 〈φq〉 = 0, and is formally of one-loop order, so the terms
quadratic in J can be dropped to one-loop order, and we drop them for the rest of this
subsection.

The one-loop contribution is given by [det ∆]−1/2. Diagonalizing W ,

∆ =
[
p2 − w+ 0

0 p2 − w−

]
, det ∆ = det

(
p2 − w+

)
det

(
p2 − w−

)
. (4.25)

The functional determinant is well-known, and evaluates to

1
2 ln det

(
p2 − w

)
= i

∫
d4x

w2

64π2

[
ln w

µ2 −
3
2

]
(4.26)

giving eq. (4.7) for the Coleman-Weinberg potential in the full theory at one loop.
To compare with the EFT method, the integrals over χq and φq are performed sequen-

tially. The EFT result is reminiscent of the determinant identity for a block matrix

det ∆ = det
[
A B

BT C

]
= detA det

(
C −BTA−1B

)
. (4.27)

Performing the integral over χq gives

1
2 ln detA = 1

2 ln det
(
p2 −Wχχ

)
= i

∫
d4x

W 2
χχ

64π2

[
ln Wχχ

µ2 −
3
2

]
, (4.28)

which is the contribution of the first graph in table 1 for Vmatch.
The remaining functional integral is over φq. The quadratic part is

∆φ ≡ C −BTA−1B = p2 −Wφφ −Wφχ
1

p2 −Wχχ
Wχφ , (4.29)

which is precisely the form of the matching eq. (4.14) onto the EFT. We also need to
compute ln det ∆φ = Tr ln ∆φ. The trace in momentum space is the integral d4p. The
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momentum integral gets contributions from p2 ∼ Wχχ ∼ 1 and p2 ∼ Wφφ ∼ z2. For
p2 ∼Wχχ,

ln ∆φ =
∫ d4p

(2π)4

{
ln p2 + ln

[
1− Wφφ

p2 −Wφχ
1

p2 (p2 −Wχχ)Wχφ

]}

=
∫ d4p

(2π)4

{
ln p2 −

∑
n

[
Wφφ

p2 +Wφχ
1

p2 (p2 −Wχχ)Wχφ

]n}
. (4.30)

The first term vanishes in dimensional regularization, and the remaining terms are the
matching contributions in table 1.

For p2 ∼Wφφ,

ln ∆φ =
∫ d4p

(2π)4 ln
{
p2 −

[
Wφφ −Wφχ

(
1

Wχχ
+ p2

W 2
χχ

+ . . .

)
Wχφ

]}
,

=
∫ d4p

(2π)4 ln
[
p2 −

(
Wφφ −

WφχWχφ

Wχχ

)]
+ . . . . (4.31)

The expression Wφφ −WφχWχφ/Wχχ is the mass m̃2 in the EFT after matching, and so
the low-energy contribution of ln ∆φ gives the w− contribution to the Coleman-Weinberg
potential.

Let us summarize this discussion: we start with a two-field problem with a hierarchy
of mass scales m2

χ ∼ Wχχ � m2
φ ∼ Wφφ, which leads to a hierarchy of mass eigenvalues

w+ � w−. Vmatch is the contribution to the one-loop Coleman-Weinberg potential coming
from the larger w+ eigenvalue. Graphs that contribute to Vmatch in a z expansion arise from
(1) performing the functional integral over χ, and (2) expanding the remaining functional
determinant in the power counting expansion. Meanwhile, the contribution of w− to the
one-loop Coleman-Weinberg potential comes from expanding the functional determinant
from integrating out φq for small EFT momentum p2 ∼ z2. This gives the fixed one-loop
order Coleman-Weinberg potential, which matches the result of applying our Steps 2 and
4. As we have explained, RG improvement takes more work, and is the content of the
remaining steps.

4.5 Tadpole improvement

It remains to compute Jφ and Jχ. Moving on to Step 5, we fix these by requiring that
〈χq〉 and 〈φq〉 vanish, where χq and φq are fields in the original high-energy theory. From
eq. (2.13), these expectation values are determined by differentiation w.r.t. Jφ and Jχ.
Differentiating the EFT Lagrangian w.r.t. Jφ brings down a factor of φq in the EFT, as
can be seen from the parameters eq. (4.16), so setting the φq tadpole to zero in the high-
energy theory is equivalent to setting it to zero in the low-energy theory. We do not need
this calculation for our result, since the running of the cosmological constant and the terms
in eq. (4.20) do not depend on σ̃, which is the only parameter that depends on Jφ.

Differentiating the EFT Lagrangian w.r.t. Jχ(µH) using eq. (4.16), we see that χq(µH)
in the high-energy theory matches on to

χq(µH)→ − λ3(µH)χ̂
2m2

χ(µH)
[
φ2
q

]
µH
− λ3(µH)χ̂φ̂

m2
χ(µH) φq(µH) + Jχ(µH)

m2
χ(µH) , (4.32)
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and the tadpole condition becomes

Jχ(µH) = 1
2λ3(µH)χ̂

〈[
φ2
q

]〉
µH

+ λ3(µH)χ̂φ̂ 〈φq〉µH (4.33)

where the r.h.s. is computed in the low-energy theory. Since 〈φq〉 = 0 in the low-energy
theory by the φ tadpole condition, we only need the first term. The one-loop graph to be
computed is shown in figure 8, and contains a large logarithm.

One can sum the LL series for the tadpole, as in section 3.5, by computing the anoma-
lous dimension of the composite operator

[
φ2
q

]
in the low-energy theory,

d
dt
[
φ2
q

]
= −λ̃

[
φ2
q

]
− 2ρ̃ φq − 2m̃2 , (4.34)

and integrating to relate
[
φ2
q

]
µH

and
[
φ2
q

]
µL

. An alternate derivation is to differentiate the
Lagrangian renormalized at µL with respect to m̃2(µH) using the RGE solutions eq. (B.3),
which gives the same result:

[
φ2
q

]
µH

= η−1/3
[
φ2
q

]
µL

+ 2 ρ̃(µH)
λ̃(µH)

(
η−1/3 − 1

)
[φq]µL

+ ρ̃2(µH)
λ̃2(µH)

(
η1/3 − 1

)2
η−1/3 − 2m̃2(µH)

λ̃(µH)

(
η1/3 − 1

)
,

(4.35)

[φq]µH = [φq]µL , (4.36)

where η = 1− 3λ(µ0)/(16π2) lnµ/µ0. Substituting in eq. (4.33),

Jχ(µH) = 1
2λ3(µH)χ̂η−1/3

〈[
φ2
q

]〉
µL

+ λ3(µH)χ̂ ρ̃(µH)
λ̃(µH)

(
η−1/3 − 1

)
〈φq〉µL

+ 1
2λ3(µH)χ̂ ρ̃

2(µH)
λ̃2(µH)

(
η1/3 − 1

)2
η−1/3 − λ3(µH)χ̂m̃

2(µH)
λ̃(µH)

(
η1/3 − 1

)
+ λ3(µH)χ̂φ̂ 〈φq〉µL

(4.37)

which can also be obtained by differentiating the EFT Lagrangian at µL w.r.t. J (µH).
Using ρ̃(µH) = λ̃(µH)φ̂ and 〈φq〉µL = 0, the RG improved tadpole is

Jχ(µH) = 1
2λ3(µH)χ̂η−1/3

〈[
φ2
q

]〉
µL

+ λ3(µH)
2λ̃(µH)

(
η1/3 − 1

)2

η1/3 χ̂φ̂2

− λ3(µH)
λ̃(µH)

(
η1/3 − 1

)
χ̂ m̃2(µH) .

(4.38)

The low-energy matrix element of
[
φ2
q

]
µ
is

〈[
φ2
q

]〉
µ

= 1
16π2 m̃2

[
ln m̃

2

µ2 − 1
]
, (4.39)
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from figure 8. Eq. (4.38) with the substitution of eq. (4.39) can be solved to obtain Jχ(µH).
m̃2 depends linearly on Jχ(µH), as given in eq. (4.16). Taking the linear term in Jχ(µH)
from the third term to the l.h.s. and solving gives

Jχ(µH) =
{

1 + 3λ2
3(µH)

λ̃(µH)λχ(µH)v2
χ(µH)

χ̂2
}−1{

λ3(µH)χ̂
32π2 η−1/3m̃2(µL)

[
ln m̃

2(µL)
µ2
L

− 1
]

+ λ3(µH)
2λ̃(µH)

(
η1/3 − 1

)2

η1/3 χ̂φ̂2 − λ3(µH)
λ̃(µH)

(
η1/3 − 1

)
χ̂ m̃2

−(µH)
}

(4.40)

where the
〈
φ2
q

〉
µ
contribution depends on Jχ(µH) through m̃2, but the last term does not,

since it depends on m̃2
−. To LL order, the

〈[
φ2
q

]〉
µL

term can be dropped, and eq. (4.40)
explicitly gives Jχ(µH). To LL plus one-loop accuracy, Jχ(µH) is given by substituting
the LL value of Jχ(µH) into the one-loop term from

〈[
φ2
q

]〉
µL

. Expanding eq. (4.40) in t,
and only keeping the single log in the LL series gives

Jχ(µH) ≈ λ3(µH)χ̂ m̃2
−(µH)t . (4.41)

4.6 Comparison with the two-loop result

We can now compare our RG improved result to the known two-loop calculation by expand-
ing the RG series in a power series in t = (lnµL/µH)/(16π2). The cosmological constant
contribution is

Λ̃(µL) = Λ̃(µH) + 1
2m̃

4(µH)t+ 1
2m̃

2(µH)
[
λ̃(µH)m̃2(µH) + ρ̃2(µH)

]
t2 + . . . (4.42)

using eq. (C.3) to evaluate the RG evolution in a series in t. The entire LL contribution is
from this term. The logarithmic terms are

Λ̃(µL) = 1
2m̃

4
−(µH)t+ 1

2m̃
2
−(µH)

[
λ̃(µH)m̃2

−(µH) + ρ̃2(µH)
]
t2

+ m̃2
−(µH)λ3(µH)χ̂
m2
χ(µH) Jχ(µH)t− (Jχ(µH))2

2m2
χ(µH) + . . .

(4.43)

rewriting m̃2 in terms of m̃2
− and Jχ(µH). The first term is the λL term and everything

else is the (λL)2 contribution, since Jχ(µH) contains a log. This expression simplifies using
ρ̃(µH) = λ̃(µH)φ̂ and eq. (4.41),

Λ̃(µL) = 1
2m̃

4
−(µH)t+ 1

2

{
λ̃m̃4
− + λ̃2φ̂2m̃2

− + λ2
3χ̂

2

m2
χ

m̃4
−

}
t2 . (4.44)

The last term is the tadpole contribution. Using eq. (4.16),

Λ̃(µL) = 1
2m̃

4
−(µH)t+ 1

2


[
λφ − 3λ

2
3χ̂

2

m2
χ

]
m̃4
− +

[
λφ − 3λ

2
3χ̂

2

m2
χ

]2

φ̂2m̃2
− + λ2

3χ̂
2

m2
χ

m̃4
−

 t2
= 1

2m̃
4
−(µH)t+ 1

2

{[
λφ − 2λ

2
3χ̂

2

m2
χ

]
m̃4
− +

[
λφ − 6λ

2
3χ̂

2

m2
χ

]
λφφ̂

2m̃2
−

}
t2 . (4.45)
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The (λ2
3χ̂

2m̃4
−/m

2
χ)t2 term’s coefficient is modified from −3/2 to −1, a factor of 2/3, by

the tadpole for the reasons discussed below eq. (4.17). In the second line, we have only
retained terms to order z6 in the expansion of λ̃2.

Equation (4.45) agrees with the explicit two-loop result expanded in z to order z6

using the procedure given below eq. (3.37). One difference between the O(N) model and
the two-scalar theory of this section is that the scalar mass matrix W is not diagonal. The
expression for the two-loop potential in ref. [2] is given in terms of mass eigenstates of the
tree-level Lagrangian. To use the two-loop result in ref. [2], we first diagonalize the scalar
mass matrix W and rewrite the Lagrangian in terms of the rotated fields. The heavy mass
is m2

χ to lowest order in z, and the light mass is m̃2
− given in eq. (4.16) to order z2. Using

the rotated masses and couplings, and expanding the result to order z6, we find agreement
with our result eq. (4.44).

5 Two scalar fields in the broken phase

In this section we study the two-scalar field model of the previous section, but now with
a power counting appropriate to the broken phase of the theory where m2

χ and m2
φ are

both negative. We will be brief, since most of the discussion carries over from section 4.
This example illustrates the procedure for minimizing the potential for a theory such as a
unified theory, with two widely separated symmetry breaking scales.

5.1 Power counting

In this case, we start with the Lagrangian

L = 1
2(∂µχ)2 + 1

2(∂µφ)2 − λφ
24 (φ2 − v2

φ)2 − λχ
24 (χ2 − v2

χ)2

− λ3
4 (φ2 − v2

φ)(χ2 − v2
χ)− Λ ,

(5.1)

evaluated at some high reference scale µ0, and assume widely separated scales vχ � vφ.
The classical VEVs v are related to the mass-squareds by eq. (A.8). The classical theory
is stable if λφλχ > 9λ2

3, and the minimum is at φ = vφ, χ = vχ.
The shifted Lagrangian L̂ takes the same form as eq. (4.2), but we rewrite the W -

matrix in terms of the vφ, vχ variables as

Wχχ = 1
3λχv

2
χ + 1

2λχ
(
χ̂2 − v2

χ

)
+ 1

2λ3
(
φ̂2 − v2

φ

)
,

Wφφ = 1
6λφ

(
3φ̂2 − v2

φ

)
+ 1

2λ3
(
χ̂2 − v2

χ

)
,

Wφχ = Wχφ = λ3φ̂χ̂ .

(5.2)

The cosmological constant is

Λ̂ = λφ
24 (φ̂2 − v2

φ)2 + λχ
24 (χ̂2 − v2

χ)2 + λ3
4 (φ̂2 − v2

φ)(χ̂2 − v2
χ) + Λ . (5.3)

Introduce a power counting vχ ∼ 1 and vφ ∼ z, so that the two VEVs are widely
separated, and assume λχ, λφ, λ3 are order 1. The χ and φ mass-squareds at the minimum
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of the potential are Wχχ = λχv
2
χ/2 ∼ 1 and Wφφ = λφv

2
φ/2 ∼ z2. As χ̂ and φ̂ move away

from the minimum of the potential, Wχχ and Wφφ change. To retain the mass hierarchy,
we assume that

χ̂2 − v2
χ ∼ z2 , φ̂2 ∼ v2

φ ∼ φ̂2 − v2
φ ∼ z2 (5.4)

so that

Wχχ ∼ 1 , Wφφ ∼ z2 , Wφχ = Wχφ ∼ z . (5.5)

The first term for Wχχ in eq. (5.2) is order 1, and the remaining terms are order z2.3 In
this example, we will keep terms to order z4, since non-trivial effects in the unbroken sector
now occur by order z4.

5.2 The result

The one-loop matching contribution to Λ̃ in the EFT from integrating out χq is given by
computing the one-loop χ-bubble. The graphs are shown in table 1. In particular, the
z-scaling of the diagrams is different from the unbroken case, since now Wφχ ∼ z rather
than z2, and there is one extra diagram that contributes. The result is

Vmatch(µH) = 1
64π2

{[
ln Wχχ

µ2
H

− 3
2

]
W 2
χχ +

[
ln Wχχ

µ2
H

− 1
]

2WχφWφχ

+
[
ln Wχχ

µ2
H

− 1
]

2WχφWφχWφφ

Wχχ
−
[
ln Wχχ

µ2
H

− 2
]
W 2
χφW

2
φχ

W 2
χχ

}
,

(5.6)

where the first term is order 1, the second term is order z2, and the last two terms are
order z4.

The tree level matching proceeds as in the unbroken case, and the EFT couplings
defined in eq. (4.12) are given at the matching scale µH by

λ̃
µ=µH= λφ −

9λ2
3χ̂

2

λχv2
χ

+O(z2) ,

ρ̃
µ=µH= φ̂

[
λφ −

9λ2
3χ̂

2

λχv2
χ

]
+O(z3) ,

m̃2 µ=µH= 1
6λφ

(
3φ̂2 − v2

φ

)
+ 1

2λ3
(
χ̂2 − v2

χ

)
− 3λ2

3χ̂
2φ̂2

λχv2
χ

+ 3λ3χ̂Jχ
λχv2

χ

+O(z4) ,

≡ m̃2
− + 3λ3χ̂Jχ

λχv2
χ

+O(z4) ,

σ̃
µ=µH= −Jφ + 3λ3χ̂φ̂Jχ

λχv2
χ

+O(z5) ,

Λ̃ µ=µH= Λ̂ + Vmatch −
3 (Jχ)2

2λχv2
χ

+O(z6) .

(5.7)

3If χ̂2−v2
χ ∼ 1, Wφφ ∼ 1, both fields have comparable masses, and there is no need for RG improvement.
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Figure 11. The tree level Coleman-Weinberg potential for Λ = 0, plotted for the values of couplings
in eq. (5.9).

The resulting Coleman-Weinberg potential again takes the form

VCW = Λ̃(µL) + 1
64π2 m̃

4(µL)
[
ln m̃

2(µL)
µ2
L

− 3
2

]
, (5.8)

with the couplings running according to eq. (4.18)–(4.19). The RG improvement of the
tadpole is identical to that given in the previous section, with the only change that the
parameters are those of the broken phase values in eq. (5.7) for the low energy theory. We
will not repeat the analysis, and simply refer to the results of section 4.

We have again checked that our result for the L2 term agrees with the explicit two-loop
calculation of ref. [2], and as in the other examples, the matching contribution in eq. (5.7)
and the tadpole terms are necessary for agreement. Since the z power counting is different
than in the unbroken phase, all terms in λ̃2 must be retained in eq. (4.45).

5.3 Minimizing the RG improved potential

The minimum of the effective potential is the quantum vacuum of the theory. In this case, it
is interesting to plot the RG improved potential and compare it to the fixed one-loop order
expression, in order to see the effect of RG improvement on the location of the minimum.
We use the couplings

λφ
16π2 = 0.1 , λχ

16π2 = 0.25 , λ3
16π2 = 0.04 , (5.9)

at the scale µH and

vφ = 246GeV , vχ = 500TeV , (5.10)

which have a large hierarchy, and study the effect on the potential near the classical min-
imum φ̂ = vφ, χ̂ = vχ. We will use the variables φ̂ and ∆χ ≡ χ̂2 − v2

χ, which are order
z and z2, respectively. To orient ourselves with these couplings, we have plotted the tree
level Coleman-Weinberg potential Vtree as a function of φ̂ at the value χ̂ = vχ in figure 11.
In later plots we will focus on the region around the right-hand minimum.
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Naively plotting the result leads to numerical instabilities from the matching condition
eq. (5.6). To discuss the instability in more detail, it is convenient to break up Wχχ into
its order 1 and order z2 pieces,

Wχχ = W (0)
χχ +W (2)

χχ ,

W (0)
χχ = 1

3λχv
2
χ ,

W (2)
χχ = 1

2λχ
(
χ̂2 − v2

χ

)
+ 1

2λ3
(
φ̂2 − v2

φ

)
= 1

2λχ∆χ + 1
2λ3

(
φ̂2 − v2

φ

)
, (5.11)

and reexpand eq. (5.6) in z,

Vmatch(µH) = 1
64π2

{
[
ln W

(0)
χχ

µ2
H
− 3

2

] [
W

(0)
χχ

]2
+
[
ln W

(0)
χχ

µ2
H
− 1

]
2W (0)

χχW
(2)
χχ +

[
ln W

(0)
χχ

µ2
H

] [
W

(2)
χχ

]2
+0 +

[
ln W

(0)
χχ

µ2
H
− 1

]
2WφχWχφ +2WφχWχφW

(2)
χχ

W
(0)
χχ

+0 +0 +
[
ln W

(0)
χχ

µ2
H
− 1

]
2WφχWχφWφφ

W
(0)
χχ

+0 +0 −
[
ln W

(0)
χχ

µ2
H
− 2

](
WφχWχφ

W
(0)
χχ

)2
}
.

(5.12)

The rows of eq. (5.12) are the four terms in eq. (5.6), and the columns are the contributions
at order 1, z2 and z4 after expanding Wχχ. W

(0)
χχ is independent of φ̂, χ̂. We start by

choosing µ2
H = W

(0)
χχ .

The first problem is that Vmatch produces a large shift in the potential. For example,
the single term in the first column of eq. (5.12) is an order 1 constant and gives a shift in the
cosmological constant of ' −2.6× 1022 GeV4. The potential for φ̂ is order z4, and smaller
by a factor ∼ (16π2/λφ)(vφ/vχ)4 ∼ 10−14 relative to this contribution. This large constant
shift in the potential is the cosmological constant problem. To be able to show the various
contributions on the same plot, we shift all terms in the matching by field-independent
constants, by subtracting their values at the classical minimum φ̂ = vφ, χ̂ = vχ in plots.

The two terms in the second column of order z2 are plotted in figure 12a. The two
terms are both proportional to φ̂2, and pass through 0 at φ̂ = vφ because of our subtraction
for the plots. They are almost equal, which is a numerical coincidence for our choice of
input parameters.

The four terms in the third column are order z4 and are plotted in figure 12b along
with the tree-level potential, which is also of order z4. Note that the scale in figure 12a
is 107 times the scale in figure 12b. As a result, the z2 contribution would overwhelm the
z4 terms, including the tree-level potential. The reason for this numerical instability is
that vφ and vχ mix under renormalization, and vφ � vχ. Unless the parameters in the
high-energy Lagrangian are chosen properly, the physical φ mass is of order the high scale
vχ, not the low scale vφ. This phenomenon is the hierarchy or fine-tuning problem. Our
starting assumption is that we have a hierarchy of physical mass scales, so we have to
choose input parameters consistent with a large mass ratio. A simple way to do this is to
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(a) The order z2 contributions. The blue and or-
ange curves are from the first and second rows of
eq. (5.12), respectively. The two values happen to
be nearly equal for our particular choice of input
parameters.
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(b) The tree-level potential and the order z4 con-
tributions The blue curve is the tree-level potential,
and the orange, green, red and purple curves are
the z4 terms in the four rows of eq. (5.12).

Figure 12. Plots of different contributions to Vmatch as a function of φ̂ for χ̂ = vχ at the matching
scale µ2

H = W
(0)
χχ . Note the y axes’ scaling differ by a factor of 107.

use the matching scale

µ2
H = 1

e
W (0)
χχ (5.13)

with eq. (5.9) as the input parameters at this scale. The input parameters at the scale
µ2 = W

(0)
χχ or any other high scale µ0 are given by running the values in eq. (5.9) from

µ2 = W
(0)
χχ /e to the high scale. The resulting values of vφ and vχ are almost equal, but

careful adjusted so that the φ mass is light. We instead avoid any fine-tunings by using
eq. (5.13) as the matching scale. We are free to choose any matching scale since the physical
results are independent of the matching scale. Another way to say the same thing — the
parameters of the high-energy theory live on a renormalization group trajectory. The input
parameters are such that when the couplings flow to µH given by eq. (5.13), we have a
hierarchy in the values of v. This procedure is a simple solution to the hierarchy and
fine-tuning problems.

With the choice eq. (5.13) for µH , eq. (5.12) becomes

Vmatch(µH) = 1
64π2



−1
2

[
W

(0)
χχ

]2
+0 +

[
W

(2)
χχ

]2
+0 +0 +2WφχWχφW

(2)
χχ

W
(0)
χχ

+0 +0 +0

+0 +0 +
(
WφχWχφ

W
(0)
χχ

)2


. (5.14)

Most of the matching terms have disappeared, including the entire problematic z2 contri-
bution. The entire matching contribution other than the order 1 cosmological constant
shift is order z4.

Having taken care of the hierarchy and fine-tuning problems, we can now plot the
total Coleman-Weinberg potential, using µH from eq. (5.13). The value of the tadpole

– 38 –



J
H
E
P
0
4
(
2
0
2
1
)
0
9
3

200 250 300 350 400 450 500
ϕ

(GeV)

5

10

V (109GeV4)

Figure 13. Plot of the Coleman-Weinberg potential as a function of φ̂ for χ̂ = vχ. The curves
are the tree-level potential (blue), the fixed order potential at one-loop (orange), the RG improved
potential neglecting the tadpole (green), and the RG improved potential (red).
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(a) ∆χ = 0 (blue), ∆χ = −(100GeV)2 (orange),
∆χ at the true minimum of the potential (green),
and ∆χ = −(150GeV)2 (red).
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(b) φ̂ = 246GeV (blue), φ̂ = 300GeV (orange), φ̂
at the true minimum of the potential (green), and
φ̂ = 350GeV (red).

Figure 14. Plot of the RG improved Coleman-Weinberg potential. The left plot is vs. φ̂ for various
fixed values of ∆χ, and the right plot is vs. ∆χ for fixed values of φ̂.

Jχ(µH) is in the range of approximately −1010 to −5×1010 GeV3 for the values of φ̂ in the
plots. The fixed order and RG improved results for the Coleman-Weinberg potential are
plotted in figure 13, and compared with the tree-level potential. The fixed order potential
is evaluated at the scale µH . The scalar self-couplings run to zero in the infrared. As a
result, RG improvement in this model reduces the size of the quantum corrections, and
makes the potential closer to its tree-level value. We have shown the RG improved potential
with the tadpole Jχ(µH) = 0, and with the value from eq. (4.40). The RG improvement
changes the potential substantially. The minimum of the Coleman-Weinberg potential is
shifted from φ̂ = 246GeV, ∆χ = 0 at tree-level to φ̂ = 337GeV, ∆χ = −(135GeV)2 using
the RG improved potential and ignoring the tadpole by setting Jχ(µH) = 0. Including the
tadpole to get the correct RG improved potential, the minimum shifts to φ̂ = 319GeV,
∆χ = −(122GeV)2. As we have emphasized, the tadpole terms are important.

Finally in figure 14a, we plot the full RG improved Coleman-Weinberg potential in-
cluding tadpole contributions vs. φ̂ for various values of ∆χ, and in figure 14b, plot it vs.
∆χ for various values of φ̂.
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As a final comment, note that in all of the above plots we have chosen fixed values
of µH and µL that do not depend on the background fields. One could instead choose
these values to vary with φ̂ and χ̂, and e.g. choose µL to cancel the entire log in (5.8).
The difference that this dependence µ(φ̂, χ̂) makes to the minimum is higher order; this
is because dV/dφ will now pick up a dV/dµ term, but by the RG equations that term is
higher order in perturbation theory, and vanishes if V is computed to all orders.

6 Higgs-Yukawa model

Our last test case is the Higgs-Yukawa Model. This model has the new feature of non-zero
scalar wavefunction renormalization at one loop.

6.1 Power counting

The Higgs-Yukawa model considered in ref. [10] has the Lagrangian

L = 1
2(∂µφ)2 +

NF∑
k=1

i ψk /∂ ψk − gφψkψk −
m2
B

2 φ2 − λ

24φ
4 − Λ , (6.1)

and is a special case of the more general theory eq. (2.23), (2.24). Eq. (6.1) has the discrete
chiral symmetry ψL → −ψL, ψR → ψR, φ → −φ which forbids odd powers of φ in the
scalar potential.

Following the usual procedure, we shift the scalar field φ = φ̂ + φq, drop the linear
term in φq, and introduce a source J for φq. The resulting Lagrangian L̂ is

L̂ = 1
2(∂µφ)2 + i ψk /∂ ψk −MFψkψk − gφqψkψk −

1
2M

2
Bφ

2
q −

λ

6 φ̂ φ
3
q

− λ

24φ
4
q − Λ̂ + J φq ,

Λ̂ = Λ + 1
2m

2
Bφ̂

2 + λ

24 φ̂
4 ,

(6.2)

and the coefficient σ of the linear term in φq is zero at tree level. The boson mass-squared
matrix and fermion mass matrix are

M2
B(φ̂) ≡W = m2

B + 1
2λφ̂

2 , MF (φ̂) = gφ̂ . (6.3)

The Coleman-Weinberg potential at one-loop order is

Vtree = Λ̂ = Λ + 1
2m

2
Bφ̂

2 + λ

24 φ̂
4 ,

V1-loop = M4
B(φ̂)

64π2

[
ln M

2
B(φ̂)
µ2 − 3

2

]
− NFM

4
F (φ̂)

16π2

[
ln M

2
F (φ̂)
µ2 − 3

2

]
.

(6.4)

We assume the parameters and φ̂ are chosen so that there is a hierarchy of mass scales,
either (a) MF � MB or (b) MB � MF , and our expansion parameter z � 1 is the ratio
of the smaller mass to the larger mass. We consider each of these cases in turn.
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6.2 The case MF � MB

We use the power counting mB ∼ z, φ̂ ∼ 1, λ ∼ z2 and g ∼ 1, and work to order z6. Since
the fermion is heavier than the boson, the matching at µH involves integrating out the
fermion. The one-loop contribution to the cosmological constant from figure 2 is

Vmatch(µH) = 1
64π2 (−4NF )M4

F (φ̂)
[
ln M

2
F (φ̂)
µ2
H

− 3
2

]
, (6.5)

which, as usual, is precisely the contribution of the heavy particle to the Coleman-Weinberg
potential in eq. (6.4). The tree-level matching vanishes in this case, since there is no
fermionic analog of the χq exchange graph figure 7(a).

The EFT Lagrangian is a scalar theory

LEFT = 1
2(∂µφq)2 − 1

2M̃
2
Bφ

2
q −

1
6 ρ̃φ

3
q −

1
24 λ̃φ

4
q − Λ̃ + J φq , (6.6)

with parameters at the scale µH given by

λ̃
µ=µH= λ+O(z3) ,

ρ̃
µ=µH= λφ̂+O(z4) ,

m̃2(φ̂) µ=µH= M2
B(φ̂) +O(z5) ,

σ̃
µ=µH= −J +O(z6) ,

Λ̃ µ=µH= Λ̂ + Vmatch(µH) +O(z7) .

(6.7)

The theory is sufficiently simple that there are no matching corrections to the couplings
in eq. (6.7). As a result, one can reabsorb the shift φ̂ back into φ, evolve down to a low
scale µH of order the scalar mass MB, and then shift the scalar field back by φ̂. The
anomalous dimension γφ vanishes since the fermion has been integrated out, so we do not
need to rescale φ̂. This observation is useful in comparing with the results of ref. [10].

The couplings in the low-energy theory are evolved using the RGE to a low scale
µL of order the scalar mass MB. The RGE are those of the pure scalar theory given in
eq. (B.3), since the fermion has been integrated out. At the scale µL, the quantum field
φq is integrated out. This gives the Coleman-Weinberg potential

VCW = Λ̃(µL) + 1
64π2 m̃

4(µL)
[
ln m̃

2(µL)
µ2
L

− 3
2

]
. (6.8)

Eq. (6.8) still contains J which has not been determined. It is fixed by requiring
that 〈φq〉 vanish. This expectation value is determined by differentiation w.r.t. J . In this
example, the matching eq. (6.7) is particularly simple, and the tadpole condition becomes
〈φq〉 = 0, i.e. the high-energy theory tadpole condition is the same as the EFT tadpole
condition. The value of σ̃ = −J is adjusted so that this condition is satisfied. The terms
in eq. (6.7) do not depend on σ̃, so we can omit this part of the calculation.

We can now compare our RG improved result to the known two-loop calculation by
expanding the RG series in a power series in t = (lnµL/µH)/(16π2). The leading log
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contribution is

Λ̃(µL) = Λ̃(µH) + 1
2M̃

4
B(µH)t+ 1

2M̃
2
B(µH)

[
λ̃(µH)M̃2

B(µH) + ρ̃2(µH)
]
t2 + . . . (6.9)

using eq. (B.3) to evaluate the RG evolution and expanding in a series in t. The logarithmic
terms are, using eq. (6.7) and eq. (6.3)

Λ̃(µL) ≈ 1
2M̃

4
B(µH)t+ 1

2M̃
2
B(µH)

[
λ(µH)M̃2

B(µH) + λ2(µH)φ̂2
]
t2 + . . . (6.10)

This result agrees with the explicit two-loop calculation expanded in MB/MF .

6.3 The case MB � MF

We use the power counting mB ∼ 1, φ̂ ∼ z, and work to order z6. Since the boson is
heavier than the fermion, the matching at µH involves integrating out the boson. The
one-loop contribution to the cosmological constant from figure 2 is

Vmatch(µH) = 1
64π2M

4
B(φ̂)

[
ln M

2
B(φ̂)
µ2
H

− 3
2

]
. (6.11)

The tree-level matching integrating out φq at µH gives

LEFT = i ψk /∂ ψk −MFψkψk + 1
2M2

B(µH)
[
g(µH)ψkψk − J (µH)

]2
− Λ̂ ,

= i ψk /∂ ψk − M̃Fψkψk + g2(µH)
2M2

B(µH)
[
ψkψk

]2
− Λ̂ , (6.12)

with a four-fermion interaction, where the EFT couplings at the matching scale are

M̃F
µ=µH= MF + g(µH)J (µH)

M2
B(µH) +O(z4) , Λ̃ µ=µH= Λ̂− (J (µH))2

2M2
B(µH) +O(z7) . (6.13)

The one-loop anomalous dimensions for the Lagrangian eq. (6.12) are,

d
dtM̃F = 2g2(µH)M̃3

F

M2
B(µH) (4NF − 1) , d

dt Λ̃ = −2NF M̃
4
F , (6.14)

using the results of refs. [22, 23]. The solution of these equations is

M̃F (µL) = M̃F (µH)
[
1− 4(4NF − 1)g2(µH)M̃2

F (µH)
M2
B(µH) t

]−1/2

,

Λ̃(µL) = Λ̃0 −
2NF M̃

4
F (µH)t

1− 4(4NF−1)g2(µH)M̃2
F (µH)

M2
B(µH) t

, (6.15)

with the expansion in t

M̃F (µL) = M̃F (µH) + 2(4NF − 1)g2(µH)M̃3
F (µH)

M2
B(µH) t+ 6(4NF − 1)2g4(µH)M̃5

F (µH)
M4
B(µH) t2 + . . .

Λ̃(µL) = Λ̃(µH)− 2NF M̃
4
F (µH)t− 8NF (4NF − 1)g2(µH)M̃6

F (µH)
M2
B(µH) t2 + . . . (6.16)
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(
ψkψk

)2

(a) Vacuum graph from the four-fermion operator.

ψkψk

(b) The fermionic tadpole graph.

Figure 15. Some relevant fermionic graphs in the Higgs-Yukawa model.

The fermion ψ is integrated out at a low scale µL of order the fermion mass MF . In
addition to the usual contribution from figure 2,〈[

ψkψk
]〉
µ

= −4NFM
3
F (µ)

16π2

[
ln M

2
F (µ)
µ2 − 1

]
, (6.17)

we also have the two loop contribution from the four-fermion operator from figure 15a,〈[
ψkψk

]2〉
µ

= 1
4NF (4NF − 1)

{
4M3

F (µ)
16π2

[
ln M

2
F (µ)
µ2 − 1

]}2

. (6.18)

Combining the pieces gives the Coleman-Weinberg potential

VCW = Λ̃(µL) + 1
64π2 (−4NF )M̃4

F (µL)
[
ln M̃

2
F (µL)
µ2
L

− 3
2

]

− g2(µH)
8M2

B(µH)NF (4NF − 1)
{

4M̃3
F (µL)

16π2

[
ln M̃

2
F (µL)
µ2
L

− 1
]}2

. (6.19)

The two-loop contribution is LL order if evaluated at µH . By evaluating it at µL, we have
eliminated the large logarithms, and the contribution can be dropped. The LL piece now
arises from the running of the fermion mass proportional to the four-fermion operator,
eq. (6.14).

Eq. (6.19) still contains J , which is fixed by requiring that 〈φq〉 vanish. From eq. (2.13),
one sees that this expectation value is determined by differentiation w.r.t. J to give the
EFT tadpole condition

− g

M2
B

〈[
ψkψk

]〉
µH

+ 1
M2
B

J = 0 =⇒ J (µH) = g(µH)
〈[
ψkψk

]〉
µH

. (6.20)

〈[
ψkψk

]〉
has no large logarithms if evaluated at a scale µL of order the fermion mass.

The RG improved tadpole can be obtained by differentiating the fermion Lagrangian at
µ = µL w.r.t. MF (µH) to bring down a factor of

[
ψkψk

]
µH

,

[
ψkψk

]
µH

=
[
ψkψk

]
µL

[
1− 4(4NF − 1)g2(µH)M̃2

F (µH)
M2
B(µH) t

]−3/2

− 8M̃3
F (µH)NF t

[
1− 2(4NF − 1)g2(µH)M̃2

F (µH)
M2
B(µH) t

]
,

(6.21)
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which also follows from the anomalous dimension of
[
ψkψk

]
in the EFT. The RG improved

tadpole is given by substituting this result in eq. (6.20).
〈[
ψkψk

]〉
µL

has no large logarithm,
so the entire LL piece of the tadpole comes from expanding the second term

J (µH) = g(µH)
〈[
ψkψk

]〉
µH
≈ −8NF g(µH)M̃3

F (µH)t . (6.22)

We can now compare our RG improved result to the known two-loop calculation by
expanding the RG series in a power series in t. As usual, the entire leading-log contribution
comes from the cosmological constant in the low-energy theory at µL,

Λ̃(µL) = Λ̃(0)− 2NF M̃
4
F (0)t− 8NF (4NF − 1)g2(µH)M̃6

F (0)
M2
B

t2 + . . .

= Λ̂− (J (µH))2

2M2
B(µH) − 2NF

[
MF (µH) + g(µH) J (µH)

M2
B(µH)

]4

t

− 8NF (4NF − 1)g2(µH)
M2
B(µH)

[
MF + g(µH) J (µH)

M2
B(µH)

]6

t2 + . . .

(6.23)

The logarithmic terms to order L2 are

Λ̃(µL) ≈ −2NFM
4
F (0)t− 8NF g(µH)M3

F (0) J (µH)
M2
B(µH) t−

(J (µH))2

2M2
B(µH)

− 8NF (4NF − 1)g2(µH)
M2
B(µH) M6

F (0)t2 + . . . (6.24)

Using eq. (6.22) for the tadpole contribution gives

Λ̃(µL)≈−2NFM
4
F (0)t+

[
64N2

F−32N2
F−8NF (4NF−1)

] g2(µH)M6
F (0)

M2
B

t2+. . . (6.25)

As before, the J (µH) flips the sign of the (J (µH))2 term from the cosmological constant.
The N2

F terms cancel, leaving

Λ̃(µL) ≈ −2NFM
4
F (0)t+ 8NF g

2(µH)M
6
F (0)
M2
B

t2 + . . . (6.26)

which agrees with the two-loop result obtained from ref. [4], and provides a non-trivial check
of our method. The N2

F term arises in the high-energy theory from graph figure 10(b) with
the dotted scalar replaced by a fermion. This is not 1PI, and is cancelled in the EFT by
the tadpole. The NF term arises in the high-energy theory from figure 10(a), which is 1PI,
and survives in the EFT.

7 Comparison with previous work

In this section we compare our results for various examples with previous results in the
literature.
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7.1 O(N) model

The Coleman-Weinberg potential of the O(N) model in the broken phase was considered
previously in ref. [15]. This paper assumes a matching condition for the Lagrangian at µL,
and uses running couplings computed in the full theory to evolve the parameters from µH
to µL. However, the method is not a systematic procedure (as was noted in ref. [15]), and
cannot be extended to higher orders. It also does not include power corrections in the LL
summation, and misses the 1/m2

χ term in eq. (3.37).

7.2 Two scalar fields in the broken phase

The Coleman-Weinberg potential of the two-scalar theory with m2
φ = m2

χ = 0 was con-
sidered previously in ref. [11] using a different method. This paper computes the exact
eigenvalues of the scalar mass matrix, w±, the expressions for which contain square-roots
(see eq. (4.6)). The running of the scalar potential, given in eq. (2.22), implies for the
high-energy theory that 2V̇ = w2

+ + w2
−. The square-roots cancel in this combination,

leading to the RGE eq. (A.6) with Nφ = Nχ = 1. Ref. [11] then defines β-functions in the
theory between µH and µL by treating it as a single scalar theory with a mass given by w−
so that 2V̇ = w2

−, a non-analytic expression containing square-roots. They then describe a
method ref. [11, above (3.16)] to convert this to a polynomial, obtaining their β-functions
ref. [11, (3.17)–(3.19)]. Their β-functions are then integrated to sum the logarithms.

If we take the special case of their results with λh = λφ and λκ = λφ−λ1, with λ1 � 1
and 〈φ〉 = r

√
cos θ, 〈χ〉 = r

√
sin θ, in their notation ref. [11, (3.14)] the mass matrix has

eigenvalues

M2
H =

√
2λφr2 − 3

2
√

2
λ1r

2 , M2
L = 1

2
√

2
λ1r

2 , (7.1)

with M2
L � M2

H , a large mass hierarchy. The L and L2 terms in the Coleman-Weinberg
potential are then

V ≈ 1
16λ

2
1r

4t+ 1
8λ1

(
2λ1λφ − λ2

φ −
5
8λ

2
1 + . . .

)
r4t2 . (7.2)

Our method, treating λ1/λφ as the expansion parameter z, gives instead

V ≈ 1
16λ

2
1r

4t+ 1
8λ1

(
λ1λφ −

3
4λ

2
1 −

λ3
1

4λφ
+ . . .

)
r4t2 , (7.3)

which agrees with the explicit two-loop result expanded in λ1/λφ.

7.3 Higgs-Yukawa model

The Higgs-Yukawa theory was studied in detail in ref. [10], based on the method proposed
in ref. [9]. The one-loop matching contributions at the high and low scales are the usual
values given in ref. [1], and we obtain the same result. The difference between the two
approaches is in the evolution between µH and µL. Ref. [10] does not construct an EFT,
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Figure 16. One-loop contribution to the φ4 interaction from a fermion loop. The same graph can
be interpreted as a contribution to the cosmological constant if the external lines are interpreted as
background fields φ̂.

but instead introduces θ-functions into the RGE. Explicitly, they use ref. [10, (3.4)]

φ̇ = −2g2NθFφ = −γφθFφ ,
ġ = (3θBθF + 2NθF ) g3 = 3θBθF g3 + γφθF g ,

ṁ2
B = λm2

BθB + 4g2Nm2
BθF = λm2

BθB + 2γφθFm2
B ,

λ̇ = 3λ2θB − 48g4NθF + 8g2NλθF = 3λ2θB − 48g4NθF + 4γφθFλ ,

Λ̇ = 1
2m

4
BθB .

(7.4)

In the theory with MB � MF , they set θB = 0 and θF = 1 in the RGE between MB and
MF , whereas for MF � MB, θB = 1 and θF = 0 in the RGE between MF and MB. The
calculation follows that in ref. [1] of treating the Coleman-Weinberg potential as graphs
with external scalar lines, rather than the method in ref. [18] of shifting the scalar field
φ→ φ̂+ φq and performing the functional integral over φq.

For the case MF � MB, our result agrees to order L2 with that of ref. [10]. The
matching condition eq. (6.10) is trivial, and the tadpole plays no role in the final result.
The β-functions eq. (7.4) with θB = 1, θF = 0 agree with those in our low-energy theory
after integrating out the fermion. Our RG evolution uses the Lagrangian after the shift
φ → φ̂ + φq, whereas ref. [10] uses the original φ field, and treats φ as the external field
which is equivalent to running and then performing the shift φ → φ̂ + φq. As commented
earlier, in this example running commutes with shifting, so the two answers are the same.

For MB � MF , the γφ parts of the β-function evolution in eq. (7.4) reduce to wave-
function evolution of the background field φ. In our method, φ̂ is the field at µH , whereas
in the method of ref. [10], φ renormalized at µL is considered the external field. Thus
we evolve φ̂ from µH to µL with its anomalous dimension to compare with the result of
ref. [10]. A difference in the two methods is the λ̇ = −48g4NθF term in the β-function
for λ. In our method, the EFT has no scalar fields, and no λφ4 coupling. In ref. [10],
the λφ4 coupling runs in the theory below MB by the diagram in figure 16. If one treats
the external lines as φ̂, then this diagram gives the same contribution as the running of
the cosmological constant in eq. (6.14) in our method, with a fermion mass MF = gφ̂.
Thus this contribution agrees, though its origin is different in the two approaches. The
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Figure 17. Class of diagrams leading to an infrared divergent Coleman-Weinberg potential in the
Standard Model. The fermion loops are top quark loops, and the scalar fields connecting the fermion
loops are Goldstone bosons ϕ+ and ϕZ , which are propagating degrees of freedom in Rξ gauge.

final result for the Coleman-Weinberg potential in ref. [10] differs from our LL result in
eq. (6.26) in that it does not contain the t2 term that arises from the tadpole.

7.4 Taming Goldstone boson divergences

An explicit computation of higher loop corrections to the Coleman-Weinberg potential
in the Standard Model shows that the class of graphs in figure 17 is infrared divergent
at three-loop order and beyond [24]. This divergence is known as the Goldstone boson
catastrophe, whose resolution was given in refs. [25, 26].4 Our method for computing the
Coleman-Weinberg potential does not have this infrared divergence problem, and in this
subsection we explain the relation of our method to the discussion in refs. [25, 26].

The infrared divergence found in ref. [24] depends on the coupling of Goldstone bosons
to a fermion (the top-quark) which gets a mass from spontaneous symmetry breaking. The
gauge fields are not important to the discussion, and ref. [24] sets the gauge couplings to
zero. We will therefore study the problem in a simplified model given by combining the
O(N) theory of section 3 with the Higgs-Yukawa theory of section 6, keeping the essential
features of the problem without irrelevant complications. The Lagrangian we study is

L = ψi/∂ψ + ∂µφ
∗∂µφ− λ

(
φ∗φ− v2

2

)2

− yψLψRφ− yψRψLφ∗ − Λ , (7.5)

which consists of a complex scalar field (the O(2) model) coupled to a fermion ψ. φ and ψL
have charge 1 under the U(1) symmetry, and ψR has charge zero. Spontaneous symmetry
breaking leads to a massive scalar (the Higgs boson), a massless Goldstone boson, and a
massive fermion (the top).

The Coleman-Weinberg potential V (ĥ) for the scalar field is computed by writing

φ = 1√
2

[
ĥ+ hq + iϕq

]
. (7.6)

4We thank the referee for bringing this problem to our attention.
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In contrast to previous sections, here the radial mode has been called hq (for Higgs) instead
of χq. Including the source term, the shifted Lagrangian L̂ from (2.14) is

L̂ = ψi/∂ψ + 1
2(∂µhq)2 + 1

2(∂µϕq)2 − y√
2

(
ĥ+ hq

)
ψψ − y√

2
ϕqψiγ5ψ

− 1
4λ
(
h4
q + 2h2

qϕ
2
q + ϕ4

q

)
− λĥ

(
h3
q + hqϕ

2
q

)
− 1

2λ
(
3ĥ2 − v2

)
h2
q

− 1
2λ
(
ĥ2 − v2

)
ϕ2
q − Λ̂ + Jhhq , (7.7)

where

Λ̂ = 1
4λ
(
ĥ2 − v2

)2
, (7.8)

is the cosmological constant, and the full source term is split as

J = σ̂ + Jh , σ̂ = λĥ
(
ĥ2 − v2

)
, (7.9)

as in eq. (2.12). The scalar masses (2.11) are

Whh = 2λv2 + 3λ
(
ĥ2 − v2

)
, Wϕϕ = λ

(
ĥ2 − v2

)
, (7.10)

and the fermion mass is

mF = yĥ√
2
. (7.11)

At tree-level, with ĥ2 − v2 ∼ O(z2), there is a mass hierarchy with Wϕϕ ∼ z2 � Whh,
m2
F ∼ 1. ϕ is a Goldstone boson of the spontaneously broken U(1) symmetry, and is

exactly massless at the minimum of the potential ĥ = v. Including quantum corrections,
the Goldstone boson remains exactly massless at the minimum of the quantum corrected
potential, which is now shifted from ĥ = v to ĥ = v + ∆v. We will treat ∆v as formally
of one-loop order. We can therefore consider the Coleman-Weinberg potential in a regime
with a large mass hierarchy by working near ĥ = v + ∆v. The source J breaks the U(1)
symmetry, so ϕ is massless only at the minimum of the potential where the source vanishes,
by eq. (2.5).

The Goldstone boson problem studied in ref. [24] arises from one-loop corrections to the
ϕ mass, and so is one higher order than the other calculations in this paper. Nevertheless,
our method works to all orders, so we can apply it here. In the regime Wϕϕ � Whh,m

2
F ,

one can construct a low-energy EFT by integrating out hq and ψ, leaving only ϕq. The
EFT Lagrangian is

LEFT = 1
2(∂µϕq)2 − σ̃ϕq −

m̃2

2 ϕ2
q −

ρ̃

6ϕ
3
q −

λ̃

24ϕ
4
q − Λ̃ + . . . (7.12)

where the EFT coefficients are determined by one-loop matching from eq. (7.7). The
Goldstone boson problem is related to the ϕ mass, so we focus only on the one-loop
corrections we need: the one-loop correction to the ϕ two-point function.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 18. One-loop contributions to the ϕ two-point function. The dotted lines are ϕ, the dashed
lines are hq and the solid line is the fermion ψ.

The one-loop correction to the ϕ two-point function is given by the graphs in figure 18.
The last three graphs in figure 18 are one-particle reducible, but are still included in Γϕϕ(p).
It is often stated that Γ is given by the sum of one-particle irreducible graphs, but this is not
true if there is a non-zero one point function, i.e. a non-zero tadpole. Equations (2.2), (2.5)
give the relation

δ2Γ
δϕ(x)ϕ(y) = −

[
δ2W

δJ(x)δJ(y)

]−1

(7.13)

so that Γϕϕ(p) is the negative of the inverse propagator. It is given by the proper self-energy
contribution, i.e. graphs which cannot be disconnected by cutting a line with momentum p.

We can decompose

−iΓϕϕ(p) = p2 −Wϕϕ − Σϕϕ(p2) , (7.14)

where Σϕϕ(p2) is the one-loop correction. In the EFT method, we need the one-loop
matching contribution to Σϕϕ(p2), i.e. the difference between the graphs in figure 18 in
the high-energy theory with hq, ψ, ϕq, and the low-energy theory with only ϕq. Graphs
figure 18(b,d,f,g,h) contribute to the matching condition. Graph figure 18(a) is present
in the low-energy theory, and does not enter the matching. The matching contribution
from graphs figure 18(c,e) is given by evaluating the graphs in the high-energy theory, and
subtracting the contribution from corresponding graphs in the low-energy theory given by
shrinking the hq line to a point. The latter graphs look like figure 18(a) in the low-energy
theory, but the ϕ4

q coupling includes the tree-level correction from integrating out hq from
figure 7. The matching from figure 18(c,e) can equivalently be computed by expanding
the integrand in low-energy scales (i.e. in the power counting parameter z) before doing
the integral. Note that p2 ∼ z2 since the ϕ momentum is of order the ϕ mass in the
low-energy theory.
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The one-loop matching is (in terms of Passarino-Veltman functions in the conventions
given in appendix E)

Σϕϕ(p2) = 1
16π2

{
−λA0(Whh)− 4λ2ĥ2B0(0,Whh, 0) + 2y2A0(m2

F )
}

+ 1
16π2

[
6λ2ĥ2

Whh
A0(Whh)− 4

√
2 λĥ

Whh
ymFA0(m2

F )
]

+ 2λĥJh
Whh

+O
(
z2
)
, (7.15)

where the second line is from the tadpole graphs in figure 18.
At tree-level, the minimum of the potential is at ĥ = v. At one-loop, the minimum is

at ĥ = v+∆v, where ∆v is formally of one-loop order, so that ĥ2−v2 ≈ 2v∆v. To one-loop
order, we can use the tree-level values ĥ = v, Whh = 2λv2, Wϕϕ = 0, and mF = yv/

√
2 in

the one-loop term Σϕϕ(p2),

Σϕϕ(p2) = 1
16π2

{
2λA0(2λv2)− 4λ2v2B0(0, 2λv2, 0)

}
+ Jh

v
. (7.16)

Using A0(m2) = m2B0(0,m2, 0), to one-loop order

Σϕϕ(p2 = 0) = Jh
v
. (7.17)

The tadpole graphs in the second line exactly cancel the terms in the first line. Including
the tree-level term, eq. (7.14) reduces to

iΓϕϕ(0) = Wϕϕ + Σϕϕ(p2 = 0) = σ̂

v
+ Jh

v
= J

v
. (7.18)

Consequently, at the minimum of the potential where J = 0, at one-loop order

Γϕϕ(p = 0) = 0 , (7.19)

and the Goldstone boson is exactly massless, as guaranteed by the Ward identity. Near
the minimum of the potential with ĥ2 − v2 ∼ O(z2), Γϕϕ ∼ O(z2), and ϕ is light. When
the heavy hq and ψ fields are integrated out, the EFT contains a massless Goldstone boson
which is derivatively coupled at the minimum of the potential. Near the minimum, its
mass-squared and couplings are O(z2). As a result loop diagrams in the low-energy theory
are of order Wϕϕ lnWϕϕ ∼ z2 ln z2, rather than lnWϕϕ ∼ ln z2, and so do not have infrared
divergences.

We can now compare with the earlier work in refs. [24–26]. The fermion loop diagram
figure 18(c) gives a contribution

Σϕϕ(p2) = − y2

8π2m
2
F ln m

2
F

µ2 (7.20)

to the ϕ mass. Figure 17 at ` loop order — i.e. with `− 1 fermion loops — is of the form
(see ref. [24, eq. (5.1)])

V ∼ (y2)`−1
(
m2
F

)`−1
W 3−`
ϕϕ

[
ln Wϕϕ

m2
F

+ . . .

]
, (7.21)
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and leads to an infrared divergence as Wϕϕ → 0 for l ≥ 3 loops. This is the Goldstone
boson infrared divergence found in ref. [24].

The fermion bubble eq. (7.20) is of order the heavy mass scale, and order 1 in the z
power counting, whereas the Goldstone boson massWϕϕ ∼ z2. One cannot expand figure 17
in a power series in the fermion bubbles, i.e. in the m2

F /Wϕϕ expansion of eq. (7.21), as
this is an expansion in a parameter 1/z2 much larger than unity. Refs. [25, 26] included
figure 18(c) into the ϕ propagator in order to avoid this expansion. The EFT method does
this automatically, since the one-loop matching condition to the low-energy theory includes
these diagrams in the ϕ mass in the low-energy theory. There are also tadpole graphs
figure 18(e–h) in the two-point function, which have to be included. These cancel the zero
momentum part of the Goldstone boson propagator, so that the one-loop correction is order
p2. This cancellation must happen, because Goldstone bosons are derivatively coupled. We
already saw this cancellation at tree level for the λ̃ϕ4

q coupling of the Goldstone bosons in
the O(N) model in section 3; there, we found that λ̃ was order z2 and vanished at the tree-
level minimum of the potential. Here Γϕϕ is order p2, and so the Goldstone boson loops
give Wϕϕ lnWϕϕ terms, which are not infrared divergent. Thus, in addition to including
Σϕϕ into the ϕ propagator as in refs. [25, 26], we find that there is a tadpole contribution
to Σϕϕ which exactly cancels the contribution eq. (7.20), so that there is no order y2m2

F

shift in the ϕ mass.

7.5 Comments on the standard model

The Standard Model is an O(4) scalar theory coupled to fermions and gauge fields. All
particle masses are proportional to the VEV of the Higgs field 〈H〉. As a result, the theory
is a single-scale theory in that 〈H〉 cancels out in mass ratios. There are still, of course,
large mass ratios due to a large hierarchy in the couplings, e.g. the ratio of the electron and
top-quark masses which is equal to the ratio of their Yukawa couplings me/mt = ye/yt.
Summing these logs is usually neglected, since the light fermion contribution to the poten-
tial is negligible.

The stability analysis of the EW vacuum compares the potential computed at
〈H〉1 ∼ v = 246GeV with 〈H〉2 � v. In our method, V (H) is computed in the two cases
separately, and each calculation is the same as the computation using the fixed order
formula at 〈H〉1 and 〈H〉2, with couplings renormalized at µ = 〈H〉1 and µ = 〈H〉2, respec-
tively. The two sets of couplings are related by RG evolution in the high-energy theory,
i.e. the full SM. This procedure is exactly what is followed in the literature (for a review,
see ref. [27]).

8 Conclusion

We have shown how to systematically compute the RG improved Coleman-Weinberg po-
tential using EFT methods, and given several examples. We enforced the constraint of
only summing 1PI diagrams using a tadpole condition, which can be matched to the EFT,
resulting in tadpole contributions to the EFT Lagrangian and to the Coleman-Weinberg
potential. Our results for the L2 terms obtained by integrating the one-loop RGE agree
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with explicit two-loop calculations, and provide a highly non-trivial check of our method.
An interesting feature of the method is the source J , which is introduced in the high-
energy theory, but whose value is determined in the low-energy theory. We have also
shown how to efficiently compute the RGE in certain cases, including in the presence of
higher-dimension operators, and shown that shift invariance provides strong constraints on
the RGE. Furthermore, we have demonstrated that the EFT formalism in theories with
Goldstone bosons automatically produces a low-energy theory free of infrared divergences,
and so does not suffer from the Goldstone boson divergence problem of ref. [24].

The method used in this paper is not restricted to the Coleman-Weinberg potential,
but also applies to the effective action Γ[ϕ̂], and can be used to compute the RG improved
Γ[ϕ̂] in a derivative expansion.

The examples in this paper do not have gauge fields to avoid more complicated β-
function calculations, but this method applies equally well to the gauge case. There are
subtleties in interpreting the Coleman-Weinberg potential in the gauge case, which are
explained in detail in refs. [28, 29].
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A Examples of β functions

In this appendix, we give useful examples of β-function evolution for scalar theories using
eq. (2.22). These theories have no scalar field anomalous dimensions at one loop.

Consider a potential V (φ2, χ2) where χ2 = χiχi is a sum over Nχ components of a real
scalar field χ, and φ2 = φaφa is a sum over Nφ components of a real scalar field φ. The W
matrix of second derivatives (as defined in eq. (2.11)) is

W =

 ∂2V
∂χiχj

∂2V
∂χiφb

∂2V
∂φaχj

∂2V
∂φaφb


=

2δij
(
∂χ2V

)
+ 4χiχj

(
∂2
χ2V

)
4χiφb

(
∂χ2∂φ2V

)
4φaχi

(
∂χ2∂φ2V

)
2δab

(
∂φ2V

)
+ 4φaφb

(
∂2
φ2V

)
 .

(A.1)

Breaking the indices into radial directions ∝ χi, φa, and tangential directions, we see that
the two directions do not mix. The radial direction matrix is

Wrad =

2
(
∂χ2V

)
+ 4χ2(∂2

χ2V
)

4χφ
(
∂χ2∂φ2V

)
4χφ

(
∂χ2∂φ2V

)
2
(
∂φ2V

)
+ 4φ2(∂2

φ2V
)
 , (A.2)

where ∂φ2 is the derivative w.r.t. φ2, etc. The tangential direction matrix is diagonal in
χ-φ space, and given by

[Wχχ]tan = 2
(
∂χ2V

)
, [Wφφ]tan = 2

(
∂φ2V

)
, (A.3)
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with Nχ − 1 and Nφ − 1 diagonal entries, respectively. Using eq. (2.22) gives the RG
equation dV/dt = TrW 2/2 (where recall we have defined t ≡ (1/16π2) lnµ/µ0 to absorb
factors of 16π2), which evaluates to

dV
dt = 1

2
[
W 2
φφ + 2W 2

φχ +W 2
χχ

]
rad

+ 1
2(Nχ − 1)

[
W 2
χχ

]
tan

+ 1
2(Nφ − 1)

[
W 2
φφ

]
tan

= 2Nχ

(
∂χ2V

)2
+ 2Nφ

(
∂φ2V

)2
+ 8χ2

(
∂χ2V

) (
∂2
χ2V

)
+ 8φ2

(
∂φ2V

) (
∂2
φ2V

)
+ 8

(
χ2
)2 (

∂2
χ2V

)2
+ 8

(
φ2
)2 (

∂2
φ2V

)2
+ 16χ2φ2

(
∂χ2∂φ2V

)2
.

(A.4)

We now apply this formula to several examples.

A.1 O(Nχ) × O(Nφ) model in the unbroken and broken phases

For the O(Nχ)×O(Nφ) model with potential

V = λχ
24 (χ · χ)2 + λφ

24 (φ · φ)2 + λ3
4 (χ · χ)(φ · φ)

+
m2
χ

2 (χ · χ) +
m2
φ

2 (φ · φ) + Λ ,
(A.5)

eq. (A.4) gives the RGE

λ̇φ = 1
3(Nφ + 8)λ2

φ + 3Nχλ
2
3 ,

λ̇χ = 1
3(Nχ + 8)λ2

χ + 3Nφλ
2
3 ,

λ̇3 = 1
3(Nχ + 2)λ3λχ + 1

3(Nφ + 2)λ3λφ + 4λ2
3 ,

ṁ2
φ = 1

3(Nφ + 2)λφm2
φ + λ3Nχm

2
χ ,

ṁ2
χ = 1

3(Nχ + 2)λχm2
χ + λ3Nφm

2
φ ,

Λ̇ = 1
2Nφm

4
φ + 1

2Nχm
4
χ .

(A.6)

In the broken phase we take the potential to be

V = λχ
24
(
χ · χ− v2

χ

)2
+ λφ

24
(
φ · φ− v2

φ

)2

+ λ3
4
(
χ · χ− v2

χ

) (
φ · φ− v2

φ

)
+ Λbroken ,

(A.7)

and compute the β-functions from eq. (A.6) by changing variables,

m2
φ = −1

6λφv
2
φ −

1
2λ3v

2
χ ,

m2
χ = −1

6λχv
2
χ −

1
2λ3v

2
φ ,

Λ = Λbroken + 1
24λχv

4
χ + 1

24λφv
4
φ + 1

4λ3v
2
χv

2
φ ,

(A.8)
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and thus obtain eq. (A.6) for λ̇φ, λ̇χ, λ̇3 and

v̇2
χ = 1

λχλφ − 9λ2
3

{[
36λ3

3 − 2λφλ2
χ + 6λ2

3λχ
]
v2
χ +

[
4λ3λ

2
φ − 12λ2

3λφ
]
v2
φ

}
,

v̇2
φ = 1

λχλφ − 9λ2
3

{[
36λ3

3 − 2λχλ2
φ + 6λ2

3λφ
]
v2
φ +

[
4λ3λ

2
χ − 12λ2

3λχ
]
v2
χ

}
,

Λ̇broken = 1
18λχv

2
χ + 1

18λφv
2
φ + λ3vχvφ . (A.9)

Note that vχ and vφ mix under the RGE.
We will need the RGE for the case of the O(N) theory, which are given by dropping

the χ terms (taking λχ = mχ = λ3 = 0),

λ̇φ = 1
3(Nφ + 8)λ2

φ , ṁ2
φ = 1

3(Nφ + 2)λφm2
φ , Λ̇ = 1

2Nφm
4
φ , (A.10)

or in the broken phase where m2
φ = −λφv2/6,

λ̇φ = 1
3(Nφ + 8)λ2

φ , v̇2
φ = −2λφv2

φ , Λ̇broken = 1
18λ

2
φv

4
φ . (A.11)

The solution of the RGE eq. (A.10) is

λφ(µ) = λφ(µ0)η−1 ,

m2
φ(µ) = m2

φ(µ0)η−
N+2
N+8 ,

Λ(µ) = Λ(µ0) +
m4
φ(µ0)

λφ(µ0)
3N

2(4−N)
[
1− η

4−N
N+8

]
,

(A.12)

given in terms of

t = 1
16π2 ln µ

µ0
, η = 1− 1

3(N + 8)λφ(µ0) ln µ

µ0
. (A.13)

For N = 4 (where the denominator in eq. (A.10) goes to zero), the solution is

λφ(µ) = λφ(µ0)η−1 ,

m2
φ(µ) = m2

φ(µ0)η−1/2 ,

Λ(µ) = Λ(µ0)−
m4
φ(µ0)

2λφ(µ0) ln η .

(A.14)

A.2 O(N) model through dimension 6

For the O(N) model with only the field φ, one can use eq. (A.4) dropping the χ terms.
The solution through dimension 4 was given above. Including a dimension 6 term,5

V = m2

2 (φ · φ) + λ

24(φ · φ)2 − c6
8 (φ · φ)3 + Λ , (A.15)

5This formalism works even for terms with dimension greater than four; there was no restriction to
renormalizable terms in the previous section.
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the RGE are

ċ6 = (N + 14)λc6 , λ̇ = −18(N + 4)m2c6 + 1
3(N + 8)λ2 ,

ṁ2 = 1
3(N + 2)m2λ , Λ̇ = 1

2Nm
4 . (A.16)

For N = 4, these can be compared with the RGE for the Higgs sector of the SMEFT, where
c6 is the coefficient of the (H†H)3 operator. Using the complex Higgs doublet written in
terms of real scalar fields

H = 1√
2

[
φ2 + iφ1
φ4 − iφ3

]
, (A.17)

eq. (A.15) becomes the potential

V = Λ +m2H†H + 1
6λ
(
H†H

)2
− c6

(
H†H

)3
, (A.18)

and we can make the identification

c6 = CSMEFT
H ,

1
6λ = λSMEFT , m2 = −1

2
(
m2
H

)SMEFT
, (A.19)

with SMEFT parameters using the notation in ref. [30]. Setting N = 4 in eq. (A.16) and
using eq. (A.19),

ĊSMEFT
H = 108λCSMEFT

H ,

λ̇SMEFT = 12
(
m2
H

)SMEFT
CSMEFT
H + 24(λSMEFT)2 ,

˙(
m2
H

)SMEFT = 12λSMEFT
(
m2
H

)SMEFT
,

Λ̇ = 1
2
(
m4
H

)SMEFT
,

(A.20)

which agrees with refs. [30–32]. Eq. (A.4) provides a quick way of obtaining the RGE for
a scalar theory with arbitrary higher dimension operators.

A.3 O(N) model with a singlet

Finally we consider the case of the O(Nφ) λφ4 theory with an additional scalar singlet χ,
with potential

V = Λ+σχ+
m2
χ

2 χ2 +
m2
φ

2 φ2 + ρχ
6 χ

3 + ρφ
2 χφ

2 + λχ
24χ

4 + λ3
4 χ

2φ2 + λφ
4
(
φ2
)2

(A.21)

for which eq. (A.4) gives the RGE

λ̇φ = 1
3(Nφ + 8)λ2

φ + 3λ2
3 , λ̇χ = 3λ2

χ + 3Nφλ
2
3 ,

λ̇3 = λ3λχ + 1
3(Nφ + 2)λ3λφ + 4λ2

3 ,

ρ̇φ = λ3ρχ + 4λ3ρφ + 1
3(Nφ + 2)λφρφ , ρ̇χ = 3λχρχ + 3λ3Nφρφ ,

ṁ2
φ = 2ρ2

φ + λ3m
2
χ + 1

3(Nφ + 2)λφm2
φ , ṁ2

χ = ρ2
χ + λχm

2
χ +Nφρ

2
φ +Nφλ3m

2
φ ,

σ̇ = ρχm
2
χ +Nφρφm

2
φ, , Λ̇ = 1

2Nφm
4
φ + 1

2m
4
χ . (A.22)
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B RGE solution for the scalar theory

The solution of the RGE for a scalar theory with the potential

V (ϕ) = Λ + σϕ+ m2

2 ϕ2 + ρ

6ϕ
3 + λ

24ϕ
4 (B.1)

is used repeatedly in this paper. The RGE equations are a special case of eq. (2.27),

γϕ = 0 , βΛ = 1
2m

4 , βσ = m2ρ ,

βm2 = λm2 + ρ2 , βρ = 3λρ , βλ = 3λ2 , (B.2)

with solution
λ(µ) = λ(µ0) η−1 ,

ρ(µ) = ρ(µ0) η−1 ,

m2(µ) = m2(µ0)
{
η−1/3

[
1− 1

2ξ
]

+ 1
2ξη

−1
}
,

σ(µ) = σ(µ0) + m2(µ0)ρ(µ0)
λ(µ0)

{(1
3ξ − 1

)
+ 1

6ξη
−1 +

(
1− 1

2ξ
)
η−1/3

}
,

Λ(µ) = Λ(µ0) + m4(µ0)
2λ(µ0)

{1
3
(
3− 6ξ + 2ξ2

)
− 1

2ξ (ξ − 2) η−1/3

− 1
4 (ξ − 2)2 η1/3 + 1

12ξ
2η−1

}
,

(B.3)

where

t = 1
16π2 ln µ

µ0
, η = 1− 3λ(µ0)t , ξ = ρ2(µ0)

λ(µ0)m2(µ0) . (B.4)

The expansion of eq. (B.3) in powers of t gives

λ(t) = λ0 + 3λ2
0t+ 9λ3

0t
2 +O(t3) ,

ρ(t) = ρ0 + 3λ0ρ0t+ 9λ2
0ρ0t

2 +O(t3) ,

m2(t) = m2
0 +

(
λm2

0 + ρ2
0

)
t+ 1

2λ0
(
4λ0m

2
0 + 7ρ2

0

)
t2 +O(t3) ,

σ(t) = σ0 +m2
0ρ0t+ 1

2ρ0
(
4λ0m

2
0 + ρ2

0

)
t2 +O(t3) ,

Λ(t) = Λ0 + 1
2m

4
0t+ 1

2m
2
0

(
λ0m

2
0 + ρ2

0

)
t2 +O(t3) ,

(B.5)

where all couplings on the r.h.s. are evaluated at t = 0, i.e. µ = µ0 (hence the subscripts).

C Perturbative integration of RGE

To check the leading logarithmic series with the explicit two-loop computation of the
Coleman-Weinberg potential, it is useful to have the solution to the RGE as a power
series in t. Let {λ(t)} denote the running parameters, with evolution equations

d
dtλi(t) = βi({λ(t)}) . (C.1)
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The solution to these coupled equations can be written as a series in t,

λi(t) = λ
(0)
i + λ

(1)
i t+ 1

2λ
(2)
i t2 + 1

6λ
(3)
i t3 + . . . (C.2)

Repeated derivatives of eq. (C.1) give the series coefficients

λ
(1)
i = βi , λ

(2)
i = ∂βi

∂λj
βj , λ

(3)
i = ∂βi

∂λj

∂βj
∂λk

βk + ∂2βi
∂λj∂λk

βjβk , (C.3)

where all quantities are evaluated at the initial point {λ(0)}.

D Expanding Ω(∆)

The function Ω(∆) that enters the two-loop computation of the Coleman-Weinberg poten-
tial is given by [2]

Ω(∆) =
√

∆(∆− 4)
∆ + 2

∫ α

0
ln(2 cosh x) dx , coshα = 1

2
√

∆ , (D.1)

for ∆ ≥ 4, and by

Ω(∆) =
√

∆(4−∆)
∆ + 2

∫ θ

0
ln(2 sin x) dx , sin θ = 1

2
√

∆ , (D.2)

for ∆ ≤ 4, where ∆ = m2
1/m

2
2 is the ratio of two masses. When this ratio is large, we need

the expansion of Ω(∆) in the ∆→∞ and ∆→ 0 limits to order 1/∆2 or ∆2, respectively,
in order to obtain terms of order m4

1/m
4
2.

Let us first expand Ω(∆) in (D.1) for ∆→∞. The prefactor is expanded√
∆(∆− 4)
∆ + 2

∆→∞= 1− 4
∆ + 6

∆2 + . . . . (D.3)

Using 2 cosh x = ex + e−x, we can rewrite the integral as

I =
∫ α

0
ln(2coshx)dx=

∫ α

0

[
x+ln

(
1+e−2x

)]
dx= α2

2 + Li2
(
−e−2α)
2 + π2

24 . (D.4)

Using eα + e−α =
√

∆, we can expand

eα = 1
2
√

∆ + 1
2
√

∆− 4 =
√

∆
[
1− 1

∆ −
1

∆2 + . . .

]
,

e−α = 1
2
√

∆− 1
2
√

∆− 4 = 1√
∆

[
1 + 1

∆ + 2
∆2 + . . .

]
,

⇒ e−2α = 1
∆

[
1 + 2

∆ + 5
∆2 + . . .

]
.

(D.5)

Since Li2(z) = ∑∞
k=1

zk

k2 and the argument |z| = e−2α � 1,

Li2(−e−2α) = −e−2α + e−4α

4 − e−6α

9 + . . . = − 1
∆ −

7
4∆2 + . . . . (D.6)
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We also have from (D.5) that

α = 1
2 ln ∆− 1

∆ −
3

2∆2 + . . . . (D.7)

Using these expressions, the expansion of the integral defined in (D.4) is

I = 1
8 ln2 ∆ + π2

24 −
1

2∆ (ln ∆ + 1)− 3
8∆2 (2 ln ∆ + 1) + . . . . (D.8)

Together with (D.3), we obtain Ω(∆) to the desired order,

Ω(∆) ∆→∞= 1
8 ln2 ∆ + π2

24 −
1

6∆
(
3 ln2 ∆ + 3 ln ∆ + π2 + 3

)
+ 1

8∆2

(
6 ln2 ∆ + 10 ln ∆ + 2π2 + 13

)
+ . . . .

(D.9)

The first two terms agree with ref. [2]. We have extended the expansion to higher order
in 1/∆.

The other limit ∆→ 0 proceeds in a similar fashion. The prefactor is expanded√
∆(4−∆)
∆ + 2 →

√
∆
[
1− 5∆

8 + 39∆2

108 + . . .

]
, (D.10)

and the integral becomes

I =
∫ θ

0
ln(2 sin x) dx = θ ln θ + (ln 2− 1) θ − θ3

18 + . . . . (D.11)

θ can be expanded

θ = arcsin
(√

∆
2

)
= 1

2
√

∆
[
1 + ∆

24 + 3∆2

640 + . . .

]
. (D.12)

Then, Ω(∆→ 0) is given by

Ω(∆) ∆→0= ∆
4 (ln ∆− 2) + ∆2

144 (44− 21 ln ∆) + . . . . (D.13)

There are no ∆n ln2 ∆ terms in this limit.

E Passarino-Veltman integrals

We summarize the Passarino-Veltman integrals [33] needed in section 7 in the sign conven-
tions of this paper. We denote the finite parts of the integrals by A0, B0 and B1.

The integrals are

S
∫ ddk

(2π)d
1

k2 −m2 + i0+ = iA0(m2) , (E.1)

S
∫ ddk

(2π)d
1[

k2 −m2
1 + i0+] [(k + p)2 −m2

2 + i0+] = iB0(p2,m2
1,m

2
2) , (E.2)

S
∫ ddk

(2π)d
kµ[

k2 −m2
1 + i0+] [(k + p)2 −m2

2 + i0+] = iB1(p2,m2
1,m

2
2)pµ , (E.3)
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where S = (4π)d/2eεγEµ2ε. The explicit values are

A0(m2) = m2
(

1
ε
− ln m

2

µ2 + 1
)
, (E.4)

B0(p2,m2
1,m

2
2) = 1

ε
−
∫ 1

0
dx ln m

2
1x+m2

2(1− x)− p2x(1− x)
µ2 , (E.5)

2B1(p2,m2,m2) = −B0(p2,m2,m2) . (E.6)

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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